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I. INTRODUCTION

Controlling molecular motion with laser fields has been a long sought-after

goal without much demonstrated success. Most earlier work relied on what

was thought to be sound physical intuition to "design" optical fields for

the purpose of effective bond breaking, or otherwise selectively

manipulating molecular motion. Theoretical studies have shown that such

approaches are not well founded given the complexities of molecular motion.

It is evident that a more systematic design process is needed. The method

of optimal control theory is one l,:ch systematic approach used in the

treatment of complex classical engineering systems, and, most recently, such

methods have been considered for the design of optical fields to meet

specific molecular objectives1 ,2.

The introduction of optimal control theory at the molecular scale is an on-

going development with many interesting aspects and attributes. In

particular, this approach is capable of establishing the existence and

identifying the type of external forcing functions necessary to control the

motion of any particular molecule. The purpose of the theory, ultimately,

is to produce reliable designs of optical fields that are practical to apply

to molecular samples in the laboratory. Current developments of optical

pulse shaping in the ultrafast regime (< 1 ps) are expected to be an

integral part of such laboratory studies. The latter tools are hardly

routine at this stage of development and, given the previous frustrating

experimental studies, it is appropriate to seek an intermediate bridge

between the theory and ultimate experiments. The Molecular Dynamics

Simulator (MDS) reported in this paper was explicitly constructed for the

purpose of filling this gap. The simulator is an analog in the sense that

its dynamics can be made to satisfy exactly the same equations of motion as

those at the molecular scale under appropriate circumstances. For example,

in the case of harmonic molecular motion, Ehrenfest's Theorem prescribes

that the expectation value of the atomic positions will satisfy the

corresponding equations of classical mechanics. Similarly, achieving

designs of optimal controiling fields for even moderate size polyatomic

molecules will necessitate the use of classical mechanics and, once again, a



benchtop simulator will have the same physics. The principal difference

between the analog and the real molecular system entails a change of time

scale to translate the ultrafast phenomena at the molecular scale to

phenomena observable in a slowly oscillating mechanical system at the

macroscopic scale.

The potential role of an MDS as a research tool as well as a pcdagogical

guide can be recognized by recalling the importance of ball-and-stick models

of molecules and crystals as an aid to understanding molecular structure.

The complexities of molecular dynamics go beyond that of structure, and an

active flexible MDS should play a valuable role in providing insight for

controlling molecular motion using external fields. The MDS introduced in

this paper should be viewed as an initial version with various additional

levels of sophistication capable of being introduced for enhanced utility.

Section II will describe the underlying physics behind the MDS and give a

brief summary of the optimal control techniques used to design the external

forcing function. Section III will describe the actual make-up of the MDS

and its general characteristics. Illustrations of the behavior of the MDS

will be given in Section IV with a brief conclusion given in Section V.

II. THEORY

We review here the equations of motion for carts connected by springs on an

almost frictionless air track driven on one end by a linear motor in analogy

with an optically forced linear molecule. A cost functional is introduced

which, when minimized, will yield a driving function to manipulate the carts

in a desired manner. The Hamiltonian for the nuclear degrees of freedom of

a molecule modelled as a harmonic oscillator in the presence of an external

field c(t) coupled to a linear dipole can be written as:

H - 1/2 pT Gp + 1/2 qTFq - qTb C(t) (2.1)

,pr ? r Is A vector containing displacements of internal coordinates from

their equilibrium positions, p are the conjugate momenta, G is the Wilson G

matrix3 with units of inverse mass, F is the matrix of harmonic force

constants, and b is the vector of dipole moment derivatives of the



molecule. The MDS can be extended to the anharmonic regime, but this

initial work will be confined to the harmonic case.

Our molecular simulator consists of a number of carts representing atoms

connected by springs taken as bonds. The assembly is constrained to move in

one dimension by the air track and is driven at one end by a motor

representing the laser-molecule interaction. See Figure 1.

