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Abstract " I I
On a distributed memory parallel computer, the complete exchange (all-to-all per-

sonalized) communication pattern requires each of n processors to send a different
block of data to each of the remaining n - 1 processors. This pattern is at the heart
of many important algorithms, most notably the matrix transpose.

For a circuit switched hypercube of dimension d (n = 2d), two algorithms for achiev-
ing complete exchange are known. These are (1) the Standard Exchange approach that
employs d transmissions of size 2d-1 blocks each and is useful for small block sizes, and
(2) the Optimal Circuit Switched algorithm that employs 2" - 1 transmissions of 1
block each and is best for large block sizes.

A unified multiphase algorithm is described that includes these two algorithms as
special cases. The complete exchange on a hypercube of dimension d and block size m
is achieved by carrying out k partial exchanges on subcubes of dimension d,, EY=jd, = d
and effective block size n = m2d - d . When k = d and alld = 1) this corresponds
to algorithm (1) above. For the case of k = 1 and dl = d, this becomes the circuit
switched algorithm (2). Changing the subcube dimensions d varies the effective block
size and permits a compromise between the data permutation and block transmission
overhead of (1) and the startup overhead of (2).

For a hypercube of dimension d, the number of possible combinations of subcubes is
p(d), the number of partitions of the integer d. This is an exponential but very slowly
growing function (e.g. p(7) = 15, p(10) = 42) and it is feasible to enumerate over these
partitions to discover the best combination for a given message size.

This approach has been analyzed for, and implemented on, the Intel iPSC-860 cir-
cuit switched hypercube. Measurements show good agreement with pred.Utions and
demonstrate that the multiphase approach can substantially improve performance for
block sizes in the 0-160 byte range. This range, which corresponds to 0-40 floating
point numbers per processor, is commonly encountered in practical numeric applica-
tions. The multiphase technique is applicable to all circuit-switched hypercubes that
use the common 'e-cube' routing strategy.

*Research supported by the National Aeronautics and Space Administration under NASA contract NASI-
18805 while the author was in residence at the Institute for Computer Applications in Science & Engineering,
Mail Stop 132C, NASA Langley Research Center, Hampton, VA 23665-5225.
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1 Introduction

On a distributed memory parallel computer system, the complete exchange
communication pattern requires each of n processors to send a different m
byte block of data to each of the remaining n-I processors. This communica-
tion pattern arises in many important applications such as matrix transpose,
matrix-vector multiply, 2-dimensional FFTs, distributed table look-ups etc.
It is also important in its own right since, being equivalent to a complete
directed graph, it is the densest communication requirement that can be im-
posed on an interconnection network. The time required to carry out the
complete exchange is an important measure of the power of a distributnd
memory parallel computer system.

There are two algorithms for complete exchange on circuit switched hy-
percubes like the Intel iPSC-2, Intel iPSC-860, and Ncube-2. The first is
the Standard Exchange algorithm: for an d-dimensional hypercube, this al-
gorithm uses d transmissions of 2d-1 blocks each. On circuit switched ma-
chines this algorithm is useful for small block sizes (< % 200 bytes). The
second is the Optimal Circuit Switched algorithm, that uses 2 d - 1 transmis-
sions of 1 block each: the transmissions are carefully scheduled to avoid link
contention.

We describe in this paper a unified multiphase algorithm that carries out
the complete exchange on a hypercube of dimension d as set of k "partial"
exchanges on subcubes of dimensions d,, E =d, = d with effective block size
n4 = m24-d. The motivation here is to reduce the time required for the
complete exchange by compromising between the data permutation and block
transmission overhead of the Standard Exchange algorithm and the startup
overhead of the Optimal algorithm.

For a hypercube of dimension d there are p(d) possible generalized algo-
rithms, where p(d) is the number of partitions of the integer d. Although
p(d) is an exponential function, it grows very slowly. For example, p( 7 ) = 15,
p(10) = 42, and p(20) = 672. It is thus quite feasible to enumerate over all
partitions to find the algorithm best suited for a given block size.

