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ABSTRACT

MLAYLR, a computer program, was developed by the Naval Ocean Svstems
Center (NOSC) for calculating the signal levels of electromagnetic waves propagating in
a multilayer tropospheric waveguide environment over seawater. The program is an ex-
tension of the XWYVG which is a trilinear ducting program. Modifications of the XWVG
were carried out to handle multilaver tropospheric ducts. '

A number of modifications and improvements on the program made over the past
several vears were not documented. A detailed documentation of MLAYER was also
not availuble. The objective of this study is to develop a technical documentation for
MLAYER using the program as baseline. The study aims to put together the theoretical
formulations (specific to MLAYER) into a complete sell-contained document. This is
to facilitate potential users with better appreciation of the capabilities, limitations. ap-
proximations and assumptions used in the mathematical modelling techniques. As far
as possible, the samc terminologies and functional variables used by Baumgartner (in the
XWVG development) and by Pappert (in the MLAYER development) are adopted to
enable one to relate this document to the program. Step-by-step derivation of certain
equations was carried out and checked for compatibility with the algorithm in the pro-
gram. An in-depth scrutiny of each program element was also conducted and a de-
scription for cach is provided. As a result of a detailed analysis of the respective
algorithm in the program, the documentation for the evaluation of the modal function
was eventually prepared. Additional materials were gathered from technical reports and
papers to supplement the development of this document.

The MLAYLER supporting programs (Microsoft program maintenance utility
“makefiles”) were modified to enable the program to run on Microsoft FORTRAN ver-
sion 5.0. MLAYER was tested and ran successfully on Microsoft FORTRAN version
5.0. and C compilers version 5.0.
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I. INTRODUCTION

Propagation of radio waves through the troposphere is strongly affected by the
complex nature of this propagation medium. The eflects on radio wave propagation are
due to changes in the refractive index with height, absorption by the atmosphere and its
constituent gases, attenuation and scattering due to climatic conditions.

Although weather conditions could result in attenuation of radio wave transmission
through the absorption of energy by gases, water vapour or scattering by rain, certain
mecteorological conditions can lead to an enhancement of signal strength. This peculiar
phenomenon known as ducting is due to the inversions of the refractive index profile.
Propagation in a tropospheric duct can result in an unusual increcase in range.

To predict the anomalous propagation cffects, knowledge of the characteristics of
the refractive index and its effects on propagated fields is required. In the mathematical
formulation of the model. the concept of modified index of refraction is used to describe
wave propagation over a flat carth.

In a uniform atmosphere with constant index of refraction, clectromagnetic waves
travel in straight lines over the curved surface of the earth. This situation is unaltered if
the earth is considered as flat and the ravs curved, provided the relative curvature be-
tween the carth and the rays is preserved. To account for the upward bending of ravs
over the flat earth, the constant index of refraction is transformed to a modificd index

which increases with height and is given by
mE) = n+ 3 (1

where n is the index of refraction, z is the height above the surface of the earth and a is
the radius of the earth. Equation 1 is still valid in a stratified atmosphere where the index
of refraction is a function of height. In this case, n is replaced by n(z) in Equation 1.
The modified index concept allows one to transform a spherically stratified refrac-
tive structure inf;o a planar laver by preserving the relative curvature between the normal
of the radio-wavefront and the carth’s surface. Therefore wave propagation over a
spherical earth can be reduced to that over a {lat earth if the index of refraction is re
placed by the modified index of refraction. For z'a € 1, the angle of inclination of a ray



at any point in space and the distance (optical length) along the rav path will remain
mvariant in the transformation.

The flat-carth approximation is adopted in MLAYER [Refl. 1 and 2}. This ap-
proximation considerably simplifics the mathematical solution of the problem. The ac-
curacy of the flat-carth approximation was investigated by Pekeris [Ref. 3]. It was found
that for a standard atmosphere, the fractional error in the height gain function is ap-
proximatcly

v Z
5 iat? (@
£quation 2 shows that the flat-earth approximation will break down at high frequency
and at great height above the carth’s surface. For example, a 10 Gl1z signal at a height
of 2000 m will give a fractional error of approximately 114%. The work of Pckeris also
indicates that the flat-carth approximation is valid to within two percent for ranges up
to about onc-half of the radius of the earth [Ref. 3] .

As typical values of m(z) differ from unity by about 300 parts per million, it is
sometimes more convenient to introduce the modified refractivity to describe the phe-
nonmicna involved in the formation of tropospheric ducts. The modificd refractivity is

defined as
M@E) =[m@E) - 1] x 10° . &)

In this program, the modificd refractivity profile of the troposphere is modelled as a se-
ries of continous piccewise linear segments (sce Figure 1).

The lincar approximation simplifies mathematical manipulations to a large extent.
In general, any complicated profile can be approximated by several lincar segments and
the accuracy of the modelling can be improved by increasing the number of linear sés_.u
menis and reducing the thickness of each layer.

If M, (2) is the value of the modified refractivity in the i* laver, then for a lincar
modified refractivity profile,

Hil\2) = | ) + — - H
J ! d.".' ! (4‘)

21 S 2 S 3y .

I'rom Equation 3, the squarc of the modificd index of refraction is

[ 8]
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Figure 1.  Multiple piecewise linear modified refractivity profile




miE) = 1+ 2% 107%,6G) -, , )

where ; is introduced to account for attenuation of the signal due to the absorption by
atmospheric gases. The derivative of m2(z) is given by
li;‘\/{(:) . d’]l

A2 () ~ ~6 -~
da: O ()} = 2 % 10 dz )iz (6)

= “z'

Equations 4, 5 and 6 will be used in the mathematical model to represent the character-
istics of the propagation medium.

MLAYER also incorporates in the solution of the modal function, the effects of
surface roughness, atmospheric absorption and the variation of the complex index of
refraction of seawater as a function of temperature, salinity and {requency.

The program uses the Shellman-Morfitt complex root-finding routine to locate the
modcs that propagate in the tropospheric ducts. This routine attempts to find all wav-
cguide modes with attenuation rates below a user-specified value.

Overflow problems commonly encountered in the evaluation of the modal function
are avoided by performing numerical computations with extended complex arithinetic.



II.  MATHEMATICAL FORMULATION OF THE MODEL
A. HORIZONTALLY POLARIZED WAVE PROPAGATION

In formulating the problem, the flat-carth approximation with modified index of
refraction is adopted. The cylindrical coordinate system, (r, ¢, z), is used. The vertical
height, z, is measured from the surface of the flat-earth.

A horizontally polarized source may be approximated as a radiating magnetic di-
pole oriented in the z direction and located at r=0 and z = z, . The magnetic Hertz

vector associated with the dipole is given by
N(,2) = N(2)% , (7
where I (r, z) satisfics ine following equaiion:
VI (r,2) + Km0 2) = —dr §(x) S0 6z -2} (9)

where k is the wave number in frce space, &(.) is the Dirac delta function and z, is the
location of the source. 'The right hand side of Equation 8 corresponds to a point source
of strength —da located at r=0 and z=1:z, . The time dependence e is assumed
throughout this thesis.

The electric and magnetic ficld can be expressed in terms of the Hertz vector as
E = — jouV x 0 ' (9)
and

H=VxVx1, | (10)

where y, is the free space permeability. Solution to Equation 8 can be represented as a

contour integral:

o T rz) = -%-Lpdnﬂéz’(m)ﬂn. 3 (1)

“n



where H@ (rp) is the zeroth-order Hankel function of the sccond kind and f(p. 2) is the
height gain function. The contour of integration, C, as shown in Figure 2 can be de-

formed into C, and G, , also shown in I'igure 2.
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Figure 2. Contour of integration of Equation 11 [After Ref. 1]




The height gain function in the i tropospheric laver, denoted as f(p, 2), satisfies the
following difTerential equation:

A2 2 |
L?(ZT + kzl:mf (z)—Z—Z:l}j}(p, 72) = =276 (z—2z7) . (12)

In the ground, the height gain function, f(p, z), is given by the solution of the fol-

A2 2
{fjH:['zﬁ—%}}fg(m =0, (13)

where n, is the complex index of refraction of the ground and is related to the relative

lowing equation:

permitivity. ¢,. and conductivity, a;, of the ground as

Co
S
CO (53

(14)

2 _ .
ng = &g — J

The height gain function, f(p, z), must represcnt an outgoing exponentially decaying

wave as z = —ono, 1.C.,

filp2) = A", (15)
where
v = kg — B (16)
and
p=L . (7

For the wave to attenuate into the ground, the branch of the square root in Cquation
16 should be chosen such that

mly) < 0 . (13)

If the ground is not dissipative, the branch point and the integration contour satisfying
Equation 18 is shown in Figure 3.



Continuity of the tangential components of E and /7 at each laver boundary re-
quires that

£0,0) = £ (0,0) (19)
e ) = S UhG0) (20)
Silpizg) = S (pozyy) + i=1t0l-1 (21
and
0z = Ui (1 7r) 5 i=1t01=1 @
Define
0= & ot + ate-2- ) | 23)

and with a change of variable, the solution to Equation 12 can be expressed as a linear
combination of &,(g,) and ky(q,), satisfving

2
[—:2 + ‘h] ko(q) = O son=1,2 . (24)

This is Stokes’ dilferential equation. J'or i # 1
Jilp,2) = By(p) [A; ()ky (q) + ka(q)] (25)
where £, (¢) and 4, (q) are proportional to the Airy functions
kg) ~ Ai(-ge"") (26)
and
kq) ~ Ai{—q) . e3))

Note that the 4, ‘s and B/'s arc different from those in Reference 2 where the height gain
function is expressed as B, (k, + A, k;) . Equation 23 corresponds to that implemented in
the program.
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‘The constants of proportionality of Iiquations 26 and 27 are of no consequence as

they allect only B(p) and A (p) ol Lquation 25 but not f(p, z). The height gain functions,

J(p, 2}, used in the computations of the mode sum and path loss are normalized as in

LEquation 77. 1he solution of Stokes’ equation is discussed i Chapter 1V.

For the highest layer, i=1, the height gain function is given by

5(002) =B (p) by (q)) (28)

where /i, (g,) is the modified Ilankel function of oirder one-third and is proprotional to

the Airy function as

hy(q) ~ Ai(—g e . (29)




Asin Cquations 20 and 27, the constant of proportionality of Equation 29 i< uiso omit-
ted i the program.

L'quation 23 represents the solution of f{p. o} for evervy laver except the one in which
the source 1s locuted. In the laver where the source is located. the height gain function

is given by
Lipo =B L (m k (g) + ka(g)] + fPp.g) (30)

where f“ (. ¢) is the particular solution of the inhomogenous Equation 12, Thercefore

the complete solutions of f {p. ) are given by

~’:(/'. :_' = B[(/)] [l‘(/’)/\l ((]1) + /\;\ ((/‘)] + ./‘(‘)(p, L[() (3[\] ; 1‘= l o I hand 1 (3')

and
Lp.=BAmh; (g) +fm(/). gy s =1, (32)
where
1 =\ -
Oy = { ) =\ (33)
It is assumed that the source s located in the M luver.
Continuity of f{p, z) and = f(p. ) at the ground level requires that
«Z
Ay = BilLLA (qy) + Ay )] + S ea)dry (34)

and

[

;
Pal

st

. , , /\' 2 s N ‘
Jrdg =B AR (g, 4) + k'3 (g, 1)] [-C'/T]“al + = U0 q 0160 - (

-

2

From Equations 34 and 335,
A 2 ’ . . 1\ ! B .
{( T) Fo k' (g) —J}'/\'l(’h,i)}Br'll + {( £ )2'311"’ Aq0) —J}'/\‘.-(‘h,r)}nx
(30)

=J'}fm(/'» g 4) 51.\1 - _,:':' [f(”(ﬂ- ‘71.\)] Siy .

Simiharly, at laver boundaries, i = 1 to -2,

10




B[4 kytg gV + Aoty )] + JAR VO Y
= B.ﬂ[-‘m ""1("/;+1.z‘+1" + ’,‘:(‘/:+1,i+1)]

(5, N
+ 70 G i) Qe

and

“/3

' | ! A o
Bi [‘-11 k ) (‘][,H-l) +k 2 (qi'i+1)] [;_yl_:l K

- (5) N
+ - L (S‘(/’- ‘7i.i+l)] Qi

i+l

N . Py k 23
= By Dy A il i) + R Gy )] [ o :| it

; () . S
+7-_[f\ (P G e Oigy s

From [:quation 37,
/"1((][‘1‘4_1) Bf'lli + /\':(qi,i*}-l)l‘;l‘
= Kyl i) Bisy Ay — Kl 1) By

(53 () 3
=700 G ) Sy =S 00 1) Oy

From lL:quation 38,

. k \2:3 . k_\2i3
kg, f+|)< 7") T B A+ Kl i+i)(-o«__i-> o B,
o _k N3 B
= K441, i41) T Oy By Aig

k 213
= Kyligegy, i+1)< ) a1 By

T
¢ ) <
=010 Gipr, 141)] Oinrns

cZ

A ;
- T‘ [/ ) (p.q; i+1)] diar

(39)

(40




Fori = I-1.

Bi_y T by )+ kol DT+ a2y 08,20y

(41)
= By hy (4 ) + /. 4110051
and
- ¥ " k 213
By LA K (g ) + K 2(‘11-1.1)]< 7 ) Ry
f .
T L%, 911,010 v (42)
. k ; a s -
=B h 2(‘71,1)( En )2'3”1 + '(‘f— U( . INICIRYa
FFrom Equation d1,
Kilqoy ) By oy + k(g ) Bioy — olgy ) B,
{s) N (s} < (43)
=/ g =S Gy MOy g
From Equation 42,
, kK \a3 . ko \2n2 ,
Ky(g- ) P oy By A+ Klgm, p 70 oy B
, kK \z2i3
—_ h 2(\(]1,1)< 7) ! J(I 1}1 (44)

~
2

l‘“ (s) - 0y s
=7 TANT2 g1 1018 — s U( . G-y 301101

In the above equations, ¢, i1s defined as
G = qz=2z) . (43)
Equations 36, 39, 4¢, 43 and 44 can be written in matrix notation as:

AL =y, (46)

-~




where
A=

EY
A.‘.l
A.).l

0

0

AL O
A A AL 0
Ay Ay AL 0

A:.] AJ.J AJ.S A-ib 0

0
0

A:I-J.Z!/S AZI—J‘EI—J A‘.‘I-J.ZI 3 A21—4.21»

A.‘I~3.21--5 A21A3.21~4 AZI—B.ZI-—:! AZI- 32l

0
v

13

A:r:,z/—s ASL 227-2

A2l~l.21—3 All—l..‘l»

. 0

, 0
A21—2.21 -1

2 A21-1.21~1
—

(47)




B,
B, 1,
B,
o= ' (45)
By,
by,
B,
and
B 9
),’/]
Wy
W= (49)
'.1”/
The elements of the matrix, A, are
A N\za o, - -
A, = (T) oy k" gy 1) —Jrky(qyy) . (30)
kK N2z o, . c
A, = o o k() ) = Jrka(qy ) (51)
A2,1 = kl(‘h,z) , (52)
Ay, = kylgy ) (53)
A:,} = “‘l\'lf(h‘l) (ﬁ.])
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/\' 23 -
A}l = A l((h ﬁ)("a_l'> A (30)

, Lk 222 -
Ay = Kyly ﬂ(f) Ay (87)
Aip = —/\"1((]2.2)( JA )2';3 a2 (58)

. kK \:n .
Ba = 4 2(‘]2.:)(—1‘,‘) Ty (39)
Aipiaa-z = Kilgi ) (60)
Ayjmanima = kg ) (o1)
Byjgarmy = — Myl (62)

A = k' ( k 2/3

21213 = Kl )\ 57 )7 o (03)
A = kg M 2= ) 64
u-120-2 = Kolqr )\ 7 oo (64)




and

, ok \z25 .
By = —h 2(][.1)(37) oy - (63)

The elements of the column vector, § , are

LA . ¢ (s) ~ ]
Wy = i . G1,)012 — e AT gy 0y (60)
va = S0, g8 =0 41208,y (67)
E s . ¢oen R PR
vy = e U0, 42203020 — - 2100y (68)
Vs = S, a0y — Y. RELRRY (69)
and

2 . < A ; : -

vy = = %, 4101818~ e “ip, Gra 101y - (70)

To determine the modes that propagate in the tropospheric ducts, the roots of

fan =0 (7n

have to be located. This is discussed in Chapter III. The symbol. || A ]|, denotes the de-
terminant of A .

I'rom Equation 11, the solution of Equation 8 in the  laver is
1 y ) - 5
N(r.2) = = | pdoHy @ (r0) fi (0, 2) - (72)
< Jc
From the theory of residues, Equation 72 can be expressed as

16




»

By

MMr.z) = -

7, ]
> Zbi(m) + =

pdplly D (rp) £ (. 2)
oo &

—
—_

~J

'ad

=

|

+ -—-j pdpll;, @ (rp) fip.2) »
C

-
&

where b, (m) are the residues of pf{, ©(rp) f (p, z) evaluated at the poles of f (p, 2) in the
fourth quadrant. The contour C, is the quarter-circle of infinite radius and G, is the
contour enclosing the branch cut of the radical of Equation 16. Since 77 (rp) decavs

exponentially in the lower half complex p-plane,

f pdplly O ) fitp. ) = 0 . (74

¢

For small height, z. the integral over contour G, represents the contribution by the sur-
face wave to the total field. Bevond the horizon, this field 1s small compared to the total

field and can be neglected. Therefore Equation 73 becomies

r.z2) = - niji (1) (73)
m
where b, (1) is given by

bi(m) = Hy Pr0y) g (2) g (1) (76)

and g, (z) is the normalized height gain function given by [Ref. 2 ]
Sl gl2)] -
2n(?) = ﬂ , (77)

* S TgO] [ d; "

)d: + ————— |/ )

\/ | et el Gl I

where g(z) = q(z) for 2z, < z < z,_,.
According to the program source code, the integral, /] = f:ﬁ" q(z)]dz. 1s evalu-
ated by considering that f,[¢(z)] is a solution of Stokes’s equation,

dzf;n

L/(/2

+ g/, 0 . (78)




This leads to

2 ‘(/:'1 d:/;n (79)
=./;n + 2= {i—_w-"}-qf;n:l

Note that Equations 78 and 79 imply that the derivative of f,, 1s continous at z; . That
is, f.(¢) docs not include the contribution from the last term of Equations 31 and 32.

The integral of f, *[¢(z)] in the # laver is given by

S 3 1 91 2, .
[ hinena = [
= ¢ e

[ ($0)
({/;n (q‘) 2 ‘7:,1-1
-1 qum (g:) + [T} } ’
¢ G
where
, dg: o

From Lquation (80), it can be seen that the contribution of Al to I/ atz = z, (i# 1)

is given by

— W

J d/m (ql) 2 e
Ali = ‘]1 l(/;fm (‘]l) + d‘/i :l}q

9 Gty | 2
=] — = — . 82
[ q’i + qli-_1 | /;71 (ql,l) ( )

1
- Ll + = {7 Ut}

df.,
By making use of the fact that - is continous at the laver boundaries,

(00T = L ftg) (83




which implies

o - d N
7. v __ ¢ r ey ) — L N S
LfA—] ‘-l"/_'-l LJN‘ (‘I{—],. )] ‘/‘ (1’(‘/_: [./;n (‘]‘)] ( 4)
and
[_d_ RIS SRR L :
| s [./;n((/.’—l,f)]j = ( Gy ) | . LS (d:,z“]‘s‘ g (85)
- Substituting Equation 83 into Equation §2. A/, becomes
g Lq i
gy Jimvi | . 2
AI{= - + #—}./ru‘(qi",
A 4 -1
(80)

i ! (.(/’i): i %, d 12
+{ —— + (g
q; (G_y) J | dy, Lin (g ,z)]J

Fori=1,
Al = —L,‘711/;712(<]11)—']r_{—“£;[/;»-(‘11'U]l : (87)
g, ' gy L cqp T (

The integral. I7, is

L . (88)

]

!
=3a
=

‘The second term of the denoninator of Equation 77 can be written as

LOTgd de LT dr dg,
20, ‘,( dp )p:pm N 20, / dg, "~ dp )P=Pm

;- ( .y . A 2
jn Lt . (-/\_>~~‘ i (89)

20m dq, | k-

../;n:[(l'(n)] < k )2,’3 d}‘
= J—-——_ —

Iz oy dy,

For cases of interest, | p,, | > 1. The Hankel function in Equation 76 can be replaced

by its asymptotic approximation:

19




2 2 142 . . )
Holp,ry ~ = ) expl=ip, r+i-) . (90)
i —1

Thercfore Lquation 75 becomes

2 2 , .
Nr.z2)=-=a ‘7;_;-7 K EXpl —Jim ¥ +Jl gnl2) & (27)
Fm J4 .

M
_Erf 2 N = N -1z oy oI
=’ < r ) € LI_JP'” &m () gm(~-7’)(7 (y1)
N

. -2 - - ,,'_.v‘:/1 ie
€ /’ 1 (Qm(-)gm(‘T) ¢ i

To allow for spherical spreading. the r-'? term in Equation 91 can be replaced by

. r , . . . . .
e sin (7)) 2. a being the earth’s radius. Equation 91 becomes

b . . f
L 2= V2 i S N
Hir.z) = - Iz ¢ P 8w (2) & ("'T)‘~ / . (9
asm-—) L

ni
In the cylindrical coordinate system. (r. ¢, 7 ), the transverse clectric field component,

L.. s given by

~ n -~
L. = —uwu, - (93)

Diflerentiating Equation 92 with respect to r gives

| _ ( In )”2 COS(’:—;') 1 J om ],,’zp
P - u ) —_— = . 3 m
C 2a \‘sin‘(%_) asin (<)
(94)
—j=i4 § -2 . SN T
X € / Mm l E&m (‘-) En (‘T) e " .
»i

. . . 1 - .
Neglecting higher order terms of —-, Equation 94 becomes

20




al . 3,‘? 12 =j=/4 ; 12 =i 5
= )| T | ¢ Do & (=) gy lzphe ! : (Y3)
! asinf =) id

’

—jE : —jkr
¢ ZL RN A g ¢ -/ )
Mps =-——— = ~ cro» oo (90)
N + I°
Thus,
Il ik —ikr
/'S . -l
= = —¢ - (97}
C / )e

.. . N C— . . ..
and similarly, the higher prder term of == in Lquation 97 is neglected, giving

¢ n!S - //‘ C—jl-:r

= ~ ; (98)
cr
Normalizing the field to the free space broadside field, the mode sum becomes
£ ST L D A (99)
- = . m m Em -7 ¢ ' . ’
L.rs k=a sinf —) -
The coherent mode sum in decibels is given by
. 1'-0 2
LCMS = 10 log | —
GFS
(Tow)

1 2
= 10 log S‘pmg ) @y (z7) €770 .
1 PE aﬂm( ' nm m 1 J

The power sum or incoherent mode sum (EIMS) signal can also be calculated if the

phase of each term is ignored:

EIMS = 10 log {——"’—- PRIRTHE ) gnlzg) € IQI RNITIE
/\ a sin ( - ) I.‘I J




The path lossses are

Cohcrent path loss = 3245+ 20 logr+ 20 log f— ECOMS (102)
and
Incoherent path loss = 32454 20 Jogr+ 20 log{—LINS . (103

where 1 is the range in Kilometers and {1s the frequency in Ml112.
B. VERTICALLY POLARIZED WAVE PROPAGATION

A vertically polarized wave may be treated as due to a radiating electric dipole ori-
ented in the 7 direction and located - r=0uand - = -, .

