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E. D. Hirleman

Mechanical and Aerospace Engineering, Arizona State University, Tempe, Arizona

_Qptinal Scaling of the Inverse Fraunhofer Diffraction Particle Sizing Problem:

Analytic Eigenfunction Expansions

Abstract

There are many possible strategies for sampling the near-f'vrard scattering patte,,

produced by a field of large particles and for subsequently solving the inverse problem in order to

obtain an estinate of the particle size distribution. In a previous paper (Part. Char. Vol. 5, pp. 128-

133, 1988) an optinally scaled formulation of the problem was derived based on consideration of

condition numbers of the linear system obtained through numerical quadrature of the governing

Fredhohn integral equation. Here we consider "scaling" of the problem to involve selection of the

parameters under control of the instrument designer (e.g. the number, angular positions, and

aperture geometries of the detectors and the number, positions, and widths or weighting function,

of the discrete size classes). Since the many numerical/analytical schemes for solving for the size

distribution given a finite number of scattering measurements are fundamentally very similar.

optimal scaling of the problem will improve the performance of the instrument regardless of the

selected computational inversion algorithm.

In this paper we consider the analytic eigenfunction expansion method of solving the

inverse Fraunhofer diffraction problem, and in particular how the scaling strategy affects the

inversions. The eigenfunctions and associated eigenvalues for the diffraction problem (assuming

infinite support) are derived in terms of two (variable) scaling parameters which describe the

detector geometry and the size class configurations. It is shown that the rate of decrease of the

eigenvalue spectrum with generalized frequency is minimized for the same scaling parameters

(a=2, b=2) which optimized the condition numbers of the linear system. (A slower decrease in the

eigenvalue spectrum indicates that the inversions will be less susceptible to corruption by noise, i.e.

more stable). This optimal scaling study indicates, as was the case for the condition number

analysis of the discrete linear system, that the particle size distribution solution should be on an area

basis as n(D)D 2 and the scattering measurements should provide i(0)02.
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Optimal Scaling of the Inverse Fraunhofer Diffraction Particle Sizing Problem:

Analytic Eigenfunction Expansions

In a previous paper Hirleman [1] formulated the integral equation governing the inverse

Fraunhofer diffraction particle sizing problem as follows:

cc

ia(0) I [ IiX2 / 4X2 j (J,2(a ) / (ab-202-a) I nb(ca) dx (1)
0

where: i(O) is the scattering intensity (W/sr) at a small forward angle 0; %. is the irradiance

(W/m2) of the incident beam (assumed uniform); a is the nondimensional particle size parameter

equal to the particle circumference divided by the wavelength X of the incident radiation (icDA); D
is the particle diameter, n(a) is an unnormalized particle frequency distribution such that n(a)da is

the number of optically-sampled particles in the optical beam with sizes between ( and aZ + dat; J1
is a Bessel function of first kind and first order, and a and b are constants where:

Ve) = i(e)ea (2)

t%((z) = n(a)ab (3)

Equation (1) assumes that Fraunhofer diffraction theory adequately describes the scattered light

signature for the angles 0 of interest and that multiple scattering is negligible. The diffraction

assumption is satisfied generally when the angles 9 are small, the particles are large compared to

the wavelength, and the refractive index of the particles relative to the surroundings is not very

close to unity. Finally, Eq. (1) neglects coherent scattering effects, i.e., assumes a very large

number of randomly positioned particles are optically sampled. Now the scaling of the problem,

which is the under auspices of the instnzment designer, involves selection of parameters a and b and

the number and orientations of detectors where measurements of i,(9) will be obtained. The
measurements are used in the inverse problem, i.e. solving for nb(ax) in Eq. (1) using measured

i,(e). Writing Eq. (1) in a more general integral equation form:

i.(@) = I,.2 / 4x2 Jk(aGi) nib(a) da (4)
0
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where k(ct,O) is the kernel of the integral equation and by inspection of Eq. (1):

k(a.,e) = J12(aO) / ((Xb' 202-a) (5)

Now McWhirter and Pike [21 formulated a solution scheme to Fredholm integral equations such as

Eqs. (1) and (4) which applies for cases where the kernel function k(aO) is a function of only the

product of the two variables, i.e. k = k(ccO). With this requirement we see from Eq. (5) that:

2- a=b -2 (6)

or:

a+b=4 (7)

and we have lost one degree of freedom in scaling the problem as a and b are no longer

independent. Equation (7) is the same condition for which the linear system produced by numerical

quadrature of Eq. (1) takes the Toeplitz form as discussed by Hirleman [1]. If we define a new

independent scaling parameter 8 as:

8a 2- a = b -2 (8)

Then Eq. (1) becomes:

i2 .8(9) = I.X2 / 42 1k8(aO) nS+2((x) dcc (9)
0

where:

k8(aO) = J 12(a ) / (cCO)8 (10)

The eigenfunctions q, and associated eigenvalues of the kernel, if they exist, are defined by:

00

. I(e) = k(aO) (a) da (1)
0

where o is a continuous generalized frequency. Thus any components of the solution function

nb(a) which can be expressed in terms of the eigenfunctions #i, of k will be passed through the

integral operator intact but scaled by the associated eigenvalue XO. In that case the inversion of the

integral equation would be performed by expanding the mcasured scattering signature i2.8(0) in a

series of the eigenfunctions. The eigenfunction components with significant amplitudes would then

be used to synthesize the solution function after scaling by the appropriate eigtivalues. Now if the

following integral of the kernel k is bounded:

00

I Ik(x) I x"12 dx < (12)

0

2



then a continuum of real eigenfunctions exist and have been found using Mellin transforms by

McWhirter and Pike [21 as:

V =(0) Re[O,(0)] (13)

= Im[o(O)] (14)

where the corresponding real eigenvalues are:

).: = ± I K((1/2) + i(o) I (15)

and where the Mellin transform K(s) of k(x) is defined by:

00

K(s) M J xs-1 k(x) dx (16)
o

and:

0-(1/2)-io) 4 K((1/2) + ioo)
O.(e) 4 ~(n I K((1/2) + io)1) (17)

It is also sufficient to consider only (o > 0 as pointed out by McWhirter and Pike [21 and Viera and

Box [3].

Now we will need to obtain the Mellin transform defined in Eq. (16) of the kernel family of

Eq. (10) as:

0o

KS(s) = 5 xs-I J 1
2 (x) / x8

0

(I/2)6-s r(a+1-s) r(l-(8/2)+(s/2))
= (18)

2 I'(I+(8/2)-(s/2)) r(2+(8/2)-(s/2))

We can then calculate the eigenvalue spectrum from Eq. (17) which requires:

Kg((l/2)+io) - (19)
1"((3/4 )+( /2 )-(ilog2)) r((7/4)+(8/2)-(i p/2))

which, for 8=2 simplifies to Eq. (3.3) of Bertero and Pike [4].
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Before going further we must also consider the values of 8 for which the kernel k6 of Eq.

(10) satisfies Eq. (12). Substituting k6 for k in Eq. (12) results in the condition:

00

J 1
2 (x)x-'r-)-8dx < oo (20)

0

Convergence of this integral requires that 3 > (- 1/2-8) > 0 or:

2.5 > 8 > -0.5 (21)

For this paper we consider integer values for 8 of 0, 1, and 2 which give physically meaningful

properties to the functions i2. and ns. 2 as shown in Table I.

Table I

i 2.8(0) Detector n,+2(a) Form of n8 +2(a)

2 i(0) Linear Array a4 n(c)

1 i(0)O Constant Ar a 3n(a) Volume
Rings distribution

0 i(O)02 Log-scaled a2n(a) Area
Rings distribution

Now an indication of the quality of the scaling of an inverse problem is the rate at which the

eigenvalues roll off with increasing frequency o. This is true because the solution to Eq. (9) based

on eigenfunction expansions will be:

n8+2(a) = I n6,,+ iy.+(a) do) + I n8,,- %;(a) dco (22)
0 0

where:

n,±= is / (23)

and:

a0

i.= ± i _8(O) V.±(O) dO (24)
0

It can be seen from Eq. (23) that as the eigenvalues X. + 
- 0, the n&,co, and therefore the

solution grows without bound. The illconditioned nature of the problem would then be manifested

4



as small perturbations in i,, for example due to measurement errors in i._(O), would be

magnified greatly at frequencies 0o where the X± are small. For that reason it is necessary to

truncate the integrations in Eq. (22) at some finite value oima of the generalized frequency. In that

case we approximate the solution as:

,Omax Wmax

n8+2(a) n8 ,+ iV0+O) do + j n.,- %,-(0) do (25)
0 0

In that case, components of n&-2(a) at frequencies above o,. are inaccessible to the experiment.