For the case where k = d and each d, = 1, the unified algorithm degen-
erates into the Standard Exchange algorithm. When k = 1 and d, = d, it
becomes the Optimal algorithm. The unified algorithm thus includes the two
known algorithms as special (although extreme) cases.

Measurements on the Intel iPSC-860 hypercube show that the multiphase
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approach can substantially improve performance for block sizes in the 0-160
byte range. This range corresponds to 0-40 floating point numbers and is
commonly encountered in practical numeric applications. While our mea-
surements are for the Intel iPSC-860, our techniques are applicable to all
circuit switched hypercubes that use the common 'e-cube' routing strategy.
The older Intel iPSC-2 and the Ncube-2 are examples of such machines.

In Section 2 of this paper we describe the essential features of circuit
switched hypercubes. We discuss the complete exchange pattern in Section
3. Section 4 describes the two previously known algorithms for the complete
exchange.

The major theoretical results of this paper are presented in Section 5.
We introduce the unified multiphase algorithm with an example and then go
on to describe partial exchanges. This Section concludes with a presentation
of the general algorithm. In Section 6 we describe how an enumeration ap-
proach can be used to obtain the optimal set of subcube dimensions. Details
of implementation on the iPSC-860 are given in Section 7. In Section 8 we
discuss our observed timings and compare them with predictions. We con-
clude with a discussion of our results and projections for future research in
Section 9.

2 Circuit Switched Hypercubes

The interconnection network of a 32 node hypercube is shown in Figure
1. The labeled vertices hanging from each vertex of the network represent
processors of the hypercube. Two processors in the network are connected if
and only if the binary representations of their labels differ in exactly one bit.
Circuit-switched communications differentiate the newer hypercubes, such
as the Intel iPSC-2 and iPSC-860, and the Ncube-2 from older machines.
In these machines, a dedicated path is set up between two processors when
communication is desired. Messages then flow through this path without
involving intervening processors. The path between source and destination
is determined by the 'e-cube' routing algorithm: starting with the right hand
side of the binary label of the source processor, we move to the processor
whose label more closely matches the label of the destination processor. This
process is repeated until the destination is reached.

The user has no control over how a message is routed between two proces-
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sors. The fixed routing algorithm completely determines this path. Because
of this, we can encounter edge and node contention. Edge contention is the
sharing of an edge (i.e. a communication link) by two or more paths. Simi-
larly, node contention is the sharing of a node.

Figure 1 illustrates paths from 0 to 31 (solid), 2 to 23 (dashed) and 14
to 11 (dotted). The lengths of these paths (the distance between source
and destination) are 5, 3 and 2 respectively. The paths 0 -- 31 and 2 ---
23 share the edge 3-7, while the paths 0 -- 31 and 14 -- 11 share node
15. Measurements on the iPSC-860 [2] reveal that edge contention has a
disastrous impact on communication time, while node contention has no
measurable effect.

The Intel iPSC-2 and IPSC-860 are among the first commercial exam-
ples of circuit-switched machines. Since circuit switching provides very fast
communications, it is generally felt that it eliminates most, if not all, of the
inefficiencies caused by communication overhead. In particular, it is a com-
mon belief that programmers can ignore the details of the interconnection
network, since communication overhead is negligible. This is a mistaken be-
lief since, as we shall see later in this paper, very careful consideration of the
interconnection network is necessary if the full power of the machine is to be
utilized.

3 The Complete Exchange Pattern

The Complete exchange communication pattern requires each of n processors
of a parallel machine to send a different block of data to each of the remaining
n - 1 machines. This pattern arises when transposing a matrix of size n x n
blocks that is mapped onto an n processor system (Figure 2). As shown in
the bottom part of this figure, the transpose requires each processor to send 1
block to each of the remaining n- 1 processors. The resulting communication
pattern is a complete directed graph of n nodes.

