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I Foreword

This report describes results obtained during a three year research study on nonlinear mod-
eling and control of flexible space structures with application to rapid slewing and precision
pointing of space-based, directed energy weapons. The project is funded by SDIO/IST and
managed by AFOSR/SDIO (AFSC). Results reported herein are for the period 1 Sept. 1987
- 31 Aug. 1990. The research effort was conducted at Techno-Sciences, Inc. Greenbelt,
Maryland office. The project principal investigator was Dr. William H. Bennett, Director
of Control Systems Projects at TSI. Coinvestigators included Drs. Gilmer Blankenship and
Harry Kwatny. Dr. Kwatny is Vice President and member of Board of Directors at TSI
and is Raynes Professor of Mechanical Engineering and Mechanics at Drexel University. Dr.
Blankenship is Vice President and member of Board of Directors at TSI and Professor of
Electrical Engineering at University of Maryland, College Park, MD. Associate investigator
on the project was Dr. Oussima Akhrif, who is currently parttime member of TSI control
systems staff and visiting assistant professor at Case Western Reserve University, Cleveland,
Ohio.

During the first two years the project was managed by Ltn. Colonel J. Crowley/AFOSR
and Dr. A. Amos/AFOSR. We wish to thank both of these individuals for their insight and
direction on this project. During the last year the project technical manager was Dr. AlokI Das/AFAL.
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1 Research Objectives and Project Summary

This report describes results of a three year project on Nonlinear Dynamics and Control of
Flexible Structures whose principal objective was to develop modeling and control design
methods for nonlinear, distributed parameter dynamics arising in requirements for rapid
slewing and precision pointing of multibody space structwfes with elastic interactions. The
modeling effort centered around the development of a generic class of models for the struc-
tural interactions effecting laser system line-of-sight (LOS) pointing for a Space-Based Laser
(SBL) weapon. Control studies focused on the problem of rapid, multiaxis large angle slew-
ing of the generic SBL system with requirements for precision system LOS pointing. One
objective for this project was to establish a framework for experimental validation of the
class of nonlinear control laws under consideration. To the extent possible, simulation mod-
els were based on predicted dynamics and control configurations for the first test article
currenlty under construction at the ASTREX facility at Air Force Astronautics Laboratory.
Simulation results are included for several possible experiments. A proposed experimental
protocol for validation of compensation of nonlinear couplings effecting slewing and precision
pointing is briefly described.

Our approach for slewing and pointing control was to develop several practical extensions
and applications of the theory of nonlinear control system synthesis based on linearization by
feedback transformation. These methods include control laws based on "dynamic inversion"
such as the so-called "method of computed torques" popularized in robotics. However, our
analysis indicates that certain essential limitations arise in control of distributed parameter
dynamics arising in multibody systems with elastic structural interactions. The approach
we consider is based on the implementation of a dynamic inverse of the response of certain
principal system outp-',s representing multibody system pointing and alignment to system
actuation. As will be discussed in the sequel this concept of input/output linearization (when
it can be achieved) involves decoupling certain complementary or "zero dynamics" from the
principal system outputs. Since the decoupled dynamics will in general be nonlinear we refer
to this class of control laws as Partial Linearizing Feedback (PLF).

Several critical system requirements and control systems can be identified for a prototype
SBL system. Precision line-of-sight (LOS) pointing and tracking must be achieved in concert
with requirements for rapid slewing of spacecraft primary body and/or articulation of weapon
system aperture (see Figure 1.1). Optical beam quality and jitter performance will be limited
by extent to which precision multibody alignment of the structure supporting the optical
train can be dynamically controlled during and after spacecraft system slewing maneuvers.
Thus slewing and pointing control for an SBL system will involve the integration of several
critical control systems. An important feature obtained by PLF control is decoupling of
control loops for processing slewing and pointing commands. The class of PLF control laws
considered in this study for LOS slewing and pointing admits a special structure which
permits the required decoupling/linearizing transformations to readiliy implemented with
multiple actuators. One way in which this may be used to advantage is in the integration of

1
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Figure 1. 1: Generic Space-Based Laser System with Multiple Control Systems

continuous mode (e.g. reaction wheels, CMG's, etc.) and discontinuous (on/off) actuation
(e.g. jets).

Outline of the Project. The first year effort included a survey of the available literature
on the dynamic models and control problems for SBL systems. A generic class of SBL
models was developed including multibody dynamics of a dual mirror laser beam expander
with structural flexure arising in the metering truss which supports the secondary mirror
relative to the primary mirror. Initial control studies focused on large angle, but single axis
slewing maneuvers and restricted the model to planar motions. Computer simulations were
completed demonstrating the slew rates and control requirements for PLF control. During
the second year we expanded the computer simulation model to include multiaxis slewing
motions and demonstrated several alternative control laws based on PLF compensation which
included both continuous and discrete actuation modes. A goal of the effort was to establish
a basis for experimental validation of the slewing control laws. Extensive tradeoff studies
were performed with simulation models scaled to represent predicted dynamic response for
the first test article currently under construction at the ASTREX test facility at Air Force
Astronautics Laboratory.

I New Results Obtained. A potentially important feature of feedback linearization is the
extent to which the idea can be integrated with other standard design methods for multivari-
able control systems. We have described several alternatives which indicate advantages of

2
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the approach for control of flexible structures. In particular, the integration of active/passive
techniques for vibration suppression can be readily incorporated. The idea of deformation
shaping control has been developed by Dr. T.A.W. Dwyer as part of this project. The
method is reported in several papers prepared as part of this project. PLF compensation of-
fers a framework for resolving certain design tradeoffs for the use of active/passive vibration
control for rapid slewing and precision pointing of SBL (or other multibody systems).

Robust stabilization and control performance of nonlinear systems is an important issue
in many applications. For the current study we are interested in design of control laws
whose stability and performance can be predicted and validated in experiments. Several
techniques for robust stabilization of nonlinear systems have been developed by Spong and
Vidyassagor, Slotine and Sastry, Corless, Gutman, and others. These methods all rely on
special structure of the dynamic model uncertainty called "matching conditions". In this
research we have developed a new approach which utilizes the framework of adaptive control
to provide robust stabilization of nonlinear systems. The approach does not rely on structure
matching conditions and represents a significant improvement over available methods.

Overview of the Report for Third Year Activities. In this report we start with a
review of the basis for nonlinear PLF control design with emphasis on stabilization. We
demonstrate several alternative implementation schemes for PLF control which can arise
from several different problems. In particular, we show how PLF compensation can be ob-
tained using switching mode actuation by design of sliding mode control systems. We also
indicate how techniques from adaptive control can be used to improve robustness when dy-
namic models are subject to parametric uncertainty. We next develop a complete framework
for modeling multibody systems with elastic structural interactions using Lagrange's equa-
tions for continuum mechanical systems. We specialize these systems to the generic SBL
models. We then discuss a framework for computation of PLF control laws for Lagrangian
systems which focuses attention on the notion of nonlinear system zero dynamics. For prac-
tical design of control for large space structures we describe implementation of PLF controls
for reduced order models. We specialize the standard model reduction problem for PLF
control by considering time scale separation of the system zero dynamics. Finally, we briefly
describe a protocol for experiments which can be used to validate PLF control performance
predictions. Simulation results are included.

The first [BBKA88] and second [BBKA89] year reports contain additional results on
control design and tradeoff studies.

I Professional Personnel. The principal investigator for this project is Dr. William H.
Bennett and co-principal investigators are Drs. Harry G. Kwatny and Gilmer L. Blankenship
from TSI. Dr. Thomas A. W. Dwyer was consultant on the project. We would also like to
acknowledge the parttime support from Dr. Oussima Akhrif who graduated in July 1989
with Ph. D. from Electrical Engineering Department of the University of Maryland. Dr.
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Akhrif's dissertation developed aspects of feedback linearization for the multibody SBL

models developed in this. Ftudy and some important results are summarized in this report.

Technical Reports/Presentations. As part of the research program we have organized
two invited technical sessions, presented several technical papers, and submitted several
additional papers for publication as follows.

1. Nonlinear Dynamics and Control of Aerospace Systems, invited session at 27th IEEE

Cntrl. Dec. Conf., Austin, TX, Dec. 1989.

2. Robust Control of Uncertain Nonlinear Systems, invited session at 1989 Amer. Cntrl.

Conf., Pittsburgh, PA, June 1989.

Publications/Presentations

1. H.G. Kwatny and W.H. Bennett, "Nonlinear Dynamics and Control Issues for Flexible

Space Platforms," Proc. IEEE Cntrl. Dec. Conf., Austin, TX, Dec. 1988.

2. T.A.W. Dwyer, III, "Slew-Induced Deformation Shaping", Proc. IEEE Cntrl. Dec.

Conf., Austin, TX, Dec. 1988.

3. 0. Akhrif, G. L. Blankenship, and W.H. Bennett, "Robust Control for Rapid Reorien-

tation of Flexible Structures," Proc. 1989 Amer. Cntrl. Conf., Pittsburgh, PA, June

1989.

4. H.G. Kwatny and H. Kim, "Variable Structure Control of Partially Linearizable Dy-
namics," Systems & Control Letters, 15, (1990), pp. 67-80.
(also in) Proc. 1989 Amer. Cntrl. Conf., Pittsburgh, PA, June 1989,

5. W.H. Bennett, "Frequency Response Modeling and Control of Flexible Structures:

Computational Methods," 3rd Annual Conf. on Aerospace Computational Control,

Oxnard, CA, Aug.

6. T.A.W. Dwyer, III and F.K. Kim, "Nonlinear robust Variable Structure Control of
Pointing and Tracking with Operator Spline Estimation", Proc. IEEE In.ternational

Symposium on Circuits and Systems, Covallis, Oregon, May 9-11, 1989, Paper No.
SSP15-5.

7. T.A.W. Dwyer, III and F.K. Kim, "Bilinear Modeling and Estimation of Slew-Induced
Deformations," J. Astro. Sci. submitted.

8. T.A.W. Dwyer, III, "Slew-Induced Deformation Shaping on Slow Integral Manifolds,"

Control Theory and Multibody Dynamics, Eds. J. Marsden and P.S. Krishnaprasad,
(to appear), Amer. Math. Society.
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9. T.A.W. Dwyer, III, F. Karray, and W.H. Bennett, "Bilinear Modeling and Nonlinear
Estimation", Proc. Flight Mechanics/Estimation Theory Symposium, NASA Goddard
Space Flight Center, May 1989

10. T.A.W. Dwyer, III and J. R. Hoyle, Jr., "Elastically Coupled Precision Pointing by

Slew-Induced Deformation Shaping," Proc. 1989 Amer. Cntrl. Co.f, Pittsburgh, PA,
June 21-23, 1989.

11. T.A.W. Dwyer, III and Jinho Kim, "Bandwidth-Limited Robust Nonlinear Sliding

Control of Pointing and Tracking Maneuvers," Proc. 1989 Amer. Cntrl. Conf, Pitts-
burgh, PA, June 21-23, 1989.

12. T.A.W. Dwyer, III, F. Karray and Jinho Kim, "Sliding Control of Pointing and Track-
ing with Operator Spline Esimation," 3rd Annual Conf. on Aerospace Computational
Control, Oxnard, CA, Aug. 28-30, 1989.

13. W.H. Bennett, 0. Akhrif, and T.A.W. Dwyer, "Robust Ncnlinear Control of Flexible
Space Structures," Proc. 1990 Am,'r. Cntrl. Conf., San Diego, CA., May, 1990.

14. W. H. Bennett and H. G. Kwatny, "Nonlinear Modeling and Control of Flexible Space
Structures", presented at 4th NASA Workshop on Computational Control of Flexiblc

Aerospace Systems, Williamsburg, VA., July 11-13, 1990.
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I 2 Feedback Linearization and Stabilization of Nonlinear Systems

Conventional techniques for stabilization of nonlinear systems via feedback control are still
very limited and tend to be tailored to specific situations. Among the most promising new,
general approaches utilize linearization (local or possibly global) by Exact Feedback Lin-
earization (EFL) [HSM83, KC87]. EFL methods are based on earlier work of Krener [Kre73]
and Brockett [Bro7bj which demonstrated that a large class of nonlinear dynamical systems
can be exactly (i.e. globally linearized) by a combination of nonlinear transformation of
the state coordinates with nonlinear state feedback. More recently, the connection between
these methods and the idea of input-output (or Partial) Linearizing Feedback (PLF) by con-
struction of a system inverse [Hir79] has been articulated in a series of papers by Byrnes
and Isidori [B185, B1841. These connections have engendered a series of design methods with
represcntativ, -!sults for specific applications by Kravaris and Chung [KC87] and Fernan-
dez and Hedrick [FH87]. In this section we will sho,% how fundamental these construction,
can become in control system design, discuss alternatives for implementation, and suggest
some approaches to integrating the nonlinear design philosophy with more conventional ap-
proaches. We focus attention in this section on fundamental concepts culminating in the
description of the design approach for multibody systems from the perspective of Lagranian
mechanics.

The idea behind feedback linearization is conceptually simple. We start with a nonlinear
system model,

x = f(x)+G(x)u,(Li)

y = h(x), (2.2)

where X E R', u, yE W with G = [gi,... ,g,] and assuming the vector fields f,g areC
for each i = I,..., m and f(0) = 0. The model structure assumes that the control u enters
linearly. The feedlback linearization problem is to find a change of basis in the state space,
z = T(x), with T diffeomorphic and a feedback law,

u = a(X) + (X)v,

such that in the new (z, v) cordinates the (closed loop) model has the form,

I = Az + Bv.

We remark that if it possible to find such a control law then the linearization is achieved
thr.ugh tl, e introduction of active control authority. An important feature for control system
design is that the range of validity of the linearization is given by the transformations,
T(x), ct(x), O(x). The functions may be defined locally or globally.

In contrast, the conventional approach to control design would be based on a linear model
obtained by Taylor expansion of the vector fields about given equilibrtuta conditions; Xcq, Ueq,
satisfying,

0 = fXeq) + G(Xq)uq.

6
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The conventional linear model used for control design represents perturbation dynamics with
respect to the equilibrium conditions and assumes the form,

(x)= A Ax + B Au,

y = CAx

where Ax = x - x, AU = U - Uq and

A Of B Cax Bz;e 1 C 9 Z=eq

A major source of model uncertainty in linear control system design arises from assumptions
leading to the linear perturbation model. In many cases it may be difficult to estimate the
domain of attraction for the equilibria. Indeed, in aerospace applications the control design is
often based on a combination of gain scheduling to take into account the dependence of linear
perturbation models on operating point conditions which are subject to variation (e.g. trim
conditions in aircraft flight control.) For example, the function of a conventional autopilot
for aircraft is to compensate for changes in trim conditions and provide stabilization so that
the pilot "feels" a standard, linear response to stick commands.

Although the concept of feedback linearization in control system design is potentially
revolutionary, its application has many antecedents in applications. The significance for
nonlinear control of flexible space structures is the emerging technology for active control
and sensing, the dynamics associated with the CSI technology, and the ability of a coin-
prehensive approach to nonlinear dynamic modeling and control design offered by the ap-
proaches discussed in this report. Feedback linearization functions in certain applications
in a manner similar to gain scheduling [MC80], however, linearization is achieved about a
"nominal model" rather than about an operating point. Thus equilibria conditions do not
arise explicitly in linearization. One view of such a controller structure is illustrated in block
diagram of Figure 2.1. The process linearization which facilitates the design of the linear
controller is obtained by the introduction of an Inverse Force Model (IFM) for the nonlinear
multibody system. The inverse force model transforms commanded accelerations, a,, into
equivalent system generalized forces, f. Thus the linear controller is designed to yield desired
system accelerations given the generalized coordinates, q, and their rates, q.

Precursors to the idea of feedback linearization is pervasive in control applications abound.
With the development of the geometric theory of nonlinear systems, computational tools'and
design methods are becoming available to address control system design on a much larger
scope. It is clear that the concept of feedback linearization is pervasive in many fundamental
control methods. Our study has focused on the considerations for practical implementation
of feedback linearization for rapid slewing and precision pointing of aerospace systems with
multibody and elastic interactions. Implementation of feedback linearization definitely re-
quires enhanced control authority and issues related to technology for control actuation will
either enable or restrict its application.