The Hamiltonian for the HDS is identical to Equation (2.1) for all of the

cases treated in this paper. The molecular masses, force constants, and

dipole derivatives are simply replaced by parameters appropriate for the

HDS. The effect of the springs having finite mass (less than 1% of a cart

mass) was adequately treated by adding 1/2 of each spring mass to both

adjacent carts.

The equations of motion for this system modified for the presence of

friction are given by Hamilton's equations:

L - Gp(t) (2.2a)
ap

p .- ._ -p - -Fq + be(t) - a p (2.2b)

where the last term was added to compensate for friction which is not

present as such in the dynamics of molecular systems. Here a is the

coefficient of friction which was assumed to be the same for all carts. The

equations of motion can be rewritten in a compact form as:

;(t) - f[z(t),C(t)] (2.3)

where zT(t) _ [qT(t), pT(t)], and is referred to as the state of the system.

We assume that the initial state is known and corresponds to the system at

rest, z(O) - 0. Note t' -+I -himul-tor ccordin-tte system (displacement of

carts) is different from the bond displacements which are natural molecular

coordinates; this will be addressed later in this section.



Now, the goal is to design a driving function C(t) to achieve some target

objective in the simulator while disturbing the rest of the system as little

as possible. In addition, there is a mechanical limitation on the magnitude

of c(t). In keeping with the molecular analogy, we choose our target to be

selective excitation of one cart or bond. We define selective excitation as

achieving a desired displacement of one cart or bond at a target time, T,

while the displacements and momenta of the rest of the carts or bonds are as

small as possible during the entire pumping interval 0 : t : T.

To obtain a driving function which selectively excites the simulator, we

introduce a cost functional

T

J - [z(T)] + f L[z(t), e(t)] dt (2.4)

0
where O[z(T)] is an error function for the state not reaching the target Y:

I[z(T)] - 1/2 [z(T) _ y]T pf [z(T) -Y] (2.5)

and Pf is a diagonal weighting matrix. The second term in Equation (2.4)

seeks to minimize the energy in the molecule and that of the driving

function over the control interval:

L = 1/2 z T(t)Wz(t) + 1/2 we 2 (t) (2.6)

where W is a diagonal matrix weighting displacement and momentum during the

control interval, and we weights driver displacement. The weighting factors

are adjusted until the driving function has an acceptable peak magnitude and

the target is satisfactorily reached. The target displacements and momenta

can alternatively be constrained to a target value instead of being included

in the cost function where the target error function is balanced against

other costs2 .

To include the equations of motion (2.3) in the minimization process,

Lagrange multipliers are introduced in an augmented cost functional:



T

J - J -J dtXT(t) [z f(zc)] (2.7)

0
Varying E(t) and z(t) infinitesimally by 6C(t) and 6z(t), respectively,

produces the following change in the augmented cost functional:

6 = [z(T) - y]T Pf 6z(T)

T

+ f dt[zTW6z(t) + we C(t) 6c(t)] (2.8)

0
f T f

T dtX (t) [6z(t) -f 6z(t) --- Z az- ()

0

Integrating by parts and rearranging, we obtain

6J = {[z(T) - y]T pf _ xT(T)} 6z(T)

T

+ f dt[z TW + AT + XT If I Z .93Z (2.9)

0

+ T dt[w e(t) + AT f 6E(t)

U

If we choose

A - -Wz -kf A (2.10)

with the final condition

A(T) - Pf [z(T) - Y], (2.11)

then the equation for the gradient of J with respect to the driving field

becomes
a c(t) + IT(t) -f

6E(t) = We 3L (2.12)

This equation can be set to zero and, since the equations of motion are

linear in the present case, £(t) can be solved for in analytical form.



The case we considered was a system of three carts connected by springs in

the linear regime. The Hamiltonian for this case is explicitly:

H - 1/2 pT Cp + 1/2 J Fq + klq1 E(t) (2.13)

where Gij - 6ijMi'l, M is the mass of the ith cart and Fij - 6ij (ki +

ki+I) - 6i(j-l)ki+l - 6i(j+l)ki where ki is the force constant of the ith

spring. Cart one is connected via spring one to the driving arm. Because

this Hamiltonian yields linear equations of motion, it was possible to

conveniently constrain the target coordinate to a desired value at t - T.