The electrice ficld and magnetic field can be approximated by [Refl 1]
I = jegoN x 11 (104)
and
F =V xVx , (105)

where [T i< the electric Hertz vector.
Calculation of the electric IHertz vector is identical to that of the magnetic Iertz
vector except for the following modifications:

I. The height gain function satisfies the following diflerential equation:

.2 . ) 21 .
j : R + k- f’ll"(: ——/T 1./[(/"‘:) =z —::—”()(:_:_I;) . (l“(‘)
L ¢ k \ f
2. Continuity condition at i= | becomes
)I;f](ﬂ. O) = II;:(”)/“(/)‘ O’ . lln—\
This i1eads to
‘ 2
k 23, Conyto) ‘
By =\ 2 ) A = R (108)
n

s




and
, . . . 3 (» -
vy o=/ m(/'-‘h.l)ol.\/“(T (A ", gy )10, - (H1n

The transverse magnetic field component. 7., is given by

I, = —jog, L (111

[

I'rom Fguations 94 to 95, it can be scen that

1. L.
“._— rs - L.y
{112
- N b / Mo &m 2) .Kn:(-T) ¢ :
ATasing—) —d

It follows from Equation 112 that ECMS. EINS. coherent path loss and incoherent path

loss are given by Lquations 100, 101, 102 and 102 respectivelv.
g Vg ] A

C. DETERMINATION OF THE HEIGHT GAIN FUNCTION

The height gain function, f{p, z). is given by
Sitpoz) = B[ Ak (g) + kytg)] vi=1lto/—1 (113)
or
Silpo2) = Bihyg) i=1 . (119)

The cocflicients, /1, and B, are functicns of p as in kquation 23.

Determination of the values of 4, and B, is dependent on the evaluation of the in-
tegral (or summation) of Lquation §8. It was found that if the attenuation rate of a
particular mode 1s small (< 0.1 dB km). the integration Equation 88 is carried out from
the top laver to the first laver with ihe height gain function at the - p laver sct to a

certann finite value. This will prevent the integral from blowing up.



On the other hand, if the rate of attenuation is large (> 0.1 dB km). the integration

is performed from the first laver to the top laver with the height gain function at the first

laver set to a certain finite value. This will ensure that the value of integral will not be-

cone too small.

Thercfore, for attenuation rates greater than 0.1 dB km, A, 's and B, 's arc deter-

mined successively starting from A, and Byup to 4, and B,. Ati = [andz = 0,

‘Q,(p, =0 = f](p, z=0)

and
L0 Nemo = 2 LA g
Thus,
Ay = B Uhk(g)) + kg,
and

: . . | A_ 2
Sy = B LLK (q,) + K 2“71.0](7?) Yy

Dividing Equation 118§ by Lquation 117 gives

kN2, ge oy
<77 )”ﬂlk 2Aq1)) = Jikalgry)

A = g Kk Nz .
Jok(qi1) — T a k(g )

g’y K (gy ) = Jrkalgy )
Joki(gyy) = ' Ky 0)

where

. dqy (k. 23,
=T T e )

In the program, fi(p, z,) is set to 1. This gives

B, = ' -
‘ A mAgy 1) + Aty )

(115)

(116)

(117)

(113)

(119)

(120)




Fori1=2to I-1. .4 's and B, ’s are determined by matching conditions at every laver

boundary. Atlaver boundarvz = -,

fi(./":i) = .f;_1‘/'-:i) (122
and
e 2] = =L (123)

- From Lquation 122,

B LA Ay (g;) + kalg: )]

. (124)
= B[4 kilgmy ) + Aolgimy )]

Thus,

: Al (i) + ki) . -

The coeflicient, . is determined from Equation 123 as follows:

B[4 K \(q ) + K otg )19

‘ (126)
= B Llimy Ayl oy )+ K algsy )19y
Substituting Equation 123 into Lguation 126 gives
Ay Kilg oy )+ hlgy ) 1
TR+ g ) Kl (127)
= [y A (Gimyy) + /"'2(‘11—1,:' g i
Thus,
’ _ ".’1[' 178)
o - ({‘11 ’ ( o

tJ
‘I




where

)I"ii

q'i K g Ay kil ) + /":(’15-1,1 )]

G ey Kol g ol K Gy )+ K 0]

and

dd; = q'i_y k(g Ao /"'1(‘71—11) + /\"z(‘h—l.i )]
. (130)
-4 ’\"1(%‘,:‘ iy /"1(%-1,1') + /\'3((]1—1.[ )]

Vori = 1 and at the laver boundarv. z = z,,

Silpoz) = fio(pazp) (131)

This gives

By Loy kytqoy Y+ Kby )]
Falgpr)

(132)

R
[

D or attenuation rates less than or equal to 0.1 dB km, 4, s and B, 's arc determined
successively starting from A, and B, down to 4, and B, .

The height gain function at the top layver is given by

[9)

j‘l (f). :.'1) = hz(_(][) . (l

3)

where the coeflicient. B,. is set to one. Matching the boundary condition at z =z, gives

<

B, = ol (134)
=1 Apy Kildicy )+ Ralqp-y ) ’
and
nd_ .
'41—1 - d:'{/_l ) (135)

26




where

;o= gy gy ) Kilg, g )
_ (130)
=gy halg K gy )
and
dl,_, = ¢ hz(‘h,l)l"'l(‘l/—l,l)

—q' 1yq, )""1(%-1,1 )

Similarlv, the coefficients, .4, and B, are obtained by matching boundary conditions at

=2z fori= I-2t0 1.

Thus.
/1[ /\ ((]f i ) + /\:((]‘ ; )
Bl- - B,;H +1 ™1 +1.0+1 - +I,>1-H (135)
A ) F RN 4y)
and
PR 139
A= (3%
where
nd; = q iy Koy Wiy K 1(Gigy i Y+ A 20101040 )]
(140)
= ¢ K (G Wiy K1(Gigyir ) + /":(.‘iz+1,:'+1 1]
and
dd; = ¢ K (G A ki@ i) + Kaldigy i1 )]
(141)

= @ 41 R (i A /"'1(%‘+1,i+1 )+ koGigri41 )]

D. TEST FOR EVANESCENCE
The functions, k,(¢) and A,(¢). in Equation 26 and 27 can also be expressed in terms

of the modified Hankel functions of order one third as follows (sce Appendix A):




_ {2 32\ mf 2 30 (12
—\‘317 ) 11, <3<7 ) (142)
=h (q)
and
kq) = 2012)'% 77 4i(—g)
. (143)
=iy (q) = T F g,
where
. 2 372\1/3 mf{ 2 3
hiq) = <_3_(1 > 1, (—::(] ) (144)
and
h(g) = '2(12‘)""6 .»11'(—:‘]«:"/.2:’:3)
YA A (143)
- (_57‘13,;>1,3 i, , @) (_g_qzi‘) .

Tor large | q 1. k(q) and ky(q) can be approximated by the asvmptotic expansion of the
Hankel function [Ref. 4 and Appendix A} That is,

(146)
2 Az
——373— < arg(q) < 3
and
5 =102 - .
ki) ~ (12" ”‘CXP[ '/(‘3‘43"2 - T—)}
- (147)
0 < arg(q) < 2n

From Equations 146 and 147, it can be deduced that for large | ¢ | and in the region

to
on




')’., 47' -
= < argly) < —&/, (148)
S R

Alg) will be exponentially large and Ay(g) exponentially small. When this occurs,

In(¢) and h.(g) become lincarly dependent numerically, t.e.. from Equation 143,
hig) = &TRrg) . (149)

This implies that &, (¢) and A; (¢) are also linearly dependent numerically. Under this
condition, the matrix of the modal function will become singular (in a numerical sense)
for all values of 4. Pappert and Goodhart defined the fields as evanescent when Lquation
149 holds [Ref 5 and 6].

When evanescence occurs, the height gain function is represented by an exponen-

tially decaving ficld, ic.,
Silp.z) = Biky(q) . (150}

It is necessary to incorporate test conditions in the program to check if the rf ficld
has become evanescent. This s achieved by tracking the real part of the exponent of
k(¢) in Equation 146.

Since evanescence mayv onlyv occur in the region specified by Equation 148, it can

be deduced by simple transformation of Lquation 148 that

REs 2 . 23 g -
- < arg "3—'j(]' < S (151)

-~

This shows that one needs only to test for evanscence when the real part of the exponent

ol

As the coeflicients of the hcight gain function are dependent on how the integral of

of &, (g) 1s positive. That is,

e

jqw] > 0 . (152)

Equation 88 is evaluated, it follows that different test conditions exist for upward and
downwaurd integration. For upward integration, conditions for non-evanscence in the

laver are
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2. 32
Re [Tl (Grigr) :| - Re

- -
for Rv[ _::'~/(‘/z.:+1)3'":' > 0 (153)

and R('[

J (q{_“:)"«;z] < 7

Lult.l

j(qi.i)‘?/z] = 0

or
2 ' 2 ;
Rt’['?‘j(q,-,m)“] < 7 for Re[e,jwi,»"z] <0
(134
] ) 1 )
and Rw[—‘i'—J(q‘.H_l)“] >0
or
({(].; .
Re| —— > 0 (155)
dz
or
Jit < d45m . (136)

In principle. the right side of Equation 133 should be as large as possible. However, a
large quantity will lead to severe cancellation error when extracting &, (¢) (which is a
small number) from a linear combination of two large numbers, 7, (¢) and 4, (¢) .
Equation 139 is obtained from Lquation 133 by setting Re[ —i-/ (g ) 7] to zero when
its value is negative. This is true because when the real part of the exponent of k(q) is
negative, the condition of evanscence will not occur.
With regards the condition in Equation 153, it can be shown that when L:]- is small

«z

(which is usually the case) and Cquation 155 is true, then
Re(x) > 0 . (157)
This implics

mz(zm) > m(z) . (158)

which leads to
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Relq 0] > Relg:] (139)

or
2. 302 2 . an :
Re -‘;_J(‘lz',f—v'»l)l < Re WAL (160)
or
2 AR 32
RL[T’(C]H-H) - R*’l:*?ﬂﬁ:,ﬂ"] <0 . (161)

By comparing Lquation 161 with Equation 153, it is clear that Equation 161 is a condi-
tion for non-evanescence.

Finally, the condition in Equation 136 was based on the fact that at lower altitude,
the magnitude of g 1s small enough such that 4{g) and 7, (¢) are well behaved in the re-
gion stated in LEquation 148,

By the same argument. conditions for non-evanescence in the /# laver for downivard

mtegration are as follows:

2. 2 2. 372
1‘2(1 T_,’ {-(]i'—f.l.—f) - - Rt‘ —,:'J (l]‘:_}";) - < 7

for Re [-i—- Gy ig) ] > 0 (162)
2 32
and Re |:-;— (G ) ] =0
or
Re [? ((11-1:-1) ] <7 for R"[ (‘1{-11) i] <0
) (163)
2. 32
and Re[-g_./(qi—].i—l ) ' = 0
or
d(],_‘,
Re A ] < 0 (164)




o < d5m (103)

E. EVALUATION OF THE MODAL FUNCTION
When evaluating the relative ficld strength of the electromagnetic waves using

Equations 100 and 101, the eigenvalues, p = p, , for which

Al = 0 (166)

are required. The determinant, || A ||, is known as the modal function. Each eigenvalue
represents a different electromagnetic mode that propagates in the multilaver tropos-
pheric waveguide environment.

The roots of Equation 166 are found by the Shellman-Mortitt complex root-finding
routine to be discussed in Chapter 111. Instead of searching {or solutions of Lquation
166 m the p-space, it is more convenient to conduct the search in the g,-plane. The

variable, p. is related to ¢, by

SATIED B Y .
T = <~¢f—l)“3[m (z1) = ( 7 )J : (167)

In searching for the roots of the modal function, the determimant must be evaluated

many times. Therefore an eflicient method for accomplishing this is required. In partic-
ular, the Laplace’s expansion is used to obtain the determinant. The Laplace’s expansion
is based on the [ollowing theorem [Ref. 7).
Theorem: Laplace’s Theorem states that if one selects any r rows of a de-
termunant, | .1 |, forms all possitle r-rowed minors {rom these r rows, multi-
plies each of these minors by its co-factor and then adds the results. one
obtains | A4 |.
The method also takes advantage of the presence of zero elements in the determi-
nant to reduce numerical computations.
The understanding of this technique can be best achieved with an example. Con-

sider a trilinear refractivity profile with the following modal function:




an dyg 0 0 0

(721 ((:: (('.3 (l:_" ]

FAY;, = |9 diz 43 dar O . (168)
0 () LRI S
a 0 g3y dsyy dss

Let the last two rows be the r rows from which minors are to be formed. Then applving

Laplace’s Theorem, the modal function is given by

Q. Qa0

il = |9 ‘?2: ),
31 932 Ags

”I 1 (112 ()
— a- (722 (124

(131 (132 dsy

Ay i3
Usy das

;3 dss
dsy s

, (169)

I a four-laver piecewise lincar refractivity profile is used. the modal function will be

ap a3 0 0 0 0 0
A da dza RK! a 0 §] 0
Uz d;a as3 as, 0 0 0
FAl, =] 0 0 y3 ass dss ty, 0 . (170)
0 t) ds3 s, ss dsg 0
0 0 5] 0 s A Q.-
0 0 0 0 dz3 Gy d-s

Notice that Equation 170 is built from Equation 16§ by adding eight non-zero entries.
namely, a,.. Ge. G, Qe Q-0 d-. G-, and a.- . Therefore, the results from Lquation 168

can be used to compute Equation 170, 1e.,

aQ; Qqz 0 0 0

a [24 (24 a
' Qe Con 21 122 123 134 0 Ays de- )
Al = H:\!|3. dmg G| T d3p d3 dzz3 3y Q) @5 a-- (171)

0 () dyy dyy dy
6 0 dsy dsy dsg

In Equation 171, the determinant of the § x 5§ matrix is also evaluated using the
Laplace’s expansion.

Without loss of gercerality, the evaluation of modal functions of multilaver piece-
wise linear refractivity profile is performed by svstematically increasing the number of
rows and columns of 4 and applying the Laplacc’s expansion.

The derivative of the modal function, || A ||, with respect to g,, is also required by the
Shellman-Morfitt root finding routine. This is accomplished by expanding || A |f using the

Laplace’s expunsion and performing differentiation using the chain-rule.




F. EFFECTS OF SURFACE ROUGHNESS

The materials in this section are adapted from Chapter HI of NWVG [Refl 1] Ttic
included in this document for completencss.

Surface roughness could have significant effect on the signal levels at large ranges,
especiallv when the frequencies of the rf waves are above several gigahertz.

The eflects of surface roughness is modelled by Baumgartner in XWVG [Ref. 1] as
a lossy infinitesimally thin bottom luver of constant modified refractivity shown in Fig-
ure 4.

In the bottom layer. 0 < z <z, the height gain function, f; (p, 2), can be written

as
filpo2) = AL+ R (172)
where
N U (173)
= “;L‘ (174)

and R is the plane wave reflection coeflicient.
By matching boundary conditions at cach laver boundary as was done in Section

A. it can be seen that all previous results still hold if the following substitution 1s made:

1 —R

‘n

7

)

~z

In general. the bump heights of the rough surface are assumed to be Gaussian dis-
tributed. In this case, the reflection coeflicient, R, can be represented as the product of
the smooth surface plane wave reflection coeflicient and a surface roughness factor [Ref.

8]. For horizontal polarization, the reflection coeflicient, R, is given by

af 2\
R J R,,e.\'p[—:’l\'zo (T) qu:l ' R(’(ql‘]) = 0

. (176)
lRn i Re(q;;) <0

where ¢ is the root mcan square surface bump heights and R is the I'resnel reflection

cocflicient for a horizontally polarized wave given by
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Figure 4. Effects of surface roughness modelled as layer 0 [From Ref. 1]
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For vertical polarization, R is given by
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0

1\

R = { Rycxp[—lkﬂ\'(j\'—):/g (h,:} v Relgy )

V= (1os)
: L Ry i Relgy ) < 0

’

where R is the Fresncl reflection cocflicient for a vertically polarized wave given by

o R (L (AT N ey o B
R, = ——t — (179)
ne [ Oy = 717+ g, = A7

For horizontal polarization. ;, can be expressed as follows {Ref. 1}:

alq )
vy = k ' (180
S b (g, y)
where
71 \173 12 O %y Nap R ,
alqy ) :<T) (y1)" [Z!I)))(\‘:;‘>+[T+(T) (]1v:|| . (181)
. : —1; h o X 2 Hie <
big,) =1+ (%)I;B (4).1) 1/2 umh(—:— ){T-}- (/—]>3 ‘71.1} . (182
T=n'- (183)
and
o ~
b = 2k%° (—%)*3(1,‘, : (184)

For small values of { ¢,, |, a(g,,) and &(q,,) can be expanded in series as

26




and

[ 1 7 \s 2
- —ko 4+ — k0 —,—') di 1
D ST N
B U BES BIPRSE (’—) iy 186)
Lo 16T k M (8¢
2 SEFIOIN 5 S 2.0 AR 4
+ i 15 /\ o -+ 24_}_._ /\ O - 12‘\’14 /\ Y :I( / ) L]]‘]
n [ L1051 _ 1 AT K260 ( 1 )11,’3 g S
| 15T 8T 5ot J\ K R

The derivative of ¢, with respect to can be obtained bv dit"erentiating IEquation
sH q A A

180, 1.e .

Cosn k ca ~h
. = — blg, ) =——— = alq )—.——:l . (187)
€4y b7lgy ) [ H Cdy b cdyy
Simularly, (f'/" and (fq/’ are obtained from Equation 181 and 182 respectively:
dia i

RY)




a l R N DU, ( : )
= =TTy - ¢ -
Gy 2 1.} k . 2 )

of 70\ o 2 O
g L (T),\' o~ sech ( =5 ) (188)

and
cho 1 { k \in 312 4 (i T R P 172
-—-—C,qu = -5 0 ¢y, '~ tanh 2 + P .

] -2 Mo i % \ia —172 N

+ 5y - ) tanh( —;) T+ - gl (189)
- 1Y N~ \

a2 o b %\ hin
+ ¢y ) ( T) scch ( —2-)[1' + ( T) q,”,:) .

- Fy ch . .
For small values of ¢, |.. =—— and ——— can be expanded into series as
;. 1

(190)




and

b 12 1231 200 % i3 Yool 9.
O =T {—2—/\0<T> +~—17F—/‘ ()(_A'—>‘/”

S ke 1,20 573
- TL?/\ 0 +TF/\ 0}( /\ ) Gy
+ ;”_ ! k5" +———-—/\5J 3 (191)
- L (‘T 1()’1‘
912 oo 1 NN 2202 \3 a
s 3| ek 128T41\0}< - ) ¢
11 1 010 1 6 <6 7 2 Y\ 5 ]
— | ==k = — kot = )"y,
+~[15T/‘ 45'1‘3/\0+256T"A):]</‘> s

The corresponding results for vertical polarization are:

5(‘/1.1)
ysir = Kk ——— (192)
b))
and
E.'. : \ N . ca - "\, .
el Plgry) = = dtg) == | . (193)
cag T ALY
S b7(q 1) 411 d1
where
~ o ; 7 112(()) oy Ay 2 '
) = <7'L)l'3 N “‘“h< )+; [T+(T.')“‘3q1,l]" (194)
2 n,
and

-~ N ”: (”) -1/ 9 ’ d) jod ! 12 ~
blgpy) = 1+~ q,, ' (%)”3 tanh(T)I:T+(—k1—)2'3ql‘l:|" . (193)

H, \

For small vatues of |q,,1. aly,,) and l.~>(</,_1) becomes
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alg, ) = (‘7‘,]—\1 3(11.1 ]' {/\' 0 ('f) AR — = k" (‘_/\]‘) Gy
s n 3 5
+ =Tk k‘ g = }
nﬁ(()) 1 ] Ay 213
i T./t. 1 — )i
),’j { + 2T ( /\ ) ql,l
] ITX 2 | ¥y 02 3
s (=) an "+ pes () qu
N %83 4 7 %1 1103 5
T T S
and
’7:(”) ‘ ) a7 ;
(qy1) ] 5 T'? 911 e jl\l"’-(_“')m ( ‘ M
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i 1 [ l al 573 bl
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i 3 /\ t + ‘T l () J( /\. ) (]l"
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oy . sl
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L 15 24T 1257 koo
[ 10210 ¢ f) 7 22 A g
+ _—_IST k' : — ko —_2501_5 k=o }( 7 ) g,

........

(190)

(197)

.......