7
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r ontrllear a, Force System a q Kinematics q

I

Figure 2.1: Nonlinear Control Concept Using Dynamical System Inverse

I It is often suggested that controllers designed based on feedback linearization may be
sensitive to model assumptions since the linearization is achieved by cancelation of cer-
tain nonlinear terms in the system model. Our study of rapid slewing control of a generic
space-based laser model has shown that modeling sensitivity and robustness can be obtained
through judicious application of control authority. A central issue in nonlinear control design
is the limits of available control authority. For example, actuator saturation contributes to
limits on control authority. Discontinuous or saturation mode operation of control actua-
tors can often be desirable but such considerations are often not addressed by linear design
methods. We have shown that specific consideration for coordination of discontinuous and
continuous modes of control actuation in slewing control methods for ,nultibody systems
can be readily found. Finally, it is clear that the cost of feedback linearization, in terms
of increased control authority, sensor measurement complexity, or computational burden for
online implementation may not always be necessary to achieve system performance objec-

I tives. We have also demonstrated that such methods can be readily integrated with standard
approaches for linear design once a primary system control objective is identified in terms
of a primary system output. As we shall show the role of conventional linearization and
control design can be relegated to a subsystem whose dynamics are decoupled (by the action
of PLF) from a set of system primary outputs.

I 2.1 Computation of Partial Linearizing Feedback Compensation

Partial linearization derives directly from the Byrnes-Isidori normal form for nonlinear sys-
tems. The essentials of the approach are most easily developed for single-input, single output
systems and we will present the approach in that context. The theory for extending these
results for multi-input, multi-output problems is now complete and references are included.

Consider a nonlinear dynamical system in the form,

= f(Z) + g(a)u (2.3)

8I
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y = h(x) (2.4)

where f, g are smooth C °O vector fields on R' and h is a smooth function mapping R' - 3.
Now if we differentiate (2.4) we obtain

= -(f() + g(x)u). (2.5)

In the case that the scalar coefficient of u (viz. hg(x)) is zero we can differentiate again until
a nonzero control coefficient appears. The number of required differentiations is fundamental

system invariant which plays a role in constructing a system inverse and therefore in PLF.
The Byrnes-Isidori analysis shows that this integer number is analogous to the relative degree

for a linear system [B1841.
The above construction can be made precise using the notation of differential geometry

which has found application in analytical mechanics [Arn78]. We will need only the notion

of Lie derivative and Lie bracket. The Lie (directional) derivative of the scalar function h
with respect to the vector field f is

i L(h) = (dh, f) : f W (2.6)

Since the above operation results in a scalar function on R', higher order derivatives can be
I successively defined

L"(h) = Lf(Lk-(h)) (dLk-l(h),f). (2.7)

Then we can write (2.5) as

= (dh,f) + (dh, g) u

= Lf(h) + Lg(h)u. (2.8)

If Lg(h) = 0 then we differentiate again to obtain

j = (dL,(h),f) + (dL 1(h),g)u

= L2(h) + L(Lf (h))u. (2.9)

IIf Lg(L- 1 (h)) = 0 for k = 1,...,r - 1, but Lg(Lt- (h)) 0 0 then the process terminates
with
w dry = L(h) + Lg(Lf-1 (h))u. (2.10)

dtr  f

The system (2.10) can be effectively inverted by introducing a feedback transformation of
* the form

LU(L iL))[v - Lr(h)] (2.11)

I which results in an input-output response from v -+ y given by
dry

*dtr V=

9
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Ia linear system.
The integer r > 0 can be viewed as a relative degree for the nonlinear system (2.3)-(2.4).INote that if we define new state coordinates z E R' as

zk = L"-'(h), k=1,...,r (2.12)

for the r-dimensional nonlinear system (2.10), then the system model can be written in state
space form as,

0
0 10...0 0

Z 0. z+ , (2.13)

0 0 0 ... 0 j0

a(z) + p(X)u j

where
a(x) = Lf(h), p(x) = Lg(L'f 1 (h)). (2.14)

More generally, using the new coordinates z (2.12) and introducing a nonlinear feedback
control of the form

U -*() (2.15)

where
r-1

0'(X) = Z-8kL,(h) + L"(h), (2.16)
k=O

p(x) = Lg(Lf-'(h)), (2.17)

3 with f1k for k = 0,..., r - 1 real positive coefficients then the equations (2.8)-(2.9) can be
written in 'reduced' form;

IF0 1 0 ... 0 0
0 0 1 ... 0

*z= 0 0 0 0 ] (2.18)

-0 -,8 -,2 -#,-l

Sy = [1,0,.. .,Oz. (2.19)

2.2 Nonlinear System Transmission Zeros

Note that the process leading to (2.18)-(2.19) provides an equivalent state space realization
for the v i-4 y input-output response of McMillan degree r < n (the dimension of the original
state space model (2.3)-(2.4)) by decoupling a portion of the system dynamics from the outputI response. This is depicted in Figure 2.3. Thus the new state coordinates z are a 'partial' state
for the system. Thus stabilization of (2.18)-(2.19) cannot guarantee stabilization of the full
state model (2.3)-(2.4). We remark that in the case that h(x) is such that the relative degree

10I
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r = n then the state space transformation (2.12) for k = 1,..., r together with the feedback
transformation (2.15) exactly linearizes the full system state model (2.3). The methods
described in [HSM83] identify necessary and sufficient conditions for the existence of a C-
function h(x) such that r = n and provides a computational approach. The necessary and
sufficient conditions for (local) EFL are nongeneric and not likely to be satisfied in general.
In the sequel we show how that essential property of involutivity of the f and g vector
fields will almost never be satisfied for realistic models of flexible space structures due to the
infinite dimensional nature of the state space.

Byrnes and Isidori [B185] describe the transformation of (2.3)-(2.4) to a normal form in
which the feasibility of PLF control can be assessed. The main result provides the existence
of a diffeomorphic transformation of coordinates Th: R'--+ R' with (Th)(x) -4 ( , z), with
the state partition in the new coordinates E 3?', z E R'" and inverse, (Th)(x) ' ( , z), so
that the full state representation in the new coordinates is

I=F( ,z), (2.20)

* z = z + (, +[z) B(E.,z)u], (2.21)

where

A( = )
B(,z) =~x

Definition: The zero dynamics of the input-output model (2.3)-(2.4) are given by the
autonomous system, I = F( , 0). (2.22)

And the system is locally minimum phase if the the diffeomorphic transformation Th is
defined on a neighborhood of the origin and (2.22) is asymptotically stable to the origin;
• =0.

I 2.3 PLF Computations for Nonlinear MIMO Systems

The nonlinear input/output model is

f(2)+ G(z)u .(2.23)
y = h(x) (2.24)

where z E R', u, y E R" and f, gi (resp. yi) for i = 1,... ,m are smooth vector fields defined
on 3" (resp. R'). For notational simplicity we write,

G(z) = [g,(x),...,g,,(x)].

11I



UTech no-Sciences, Inc. S-011-W

on- - ailait MoaJeF 7 -

-Mt Ifaniverse

L -- - - -- - -e- --

Dynamics

Linear I i=Az±Bv 2/
Control Y =Cz 7
LawI

U Figure 2.3: Partial Feedback Linearization and Zero Dynamics

12



I|

Techno-Sciences, Inc. TSI-9O-IO-IO-WB

In a process similar to the previous section PLF is determined by transformation of the
system model (2.23)-(2.24) to a normal form in which we identify a certain (mxm) decoupling
matrix which is locally nonsingular.

The process begins with the computation of an appropriate generalization of the MIMO
system relative degrees. Let

ri := min{k = 1,2,...: Lgj(L - (hi)) #0 , for somej = 1,...,m}, (2.25)

the ith characteristic number [Fre75]. Each ri is then the minimal relative degree of the set
of m individual output responses yi obtained from each input uj for j = 1,.. ..m. Let

where ci(x) = LS (hi) and

((x)= :(.)

where f3ij(x) = Lgj(L 1 (hi)). Then the desired normal form coordinates are z E R' where
r ri, which are obtained as

IZ Z = Z2 (2.26)

with each zi E R"' for i =1,. .. , m in the form,

L,(h,) (2.27)

I \Lf-(h,))

Proposition: Given the system (2.23)-(2.24), there exists a diffeomorphic transformation
(T)(z) = (z,4) to normal form coordinates,

i = Az + E{A(z) + B(z)u} (2.28)

= F(z,) (2.29)

where A = diag{A1,..., Am} with

13I
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Iof dimension ri x ri for each i = 1,... , m and E is an r x m matrix with elements given as,

I { 1, ifi=riandj=i

[ = 0, otherwise

Then the PLF control,
u = -B(z){A(x)- v}, (2.30)

renders the v '-4 y input/output response in linear form,

I = Az+Ev, (2.31)

y = Cz. (2.32)

Definition: The system (2.23)-(2.24) (output constrained) zero dynamics are given by

I = F(O, ). (2.33)

Definition: We say the system is locally minimum phase if the zero dynamics are asymp-
totically stable to the origin = 0.

Remark: In general the computation of the normal form with (2.29) independent of u is
difficult and not required to establish the minimum phase property. Instead, note that the
system zero dynamics are just the dynamics of (2.23)-(2.24) constrained to the manifold

Mh C Rn of dimension n - m given by,

Mh = Ix E Rn h(x) = 0}.

Proposition: The zero dynamics are asymptotically stable if and only if the system,

1= f() - G(x)B 1 (x)A(x), x(0) E Mh

is asymptotically stable to origin. We note that Mh is an integral manifold for (2.23)-(2.24).

2.4 Partial Linearization and Variable Structure Control Systems

The theory of Variable Structure (VS) systems addresses the design of control laws which are
discontinuous functions of the system state. VS control offers practical solutions for systems
employing actuators which can be efficiently operated in bang-bang and other discontinuous
modes. Our interest in VS control for rapid slewing of multibody systems arises from the
following observations:

I 1. Design methods for VS control for output regulation have been shown to effect an
implicit partial feedback linearization. The implicit partial linearization is achieved
through the use of VS control requires only output feedback.

14I
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2. Direct implementations of VS control laws can attain a level of robustness to plant
model assumptions which is difficult to achieve with smooth control. Moreover, ro-
bustness is achieved without overly conservative restrictions on performance. The
limitations of robustness for VS designs are clearly related to the minimum phase
conditions for PLF design.

I 3. The use of discontinuous control and the connections between VS and PLF designs
suggest several alternatives for integration of various types of actuators, including both
switched and continuous modes of operation. Integration of several control actuation
systems will be required for implementation of rapid slewing requirements for several
candidate large space platforms.

The general theory of VS control design is well known and we will not attempt to present
a complete description of its scope. For details see the survey [DZM88]. However, to focus

* attention on the concepts we seek to exploit we start with a brief description of the basic
ideas.

VS control systems utilize high speed switching control to drive the system trajectories
toward a specified manifold called the switching surface. Given the nonlinear system (2.23),
the VS control laws are of discontinuous type;

I { u+(), for si(x) > 0 (2.34)
= ui-(x), for s,(z) < 0

with si(x) = 0 smooth switching surfaces chosen in the state space for each i = 1....
The design approach which is preferred is based on the introduction of sliding modes.

I Definition (sliding modes): A manifold, M., consisting of the intersection of p < m
switching surfaces, si(x) = 0, with the property that siii < 0 for each i = 1,...,p in
the neighborhood of almost every point in M, is called a sliding manifold. Under these
conditions any trajectory of the system which enters M, remains confined to the manifold
for a finite length of time. We call the motion on M5 , a sliding mode.

VS design methods involve a two step process: 1) design the switching surface so that once
sliding is achieved the natural sliding mode achieves design objectives such as regulation,
stabilization, etc., and 2) design of discontinuous control laws which achieve sliding on desired
regions of the switching surfaces. The method of equivalent control is a popular approach
for designing the switching surface to achieve desired sliding mode dynamics.

Given the system (2.23) and a manifold, M, = {a E R" : s(a) = 0}, with . : -" RM

then sliding is characterized by satisfaction of the constraint equations,

s(X) = 0, i(x) = 0 (2.35)

over the finite time interval, t, > t > t2 where s(z(ti)) = 0. Note that a sliding mode is an
instance of an integral manifold for the closed loop system. The equivalent control, ueq, is

15I



Techno-Sciences, Inc. TsI-gO-IO-IO-WB

the control required to maintain the system trajectory within the manifold M. and is given
by the condition,

b t nio,= i= Vs(x){ f(x) + G(x)ue,} = 0 (2.36)

- where Vs(x) = s/x. Under the assumption that det{Vs(x)G(x)} # 0 for x E M. we
-- have,I 

Ueq = -[Vs(x)G(x)]-'Vs(x)f(x), 
(2.37)

and the motion in sliding is given by,

I = {I - G(x)[Vs(x)G(x)]-lVs(x)}f(x), s(x(ti)) = 0. (2.38)

Connections between the design of VS control and feedback linearizing control have re-
ceived considerable attention [FH871. The principal focus has been on the problem of synthe-
sis of VS designs for nonlinear systems of the form (2.23) using (exact) feedback linearization.
In the sequel we direct attention to the problem of output regulation. The connection we
establish with PLF design also illuminates several questions relative to robustness properties
of VS designs with sliding modes.

Design objective-Output Regulation. Given the system (2.23)-(2.24) where y indi-
cates a set of regulated outputs, the control problem is to drive the outputs asymptotically
to zero.

Since output regulation problem seeks to enforce the set of constraints

I hi() = , i = 1,...,

asymptotically it seems reasonable that VS design could be employed. However, the naive
choice si(x) = hi(x) leads to the complication that in general-in fact, most often-[Vh(x)G(x)]
is singular for almost all x E R'. The approach suggested in [KK89] is to design sliding mode
via the choice of switching surfaces relative to the normal form coordinates for (2.23)-(2.24)
as given by (2.28)-(2.29).

Proposition: Given the system (2.23)-(2.24) obtain the diffeomorphic transformation
given by (2.26), (2.27) to the form (2.28)-(2.29). The selection of switching surface,

* s(z) = Kz (2.39)

with K an m x m constant matrix, solves the output regulation problem if sliding can be
achieved. In sliding the equivalent control is,

Uq = -B(x)-KAz - B- 1 (z)A(z) (2.40)

I and the sliding dynamics are given by the r linear equations,

z = [I, - EK]Az, Kz(O) = 0 (2.41)
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Proof: The proof is given in detail in [KK89] together with a method for stabilization.
By defintion, the transformation (T)(x) -4 (z,$) is invertible; (T)(z, ) -4 x, and the

switching surface s(z) = 0 can be reflected to the original coordinates s(x) = 0. The
dynamics in the x coordinates are best understood in terms of the geometry. Define the
m-dimensional manifolds M, = {z E R': s(x) = 0} and Mh = {f E R': h(x) = 0}. The
n - r dimensional manifold M, = {x E R" x = (0,)} is contained in both M, and Mh.

Assume that in some neighborhood V E R' a sliding mode exists on V. = V r.M, which
is assumed nonempty. Suppose that E, = V, n. M. is nonempty. Let a denote a bounded,
stable attractor of the zero dynamics contained in V,. Assume that all trajectories in D,
converge to a. Then if the initial state is sufficiently close to D, the trajectory will eventually
reach V, and sliding will occur. Clearly the stability of the attractor is critical to the stability
of the overall design. In the sequel, we establish conditions for output regulation of multibody
systems which guarantee that the zero dynamics have well defined local equilibria so that
linear stability analysis of the zero dynamics is appropriate. We remark that the problem of
establishing estimates for the domain of attraction in the zero dynamics is an open question.

2.5 Robust Stabilization of Nonlinear Systems

For practical implementation of PLF compensation various researchers have focused atten-
tion on conditions which guarantee robust stabilization of the nonlinear system (2.3)-(2.4)
with feedback transformation of the form (2.11) by introduction of linear feedback v = Kz.
A brief survey of the wide range of methods which have been proposed is given in [BBKA88].
In this section we focus attention on a ubiquitous assumption in most of the work on robust
stabilization of nonlinear systems based on PLF compensation.