In order to specify a target which was the analog of a bond stretch, we

transformed to the following coordinate system:

Q - Sq (2.14a)

where

s-. 0 1 -1

0 0 1 (2.14b)

Ql is the displacement from equilibrium of the spring between carts one and

two, Q2 is the displacement of the spring between cart two and three, and Q3

is the displacement of cart three from equilibrium. The momenta conjugate

to Q are given by a point transformation
4

-21P (2.15)

or P - (S1)T P. The Hamiltonian can be rewritten as

H - 1/2 pT G'P + 1/2 QTFIQ + kl (Ql + Q2 + Q3) E(t) (2.16)

where



F' - (S'l)T FS "1  (2.17)

G, - SGST (2.18)

In this new coordinate system it is possible to specify objectives which

correspond to bond stretches.

The internal nuclear motion of molecules is properly treated using quantum

mechanics, but our simulator is described by classical mechanics. In the

linear regime, the classical values of displacement and momenta are the same

as the quantum expectation values of these quantities according to

Ehrenfest's theorem. Classical mechanics is not equivalent to quantum

mechanics in describing the dynamics of molecules with anharmonic

potentials. Nevertheless, classical molecular simulations are necessary

because quantum calculations are most often prohibitively difficult for even

the fastest computers.

III. APPARATUS

The Molecular Dynamic Simulator (MDS) in this study models atoms in

molecules as simple masses and interatomic forces as springs. Both linear

and nonlinear springs are possible, although this version of the simulator

considers only linear springs (Multi-Flex Corporation) with an example shown

in Fig. 2. It can be seen that the springs are highly linear for stretches

used in the simulator. The springs were of the extension type and were

fully compressed when unloaded. The spring constants were in the range of

3000-3500 dynes/cm with each carefully measured statically. Although

discrepancies can arise between the static and dynamic response of springs,

the excellent results in Section IV indicate that this was not a problem

here. The interaction of molecules with external optical fields is modelled

by a mechanical linear driver that is used to couple energy to the simulated

molecule through a spring connected to a mass at one end of the ^Hi=.n of

simulated coupled atoms.



The masses of the simulated molecule are carts that float on a linear wedged

air track as shown in Fig. 1. The position of each mass is monitored by an

adjacent optical position detector (SiTek Corporation) that locates the

centroid of a point light source (battery-operated light-emitting-diode)

affixed to each cart. The optical position detectors have 11 bits of

resolution over a length span of I or 3 cm depending on the diode array

selected.

The driver that simulates the interaction with external optical fields is a

speaker coil excited by a current source (PASCO Corporation). The current

source has been modified to implement position feedback using a PID

(Proportional Integral Derivative) controller. Feedback control was added

to eliminate an undesirable dependency of the driver on the properties of

the load. The use of feedback here effectively endows the driver with an

infinite mass corresponding to the optical field not being significantly

perturbed by the molecular sample. Note that this type of feedback does not

alter the fact that the simulated molecule is being controlled in an open

loop fashion. An example of a typical forcing function is shown in Fig. 3a.

Both the designed forcing function and the measured forcing function are

plot-ed in this figure.

The carts are each approximately 200 grams and are about 15 cm long. Given

that the air track is 2 meters loi,&, the largest molecule that was possible

to simulate was a linear tr-atomic. A longer track could readily handle

larger simulated polyatomic molecules. Damping of the carts on the air

track was minimal, although non-negligible, exhibiting a decay constant a-I

of approximately two minutes.

A laboratory computer using the optical position sensors recorded the cart

driver positions by means of a standard 12-bit resolution A/D-D/A interface.

This computer also specified the desired forcer function.

Based on measurements of the cart masses, the stress-strain relationships of

the springs, and cart damping constants, an optimal forcing function was

computed for the achievement of a particular goal. The goal might be, for



example, the 2 cm stretching of the spring between carts I and 2 at T-30

seconds, subject to the minimization of the stretch between carts 2 and 3

over the interval 0 < t < 30 seconds. The laboratory computer is used both

to synthesize the driving function as well as to record the position of the

driver and the carts. The computer sampling rate is nominally 40 Hz, which

is greatly in excess of the characteristic oscillation frequency of the

system, which is nominally 1 Hz. Because of this large difference,

significant effects due to discretization of time are not expected.