The derivative of a(q,,) and [;(q.',) arc obtained {rom LEquation 196 and 197 respec-

tively:
AT U PLARNTE &
o = T T anh ()
o : 2 )
+/<2&2-7\,‘—q1,1 H2 sech‘(%-)
b
1 ny(0) oy 40 -1
ERE (A ) T+('—) ‘71.1
- o,
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and

ﬂ-[\1 M :(“) —3%: N ; ' .'J) ‘ i 303 1i2
/ A j__;_q” -ff-<;—))"3ti1x111<-12—)[T+<T)”‘h.1]
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Lo =il 2 s (9 0] 7 a3 -2
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. -1! oy : A ) o a1t 172
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and

+ 3T k™o % IR 'g‘[_;‘/"l"c"‘_;;z—/\'é?_l( /\] P
+'§_[_?{-k6‘56+ 1(5]T3 kz‘sz] (<L) 7 g, (201)
+%[—é—k‘°é‘°+ 24’T2 K5 :;T*‘ /\262]( ),

i 121 [—i%]?/"m&m_zl?? K865 + DSZTS /\,2(52](_0/{1_)11,’?”1,]5 4o }

G. COMPLEX INDEX OF REFRACTION O SCA WATER

The materials in this section are adapted from Chapter 1V of XWVG (Ref. 1].

The complex index of refraction is one of the physical parameters required for
evaluating the modal function and height gain functions. The complex index of refrac-
tion of sea watcr, #.. is a function of frequency, temperature and salinity. 1t is related to
the eflective relative dielectric function, ¢,... and the effective conductivity,

o, . through

(7 -
2 . eff 1
ng = Ce/r - J oL, R (h()b)

where g, is the permittivity of free space and w is the frequency at which #, is evaluated.
The effective relative dielectric function and the effective conductivity are related to the

complex dielectric function, &, and the ionic conductivity, o. through

£ = g — jg", (203)
by = & (204)

and
Oy = 0+ g e’ . (205)




In Equation 205, a is assumed to be real. This is a good approximation for frequencies
much less than 10° G117 [Rell 1].

The theory of an ideal polar dielectric 1 an alternuating electromagnetic ficld was
first formulated by Debve [Ref. 9] In the theory, the complex diclectric function is ex-

pressed as a function of a single relaxation time. T, as follows:

e = ¢ —j&g' o, (200)
£ — &
¢ = — . (207)
] + o't

and

(. — e Yuorr
g = —L (208)

I + o
where ¢, is the part of the diclectric function due to the atomic and dielectric polariza-
tion, ¢, 1s the static dielectric function and w is the frequency of the clectromagnetic
wave. Lquations 206 to 208 represent the fall in the value of the diclectric function from
e.to ¢ . This full is accompanied by a single broad absorption band in the vicinity of

the characteristic \\'il\'ClCﬂglh. ).5. gi\'\‘.ﬂ b\
; ] (.,”9)
s = T -

The characterisation of the variation with frequency of the complex dielectric function
of water in terms of a single relaxation time is valid for frequencies up to 300 GHz
[Ref. 1]. For higher frequencies. more than one relaxation time may be required.

In the model of Klein and Swift [Ref. 10f, ¢

water and seawater. With this assumption, the static dielectric function for pure water

is assumed to be 4.9 for both pure

x

is given by
tsp = 88.045 — 041471, — 6.295x 1071, + 1.075x 1077 1. (210)

and the static dielectric function of seawater 1s given by

tss = tsqalS. 1) (211)
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where

g = STAM - 1949 x 197 1 = 1276 x 1077 P4 24091 x 1074 3 (212)

and
a(S. 1,) = 1.000 4+ 1.613x 10781, — 3.656%x 107 § -
+ 3.210 X l()‘s Sz —_ 4'23: e 10—7 S’; . -

In the above equations, 1, is the temperature in degrees Celcius and S is the salinity in

grams of salt per kilogram of seawater. The relaxation time of scawater is given by

s =T,0(S, 1) . (214

where 7, is the relaxation of pure water given by

To= 1768 x 107" = 6.086 x 1077 7.+ L10d x 1077 7. P = 8111 x 1077 1,2 (215)
and
b(S, 1) = 100042282107 S1, ~7.638 x 107} § ol
. N “ (’)
—7.760% 107° $?7 + 1.105 x 1075 8%,
The 1onic conductivity of seawater in sicmens per meter is given by
6lt,. S) = o(25. S) exp(—A¢) . (217)
where
A= 25~-1 (218)
@ =2.033x 1072 4 1.266 x 107 A + 2.464 x 107° A’
) _ (219)
— S[1.849 x 107> = 2.551 x 107" A + 2.551 x 1078 A°]
and
g(25, 8§) = S [0.18252] = 146192 x 107 § + 2.09324
(220)

x 1070 87 = 1.28205 x 1077 8%

44




H. ATMOSPHERIC ABSORPTION

The materials in this section are adapted from References 11, 12 and 13.

The gas molecules in the air absorb energyv from electromagnetic waves. The ab-
sorption is due to the quantum mechanical resonances ol the gas molecules. These res-
onances at specific frequencies then broaden into bands as a result of collisons of the
gas particles. In the lower atmosphere, the density of gas particles is hicher. This means
that collisons are more frequent and the absorption bands are broader.

In the troposphere (height < 10 km). only the lines bands of oxvgen and water
vapour are important. The principal resonance of oxvgen is at 60 GHz and that of water
vapour is at 22.2 Gllz. The extent of absorption by oxvgen molecules is dependent on
the pressure. p. and temperature, t. In the case of water vapour. absorption is also de-
pendent on the water vapour density, p. For specific values of p. t, and p, the absorption
cocflicient, g, . 1s computed as [Rell 11]

go = OIS2LN.  aBlkm (121)

W

where f is the frequency and \, is the absorption spectrum. The absorption spectrum,
N, s related to the line spectra of absorption, SI-. the continuum spectra. .V, . and the

liquid water extinction, .\, . by the following expressions [Ref. 11}

S+ N, + N, ppm . (222)

i
-~ [\4

The summation of St 15 done over 44 spectral lines of oxvgen and 29 spectral lines of

water vapour, [Refll 11]. i.c.,
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where ay(i), a,(i). b,(i) and b, (i} are spectroscopic coefficients derived from experiments
and spectroscopic parameter compilations. Values of ay(i). a. (/). &,(1) and £, () are listed

in Table 1.

4=
]




The dry air pressure, p, at a height of z above the earth’s surfuace is given by
[Ref. 12]

0.0063; ]5.256

p = 101.325[1 - =5 kPa . (224)

The relative inverse temperature, 0, 1s related to the temperature. ¢, , in °K by

00 \
= e — IS
0 ol (225)

The water vapour partial pressure, e,. in kPa is related to the saturation water vapour

pressure. e,, and relative humidity, rh, by the following equations:

en = e (rM)yx 1077, (226)

! I
= 3 ov 5 )53 £ : 7
e, = 0.6105 exp [23.22( 7 ) 531 log( HERE )] kPa (227,
and
I, =1, — 273.15°C . 228)

In Equation 223, F is the shape factor of the broadened resonance lines given by
[Ref. 11]

‘ 2 2 7, 2
L (T I (vo+) +g

/

F = (_f_)[ ik LR ot U 413 } (229)
for oxygen line 1 to line 38 and

[ g g
F=|{+ =~ + R 230
) ey v e v B

for oxygen line 39 to 44 and the water vapour lines.

In Equation 229 and 230, v, is the molecular line centre frequency, g is the width

and ¢ is the overlap interference.
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For oxvgen in air.

g=a(p+ 136" | (231)
¢ = a,pb“ (232)

and for water vapour in air,
g = b8 + p)a®® . (233)

The line data a,. a, and b, are listed in Table 1.

The continuum spectrum, .\, | is given by

- " 1 g ns -7
N, =~ 1.9‘/2“1*(?"'] x 1077 + 6.25\/}»(?2 x 107 {‘—-—2— + 2.1pt "% 10 j‘ ppm(234d)
M+ g
and
g = 0.012(p+13¢)0" . (235)

The liquid water extinction. .\, . is evaluated from the following expressions:

Q ot
N, = —2E o for S < 300Gz (
(¢"+2) + (")

+D
"
jon
Sy

and

Ne o= 055%™ 0™ pp for £ > 200Gl (237)

where w is the liquid water concentration in grams per cubic meter. The real and im-
aginary part of the diclectric function of warer, &' and €', arc given by Equations 207 and
208 respectively. Tt is assumed that ¢, and = given in Equations 207 and 208 are given
by Equations 210 and 213 respectively.

The absorptivity of tropospheric gases, », is related to the atmospheric absorption,
g+, 1n dB km, by the following expression [Ref. 13]:

Ve
s

ga = 10°y log,g e . (238)




Hence,

g o= —arr (239)
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Table 1.

SPECTROSCOPIC COEFTICIENTS I'OR OXYGEN (a,
WATER (b, — b,) [FROM RET. 11]

- (lg) AND

Center
frequency, v, Strength, a, Temperature Width, a, Intetference, a, Temperature Quantum number

(Gliz) (kHz/kFa) exponent, a, (Gllz/kPa) (1/kPa) exponent, a, identilication, X *

0" 0.307 E-3 (ppm/kIla) 0.12 (0.056) E~1 1* 10 37°
50.47381 094 E-6 0.969 E+ | 08 E-2 0.520 E-2 01719 E+t 3"
50.98742 0.244 E-5 0.869 E+1 087 E-2 0.550 -2 0169 E+1 35°
51.50311 0.604 E-5 0774 E+ 1 0.89 E-2 0.560 E-2 0.t77 E+1 -
52.02124 0.141 E-4 0.684 L+1 092 (-2 0.550 E-2 0.181 E+| -
52.54227 0.308 E-4 0.600 L+ 1 094 LE-2 0.569 E-2 0.179 E 41 29°
53.0668) 0.6)7 LC-4 0.522 E+ 097 E-2 0.528 E-2 0.189 E+1I 277
53.59570 0.124 E-) 0448 E+1 0.100 E-1| 0.544 E-2 0.183 E+1 257
54.12997 0.2265 E-) 0381 E+ 0.102 L1 0.480 £E-2 0.199 E+1 23
54.67115 0.3893 E-3 039 EL 0.105 E~1| 0.484 1:-2 0.190 £ 41 21
55.22137 0.6274 E-3 0.262 E+1 0.1079 E-1 0.417 E-2 0.207 E+ 19°
55.78382 0.9471 E-3 0.212 E+ 0.1110 E-1 0.375 E-2 0.207 E4-1 17°
56.26477 0.5453 E-3 0.100 E~1 0.1646 E~-1 0.7714 E-2 0.890 DI* t*
56.36339 0.1335 E-2 0.166 E+1 0.1144 E—1I 0.2971 E-2 0229 E+ 1 15
56.96818 0.1752 E-2 0.126 E+1 0.1181 E~1 0.212 E-2 0.253 E+1 13-
57.61249 0.2125 E-2 0.910 0.1221 E-1 0.940 E-13 0376 E4 | (A
58.32389 0.2369 C-~-2 0.621 0.1266 E-1 -0.550 E-3 =001 E+2 D2 9
58.44658 0.1447 E-2 0.827 E-1 0.1449 E-1i 0.597 £-2 0.790 kN
59.16422 0.2387 E-2 0.386 0.1319 E~-1 ~0.244 E-2 0.700 E-1 1
59.59098 0.2097 E-2 0.207 0.1360 E~1 0.344 E-2 0.490 5t
60.30604 0.2109 E-2 0.207 0.1382 I: -1 ~0.435 E-2° 0.680 D3 5T
60.43478 0.2444 E-2 0.380 0.1297 E-1 0.12E-2 -0.120 E+ 1 7*
61.15057 0.2486 E-2 0.621 0.1248 E-1 -0.360 E-} 0.584 E+ 1 9°
61.80016 0.2281 E-2 0.910 0.1207 E-1 -0.159 E-2 0.286 E+1 "
67.41122 "0.1919 E-2 0.126 E+1 0.171 E-1 -0.266 £-2 0.226 E4-1 D4 N
62.48626 0.1507 E-2 0.827 £~ 0.1468 E-1 ~0.503 E-2° 0.850 3
62.99797 0.1492 £-2 0.166 E+1 04139 -1 -0.3M E-2 0.21R v 15"
63.56852 0.10719 E-2 0.212 E+1 0.1108 G- | -0.417 -2 0.196 E+1 17*
64.12778 0.728) E-3 0.262 E+1 0.1078 C-1 -0.448 E-2 0.200 E+1 19°*
64.67886 0.4601 E-3 0319 E+1 0.105 E-1I -0.515 E-2 0184 E+1 rile
65.22412 0.27271 E-3 0.381 E+1 0.102 E-I -0.507 E-2 0.192 E+| 23°
65.76474 0.152 E-3 0.448 E+ ] 0.100 E-1 -0.567 E~-2 0.178 E+1 25t
66.30195 0.794 E-4 0.522 E+1 097 E-2 -0.549 £-~-2 0.184 E+1 27
66.83663 0.39) E-4 0.600 E+1 094 [E-2 ~0.588 E-2 0.174 E+1 29*
67.36933 0.181 E-4 0.684 E+ | 093 -2 ~0.560 E-2 0.171 E4 1 n
67.90051 0.795 E-5 0.774 E+1 0.89 [E-2 -0.580 C-2 0173 E+ »*
68.43054 0.328 E-5 0.869 E+ | 0.87 E-2 -0.570 E-2 0.165 E + | 3s*
68.95972 0.128 E-5 0.969 L | 0.8¢6 E-2 -0.530 E-2 0.174 E+1 n
118.75034 0.9341 E-3 0.000 0.1592 E~1 ~0.441 E-3 0.890 e
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Table 1. (continued)

Cenler 'Qu:\n.ll.lm .number
fiequency, v, Strength, a, Temperature Width, a, — identification (O,)
(Gllz) (kHz/kl'a) exponent, a, (Gliz/kI'a) Lower Upper
368.498350 0.679 E-4 0.200 -1 0.156 E-1| 11 2,1
424.763120 0.638 E-) 0.122 E-1 0.147 E-1 2,1 2,1
487.249371 0.235 E-) 0.122 E-1I 0.147 B~ 2,1 1,3
715.393150 0.996 E-A4 0.891 E-1 0.144 £~ 3,3 4,5
773.839732 0.571 E-) 0.798 E- 1 0.110 E~1 4,3 4,5
834.145799 0.180 E-3 0.798 E~| 0.140 21 4,3 5 5
Identitication (11,0)
Vo b, b, b, Lower Upper
. 22.235080 0.105 0.214 L+ 0.28) -1 5.2, 3 6. 1,6
68.052 0.160 E-2 ORISEI 0.280 E-1 3,2, L) 4, 1.3
. 183.310091 0.238E 41 0.65) 0.282 E-1{ 2,2, 0O 3,13
321.225644 0.460 E-1| 0.616 L | 0.220 E-1 9.3 6 10,2, 9
< 325.152319 0.155 E+1 0.152 12 ¢ 0.290 -1 4,2, 2. 5, 1S
+ 380.197372 0.12) B+2 0.102 E+v | 0.285 E-1 32,1 1.1, 4
386.778 0.400 E-2 0.733 L 0.160 E-1 11,2, 10 10, 3,17
437.34667 0.630 E-1 0.502 Ev 0.150 E~1 6,6, 0 7.5.3
439.150812 0.924 0.356 Ev 1 0.175 E-1I 5.5. 0 6,43
443. 018295 0.191 0.502 B4 1 0.148 E~1 6,6, 1 1.5.2
+ 448.001075 0.107 E+2 0T EWI 0.246 E-1 3,1, 0 4,2,)
470.888947 0.328 03571 Ev 0.181 E-1 55 1 6,4,2:
474.689127 0.124 E4 | 0234+ 0.210 E-| 4,4, 0 5.3
488.49113) 0.256 0.281 E4 | 0.222 G-t .1, 17 6,2 4
504.219 0.380 E-1 0.669 L1 0.127 E-I .7, 0 §,6,3
505.126 0.120 E—1 0.669 E 1 0130 E-1 7.7..1 8,6, 2
*  556.936002 0.526 E4) 0.114 0317 E~1 1.0, | 1,1.0
+  620.700801 0.521 E+ 01 EI 0.216 E- 4.4 1 5,32
658.340 0.460 0.776 E+1 0.328 E-1 1,0, 1 (D) 11,0
+ 752013227 0.259 E43 0.336 0.302 E-1 2,0 2 2, 1,1
836.836 0.120 E-] 0BItEW 0170 E- 11,2, 9 10, 5. 6
859.810 0.150 E- 1 0.7199 4 | 0270 E-1 2,0, 2(1) 2, 1.1
899.380 0.910 E-1 0.784 11 1 0300 E-1 1L L) 2,02
901.280 0.640 E-1§ 0.835 11} 0.280 E-1 2,2, 1 () .12
907.7173 0.179 0.501 E vt 0.204 E-1 8.3, S 9,2, 8
« 916.169 0890+ | 0.137 v 0.249 -1 33,1 4,2,2
970.320 0.910 £ 41 0184 L1 0.246 E-| 4,3, 1 5.2, 4
«  987.910 0.145 B3 0.180 0.299 E-t LIt 2,02
- 1097368 2.840 L1 0.656 0335 °-} 3,0, 3 3,2
Rend 0.307 -3 as 0.307 x 107",

“Nonresonant O, specttum (equation (21)).
‘D1 denotes douhlcl
“Rosenkrant’s [1975] first-order solution for the 60-Gliz h1nd shape has a shortcoming: the listed values of a (K = 37,

57) have to be reduced 5% (which is of negligible consequence) 1o assure that a(0,) = 0.000 for £ > 160 Gllz even when
N7 = 0 (equation (21).

“Hlere (1) denoles first vibrationally excited state.




II.  SHELLMAN - MORFITT ROOT FINDING ROUTINE

A.  GENERAL OUTLINE

The Shellman-Morfitt root finding routine was developed by C.IH. Shellman and
D.G. Morfitt to locate LLI" VLT LI mode constants of wave propagating in an carth-
ionosphere waveguide environment.  The theory of the algorithm described in this
chapter 1s based on References 1 and 14,

The complex root finding routine is used to {ind the zeros of the modal function.
The routine will locate all simple zeros of an analytic function in a prescibed rectangular
rezion of the complen z-plane. The principle of the root linding method is based on the

foliowing theorem [Ret. 13):

Theorem (Argument Principley:

Let D be a simply connected domain and {{z) be analitic in D except at a
finite number of poles. Let I be a closed contour in D not passing through
any of the zeros or poles of fi7). Then, the accumulated phase change., A ¢,

ol f{z} around T traversed tn « clockwise direction is given by

. Ao = 2=(N

v o
A T (240)
where N, is the number of zeros and .\, is the number of poles (counting

muluplicitics) enclosed by T,

I'rom the above theorem. if fiz) has only zeros in the regior enclosed by I' | then
every constant phase contour associated with a zero crosses I

An analyvtic function f{z) can be expressed as

[ = ([Re( 1T + Um(NHT exp(o) (241)
. where 0 is the phase of fi2) given by
0 = are[A2)] . (242)

N




If {{7} does not have any pole or branch point, then the constant phase curve, 6 = 0,
radiating from a zero ol f{z) must cross the closed contour, T, enclosing the zero at least
once. In addition, no other zero ol f{z) may be on this phase curve. This is fllustrated in
Figure 5.

A lIine of constant phase which crosses the contour I' mayv be followed until it leads
to a zero or until it crosses the contour again. A zero of {{(#) can be determined from the

mtersection of the curves

Im{(f) = 0 (0, = 0 or x) (243)

and

Re(f)y = 0 (0,. = = or ’f) : (244

hn
ro




|\ J i < \ £
-
P
" +
‘* el
i \ { >

Closed contour I —

Figure 5. Constant Phase Line of {(z) [[rom Refl. 1]
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B. ROOT SEARCH PROCEDURE
A search rectangle 1 set up i the complex z-plane so that the simple zeros of [iz)
will be located by the routine. The corners of this rectangle are denoted by:

L] [l

value of the real part of z at the left edge of the rectangle.
® 1, - value of the real part of z at the right edge of the rectangle.
¢ 1, - value of the imagmary part of 7 at the top edge of the rectangle.

® ;- value of the imaginary part of z at the bottom of the rectangle.

The scarch rectungle 1s divided into small mesh squares of length J. Restrictions on
the size of ¢ will be addressed later.
A new search rectangle is generated from the specified scarch rectangle by express-

ing the edge of the new rectangle in terms of mesh units. One mesh voit is of length &,

Thus
7, = 1m<-'—’—) (245)
Jr (S -t
Jp = 1m(i> (246)
R " . -t
Q.
I
Jp = 1/11(4-) (247)
O
and

(&

)

where Int(x) denotes the integer part of X. In order that the original search rectangle falls
completelv within the new scarch rectangle, the new rectangle is made one mesh unit

larger on all sides. That is,

fd, =1 Lo 2 0
_ [ ¢
J, = L/l _ s Ly <0 (249)
2 : > 0
',R=J e 'k = . (250)
[ /& ol <0




(Jp+2 ¢ 1y >0

T = (.1.,» + 1 o 20 (230)
and

The scarch rectangle with mesh grid is shown in Figure 6. The pius and minus signs
at the corners of the mesh squares are the signs of Im(1). The solid curves represent the
phase line. Im(fi=0. while the dashed curves represent the phase line, Re(tf)=0. The
zeros of {iz) are located at the crossing of the Inf)=0 and Re(H=0 curves. A local
mesh coordinate svstem is shown in Figure 7. The lower left-hand corner of the mesh
square is taken as the origin of that mesh square’s local coordinate svstem. The value
of fiz) evaluated in the local mesh coordinates of the A% mesh square is denoted by

SOz, 0,) . Thus, the values of {{(z) at the corners of mesh square | arce

S0 = S8+ T8 (2

tn
)
-~

SN0 = L6 + Uy = 1S, (254)

—_
to
“n
‘N

~

L0 = U+ D+ j(Ur— D)

and
YUY = S+ De+Ir8] (256)
A basic assumption made on f{z) is that Im(f) and Re(f) are lincar functions of the

local mesh coordinates, y, and ¢, . This means that in the mesh square k. f{z) can be

expressed as [Ref. 1]

1)
~1
—

f(p)(/l,:. (.')A,J = dk + /.7;: Gy + (‘/-1./.1{ + d]( (”k er: . (2
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Figure 6.

where

and

Hlustration of search rectangle with mesh grid [From Ref. 1]

de = £Y00 + 900 - r®0,n-sr%a,0

Cp

T

= /00

= %o n-r"0,0

= 7700 - 500

(260)

(261)

‘This assumption puts an upper bound on the size of the mesh unit, 8. The mesh

unit should be sufliciently small to ensuire that the linear variation of f{z) holds. How-

ever, 6 should not be excessively small to reduce computer run time.
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- 1
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1'% (0, 0) L
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T
Y

Figure 7. Local mesh coordinate system [From Ref. [}

The zeros of [{z) are scarched by examining the imaginary part ol {{z) counter-
clockwise around the rectangular contour. IFor the example shown in Iigure 6, the cdges
ol the scarch rectangle are examined [or crossing of the phase curve, Im(f)=0, starting
with mesh square I, edge 1. The values Im[ f ™0, )] and Im[ f ™ (0, 0)] are first com-
puted. If they are of the same sign, then there will be no Im(f) =0 curve passing through
cedge 1.