The specific mapping of an n x n matrix onto an n processor system
shown in Figure 2 is required when using the Alternating Directions Implicit
(ADI) method for solving partial differential equations [5, 10]. This method
requires access to the matrix by rows and by columns in successive phases,
necessitating the heavy use of a transpose procedure. Similar requirements
arise in matrix-matrix and matrix-vector multiplication, when the matrices
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Figure 1: Interconnection network of a 32 node hypercube.
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Figure 2: Matrix transpose/Complete exchange communication pattern
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are mapped as described above.
The complete exchange pattern also arises in certain implementations of

the 2-D FFT [11] and in distributed table lookup[12]. Being equivalent to
a complete directed graph of n nodes, this pattern is of interest in its own
right, since it is the densest communication requirement that can be imposed
on an interconnection network. The time required to execute the complete
exchange pattern is an upper bound for the time required by any pattern
(which must necessarily be a subset of the complete directed graph).

Because of its widespread applications, it is worthwhile to investigate the
time required to execute this pattern and to develop fast procedures for it,
as we proceed to do in the following Sections.

4 Algorithms for Complete Exchange

We shall now discuss the two algorithms for complete exchange that are
currently in use. Of these, Standard Exchange[7] is well known, while the
Optimal Circuit Switched algorithm[13, 15] is a recent development. The
former requires only log n transmissions of n/2 blocks each and has better
performance for small block sizes. The latter uses n - 1 transmissions of 1
block each and has better performance for large block sizes. Both algorithms
completely avoid edge contention. The Exchange algorithm does this by com-
municating over unit distances. The Optimal algorithm avoids contention by
using a carefully contrived schedule of transmissions.

4.1 The Standard Exchange Algorithm

The Standard Exchange algorithm [7] uses logn transmissions of size n/2
blocks each. All transmissions are along paths of length 1, thus there is
no possibility of contention. This algorithm incurs overhead because of the
shuffling of blocks and because it transmits 2 log n blocks instead of the
optimal number, n - 1. It is, nevertheless, competitive for small block sizes.
This is because there are only log n transmissions (as opposed to n- i for the
algorithm discussed below) and thus the overhead of starting up a message
is not incurred as frequently.
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procedure StandardExchange;
begin

forj = d - 1 downto 0 do

begin
if (bit j of mynumber = 0) then

message = blocks n/2 to n - 1

else
message = blocks 0 to n/2 - 1;

send-rnessage-to-processor((mynumber) E (2j));

shuffle blocks;
end;

end;

4.2 The Optimal Circuit Switched Algorithm

The challenge in designing algorithms for circuit switched machines with fixed

routing is to organize communications in such a way as to avoid or minimize

edge contention. In the case of complete exchange, each processor must send

its ith block to processor i, but is free to schedule its transmissions in order

to avoid edge contention. There are many possible schedules that completely

avoid contention. We will use the schedule developed by Schmiermund and

Seidel[131. This schedule has the property that the entire communication

pattern is decomposed into a sequence of pairwise exchanges. This property

is very useful when implementing complete exchanges on the Intel iPSC-2 and

iPSC-860 because of certain idiosyncrasies of their communication hardware,

as we shall see in Section 7. Other schedules are possible-some of these have

advantages over certain ranges of block size. These are discussed further in

[3].
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procedure OptimalCircuit.Switched;
begin

for i= 1 to n -1 do
send.block-to-processor((mynumber) ED (i));

end;

4.3 Analysis of Run Times

Let us define the following performance parameters of our hypercube.

111I Description Units
T transmission #sec. per byte

p data permutation psec. per byte

A startup (latency) .psec.
6 distance impact #sec. per dimension

The time taken by a message of size m bytes to cross d dimensions is
thus A + rm + 6d; the time to shuffle m bytes of data within memory is pM.
Expressions for the two algorithm are as follows.