Consider the usual case for engineering design where the open loop system dynamics for
(2.23)-(2.24) is given by a nominal model of the form

1 = f°(x) + G(x)u (2.42)
y = h°(a), (2.43)

where fo,g' are C' vector fields for i = 1,... , m, defined on a manifold M G R", with
f°(O) = 0. We assume the (true) system response can be modeled via a perturbation of the

vector fields; f-f+Af, G=G+AG

with Af, Ag. each C" defined on M and A f(0) = 0. In [AB88 a detailed analysis is given
leading to sufficient conditions on Af, AG which-together with the assumption that (2.42)
is feedback linearizable-guarantees that (2.23) is also linearizable. The conditions given are
less restrictive then the usual structure matching conditions [AB87]. The structure matching

Sconditions also play a role in establishing conditions for robust stabilization and we repeat
them for convenience.
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The structure matching conditions. Under the assumption that the perturbation vec-
tor fields satisfy,

Af, Ag E A (2.44)

where A = Sp{yg,... , 9,.} then any such model (2.23) is exactly linearizable-in fact, by the
same diffeomorphic transformations. The above conditions are equivalent to the statement
that the perturbations to the vector fields can be factored as:

Af(x) = G*(x)d1(x), (2.45)

AG(x) = G°(x)Dg(x). (2.46)

The importance of the structure matching conditions in establishing robust stability is
that under these conditions the model uncertainty-after application of PLF compensation-
can be equivalently represented by a perturbation (or disturbance) at the compensated sys-
tem inputs. This facilitates the design of disturbance rejection techniques using either ex-
plicitly nonlinear control designs such as Gutman [GL76] or linear control design such as in
[Kra87]. To see this we summarize the construction under the assumption that h(x) = h°(x).

I Substitute the PLF compensation (2.30) obtained for the nominal model (2.42)-(2.43) into
the model for the true system (2.23) to obtain,

Ii = fO + Af + (GO + AG)B-[v - A]
= fo + GOAdf + Go(I + D)B-'[v - A]

= fo + GOB-' [v - A] + G0[d, + DgB(v - A)]. (2.47)

The model after nominal PLF compensation can (by the above assumptions) be transformed
to z-coordinates defined in (2.26)-(2.27) to obtain,

z = Az + E{v + 77} (2.48)

= F(z,(), (2.49)

where

,7(z, ,V) = [df(x)+ Dg(x)B(x)-'{v- A()}]l=T_(,) (2.50)

= [df (x) - .Dg(a)B(x-A(x) 1=T,(z) + [Dg(x)~) V L3avjT-I(z) (251)

Thus it is clear that robust stabilization must address the disturbance rejection of the class
of input disturbances d(t) which bound the model error; 111111 < Ild,,I. An effective design
approach, in the case when the nominal model is exactly feedback linearizable, is given by
Spong and Vidyasagar [SV87]. There approach utilizes an Lo stabilization criterion and
obtains a linear, time-invariant feedback control for the v-input.

I18
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Remarks! The design methods for robust stabilization of nonlinear systems available in the
literature are almost exclusively based on the structure matching c ,nditions. By rehectinf"
the model uncertainty to the system inputs (after nonlinear feedback compensation) they
can employ eit_'_r:

1. linear compensator design which seeks to reduce loop gains consistent with bounded
model uncertainty, or

2. nonlinear switching mode compensator design which seeks to over-bound input distur-
bances by high gain implementations using fast switching control.

Both methods result in essentially conservative designs since the worst case bounds on the
input disturbances must be assumed.

In [Akh89] the basis for robust stabilization of nonlinear systems is considered further
and new results are obtained for the case of parametric model uncertainty. The new con-
trol laws obtained in [Akh89] employ basic constructions of adaptive control in the context
of feedback linearization. The results show that robust stabilization can be obtained under
much less restrictive conditions than the structure matching conditions. Significantly, feed-
back linearization plays the role of enforcing linearity for subsequent control loop designs.
To the extent that this can be achieved in practical applications it can enhance reliability
and repeatability thus achieving improved performance prediction-an important feature
for space-based systems. Standard constructs in adaptive control can then be applied to
enhance the robustness of feedback linearization with model uncertainty. We emphasize
that the constructions described below are new and offer stability results for the nonlinear
system under very general assumptions. In the next few paragraphs we briefly review some
significant aspects of these results.

Robust Stabilization of Nonlinear Systems by Adaptive Methods. Again, starting
with the system model in the form (2.23) we assume the model uncertainty can be represented
by parametric dependence of the vector fields so that the model has the form,

i = f(x,o) + G(xo)u, (2.52)

with 0 a p-vector of unknown parameters. We assume that for every 0 e Be, a closed,
compact neighborhood of the nominal parameter 0., f and gi, for i = 1,...,m, areCoo

vector fields and f(0, 0) = 0 for $ E Be. The nominal desig.L model is characterized by the
set of nominal parameters and we take f(z) = f(x, 0o), G(x) = G(x, 0o).

The following assumptions are used in [Akh89] to establish a robust stabilizing controller
for the nonlinear system.

Assumption 1: The nominal system is exactly feedback linearizable.1

1The extension rf the results described below to the case of stabilization by T'LF is in progress.
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It is important to note that assumption 1 is applied only at the nominal plant model
with fixed and known parameters 0.. This is in contrast to the structure matching conditions
which are almost universally assumed in the current literature.

Assumption 2: For any x E U C W and 0 C Be,

Ag(x, 9) e Sp {gl(x, 60 ),. .. ,gm(X, 0 )}

for i = 1,..., m. This assumption implies that there exists an m x m matrix valued runction,
D(z, 0), with smooth elements such that AG = GOD.

Assumption 3: Either there exists an m x m, strictly positive definite matrix, K such
that,

VxEU,VOEB 9 , O<D(x,O)<K,

or there exist a K, negative definite, such that,

VxCU, V EBe, K<D(x,0)<0.

This assumption (in various forms) is typical in adaptive control stability analysis and
design. It says that the "sign" of this term must be definite and known a priori.

The design approach is natural and begins with the transformation

z = T(z, 00),

to normal form and choice of feedback linearizing compensation (2.30). The v control is
chosen in two parts. First, for the nominal design and performance objectives we find
v = Fz where A + EF in (2.31) is a stable matrix. In this case, there exists a unique,
positive definite, symmetric solution to the Lyapunov equation,

(A + EF)TP + P(A - EF) = -I.

* The design for the nominal model is now modified by the introduction of adaptation.

The control law obtained is described by the following equations;

u = -B-'(r){A(x) - vJ, (2.53)

z = T(x, 00), (2.54)

v = Fz + C(z,O)O, (2.55)

0 = -r-1cT(z, )E r Pz, (256)
C(z, 0) = -AtB(z)G (z,9 0o)Pz9zT. (2.57)

In these control laws the p x p matrix r > 0 is thL. "adaptation gain" which is chosen so that
the Lyapunov function,3 V = zTPz + ~r

is positive definite for all X E U and p is a positive scalar. The result established in [Akh89]H is the following.
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ITheorem: The adaptive control with feedback linearizing transformation is asymptotically
stable to the origin x =.0 and 0 - 6, asymptotically, if for x E U and 0 E Be there exists
C2 > 1 and

211 TT(>@ T )P$(zO)- uyTDy I 112 II < C21IT(z)112,
where

I whr(XI ) = [Af(z, 9) + AG(z, O){A(z) + B-'Fz}]

and
and GT(z,9 0 )PTz.

Proof: [Akh89].

I
I

I
I
I
I
I
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Figure 3.1: Standard Coordinate Frame for Modeling

3 Nonlinear Dynamics of Multibody Systems with Flexible In-
*teractions

In this section we describe the basis for the formal development of a class of evolution mod-Iels for multibody systems with elastic interactions. We follow the approach suggested by
Baillieul and Levi [BL871. As will be seen, the formulation captures the essential evolution
dynamical structure of the system without requiring detailed knowledge of its internal con-
figuration. As such this framework provides a consistent modeling approach for developing
a hierarchy of models with increasing internal complexity and fine structure. The main idea

is to isolate a "primary body" and to attach a reference frame to it at a convenient loca-
tion for measuring attitude and displacement dynamics. The motion of all other spacecraft
components will then be measured relative to this frame.

Throughout this report we will use the notational conventions given in Table 3.1. Con-
sider a reference frame fixed in the primary body, with origin located by the position vector

R E 3 and angular orientation denoted by L E SO(3), both relative to a fixed inertial frame

(see Figure 3.1). L can be parameterized by the Euler angles2  , 0, 0 representing sequential
rotations about the axes 3,2,1, respectively:cos 8cos i cos 0sin 0 -sin 0

L sin 0sin0cosb - cos 0 sinOb sin 0sin0sinb + cos 0cosb sin 0cos0 . (3.1)3 cososin 0cosob + sinqosin, cos4osinOsin-o - sin qcus, cos 4cos0

2We use the so-called NASA standard or 321 convention [Gol82].
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Notation Explanation
= 1,2,... element of a vector x

X T transpose of vector z
= d time differentiation

xz(t, z) = 2-(z,t) partial differentiationI. natural (Hilbert space) inner product
II . Inatural (Hilbert space) norm
6X differential variation
X x y vector cross product of x and y

Table 3.1: Standard Notation for Lagrangian Mechanics

A fundamental kinematic relationship is

L(t) = -O(t)L(t) (3.2)

where

* W3 0 -W (3.3)
IL-W2 WI 0

and w = (w ,Uw2,W 3 )T is the primary body (inertial) angular velocity as measured in the
* body coordinates.

Define E R3 as = (.b, 9, 4O)T. Then an equivalent relation3 is

I 0 -sin 1
.r( )w, r-( )= 0 cos cos0sin, . (3.4)

L0 -sin & cos cos ]
The body frame position and orientation can be characterized as a point in the special
Euclidian group, SE(3, R), each element of which can be represented by a matrix

S[L R] (3.5)X= 0 1 ".

The positions of all other elements of the system are measured relative to the primary body
frame. We identify each particle (or element), P, by its "undeformed" position, z, in the
primary body frame. Let u(z, t) denote the deformed position of P. Furthermore, we fix
a coordinate system in each particle with origin at u(z, t) and aligned-in the undeformed
state-with the body axis coordinates. Let e(z, t) E SO(3) denote the orientation of P in the

3Equation (3.4) is essential to the analytic framework for multibody modeling. Alternate parametrizations
of SO(3)---such as the Cayley-Rodrigues parameters [Dwy84]-can be used to advantage and the general
form remains intact.
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I deformed state as measured in the primary body coordinates. Note that in the undeformed
state

I,,fmed 0 1 0 (3.6)

and for small relative motions4

e'aai [l / 1 (3.7)

The inertial coordinates U(z, t) of a particle P can be obtained from the body coordinates
u(z, t) via the relation

U(z, t) = LTu(z, t) + R. (3.8)I Note also that
NtX(t) 

= [L T (t)n2(t) A (t)] 
(3.9)

Also, a direct computation yields

Sd U = LT (t)[ u + it] + R(t) (3.10)dt

The kinetic energy of the system can be written in terms of the generalized coordinates
q R, u) in the form

* T(q, q) = fs IIIrI 2dm = , IILT[pU + Ut] + kl12dm

- L f II[nu + Utll1 + 2(Slu + ut, LR) + IRII2 dm (3.11)

U where S denotes that the integral is to be taken over the entire system.

3.1 Lagrange's Equations for Continuum Dynamics

The formalism of Lagrangian dynamics begins with the identification of the configuration
space, i.e. the generalized coordinates, associated with the dynamical system of interest.
Once the configuration manifold, M, is specified we have the natural definition of velocity
at a point q E M as an vector, 4, in the tangent space to M at q, often denoted TqM. We

then define the state space as the union of all points q E M along with their tangent spaces,
the so-called tangent bundle (c.f. [AM78, Arn78]) TqM. The evolution of the system in
the state space is characterized using Hamilton's principle of least action by the definition

4The assumption of small relative motions is useful in the continuum framework to model large displace-
ments. This idea suggests several alternative approximations useful for modeling structural flexure dynamics
and is discussed in detail in § 3.3.
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I of a Lagrangian L(q, 4): M x TqM -* R. Hamilton's principle says that the motion of a
dynamical system between times t, and t 2 is a "natural" motion if and only if

L dt = 0, (3.12)

or-accounting for the presence of external generalized forces, Q-in its generalized form;

ftjt (6L + QT5q) dt =0. (3.13)

For distributed parameter systems (DPS), special care is required to properly characterize
the configuration space for modeling the system motions. The principal reasons for this
fact follow from the application of the models obtained; viz., the study of time evolutions
subject to control forces. First, control systems will inevitably involve the implementation
of feedback and we are therefore immediately concerned with stability. An appropriate
notion of stability is central to the design of feedback control systems. For Lagrangian
systems the natural definition of stability is implicit in the structure of the state space
which for DPS is a function space and care must be exercised that the construction (and
assumptions) of the state space are consistent with the engineering control problem. Second,
it is often necessary to define finite dimensional approximations to DPS for a variety of
reasons including computer simulation. Again, our primary concern is in approximating the
time evolution under the influence of control. As we will make clear in the following section,
the formulation of such models in a consistent way is inherently bound to the definition of
the configuration space. In this section we confine our discussion to the configuration space
for continuous systems with one spatial dimension.

The generalized coordinates are chosen so that all "nonworking" or geometric constraints
on the motion are eliminated. This is the key to the utility of the Lagrange formalism
for constructing the equations of motion. In the case of DPS any "geometric" boundary
conditions (which we will denote Q) are therefore included as part of the definition of the
configuration space. All other boundary conditions necessary to complete the Euler-Lagrange
equations result from the application of Hamilton's Principle, (3.12) or (3.13). These are the
"natural" boundary conditions (denoted AK).

An essential part of the definition of the configuration space in the infinite dimensional
case is the specification of the norm. Although all norms are equivalent in finite dimensions,
this is certainly not the case in infinite dimensions. We briefly summarize the main issues.
Consider functions v(z) defined on the domain z E [0, 1] and let D t v(z) denote the rt"
derivative with respect to z. We denote by H P the completion of the set of the set of

ufunctions with continuous derivatives and which satisfy

IlvII = ] {IDv(z)12 +... + Iv(z)12 }dz < oo (3.14)

I These are the Sobolev spaces [Lio7l]. Equivalently, HP consists of those functions whose first
p derivatives belong to the Hilbert space of square integrable functions. Note that z E H'
implies x E H i - 1 for i = 1, 2,.
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ILet Hg denote the completion of the set of functions satisfying (3.14) as well as a pre-
scribed set of boundary. conditions designated g. It is not necessarily true that all of the
functions in this new space satisfy the boundary conditions. The reason for this is that an
arbitrary sequence of functions, all satisfying the given boundary conditions, may converge
to a function which does not satisfy the boundary conditions. However, the following propo-
sition is true. Suppose the boundary conditions Q involve derivatives of order a and none
higher. Then all of the functions in Hg satisfy the boundary conditions provided p > s.

Thus, a consistent definition of the configuration space is obtained if the specified norm is
compatible with the geometric boundary conditions.

Hamilton's principle may be used to derive the Euler-Lagrange equations and the natural
boundary conditions. The Euler-Lagrange equations are to be solved along with boundary
conditions B = 9 U A/. In general, the Lagrangian will involve derivatives with respect to z
of order p and the Euler-Lagrange equations will involve derivatives of order 2p. In finding
solutions q(t) we seek "weak" (sometimes called generalized or distributional') solutions in
Hg which satisfy Hamilton's principle or "strong" (pointwise, genuine or classical) solutions
in i r4 which satisfy the Euler-Lagrange equations. The results are equivalent (in HO) when
both problems have solutions. The Euler-Lagrange equations may be given the interpretation
of an evolution equation as we sill describe below.

I Finite Dimensional App-oximation and Computer Simulation Finite dimensional
approximations to the system dynamics may be obtained by seeking an approximate solu-
tion to the Euler-Lagrange equations or to Hamilton's principle directly. The latter has the
advantage that solutions are to be sought in a larger space of admissible functions which pro-
vides a wider choice of approximating functions. Perhaps unexpectedly, this turns out to be
of fundamental significance in developing numerical solutions to the required evolution dy-
namics and for computer simulation. Furthermore, important links to the system physics are
retained through this modeling process. These observations appear consistent with many
standard engineering methods which introduce approximations to continuous, distributed
system dynamics by discretization of the variational problem underlying the Lagrangian
dyanmics [Mei67]. Indeed, this is the basis for the Finite Element Method (FEM) for evolu-
tion dynamics described in [SF73]. The simulation models developed in this study are based
on finite dimensional approximation using collocation by splines [Aga84, Sta79, Pre75]. Fur-
ther details of the method will be given in a later section with examples.

Next we consider some simple continuous systems arising in structural mechanics which
will illustrate the evolution modeling setup described above.

5There are several approaches to developing the notion weak and strong solutions and many good reasons
for doing so. Thus, the proliferation of terminology carries with it sometimes subtle distinctions (c.f. [SF73,
RM57, Sta79]).

I
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l f(t)

I
I Figure 3.2: Simple Cantilevered Beam

3.1.1 Example: Simple Cantilevered Beam

I Consider the cantilevered beam undergoing small transverse motions confined to the plane.
The beam is excited by a concentrated force, f(t), and moment, m(t), applied at the point
z = a E (0,1).