Mesh square 2 is investigated next. I he values of Im[ £ @ (0, D] and Im[ f @ (0, 0)]
are computed. The value of Im[f @ (0, 1)] is identical to Im[ f ™ (0,0)] . I the signs
of Im{f@(0,1)] and Im[f ®(0,0)] arc opposite as shown in Figure 0, then the
Im(f)=0 curve enters mesh square 2 alo!lg cdge I. The crossing point is given by [Ref.
)

y, = 0 (262)




and

_ il f @0, 0)]
Im{ £ @ 0,11 = (S P (0, 0)]

(l)z =

(203)

The next step is to determine if a zero is within mesh square 2. The values of

Im{ f @ (1,0)] and Im[ f @ (1, 1)] arc first computed. Two tests must be made:

1.

A test is made to determine if there is one or two Im()=0 curves entering and
leaving the mesh square. If Im[ f (0, 0)] and Im[ f ® (1, 1)] are of the same sign,
c.g., minus, and I/ ® (0, 1)] and Im[f % (1, 0)] both have opposite signs, c.g.,
plus, then there are two lines of Im(f)=0 entering and leaving the square. This
condition is depicted in mesh square 14 of I'igure 6. Otherwise. there is only onc
linc of Im(f }=0 entering and leaving the mesh square. This is illustrated in mesh
square 2 of Iigure 6.

A test has to be performed to determine if there is at least one Re(f)=0 cntering
and lcaving the mesh square. If Re[ /4 (0,0)], Re[ f*(0.1)], Re[/*® (1.0)] and
Re[f® (1, )] are all of the same sign, then there is no linc of Re(f)=0 passing
through the mesh square. Otherwise, there is at lcast one Re([)=0 curve entering
and leaving the mesh square.

Note that the above tests will fail if there are two or more Im()=0 or Re(N=0

crossing the mesh square at the same edge. As shown in Figure 8, two Im(f)=0 crossing

the same edge of a mesh square results in a zero being missed. In this situation, the mesh

size has to be reduced in order to resolve the two zeros.



Perceived Actual Perceived

Im(f)=0" "\ Re(f)=0 Im(N=0 \ Im(N)=0 7

7
'/
\ /
\ /|
—_ + b 4/ —_
/ ™~ //,
o~
a zero detected
/ T T T T
missed zero —
+ +
] -+
Re(f)=0 ———/ TN Actuai
Im(f)=0

ligwe 8. Crossing of two Im(f) =0 at the same edge of the mesh square

The program (sce subroutine fzerox in Chapter V) also checks for the presence of
more than onc zero on the same phase line. Such a situation may occur as in Figure 9.
The program treats such an occurrence as an ervor and will proceed to reduce the mesh
size. The root-search will start all over again.

One can infer that the presence of more than one zero on the some phase line is due

to the inability to resolve two phase lincs crossing a mesh square at the same cdge. These




zeros actually lie on dillerent phase lines and are ‘legitimate’ zeros. It is the author’s
opinion that these zeros are acceptable and a mesh-size reduction accompanied by a re-

run of the root search routine unnecessary.

Actual Perceived

Im(f)=0 Re(r)=0 Im(H=0 —7

N\ :' Y

NN Z4

N it b

N
\ 2 zeros on the same

/perceived phase line

A \

/ N
/ / \ \
l \
Re()=0 LAclual —. Perceived
Im(MN=0 Im(N=0

Figure 9.  Two zeros found on the same phase line

The line Im(f)=0 is traced from mesh to mesh until it exits the contour rectangle.
For the example in Figure 6, the curve A is followed through mesh squares 2, 3, 7, 11,

10, 14 and 13. In mesh square 11, both Im()=0 and Re([)=0 pass through the mesh
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square. The point of mtersection can be determined from Lquation 237, The math-
cematical details are presented in section C.

The contour AB is followed out of mesh square 11 into mesh squares 10 and 14,
In mesh square 14, there are two Im(f1=0 curves and one Re(f)=0 curve. A crossing
point is chosen to be a zero of {{7) if 1t lies on the Im(N=0 curve currently bemg fol-
lowed. Therefore, when the contour AB is being traced, the zero in mesh square 14 will
be ignored. However, this zero will be located when contour CD is being traced.

When contour AB exits the search rectangle at point B, the value of the leading
~edge (counterclockwise) of the mesh square is noted. In this example. the value of the
leading edge i1s £99 (0, 1). Identifving the exit points would prevent subsequent re-enter-
g of the search rectangle via these points.

Afrer the contour AB exits at B, the search for zeros of {{2) 1s continued by looking
for more crossings of Im()=0 with the search rectangle. Since mesh square 2 was the
fast mesh square that was checked for such crossings, the next mesh square to be ex-
amined will be mesh square 3.

The next crossing of Im(f)=0 with the search rectangle is at mesh square 12. This
contour CD is again followed through to mesh 21 where the exit point D 1s noted. The
zero along CD in mesh square 14 1s considered as an acceptable zero of {{7) since it lies
on the contour CD which 1s the current contour being traced. The rectangular contour
scarch will continue as described above until the search gets to mesh square 1. edge 4

where 1t stops.

C. DETERMINATION OF THE COORDINATES OF ROOTS
The root of fiz) is the point of mntersection of Im(N=0 and Re(N=10. This can be
determined {rom Equation 237,

By equating Im(f) of Equation 237 to zero, the following equations are obtained:

Im(a,) + Im(bw,
Imicy) + Imidw,

Yk = (264)

and

_ Imay) + Imledy, (265)
@ = Imibyy + Indd,)y,. e

Similarly, by equating Re(f) to zero.
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) Re'(u'/,) + 1{11/’[{ )(')‘;.: (.’((
Tk = Rete,) + Retdyo, =00

and

~ Rela)) + Rele,)z. 267,
@ = Reth) + Retd 7, -

Note that Equations 264 and 208 are equivalent; so are Lquations 266 and 267,
By cquating the right hand side of Equation 264 and that of L:quation 2066, the following

quadratic equation In w, results:
1)1(1)"’:‘ + Ql(!)k + I,I = 0 R (2(‘8)
where

Py = Re(by) Im(dy) — Im(by) Re (dy) (209)

Oy = Re{a) Im(dy) + Re () Iney)

{270)
= Imlap) Re ldy) — Imby) Re ()
and
Iy = Re(ay) Im(c) — Imfay) Re (¢) . (271)
Similarly, (rom Lquation 263 and 267, the quadratic equation in y, is obtained:
Pyu + Qi+ 11y = 0, (272)
where
Py, = Re(cy) Im(d,) — Im(c,) Re(dy) . (273)
O, = Re(q) Im(dy) + Re(c;) Im(by)
(274)
— Im(ay) Re(d,) — Im(c;) Re(by)
and
N, = Rela)lmlh,) — Dbutay) Reth,) . {275




According to the program source code, 1f

P (276)

then the root-finder routine uses Equations 264 and 268 to solve for y, and o, . 1f the
condition m Lguation 276 1s not sutisfied, then y, and w, will be determined from
Egquations 265 and 272.

However, it should be noted that if Equation 276 is true and if | P, | approaches
zero. one of the solutions of quation 208 will become infinite. By the same token, if
Equation 276 is not true and if | 7, | approaches zero, one of the solutions of Lquation
272 will become infinite. The program (see subroutine quad in Chapter V) prevents such
occurrences by incorporating a test such that the program returns onlv one solution
when |/} or | Py] approaches zero, te.. Equation 208 or 272 reduces to a lincar
cquution.

On the other hand..unless both | 7| and | P,| become very small, the above
problem could be avoided if . and @ are determined fromy Equations 265 and 272 when
Lquation 276 1s true: otherwise Equations 264 and 268 are used. This modification is
recommended.

A solution of Equations 263 and 272 or 264 and 268 will be valid if it lies within the

current mesh square, 1.c.,

0 <y < 1 (277

and

0 < o

IA

(278)

where ., = (z,. ©.) is the solution .

In addition. the solution must also lic on the line Im(0)=0 currently being traced.
The test for this condition is derived below.

From Equation 237, Im()=0 and Re()=0 are equations of an equilateral hvper-

bola with vertical and Lorizontal asymptotes given by

I (k)
A ()
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and
Liten ‘
G = ~m (280
Let (7, @) be the point at which Im{)= 0 enter the mesh square. 1f
e =2 s = xcd > 0 (281)
and
(O ~ o) (b, — w > 0 | (282

then the solution of f{z) lies on the current line.
Figure 10 illustrates the case where =, is a proper solution and Figure 11 shows the

case where -, 1s not a proper solution of {(z)= 0.
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Figure 10. g, is a proper solution of {(z) =0 [Alter Ref. 14]
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Figuie 11,

z, is not a proper solution of f(z) =0 [Alter Ref. 1]
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D. SOLUTION OF THE QUADRATIC LQUATION
Procedures for the solution of the quadratic equation are required for solving
Fquations 208 and 272,

Consider the quadratic cquation of the ferm

o
¥

R
ax® 4+ 2hy o+ ¢ o= 0 (283

The <olution i«

-
:_"‘_{_1; 0 :J (28:)
‘ AN "
S ISENET
where
g o= e (283)
’ e
lence.
' vo= -:;-;-[——l¢\l+:‘] (286
and
.\':=—‘/;—[—I—\l+u] . (287)

Ite < 1. then




Thus,

l 1 1 2
X :.—Tl—«(—:—(-—(b:)%—-i—'—z—(—-[::—) +

(259)
(4 )(4-2
-1 (=-2
2\ 2 2 <_ ac )7 . ]
3.2 [)3 J
Factoring out (%) . Lquation 289 becomes
1
L)
o = _LL,[HE_-’__ _ e
i T T b
(290
1 |
(£-9(+-3) 7
- - ac N
+ R [-—T] + . J
et
IU = l . ‘2()1’
()
- ac 1
o ] i
and
(£-9(4-)
o= [;"] (293)

In general,

FT N\ o
{}.' = [/\'—1 k+ 1 _l):_ (-- )

(A3




and

,
il
I
o=

& =

7“ fr, + 0, 4 1, 4+ + ) . (205
] . 2

Once v, is found. x, can be found from Lquations 286 and 287. By adding LEquations

2860 and 287, &, 1s given by
X = —o-= =X (296)

E. NEWTON RAPHSON ITERATION
The zeros of {(7) found by the Shellman and Morfitt routine are onlv approximate
solutions. The Newton Ruphson iteration is used to improve the accuracey of the zero

locations. The new root, . 1s related to the previous root, . by

Tn = v A, (297)
where
1)
A:,' = — = : (2‘)‘\:,
S

Iteration of LEquation 297 is continued until Az, is smaller than a pre-assigned tolerance.
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IV. SOLUTION OF STORES’ DIFFERENTIAL EQUATION

A, STOKES’ EQUATION

When the modified refractivity profile is modelled by a series of piccewise linear
segments in the mathematical formulation of wave propagation in a multilaver tropos-
pheric waveguide environment. the height gain function in each laver can be obtained

from solution of Stokes” Equation.

- + 4 kolg) =0 con=1.2 ., (299

i
Solutions of Stokes™ Equation are commonly given in terms of Airy functions or in terms
ol modified Haunkel functions of order one-third. Several possible solutions exist and the
chotce of solution 1s dependent on numerical and physical considerations. Since Iim(y)
is proportional to the attenuation rate of the clectromugnetic signal, physical consider-
ations dictate that Im(g) = 0. In this program, the height gain function is expressed
as a lineur combination of A (¢) and A, (¢) which arc lincarly independent for
Intty) 2z 0. The choice of A (¢g), ki (g) or equivalenty {Ai( — g ¢ %) Ll =g )} 1s
to assure that at least onc of the two functions do not become very small numerically in
the upper half of the complex g-plane. For the top laver. i.c.. 1= 1. the boundary condi-
tiun at = = oo requires that the height gain function represents an outgoing wave.
Hence in the topmost laver. A (¢) or equivalently i — g ¢ =7 %) is chosen to sausty the

radiation condition.

B. EVALUATION OF AIRY FUNCTIONS
I.  General Outline

The algorithm for evaluation of complex Airyv functions is adopted from Z.
Schulten and D.G. M. Anderson [Ref. 16). Evaluation of the complex function over the
entire z-plane was achieved with a Tavlor series and generalised Gaussian quadrature
method. A Tavlor scries 1s used only for a small region near the origin within an ellipse
with foct ( =138, 3.95) and (0.28, =2.11). major axis of 9.0 and nuner axis of 6.4,
Outsde the cllipse, the Gaussian guadrature approximation i< used. The elliptical

boundary was chosen to satisyv restricions imposed by computational methods.
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Analvsis of the Ay functions need only be done in the upper half complex

plane as those in the lower hall plane can be computed by the following conjugute

relations:
di(n) = Ai (:') (300
and
dAi(z) d1i ()
= < T& o

Therefore, an algorithm can be developed to compute Awz) for 0 = argz < 2x/3 and
by conjugacy, Aiz) for =27/3 < arg - < 0 can be computed.
For 2=/3 < arg:z < 4=/3. the following connection formula of Airy functions

can be used:
. T S i —jz i ., 222 <
Aiz) = /77 dilze ™ ) 4 e T idze }o. (302)
2. Evaluation bv Tavlor Series Expansion

Por small values of |7 [, the Airy [unctions are evaluated by the series expansion
[Ref 1 and 4).

and
di'z)y = Cf ()= GCog'ts) (304)

where
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(300)

N /- r </‘ * _;—> L3k
g=) = Za . (307)

o r(%) (37{-4—1)!

N i}
o T (/\ + _:‘_' ) 3

g (z) = S\S"" — = ) (208)
N ) o '

T 3 -1
C, = L.‘»""F(%)} (309

and
C, = [3”%(%\)}" : (310)

The number of terms required for convergence of the series is determined by a tolerance

factor. ¢. such that

n-~1
]
la,|] < ¢ La‘. . (311)
=
where
n
.‘”(:) == ;J(li (‘\12)
i=




Smliar test for convergence is implemented for 4/(2) . In the program, ¢ is taken to be

the machine epalon, te.,

3

Evaluation by Generalised Gaussian Quadrature Method

Integrul expressions for Aiz) 1e given by [Ref. 1¢]

.
. | —1l = playdx
Ai(z) = ——=— =z T 7L "
Yo NI SR
N o (314
.\w
for |2 >0, jargzl < =— |
3
where
C= o= (315)
D
ond
L =12 A=l =23 -1 —x o Ax 1,
ply)y = = 2 3 X ¢ .1/( = ) . (216)

The function. p(x). is non-negative and exponentially decreasing. The integral in
Fquation 314 can be evaluated by the gencrahised Gaussian quadratic approximation,

1.C..

o
) dx S‘ Wy .
- ~ -— (317)
J, el ¥ ‘_J .t RY;
3 (=i

"
. | S N R SR WY .
iz ~ —rn it e \\,- (318)
D e 4o




and

Ly | S 0 R PRGN 5. W . B, ay
ALY~ 5 " I :]' ¢ — - -—V_Ll—‘—‘, ——l—: . (.‘]‘))
- 6 JLats +x;) il +x)

=1 i=

The quadrature weights, w, . and abscissae, x , had been calculuted by Z. Schulten et al.
[Refl 16] and are given in Tables 1 to I'V. 1hese tables had been used for computation

of single precision values up to seven significant digits.
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Table 2. NUMBER OF TERMS REQUIRED IN QUADRATURE TORMULA
[AFTER RCF. 16}

z arg z Ai(z)
27
|z > 11 3 2 terms
27
5<lzl< 1l 3 4 {erms
v
25 <)zl <SS <—3— 4 terms

Table 3. 4-TERM GENERALISED GAUSSIAN INTEGRATION TFOR AIRY
FUNCTIONS [FROM RET. 16]

i Xy Wy

1. 3.9198329554455091 4.7763903057577263(—05)
2. 1.6915619004823504 4.9914306432910959(—03)
3 5.0275532467263018(—01) 8.6169846993840312(—02)
4. 1.9247060562015692(—02) 9.0879095845981 lOZ(—Ol)l
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Table 4. 2-TERM GENERALISED GAUSSIAN INTEGRATION TOR AIRY
FUNCTIONS [FROM REF. 16}

Xy Wy
1.0592469382112378 3.1927194042263958(—02)
3.6800601866153044(—02) 9.6807280595773604(—01)

C. EXTENDED COMPLEX ARITHMETIC

The extended complex arithmetic was introduced by Baumgartner in NWVG to
handle complex numbers of large magnitude to avoid overflow problem.

It was discussed in Scction D of Chapter 11 that for large values of | ¢ |, the mag-
nitude of 4,(q) and k,(g) may become exponentially large or exponentially small.

Numerical evaluation of the modal function of Equation 166 can casily vield com-
plex numbers with magnitudes as large as 10-19° or as small as 10-° ., Numbers of these
magnitudes are outside the numerical limits ol most computers.

To overcome this problem, each complex function, &,(¢q) (or k,(g)), is represented
by

ko= ke® | (320)

where 4, is the complex amplitude and ¢ is the rcal exponent. In the program, &, is

“normalized” such that

™' < max[Re(k) ], LImk) 1] < et (321)
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and ¢ has integer values. By evaluating the complex amplitude and real exponcnt scpa-
rately, overflow or underflow problems are avoided. Functions expréssed in the form
as in Equation 320 are known as extended complex numbers. Numerical manipu]ation‘
such as addition and multiplication involving extended complex numbers are performed
in the following manner. If z;, = z, ¢ and z, =3, e%2 are two extended complex num-
ber, then their product is

2 =202
_te (322)
where
2= 44 (323)
and
¢ = ¢ + & . ‘ (324)
The sum of two extended complex numbers is given by .
2 =53+
_ 3 e& ’ (325)
where
=+ 500 6 2 4 | (326)
and
o = ¢ s 6 = @, (327)
or _
2=+ 5% 4 < b, (328)
and
¢ = ¢ ; H< ¢ . (329)
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VY. DESCRIPTION OF MLAYER PROGRAM ELEMENTS

A short description of the functions of cacl: program clement in MLAYER is pro-
vided in this Chapter. The program had been tested and ran successfully on the Micro-
soft FORTRAN version 5.0 compilers and Microsoft C compilers version 5.0. The
maximum number of lavers and modcs are 35 and 150 respectively. These limits are the

upper bounds for operation on personal computers with 640 Kilobytes of main memory.

A.  MAIN
i. Description

Main ts the controlling program element for MLAYER. It calls appropriate
subroutines to calculate modal eigenvalucs, mode sum, path loss and radio horizon dis-
tance. Main also calls subroutine wvgstdin to read in data from input filc, lilcin. Three
output files are opened, namely, filein.out, filein.eig and filein.plt.

~ Lilein.out provides a documented output of input parameters and a list of mo-
dal cigenvalues found in each search rectangle. Filein.out also contains a list of eigen-
values in increasing order of real parts with the corresponding values in the 8-planc and
respective attenuation oi cach mode in decibels per kilometer.

Filein.cig is an exact replica of the input file except that the parameter, myfile,
is set to onc and it contains a list of eigenvalues found. Once filcin.cig is created, it can
be used as the input file to re-run MLAYER for various transmitter, receiver range and
height configurations.

Filein.plt contains cight columns of data, namely range, transmitter height, re-
cetver height. coherent mode sum. incoherent mode sum, coherent path loss, incoherent
path loss and radic horizon distance. The data are arranged in this manner to facilitate
graph plotting.

Samples of filein, filein.out, filein.eig and filein.plt are given in Appendix B.

In addition, main also computes the foliowing: )
* The derivative of the modified refractivity with respect to z for cach layer.
e The derivative of the atmospheric absorption with respect to z for each layer.
¢ The absorptivity and its derivative with respect to z for each layer.
e The derivative of q with respect to z for each layer.

¢ The modal attenuation rate for each mode.
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®  The coeflicients required for computation of surface roughness.

¢ The eigenvalues in the 0-plans. The enccmalucs in the ¢-plane are relatcd to those
in the ¢, ,-plane by '

! / 2 -
0 = sin [\;1 -8 (330)
The conversion to 8-plane is done solely for comparison of results with other modecls

where root-search was performed in the 0-plane.

2.  Inputs
Input data are read in by subroutine wvgstdin in the following order:

¢ filein : Pathname of input file.

¢ mifile : 1M mfile=0, read input data and calculate eigenvalues.
If mfile=1, read input data and eigenvalues.

o fgnzin : Initial fre~' oney in megahertz.

o dellq : Frequency increment in megahertz.

* nfreq : Number of frequencies for which modes will be found.

* mpol : If mpol=0, wave is horizontally polarized.
If mpol= 1. wave is vertically polarized.

e aloss : Maximum rate of attenuation in decibels per kilometer of modes
that will be found.

* scatmp : Scawater temperature in degrees Celsius. _

e scaslt : Secawater salinity in grams of salt per kilogram of scawater.

e iflgab : If iflgab=0, calculate the height invariant atmospheric absorption.

If iflgab=1, read in array containing values of atmospheric
absorption at laver boundarics.

® airtrap : Air temperature in degrees Celsius at reference height, zref.
Airtmp 1s used for calculating the height invariant atmospheric
absorption when iflgab=0.

e rh : Relative humidity in percent at reference height. Used for calculating
the height invariant atmospheric absorption when iflgab=0.

¢ wgpm3 : Water concentration in grams per cubic meter at reference height.
Used for calculating the height invariant atmospheric absorption
when iflgab=0.

e rmsbht : Rms bump height in meters of the sea surface.

e ztinit : Initial height of transmitter in meters.
e (delzt : Height increment of trunsmitter in meters.
* nzt : Number of transmitter heights at which field strength is to be
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computed.

zrinit : Initial height of 1eceiver in meters.

delzr : Height increment of receiver in meters.

nZr : Number of receiver heights at which field strength is to be computed.