In the Standard Exchange algorithm d transmissions of m2d- 1 bytes each
over dimension 1, take d(A + Tm2d - + 8) seconds. There are d shuffles on 2d

blocks of m bytes each, taking d(pm2d) seconds. The total time is thus

t,(m, d) = d(A + r + 2p)m2d - 1 + 6). (1)

In the case of the Optimal Circuit Switched algorithm there are 2d - 1

transmissions of blocks of m bytes. At each transmission step, all pairs
of processors are at identical distances from each other. Thus the overall
distance impact equals the average path length in a hypercube, which is
d2d-/(2 d- 1) The total time is

t0 (m, d) = (2 d 1)(A + TM + -1). (2)

8



The Standard Exchange algorithm is better than the Optimal Circuit
Switched algorithm whenever

(2d-d - 1)A + d(2d- - 1)6
(d2d- 1 - 2d + 1)- + d2dp

For a hypothetical machine of dimension 6 with r = p = 1, A = 200 and
6 = 20, the Standard Exchange algorithm is better for blocks of size less than
30.

5 The Multiphase Approach

We shall now describe a multiphase approach in which the complete exchange
is carried out as a set of two or more "partial" exchanges. As we shall see, this
permits us to use the Circuit Switched algorithm for block sizes for which it is
ordinarily inefficient and provides very significant performance gains. In fact
our multiphase approach is a unified algorithm that includes the Standard
Exchange and Circuit Switched algorithms as special cases.

5.1 Motivation and Example

Given that the Standard Exchange algorithm is competitive for small message
sizes and the Circuit Switched algorithm performs best at large message sizes,
is there any way we can combine these algorithms to obtain performance
better than either? This is indeed possible, as demonstrated below. Recall
that we have n = 2 nodes on our hypercube. The normal complete exchange
algorithm is based on the exchange of sets of n blocks per processor. We
can envisage a "partial" exchange that is carried out simultaneously on all
subcubes of dimension d, < d but based on n = 2d blocks (not 2d, blocks)
per processor. By carefully permuting our data blocks, we can then execute
another partial exchange on all subcubes of dimension d2 = d - d1 , again
with 2d blocks and not 2a2 blocks. The end result will be that a complete
exchange on the hypercube of dimension d is carried out in two phases, using
messages that are longer than the messages that would have been used if a
single phase approach had been employed. What we have achieved here is an
effective "lengthening" of messages that lets us take advantage of the Circuit
Switched algorithm for message sizes for which it is normally unsuited. The
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n 001 010 0ol 100 101 110 i11 000 001 010 0 ol1 100 1111 II

Ui_=_ Partial Exchange, bits 2,1 __fi
0:0 1:0 2:0 3:0 4:0 5:0 6:0 7:0 0:0 1:0 0:2 1:2 0:4 1:4 0:6 1:6
0:1 1:1 2:1 3:1 4:1 5:1 6:1 7:1 0:1 1:1 0:3 1:3 0:5 1:5 0:7 1:7
0:2 1:2 2:2 3:2 4:2 5:2 6:2 7:2 2:0 3:0 2:2 3:2 2:4 3:4 2:6 3:6
0:3 1:3 2:3 3:3 4:3 5:3 6:3 I 7:3 2:1 3:1 2:3 3:3 2:5 3:5 2:7 3:7
0:4 1:4 2:4 3:4 4:4 5:4 6:4 I7:4 4:0 5:0 4:2 5:2 4:4 5:4 4:6 5:6
0:5 1:5 2:5 3:5 4:5 5:5 6:5 7:5 4:1 5:1 4:3 5:3 4:5 5:5 4:7 5:7
0:6 1:6 2:6 3:6 4:6 5:6 6:6 7:6 6:0 7:0 6:2 7:2 6:4 7:4 6:6 7:6
0:7 1:7 2:7 3:7 4:7 5:7 6:7 7:7 6:1 7:1 6:3 7:3 6:5 7:5 6:7 7:7