Now there is a tradeoff between a desire to make oh,., as large as possible in order to

minimize the truncation error in Eq. (25) but at the same time keep the solution stable by not

including frequencies with small eigenvalues. For that reason the behavior of the eigenvalue

spectrum, shown in Fig. 1, is very important. For the possible values 8 = 0, 1, 2 the optimal value is

clearly 8 = 0 which gives the slowest rolloff of ,j. The value 8 = 0 corresponds to a = b = 2, that

is a solution on a particle area basis using log-scaled ring detectors. This result is identical to that

obtained by Hirleman [1] using a condition number analysis on the linear system produced by

numerical quadrature of Eq. (9).

The asymptotic behavior of the eigenvalue spectrum is interesting as well, and taking the

limit of Eq. (19) as (o -- -o and using Eq. (15) we obtain:

lim O =8-1 (26)
0) -.4

Again, the value of 8 " 0 is the best of the those considered, where in the limit of large o the

eigenvalues are proportional to a I.

Some Comments on Instrument Design

It is clear from the previous analysis that the parameter 8, and in turn the instrument scaling

parameters a and b, control the nature of the numerical inversion based on eigenfunction

expansions. Thus the stability, the information content, and other measures of the performance of

an inverse scattering solution based on analytic eigenfunctions is determined by the selection of

parameters a and b. This has also shown to be the case for inversion of the linear system produced

by numerical quadrature of Eq. (9), and it is expected to hold for a singular function expansion [3,5]

as well. It is crucial, then, to understand constraints on the values of a and b which might be
implemented in practice. Now an underlying assumption governing the validity of the condition

number as a measure of inversion stabiity[l] and of the scheme proposed here for truncating the

eigenfunction series approximation using a noise-based criterion is that of white noise. If, for

example, the noise produced by a detector were constant per unit area of active detector surface,
then the white noise assumption would only be true for a = 0 as pointed out by Bertero and Pike
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[4,5]. This forces the instrument (for a product kernel or Toeplitz matrix form) to b = 4 and, in
turn, 8 = 2. Clearly it would be better to have the freedom to select a detector geometry based on
optimizing the expected numerical performance of the inverse problem and force the detector to

.o~nform rather than vice versa.

One possible approach is to use the optical system shown in Fig. 2 as developed by

Hirleman and Dellenback [6], where the detector area (noise-producing) does not depend on the

collection aperture for the discrete detection angles 0. The optical system of Fig. 2 uses a
transmission-mode spatial light modulator to create programmable mosaic arrays (of arbitrary

shape) of detector openings which pass selected portions of the scattering signature on through to

the field lens and single detector. While the parallel, simultaneous detection capabilities are lost
with a system as in Fig. 2, the potential for intelligent, programmable detector arrays overrides that

disadvantage.
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Nomenclature

a instrument scaling parameter (nondimensional) for particle size distribution function
basis

b instrument scaling parameter (nondimensional) for scattering intensity moment
D particle diameter (m)
i(0) scattering intensity (W/sr) at angle 0
lI incident irradiance (W/m2)
it Bessel function of first kind and first order
k(oO) general kernel function for the integral equation
k(ovO) product-form of the kernel k
K Mellin transform of the kernel function k
a particle size parameter, xD/A
S instrument scaling parameter (nondimensional) which arises when k is a product

kernel.
0 scattering angle measured from the optical axis

eigenvalue corresponding to frequency (o
eigenfunction for the kernel of the integral equation

(generalized frequency

-1.0 8=0

+ -2.0

.o -3.0 8=2

-4.0

-5.0

-0.5 0.0 0.5 1.0 1.5

log co

Figure 1. Plot of the eigenvalue spectrum + of the Fraunhofer diffraction integral equation for
the kernel described by Eq. (19). Tbe spectra for three values of the scaling parameter 6 are shown.
The asymptotic behavior of the curves am described by Eq. (26).
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Figure 2. Schematic of a laser diffraction particle sizing instruent where a spatial light modulator
operated as a programmable transmission mask has been included to provide for on-line, adaptive
configuration of the detector collection apertures. Annular ring openings are created in the SLM at
the transform plane by setting the pixels to transmit or block the incident polarized light. The rings
are created concentric with the optical axis as measured in real-time by the x-y position detector
shown. The field lens collects all light passing through the SLM and passes it the the detector, and
the system is sequenced through a set of rings.