Xinit : Initial range separation of the transmitter and rcceiver in kilometers.

delx : Increment in range separation in kilometers.

nx : Number of range scparation values at which ficld strength is to be

' computed.

zref : Reference height at which air temperature, relative humidity and
water concentration are specified.

nzlayr : Number of linear segments used to model the modified refractivity
profile.

zi(j) : Array containing values of heights in meters at layver boundaries.

zim(j) : Arrav containing values of modified refractivity at layer boundaries.

zigab(j)  : Array containing values of atmospheric absorption in decibels
per kilometer at laver boundatries.

3. Outputs
The outputs to filein.out (logical file 16) are:

nrmode : Number of modcs found.

geigen(j) : Array containing values of modal eigenvalues found in the complex
¢1.-plane.

theta : Complex eigenangle referenced to ground level for each mode.

atnu : Rate of attenuation in decibels per kilometer for cach mode.

The outputs to filcin.eig (logical file 17) are :
nrmode  : Number of modes found.

qeigen(j}) : Array containing values of modal eigenvalues found in the complex

¢,.-plane.
The outputs to filein.plt (logical file 15)
ecms : Coherent mode sum ficld strength relative to free space in decibels.
eims : Incoherent mode sum ficld strength relative to free space in decibels.
ecpl : Coherent mode sum path loss in decibels.
eipl : Incoherent mode sum path loss in decibels,
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4.  Calling subroutine

& None

Subroutines called

'yn

* wyegstdin

¢ chkmod

¢ scahlo ; commented out
e fndmod

® casin

e ao02h2o : disabled

¢  modsum
s dhoriz

¢ function ibstrip

The call to subroutine seah20 was commented out in revision 3.0 of the pro-
gram. To usc the subroutine, remove the comment statement. Subroutine ao2h2o was
disabled by sctting iflgab to one. To enable ao2h2o, sct iflgab to zero.

6.  Common block areas

e coml
e com?2
* com3
e papl

e datum

B. SUBROUTINE ABCOEF
1. Description
Subroutine abcoef calculates the coeflicients, 4, and B, of the height gain
function given by Equations 25 and 28. Computations of the cocflicients are done in
extended cc;'mplex arithmetic. The normalizing integral of Equation 77 is also evaluated.

The coefTicients are then normalized by the following relation:
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B,

" - (331)
: o] [ g o
/J/ slgtz)ds — j—— (/_ ) : ,
\l ¢ /\"' i ; (/(”.]
By noting that

d; _ a, dy, |
(1’/‘/); B (l(h.l ’ (//,’”

(352)

dy ko \213 2/'m
=-—— % o
dyy ‘ k

it can be seen that the denominator of Equation 331 1s identical to that of Lquation 77.
In calculating the coeflicients, the decision to integrate up or down is deter-

mined by the rate of attenuation given by

art = Refp,,] x 20 loge x 10 dBikm . (3

tss
(V]
oY)
—

11" the attenuation rate is greater than 0.1 dB km, upward integration is performed; oth-
erwise downward integration is carried out.
At the same time, the subroutine also checks for evanescence using l:quations
153 through 136 for upward integration and Equations 102 through 163 for downward
integration.
2. Calling statement
The subroutinge is cailed by the statement
Call abeoef (zero. m).
3. Inputs
The input variables are
e /ero : An eigenvalue in the ¢, ,-planc .

e m : Mode number.

4. Outputs

The output variables are

acocfa(i.m) : Two dimensional arrav element of complex amplitude of A in the
i laver and m” mode.

e acocfe(im): I'wo dimensional arrav element of real exponent of A in the
i laver and /» mode.




*

¢ beoclutin: Two dimensional array element of complex amplitude of B in the
# laver and m mode.

beoceletinm): Two dimensional arrayv element of real exponent of B in the
i laver and e mode.

5. Calling program element

e modsum

6. Subroutines called
*  xcdn

o xcadd

7. Common block areas

e com |
¢ com?2
¢ pupl
* pup2

C. SUBROUTINL ADDX
t.  Description

This subroutine adds two extended real numbers according to the following

equanon:
s==z 4 5 . (334)
where
D=z, explz) . (335)
2y = Zj, exp(zy,) (330)
and
Ty = Iz exp(sy) . (337)

2. Calling statement
The subroutine is called by the statement

Call addx (za. 7ze. 71a. 21e, 22a. 72¢).




3. Inputs

The input variables are

e zla ¢ Real amplitude of the extended real number, -, .
o zlc : Real exponent of the extended real number, = .
* 72 : Real amplitude of the extended real number, -, .
¢ 72 : Real exponent of the extended real number, -, .

4. Outputs
The output variables are
* 74 : Real amplitude of the extended real number, z.

* 7c : Real exponent of the extended real nuinber, z.

5. Calling program element

e  modsum

6.  Subroutine called

¢ nornuc

7. Common block area

® nonc

D. SUBROUTINE AO2H20
1. Description
This subroutine calculates the atmospheric absorption coefficient in decibels
per kilometer due to the quantum mechanical resonances of oxvgen molecules and water
vapour. Computed values are good for frequencices in the range 1 Ghz to 1000 Glliz.
2. Calling statement
The subroutine 1s called by the statement

Call ao2h20 (atmabs, fhz, tc, th, zm, wgpm3).

3.  Inputs
The input variables are
o fhz : I'requency in Hertz.
* Ic : Temperature in degrees Celcius.
e rh : Relative humudity in percentage.
® 7m : Height above sca level in meters.




e wepmd s Water concentration in grams per cubie meter at reference height.

4. OQutput
I'he output variable s

o atmubs s Atmosphetric absorpuon coeflicient in decibels per Kilometer.

5. Calling program element

*  main

6.  Subroutine called

® nonce

7. Common block area

® none

E. SUBROUTINE CHKMOD
1. Description
This subroutine checks for modal cigenvalues with zero value and discard them.
A zero-value eigenvalue mayv someumes lead to a divide-by-zero error in the mode sum
calculation.
2. Calling statement
The subroutine is called v the statement
Call chkmod (geigen. nrmode).
3. Inputs

The input variables are

e qcigen(j) : Array containing location of modal eigenvalues in the complex
Gy -plane.

e nrmode : Number of modes.

4. Outputs

The output variables are

® qeigen(j) : Array containing location of non-zero eigenvalues in complex
¢g,.-planc.
¢ nrmode : Number of modes.

o
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5. Calling program element

*  muin

6. Subroutine called

®*  none

7.  Common block area

® none

F. SUBROUTINE DETR

1. Description

This subroutine evaluates the modal function determinant of Iquation 47 in

extended complex arithmetic. The algorithm is discussed in Section I of Chapter 1.

2. Calling statement

The subroutine is called by the statenient

Call detr (deta, dete, nzlavr. d. de, dpl, dple, dmil, dmte, dp2. dple, dm2, dimle).

3. Inputs

The input variables are

e nzlavr
e d

e O

s dpl

e dple
e dml
e dmle
e dp2
e dple
¢ dm2
e dmle

» Number of hinear segments used to model the modified refracuvity
profile.

» Array containing complex amplitudes of elements along the main
diagonal of the modal function determinant.

s Arroyv containing real exponents of elements along the mamn
diagonal of the modal function determinant.

: Array containing complex ampiitudes of elements along the diagonal
one uabove the main diagonal of the modal function deternunant.

Arrav containing real exponents of elements along the diagonal one
above the main diagonal of the modal function determinant.

: Array containing complex amplitudes of elements along the diagonal
one below the main diagonal of the modal function determinant.

: Array containing real exponents of elements along the diagonal one
below the main diagonal of the modal function deternunant.

: Array containing complex amplitudes of elements along the diagonal
two above the main diagonal of the modal function determinant.

Arrayv containing real exponents of elements along the diagonal two
above the main diagonal of the modal function determinant.

Array contaming complex amplitudes of elements along the diagonal
two below the main diagonal of the medal function deternunant.

: Array containing real exponents of elements along the diagonal two
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below the main diagonal of the modal funcuon determinant.

4. Outputs

The output variables are

o (deta : Complex amplitude of the modal function.
e dcte : Real exponent of the modal function,
3. Calling program element
e fLtvix
6.  Subroutine called
o xcadd
7. Common block area
¢ nonc

G. SUBROUTINE DHORIZ
1. Description
The subroutine calculates the radio horizon distance between the transmutter
and receiver. The radio horizon distance in kilometers is given by
.

d= 7. =g [or + o]t (:

MR

L

)
'4d
N

S

where a is the radius of the carth, and -, and z; are the receiver and transnutter heights
respectively,
2. Calling statement
The subroutine is called by the statement
Call dhoriz (dhz, zrcvr, zxmtr).
3. Inputs

The input variables are

e zrevr : Receiver height in meters.
® zxmtr : Transmitter height in meters.
4.  Output

‘The output variable is

LAtV + Radio horizon distance m kilometers.
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5. Calling program element

®  main

0. Subroutine called

® none

7. Commom block area .

® nonc

H. SUBROUTINE DXDETR
1. Description
This subroutine evaluates the modal function determinant and its derivative in
extended complex arithmetic. Values of the modal function determinant and its deriva-
tive are required by the Newton-Ruphson root-finding routine. The methods {or evalu-
ating the modal function determinant and 1ts derivative arc discussed in Scction b of
Chapuer I1.
2. Calling statement
The subroutine is called by the statement
Call dxdetr (deta. dete, dxdeta, dxdete, nzluvr, d, de, dpl. dple, dml, dmlc. dp2. dple.
dm?2. dm2e. dxd. dxde. dxdpl. dxdple, dxdml, dxdmle, dadp2. dxdp2e. dxdm?, dxdm2e.
2. Inputs

The input variables are

e nslavr : Number of lincar segments used to model the modified refractivity
profile.
o d .Array containing complex amphtudes of elements along the main

diagonal of the modul function deterinani.

o (e : Arrav containing real exponents of elements along the main
diagonal of the modul function determinant.

e dpl s Array containing complex amplitudes of elements along the diagonal
onc above the main diagonal of the modal function determinant.

e dple : Arrav containing real exponents of clements along the diagonal one
above the main diagonal of the modal function determinant.

¢ dml » Array containing complex amplhitudes of elements along the diagonal
one below the main diagonal of the modal function determinant.

e dmlec . Array containing real exponents of elements along the diagonal one
below the main diagonal of the modal function determinant.

e dp2  Arrayv containing complex amplitudes of elements along the diagonal
two above the main diagonal of the modal function determinant.




dple SArray contaming real exponents of elements wlong the Jrarvonat teo
above the mun diagonal of tiie modal function deterniinant.

dm Ay contummz compley ampintedes of elements wlony the Jiagona!
o below the mamn diegonal of the modal tuncuen deternunat,

dm2e SArrav contanung real expenents ¢f elements aleng the divgonal two
below the muin disgonad of the modal [uncuon determinant.

dnd CATay contaming complex aneplitudes of the derivatuves of the
clements along the maun diagonal of the modal functon determinant.

dxde SArray containing reul exponents of the derivatives of the elements
along the muin diagonal of the modal funcuon determinant.

dadpl s Array contaiming complex amphitudes of the derivatives of the
clements along the diagonal one above die main diagonal of the
modal function determmnant.

dadple sArrav contininy real exponents of the dervatives of the
elements along the dicgonal one above the mum dizgonal ol the
modal function deternunant.

dxdml SArray contammng complex amplhitudes of the denvaunes of the
clements along the diagonal one below the main diagonai of the
modal function deternunant.

dxdmle SArrav containmg real expenents of the derivatives of the clements
along the dragonal one below the muam diagonal of the mod.al
function deternunant.

dadp2 S Array containing complex amplitudes of the derivetinves of the
clenients along the dirgonal two above the main diagonal of the
modal function determinant.

dxdple s Array containing real cexponents of the derivatives of the clements
along the diagonal two above the main dingonal of the modual
function deternunant.

dxdinl SArrav contaming compien amplitudes of the derivarives of the
clements along the diagonal two below the main diagonal of the
modal [unction determinant.

dxdmle  : Array containing real exponents of the derivatives of the elements

along the diagonal two below the main diagonal of the modaul
function determinant.

4. Outputs

The output variables are

detu : Complex amplitude of the modal function.

dete : Real exponent of the modal function.

dxdeta : Complex amplitude of the derivative of the modal function.
dadete : Real exponent of the derivative of the modal function.
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3. Calling program element
e fdfdix

6. Subroutine called

e xcadd

7. Commom block area

¢ none

I. SUBROUTINE FCTVLX
1. Description

This subroutine calculates the values of the elements in the matrix of the modal
function of Equation 47 and invokes subroutine detr to evaluate the medal function. The
subroutine shifts the imaginary part of ¢,, by ¢shift so that the real axis will not fall on
the mesh line of the search rectangle set up by the Shellman-Morfitt routine. This allows
the zeros on the real axis to be located. It is known that zeros near or on the negative
real axis contribute significantly to the ficlds within a duct.

However, the shift implics that the Shellman-Morfitt routine will search for

zeros of A (1)l instead of |A(g,,)l where

hy = @, — Jjgshift . (339)

To compensate for the error, the shift back to ¢y, is done in subroutine fndmod for all

zeros found.
2. Calling statement
The subroutine is called by the statement
Call fetvix (qllin, deta, dete).
3. Input |
The input variable is

e qllin : Location in the complex ¢,,-plane where the modal function is to
be evaluated.

4. Outputs
The output variable are
¢ deta : Complex amplitude of the modal function.
o dete : Real exponent of the modal function.
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5. Calling program element

¢ fzeron

6. Subroutines called

¢ xcdai
* xcadd
e detr

o surf

7. Common block areas

e coml
e com2
¢  ¢om3
® com-

J. SUBROUTINE FDFDTX
1. Description
This .subroutine calculates the values of the elements in the matrices of
lA(g,)l and -;;f:- lA(g,,)i and then invokes subroutine dxdetr to evaluate the modal
function and its derivative. The subroutine also shifts the imaginary part of g,, by gshift
as in subroutine fetvix. It is similarly compensated by a “shift-back” in subroutine
fndmod.
2. Calling statement
The subroutine is called by the statement
Call fdfdtx (ql1in, deta, dete, dxdeta, dxdete).

3. Input
The input variable is
e qllin : Location in the complex g, ,-plane where the modal function and its
derivative is to be evaluated.
4. Outputs
The output variables are
o deta : Complex amplitude of the modal function.
e dete : Real exponent of the modal function.
¢ dxdcta : Complex amplitude of the derivative of the modal function.
e dxdete : Real exponent of the derivative of the modal function.
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5. Calling program element

*  {/CroN

6.  Subroutines called

* xcda
e ~xcadd
e dxdetr
e surf

7. Commoi block areas

* coml
e com?
s comi
e comdd

K. SUBROUTINE FINDFX
1. Description
The incorporation of the effects of surface roughness into the mathematical
model results in discontinuity of the moda! function along the imaginary ¢,,-axis . the
Shellman-Morfitt routine will fail il the edge of the search rectangle lies on the imaginary
axis.
Subroutine findfx will determine if any edge of the search rectangle is on the

imaginary axis. { so, a small offser of 1 x 10 i introduced. If the left edge is on the

imaginary axis, then the modal function is evaluated at Re(q,,) = + offscr. 1 the right
edge is on the imaginary axis, the modal function is evaluated at Re(q,,) = — offsct .

2. Calling statement
The subroutine is called by the statement
Call findfx (jr, ji, f, fe, tleft, tright).
3. Inputs

The input vanables are

* g : Real part of the mesh square coordinates in mesh units.

e i : Imaginary part of the mesh squarcs coordinates in mesh units.
o tleft : Real part of ¢, at the left edge of the scarch rectangie.

o tright : Real part of ¢, at the right edge of the scarch rectangle.
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4. Outputs
The output variables are
o f : Complex amplitude of the modal function.

e o : Real exponent of the modal funcuon.

S, Calling program element
e {7crox
6.  Subroutine called

e fervlx

7.  Common block area

*  {mccom

L. SUBROUTINE FNDMOD
1. Description
This subroutine sets up the rectangular region n the complex ¢, -plane for the
Shellman-Morfitt root finding routine to locate the zeros of the modal function.

The mitiud search rectangie 1s set up with

e the left edge of rectangle, tleft=0.0.
o the night edge of rectangle. tnight = tleft + wstep, where tstep is the length of the

rectangle.

<

e the top of the rectangle. ttop given by [Refl §}

- =X 107° Aloss k_\:s »
ttop = K20 Tog R{( o ) } . (340)

where Aloss is the maximum attenuation rate in decibels per kilometer of those
modcs to be found.

e the bottom of the rectangle, tbot = — tol, where tol is the tolerance to which zeros
are to be located.

In order that the zeros on the real axis can be located. a small offset of gshift

is introduced in subroutines fdfdtx and fetvIx so as to avoid having a mesh line on the

real axis. This oflset is corrected in the subroutine fndmod by the statement

-

zeros(k) = zeros(k) — jgshift . (341)

After the initial rectangle has been scarched for zeros of the modal function. a
new search rectangle is sct up to the left of the imnitial rectangle. If no zero is found in

three consceutive search rectangles, the search for roots to the left of the inittial rectangle
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is stopped. FFnndmod next forms search rectangles to the right of the initial rectangles.
I no zero is found in three consceutive scarch rectangles, the scarch for roots to the
nght of the initial rectangle is stopped.

Since subroutine {zerox extends the scarch rectangle by one mesh unit on all
sides. fmdmod also checks for and eliminates all zeros outside the current search
rectangle.

After all the zeros have been found, fndmod sorts them in order of increasing
real parts and stores them in the array called zeros.

There are two versions of fndmod. namely, fmdmod20.for and (hdmodSo.for.
I'ndmod80 scts up a smaller mesh and takes longer time to {ind the modes. I'ndmodS$o
should be used onlv if indmod20 fails to find all modes.

2. Calling subroutine
Thic subroutine is called by the statement
Call fndmod (geigen, nrmode, dmdz, detadx, zim, nzlavr, aloss, waveno).
3. Inputs

The input variables are

. (Y
* dmdz : Array containing values of ==~
dZz
.. Ly
e detadz : Array containing values of — .
az
® zim : Arrav containing values of M(z) at laver boundaries.
* nzlavr : Number of linear segments used to model the modified refractivity
profile.
* aloss : Maximum attenuation rate (in decibels per kilometer) of modes to
be found.
®  waveno : Wave number.
4. Outputs
The output variables are
® qcigen : Array contamning the zeros of the modal function.

nrmode : Actual number of modes found.
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5. Calling program element

*  muin

6. Subroutine called

e f{serox

7. Common block areas

conid

e (comi

M. SUBROUTINE FZEROX
I.  Description

Subroutine fzerox 1« the muin subroutine used for finding the zeros of a com-
plex function using the Shiellman-NMorfitt routine as described in Chapter IT1 Frerox
will convert the coordinates of the scarch rectangle edges into mesh units and proceed
with the search for sign changes of Im(fy =0 along each edge. The maximum nwmber of
crossings of Im(f)=0 allowed with any edge of the search rectangle 1s 100,

Izerox allows a maximum number, maxnsy. of mesh squares to lic on any one
phase curve, ImiH=0. It this number 1s exceeded. the program will reduce the mesh size
by one-hull and start over. If the probleny perasts afier the mesh size has been reduced
by maxnt tmes. an crror message will be written to the output file and the program
stops. In the program, maxng is sct at four times the number of mesh squares along the
longest side of the search rectangle.

I'zerox also checks for modes found on the same phase line. If so. the program
will reduce the mesh size and start over. If the problem remains after mesh size has been
reduced by 27 times, an error message will be written to output [ile and the program
will stop.

2. Calling statement
The subroutine 1s called by the statement
Call Fzerox (tleft, tright, tbot. ttop, tinsho, tol, mprint. zcros).
3.  Inputs

The input variables are

o tleft : Value of the real part of z at the left edge of scarch rectangle.
e tright : Value of the real part of z at the right edge of scarch rectangle.
e thot : Value of the imaginary part of z at the bottom edge of the search
rectangle.
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¢ ttop : Value of the imaginary part of 7z at the top edge of the search

rectangle.
¢ tmsho : Inmitial size of the mesh square.
s tol : Tolerance to which zeros are to be found. Zeros located closer than

tol cannot be disunguished.
¢  mprint : Aflag for debugging output. If mprint= 0, no debugging will be
aven. Mprint=1 will activate debugging printout.

4. Outputs
The output variables are

¢ 7Cros : Arrav containing the complex zeros of f{z) in the specified
scarch rectangle in the complex z-plane.

* nrz : The actual number of complex zeros of f{z) found.

8. Calling program element

¢ fndmod
6.  Subroutines called
s  [indiN\
¢ quad
e nomshy
7.  Common block areas
* newmsh

¢ timccom

N. SUBROUTINE HTGAIN
1. Description
This subroutine evaluates the normalized height gain function given by
Equation 77.
2. Calling Statement
The subroutine is called by the statement
Call htgain (htga. htge. zero, z, m).
3. Inputs

The input variables are

® zero : Modal cigenvalue in g, ,-space for mode m.
¢ 2 : Height (in meters) above ground at which height gain is to be
evaluated.
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e m : Mode index.,

4. Outputs

The output variables are

¢ htga : Complex height gain fuctor in extended arithmetic.
* Dtge : Real height gain exponent in extended arithmetic.

5. Calling program element

¢ modsum

6.  Subroutines called
e ~cdal

s yeudd

7. Common block areas

e com?
s papl
s papl

O. SUBROUTINE MODSUM
1. Description
This subroutine calculates the field strength relative to free space given by
Equations 100 and 10}.
2. Calling statement
The subroutine is called by the statement

Call modsum (ecms, eins, xm, rngflac, zr, zt, geigen. ncount).

3. Inputs
The input variables are

® xXm : Range in meters.
* rngfac : Range factor calculated in the main program.
* 7r : Receiver height in meters.
e 7t : Transmitter height in meters.
® (eigen : Array containing eigenvalues in g, ,-space .
® ncount : Counter set in the main program to avoid unnccessary calulations of

acoefa, acoefe. beoefa and beoefle. If ncount= 1, subroutine
modsum will call subroutine abcocef, otherwise subroutine
modsum will compute modesum only.
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4. Outputs
The output variables are
e ccms : Coherent lield strength relative to free space.
®* cims : Incoherent field strength relative to free space.