2- 2-Shuffle

0:0 1:0 0:2 1:2 0:4 1:4 0:6 1:6 0:0 1:0 0:2 1:2 0:4 1:4 j0:6 1:6
0:1 1:1 0:3 1:3 0:5 1:5 0:7 1:7 2:0 3:0 2:2 3:2 2:4 3:1, 2:6 3:6
2:0 3:0 2:2 3:2 2:4 3:4 2:6 3:6 4:0 5:0 4:2 5:2 4:4 5:4 4:6 5:6
2:1 3:1 2:3 3:3 2:5 3:5 2:7 3:7 6:0 7:0 6:2 7:2 6:4 7:4 6:6 7:6
4:0 5:0 4:2 5:2 4:4 5:4 4:6 5:6 0:1 1:1 0:3 1:3 0:5 1:5 0:7 1:7
4:1 5:1 4:3 5:3 4:5 5:5 4:7 5:7 2:1 3:1 2:3 3:3 2:5 3:5 2:7 3:7
6:0 7:0 6:2 7:2 6:4 7:4 6:6 7:6 4:1 5:1 4:3 5:3 4:5 5:5 4:7 5:7
6:1 7:1 6:3 7:3 6:5 7:5 6:7 7:7 6:1 7:1 6:3 7:3 6:5 7:5 6:7 7:7

3 =- Prtil Echagebit0

0:0 1:0 0:2 1:2 0:4 1:4 0:6 1:6 0:0 0:1 0:2 0:3 0:4 0:5 0:6 0:7
2:0 3:0 2:2 3:2 2:4 3:4 2:6 3:6 2:0 2:1 2:2 2:3 2:4 2:5 2:6 2:7
4:0 5:0 4:2 5:2 4:4 5:4 4:6 5:6 4:0 4:1 4:2 4:3 4:4 4:5 4:6 4:7
6:0 7:0 6:2 7:2 6:4 7:4 6:6 7:6 6:0 6:1 6:2 6:3 6:4 6:5 6:6 6:7
0:1 1:1 0:3 1:3 0:5 1:5 0:7 1:7 1:0 1:1 1:2 1:3 1:4 1:5 1:6 1:7
2:1 3:1 2:3 3:3 2:5 3:5 2:7 3:7 3:0 3:1 3:2 3:3 3:4 3:5 3:6 3:7
4:1 5:1 4:3 5:3 4:5 5:5 4:7 5:7 5:0 5:1 5:2 5:3 5:4 5:5 5:6 5:7
6:1 7:1 6:3 7:3 6:5 7:5 6:7 7:7 7:0 7:1 7:2 7:3 7 7:4 7:5 7 7:6 7:7

0:0 0:1 0:2 0:3 0:4 0:5 0:6 0:7 0:0 0:1 0:2 0:3 0:4 0:5 0:6 0:7
2:0 2:1 2:2 2:3 2:4 2:5 2:6 2:7 1:0 1:1 1:2 1:3 1:4 1:5 1:6 1:7
4:0 4:1 4:2 4:3 4:4 4:5 4:6 4:7 2:0 2:1 2:2 2:3 2:4 2:5 2:6 2:7
6:0 6:1 6:2 6:3 6:4 6:5 6:6 6:7 3:0 3:1 3:2 3:3 3:4 3:5 3:6 3:7
1:0 1:1 1:2 1:3 1:4 1.5 1:6 1:7 4:0 4:1 4:2 4:3 4:4 4:5 4:6 4:7
3:0 3:1 3:2 3:3 3:4 3:5 3:6 37 5:0 5:1 5:2 5:3 5:4 5:5 5:6 5:7
5:0 5:1 5:2 5:3 5:4 5:5 5:6 5:7 6:0 6:1 6:2 6:3 6:4 6:5 6:6 6:7
7:0 17:1 7:2 17:3 17:4 17:5 17:6 71 7:0 17:1 7:2 7:3 17:4 17:5 7:6 7:7

Figure 3: A Multiphase Exchange on a hypercube of dimension 3. The
first row gives the binary labels of processors. Data blocks are arranged in
columns. The first partial exchange is on the 2 subcubes of dimension 2
determined by bits 2 and 1; data are moved in superblocks of size 2. This is
followed by a 2-shuffle. The second partial exchange is on the 4 subcubes of
dimension 1 determined by bit 0; data are moved in superblocks of size 4.
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price paid is the overhead of data permutation, which is required to align
blocks to that they finish up in the correct position. Figure 3 illustrates this
approach for a dimension 3 hypercube.