Timoshenko Model. Each cross section undergoes a displacement ij(z, t) and a rotation
I(z, t). These are the generalized coordinates. The geometric boundary conditions are

9: q (o,1)=0 and 0(0,1)=0.

Thus, the appropriate configuration space is HV. The Lagrangian is

L ~ [iA () + LP (LO)2] 07ZI~ KG 2
LpA EI 2+ 1rGA 02 ]dz

and the virtual work 6W = QT6q due to the external forces is

6W = {f(t)6(z - a)677 + m(t)6(z - a)60}dz,

where p is the mass density, A, the cross section area, I, the moment of inertia, E, the
modulus of elasticity, and KG, the effective shear modulus. Upon application of Hamilton's

I principle, we obtain the partial differential equations

(AA = . + f(t)8(z- a),

Pja20 = a E I(2) + ,KGA (L - + m(t)6(z- a),

and the natural boundary conditions

A(: ,GA t( t, =0 and EI( y't)) =0.
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Thus, we have the evolution equation

pA 0 (.GA-!- -K, GA 77 f ()49Zt / (z - a)PI 8z[teGA EJ-2-rGA] M~t)
where we interpret [ 7 (., t), 0(_,t)]T as an element in H'.

Bernoulli-Euler Model. Suppose that we consider the same situation with the additional
Bernoulli-Euler assumptions [BK89]. These are

1. rotational inertia is negligible, pI -+ 0,

I 2. shear deformation is negligible, -1. - 0 --+ 0.

The deformed beam configuration is completely specified by 77(z, t). The geometric boundary
conditions are

g: 77(0,1) = 0 and 8t(O, 0

Notice that the appropriate configuration space is Hg. The simplified Lagrangian is

L L[pA (L7,)_ -EI (7,)2]

and the virtual work expression also simplifies to

* 6~W = j {f(t)6(z -a)6 + m(t)6(z -a)8 (! -) }dz
= f'{f(tQ6(z -a) ±m(t)6-1(z -a)} 677 dz. (3.15)

The evolution equation is

I pAi + h [EI2-7] f f(t)6(z - a) + m(t)6-'(z - a),

which is to be interpreted on H4 with

A(: E1 - 0 and E- L7 f2 0.
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3.2 Lagrange's Equations for Multibody Systems with Elastic Interactions

In addition to the kinetic energy, T(q, 4), we assume that a potential energy function V(q)
is also available. Then Lagrange's equations take the form

d aT L9T aVdat 49 aa
I d OT _T 87' Vd _ - + - = QR, (3.16)dt OaR OR 9R

d dT 6T 8V+ - =QU,
dt 6i 6u Su

where the generalized forces are defined in terms of the virtual work expression;
6W = Q~d + Q~dR + Q,6u. (3.17)

Now, we define the system angular momentum with respect to the origin of the body frame

H= Lux[(w x u+ut) + LRldm = a+ fu x LRdm.

With some calculation' these equations reduce to

System Angular Momentum

r()[a + w x a] + I u(z, t) x LR dm=Q- 8 (3.19)
System Linear Momentum

[ LT(Ut + w x u) + Rldm = R (3.20)

uI, +w x (w x u) + c x u + 2w x ut + LA Q - (3.21)
6 u

Equivalently we obtain

r T()[I(+WxIwl+mcx L+rT( )D j ux[wxu+utldm+f uxLRdrn = Q4- - (3.22)I mw cjLV (3.23)
rnR + mLrT[W X (W X C) + C X C] + L T[D'u + Liijdrn QR - (3.23)

-'uL,=Q- 6V (3.24)
where the operator D is defined by

ID(.) := + &w X()

Note that, in applications, the integrals in (3.19)-(3.21) or (3.22)-(3.21) would not be
evaluated directly. Instead, they are to be replaced by momentum expressions in terms of
an appropriate choice of generalized coordinates.

"Appendix A contains some identities useful for these calculations.
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3.3 Geometrically Consistent Reductions and Modeling of Flexible Structures

Recently attention has been drawn to gross qualitative properties of certain dynamic sim-
ulation models for multibody aerospace systems with structural flexure which have been
obtained by "conventional methods". Such modeling methods, which often employ approx-
imations involving linearization and truncation of position and velocity expressions refer-
enced to body fixed frames, can lead to gross qualitative errors in predicted dynamic re-
sponses. Examples include inconsistent or incorrect predictions of dynamic stiffening or
softening when the body frame is subject to arbitrary large motion in inertial space. In
certain examples dynamic predictions suggest unstable responses inconsistent with physi-
cal experiments. Such errors in qualtitative behavior of models can be best understood
by a careful analysis of the geometry of the deformations allowed under certain approxima-
tions [SVQ86, VQS87, SVQ88, Pos88]. Several computer codes for multibody modeling simu-
lation of Control-Structure Interaction (CSI) effects such as DISCOS, TREETOPS, NBOD2,
ALLFLEX, are widely available and used in the aerospace industry. The approximations
used implicitly in these codes have been repeatedly called in to question by representatives
of both industry and academia [KRB87, BD90].

In this section we briefly describe the geometry of large deformations from the viewpoint
of continuum Lagrangian methods. We outline some methods of approximation and reduc-
tion of models which are "geometrically consistent". Two issues arise with respect to the
geometry of large deformations. the first is the notion of strain and its definition in terms
of local material deformations. The second arises when structures exhibit large, transverse
global deformations but one chooses to make certain kinematic assumptions which restrain
axial deformation.

I 3.3.1 Definition of Strain

Consider a continuous medium which undergoes a deformation. Let X E R3 denote the
coordinates of a particle P lying on a curve Co in the undeformed state. Suppose the
curve Co deforms to the curve C. After deformation the location of the particle P on C is
denoted z E R'. If we consider the particles to be infinitesimal rathe than points, then the
characteristic length of the curve Co (resp. C) is the arc length dso (resp. ds). Similarly,
the respective infinitesimal area and volume elements are proportional to ds 2 and ds'. We

* may write
d =dX 2 +dX + dX and dsa =d1+dx + dx .

Taking the viewpoint of Lagranian mechanics [Sok56, Fre66] we identify the location of each
point P relative to its nominal location in the undeformed state of the structure; i.e., the
coordinates are functionally dependent; x = x(X). Then the differential volume element can
beds, --I1--d/11 = dX' dX. (3.25)
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We would like to express strain as a measure of deformation per unit area. We thus define
strain in terms of the area deformation,

ds2 - ds =2 dX t E dX.

where E is the (Lagrangian) strain tensor, which satisfies,lt
2E= [ X - 13. (3.26)

It is convenient to express the strain in terms of the relative displacement by introducing
u(X) which satisfies the relation;

s that z(X) = u(X) + X,
so that

2E= +13]3 t-[ '+I3] -3. (3.27)
From (3.27) we obtain the components of the strain tensor, iE for i,j, k = 1, 2, 3 as,

Oqu, + I Oui , + [ 0uj .,+ OUk, }

eii = ax -{[ 1 Ox ±[-[iJ, (3.28)

and for i j :k, O~O 1  (u u tOt ~ ~

2ij- = + ++ 8U+--l + . (3.29)ax, Oxi tax. ox, ox, ax1  ax. ox, Ij
When deformations are small-i.e., when u(X) and its partial derivatives are negligible-

the second order terms in the strain tensor can be neglected and we recover the infinitesimal
strain definitions [Sok56, Fre66], au1

xi xi' (3.30)
___Ot i  O9u,

fJ Ox1 + U-j-, for i 0 j. (3.31)

Remarks on Extension: Consider a line segment Co which lies in the X, axis. At any
point P in Co an element length is dso = dXA. Thus, using the definition of strain we have,

ds2 - ds2 = 2dX t E dX = 2EnidX."

The extension of this element under deformation is given by,

E = (ds - dso)/dso as = (1 + E)dso.

Then
m a2- ds = [(1 + E)2 - 1]dX = 2

which implies that E = V1 +2e - 1. For small strain we obtain the usual relation,

E = ei.
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3.3.2 Global Deformations and Elimination of Axial Dynamics

Consider a one dimensional structural appendage and for simplicity consider it to be modeled
as a beam. Recall that each infinitesimal beam element is identified by its location (i.e., the
z-coordinate) in the undeformed configuration. Thus, the element configuration variables
71(z, t) and (z, t) denote the spatial location and rotation at time t of the infinitesimal
element located at coordinate z in the undeformed configuration. In many cases, the axial
dynamics (i.e., the material motion along the beam centerline) evolves on a substantially
shorter time scale than does the transverse or shear dynamics. When this is the case it

is often desireable to reduce model complexity by eliminating the axial dynamics from the
equations of motion.

One approach to effect this reduction is to enforce additional kinematic constraints on the
configuration continuum. The approximation, 13 = Z (cf. Fig. 3.3) is a commonly employed
approximation and valid for small global deformations. Two undesireable consequences have
been observed as resulting from this approximation. The first consequence is the elimination
of foreshortening effects in flexible links and has been observed to be of importance in
precision robot j lacement control applications. The second consequence, which may be of
significance in large angle attitude motions of flexible space structures, results from the
elimination of certain inertial coupling effects. It is important to emphasize that with very
large structures that small local deformations (i.e., strains) may result in significantly large
global deformations (i.e., displacements).

A variety of alternative approximations can be developed which eliminate axial dynamics
while retaining correct geometrical relationships during structural flexure. We explain one
such approach by refering to Figure 3.3. The appendage centerline in the undeformed state
is coincident with the z axis and has length L. The curve CL shown is the centerline of the

deformed beam. Notice that the beam centerline at any time t is parametrically characterized
by the map CL : R 3 given by,

71cL 77(Z

with z E [0, L] and t fixed. At any point z, the tangent vector to the curve is

If we insist that the local deformations in the direction of v, vanish along CL then we
must have

ds2 - dso = 0 (3.32)I which implies
[I ] + 2 + [ a J 1 = 0. (3.33)

Equation (3.33) should be thought of as a partial differential equation in 713 which is to be
solved subject to , 2, given functions of z. Notice that (3.33) defines a unit sphere in
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I

ii ro

Figure 3.3: Illustrating the geometri- considerations in deformation of centerlines of beams

the coordinates, -821L, ft, and 291. If 8" is assumed to be positive, then we may take

I3 = 1)2 - ) 2 (3.34)

and the solution can be obtained by quadrature.

I 3.4 Generic Models for Slewing and Pointing of Precision Optical Structures

In this section we develop several benchmark generic models for rapid slewing and precision
pointing of flexible space structures which are motivated by problems relating to control
of precision optical structures subject to elastic interactions. Such problems arise in re-
quirements for rapid retargeting coupled with precision pointing for space-based laser (SBL)
systems. The models reflect generic qualitative dynamical properties of such systems. In a
subsequent section we develop a simulation model with physical parameters obtained from
the benchmark SBL structural model developed in [Lc87].

The models developed in this section focus on primary sources of structural interaction
with principal body slewing maneuvers affecting system LOS pointing. Modeling assur '-
tions used to characterize generic responses are based on the initial system level tradeoff.,
descril- 'd in the R & D Associates report [Le87]. This study indicates that the principal
source of structural flexure affecting laser LOS is withili the beem expanded optical train-
the principal structural component being the metering truss supporting the relative position
and orientation of the primary and sec-ndary mirrors. Our initial or first-level model assumes
the beam expander primary mirror and support is rigidly attached to tht spacecraft body
and only the metering truss is subject to flexure. In the second model we include provisions
for articulation of the SBL beam expander with respect to the SBL system spacecraft bodyIusing a gimbaled joint.

I
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3.4.1 Example: Rigid Body With 1-Dimensional Appendage

We consider a single rigid body attached to a flexible appendage as illustrated in Figure 3.4.
The system kinetic energy cdn be exprc.sed as

T -- j fubll' + 2(f2u, LR) + IIRI 2dm (3.35)f1 11 U+ '1
+±f IInlu + u0( 2 + 2(fu + ut, LR) + IIR1I!2dm

= jw. bWb - mbcT fLR + -mbIIRl 2

+ 12 {IIf4?1 + 77112 + 2(Q6 77 + t, L.R} ± JpRI2}gA dz

I~+I ± I[ + &]TI~w±~}

where c E R3 is the location of the rigid body center of mass in the body frame, mb is the

mass of the rigid body, Ib is the inertia tensor of the rigid body in the body frame, and
p is the mass density of the beam, 77(z, t) is the position vector uof points on the deformed
centerline of the beam in the primary body coordinate frame and (z, t) = [/, 0, OlT(z, t) is
the beam angular deformation. We have assumed small deformation of the beam so that the
Lngular velocity of the beam section at z is

IW(Z, t) = W 6 (Z t)

up to first order in the angular deformation.

The potential energy of the system consists only of the potential energy associated with
deformation of the beam. Under Timoshenko beam assumptions [CKEFKPB68] the poten-
tial energy function is

V(V,1) = I{GJ(Vz)2 + EI 2(O0)2 + EI3(0.) 2

+ rGA(it, - 0)2 + ,I 2GA(,7 2, + 0)2 + ,tEA(73 ," - 1)'} dz (3.36)

= ~f (~K .) + (77 ~ T ~i~-P) dz

where the stiffness matrices are defined as

K = diag(GJ, EI 2, EI3), S = diag(K1GA, , 2GA, jLEA),

and
0 0 -1.

0 0 0

The system angular momentum vector is

I a = Ibw + ft[A 77 x (wb x 7 + i)+ IwIp dz
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so that equations (3.19)-(3.21) reduce to

rT( )(Ib( b + Wb"X IbWb)

+ fr ( A7X (77t+ Wb X (Wb X 7) +W(;b x7 1+ 2wb x

+ A71x LR + I(c + wb x w)]p dz + mc x L.R = Qb, (3.37)

mi? + mLT(W X (W X c) + ( X c) + o pA(LTD 2 1 + R)dz =QR, (3.38)

pA(r/tw+ bX(Wbx7)+bx +2Wbxi +LR)=Q,-S(rz,,-P z), (3.39)

pI[&t + 4b + wb x (wb + 5)] = Q4 - K . + pTS(7. - Pt). (3.40)

ISystem Dissipation A simple model of generalized dissipation in the appendage can be
obtained by introducing a Rayleigh dissipation function. We formulate such a function based
on the assumption that dissipation forces are proportional to beam deformation rates, i.e.
generalized coordinate velocities (7/t and &) and strain rates ((771)tz - Ot, (772)tz - qOt, tz).

I R(77t, , = 2 j {?1t 'lt ± '2{t + (r)T.r/ _  T (3.41)

where -, = diag(Cil, Ci2, 4i3). From R(iit, t) we obtain the generalized dissipative forces

SR - 'lt + .-3(/7tzz - P z) (3.42)
6rt

-= P=R 2 + .-.3(iltz - P6t) + .-4&z. (3.43)
66

I 3.4.2 Example: Articulated Bodies With Flexible Appendage

We now consider a modification of the previous Example which includes a second body
attached to the primary body with a three axis gimbal as illustrated in FigurI3) In addition,
the second body carries with it a reaction wheel package. The kinetic energy function is

T =4w,'I - m pLR+ ,lmpIR

primary body
+ 1 , T I.(.O - rm.cTY.L{L + SpCg} + ImallLR + QpCOM 11 2

second body (wheels locked)
+ L21W + WTI3W3,,+4,'Iswawosw

reaction wheels

+ 4 f {llf~pi+ ± ill + 2(11i+ it,LR) +lR l},pA dz

+ ] pdz (3.44)
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Figure 3.4: Rigid Body with Flexible Appendage
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Note that cp and c, are the locations of the center of gravity of the primary body and
s econd body (iidJuding wheels) in their respective body coordinate frames. The vector cg.

denotes the location of the three axis gimbal in the primary body frame. The matrix I,
is the primary body inertia tensor in the primary body frame, 12 denotes the second body
inertia tensor with reaction wheels, and 13 is the diagonal matrix of wheel inertias.
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I4 Feedback Linearization of Lagrangian Systems

4.1 Output normal form equations for Lagrangian Systems

I Consider the case of a finite dimensional Lagrangian system with Lagrangian,

L(q, 4): M X TqM --+ R (4.1)

and assume that the configuration manifold, M is locally diffeomorphic to R'. Thus the
n-vector q has elements which are the generalized coordinates.