S, Calling program element

®  main

6.  Subroutines called
e abcocf
e hitgain
e xcadd

e addx

7. Common block areas

e coml
e com2
e pap2

P. SUBROUTINE NOMSHX
1.  Description
Subroutine nomshx takes the approximate locations of the complex zeros of
fiz) provided by fzerox and improves the accuracies of the zero locations using New-
ton-Raphson iteration.
2. Calling statement
The subroutine is calied by the statement |
Call nomshx (tol, zeros, nrz).
3. Inputs
The input vanables are

e 10l : The tolerance to which zeros are to be located. Zeros located closer
than tol cannot be distinguished.

® zcros : Array containing the approximate locations of the complex zeros of
fi7).
* nrz : The number of complex zeros stored in array zeros.
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4. Output
The ourput variable is
e zeros »An arrav containing the iterated values of the complex zeros of {2).
5. Calling program element

e f{7erox

6. Subroutinc called

o ([dfdix
7.  Common block area
e  Newmsh

Q. SUBROUTINE NORME
1. Description

This subroutine "normalizes” the comiplex extended numbers, z = za exp(ze) such that
exp(=1.0) < max[|Reza)|, | Imiza)|] < exp(l.n) (342

and ze has integer values.
2. Calling statement
The program 1s called by the statement

Cull norme (za. ze).

3. Inputs
The mput variables are
s 7a : Complex amplitude of the extended complex number, z.
* ¢ : Real exponent of the extended complex number, z

4. Outputs

The output vanables are

* 7a : Complex amplitude of the "normalized” extended complex number,
Z.
* ze : Real exponent of the "normalized” extended complex number, z.

5. Calling program elements

xcadd

xedait

e xcdaig
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6.  Subroutine called

¢ none

7. Common block area

® none

R. SUBROUTINE NORMRE
1. Description
This subroutine “normahzes” the real extended number. z = za exp(ze). such

that
exp(=1.0) < Jzuy = exp(+1.0) (343)

and 7e hacinteger values
2. Calling statement

The subroutine is cailed by the statement

Call normre (za, zc). :
2. Inputs
The input variables are
¢ Zza : Real amplitude of the real extended number, z.
e e : Real exponent of the real extended number, z.
4. Qutputs
The output variables are
e 7 : Real amplitude of the “normalized” real extended number. 7.
* 7zc : Real exponent of the "normalized” real extended number, z.

5. Calling program element

e addx

6. Subroutine called

¢ nonc

7.  Common block area

® none
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S. SUBROUTINE QUAD
1. Description
This subroutine finds the roots of the quadratic equution of the forni given by
Lquation 2820 0] ¢ | given in Lquation 285 is less than 0.3, the roots are computed with
Lquations 2935 and 296. Otherwise Equations 286 and 287 arc used. In addition, if

]((’

i

AR 10-¥ subroutine quad returns only 1 solution given by Lyuation 2935,
2. Calling statement
The subroutine 1s called by the statement
Call quad (a. b, ¢, sol. nrsol. mprint).
3. Inputs

The input variables are

* : The cocflicient of % in the quadratic equation.
e b : The coeflicient of 2x 1n the guadratic equation.
LI : The constant term in the guadratic equation.

4. Outputs

‘The output variables are

e <ol : An array containing the real roots of the quadratic equation.
e nrsol : The number of real roots found.
*  mprint ¢ A flag for debugging. If mprint is not equal to zero, values of the

coellicients a. b, and ¢ will be written to file.out.

5. Calling program element

e f7erox

6.  Subroutine called

® none

7. Common block area

® none¢

T. SUBROUTINE SEAH20
1.  Description
This subroutinc evaluates the real cffective relative diclectric constant and the
real effective conductivity of scawater as a function of temperature, salinity and fre-

quency. The program is based on the equations prescited in section G of Chapter I1.
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2, Calling statement
The subroutine is called by the statement
Call seah2o (sigelll epselll t. s, freq).
3. Inputs

The input variables are

* : Temperature of scawater in degree Celcius.
* & : Salinity of scawater in grams of salt per kilogram of seawater.
e (reg : Frequeney in Tertz.

4. Outputs
The output vanables are
e sigefl : Real effective conductivity in sicmens per meter.

. Real elfecuve relauve dielectric constunt,

°
2]

-
)
ra
o)
june]

5. Calling program element

®  muain

6.  Subroutine called

®  none

7.  Common block area

¢ nonc

U. SUBROUTINE SURF

. Description

This subroutine evaluates 7, and o when surface roughness is included in the
model. i
2. Calling statement
The subroutine is called by the statement
Call surf (q11, gamma. dgamdq).
3.  Input
The input variable is
o gll : Location in the complex ¢,,-plane where the modal function and its
derivative are to be evaluated.
4. Outputs
The output varniables arc

<

® gamma : This is 5, given by Equation 180 and 192 for horizontal and vertical
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polarization respectively.

o dgamdy o Thivis —— given by Lguations 187 and 193 for honzoental and
G
verteul polartzation respectively,
3. Calling program elements
o fctvix
o fdfdix

6.  Subroutines called

e function ctanh

e function cseulel
7.  Common block areas
e com!
e comS
e comh

V. SUBROUTINE XAINEG
1. Description
Thic subroutine evaluates the Airv function, Ai(7). and its derivative, -a1'(2). for

complex z m extended complex arithmetic for

VY=

.,,l

< arg{z) = 0 . (334

The subroutine will test if z* is within the ellipse with foci (=155, 3.95) and
(0.28. =2.11). major axis of 9.0 and munor axis of 6.4, 1f 7% 1s within the clhipse, xaneg
will invoke xcdait to compute the Airy function and its derivative with a Taylor series.
Otherwise xaineq invokes xcdaig which uses the Gaussian quadrature method.
2. Calling statement
The subroutine is called by the statement
Call xaineg (z, aia, aie, daia, daic).
3. Input
The iput variable is

o 7 : A value in the complex z-plane at which the Airy function and its
derivutive are to be computed.
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4. Outputs

LR : Complex amplitude of Auzyin extended complex arithmetic,

e i : Reul exponent of Aitzy i extended complex anthmetic.
LRI s Complex amplitude of A17 () in extended complex arithmetic.
e duie : Real exponent of A’ (#) in extended complex anthmetie.

5. Calling program element

o xcdut

6.  Subroutines called
o ncdait

o ncdwig

7.  Common block area

L4 nane

W. SUBROUTINE XAITOS
I.  Description
This subroutine evaluates the Ay function, Az and its derivative, Av1'(z)

extended comples anthmetic for

0 = arg(s) <= . (345

The subroutine will test if 7 1s within the cllipse with foc (=1.380 3.95) and
(0.28. =2.11), major axis of 9.0 and minor axis of 6.4, If 7z i« within cllipsc. xaipos will
invoke aedait to compute the Airy function and its derivative with a Taylor series. Oth-
erwise xaipos invokes xedaig which uses the Gaussian quadrature method.
2. Calling statement
The subroutine is called by the stutement
Call xaipos (7. aia. aice, daia. daie).
3. Input
The input variable is

o 7 » A value in the complex z-plane at which the Airy function and its
derivatve are to be computed.
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4. Outputs

The output varnbles are

LIFIR : Compiex amphtude of Ay in extended complex anthmete.
* i : Real exponent of Aiizyin extended complex arithinetic.
e daia » Complex amphitude of Ar'(/y i extended compley arithmetic.
o Jduic : Real exponent of Atz in extended complex arithmetic.

5. Calling program element

e xcdal

6.  Subroutines called
® sedat
¢ adig

-

7. Common block area

®  nonc

X. SUBROUTINE XCDAI
1. Description
The subroutine 1s the driving program in the evaluation of the Any function,
Aitzy, and e derivative, A7) If

0 < arg(s) < —:— . {330

aedat invokes xaipos to compute AiZ) and Ai(7) and invokes xaineg to compute
Adze sy and S (ze 7% 0 Te then uses the connection formula of Airy funcuon n
Eqguation 302 and its derivative to compute Jize & 3) and L 1i'(ze 79

It

\ (347)

ncdat mvokes xaipos to compute Adze %) and L1/(ze 7). Tt also invokes xaineg to
compute A7) and Ai'(z). It then uses the connection formula to compute Aize =%
and AMze Ty

Ir
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or

5
—-r £ argls) < —-=— (3449

xedat calls xaipos to compute Ai(ze =27 %) and A (ze %) . Tt also calls xaineg to com-
pute cfaze ) and AS(ze ) . Tt then uses the connection formula to compute Ai(7)

and A7)

If

< arg(n) € =/ . (350)

tJlii

xedal calls xaipos to compute Ai(z) and Ai'(2) and calls xainey to compute Ai(z¢ %)

and ASze =) 0 Tt then uses the connedtion formula to conpute fize 77 and
Alfze T
It
2z T .
- < oargll) < =5, (33h
~‘ -

xcdaid calis xaipos to conpute Ai(ze *7 %) and Ai'(ze * %) . Tt also calls Xaineg to compute
Aliz) and Al'(z). It then uses the connection formula to compute Ailze =) and
Ai'tze =)
2. Calling statement
The subroutine is called by the statement
Call xedai (z. aia, aie, daia. daie. aipa. aipe, daipa. daipe, aima.
aime. daima, daime).
3.  Input
The input variable is
* 7z : A value in the complex z-plane at which the Airy function anl it
derivative are to be computed.
4. Outputs
The output variables are

* an : Complex amplitude of Ai(z) in extended arithmetic.
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® aic : Real exponent of Ai(z) in extended complex arithmetic.

¢ daia : Complex amplitude of Ai'(z) in extended complex arithmetic.

® daic : Real exponent of Ai'(z) in extended complex arithmetic.

® aipa : Complex amplitude of Ai(ze2"3) in extended complex arithmetic.
®* aipc : Real exponent of Ai(ze %) in extended complex arithmetic.

¢ daipa : Complex amplitude of A4i(z¢ #"?) in extended complex arithmetic.
e daipe : Real exponent of A¢'(ze¢/273) in extended complex arithmetic.

® aima : Complex amplitude of A{ze ~**?) in extended complex arithmetic.
* aime : Real exponent of Ai(ze ~2"3) in eitendcd complex arithmetic.

e daima : Complex amplitude of Ai'(ze ¥"3) in extended complex arithmetic.
e daime + Real exponent of Ai'(ze -%) in extended complex arithmetic.

S. Calling program element

fctvix

6. Subroutines called.

¢ xaipos
® xaineg
® xcadd

7.  Common block area

¢ none

Y. SUBROUTINE XCDAIG
1. Description
The subroutine computes the Airy function, Ai(z), and its derivative, Ai'(z), in
extended arithmetic using the Gaussian quadrature method.
2. Calling statement )
Thc subroutine is called by the statcment
Call xcdaig (z, aia, aic, daia, daic).
3. Inputs
The input variables is

* z : A value in the complex z-plane at which the Airy function and its
derivative arc to be computed.
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4. Outputs

The output variables are

* aia : Complex amplitude of Ai(z) in extended arithmetic.

* i : Real exponent of Ai(7) in extended complex arithmetic.

o Jdaa : Complex amplitude of A1'(z) in extended complex arithmetic.
o duie : Real exponent of Ai(z) in extended complex arithmetic.

5. Calling program elements
® \uipos

® xaineg

6.  Subroutine called

® norme

7.  Common block area

® norn

Z. SUBROUTINE XCDAIT
1. Description
The subroutine computes the Atry function, Ai(7), and its derivative, A1'(z). in
extended arithmetic using a Tavlor series expansion.
2. Calling statement
The subroutine is called by the statcment
Call xcdait (z. aia. aie. daia, daie).
3. Input
The input variable 1s

* 7 : A value in the complex z-planc at which the Airv function and its
derivative are to be computed.

4. Outputs
The output variables are
® aia : Complex amplitude of Ai(z) in extended arithmetic.
* aic : Real exponent of Ai(z) in extended complex arithmetic.
o daia : Complex amplitude of Ai'(#) in extended complex arithmetic.
e daic : Real exponent of Ai’(2) in extended complex arithmetic.
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5. Calling program elements
® Xuipos
® xaincg

6.  Subroutine called

® norme

7.  Common block area

¢ none

AA.  FUNCTION PROGRANMIS
1. Function casin
IFunction casin evaluates the complex arcsine of a complex number, 7. with the

equation

‘h
P

sinT (z) = —jIn [(1=2 4+ ] . (3

The function is called by the statecment
casin (z).
The function is used in the main program to convert the eigenvalues from
G,,-planc to @-plane .
2. Function csech2
I'unction c¢sech2 evaluates the square of the hyperbolic secant of a complex

number. z. with the equation

(99}
o
ted
<

sech?(s) = —— - - . (

The function is called by the statement

csech2 (7).

. . . . ca h ca
[t 1s used in subroutine surf for evaluating —= . = . “— and \
i Cdha C4y, Cqia Cqi
(see Scction F, Chapter [1).
3. Function ctanh
I'unction ctanh evaluates the hyperbolic tangent of a complex number, z, with

the equation
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tnh () = ———
¢ — ¢
‘ i 1 )
for I RL(-) I > 0. _2_ (';34)
or | Im(z)| > - l_
10,2
or
. 1 3 2 s 17 5 6z 9
tanh () = z — 37+ 155~ 35 ¢ + 3935 & e
- 1
=z < — PRy
for 1R < 0.2 (335)
. 1
or | Imz)|] £ —m— -
fo 2

The function is called by the statement
ctanh (2).
It is uscd in subroutine surf for evaluating a. b, a l; and their derivatives.
4. Function ibstrip

Function ibstrip finds the length of a character string by removing all trailing
spaces from the end of the string and returns the number of characters in the stripped
string.

The function is called by the statement

ibstrip (inst, outst).

where inst is the input string and outst is the stripped string.

The function is used in the main program to check the length of the filename.

AB. MLAYER SUPPORTING PROGRAMS
MLAYER has several supporting programs that helps in the running of the pro-
gram. They are
e mlaver.mak
e wvgclzan.mak
e wvgstrip.mak

e wyveclean.c
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e wvestrip.for

o wyvestdin.for

1. Mlayer.mak
This is the makefile for the creation of na20 and mlaS0 programs. M1a20 uses
subroutine fmdmod20.for to sct up the rectungular scarch region whereas mla80 uses
fhdmod$o.{or.
Mlaver.mak compiles and links all program elements and creates mla20.cxe and
mla80.exe for the execution of MLAYLER program with either mla20 or mla80.
To compile and link MLAYLER, type
nmake miaver.mak
Nmake will compare the modification dates of the target files (e.g.. object and executable
files) with those of the dependent files (c.g.. source files). If any of the dependent files
has been changed recently, 1.e., the modification dates of the dependent files are more
recent than the target files, nmake will execute the commands in mlaver.mak to update
the target files. Nmake updates only those outdated target files.
To execute MLAYER program. type
mla20 <infile
to execute the mia0 version. Infile is the name of the input file which can be either filein
or filein.cig. If filein is used, MLAYLER will search for all modes of propagation. If fi-
lein.cig 1s used. MLAYLER will compute the modsum and path loss without a scarch for
the modes.
2. Wvygclean.mak
Thus 1s the makefile for the creation of wvgclean.exe
3. Wygstrip.mak
This is the makefile for the creation of wvgstrip.exe.
4. Wygclean.c
Wvgclean.c adds comment or descriptors to each datum line in filein and i-
lein.eig. This will help in editing.
To execute the program, type
wvgclean < filein.cig > temp
ren temp filein.eig
5. Wvgstrip.for
Wyestrip.for removes comments or descriptors that are added by wvgclean.c.

To exccute the program, type
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wyvestrip < fileinleig > temp
ren temp filein.eig
6. Wygstdin.for
\\'\'gstdih.f‘or reads input data from filein or filein.cig on execution of the
MLAYER program.




VI.  DISCUSSIONS AND RECOMDMIENDATIONS

A, ASSESSMENT OF MLAYER

MLAYLER was developed with the intention of providing a program which is ca-
pable of locating all propagating modes with attenuation rates below a specified value.
However, the price of this capuabilitv is the extremely Jong execution time. For instance,

a 2-meter evaporation duct takes approximately 3 hours and 20 minutes (on an IBM
© PS 2 model $0 with an Intel §0386 processor at 16 MI1z) to locate 9 modes with atten-
uation rates less than 3 decibels per kilometer. A Id-meter evaporation duct takes about
6 hours to locate 94 modes with attenuation rates below 2.1 decibels per kilometer.
Samples of output data are found in Appendix B.

Calculations of field strength and path Joss with MLAYLR were found to agrece
favourably with experimental measurements [Rell 17 and IS]. Typically, the model un-
Jerestimates the measured values by about 10 dB. The sources of discrepancies were
probably duc to the validity of the surface roughness model and the assumption of lat-
erel homogeneity of the medium,

In the following sections. proposed arcus for cuhancement of the capabilities of
MLAYER are discussed.

B. SURFACE ROUGHNESS MODIL

The surfuce roughness model used in MLAYER is based on the Kirchhofl approx-
imation which is a single scattering theory. This model is only valid for gentlv undulating
surfaces where shadowing of incident and scattered fields are negligible. When shadosw-
ing cannot be neglected, the Kirchhofl approximation tends to overpredict the scattered
encrgy which feads to erroncous results.

Shadowing occurs when incoming or outgoing ravs are blocked by the rough sur-
face. This leaves some arca of the surface in shadow. This eflect is associated with mul-
tiple scattering. Therefore. to account for shadowing, multiple scattering interactions
must be included in the model.

A more accurate model called the phase perturbation technique was introduced by
Winebrenner and Ishimaru [Refl 19]. The phase perturbation theory incorporates all the
multiple scatterings required for shadowing of the incident field. The theory is based on
the extinction theorem which is a consequence of Green's theorem [Reft 20]. In Refer-

ence 19, numerical results of the phase perturbation bistatic scattering cross section were
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compared with exact numerical results. In the region examined. it was found that the
results of the phase perturbution technique agree with the exact results except at low
grazing angles.

The phase perturbation technique is valid for a wider range of applications. It was
shown in Reference 19 that the reflection and backscattering coeflicients reduce to that
ol the Kirchofl' approximation when //4 2 1, i.c.. for gently undulating surfaces, where

[ 1s the length and £ 1s the wavelength of the incident wave.

C. LATERAL HOMOGENEITY OF REFRACTIVITY PROTILE

In MLAYLER, the refractive index 1s assumed to vary onlv with height.  Although
this assumption appears to be adequate most of the time [Ref. 17], there are incidents
where the validity of lateral homogeneity was cited as a possible reason for discrepancies
between observations and predicted results [Refl 18 and 21].

For refractivity profile thuat varies along the path. the laterally inhomogencous
structurcs can be approximated by several homogencous sections. The exchange of en-
ergyv between the propagating modes at the boundary of two sections are analvzed by

mode-conversion techniques {Ref. 22].

D. FIELD CONTRIBUTION FROM THE SOURCE

In the formulation of the propagation model, MLAYER ncglects the contribution
from the direct wave of the source. This approximation is good for ranges near or be-
vond the horizon where the major field contributions are from the reflected waves. For
ranges well within the horizon, the contribution from the direct wave is significant and
should not be ignored. Hence. for wave propagation in the interfcrence region. the co-
efficients, 4, and B, of Equations 31 and 32 must be obtained from the solutions of
Equation 46. At the same time, the surface wave field contribution {rom the integral of

the contour, G, , in Equation 73 may become significant.
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VIl. CONCLUSION

MLAYLER 1s a useful research tool for conducting case studies over a large dvnamic
range of frequencies. Calculation of ficld strength and path loss are in agreement with
observations for {requencies from 63 Mhz to 94 GlIlz {Ref. 17 and 18], It can serve as a
vardstick against which results of other quicker but less accurate models such as IREDPS
[Refl 23] and LRLPS [Ref. 24} are compared. In additon. the muluple (as opposed to
trilincar) piecewise linear refractivity profile makes it possible to model the simultaneous
occurrence of an evaporation duct and elevated ducts.

Finally. modifications of MLAYER to incorporate conditions of horizontal heter-
ogencity of refractivity, effects of source contribution and an improved mcde!ling of
surface roughness as discussed in Chapter VI are recommended to fullv exploit its ca-

pabilitics. These are oppdrtunities opened for further studies.