An example. Suppose we have to carry out the complete exchange
of block size 24 on our hypothetical 6-dimensional hypercube (Section 4.3)
with r = p = 1, A = 200 and 6 = 20. We have seen that the Standard
Exchange algorithm is best on this machine for blocksizes of less than 30
bytes. For 24 bytes the Standard algorithm takes 15144psec.' Let us see what
happens if we carry out this exchange in two phases of dimension 2 and 4
respectively. The first phase on dimension 2 subcubes with an effective block
size of 24 x 26- 2 = 384 bytes takes 1832psec. using the Circuit Switched
algorithm. The next exchange on dimension 4 subcubes with effective block
size 24 x 2 -' = 160 bytes takes 6040itsec., again using the Circuit Switched
algorithm.

To this must be added the overhead of shuffling data, which is pm2' per
phase. This totals 3072issec. The total time for the two phase approach is
thus 10944psec., which is substantially faster than the Standard algorithm.

5.2 General Algorithm

A complete exchange on a hypercube of dimension d with n - 2d processors
and block size m is done using a set of partial exchanges V = {dI, d2, .. , dd},
where each d, specifies a subcube dimension. Obviously IVI = k, 1 </k, and
Ekjd, = d.

The jth partial exchange is done on the set of subcubes determined by
bits E =Id. - dj to Effild, of the hypercube node labels.

In a partial exchange 2d blocks of size m each are exchanged, regardless of
cube dimension. Hence the time required for the ith phase is obtained from
expression (1) or (2) with m replaced by m2' d bytes. This is the effective
block size. The multiphase algorithm is as follows.

11



procedure Multiphase;
{ d: dimensicn of the hypercube

k: number of phases (subcubes) in partition V
di: dimension of the ith subcube in partition V
start:starting bit of subcube label
stop: ending bit of subcube label }

begin
start =d- 1;
for i 1 to k do

{Partial exchange)
begin

stop = start - d, + 1;
compute effective blocksize;
for j = 1 to (2atrt- °tow+1 - 1) do

send-effective-blockto.processor((mynumber) D (j2"'P));
shuffle blocks d, times;
start = stop- I;

end;
end;

When k = d, all djs are 1. In this case the outer i loop is executed k times
with start = stop = d - 1, d - 2, ... , 1, 0. The inner j loop is executed only
once for each i. In this case Multiphase degenerates into Standard Exchange.

When k = 1 and thus d, = d, the outer loop is executed only once. stop
always equals 0 and, in the inner loop, j takes on the values 1, 2,... 5- 1

and thus Multiphase becomes Optimal Circuit Switched.

6 Minimizing the Execution Time

The theory developed in Section 4 assures us that multiphase exchanges can
be useful; the general algorithm of Section 5 tells us how the partial exchanges
are to be performed. It remains to discuss the problem of determining the
optimal set of subcube dimensions and algorithms.

Given a hypercube of dimension d, there are many different combinations

12



of subcube dimensions and algorithms that can be used to obtain a multi-
phase algorithm.* The optimal set can be obtained by enumerating over all
the partitions of d. For each partition V = {d 1, d2,... , dh} we select the best
algorithm at each phase. This procedure is not as expensive as it appears at
first sight, since we are enumerating over the partitions of hypercube dimen-
sion and not size. It is a classical result [1, 6] that the number of partitions
of an integer d is

p(d) - 4v/'-d

Exact values can be calculated using the recurrence

(1+vT--22a)/6 1p d)- (-1)-+"p d - j(3j -1-1)).

The following table enumerates the values of practical interest. We can
see that for a thousand node hypercube (the largest that was commercially
available in 1990) we need to enumerate only 42 partitions-a trivial number.
Even for a million node hypercube, the enumeration of 627 partitions is
quite viable, especially since it needs to be done only once and the optimal
combination stored for repeated future use.