To demonstrate bond breaking, a special spring is used involving a trip cord

that releases the spring when a threshold length is reached. As will be

discussed later, the use of this "breakable bond" graphically illustrates a

goal that, if achieved at the molecular scale, would be most significant.

IV. RESULTS

The results presented here were produced using three carts on an air track

with a spring between each cart and springs on either end, one end being

fixed and the other connected to the driver arm as shown in Fig. 1.

As a first target, we chose to specify the displacement of the second cart

to be 1.0 cm at a run time of T-30 seconds. The weights W and we in Eq.

(2.7) were chosen such that the maximum amplitude of the driving function

did not exceed the mechanical limit of the driver, which was about 0.34 cm.

Figure 3 shows the resulting optimal driving function and the system

response. Figure 3a shows the theoretical driving function and the actual

experimental driver arm displacement to be nearly identical. It can be seen

that the driving function is a complicated waveform and its power spectrum

in Fig. 3b shows that it consists of all three modes of the system.

Figures 3c and 3d show experimental and theoretical displacement for the

first and second carts, respectively, and show that the carts accurately

follow their predicted motion. The initial low amplitude portion of the

"riving function prepares the system to have the proper phase structure in

order to receive the energy pumped in during the latter part of the driver

pulse. Because the driver, due to its mechanical limit, cannot deliver

enough energy to reach the target in a short pulse, it must slowly pump



energy into the simulator over a large portion of the control interval.

This situation is analogous to working with an optical field of limited

intensity. The energy remains delocalized among the carts and springs

until close to the target time when it becomes localized or coalesces in

the desired displacement of the second cart. The first cart's experimental

peak amplitude is 0.66 cm, well below the observed value of the second cart

at the final time of 0.96 cm. The displacement of the third cart is not

observable using our experimental set-up, but the peak theoretical amplitude

for this cart is 0.64 cm. This case succeeded in controlling the

displacement of the second cart while keeping the motion of the other two

carts to a minimum, and the driver as seen in Fig. 3a does not exceed its

limit.

In Figs. 3c and 3d, one can see that at t-0, there was significant

deviations of the system from its nominal initial condition of being at

rest. However, it was noticed that the target was remarkably insensitive to

this initial noise. A simple demonstration of this robustness to the

initial state is shown as follows. The carts were started with arbitrary

oscillation amplitude of about 0.2 cm at t-0, and again subjected to the

driving function shown in Fig. 3a. The second cart reached 1.13 cm at the

target time, about 13% different than the target value of 1.0 cm, and the

peak amplitude of the first bond was 0.80 cm. This shows that, with

initial oscillations of about 20% of the target displacement, the system

dynamics were still acceptable and the target was reasonably achieved. A

more formal robustness study should be performed to confirm this result, but

it was our observation that the system was reasonably insensitive to initial

conditions for many different cases. For linear systems, the sensitivity of

the state at the final time to the initial conditions is quite simple. For

nonlinear systems the relationship ii more convoluted and a driving

function which minimizes this sensitivity could be obtained if the

sensitivity were included as another term in the cost function.

While in the previous case the coordinates controlled by the cost function

were cart displacements, natural coordinates for specifying molecular

objectives would include bond stretches and not atom displacements in the



laboratory reference frame. We used Equation (2.14) to transform to a

coordinate system containing two bond stretches and a translation-like

degree of freedom which does not get weighted in the cost function. The

two springs between the three carts can be pictured as bonds, and now we

will consider the case where the target is a bond stretch.