APPENDIX A. REPRESENTATION OF £, (¢} AND £, (¢) IN TERMS OF
MODIFIED HANKEL FUNCTION OF ORDER ONE-THIRD

The Airy function is related to the modified Bessel function of the third kind of or-

der one-third by the following equation [Rel. 4

i) = + (£)2 k(30 (356)
where
K. (q) = J% L (g (357)
or
Kys () = —j'% o 1, , O (473 (338)

In Equations 337 and 358, I7,,™ () and /1, ,9(.) are Hankel functions of the first and
second Kind of order one-third respectively. Substituting Equation 3537 into Lquation 336

leads to

—_
a3
N
e

—

Thus.
1! ] ( 2 e et ; -6
/11.(_(16,/‘..,.3) = _%_(_]_)1/‘ (6’ _/..)1[2 (ejl..j)l/.?c j=i6
M (2 32 ==y =i

J 9\ M 212
L(4) 0,0 (£ )

'.ulr‘)
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From Eguation 142,

Kigy = —j 200207 dif —ge™" 7). (36])

Substituting Equaton 360 mto Lquation 301 gives

o f 172 bl i
kiotg) = ()0 (_7 ) ,,mm<_:: q,z,_)

EN .o\ i P 3 :
— (_-_:;_ (/.3'.)1», 1111(1)<_§_ (l‘ A.) ( () )

where A, (¢) 18 the modified HanKkel function of the first kind of order one-tlurd and i<

defined as [Ref. 5]

2 A REE! 2 iy -
hig) = <%‘ (}’1")"" ”}:3(”<-i;— (}? ) . IO

To derive an expression for £ (¢). the Airy function. A1 = ¢h can be expressed as
[Ref. 4

¢

it —q) = % ( _Z_)l/l [0 j=in It () (_:; (]3;.') LT 1, . {2 (

From Equation 143,

(,JIIJ

q?"":>] A364)

Pt

k(g = 200207 770 dit —g) (363)

Substituting Cquation 364 into 365 Jeads to
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) i~ I it . b i~ 5 ) iy
==V e O = Y P =

7 4 1/3 Y ik 3 4 (366)

- - SO0

; b

=N, (¢) — el Iy (g)

where Ay (¢) 18 the modified Hankel function of the second kind of order one-third und

N ) <~ -
< ¢/3 L‘>]' 111/? ) ( 'f“ (/3"> . (307)

¢ | . the Hankel function can be approximated by the leading term of its as-

18 defined as [Refl §

hy (g)

i

'JJl'J

For large

vmptotic expansion. That is [Ref. 4,

1 2 1i2 . ; i._.—z—
s )~ (—-7) “‘P[‘("‘o 4)]

(368)
—-rn < argly) < 2=n
and
I ()(‘1) < A )‘2C\'P[ /<‘/ lis 7’)]
173 ~ =g - T T
¢ 0 4 (369)
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. Y ' h - Q- o=
LIS PSR B T . - 32 N . (37
~ 12 = g L\P[/( K AR ):, :

— 2= J-
— < arglgy) < ——

L4

To obtain the asvmptotic expansion for kgt . 1t is more convenient to express Adq) in

terms of 7, (4 (). From Lquations 336 and 358,

dig = L (L) (i E) e (-

t37h
— d 11 JEED My N A —_i-
e —— e N J - ; -~ N PRI
=5 (3 ) ¢ i ( 90 ‘
Thus,
. AR YRS S o0 Df 2 3r —imn -l
Ail ~g) = _..E-(T)]-LJ C/JH“H(_:\_({ ‘ ‘ )
{372
! ( q )v X -7 o f 2 i -
= — 2 3 l[]‘.'(- 3 (] ¢
Substitute Equation 372 into 2065 gives
h : 3 , .
2 32\ nf 2 3y -p- 1—1
kylgy = — (_“; q > I (T gite > (373)

-

From Fquation 369 and 373, the asvmptotic expansion for 4, (¢} is
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APPENDIX B.

.............

SAMPLE PRINTOUT OF INPUT AND OUTPUT FILES

celnit*Sample printout for a 2 m evaporation duct input filedrindeieid

9ghz02m

0

9600. 00
0. 000000
1. 000000
0. 000000
5.000000
15. 000000
35.000000
. 000000
. 000000
. 000000
. 0G0000
. 25u0l0
48. 000000
0. 000000
1. 000000

OO OO~

46. 0000000

7.0000000
2.0000000
18. 5000
9. 250000
3. 000000
C. 000000
16

0. 000000
0. 000000
0. 000030
0.020000
=0. 400000
0. 000000
0. 040000
~0.550000
0. 000000
0.0790900
-0.700000
0. 000000
0.158000
-0. 850000
0. 000000
0.251000
-0. 940000
0. 000000
0.631000 -
-1.100000
0. 000000
1. 259000

FQMZIN
DELFQ
NFREQ
MPOL
ALOSS
SEATMP
SEASLT
IFLAGE
AIRTMP
RH
WGPM3
RMSBHT
ZTINIT
DELZT
NZT
ZRINIT
DELZR
NZR
XINIT
DELX

A

ZREF
NZLAYR
2i[ 0]
zim[ 0]
zigab{ 0]
zif 1}
zim[ 1]
zigab[ 1]
zif 2]
zim{ 2]
zigabh[ 2]
zi[ 3]
zim{ 3]
zigabi 3]
zi[ 4]
zim[ 4]
zigabl 4]
zi[ 5]
zim{ 5]
zigab[ 5]
zi[ 6]
zim{ 6]
zigab[ 6]
zi[ 7]




-1. 170000
0. 000000
2. 000000
-1.180000
0. 000000
3.981000
-1. 090000
0. 000000
5.012000
-1. 010000
0.000000
7.943000
=0. 750000
0. 000000
12. 589000
-0. 270000
0. 000000
19. 953000
0.550000
0.000000
25.119000
1.140000
0. 000000
31. 623000
1.9000G0
0. 000000
50. 000000
4.069000
0. 000000

Sedededededede S amp le pr intout for 9 gh z02. ei g?'f*'-'f"f"c**‘k

9ghz02m

1

9600. 000
0. 000000
1

0

5. 000000
15. 000000
35. 000000
1

0. 000000
0. 000000
0. 000000
0. 250000
48.000000
0. 000000
1
46.000000
7. 000000
2

18. 500000
9. 250000
3

zim[ 7]
zigab[ 7]
zi| 8]
zim| 8]
zigab{ 8]
zi[ 9]
zim[ 9]
zigab{ 9]
zi[ 10]
zim[ 10]
zigabf 10]
zi[ 11]
zim[ 11}
zigab[ 11]
zi[ 12}
zimf 12]
zigab[ 12]
zi[ 131
zim{ 13]
zigab| 13]
zi[ 14]
zim| 14]
zigab[ 14]
zi[ 13]
zim| 15]
zigab[ 15]
zi[ 16]
zim| 16]
zigab[ 16]

FQMZIN
DELFQ
NFREQ
MPOL
ALOSS
SEATMP
SEASLT
IFLAGB
AIRTHP
RH
WGPM3
RMSBHT
ZTINIT
DELZT
NZT
ZRINIT
DELZR
NZR
XINIT
DELX
NX




0. 000000
16
0. 000000
0. 000060
0. 000600
0.020000
=0. 400000
0. 000000
0. 040000
-0. 550000
0. 000000
0.079000
-0. 700000
0.000000
0.158000
-0. 850000
G. 000000
. 251000
~0. 940000
0. 000000
0.631000
-1.100000
0. 000000
1. 259000
-1. 170000
0. 000000
2.000000
-1.180000
0. 000000
3.981C00
-1. 0906000
0. 600000
5.012000
-1. 010000
0.000000
7.943000
~0. 750000
0. 000000
12.589000
-0. 270000
0. 000000
19. 953000
0. 550000
0. 000000
25.119000
1. 140000
0. 000000
31. 623000
1.900000
0. 000000
50. 000000
4. 069000
0. 000000
9

ZREF
NZLAYR
zi[ 0]
zim| 0}
zigab[ 0]
zi[ 1]
zim[ 1]
zigab{ 1]
zif 2]
zim[ 2]
zigab] 2]
zi] 3]
zim[ 3}
zigab[ 3]
zif &)
zim[ 4]
zigab| 4]
z1i[ 3]
zim| 5]
zigabl 5]
zi[ 6]
zim] 6]
zigabf 6]
zif 7]
zim[ 7]
zigab[ 7]
zif 8]
zim] 8]
zigab[ 8]
zi{ 9]
zim{ 9]
zigabf 9]
z1i{ 10}
zim[ 10]
zigab[ 10]
zi[ 11]
zim[ 11]
zigab[ 11]
zi[ 12]
zim[ 12]
zigab[ 12]
zi[ 13]
zim{ 13]
zigab[ 13]
zi[ 14]
zim[ 14]
zigab| 14]
zi[ 15]
zim| 15]
zigab[ 15]
zif 16}
zim[ 16]
zigabl 16]
nrmode

(-1.269556983588969E-001,1.637613838717031E-001)
(-9.291194300692691E-002,1. 251243717867209E-001)
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(-4.143216670274859E-002,8.947793427709196E-002)
(8.240706115401963E-003,6.917378956118456E-002)
(5.551160395245244E-002,5. 324818113693566E-002)
.682611348504449E-002,6. 708823745503940E-002)
.394420773218969E-001,9. 725689299213881E-002)
.102775842495503E-001,1. 357828223763695E-001)
.864589183106626E-001,1. 658090146540282E-001)

NN NN
O oo~ W

1D 1O =~y

1

frequency = 9600. 0000 mhz

horizontal polarization

maximum mode attenuation rate = 5.0000 db/km
seawater temperature = 15. 0000 degrees celsius
seawater salinity = 35.0000 grams salt/kg seawater
dielectric constant of seawater = 80. 8869
conductivity of seawater = 4.6400 si/m

rms surface bump height = . 2500 meters

iflagh = 1

air temperature = .0000 degrees celsius

relative himidity = . 0000 percent

liquid water concentration in air = . 0000 grams/meter¥¥3
m( . 0000 ) = . 0000 m-units

gab( .0000 ) = . 0000 db/km

tropospheric modified refractivity profile

z m(z) gab(z) dm/dz d(gab)/dz
(meters) (m-units) (db/km) (m-units/meter) ((db/km)/meter)
. 0000 . 0000 . 00000D+00 -20. 0000 . 00000D+00
. 0200 -. 4000 . 000060D+00 -7.5000 . 00000D+00
. 0400 -. 5500 . 00000D+00 -3, 8462 . 00000D+00
.0790 -.7000 . 00000D+00 -1.8987 . 00000D+00
. 1580 -. 8500 . 00000D+00 -. 9677 . 00000D+00
. 2510 -. 9400 . 00000D+00 -.4211 . 00000D+00
. 6310 -1. 1000 . 00000D+00 -. 1115 . 00000D+00
1. 2590 -1.1700 . 00000D+00 -.0135 . 00000D+00
2.0000 -1. 1800 . 00000D+00 . 0454 . 00000D+00
3.9810 ~-1.0900 . 00000D+00 .0776 . 00000D+00
5.0120 -1.0100 . 00000D+00 . 0887 . 00000D+00
7.9430 -, 7500 . 00000D+00 . 1033 . 00000D+00
12.5890 -.2700 . 00000D+00 L1114 . 00000D+00
19.9530 . 5500 . 00000D+00 L1142 . 00000D+00
25.1190 1. 1400 . 00000D+00 . 1169 . 00000D+00
31.6230 1. 9000 . 00000D+00 . 1180 . 00000D+00
50. 0000 4. 0690 . 00000L+00
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start search for modal eigenvalues el

tmesh= 1.67984D-03

zeros found in expanded

tleft= 0. 00D+00

ttop = 1.68D-01
geigen( 1) =
geigen( 2) =
qeigen( 3) =
geigen( 4) =
qeigen( 5) =

zeros found in expanded

tleft= -2.69D-01

ttop = 1.680-01
geigen( 1) =
geigen( 2) =
geigen( 3) =

zeros found in expanded
tleft= -3.38D-01
ttop = 1.68D-01

zeros found in expanded
tleft= -8.06D-01
ttop = 1. 68D-01

zeros found in expanded

tleft= 2.69D-01
ttop = 1.68D-01
geigen( 1) =

zeros found in expanded
tleft= 5.38D-01
ttop = 1.68D-01

tol= 1. 00000D-04

search rectangle defined by

tright= 2.69D-01

tbot =  =1.00D-04
8.24071D-03  6.91738D-02
5.55116D-02  5.32482D-02
2.10278D-01  1.35783D-01
1.39442D-01 9. 72569D-02
7.68261D-02  6.70882D-02

search rectangle defined by
tright= 0. 00D+00
tbot = -1.00D-04

-1.
-9.
=4,

26956D-01
29119D-02
14322D-02

1.63761D-01
1.25124D-01
8.94779D-02

search rectangle defined by
tright= -2.69D-01
tbot = -1.00D-04

search rectangle defined by
tright= -5.38D-01
tbot = -1.00D-04%

search rectangle defined by
tright= 5.38D-01
tbot = -1.00D-04

2.86459D-01 1.65809D-01

search rect~ngle defined by
tright= 8. 06D-01
tbot = -1.00D-04




zeros tounu in expanded search rectangle defined by

tleft= 8.06D-01 tright= 1. 08D+00
ttop = 1. 68D-01 thot = -1.00D-04
ki modal eigenvalues nrmode=  § e
mode eigenvalue theta atnu db/km
1 -1.26956D-01 1.63761D-01 1.16912D-03 2.38566D-03 4. 8743D+00
2 -9.29119D-02 1.25124D-01 1.03533D-03 2.05835D-03 3. 7243D+00
3 ~4.14322D-02 8.94779D-02 9.86784D-04 1.54436D-03 2. 6633D+00
4 8.24071D-03 6.91738D-02 1.15188D-03 1.02280D-03  2.0589D+00
5 5.55116D-02 5.32482D-02 1.50185D~03 6.03859D-04 1. 5849D400
6 7.68261D-02 6.70882D-02 1.74517D-03 6.54734D-04 1. 9969D+00
7 1.39442D-01 9.72569D-02 2.29575D-03 7.21529D-04 2. 8948D+00
8 2.10278D-01 1.35783D-01 2.80081D-03 8.25696D-04  4.04153D+00
9 2.86459D~-01 1.65809D-01 3.24286D-03 8.70843D-04  4.9353D+00
Yededededededede § amp le pr intout for 9 gh z202m. p 1 preseredleedens
3 1 2
frequency = 9600. 0000 mhz
18.5 48.0 46.0 52.90 61.21 84. 54 76.23
18.5 48.0 53.0 69.58 73.08 67. 86 64. 36
27.8 48.0 46.0 2.17 38.48 138. 80 102. 48
27.8 48.0 53.0 19.57 43.39 121.39 97.57
37.0 48.0 46.0 3.41 22.15 140. 05 121. 31
37.0 48.0 53.0 2.69 25.91 140.77 117.55

FeddiintrSample printout for a 14 m evaporation duct input filedervededeiededek

9ghzlim

0

9600. 00 FQMZIN
0.000000 DELFQ
1 NFREQ
0 MPOL
2.100000  ALOSS
15, 000000 SEATMP
35.000000 SEASLT
1 IFLAGB
0.000000  AIRTMP
0.000000 RH
0.000000  WGPM3
0.250000  RMSBHT
25.000000 ZTINIT
0. 000000 DELZT
1 NZT
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3.0000000
. 0000000

-3.900000
0. 000000
0. 100000
-5. 340000
0. 000000
0. 200000
-6. 400000
0. 000000
0. 398000
-7.460000
0. 000000
0. 794000
-8. 4350000
0. 000000
1. 585000
=9. 470000
0. 000000
3. 162000
=10. 3506000
0. 000000
6.310000
-11. 040000
0. 000000
12.589000
=11. 320000
0.000009
14. 000000
-11. 320000
0. 000000
25.119000
-10. 870000
0. 000000
39.811000
=9.750000
0. 000000
50.119000
~8. 820000
0. 000000
63. 096000
-7.560000
0.000000
79. 433000
-5. 880000
0.000000

ZRINIT
DELZR
NZR
AINIT
DELX

NX

ZRETF
NZLAYR
zi[ 0]
zim[ 0]
zigab[ 0]
zif 1]
zim{ 1}
zigab[ 1]
zil 2]
zim| 2]
zigabl 2}
zi[ 3]
zim{ 3]
zigabl 3]
zi[ 4]
zim[ 4]

zim{ 6]
zigab] 6]
zi{ 7}
zim] 7]
zigab[ 7]
zi[ 8]
zimf 8]
zigab| 8]
zi[ 9]
zim| 9]
zigab( 9]
zi[ 10]
zim{ 10]
zigab] 10]
zi[ 11]
zim[ 11]
zigabf 11]
zif 12]
zim[ 12]
zigab(| 12]
zi[ 13]
zim| 13]
zigab[ 13]
zi[ 14]
zim[ 14]
zigab{ 14]
zi[ 15]
zim[ 15)
zigab[ 15]
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100. 000000
-3. 670000
0. 000000
125. 8653000
-0. 800000
0. 000000
158. 489000
2.920000
0. 000000
199. 526000
7.690000
0. 000000
209. 526000
8. 870000
0. 000000

eI § amp le pr intout for 9ghz 1l4m. e iga'rfr:'c:‘r:‘r:'n':-.‘:

9ghzl4m

1

9600. 000
0. 000000
1

0
2.100000
15. 000000
35. 000000
1

0. 000000
0. 000000
0. 000000
0.250000
25. 000000
0. 000000
1

3. 000000
7.000000
2

18. 500000
9.250000
3

0. 000000
20

0. 000000
0. 000000
0. 000000
0. 040000
-3.3800000
0. 000000
0. 100000
-5. 340000
0. 000000
0. 200000
-6.400000
0. 000000

zi[ 16]
zim| 16}
zigab[ 16]
2iy 17
zim[ 17]
zigab[17]
zi[ 18]
zim[ 18]
zigab[ 18]
zi[ 19]
zim[ 19]
zigab[ 19]
zi[ 20}
zim[ 20]
zigabf 20]

FQMZIN
DELFQ
NFREQ
MPOL
ALOSS
SEATMP
SEASLT
IFLAGB
AIRTHP
RH
WGPM3
RHSBHT
ZTINIT
DELZT
NZT
ZRINIT
DELZR
NZR
XINIT
DELX

NX

ZREF
NZLAYR
z2i[ 0)
zim[ 0]
zigab| 0]
zi[ 1]
zimf 1]
zigab[ 1]
zi[ 2]
zim[ 2]
2igab[ 2]
zif 3]
zim{ 3]
zigabl 3]

128




0.398000
-7. 460000
0. 000000

G.755000
Mo ¢ Iy

-8. 4390000
0. 000000
1.583000
-9. 470000
0. 000000
3. 162000
~10. 350000
0.000000
6.310000
-11. 040000
0.000000
12.589000
-11.320000
0. 000000
14.000G00
-11. 330000
0. 000600
25.119000
-10. 870000
0. 000000
39.811000
-9.750000
0. 000000
50. 119000
-8.820000
0. 000000
63. 096000
-7.560000
0. 000000
79. 433000
-5. 880000
0. 000000
100. 000000
-3.670000
0. 000000
125. 893000
-0. 800000
0.000000
158. 489000
2.920000
0. 000000
199, 526000
7.690000
0. 000000
209. 525000
8. 870000
0. 000000

NN NN

zi[ 4]
zim] 4]
zigabl &)
Ly Dy
zim| 5]
zigab] 5]
zif 6}
zim| 6]
zigabf 6]
2i[ 7)
zim| 7]
zigab[ 7]
zi[ 8]
zim{ 8]
zigab( 8]
zi[ 9]
zim| 9]
zigab( 9]
zi[ 10]
zim| 10}
10]

zigab[ 12]
zi{ 13]
zim[ 13]
zigab[ 13]
zi[ 14]
zim| 14]
zigab{ 14]
zi[ 15]
zim{ 15]
zigabf 15]
zi[ 16}
zim{ 16]
zigab[ 16]
zi[ 17]
zim{ 17}
zigab[ 17]
zi[ 18]
zim[ 18]
zigab[ 18]
zi[ 19]
zim[ 19]
zigahi 19]
zi[ 20]
zim[ 20]
zigab[ 20]
nrmode

791475196101274E-002,2. 146753762359050E-002)
353759867176463E-002,1.997153241435371E-002)

94
-1.141392174382303E-001,2. 381981532549529E-002)
-9.
~-8.
-7.039783167095078L-002,1. 889606906408722E-002)
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. 81422
.656628790733621E-002,

.52774200023129°.2-002,
.546901363155011E-002, 1.
.541956071147925E-003, 1.

.531321843 058353E-003, 1
.275397200580210E-002,1.
.182707485088627E-002,L
.011306010124748E-002,1.
.842803342065884E-002,1.
. 6943726355547260E-002,1.
.485441606530146E-002,1.
.227012336327741E-002,1.
.029778501629384E-002,1.
. 803056175576653E-002, 1.
.555171301174155E-002, 1.

.226312048960586E-002,

. 940292680300993E-002,1.
. 068485002790371E-001,1.
. 138252208858628E-001,1.
.207736300828756E-001,1.
.270094728812559E-001, 1.
.334153343077380E~-001, 1.
.403978164901863E-001,1.
.467611452238766E-001,1.
.534013614885507E-001, 1.
.596149004805981E-001, 1.
.652780520579286E-001, 1.
. 709514646617846E-001, 1,
.772646284812436E-001, 1.
. 836482895835790E-001,1.
.B891728805710848E-001, 1.
.951501729145819E-001, 1.
.006781595657978E-001, 1.
.059566903740310E-001,1.
. 106263141043572E-001,9.
.157518751516274E-001,8.
.213117492755677E-001,9.
.273294238073336E-001,8.
.303987147631242E-001,1.
.318960198770044E-001,8.
. 348881611845628E-001,7.
. 402844396949530E-001, 8.
.455147471247609E-001,9.
.499562362348160E-001,1.
.545987673232816E-001,1.
. 600542439477720E-001, 1.
.662691013974199E-001,1.
.726418617644147E-001,1.
.787900254603262E-001,1.
.849476164544477E-001, 1.
.913747922726816E-001, 1.
.980151522337324E-001,1,
. 042875049575047E-001, 1.
. 113767357254904E-001, 1.

837496516E-002, 1.

B06765450625147F-002)

1.7281183979540749E-002)
.58))30645452212E-002,L

663363181205510E-002)
.628348275501675E-002)
571655186158130E-002)
540239335815212E-002)
518851207972415E-002)
460556299546134E-002)
455854335720260E-002)
427613140712134E-002)
365892306660126E-002)
365320803509313E-002)
365090923924493E-002)
336276100865187E-002)
282089227646639E-002)
285572220605075E-002)
287860792288040E-002)

1.278978888881959E-002)

210154187763285E-002)
208486102139816LE-002)
195444121483925E~002)
220952877564303E~002)
222384497715726E-002)
139128734459426E-002)
116571468633296E-002)
129961336802001E-G02)
116543866415548E-002)
136779885138012E-002)
153156478829780E-002)
066116492781759E-002)
023671860551962E-002)
049763117145163E-002)
025773869961451E-002)
007563477610222E-002)
041321459422345E-002)
043172189566190E-002)
926428640075490E-003)
798215719693539E-003)
015024671611194E-003)
321071087819404E-003)
185554142465963E-003)
464799970637166E-003)
882321847941567E-003)
719487457459410E-003)
692237120376304E-003)
010888147000029E-002)
010149239614689E-002)
049907356151861E-002)
044438363485770E-002)
092098859083637E-002)
175196099261803E-002)
227969492073188E-002)
246149094591169E-002)
329730594318235E-002)
319657577519411F-002)
314377702678184E-002)
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[42]
[43])
[ 44)
[45]
[ 46]
[47]
[ 48]
[ 49)
[ 50]
(51
[52]
[ 33]

[ 60]




ootV E R EPWLWLLWWWLWW LWL WLW

.187819780335167E-001,1.
. 265578839391167E-001,1.
.338112497216490E-001, 1.
. 410v4i00084528E-001,1.
.487077270086091E-001, 1.