For control design we assume there are a finite number of external generalized forces
which can be exerted on the system which we collect in the m-vector f E R'. The external

*forces are introduced by the definition of a differential virtual work expression in terms of
the generalized coordinates; 6W = Ej QTdqi. We assume that the external forces in physical
coordinates are such that m < n and for each coordinate, Qi = '96w = Gif and the virtual

work takes the form, 
'I

n

SW = -- fTGTdqi = fTGTdq, (4.2)Ii=l
where GT = [GT,. .. , GT..

Assumption 1: The Lagrangian system is regular with respect to external generalized
forces; i.e., the operator G is rank m in a neighborhood of every configuration q E M.

Next we identify a set of system primary outputs, y E Rn, given by,

y = h(q), (4.3)

I where h : M -- R' is a C' function. We also assume that there exists a C o function,
t(q) -4 u, such that U(q) = h(q) 9 t(q) is a local diffeomorphism; i.e., there exists an inverse

*map;
q = g(y,u) 

(4.4)

g: ,m x M -+ M.

Proposition 1: Under the above assumptions the Lagrangian system can be decomposed
and written in explicit output coordinates form7 ;

d 8i OLd O - Dy(g)T Gf (4.5)

d ft - Du(g)TGf (4.6)

'We use the notation, D. (f 38
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where

L(y,i,u, i) L(q,4)Iqg(u,),q=g(u,), (4.7)

uy) :=Dy(g)y+D,(g)it. (4.8)

Proof of Prop 1: To see this note that (4.8) follows from,

Also, the virtual work expression is rewritten in the new coordinates as,

I6W = fT GT [29] dy +fT GT [ 9] U
Then direct application of Lagrange's equations in the (y, u) coordinates gives the desired
result.I 0

4.2 Structural Assumptions on Lagrangian Systems and PLF Compensation

From the above section we see that under fairly general assumptions a Lagrangian system
with n degrees of freedom, m external forces and m outputs defined as in (4.3), that the
resulting equations of motion can be obtained by application of Lagrange's equations in the
explicit output form (4.5)-(4.6) which we write as,

Jy(y,u)j + N(y,u)ii+Oy(y,j,u,it) = G~f (4.9)

J(y, u)ii + Nr(y, u)jf + 0.,(y, j, u, it) = Guf. (4.10)I
Assumption 2: The system inertias; L~e, J y~ N11 [r symtrc Noitv 1e

Ju NT are symmetric, positive defi-
nite operators for q E M.

Then we have J4 - NJu NT is also positive definite on M.

Definition 1: We say that the above rn-input by m-output system has local relative d-gree
2 for the configuration (yo, uo) if and only if the m x m matrix, [G, - NJ 1 G,,](y,u) is
invertible everywhere in a neighborhood of (yo, uo).

A Partial Linearizing Feedback (PLF) Compensation is a nonlinear feedback transforma-
tion of the form,I f = 4(y, hu, is) + Ka(y,, u, u)a

with KX, K. : M x TqM -- R', which renders the compensated response in y linear and
time invariant in a, and decouples the remaining (zero) dynamics (u, it).
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Proposition 2: Assume the Lagrangian system has local relative degree 2 for every con-
figuration q E A C M where A is an open dense subset of M. Then a Partial Linearizing
Feedback (PLF) compensation is a feedback of the form,

f = -[Gy- NJ 1 G,]- {y - NJ.1 qu + [Jy - NJ.-1NTIa} (4.11)

Itransforms the closed loop system to input/output linearized and decoupled form;

1 y = a, (4.12)

J,(y,u)i + N(y,u)Ti . qSu(y,y,u,i t) = Gy ct (4.13)

where

Oyu : .+ Gu[Gy - NJu-,,]G'(Oy - NJWu'Ou), (4.14)

u:= Gu[Gy - NJ 1 'Gu]-I[NJu1 N T 
- Jy], (4.15)

where a E R' represents the control inputs in "acceleration coordinates".

The system primary outputs y given by (4.3) induce a decomposition of the system
configuration space as M = My x Mu where dim My = m and Mu = {q E M : h(q) = 0}.
The PLF compensation (4.11) decomposes the trajectories of (4.9)-(4.10) into controlled
responses on My x T.My and output constrained or zero dynamics on Mu x T.u. Then
following Byrnes and Isidori [BI85] we say that the system (4.9)-(4.10) is locally minimum
phase if the output constrained dynamics are asymptotically stable to the origin (u, i) =

(0,0).

Proposition 3: The system (4.9)-(4.10) is locally minimum phase if and only if the system,

J1 o(U)ii + (u, i) = 0 (4.16)

is asymptotically stable to the origin, (u, u) = (0, 0), where

, :=q(y4y,u, ,i=o= - [Gu[Gy - NJu'G] -'(Oy - gJu1u)]_ o,i=o,(4.17)

JU,(u) J(y,)=o,=o (4.18)

Proof of Prop's 2 & 3: To see this result we first solve for the accelerations in the pairI of equations (4.9)-(4.10) to obtain,

() N (y ) (GU - NT j] f)GPf

1 -- ) + C, f  (4.19)
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where we have assumed that the system inertia is symmetric, positive definite everywhere
in (y, u) E My x M u. The desired decoupling and linearizing control is then given as,

f = r+1(-Ey +a) (4.20)

Now recall that under the assumption on the system inertias we have,

J N '1 =[ ]A -& 1 NJ 1  1
N T Ju -- _ NTA-1 j + j uNTA-Ni (4.21)

where A = Jy - NJu1 NT. Thus we find

I ,= A-1 y - A- 1 NJ 1q,,, (4.22)

ry = A- 1Gy - A-NJ1 G,. (4.23)

U Furthermore; since we have

ry'Ey= [A-IG, - A-1 NJ'G,]-[A-1 y- A-'NuI1 4,]
= [Gy - NJu'G,]-'(Oy - NJuI¢O,), (4.24)

1* then (4.11) follows from (4.20).
To show (4.12)-(4.15) substitute (4.11) into (4.10). Likewise, (4.16)-(4.18) follow from

(4.12)-(4.15) by setting a = 0 which from (4.12) implies that y = = 0.

01

I Remarks: The objective of PLF compensation (4.11) is to obtain input/output lineariza-
tion of a i-+ y by decoupling of the u dynamics from the outputs, y. We assert that for the
Lagrangian systems considered, under the assumptions 1 and 2, and assuming that for the
given f and y variables that the system is locally minimum phase, then the response of the
PLF compensated system consists of a-controlled motions on My and stable transient mo-
tion converging asymptotically to the origin on M,. For regulation of the primary outputs
to zero the dynamic response is decomposed to asymptotic motions toward the manifold My
described by (4.12) and motions on M given by (4.16).

Design of the a control is of course simplified by the linear dynamics given by (4,12).
As most flexible structure systems are Lagrangian systems with local relative degree two,
the design in acceleration coordinates is particularly attractive feature of the method. The
PLF compensation (4.11) implements an online Inverse Force Model (IFM) which effects the
transformation to acceleration coordinates. In the sequel we show that the stable implemen-
tation of the IFM may be sensitive to parasitics in the decoupled dynamics (4.13).
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I5 Reduced Order Models and PFL Control of Flexible Struc-
tures

I Models obtained by finite dimensional approximation of the Euler-Lagrange equations or of
the system Hamiltonian as outlined above will typically obtain a large order finite elementI model in the form,

M(q)ij + B(q, 4)4 + K(q, 4)q = Gf, 
(5.1)

where we assume the system inertia, M(q) : M --+ R"' is symmetric, positive definite on
M, reduced configuration space with dimension n and stiffness K(q, 1) : M x TqM --+ 3?nn

is symmetric, positive semidefinite stiffness, and B(q, 4) M x TqM _, Rn ×" models system
dissipation on M x TqM.

Our interest in model order reduction arises from consideration for robust implementation
of PLF compensation for flexible structures. In general, the dynamics are nonlinear and
we base reduction on time scale decomposition with respect to a minimum energy state
of the mechanical structure model. For space structure applications there are typically
cyclic coordinates involving attitude rotations which do not appear explicitly in the system
Lagrangian [Go182]. These coordinates can be translated to the origin. Thus we focus
attention on the linear perturbation model about the origin in M x TqM to obtain time
scale decomposition.

Fact: Under the above assumptions there exists a nonsingular n x n matrix, P, such that

pMoPZ=I, PTKoP = Kd = diag{ww 2 }

with w< .. .W, where M0 = M(O), K0 = K(O, 0).

Assumption 3: Given P as above, let B0 = B(O, 0) and assume that'

PTBOP = Bd = diag{2GCwl,... 2Cwn}.

The transformation q = Pz obtains the linear perturbation model in decoupled "modal"
coordinates [Ba178],

+ Bd +d =Gf, " (5.2)

where G = PTG, whereas, the original nonlinear equations (5.1), written in modal coord-
nates:

M()i + r(,, i)i + k(X, i)z = Of, (5.3)

SThe assumption of "modal damping" is-although typical in modeling flexible space structure
dynamics-an assertion which may require careful validation in practice. Among other limitations this
assumption implies that gyroscopic effects are negligible.
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where

M(x) = pT [M(q)q=Pz] P, (5.4)

pXi) = pT[K(q,)IPz,=P] (5.5)
| = pT [B(q,4)Iq=PW,4Pij P, (5.6)

may be highly coupled in a neighborhood of the origin.
The standard approach to model order reduction for linear models of flexible structures

is to retain the first p modes and neglect the n - p residual states. Such an approximation
assumes that the system modal coordinates are decomposed as x = [(X o)T, (Xl)T]T where x1

is a fast transient (or parasitic) in the time scale of x'. Thus we seek to approximate the
system potential energy by the decomposition of the stiffness in (local) modal coordinates
model (5.2);

Kd= [Kd 01
0 Kg "

To transform the model (5.2) into the standard form for singular perturbation analysis
we must identify an appropriate scaling of the stiffness. One natural choice of scaling is to
let, K.. = 1 ,', and the residual coordinates, x1 = 2z, such that z - 0(1) in 2. For
example, we may take,

C(P) -(5.7)
wp+1

for which we see that e - 0 as p is increased. Then by assumption 3 we have, Bd = !BdO

where Bd 0 B ; a fact which will become useful in the sequel.

I Then (5.2) is decomposed into p-dimensional retained coordinates, x0 and (n- p)-
dimensional residual coordinates, 1,

q= [Po, Pl2I)] (5.8)

where P0 RP -_ , RP1  __, - 3, such that

io+BO$O +Kd0O = 00f, (5.9)

+B K = Glf, " (5.10)

which after scaling becomes singularly perturbed [ABB89] as,

So+ Bo + KzO = 0of, (5.11)
'[i + Bd] + Kd0  = 01f. (5.12)

After decomposition and scaling the FEM model (5.3) is also singularly perturbed,

Mfoo ° + 2 foi + &o* + e2&Ol + fko0  + e2 olz = 0of (5.13)

MTO + Mhi + Rioio + e'o + o + k1oz = if. (5.14)
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IThe reduced order model is obtained as the quasi-steady state or slow time system by
letting e = 0;

fMooi' + BD00 " + k"0X0 = Gof, (5.15)

lwhere I .°O + - [Rl]TX0 + Rl'i = O1f, (5.16)

SMo(x0 ) = PTM(q)Po. ,=0 o.O, (5.17)

Boo(0, io) = PoTB(q, 4)Po, Jq=Po0O q=PoO, (5.18)

KI 0(x0, iO) = PTK(q, 4)Po1,=Po.O,4=p ,  (5.19)

0 = PO, (5.20)

where (5.15) is the reduced model [Kok87]. By assumption, K o is invertible and we can solve
explicitly for the slow time, or quasi-steady state component of z;

S= [kjo]- 1 {f - f o ko}, (5.21)

I* where

= - -MOxMo Bo00 , (5.22)I K = kT - MOtoo,0 0  (5.23)
0 = 01 - MSMOT f 0. (5.24)

I The boundary layer correction; z = , + iq is obtained in the fast (stretched) time scale,
-=te er ! - and letting e = 0 after substitution in (5.13)-(5.14). Introducing

the notation, X' : we can write the fast time scale system as,

AM q" + D11r' + 1 =' G~f. (5.25)

I A standard result in singular perturbation theory is that the reduced model (5.15) is 0(l)
approximation for e < 1 if the fast time scale system (5.25) is asymptotically stable [KK0861.
Then the time scale decomposition suggests that trajectories of (5.1) consist of fast transients
of (5.25) which converge to the manifold Lo = {(x, i) E M x T " : z i i = 0},where
dim MOPg = p and trajectories of (5.15) on 40.

Remarks: For flexible space structures we typically assume that the stability of the fast
time scale model is due to inherent damping of the structure rather than the introduction
of rapid control. One issue of practical concern is the controllability of (5.25), which for
the case of flexible structures depends on the choice of p and slowly maturing technology for
wide band vibration control. When the fast time scale system is only weakly controllable (i.e.,
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controllable only through the slow time system) the contribution of these modes is clearly
"parasitic" and neglecting these dynamics will contribute to the robustness of the control
design [Kok87]. Model order reduction in flexible space structure control design is typically
a multistep process. We recommend that weak controllability issues related to actuation
technology be considered as part of any initial reductions. Model order reduction for control
design for flexible structures is thus effected by the technology available for actuation and
sensing. Structural input/output properties which also effect choice of model order reduction
methods include weak vs. strong controllability and/or observability of the reduced models.

SThese and many other issues can effect the choice of time scaling and model reduction.

5.1 PLF Compensation for Reduced Models

Reduced order models of varying dimension can be obtained by the time scale analysis of
the previous section where the approximate system dynamics evolve on the reduced man-
ifold Eo C M o x TqMo. In the next few paragraphs we summarize the transformation
of the reduced model to output normal form and the construction of PLF compensation
based on the reduced model. Our objective is to demonstrate how considerations for robust
implementation of PLF compensation for flexible structures will drive the choice of model
reduction.

We focus attention on an m-vector of system outputs (4.3) for the Lagrangian system to
the form (4.5)-(4.6). The output map is given in reduced model coordinates by9 ,

y = h° (x) := h(q)q.=p,.

Then the inverse map for the reduced order model is from (4.4),

x = [PoTo]- P0g(/y,u)=: g(y,u).

Under smoothness assumptions, we can write,

g0(y, U) = gy(y, u)y + gO(y, u)u, (5.26)

I and following the procedure of § 5 we identify the reduced model (5.15) in the form (4.9)-
(4.10) where,

U4 = [O T - 0 [g. JO = [9
0] Mg0 , N = [gy] mg, (5.27)

= gO]T , G, = [gO]T G, (5.28).

=Y LBVy f j,u , sJ (5.29)

I 91n this section we replace the slow time state z° E NP with x for notational convenience.
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Iand
i~y b Y- (Y,,u, it) ['40 'B~y u (5.30)I - [gul ]1. (5.31)

The PLF control on M 0 x T2M 0 is given by (4.11) with (5.29). The analysis of section 2.2
carries over directly to the decomposition of the reduced manifold, E0.

Let M C M be the p-dimensional reduced configuration space obtained by retaining
the p-dimensional slow time modes according to the scaling E(p) as in (5.7). Then given a se-
quence of integers, pk, such that, n > p, > ... > pk > m the reduced system manifold satisfy,
:M P C .g M' and M' = M k 0 Mh4 where dim .,k = m and dim &. = pk - m. In

this sense we understand that when p = m we have the case usually considered in robotics
[SV87] where the nominal (reduced) model is exactly feedback linearizable by nonlinear
transformation of the system state together with feedback. For these cases a variety of con-
trol design techniques have been devised to assure robust stabilization subject to bounded
model uncertainty of the nominal plant model described by a regular perturbation [Spo87].
Unlike the robotic problems, flexible structure control problems are characterized by high
dimensional reduced order models where m < n typically. The IFM implemented by PLF
compensation obtains linearization through transformation of the design model to accelera-
tion coordinates. A critical feature for practical implementation of PLF control for flexible
structures is the tradeoff between the fidelity of the online IFM vs. the model sensitivity.
We will highlight these issues by reference to the case when the zero dynamics of the high

*order design model are singularly perturbed.