Figure 4 shows results for using a cost functional in which the first bond

is constrained to reach 1.03 cm at T-30 seconds while the motion of the

second bond and driver amplitude are minimized. Figure 4a shows the

designed and measured forcing function for this case which consists, once

again, of a combination of frequencies. It also begins with a small

amplitude phase aligning period followed by heavy pumping near the target

time. Figure 4b shows the experimental and theoretical displacement of the

first bond. The good agreement between experiment and theory and the

relative insensitivity of the final state to initial noise are seen once

again. The experimental final stretch was 0.95 cm in comparison with the

theoretical stretch of 1.03 cm. Figure 4c shows a comparison of the

theoretical stretches of the two bonds. The peak stretch of the second bond

was 0.91 cm at about 28 seconds, while the target bond reaches 1.03 cm at

the end. These bond extensions correspond to the first bond exceeding its

limit (breaking), while the second bond remained stretched below its

limits. The displacement of the nontarget bond could be reduced further by

changing the appropriate weighting factors in the cost functional (2.5).

The results for the interchanged case with the theoretical design

constraining the second bond to be 1.03 cm at T-30 seconds, while minimizing

the stretch of the first bond and the displacement of the driver, can be

seen in Fig. 5 and shows the power of the optimal control method. The MDS

configuration is simulating the same molecule as in Fig. 4, but the target

bonds are now interchanged. Figure 5a shows the nontrivial driving field,

and Fig. 5b shows the theoretical stretches of bond 1 and bond 2. It is

seen that, while bond 2 stretches to 1.03 cm at the target time, the

nontarget bond is never displaced by more than 0.75 cm from equilibrium.



Indeed, the experimental results in Fig. 5c show that the first bond never

exceeds 0.90 cm during its excursion. This success shows that bond 2

"breaks" while bond 1 does not.

5. CONCLUSION

Given the current active interest in the area of controlling molecular

motion, this paper presents a workable computer-controlled electro-

mechanical MDS. The linear MDS with harmonic springs can already simulate

realistic molecular scale events, but further extensions would be useful.

In particular, a two-dimensional MDS using an air table rather than an air

track would open up a wider variety of molecular examples for study. Even

in the one-dimensional domain , the introduction of precision anharmonic

springs to simulate more realistic bond stretching would be valuable. As

the MDS is inherently a classical mechanical device, it can be used to

explore the degree of control achievable in coupled classical anharmonic

oscillator systems, including those displaying chaotic motion. In summary,

at a rather modest expense and effort, it is possible to construct a

practical MDS that is useful for both pedagogy and research.
5
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FIGURE CAPTIONS

Figure 1. Schematic of the Molecular Dynamics Simulator.

Figure 2. Measurement of force versus distance for four different linear
springs. Each symbol represents a data point and a line was fit
to each data set showing that the springs are quite linear in
this region of interest.

Figure 3. Results for control of the 3-cart MDS where the objective is
displacement of cart 2 to 1.0 cm at T - 30 seconds: (a)
predicted (solid curve) and observed (points) driving field, (b)
power spectrum of the driving field showing the presence of all
three fundamental frequencies of the MDS, (c) response of cart 1,
and (d) response of cart 2. It is seen that the carts follow the
theoretical predictions quite well and that cart 2 has achieved
its target at the final time.

Figure 4. Results for control of the 3-cart MDS where the objective is
displacement of bond 1 to 1.03 cm at T - 30 seconds: (a)
predicted (solid curve) and observed (points) driving field, (b)
predicted and observed stretch of bond 1, and (c) comparison of
theoretical stretches of bond 1 (solid curve) and bond 2 (dashed
curve). Bond 1 achieves the "breaking distance" of 1.03 cm at
the final time, while bond 2 remains below this threshold with a
maximum stretch of 0.91 cm.

Figure 5. Results for control of the 3-cart MDS where the objective is
displacement of bond 2 to 1.03 cm at T - 30 seconds: (a)
predicted (solid curve) and observed (points) driving field (b)
comparison of theoretical stretches of bond 1 (solid curve) and
bond 2 (dashed curve), and (c) predicted and observed stretch of
bond 1. Bond 2 achieves the "breaking distance" of 1 cm at the
final time, while bond 1 remains below this threshold with a
maximum stretch of 0.90 cm.
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