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E. D. Hirleman

Mechanical and Aerospace Engineering, Arizona State University, Tempe, Arizona

Optimal Scaling of the Inverse Fraunhofer Diffraction Particle Sizing Problem:

Analvtic Eigenfunction Expansions

Abstract

There are many possible strategies for sampling the near-forward scattering pattem
produced by a field of large particles and for subsequently solving the inverse problem in order to
obtain an estimate of the particle size distribution. In a previous paper (Part. Char. Vol. 5, pp. 128-
133, 1988) an optimally scaled formulation of the problem was derived based on consideration of
condition numbers of the linear system obtained through numerical quadrature of the governing
Fredholm integral equation. Here we consider "scaling™ of the problem to involve selection of the
parameters under control of the instrument designer (e.g. the number, angular positions, and
aperture geometries of the detectors and the number, positions, and widths or weighting functions
of the discrete size classes). Since the many numerical/analytical schemes for solving for the size
distribution given a finite number of scattering measurements are fundamentally very similar,
optimal scaling of the problem will improve the performance of the instrument regardless of the
selected computational inversion algorithm.

In this paper we consider the analytic eigenfunction expansion method of solving the
inverse Fraunhofer diffraction problem, and in particular how the scaling strategy affects the
inversions. The eigenfunctions and associated eigenvalues for the diffraction problem (assuming
infinite support) are derived in terms of two (vanable) scaling parameters which describe the
detector geometry and the size class configurations. It is shown that the rate of decrease of the
eigenvalue spectrum with generalized frequency is minimized for the same scaling parameters
(a=2, b=2) which optimized the condition numbers of the linear system. (A slower decrease in the
eigenvalue spectrum indicates that the inversions will be less susceptible to corruption by noise, i.e.
more stable). This optimal scaling study indicates, as was the case for the condition number
analysis of the discrete linear system, that the particle size distribution solution should be on an area

basis as n(D)D2 and the scattering measurements should provide i(6)62.




From the 4th European Symposium on Particle Characterization
Numberg, West Germany, April 19-21, 1989.

E. D. Hirleman
Mechanical and Aerospace Engineering, Arizona State University, Tempe, Arizona

Optimal Scaling of the Inverse Fraunhofer Diffraction Particle Sizing Problem:
Analytic Eigenfunction Expansions

In a previous paper Hirleman [1] formulated the integral equation governing the inverse
Fraunhofer diffraction particle sizing problem as follows:

ip(8) = [ [1,A2/4n2 ] [J,(08)/(0-262-2) | ny(cx) dox )
1]

where: i(0) is the scattering intensity (W/sr) at a small forward angle 8; I, is the irradiance
(W/m2) of the incident beam (assumed uniform); « is the nondimensional particle size parameter
equal to the particle circumference divided by the wavelength A of the incident radiation (xD/A); D
is the particle diameter; n(a) is an unnormalized particle frequency distribution such that n(a)da is
the number of optically-sampled particles in the optical beam with sizes between o and o + dot; J,
is a Bessel function of first kind and first order; and a and b are constants where:

ia(8) = i(8)8e | ()
n,(0) = n(a)ob ' ' 3

Equation (1) assumes that Fraunhofer diffraction theory adequately describes the scattered light
signature for the angles 6 of interest and that multiple scattering is negligible. The diffraction
assumption is satisfied generally when the angles © are small, the particles are large compared to
the wavelength, and the refractive index of the particles relative to the surroundings is not very
close to unity. Finally, Eq. (1) neglects coherent scattering effects, i.e., assumes a very large
number of randomly positioned particles are optically sampled. Now the scaling of the problem,
which is the under auspices of the instrument designer, involves selection of parameters a and b and
the number and orientations of detectors where measurements of i(8) will be obtained. The
measurements are used in the inverse problem, i.e. solving for ny(ct) in Eq. (1) using measured
ia(€). Writing Eq. (1) in a more general integral equation form:

iy0) = IA2/4n2 [ k(0,0) ny(a) dax @)
0
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where k(c,0) is the kernel of the integral equation and by inspection of Eq. (1):
k(0.,8) = J A8) / (ob-262-2) : (5

Now McWhirter and Pike [2] formulated a solution scheme to Fredholm integral equations such as
Egs. (1) and (4) which applies for cases where the kernel function k(0.,8) is a function of only the
product of the two variables, i.e. k = k(a8). With this requirement we see from Eq. (5) that:

2-a=b-2 (6)
or:
a+b=4 @)

and we have lost one degree of freedom in scaling the problem as a and b are no longer
independent. Equation (7) is the same condition for which the linear system produced by numerical
quadrature of Eq. (1) takes the Toeplitz form as discussed by Hirleman [1]. If we define a new
independent scaling parameter J as:

d=2-a=b-2 8)

Then Eq. (1) becomes:

ih.5(0) = I, A2/4m2 [ kg(0B) nge2(0r) dox 9)
0
where:
ks(a8) = J 2(aB) / (a0)8 (10

The eigenfunctions ,, and associated eigenvalues A, of the kemel, if they exist, are defined by:

Ao Val0) = | k(a8) yu(0) dox (11)
0

where o is a continuous generalized frequency. Thus any components of the solution function
np(c) which can be expressed in terms of the eigenfunctions V,, of k will be passed through the
integral operator intact but scaled by the associated eigenvalue Ay, In that case the inversion of the
integral equation would be performed by expanding the measured scattering signature i2.5(0) in a
series of the eigenfunctions. The eigenfunction components with significant amplitudes would then
be used to synthesize the solution function after scaling by the appropriate cigeuvalues. Now if the
following integral of the kernel k is bounded:

f 1k |1x12dx < oo 12)
0




then a continuum of real eigenfunctions exist and have been found using Mellin transforms by
McWhirter and Pike [2] as:

Vu'(0) = Re[$.(6)] (13)

W, (8) = Im[¢.,(0)] (14)
where the corresponding real eigenvalues are:

Aot = | K(1/2) + i) | 15)

and where the Mellin transform K(s) of k(x) is defined by:

K(s) = | x5! k(x)dx (16)
0

and:

0-(12)-i®  K((1/2) + io)
¢m(e) = an
Y (® 1 K(1/72) + i) 1)

It is also sufficient to consider only ® > 0 as pointed out by McWhirter and Pike [2] and Viera and
Box [3].
Now we will need to obtain the Mellin transform defined in Eq. (16) of the kemel family of

Eq. (10) as:

J xs1312(x) 7 x8
0

Ky(s)

(1/2)58 [(3+1-s) T(1-(8/2)+(s/2))
2 T2(1+(3/2)-(s/2)) T2+(/2)-s12))

(18)

We can then calculate the eigenvalue spectrum from Eq. (17) which requires:

QO 12820 (§+(1/2)-iw) T((5/4)-(8/2)+(iwy2))
K3((1/2)+iw) = (19)
[2((3/4)+(3/2)-(i/2)) C((7/4)+(8/2)-(iwy2))

which, for 8=2 simplifies to Eq. (3.3) of Bertero and Pike [4].




Before going further we must also consider the values of 8 for which the kemel k; of Eq.
(10) satisfies Eq. (12). Substituting ks for k in Eq. (12) results in the condition:

- -]

J 12 x02)-8dx < oo (20)
0

Convergence of this integral requires that 3 > (-1/2-8) > 0 or:

25>6>-05 (?3))

For this paper we consider integer values for & of 0, 1, and 2 which give physically meaningful
properties to the functions i, 5 and ns,; as shown in Table 1.

Table I

o i,.5(9) Detector ng2(e)  Form of ng, (o)

2 i(8) Linear Array on(o)

1 i(9)0 Constant Ar o’n(o) Volume
Rings distribution

0 i(9)62 Log-scaled o2n(oL) Area
Rings distribution

Now an indication of the quality of the scaling of an inverse problem is the rate at which the
eigenvalues roll off with increasing frequency w. This is true because the solution to Eq. (9) based
on eigenfunction expansions will be:

ng2(0) = [ g * Yot do+ | ng, (o) do (22)
(1] 1]
where:
Nsut = iget/ A’ (23)
and:
igt = | 1,.4(8) W, X() O (24)

0
It can be seen from Eq. (23) that as the eigenvalues Ayt = 0, the ng wt and therefore the
solution grows without bound. The illconditioned nature of the problem would then be manifested




as small perturbations in i; ¥ for example due to measurement errors in i, 4(8), would be
magnified greatly at frequencies © where the A,* are small. For that reason it is necessary to
truncate the integrations in Eq. (22) at some finite value ®m,, of the generalized frequency. In that
case we approximate the solution as:

@ ax Omax
ns12(0) = [ ng.t W' @) do + | ng. W () do (25)
0 0

In that case, components of ng+2(0t) at frequencies above ®,,,, are inaccessible to the experiment.