Up I p(d) 11 p I pd) 11 p d)P I p(d) 11I
1 1 6 11 11 56 16 231

2 2 7 15 12 77 17 297
3 3 8 22 13 101 18 385
4 5 9 30 14 135 19 490
5 7 110 42 1115 176120 6271

7 Implementation on the iPSC-860

We have implemented the Multiphase algorithm on the Intel iPSC-860 hy-
percube. In this Section we discuss the salient features of our implementation
and derive expressions for the predicted run times.

*The sequence of dimensions is unimportant, as long as the shuffles are carried out
correctly.
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7.1 Message Types

There are two message types (selectable by the programmer) on the iPSC-
860[4]. A messages of the FORCED type is discarded upon arrival if no receive
has been posted for it. A message of the UNFORCED type is stored in a system
buffer if it arrives and no receive has been posted for it. The performance
of both types is similar for messages of size 0-100 bytes. Beyond 100 bytes,
an UNFORCED message is preceded by the exchange of 'reserve-acknowledge'
messages that cause space to be reserved in the destination. This causes
substantial overhead(2].

When the intercommunication pattern is fully known before runtime, as
is the case for complete exchange, suitable receives can be posted at all
processors before communication begins, and the more efficient FORCED type
used. We have done so in our implementation.

7.2 Pairwise Synchronized Exchange

This issue arises because of an idiosyncrasy of the iPSC-860's communication
hardware. A receive and a transmit occurring nearly simultaneously at a
processor can proceed concurrently, while a short delay causes them to be
carried out serially. This issue has been researched in detail by Seidel et al. [9,
13,14]. They have shown that two processors can execute a pairwise exchange
concurrently if the transmissions start simultaneously. This synchronization
can be achieved by using a global synchronization before each exchange, but
that is an extremely expensive solution.

It has been shown that a pairwise exchange is guaranteed to proceed con-
currently if the two processors involved first exchange a pair of zero byte
apairwise synchronization" messages. The time for this pairwise synchro-
nization is far less than the time for global synchronization and is negligible
for moderate to large messages.

7.3 Global Synchronization

When using FORCED message types it is essential for each processor to post
receives for all expected messages in the procedure at the very beginning, and
to carry out a global synchronization after this. Omission of the (expensive)
global synchronization step is fatal as it leads to messages arriving before
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their corresponding receives have been posted and thus being discarded by
the operating system. When using UNFORCED messages, it is possible to omit
this global synchronization step since these messages are stored by the op-
erating system until the required receive has been posted. We have found
that FORCED types give better performance, despite the overhead of global
synchronization.

We use FORCED types for "pairwise synchronization" messages as well as
for the actual data transfers. We post all receives for all messages before a
global synchronization. This results in better performance than the method
proposed in [13] which does not use global synchronization.

7.4 Measured Performance Characteristics

As discussed in Section 4.3, the time for a message of size m bytes to
cross d dimensions is A + rm + 6d. When messages of the FORCED type
are used and all receives are posted before transmission begins, the values
A and r are 95.0sec. and 0.3941&sec./byte, respectively. The value of 6 is
10.31Asec./dimension. The X for a zero byte message is significantly bet-
ter, being 82.5psec. When using these measured parameters to predict the
time required by the multiphase algorithm, we must remember that each
pairwise exchange is preceded by an exchange of zero byte synchroniza-
tion messages. Thus we have the effective values of X = 177.5/sec. and
6 = 20.6psec./dimension.

The time for global synchronization on a cube of dimension d has been
measured at 150djusec. The time for data permutation (shuffling) is p =
0.541&sec./byte. This is considerably slower than the time to transmit data
because of the substantial overhead of computing the permutation. This
occurs because we have implemented our algorithm in C using a compiler that
does not take many of the powerful features of the iPSC-860 into account.
It should be possible to significantly improve this figure by using assembly
language and/or an optimizing compiler. This will change our final measured
timings somewhat, but will not affect our overall approach, which is valid
even if the cost of permutation is zero.