333680648010814E-002)
384739430048439E-002)
4E4186747417008E-002)
490152638527356E-002)
524482539938137E-002)

.563811238953353E-001,1.
. 643646265942290E-001, 1.
.729775181063331E-001,1.
.814931085621074E-001, 1.
.8968891425944480E-001, 1.
.980319033943261E-001,1.
.067283853697590E-001,1.
. 154949433609382E-001, 1.
. 246400421526860E-001,1.
.341831113214738E-001,1.
.435147531419498E-001, 1.
.5252899861946155E-001,1.
.618630098407780E-001,1.
.716181770152394E-001,1.
.8150204322944205E-001,1.
.917304699196995E-001, 1.
.020225407049786E-001,2,
.118252276793764E-001, 2.
.218948685680153E-001, 2.
.324815199710420E-001,2.
.432604196740195E~-001, 2.
.541811165125796E-001, 2.
.651832495410506E-001,2.
. 758688247777175E-001, 2.
. 566533508029618E-001,2.
.981376451733623E-001,2.
.087267273995461E-001, 2.

551353021062856F-002)
538942161737147E-002)
559989625580370E-002)
618605966683290E-002)
689462812245438E-002)
714047724320524E~002)
729643131530817E-002)
751352926449171E-002)
750551050950182E-002)
789042401852184E-002)
866150403101799E-002)
909787541066863E-002)
919260738082309E-002)
027318684881558E-002)
§52391397029549E-002)
972766534431011E-002)
044077417123271E-002)
102681760869346E-002)
102179462275660E-002)
111602176832850E-002)
136847129075478E-002)
172276354461229E-002)
227384315438282E~-002)
293313938401881E-002)
286336319718634F-002)
292879795570507E-002)
320416356305734E-002)
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.213712082142159E-001, 2.
.330414592077247E-001,2.

370559660462316E-002)
426761624643026E-002)

ot o 4 ey e iy e P e Py ey Pt Py T8 ) ) [ | ot e Fmm (i Py [} e e} et i) e o Py et oy

WO OVOWWOWOOXHBRIE XM OMN NN NSNS NANNAISI OO OO
W PO WMPEWN= OOV PWE = OWOE SO UE 0N —

e e ot et et St Y bt A A Mt S b b bd e ok b L At 4 Sk et

viedeieiieieSample printout for 9ghzlém, outd ik

frequency = 9600. 0000 mhz
horizontal polarization

maximum mode attenuation rate = 2.1000 db/km
seawater temperature =
seawater salinity =
dielectric constant of seawater =
conductivity of seawater =

rms surface bump height =

iflagh = 1

air temperature = . 0000 degrees celsius
relative himidity = . 0000 percent
liquid water concentration in air =

15.0000 degrees celsius
35.0000 grams salt/kg seawater
80. 8869
4.6400 si/m
. 2500 meters

. 0000 grams/meter®¥3

. 0000 m=-units
. 0000 db/km

m(
gab(

.0000 ) =
.0000 ) =
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z

(meters)

=
AN Sl SR e OV

PEVIN
39.
50.
63.
79.
. 0000
125.
158.
199.
209.

100

Joa'ratontsats
WITICWR

. 0000
. 0400
. 1000
. 2000
. 3980
. 7940
. 5850
. 1620
. 3100
. 5890
. 0000

1160
8110
1190
0960
4330

8930
4890
5260
5260

tmesh=

tropospheric modified refractivity profile

m(
(m-u

-3.
-5.
-6.
-7.
-8.
-9.
-10.
-11.
-11.
-11.
-10.
-9.
-8.
-7.
-5.
-3.

o~ N

z)

nits)

. 0000
9000
3400
4000
4€00
4500
4700
3500
0400
3200
3300
8700
7500
8200
5600
8800
6700
. 8000
. 9200
. 6300
. 8700

gab(z)

(db/km)

5.84278D-04

. 00000D+00
. 00000D+00
. 00000D+00
. 00000D+00
. 00000D+00
. 00000D+00
. 00000D+00
. 00000D+00
. 00000D+00
. 00000D+00
. 00000D+00
. 00000D+00
. 00000D+00
. 00000D+00
. 00000D+00
. 00000D+00
. 00000D+00
. 00000D+00
. 00000D+00
. 00000D+00
. 000C0OD+00

start search for modal eigenvalues

tol=

dm/d
(m=-unit

-97.
~24.
-10.
=3.
-2.
-1.

z
s/meter)

5000
0000
6000
3535
6010
2389

. 5580
. 2192
. 0446
. 0071

L0414
.0762
. 0902
L0971
. 1028
. 1075
.1108
. 1141
. 1162
. 1180

5.8427

featas®
aly

Pesevesa

8D-05

zeros found in expanded search rectangle defined by

tleft=
ttop =

1.87D-01

2.45D-02
geigen( 1)
geigen( 2)
qeigen( 3)
qeigen( &)
geigen( 5)
geigen( 6)
qeigen( 7)
qeigen( 8)
geigen( 9)
geigen( 10)
geigen( 11)
geigen( 12)

qeigen(

Wow e n

to

tright= 2.80D-01

tbot = -5.84D-05
1.89173D-01 1.02577D-02
2.10626D-01  9.92643D-03
2.30399D-01 1.18555D-03
2.34888D-01 7.88232D-03
2.78790D-01 1.17520D-02
2.72642D-01 1.09210D-02
2.66265D-01 1. 04444D-02
2.60054D-01 1.04991D-02
2.54599D-01 1.01015D-02
2.49956D-01 1.01089D-02
2.45515D-01  9.69224D-03
2.40284D-01  8.71949D-03
2.31896D-01  8.46480D-03

d(gab)/dz
((db/km)/meter)

. 00000D+00
. 00000D+00
. 00000D+00
. 00000D+00
. 00000D+00
. 00000D+00
. 00000D+00
. 00000D+00
. 00000D+00
. 00000D+00
. 00000D+00
. C0000D+00
. 00000L+00
. 00000D+00
. 00000D+00
. 00000D+00
. 00000D+00
. 00000D+00
. 00000D+00
. 00000D+00




qeigen(
geigen(
geigen(
geigen(
geigen(
qeigen(

14)
15)
16)
17)
185
19)

zeros found in expanded

tleft= 9.25D-02

ttop = 2.45D-02
geigen( 1)
qeigen( 2
geigen( 3)
qeigen( &)
gqeigen( 5)
gqeigen( 6
geigen( 7)
geigen( &
qeigen(  9)
Yeigen( 10)
geigen{ 11)
geigen( 12)
geigen( 13)
geigen( 14)

e nn

zeros found in expanded

tleft= 0. 00D+00

ttop = 2.45D-02
geigen( 1)
geigen( 2
qeigen( 3)
qeigen( &)
qeigen{( 5)
geigen( 6)
geigenf{ 7)
qeigen{ 8)
qeigen( 9)
geigen( 10)
geigen( 11)
qeigen( 12)

zeros found in expanded

tleft= -9.35D-02

ttop = 2.45D-02
geigen( 1)
geigen( 2)
geigen( 3)

=M N

.27329D-01
.215:2D-01
. 15752D-01
.05937D-01
.G0678D-01
.95150D-01

= s 00 \O 00

. 32107D-03
.01502Zh-03
. 79822D-C3
.04317D-02
.04137D-02
.007Z5D-02

search rectangle defined by

tright= 1.87D-01

tbot =  -5.84D-05
9.94029D-02  1.21015D-02
1.13823D-01  1.19544D-02
1.70951D-01  1.06612D-02
1.83648D-01  1.04976D-02
1.77265D-01  1.02367D-02
1.65278D-01  1.15316D-02
1.59615D-01  1.13678D-C2
1.53401D-01  1.11654D-02
1.46761D-01  1.12996D-02
1.40358D-01  1.11637D-02
1.33415D-01  1.13914D-02
1.27009D-01  1.2223$D-02
1.20774D-01  1.22095D-02
1.06849D-01  1.20849D-02

search rectangle defined by

tright= 9.35D-02

tbot = -5.84D-05
3.55132D-03 1.51885D-02
3.8428¢D-02 1.36589D-02
9.22631D-02 1.27898D-02
8.55517D-02 1.28786N-02
7.80306D-02 1.28557D-02
7.02978D-02 1.28208D-02
6.22701D-02 1.33628D-02
5.48544D-02 1.36509D-02
4.69437D-02 1.36532D-02
3.01131D-02 1.42761D-02
2.18271D-02 1.45585D-02
1.27540D-02 1. 46056D-02

search rectangle defined by

tright=

tbot

-8.
-4.
-5.

0. 00D+00

= -5.84D-05

35376D-02
65663D-02
54196D-03

1.
1.
1.

99715D-02
72812D-02
54024D-02




geigen( 4) =
geigen( 5) =
geigen( 6) =
geigen( 7} =
qeigen( 8) =

zeros found in expanded

tleft= -1.87D-01

ttop = 2.45D-02
qeigen( 1) =
geigen( 2) =

zeros found in expanded
tleft= -2.80D-01
ttop = 2.45D-02

zeros found in expanded
tleft= -3.74D-01
ttop = 2.45D-02

zeros found in expanded

tleft= 2.80D-01

ttop = 2.43D-02
geigen( 1) =
geigen( 2) =
qeigen( 3) =
geigen( &) =
geigen( 5) =
geigen( ;=
geigen( 7) =
qeigen( 8) =
geigen( 9) =
qeigen( 10) =
qeigen( 11) =
qgeigen( 12) =
qeigen( 13) =

zeros found in expanded

tleft= 3,74D-01
ttop = 2.45D-02
qeigen( 1) =

-1.546%0D-02 1.57166D-02
-2.52774D-02 1. €2835D-02
-3.53533D-02 1.66336D-02
-5.81423D-02 1.80677D-02
-7.03978D-02 1. 88961D-02

search rectangle defined by
tright= -9.35D-02
tbot = -5.84D-05

-9.79148D-02
-1.14139D-01

2.14675D-02
2.38198D-02

search rectangle defined by
tright= -1.87D-01
tbot = -5. 84D-05

search rectangle defined by
tright= -2.80D-01
tbot = -5.84D-05

search rectangle defined by

tright= 3.74D-01

tbot = -5.84D-05
3.72978D-01 1.55999D-02
3.64365D-01 1.53894D-02
3.56381D-01 1.55135D-02
3.48768D-01 © 1.52448D-02
3.41094D-01 1.49015D-02
3.33811D~-01 1,46419D-02
3.26458D-01 1.38474D-02
3.18782D-01 1.33368D-02
3.11377D-01 1.31438D-02
3.04288D-01 1.31966D-02
2.98015D-01 1.32973D-02
2.91375D-01 1. 24615D-02
2.84948D-01 1.22797D-02

search rectangle defined by
tright= 4.67D-01
thot = -5.84D-05

4.61863D-01 1.91926D-02

134




geigen( 2)
geigen( 3)

qeigen( &)
qgeigeu( 5)
geigern(

qeigen( 7)
geigen( 8)
geigen( 9)
geigen( 10)

5 8
A
wnwwounnnnn

zeros found in expanded

tleft= 4,.67D-01
ttop = 2.45D-02
geigen{ 1)

geigen( 2)
qgeigen( 3)

qeigen( &) =
geigen( 5) =
qeigen( 6) =
qeigen( 7) =
geigen( &) =
geigen( 9) =

zeros found in expanded
tleft= 5.61D-01
ttop = 2.45D-02

qeigen( 1)

qeigen( 2) =
geigen( 3) =
geigen( 4) =
geigen( 5) =
gqeigen( 6) =
qeigen( 7) =
qeigen( 8) =

LWWLwWwPrbsrPeEe

.52529D-01
.43515D-01
.24183D-01
. 24640D-01
. 15495D-01
.06728D-01
.98032D-01
. 89889D-01
. 81493D-01

b b bt o d et s b e e

.90979D-02
.86615D-02
. 78904D-02
. 75055D-02
.75135D-02
. 72964D-02
. 71405D-02
. 68946D-02
.61861D-02

search rectangle defined by

tright= 5.61D-01

tbot = -5.84D-05
5.54181D-01  2.17228D-02
5.43260D-01  2.13685D-02
5.32482D-01 2.11160D-02
5.21895D-01 2.10218D-02
5.11€25D-01  2.10268D-02
5.02023D-01 2.04408D-02
4.91730D-01 1.97277D-02
4.81502D-01 1.95239D-02
4,.71618D-01 1.92732D-02

search rectangle defined by

tright= 6.54D-01

tbot =  =5.84D-05
6.44509D-01  2.47339D-02
6.33041D-01  2.42676D-02
6.21371D-01  2.37056D-02
6.09727D-01  2.32642D-02
5.98138D-01  2.29288D-02
5.86653D-01  2.28634D-02
5.75869D-01  2.29331D-02
5.65183D-01  2.22738D-02

zeros found in expanded search rectangle defined by

6.54D-01
2.45D-02

tleft=
ttop =

tright=

tbot

2 modes found on same phase line

qeigen( 1)
qeigen( 2)

zeros found in expanded
tleft= 7.48D-01

6.
6.

7.48D-01

= -5.84D-05

68467D-01
56153D-01

2.
2.

47500D-02
47347D-02

search rectangle defined by

tright=
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ttop =

2.45D-02

tbot =

2 modes found on same phase line

eatentsnlsnts
e St iy

3
o}
= [«3
OWVWONAATULMEPEWN+-O

N b b b et e b pb b
OWOOSNNERNLVI LW

ro
—

S S S
=L

-

modal eigenvalues

eigenvalue

-1,
.79148D-02
. 35376D-02
.03978D-02
. 81423D-02
. 65663D-02
. 58533D-02
.52774D-02
. 54690D-02
.54196D-03
.55132D-03
.27540D-02
. 18271D-02
.01131D-02
. 84280D-02
. 69437D-02
.48544D-02
.22701D-02
.02978D-02
. 80306D-02
.55517D-02
.22631D-02
. 94029D-02
. 06849D-01
.13825D-01
. 20774D-01
.27009D-01
. 33415D-01
.40398D-01
.46761D-01
.53401D-01
.59615D-01
.65278D-01
.70951D-01
.77265D-01
.83648D-01
.89173D-01
.95150D-01
. 00678D-01
. 05357D-01
. 10626D-01
.15752D-01
.21312D-01
.27329D-01

D2 RN = = b b = b b e = e WO WO 00 SO U B0 00D

14139D-01

00 \D OO0 \C 1= b bbb b pod b bd b bbb b bbb bbb b ek b ped b b b b b b e b b s b b pd b b b e s RO R

nrmode= 94
theta
.38198D-02 3.47000D-04
. 14675D-02 3.37466D-04
.99715D-02 3.39522D-04
.88961D=-02 3.49316D-04
.80677D-02 3.66463D-04
.72812D-02 3.89814D-04
.66336D-02 4.2395:D-04
.62835D-02 4&4.84349D-04
.57166D-02 5.67769D-04
.54024D-02 7.28131D-04
.51885D-02 9.68348D-04
.46056D-02 1.25460D-03
.45585D-02 1.53413D-03
.42761D-02 1.76251D-03
. 36589D-02 1.96946D-03
.36532D-02 2.16626D-03
. 36509D-02 2.33340D-03
.33628D-02 2.48351D-03
.28209D=-02 2.63463D-03
.28557D-02 2.77370D-03
.28786D-02 2.90271D-03
.27898D-02 3.01313D-03
.21015D=-02 3.12585D-03
.20849D-02 3.23999D-03
. 19544D-02 3. 34337D-03
.22095D-02 3.44356D-03
.22238D-02 3.53092D-03
.13914D~02 3.61798D-03
.11657D~-02 3.71101D-03
.12996D-02 3.79399D-03
.11654D-02 3.87856D-03
.13678D=-02 3.95622D-03
. 13316D-02 4.02569D-03
.06612D-02 4.09370D-03
.02367D-02 &4,16832D-03
.04976D-02 4.24268D-03
.02577D-02 4.30584D-03
.00756D-02 4.37319D-03
.04132D-02 4.43471D-03
.04317D-02 4,49259D-03
.92643D-03 4.54304D-03
.79822D-03 4.59766D-03
.01502D-03 4.65652D-03
.32107D-03 4,71922D-03
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-5.84D-05

low'antoulants
BEGTITINT

.36133D-03
. 11498D-03

. 88036D-03

.64885D-03
.41421D-03
. 17081D-03

.92120D-03

.64625D-03
. 35548D-03

.03582D-03

. 68051D-04

. 70059D-04
. 64688D-04

. 96631D-04

. 39607D-04
. 08626D-04

. 86226D-04
. 63474D-04
. 38289D-04
. 26958D-04
.17257D-04
.07852D-04
. 89575D-04
. 82645D-04
. 75087D-04
. 73620D-04
. 69523D-04
.54177D-04
. 47335D-04
.45841D-04
. 40966D-04
. 40704D-04
.40268D-04
. 27526D-04
.20257D-04
.21161D-04
. 16655D-04
. 12820D-04
. 14982D-04
.13703D-04
. 06994D-04
.37065D-05
.48020D-05
. 63419D-05

atnu db/km

N~ ~J 0000000000 0000 NO OO\ N\D\O It b 3 b b s b s b s b b et e bt b b e e b b e s DD

. 0384D+00
. 8371D+00
. 7091D+00
. 6170D+00
.5461D+00
. 4788D+C0
. 4234D+00
. 3935D+00
. 3450D+00
.3181D+00
.2998D+00
. 2499D+00
. 2459D+00
.2217D+00
. 1683D+00
. 1684D+00
. 1682D+00
. 1435D+00
. 0972D+00
. 1001D+00
. 1021D+00
. 0945D+00
. 0356D+00
. 0342D+00
. 0230D+00
. 0448D+00
. 0461D+00
. 7483D-01
.5552D-01
. 66398D-01
.5550D-01
. 7282D-01
. 8683D-01
.1235D-01
. 7602D-01
.9835D-01
.7782D-01
. 6224D-01
.9113D-01
.9271D-01
.4947D-01
.5292D-01
. 7148D-01
. 1209D-01




O ULULULLLILLLLLLULLLLE P PP RPPDLPFPLVLLULWLLWWWLWWWLWOLWIRNRRNRPDRIDONDNDIDONDNDDBN

.30399D-01
.3189¢eD-01
. 34888D-01
.40284D-01
.45515D-01
.49956D-01
. 54599D-01
.60054D-01
.66269D-01
. 72642D-01
.78790D-01
. 84948D-01
.91375D-01
.98015D-01
. 04288D-01
.11377D-01
. 18782D-01
.26458D-01
.33811D-01
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. 81493D-01
. 8988°D-01
. 98032D-01
.06728D-01
. 15495D-01
. 24640D-01
. 34183D-01
.43515D-01
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.61863D-01
.71618D-01
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.91730D-01
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.32482D-01
.43260D-01
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.65183D-01
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.33041D-01
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. 18555D-03
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.88232D-03
. 71949D-03
. 69224D-03
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.01015D-02
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. 04444D~02
.09210D-02
.17520D-02
.22797D-02
.24615D-02
.32973D-02
. 31966D-02
.31438D-02
. 33368D-02
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.46419D-02
.49015D-02
.52448N-02
.55135D-02
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. 55999D-02
. 61861D-02
. 68946D-02
. 71405D-02
. 72964D-02
. 75135D-02
. 75055D-02
. 78904D-02
. 86615D-02
.90979D-02
.91926D-02
.92732D-02
.95239D-02
.97277D-02
. 04408D-02
. 10268D-02
.10218D-02
.11160D-02
. 13685D-02
.17228D-02
.22738D-02
.29331D-02
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.32642D-02
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.75019D-03
.76638D-03
.79691D-03
.85181D-03
. 90448D-03
. 94869D-03
. 99440D-03
. 04766D-03
. 10756D-03
.16837D-03
.22643D-03
. 28389D-03
. 34313D-03
.40378D-03
.46027D-03
.52345D-03
.58872D-03
.65564D-03
.71907D-03
.78111D-03
.84578D-03
.90923D-03
.97497D-03
. 04515D-03
.11381D-03
.18078D-03
. 24497D-03
.31279D-03
. 36044D-03
.45021D-03
.52228D-03
.59206D-03
.65873D-03
.72700D-03
.79763D-03
. 86847D-03
.94101D-03
.01331D-03
.08148D~03
.15075D-03
.22286D-03
.29558D-03
. 36854D-03
. 44134D-03
.51138D-03
.58133D-03
.65513D-03
.72892D-03
. 80238D-03
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.22215D-05
.69643D-05
. 04647D-05
.80035D-05
.67707D-05
. 00029D-04
.80411D-05
.01853D-04
. 00134D-04
. 03472D-04
.10108D-04
. 13802D-04
. 14206D-04
. 20498D-04
. 18348D-04
. 16527D-04
. 16857D-04
. 15895D-04
.25368D-04
.26222D-04
.27702D-04
.28557D-04
.26126D-04
. 26366D-04
. 29642D-04
.33851D-04
. 34403D-04
. 34169D-04
.34413D-04
. 32898D-04
. 34320D-04
. 38626D-04
. 40447D-04
.39711D-04
. 38840D-04
.39196D-04
. 39179D-04
L42723D-04
.45402D-04
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.43161D-04
. 43428D-04
.44363D-04
.46577D-04
. 49509D-04
.47679D-04
. 46674D-04
.47398D-04
. 48781D-04
.50898D-04
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. 0146D-01
. 2439D-01
. 7454D-01
.4614D-01
. 29435D-01
.6509D-01
. 6445D-01
. 9848D-01
.9380D-01
. 3458D-01
. 0057D+00
. 0509D+00
. 0664D+00
. 13790400
. 1293D+00
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. 1413Db+00
. 1850D+00
. 2530D+00
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. 3046D+00
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. 3170D400
. 3350D+00
. 3852D+00
. 4458D+00
. 4668D+00
. 4802D+00
. 4988D+00
. 4981D+00
. 5310D+00
.5970D+00
. 6344D+00
. 6425D+00
. 6494D+00
. 6708D+00
. 6883D+00
. 7493D+00
. 7994D+00
. 7930D+00
. 8071D+00
. 8287D+00
. 8590D+00
. 9062D+00
. 9626D+00
. 9566D+00
. 9622D+00
. 9909D+00
. 0287D+00
. 0768D+00
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