Now there is a tradeoff between a desire to make @, as large as possible in order to
minimize the truncation error in Eq. (25) but at the same time keep the solution stable by not
including frequencies with small eigenvalues. For that reason the behavior of the eigenvalue
spectrum, shown in Fig. 1, is very important. For the possible values 8=0, 1, 2 the optimal value is
clearly 8 = 0 which gives the slowest rolloff of A,*. The value 3 = 0 corresponds to a = b = 2, that
is a solution on a particle area basis using log-scaled ring detectors. This result is identical to that
obtained by Hirleman [1] using a condition number analysis on the linear system produced by
numerical quadrature of Eq. (9).

The asymptotic behavior of the eigenvalue spectrum is interesting as well, and taking the
limit of Eq. (19) as ® — <o and using Eq. (15) we obtain:

lim Ayt = w31 (26)

@ — oo

Again, the value of & = 0 is the best of the those considered, where in the limit of large ® the
eigenvalues are proportional to o-!.

Some Comments on Instrument Design

It is clear from the previous analysis that the parameter J, and in turn the instrument scaling
parameters a and b, control the nature of the numerical inversion based on eigenfunction
expansions. Thus the stability, the information content, and other measures of the performance of
an inverse scattering solution based on analytic eigenfunctions is determined by the selection of
parameters a and b. This has also shown to be the case for inversion of the linear system produced
by numerical quadrature of Eq. (9), and it is expected to hold for a singular function expansion [3,5]
as well. It is crucial, then, to understand constraints on the values of a and b which might be
implemented in practice. Now an underlying assumption governing the validity of the condition
number as a measure of inversion stability{1] and of the scheme proposed here for truncating the
eigenfunction series approximation using a noise-based criterion is that of white noise. If, for
example, the noise produced by a detector were constant per unit area of active detector surface,
then the white noise assumption would only be true for a = 0 as pointed out by Bertero and Pike




[4,5]. This forces the instrument (for a product kemel or Toeplitz matrix form) to b = 4 and, in
turn, 8 = 2. Clearly it would be better to have the freedom to select a detector geometry based on
optimizing the expected numerical performance of the inverse problem and force the detector to
confonn rather than vice versa.

One possible approach is to use the optical system shown in Fig. 2 as developed by
Hirleman and Dellenback [6], where the detector area (noise-producing) does not depend on the
collection aperture for the discrete detection angles 8. The optical system of Fig. 2 uses a
transmission-mode spatial light modulator to create programmable mosaic arrays (of arbitrary
shape) of detector openings which pass selected portions of the scattering signature on through to
the field lens and single detector. While the parallel, simultaneous detection capabilities are lost
with a system as in Fig. 2, the potential for intelligent, programmable detector arrays overrides that
disadvantage.
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Nomenclature

log Ae*

instrument scaling parameter (nondimensional) for particle size distribution function
basis

instrument scaling parameter (nondimensional) for scattering intensity moment
particle diameter (m)

scattering intensity (W/sr) at angle 6

incident irradiance (W/m2)

Bessel function of first kind and first order

general kernel function for the integral equation

product-form of the kemel k

Mellin transform of the kemel function k

particle size parameter, tD/A

instrument scaling parameter (nondimensional) which arises when k is a product
kemel.

scattering angle measured from the optical axis

eigenvalue corresponding to frequency ®

eigenfunction for the kemel of the integral equation

generalized frequency

-0.5 0.0 0.5 1.0 1.5

log ®

Figure 1. Plot of the eigenvalue m A,* of the Fraunhofer diffraction integral equation for
the kemel described by Eq. (19). ‘slﬁmspecm for three values of the scaling parame% S?:eat;hown.
The asymptotic behavior of the curves are described by Eq. (26).




Spatial
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Figure 2. Schematic of a laser diffraction particle sizing instrument where a spatial light modulator
operated as a programmable transmission mask has been included to provide for on-line, adaptive
configuration of the detector collection apertures. Annular ring openings are created in the SLM at
the transform plane by setting the pixels to transmit or block the incident polarized light. The rings
are created concentric with the optical axis as measured in real-time by the x-y position detector
shown. The field lens collects alil light passing through the SLM and passes it the the detector, and
the system is sequenced through a set of rings.