5.2 Model Reduction for Robust Implementation of PLF Control

IOne way that nonminimum phase responses can arise in flexible structure systems is due
to noncollocation of localized point forces and localized position outputs. It is apparent
that model order reduction can in some cases reduce a nonminimum phase system to one of
reduced order which is minimum phase. This is significant for robust control design. Often
instabilities of the zero dynamics are associated with fast time scale effects which may be
safely neglected. Indeed, as shown by Sastry et al [SHK89] regular perturbations of the
system model for both linear and smooth nonlinear systems, affine in control can induce
singular perturbations of their zero dynamics. Thus to determine whether the fast timeItransients of the zero dynamics for a given reduced model are stable or not may require
highly accurate system models. It is clear then that good engineering practice and robust
design principals will suggest that fast time transients of the zero dynamics for a given

reduced order model should be reduced from the system model before PLF implementation.
Thus we recommend that the system model be further reduced when the zero dynamics ezhibit
time scale separation.
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The zero dynamics (4.16) can be time scaled if there exists a transformation on M" of
the form (6, 6) - t(u) such that the model is decomposed,

J,,,I + J., 122 + 0,1 = 0, (5.32)
[J0, 121  + J4,22 2 + 0 = 0, (5.33)

I and can be scaled, 2 = ez so that z is the fast time state and the model is singularly
perturbed:

J O'd + +jO12 , + l+ 4U,, = O, (5.34)

[J0, 1 2]T1 + JEj.,22 ' + €u,2 + e4., 2 = 0. (5.35)

This decomposes the zero dynamics manifold as Mu= MG E M 2 where dim Mt = p - m,
dimMf 2 = n -p.

The implication for reduced order PLF control is now considered. Reduced order PLF
compensation can now be designed for the reduced model obtained from the decomposition
of the configuration manifold, M = MvSMlt DM t and projection onto the reduced space,
M = Mv @ Mt1 . The principal question which arises is under what conpd;iuns can the time
scaling of the zero dynamics lead to time scale decomposition of the Lagranian system in
which the fast time scale system can be neglected.

Following the ideas in [B185] we assert that there exists a coordinate transformation on
Mu such that the explicit output coordinates expression (4.9)-(4.10) is in output normal

form and under the previous assertion he dynamics on Mu can bp decomposed so that we
can write the system dynamics in the form,

I J (y,.)± , = Gyf, (5.36)
J., 11(y,) ' + Ju,12(y, ) 2' + ,l(Yi,) = 0, (5.37)

[Ju1 2 (Y, )]TI + J 2 2 (Y" )2 u ± €2(Y,Y',') = 0. (5.38)

We assert that the above normal form equations are also singularly perturbed and the re-
duced model, obtained by projection onto the configuration space MO = M x x Mt,, is a
valid slow time scale approximation as e -+ 0 if the boundary layer system is asymptotically
stable. Note that the boundary layer system for the normal form equations will have dif-
ferent stability properties in general from the boundary layer system for the perturbedzero
dynamics (5.34)-(5.35). Indeed, even if the zero dynamics have fast time responses which
are unstable then we assert that PLF control is implementable for the reduced order model
obtained by projection of the system dynamics onto M, x M, if the fast time scale part of
(5.36)-(5.38) is asymptotically stable.

Remark: The model order reduction obtained by time scale decomposition of the zero
dynamics when applied to the system normal form equations obtains a p DOF reduced
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model which matches the p slow time modes of the zero dynamics. Thus the system relative
degree assumptions will .be unchanged under this form of model reduction. The reduced
PLF control will implement a slow time scale approximation of the IFM.

I
!I
I
I
I
I
I
I
I
I

I
I
I
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6 Experiments in Slewing and Pointing of Multibody Systems

Our studies during the course of this project have investigated some of the potential benefits
that can accrue from implementation of dynamic inversion by PLF for control of flexible
structures. On the surface, achievable performance of PLF compensation depend, on the
accuracy of models used to predict the nonlinear couplings. However, during the course
of this project we have focused attention on the pragmatic issues of control design with
model uncertainty. In this section we describe the assumptions used to obtain reduced
models for multiaxis slewing and pointing control of an SBL system. We describe several
simulation experiments which can provide a basis for design of laboratory experiments to
validate the predicted performance of PLF compensation for slewing and pointing. We have
included available data on the ASTREX facility and the first test article in our modeling,
control design, and simulation studies in an effort to determine initial feasibility of conducting
experiments to validate nonlinear control laws on this facility. In the following paragraphs we
describe a series of experiments which could be run on ASTREX and used to validate SBL
slewing and pointing control with PLF methods used to compensate for dominant system
nonlinear couplings.

6.1 Multibody System Model for Multiaxis Slewing and Precision Alignment

The modeling method of Lagrange's equations, as described in the report (BBKA88J, along
with spatial discretization via collocation by splines to develop a finite dimensional model
suitable for simulation of large angle, multiaxis motion of a generic, two-body model of a
SBL system beam expander is described in this section. Beginning with the generic flexible
spacecraft model [BBKA88, sec 4] the following model assumptions are made:

1. axial appendage deformations are negligible' ° , r/3 z,

2. translation velocity of the system primary body is negligible, 1 z 0,

3. torsional appendage deformations are negligible, /.(z) ;z 0.

Thus, following the DPS modeling approach discussed in [BBKA88, sec 3], the configuration
space for the distributed parameter model is SO(3) x HC, where Hg is the set of continuously
differentiable functions, x(z) = p72 , 0, OJT E Hg defined on the interval z E [0, tJ; and
which satisfy the geometric boundary conditions

Q 7 (Z)= 0, 2(z) = 0, (z)= 0,(z) = 0, atz = 0.

With the notational conventions in [BBKA88], the model will be described by the appendage
lateral deformation, 77(t, z) = [v/t, 2 ]T, along the body-fixed x and y axes, respectively, and

10See § 3.3 for a discussion of this assumption.
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I appendage angular deformation, (z, t) = [O(z), O(z)]T. The attitude angular rates referenced
to the body fixed frame are denoted, wb.

The potential functions for the variational analysis leading to the dynamic equations of
motion reduce in this case to:

T ,=w .Ibwb (6.1)

+L2f j fIbhji@) + 77t(z)(I'pA dz. W po' ()Tp
+1 [w ± Pt(z)]TI[wb + P~t(z)]p dz,

V( 7 , ) = f{EIeO(z) + EI4,¢(z)

+KiGA[(7ll(Z)). - O(z)]2 + r- 2GA[(7I2(Z))" - ¢(z)I2} dz, (6.2)

f 7, )= .1o[ i- + yT + ( z)T. + z (6.3)

where0 0 1
S0/ 1 1

*~ 0~ 001100]

T is the kinetic energy, V the potential energy, and R the Rayleigh dissipation function. The
notation used is standard in continuum mechanics of beams and is summarized in Table 6.1.
The area moment tensor is assumed to have the form11

I rz)= oL o

I LO 0 1.
For simulation studies contained in this report we utilize a simple damping model given

by the assumption that the matrix coefficients in the dissipation function are of the form,

S 0 ]
0 2,"

Note that =1 , ='2 model external dissipation while Ea, E4 model internal dissipation [BK891.
The control forces acting on the system primary body are modeled as external torques and
enter the variational setup through a virtual work expression of the form,

3 6W = TNb-. (6.4)

"We use the so-called NASA standard or 321 convention [Gol82j.

I
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Notation Explanation

p mass density
A cross section area
E elasticity
.G effective shear modulus
I area moment of inertia

d=t time differentiation
xI (t, z) = (z, t) partial differentiation

Table 6.1: Standard Notation for Lagrangian Mechanics

U In the sequel, we refer to the kinetic energy expression in terms of three components;

Trigid body = Iw'bwb, (6.5)

Tflex~ f' J= o Ilnb7(z) + r,(z)ll2pA dz, (6.6)

Tflex 2 = 2 J0b + Pft(z)]rI[w, + P~t(z)]p dz. (6.7)

6.1.1 FEM: Collocation by Splines

A model based on the Finite Element Method (FEM) is obtained by spatial discretization
via collocation by splines. The use of splines for such purposes is described in [BBKA88].
Given the geometric boundary conditions described above the discrete approximations of the
scalar valued functions, r1 (Z), p2(z), O(z), O(z), are decoupled and reduce to approximation
of a single scalar function, say 7(z), on the interval z E [0, ] with boundary condition,
7(0, t) = 0. Dividing the interval [0, e] into N uniform subintervals and using first-order
B-splines we obtain the approximation:

7t(z,t) ; Z (t)BiU1 (z) (6.8)
I i=O

with the boundary condition,
N

t) (t)Bj1 (0) = 0.

i=O

Then following the reduction procedure described in [BBKA88, §4.4.2] we obtain the FEM
approximations with 1(z) as given in [BBKA88, Eqn. (4.47)],

11(z,t) 4r(z)t(t) (6.9)
77r2(Z,'t) "Z 'tr(Z) h(t) (6.10)
O(z, t) 4 T¢(Z)#(t) (6.11)
O 4(z,t) o T (z)b(t). (6.12)
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I 6.1.2 Reduction of the Kinetic Energy Function

Using the FEM approximations of order N we obtain the spatial discretization of the kinetic
I energy terms,

x -{wI I.)wb + 2wbI(iJ@ + ! IT (6.13)

Tflex2 - {w Wb+2wbJ,(+ J A} (6.14)

* where
N-TNMq -TN, 1

- ()= -TN1 2  fN m/TN + 0' -TTNJ , (6.15)
- i N -TN2 1V l + I Nmj

Nn, = f'pAt(z)T(z)dz, (6.16)

T = fpAztT(z) dz, (6.17)

o= 'PAzdz= j ',  (6.18)

II [ oN-g

I N 0 I,(6.19)I L -0T N 'M q/TN,, j

* I,1=[1 0 N" .J (6.20)

J..=, = p(z) dz, (6.21)
I [0 N l

= 0 (6.22)

and
No$ 0 1 (6.23)
0 NO "

The following terms are used in the above expressions,

NO - 'PI"z$T(z) dz, (6.24)

INO jt pI4T(z)dz (6.25)

NOT =jp~Tz) dz (6.26)
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N. = jpI=$(z)rT(z) dz, (6.27)

Nee = jo pI (z),T(z) dz. (6.28)

Note that the total kinetic energy can be written in the standard form,

T_ I :T]orM(6,,) (6.29)

where

M(4,) = I.(q) I.m 0 . (6.30)

jr 0 jde

6.1.3 Reduction of the Potential Energy and Dissipation Functions

As above, the potential energy and dissipation functions are reduced by substitution of the
FEM approximations. For the potential energy we obtain,

V = L{Or K. + ¢r K2 + + 2 KtI71 + ijr Kn#j2 + 2#rK, 1 Ij 1 ± 2r K4 12}, (6.31)

3 where

K = f{Eyy-t(z) i(z) + nGA@k(z)I T (z)}dz (6.32)

1(K, = f{EI.Az(z)i(z) + 2GAt(z)4r(z)}dz (6.33)

K17 = foj{lGAtz(z) (z)}dz (6.34)

KI = -{2GAI'z(z)@r(z)}dz (6.35)

Ken = -fj{lGAt(z) ,(z)}dz (6.36)

I Kf = - fo{K 2 GA$(z) ,(z)}dz. (6.37)

Similarly, the dissipation function reduces to the form,
T T - - -T -T( -8I T T :.T ~2.1771 B7 1 l + q2 Bbq2 + 0 BOO + 0' B46 + 20 Be'1 fj + 20 BmI72 }, (.8

where given the expressions,

R : fot'(z)tTj(z) dz, (6.41)
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I we find it convenient to express the individual matrix coefficients in R (arising from the
FEM approximation) as:

B,7, = CilRo+ 6 3 R for i 1,2, (6.42)

Be = (i 2 + ( 13)Ro 14 R, (6.43)
BO = ((2 2 + C23)RO + 24R', (6.44)

B,7 19 = -' 3RO, (6.45)

Bk = - 2 3R o. (6.46)

Finally, we summarize the model stiffness and damping using the expressions,

IK,7 ,1 ' , K,,2 ]K,7 '] Kf=U[I~1 K ] K e 0]0 Kn2 0 K, ' Kn 0 KO

0 B n 'B 0 BC~n ,B= 0 BO

6.1.4 Lagrange's Equations

Finally, we compute the equations of motion using Lagrange's equations in the form:

4 = f(q)p (6.47)

MWq) + E M(q)p]P 1 OM(q)p] +6V = 6R + Q9q6.8P-2[ OqJp,," -- ,(6.48)
oq ~ 2 oq 6q J

I with generalized coordinates q = {, 1, }, and velocities, p = {wb, 7,, 1}.

Equations of Motion for Multiaxis Slewing: Applying Lagrange's equation results
(after some simplification) in the equations of motion with kinematics of the system attitude
expressed in terms of the Gibbs vector, -;

II - = F(7)wb, (6.49)

and kinetics,

I [Ib + I.. + J.]( + 1,777 + J+-I + Qb{[Ib ± I.. + J.]Wb + 1.,17 + J. ± } + H = rb (6.50)

,11wb7 " I,407 - IHTw, + R) + K,i] + K,41 + B,77 + B,,f = 0 .. (6.51)

J1444+J ++, + - +2 +1=0 (6.52)

where

r -!" w32N , T - IN 2 N -WI 1-HI + -s, NT - 2w N+ (6-53)N~ wqiTN,, + -w*NT-w , J?(653IwN4 + W321T~Nm+ 12

R(Wb) [ W 3N, ] (6.54)i R( )= 3N., 0 "
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6.2 Simulation Model for SBL Slewing and Pointing Control Experiments

A computer simulation model was developed and coded based on the above FEM model for
attitude slewing of a flexible space craft (6.4g)-(6.52). The model parameters and geometry
was chosen to represent the dynamics of a SBL system beam expander with structural
flexure arising from the flexure response of the metering truss. A goal of the second year

I effort was to develop concepts for experimental testing of nonlinear control concepts for
flexible space structures. A suitable facility for testing large angle, multiaxis slewing and
precision pointing is currently.under construction at the Astronautics Laboratory. The
ASTREX facility with include 3 axis slewing and the initial test article is a scaled model
of a SBL beam expander. We have adapted our nonlinear slewing control simulation model
to represent available parameters and geometry of the ASTREX test article. Details of the
modeling assumptions and geometry are given below.

I 6.2.1 Simulation model geometry assumptions and parameters

The objective of the simulation model design was to generate a simplified model that would
duplicate, as closely as possible, the geometry and dynamics of the ASTREX test article.
Information describing the test article was sparse, therefore, the following assumptions were

i required to develop a working simulation model:

1. The basic configuration of the model consisted of a rigid body, representing the main
mirror assembly and associated structure, and an attached tripod structure, represent-

ing the flexible metering truss with secondary mirror, see Figure 6.1.

LOC.ATo i OF
5coMDJA R.

I x..

I Figure 6.1: Simulation model.
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I 2. The metering truss geometry consisted of a tripod of tubes located at the corners of
an equilateral triangular base. The generic model discussed above was readily adapted
to represent this geometry by including spatial variation of the area moments Iz,,(z)
and Iy(z) based on this geometry. Details of the computation of the area moments
and the resulting FEM model approximations are given in Appendix A.

I 3. The dimensions of the metering truss model were as follows:

Length, 1- 5.0 m
Base width, b - 3.8 m
Tube inner dia. - 8.0 cm
Tube outer dia. - 12.7 cm
Mass of secondary mirror - 190 kg (5 % of total sys. mass)

4. The overall system characteristics were as follows:

Mass moments of inertia I. = 16640 kg m2

Iy = 16590 kg m2

I. =11660 kg m2

System mass m = 3810 kg
First modal freq. of metering truss = 12.2 Hz

5. The dynamics of the secondary mirror were neglected and it was modeled as a point
mass at the end of the truss.

I 6. The modulus of elasticity of the truss material was chosen so that its first modal
frequency matched that of the ASTREX test article.

6.3 Design P::a:r-c: Slewirg sd I, ointing control with passive vibration sup-
pression

The design methods of PLF have been discussed with application to slewing and pointing of
a multibody system. In this example we consider the significance of input-output structure
of the PLF control for slewing and pointing of the system primary body axis for use of pas-
sive vibration components. The essential idea is that the use of passive vibration absorbers
requires tuning for predictable structural resonances. Available technology for Control Struc-
ture Interaction (CSI) includes devices which interact with the structure through inertially
generated forces and torques to provide vibration absorbtion. Such devices include' Proof
Mass Actuators (PMA's).

Miller and Crawley describe and compare several alternatives for tuning stiffness and
damping properties of PMA's for application as passive vibration damping of simple flexible
structure models. Their analysis extends the classical analysis and highlights the highly
tuned, narrow band behavior of such devices used either as passive vibration absorbers or
as active control actuators. Thus damping effectiveness will depend critically on assumed
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Ivibration modes. For nonlinear dynamics of multibody systems such passive tuning is prob-
lematical. In the following we consider the importance of PLF and the tuning of PMA's as
passive dampers for application to the problem of rapid, large angle slewing and precision
pointing.