The time for a partial exchange on a subcube (Section 5.2) of dimension
d, within a hypercube of dimension d is thus
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t,(m, d.,d)=J

(2 d 1  - 1)(177.5 + 0.394m + 20.6 + 0.54.2dm) + 150d. (3)

When d, = d, the shuffling can be omitted altogether, since d-shuffles of
2d blocks are equivalent to the identity permutation.

8 Evaluation of Multiphase Algorithm

We now present measured timings for the Multiphase algorithm on Intel
iPSC-860 hypercubes of dimension 5,6 and 7. Our timings are presented
as plots in Figures 4, 5 and 6 where we indicate each combination by its
set of subcubes. Thus for dimension 5, the Standard Exchange algorithm
is denoted by {1, 1, 1, 1, 1} and the Optimal Circuit Switched Algorithm by
{5}. For dimensions 5, 6 and 7, the number of combinations are 7, 11 and
15. Although we have measured the performance of all combinations, to
avoid congested plots we show only those combinations that form the hull
of optimality (i.e. only the best combination for every blocksize). The only
exception is the Standard Exchange Algorithm ({1, 1,.. .}), which is shown
for purposes of comparison, even though it is never optimal on the iPSC-860
for dimensions 5-7. Dashed lines on our plots indicate predicted values and
solid lines show actual measurements.

As is to be expected, the Optimal Circuit Switched algorithm is always
optimal for large enough block size. When d = 5 (Figure 4) the combina-
tion {2, 3} is optimal for block sizes less than 100 bytes. For d = 6, three
combinations are optimal: (2,2,2}, {3,3} and {6}. The last of these is op-
titnal for message sizes beyond about 140 bytes. The first is optimal only
for extremely small sizes. Figure 6 shows the plots for the largest iPSC-860
available (d = 7). In this case we again have three optimal combinations
{2,2,3},13,4} and {7}, with {7} optimal beyond 160 bytes and {2,2,3} op-
timal for 0 to 12 bytes. For d = 7, the combination {3, 4} leads to a factor
of two improvement over both the Standard Exchange and Optimal Circuit
Switched Algorithms at blocks of 40 bytes.

In all cases there is good agreement between the predicted and observed
run times. However the agreement is not perfect, since the performance
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characteristics of the real iPSC-860 are much more complex than this simple
model. Nevertheless our model is good enough to provide us with algorithms
that can lead to substantial measured improvement that is of great practical
relevance, given the ubiquity of the complete exchange pattern.

9 Conclusions

Circuit switched machines have only recently made an appearance as com-
mercial products. These machines provide powerful communication mecha-
nisms but, as the results of this paper show, very careful algorithm design is
required to optimize performance.

We have addressed the problem of implementing the complete exchange
(all-to-all personalized) pattern and have described a multiphase algorithm
that unifies the two previously known algorithms and yields performance
better than either over some ranges of message sizes. Similar techniques
can be applied to other communication patterns. In particular, it will be
interesting to see how the performance of the all-to-all broadcast, one-to-all
personalized and one-to-all broadcast patterns[8] can be improved. Since the
Complete Exchange is the most demanding communication pattern, the time
taken by our multiphase algorithm is an upper bound on the time required by
any of these patterns, in fact of any communication requirement. However it
is challenging to exploit the structure of the simpler patterns so as to obtain
even better performance.

An open theoretical issue is whether we can develop an efficient multi-
phase algorithm for a given arbitrary communication requirement (i.e. an
arbitrary directed graph). A practical issue of interest is to evaluate the
performance of the multiphase approach on the Ncube-2 circuit switched
hypercube.
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Figure 4: Performance of the Multiphase algorithm for a 32 node (d =5) Intel
iPSC-860. Solid lines indicate measured values; dashed lines are predictions.
The hull of optimnality is made up of two faces, corresponding to the partitions
{,3) and (5). The Standard Exchange algorithm {,111 isi} is shown only
for comparison-it is never optimal.
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Figure 5: Performance of the Multiphase algorithm for a 64 node (d = 6)
Intel iPSC-860. Three partitions are optimal in this case: (2,2,2), (3,3) and
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