The slewing and pointing control design based on PLF compensation focuses attention on
stability enhancement of the decoupled or zero dynamics. Vibration damping should provide
enhanced stabilization in the sense of transient response of the structural elastic responses
which have been decoupled from the primary regulated variables by the PLF compensation.
Thus PMA tuning should be optimized for the system zero dynamics. A simple example
serves to illustrate the point. Consider the case of slewing and pointing of the inertial
attitude of the system primary body using external torques applied to the primary body.

In this case the dynamic response of the zero dynamics can be described by the (linear)
cantilevered vibration modes.

A common problem in design of structural vibration control using low authority control
actuators is to decouple the rigid body modes from the vibration control loops so that low
authority structural actuators are not saturated by interaction with rigid body dynamics.
This is typically accomplished by processing paired control loops from symmetrically placed,
collocated (torque) actuators and sensors [Jos89]. This approach may be sensitive to system
symmetries. An advantage of the PLF compensation scheme for primary body slewing as
described above is that the rigid body motion is decoupled from the multibody alignment
control.

I System Model for Passive Damping by PMA The simplest technology for vibration
absorbtion is based on vibration damping by inertial interactions. The Lagrangian approach
to system modeling indicates how the former system model can be modified to include the

dynamic interaction between the PMA's and the structure.
Consider the model illustrated in Figure 6.2 where two PMA's with single, linear degree

of freedom are located at the position z = t on the elastic appendage. The pair of PMA's
are assumed to have axes of motion aligned with the local coordinate frame. The motion of

* the moving mass for PMA aligned with the x-axis (resp. y-axis) is given by the coordinate
. , (resp. y.) defined with respect to a zero energy at rest configuration.

The modified system Kinetic Energy has the form,

I T = Trigid body + Tflex + TPMA.

The inertial velocity of the appendage at a point z is:

( 71(ZW
V(Z) := 77(z) + b 17(z) )

S173(z) + Z

Neglecting axial deformation, 173 ; 0, we obtain the additional kinetic energy in the form,

TPMA = 2 - v(z))2 + }'M.( . - v 2 (z))2  (6.55)
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k Xl
k2

IC

Figure 6.2: SBL model with passive damping by PMA's.

= ma[ia - ql(Z) - W2z + W3 7,2(z)] 2

+fMa[ ia - q2(Z) + W1Z - W1(Z)]2.

Assuming the devices are identical and decoupled we take the system potential energy in the
* form,

V = Vflex + VPMA,

where,

VPMA = 2kaXa2 .ay 2.

Applying Lagrange's equations to the PMA terms,

d t"PA q -(TPMA - VPMA) = i

with respect to the expanded set of reduced generalized coordinates obtained by retaining

N finite elements,
qi E {1b, 1 g, 7, , O 7, Ya},

one obtains the modified equations of motion in the standard form:

4 = r(q)p (6.56)

M.y.p + Bo,.p + K.s.q = Gy.srb (6.57)

whereI q = [_bT qT, IT, tTIT,
P = [Wb', nT, .Tj TIT)-

and i = [-a, y.]T . Denoting terms arising from the interaction with the PMA's by superscript
'a' we can write the modified N. x N. system matrices (with N. = 2N + 5) in the form,

I[ + [Ma,,]T  I,,, + M, 0 M.Ii 4 0I=[M...]T_ [M,.]T 0 M.
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I Ob{Ib±I..±Jw.+M,_,,} cbIwqMa,,}+H !QbJB,Jg
B.y, = " I j + B~Z7 R + B, + B,7 B.e 0

=Jjjt Bn~ B
[B a]T 0 0 B 0,,,a

_ K,, K 0 and0

1,5  [ 0 KP-oJ 0

Letting both PMA's be located at the end of the appendage; z = 1, then the new terms

take the form,

I~a , 12o 0 -Ma,77 1

=Mae -MaII72(t) ](3 x 3) (6.58)I L -~Mat77(t) -MJ712(t) 1ov;* 2 ;O

r o.. o 0 o...o -m0 - 1
M.a = /.. mt 0 i...0 0 (3 x 2N) (6.59)

0 ... o -mo772 (t) 0.. .0 -m,7 1 (t)

Ma.= - M 0 j (3 x 2) (6.60)

I 0
I 0
0

0m,,M (2N x 2) (6.61)

*~0:
0

M;7 = diag{O,...,O,m°,O, ... ,0,m} (2N x 2N) (6.62)

M = maI2, Ka = kal 2  (6.63)

B: - 0 ]_ (2N x2N) (6.64)0

B: 2 = 0 (N x N) (6.65)

0 ... 0 2m w3
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0 0II oo

0 0

imaws -mw 3 (e) (2N x 3) (6.66)
00

0 0
Im.w 3 -maW 3,ii(1)

PMA Tuning for Slewing and Pointing Control Such devices provide dissipation by
coupling kinetic vibration energy into the moving mass of the PMA where it can be dissipated
by localized damping. Since the effectiveness of the energy coupling depends on inertial
interactions the mass of the device is a limiting factor in its effectiveness. Nevertheless, the
effectiveness of the passive damping depends on tuning the PMA stiffness and damping to
the critical vibration mode.

Miller and Crawley review classical and modern approaches to tuning PMA's as vibration
absorbers. They discuss tuning with respect to the simple linear model of a PMA interacting
with a single degree-of-freedom system as shown in Figure 6.3 where m, and k, are the
structure mass and stiffness respectively, and where M 2 , k2, and c are the absorber mass,
spring stiffness, and damper constant respectively. We focus attention on tuning for optimal
transient response characteristics as follows. Given the non-dimensional parameters:

b (k 2/m 2) absorber - structure frequency ratio
. (ki/m,)U ~ M2 absorber - structure mass ratio

11= 2n _ non-dimensional damping
M2 /mC

choose the PMA stiffness k. and damping c for a fixed mass ratio such that the maximum
modal time constant is minimized. The tradeoff is illustrated in Figure 6.4 which displays a
root locus as it is varied (for a mass ration jO = 0.02). The frequency ratio, 6, for optimal
transient response is the value for which the root loci intersect at point A, and is given by,

1
bTR 1+3(6.67)

Application of this approach to flexible structures is of course limited by the interaction
I between multiple vibration modes.

For the problem of slewing and pointing as discussed in the previous reports we let the
primary outputs be the inertial attitude parameters, fb, of the primary body frame and
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I

k

IC

I
Figure 6.3: Model used by Crawley and Miller for tuning passive absorber to a one DOF
system

I '
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.. 6T .9
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I Figure 6.4: Root locus of poles for Miller and Crawley's one DOF system as a function of
increasing damper value
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Mode Frequency
1 12.07 Hz
2 12.07
3 70.73

I 4 70.73
5 103.19
6 103.19
7 271.33
8 271.33

Table 6.2: Truss modal frequencies for cantilevered boundary conditions

apply external torques, Tb, to the primary body. In this case the decoupled dynamics are

given by the linear dynamics of the metering truss with cantilevered boundary conditions
replacing the interaction with the rigid body. (To see this simply constrain the primary
regulated outputs, y = fb and their rates y to the origin and substitute y = 0, Wb = 0 in the
equations of motion to obtain the zero dynamics.) To tune the PMA's for optimal transient
response of the first pair flexible muocs of the zero dynamics we apply the strategy of Miller
and Crawley to the cantilevered appendage model.

Utilizing the results of Miller and Crawley, we chose an absorber mass to truss mass
ratio of .05 for each device and performed a root locus analysis with 6 TR given in (6.67).

The root locus appears in Figure 6.5 showing the poles of the passive absorber and lowest
modal frequency of the truss for different values of absorber damping. Maximum structural
damping occurred at the intersection of the root trajectories, with optimal values of absorber
damping and spring stiffness of 370 kg/s and 3.9 x lO4N/m. As expected, the optimal
frequency ratio suggested in (6.67) offered a crude approximation and further refinement
was necessary to obtain transient response tuning even for thc simple finite element model
used in our simulations. The resulting tuned values of PMA parameters were then used in
simulations of PLF slewing and pointing (refer to model MODA).

Summary of Simulation Results Computer simulations of the finite element model
NODA were performed comparing the effect the passive PMA absorber on slew- times. and
torque requirements. A standard three axis slew maneuver was defined by initial offset from
the desired inertial attitude given by the Gibbs vector,

I11b = [0.08, 0.09, 0.0361

or in Euler angles,

or [4, 0, ] = (5.0, 10.0, 1001

and results are summarized in tables 6.3 and 6.4. Slew time is computed as the elapsed time
for the absolute value of each Gibbs component of the rigid body attitude, yb, to become
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Figure 6.5: Root locus showing interaction between absorber poles and lowest frequency
* truss poles as a function of absorber damping

less than 0.0002. Peak torque requirements are computed relative to a fixed torque level,
ro, equivalent to angular acceleration of 10 deg/sec/sec for an equivalent rigid body with

inertia moment equal to the total undeformed ASTREX system inertia. The peak torque is
* computed as

I (0- IoTpeok = max{t > 0: IrtI- roI}"

The tables also include performance tradeoffs for implementation of PLF for various
reduced order models with r retained degrees of freedom in the SBL system model. Results
indicate that slew times were improved with PMA tuned for the dominant elastic mode
of the cantilevered truss for various reduced order PLF implementations. This confirms
the theoretical predictions of the PLF compensation and stability of the zero dynamics.
However, peak torque requirements remained relatively unchanged. (Note that in Tables 6.3
and 6.4, MODA r=6 and r=7, correspond to MODB, r=4 and r=5, since HODA r=4 and r=5 are
the modes associated with the absorber dynamics which are not included in 1ODB.). This
follows by observing the additional mass of the PMA offset their benefit in stabilization
with reference to slewing torque requirements. Figures 6.6 and 6.7 show time responsis for
slewing simulations comparing SIHA5, a reduced order model with absorber which retains
the absorber modes and first two truss modes, and SIMC2, a reduced order model without
absorber which retains first two truss modes. The dotted traces correspond to simulation
SIMA6 and illustrate the dramatic increase in truss damping generated by the tuned absorber
as compared with the solid traces of simulation SIMC2. (See also Section 6.3 for summary of
simulation results.)
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Peak Torque ATpk(r)/Tpk(3)

Relative to rigid body case
simulation PLF Model DOF
model r= 3 4 5 6 7 13

MODA 0 0.01 0.01 0.48 0.89 0.89
MODB 0 0.60 0.86 0.90

Table 6.3: Relative Peak Torque Increase with PLF Compensation DOF

_Slew Times (sec) to 1-yj < .0002
PLF Model DOF

r= 3 4 5 1 6 7 13
_ _ _ Model MODA

Axis 1 1.518 1.472 1.471 1.420 1.419 1.408
2 1.643 1.640 1.629 1.627 1.483 1.476

3 0.940 0.939 0.938 0.940 0.940 0.940

-Model MODB
Axis 1 1.500 1.420 1.420 1.412

2 1.638 1.638 1.482 1.469
3 0.940 0.940 0.941 0.940

I Table 6.4: Slewing Times for Standard 3-axis Maneuver

I
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Figure 6.6: Time responses comparing 771(t) and 772(f) for the models with and without tunedI absorber
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6.4 Design Example: LOS Slewing and Multibody Alignment

The application of slewing and pointing control to SBL as well as other space-based optical3 systems will require the coordination of multiple actuators for system slewing and multi-
body alignment. The effective optical LOS for a multiple mirror system will involve relative
motion of the mirrors as well as the primary body inertial attitude. Detailed analysis of the
optical train of a candidate SBL system is beyond the scope of this study. We will consider
a simplified problem which highlights a significant aspect of the application of PLF compe.-

sation for multibody alignment when the available controls and/or the choice of regulated
outputs leads to system zero dynamics which are unstable in some sense. Of course, the
sense in which instability of the zero dynamics may limit application of PLF compensation
depends on the application. The available theory suggests that PLF compensation is not

feasible for nonminimum phase systems.
Clearly, the limitation of applying PLF compensation to a nonminimum phase system

arises from the fact that PLF compensation seeks to implement an online system inverse
which is by definition unstable if the system model is nonminimum phase. For the class of
Lagrangian systems arising from control of flexible structures the PLF compensation includes

an Inverse Force Model. In this section we illustrate some tradeoffs in the implementation
of an online IFM for a nonminimum phase system.

I System Model for Multibody Alignment Control: The method of Lagrange's equa-
tions offers a systematic approach to develop equations of motion for systems with external

forces described by a virtual work function. We consider the two body system described pre-
viously where we have assumed the multibody configuration rotates about the point z = 0
at which the appendage is attached to the primary body. We now assume that the following

* external forces are applied to the two-body system:

1. torques, 7r, applied to the primary body,

2. distributed torque function applied to the flexible appendage, r(z) = , rtk6(z - (k),

3 3. distributed force function applied to the flexible appendage, f(z) = Ej fj6(z - (j).

The virtual work function can then be derived as follows. The power flow into the system
is given as,

P = rTwb rigid body torque

+ f0 r T(z)[w, + (z)j dz distributed torque3 + ft fT(z)[wb X + i(z)] dz distributed force

where i = [0,0, z]T. Note that

WbX Z=-XWb - Z 0 0 Wb-ZWb,
I0 0 0
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I and since wb = F(6)4 we can write

P = rr(6 ()r + ± zT(z).b(z)} dz (6.68)

+ f {-f T (z)Zr(4) b + f T (z)(z)} dz.

I The virtual work in (6.4) is replaced with,

sw = {rb2Y(G) + j , T ( )P(4b) dz - jf T (z)zr(4) dz} 64 (.9

± {j, Tk 6(z - k) 8 dz}

+ {of6(z -k) 6 dz}

Defining the vector of external forces,
=[f,,.... .] ,  (6.70)

and torques,
=[rk,...,],...]T, (6.71)

and applying Lagrange's equations gives the system equations of motion in the form,

[lb + I.. + J~.' 6 + 1-7 + J~f4 + OZb{[Ib + I.., + J..]w6 ± 1.,7 + Jft} + H
I =m+ Zrk + E Z j (6.72)

k j

I ,7Wb + I'Mq7 - g w b + Ri + K,,! + X j + B,, + B,' = Gf. (6.73)

Jj(b + Jt + Kt + K + B + BT,,r- = fr. (6.74)
where H, and -7 are given by (6.53)-(6.54) and

z,[ 0jo (6.75)

Then letting

= 0 1 ... 0 1 ...
0 0 0 0"

Z =[Z,, Z2, ... ,I Zj,...1

we can express the equations of motion in the standard form (6.56)-(6.57) with

G F = 1 0 Z •
Gl 0 0 Gq

I0 G4 0
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I A Control Configuration for System Slewing and LOS Pointing Slewing and point-
ing control of the optical LOS of a typical beam expander for a SBL system will require
system slewing and alignment of the primary and secondary mirrors of the optical system.
Such requirements are typical of various large aperture optical systems. With reference to
our two-body SBL model the primary body inertial attitude-given by, 4, in Euler angles,
(or 7b, in Gibbs parameters)-represents the system pointing of the primary mirror. Op-
tical misalignments contributing to LOS pointing errors can be described by misalignmenti variables;

v b = 0 ( ) + S 1 71 ( ) 
( 6 .7 6 )

Y5 = 0(t) - 91772(t) (6.77)

where al is a sensitivity parameter which depends on the optical components. Then slewing
of the system LOS can be viewed as a problem of slewing the primary body attitude while
regulating the misalignment variables to zero.

Nonminimum Phase Characteristics and Actuation We assume that control is im-
plemented by three independent external torques applied to the primary system body to-
gether with two independent control forces applied at the secondary body. To implement
PLF control for the resulting 5-input/5-output problem we first identify stability characteris-
tics of the zero dynamics. Since our concern is with regulation of the primary system outputs
consisting of the system outputs 4 and the misalignment variables and stability of the elastic
structure with respect to its undeformed state we focus attention on the stability properties
of the linear perturbation model for the flexible structure as 4 = 0 and Y4 = Yy = 0. In
this case, the local stability of the zero dynamics in a neighborhood of the undeformed state
can be determined from the zeros of the transfer function describing dynamics of the linear
perturbation model.

The sensitivity parameter which defines the misalignments contributes to the stability
properties as shown Figure 6.8. The zero locus shows a nonminimum phase condition occurs
for .91 small enough. The parameter a, can be seen as a sensitivity factor that proportions
the importance of the linear deformations relative to the angular deformations in the outputs
and indicates that it is difficult to control angles using forces instead of torques.

Practical Aspects of Implementing PLF Compensation for Nonminimum Phase
Systems The above simple model indicates how parametric sensitivities can change the3 nature of the nonlinear control problem considered. Available theory for PLF compensation
is predicated on the assumption that the system is nonminimum phase. At this point in our
study we were interested in considering practical situations which might be encountered in
experiments which violated the assumptions which might limit application of PLF control.
We wanted to investigate several questions: To what extent model order reduction in the
design of PLF compensation is effected by nonminimum phase characteristics? Systems with
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Figure 6.8: Locus of zeros for model MODE as si is increased

very fast unstable zero dynamics modes will be characterized by linear models with right half
plane zeros which are far from the imaginary axis. Can model reduction schemes be adapted
to remove such characteristics from the nominal design model? If PLF compensation is then
designed for the reduced and minimum phase model, can it be applied reliably to the full
order system?

For implementation and robustness evaluation of PLF control we chose a value of s,
which gives nonminimum phase behavior. We first applied modal truncation to the open
loop system model retaining various order models to determine if a nonminimum phase model
could be found. The poles and zeros of various reduced order models using modal truncation
appear in Tables 6.5 and 6.6. The number of retained dynamic degrees of freedom is indicated
as r. For r = 6 the linear perturbation model has no right half plane zeros. However, for
r = 7 a right half plane zero appears indicating a nonminimum phase condition. Simulation

*studies were performed to test the behavior of the nonlinear system response with PLF
compensation implemented based on the reduced order system model. Cases with 5 < r < 7
revealed stable responses.

6.5 Design Example: Slewing Control with Noncollocation of Control and Pri-

mary outputs

In the ASTREX test article configuration, the rigid body torques are to be generated by
cold gas thrusters located a distance from the center of mass of the system, which is the
location of the attitude sensors. To simulate the effects of this non-colocation configuration,
simulations model MODD and MODF were designed so that forces F. and F. at the end of the
truss are to be used to control yb. The torque produced by these forces was limited to the
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Reduced order model poles
r r11 - r=7

()0.00e+00 ± 0.O0e±O0i (3) 0.00e+00 ± O.O0e+O0i
-2.59e+00 ± 7.58e+Oli -2.59e+00 ± 7.58e+Oli
-3.54e+00 ± 8.86e+Oli -3.54e+00 ± 8.86e+Oli
-8.89e+01 ± 4.35e+02i -8.89e+01 ± 4.35e+02i

-9~13e+01 ± .41e+02i -9.13e+01 ± .102
(2) -18e02±62052

(3) 0.OOe-1 00 ± 0.O0e+O0i (3) 0.00e+00 ± 0.00e+00
-2.59e+00 ± 7.58e+Oli -2.59e+00 IL 7.58e±OliI -3.54e+00 ± 8.86e-I-Oi -3.54e+00 ±1 8.86e+01
-8.89e+01_±_4.35e+02i ____________

Table 6.5: Poles of reduced order model by modal truncation
Reduced order model zeros

r =11 r=7 r=6 r=5
-2.64e+03 + 2.60e-12i -2.04e+03 ±6.04e-I02i -2.05e+03 ±5.95e+02i No Finite Zeros
-1.92e+03 - 2.8le-12i -2.50e+402 - 5.4ge-13i

-6.71e+02 ± 5.15e+02i 3.23e+02 + 5.75e-13i
-2.59e+02 + 1.43e-12iI-2.03e+02 ± 6.40e+02i

-1.94e+02 ± 6.28e+02i
7.34e+01 ± 1.39e+03i
3.38e+02 - 1.Ole-13i _____________________________

Table 6.6: Zeros of reduced order model by modal truncation
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I maximum torque avaliable on ASTREX for attitude control. These maximum torque values
were determined from the thruster specifications and the moment arms measured relative to
the x, y, and z axes. The thruster locations are shown in Figure 6.9, and each produces a
maximum thrust of 889.6 N. This configuration yields the following maximum body torques
which were used for all simulations except those of model MODD:

I Tma = 8600 Nm
rrmax= 4964 Nm

T-rax. 4964 Nm

The equivalent maximum forces used for F, and F. in simulations SIMD1-SIMD5 appear

below.

Fma. = 992.8 NU F = 1720.0 N

A pole-zero plot of the linear perturbation model of this system appears in Figure 6.10I and shows a stable and nonminimum phase response. Simulations for various reduced order
models for a maneuver of
IYb = [0.05, 0.05, 01
(or in Euler angles,

[0, 0, 0] = [0.30, 5.70, 5.7-1)

appear in Appendix A. Various model order reductions were tested for implementation of
PLF compensation for slewing of the primary body attitude and regulation of the misalign-
ments.

Rapid Slewing with multiple modes of actuation. As discussed in the report [Benn89]
the use of combined continuous and discontinuous modes of actuation can be incorporated
in the rapid slewing and precision pointing problem. Focusing attention on the physical
limitations of the ASTREX facility we performed simulation studies of primary body slewing
as above but operating the applied forces at the end of the appendage in discontinuous mode.
In a physical system the applied forces might be obtained using reaction jets.. A critical
technology being developed for the ASTREX facility involves throttleable cold gas jets. In
our model we have assumed the jets can be modeled as providing pure external forces' which
can change subject to slew rate limiting.

6.6 Summary of Simulation Results for Rapid Slewing and Precision Pointing

I A computer simulation of the SBL two-body model was developed in PC-MATLAB to eval-
uate slewing and LOS pointing performance. The simulation model parameters shown in
Table 6.7 are taken roughly from available data on the ASTREX test article.
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Figure 6.9: Thruster locations - ASTREX test article
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Figure 6.10: Poles and zeros of models MODD
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I As can be seen from the table, five simulation models with three input/output configu-
rations were developed. The purpose of models MODA, MODB, and MODC was to examine how
slewing performance was affected when passive absorbers were added to the end of the truss.
These models were configured with the control inputs as rigid body torques, rb, at each axis
and measured outputs as the rigid body attitude, -tb, in Gibbs vector form. Figure 6.11
illustrates the input output configuration for these models. Also, two passive absorber de-
vices, described in detail above, are located at the end of the truss for vibration damping.
The three models differed only in the values of the parameters chosen for the spring and
damper constants. In Model MODA, the parameters were tuned for optimal transient response
as described above. In model MODB, the passive damper was tuned to twice the highest MODAl
frequency to put it in a de-tuned configuration, and model MODC the passive damper was
decoupled from the truss by making both the spring and damper constant equal to zero.
Tradeoff studies comparing simulation results of these models were performed.

The purpose of model MODD was to examine how non-colocated sensing and actuation
affects slewing performance. This is important because the ASTREX test article is configured
such that body torques are generated by thrusters that are not located at the center of
mass of the body which is the location of the attitude sensors. In order to simulate this
non-colocated condition, model MODD, shown in Figure 6.12 was set up with control inputs
as two force actuators, F, and F,, at the end of the truss and a torque r3 , about axis

three and measured outputs as the rigid body attitude ,ib, in Gibbs vector form. Although
this configuration is not an exact representation of the thruster placement on ASTREX, it

provided us with an approximate model to study this non-colocated condition.
Finally, the purpose of model MODE was to examine slewing performance and stability of

the SBL with additional force actuators added at the end of the truss to control its vibration.

Model MODE, shown in Figure 6.13 was set up with the control inputs as two force actuators,

F, and F,, at the end of the truss and rigid body torques, T , at each axis and measured
outputs as the rigid body attitude, 7b, in Gibbs vector form and two additional outputs

* relating to the line of sight error.
Table 6.8 identifies the simulations performed for each model along with the correspond-

ing control law. Each simulation is summarized in Appendix A by plots illustrating responses
of position, -Yb, attitude rate, b,, primary body torques, n,, any external forces, FT, Fv , etc.,
any other outputs, and deflections at the end of the truss, 77(t), (e).

6.7 Experimental Protocol for Validation of PLF: Mode Locking Experiments

A principal objective of the proposed experiments is to verify the effectiveness of PLF com-
pensation by validating the extent to which distinctly nonlinear behavior, observable in the

system principal input-output responses for attitude slewing and pointing, can be compen-
sated. Our view is that the occurrence of mode locking (sometimes called phase locking or
entrainment [GH831) offers a framework for observing nonlinear response of pointing and
tracking control loops in experiments. Such nonlinear behavior can always occur when

73I



I

I Tech no-Sciences, Inc. TSI-9O-IO-IO-WB

I

I

Figure 6.11: MODA, MODB, MODC input/output configurationI

~Figure 6.12: MODD input/output configuration

I
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IX

I Figure 6.13: MUDE input/output configuration

* Parameter Simulation Model
I MODA MODE MODC MODD MOD

SBL beam expander model parameters
p - mass density 1520 ----UE - elasticity 1.6E9 1.6E9 1.6E9 4E8 1.6E9

edamping factor .0009 - - - -

mt/ingot 10.05 0.05 0.05 0.0 0.05

Control/Actuator parametersIoutputs 'Y fb 7b yYb ,fLOS
inputs Tm mr 7 3, F., F n, F., F
a,.~ frad/seC2 1 .1745 ---

T ..... Peak Torque ASTREX- --

g- control gain 5.E9 5.E9 5.E9 5.E9 5.E9

9- control gain 0.0374 ----

K - spring constant 3.9E4 5.9E7 asv abore paaetr

B - damping constant 370 0 0 0 0

Table 6.7: Matrix of Simulation Models Considered
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Models Control Laws
Continuous PLF/Slewing Discontinuous PLF/Slewing

________~~~ ~~ ~ I________________ _____________ Jlimited torque torque
_ _ _ Multiaxis Slew

IODA SINAI SIMA2 SIMA3 SIMA4 SIMAS SIMA6 SIMA7
MODB SIMBI SIMB2 SIMB3 SIMB4
MODC SIMCI SIMC2 SIMC3
MODD SIMDi SIMD2 SIMD3 SIMD4 SIMD5

MODE SIMEl SIME2

Table 6.8: Matrix of PLF/Slewing Control Implementations

conventional linear attitude control design is applied for multiaxis attitude control imple-
mentation, but can be removed by the use of PLF compensation. Mode locking is onty one rf
several types of nonlinear phenomenon which might be considered for experimental demon-
stration. We propose to focus experiments on demonstration of mode locking for several
reasons: mode locking is easy to observe in experiments, is repeatable, and a distinctly non-
linear phenomenon. Mode locking is also of fundamental significance to achievable accuracy
of precision po,, ti,.g control laws for space craft attitude both with and without flexible,
imultibody interactions.

Mode locking can be readily demonstrated in attitude slewing and pointing experiments
with the ASTREX facility and initial test article since it requires relatively small angle mo-
tions and can (in principal) be demonstrated in various frequency bands. The experiments

require periodic excitation of the system attitude which permits focusing attention on the
frequency response and its dependence on elastic interactions at higher frequencies. This is
significant for the experimental protocol we have planned in which we emphasize the relation-
ship between control law precision and closed loop bandwidth. Multibody interactions and
structural flexure will complicate the types of mode locking possible but its demonstration
in experiments should still be easy to observe.

Moreover, mode locking is a relevant factor in control system performance. It is well
known that certain nonlinear affects can significantly degrade feedback system performance
such as accuracy of tracking. Mode locking will contribute to a degradation of closed loop
tracking. From the perspective of nonlinear dynamics it is well known that mode locking
is often a precursor to chaotic behavior [BBJ84] which, in the case of closed loop tracking,
would imply a complete loss of tracking effectiveness.

In principle, PLF can be used to compensate for the nonlinear interactions which cause
mode locking, as well as other, more complicated, dynamical behavior. Thus, feedback
linearization should be viewed as a means for introducing nonlinear compensation in the
design of feedback loops for achieving robust precision tracking as well as executing large
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angle, multi-axis slewing.

Mode Locking Experimental Protocol. We next describe in general terms the proto-
col for experimental demonstration of mode locking in the context of attitude control and
compensation by PLF.

* Mode locking is a phenomenon associated with nonlinear dynamics involving interactions
of periodic motions with at least two distinct frequencies. The underlying periodic behavior
may be self induced or associated with external excitation as in active control loops. The
simplest and most common example of a system exhibiting mode locking is the periodically
forced Van der Pol oscillator [Sto5O, GH83, TS861. In this case, the system exhibits a
self excited oscillation (limit cycle). Many other periodically forced and/or interconnected
oscillators have been studied using both analytical and experimental demonstrations of mode
locking [Sto50, GH83, TS86, BBJ84].

One experiment would involve the design and testing of multiaxis attitude tracking con-
trol. The experiment would involve driving the attitude control loops with two independent
periodic command signals. To demonstrate small signal tracking response of the attitude
control loops one could use command signals as,

,(t) = A, sinwit, 0,(t)= A2 sin w2t,

Iwhereas, to demonstrate slewing response the commands would be replaced with their square
wave equivalent. In either case, we anticipate mode locking to be observed in the following
way. First, assume that A 2,w 2 are fixed and Al,wl are adjustable parameters. As A, - 0
we expect to observe a periodic oscillation in the system attitude response of frequency w2.
Clearly, if A 2 is s.nall the system response is near that of a linear system which can be
confirmed in the experiment as follows. Define the ratio, 0 := and choose integers, p, q
with q > p, then the frequencies are said to be commensurable if they satisfy the relation,

pw1 - qw 2 = 0

and Q = p/q is a rational number. For safficiently small driving amplitude A 1 , the system
attitude response will be periodic with frequency w2 and q is a subharmonic number asso-
ciated with this periodic motion. For linear systems, if Q is not rational then the attitude
motions are not periodic.

For the nonlinear system, if iQ is not rational and A, is small, the motion will not be
periodic (as in the linear case). However, if the driving amplitude A1 is increased then-after
a transient-the motion will again become periodic. This, of course, is distinctly nonlinear
behavior. The periodic motions are called mode locked (or simply locked). The aperiodic
motions are referred to as drifting behavior. Such behavior is typical of nonlinear systems
and can be readily demonstrated in experiments. It is common to display mode locking
responses as regions of locked and drift behavior in a (A, f) parameter space diagram as
shown in Figure 6.14. Periodic (locked) and aperiodic (drift.) can be readily identified in
measured attitude responses observed ;n experiments.
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YA 1/3 2/5 1/2 3/5

............................................................................

.2 .3 .4 .5 .6 ,0

Figure 6.14: Typical parameter space diagram showing regions of locked (shaded) and drift
behavior.

isWe expect that mode locking will be observable when a conventional attitude controller
is used because the nonlinear kinematic and dynamic couplings are not explicitly compen-
sated by the closed loop control law. The extent to which online implementation of PLF
compensation can reduce nonlinear coupling will be clearly evident by comparing the closed
loop responses of multiaxis attitude control loops with and without PLF compensation. The
goal is to provide distinct qualitative changes in dynamic response representing nonlinear
coupling. Since mode locking is demonstrated by driving the system with periodic signals
and observing periodic responses one can focus the experiment on tracking behavior in spe-
cific frequency bands. This permits considerable flexibility in investigating the interaction
with internal nonlinear resonances due to multibody and flexible mode interactions. We an-
ticipate that this flexibility will be extremely important the interaction between the choice
of reduced models for structural flexure and the design of multiloop tracking systems.

I
I
I
I
I
I
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I7 Conclusions and Directions

The principal conclusions from the three year study are that feedback linearization offers a
comprehensive approach to the design and implementation of precision control laws for rapid
slewing and precision pointing of multibody systems with structural flexure. The methodol-
ogy for design and implementation of control laws for nonlinear systems offers a fundamental
approach which can be readily employed for a wide variety of system designs. Specific con-
cept designs were completed and simulation studies revealed that robust control performance
can be obtained with reduced order models. Parametric uncertainty in models can affect
performance of PLF compensation. In this study adaptive control techniques have been de-
scribed which can correct for parameter uncertainty. We have shown that certain standard
parameter adaptive methods which have been developed for linear systems (e.g. model ref-
erence schemes) may be inadequate or awkward for adaptive PLF compensation. For such
problems we have shown an alternate adaptive control method which achieves asymptotic
stability under much less restrictive assumptions on the structure of the nonlinearities.

It is our recomendation that validation of achievable levels of performance with PLF com-
pensation can best be established from laboratory experiment employing actuators charac-
teristic of space applications. Providing for multiaxis, large angle motions in the experiment
can demonstrate significant nonlinear couplings. We have outlined a protocol for validating
the significance of these nonlinear couplings and the extent to which they can be compen-
sated using PLF. The protocol is involves observing steady state controlled motions with

* periodic reference signals as inputs to the control system.

I
I
I
I
I
I
I
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