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A. STATEMENT OF THE PROBLEMS STUDIED: Viscoelastic materials with fad-
ing memory, e.g. polymers, suspensions, emulsions, exhibit behavior that is intermediate between
the nonlinear hyperbolic response of purely elastic materials and the strongly diffusive, parabolic
response of viscous fluids. Their behavior is influenced by a subtle dissipative mechanism induced
by effects of the fading memory; a fundamental understanding of the equations governing their un-
steady motions under physically relevant constitutive assumptions is crucial for modelling, analysis,
design of algorithms and computation of specific problems.

The following problems that are an outgrowth of earlier research supported by ARO were
investigated during the reporting period:

(1.) Provide numerical and analytic explanation of several striking phenomena observed in
experiments in shear flows of highly elastic and very viscous non-Newtonian fluids in pressure-driven
and piston-driven flows and in Couette flow. Such phenomena can lead to material instabilities
deemed capable of severely disrupting advanced materials engineering and process design problems
of polymer melts that include spinning of synthetic fibers and injection molding (see, e.g., NI. N.
Denn Ann. Rev. Fluid Mech. 22 (1990), 13-34.)

(2.) Establish the nonlinear stability of possibly discontinuous, steady non-Newtonian shear
flows in order to justify various approximations made in the analysis of the nonlinear partial
diffeferential equations (PDE) governing the unsteady motions studied under (1.)

(3.) Prove the existence of weak solutions to a system of a first-order quasilinear hyperbolic
system of Volterra integrodifferential equations modelling the unsteady motion of a viscoelastic
bar with fading memory for bounded initial data of arbitrary size.

Our approach to resolving these problems was guided by the following objectives:
i. To understand qualitative properties of the mathematical model: the global well-poscdness

of solutions to the governing PDE, their regularity and asymptotic behavior for large time,
approach to steady states, etc.

ii. To understand the physical consequences of the model: Do any or all of the possible solutions
make physical sense? Do solutions that have mathematically interesting character correspond
to observed phenomena? Do they predict behavior that should be studied in the laboratory?
What solutions to the problem are relevant to processing and design?

iii. To understand the physical model: tIow do the observed solutions correspond to the molecular
or continuum model on which they are based? Can the character of these solutions serve to
validate the physical model or suggest improvements in it?

iv. To design numerical methods that account for the mathematics and reflect the physics.
v. To study the broad mathematical implications of i. - iv. for these and related classes of

problems. We note that concepts such as weak solutions, shocks, shear bands, phase changes,
etc arise in a variety of problems of physical and technological importance.

Considerable progress and understanding of the problems has been gained using this approach.
Initial numerical studies suggested scaling that led to new analytical results, approximation tech-
niques and improvements in numerical methods that in turn provided a deeper understanding of
the underlying physics and yielded a clear explanation of oLbcrvcd phenomena.

B. SUMMARY OF THE MOST IMPORTANT RESULTS:
This outline relies on the fact that more details are available in semi-annual reports submitted

during the award period, and in the manuscripts already furnished and those being sent to ARO
under separate cover; numbers in brackets refer to items listed in part C. below.

The phenomena to be understood and analysed under part (1.) were observed in three recent
experiments: (a) "Spurt", a sudden large increase in volumetric flow rate observed in quasi-static
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loading of pressure-driven shear flows of monodisperse polyisoprenes through a capillary (equiva-
lently a slit-die, as shown in the Ph. D. thesis of M. Yao, see D. below) at a critical stress that
is independent of molecular weight, was discovered by Vinogradov et al. (J. Polymer Sci., A-2
10 (1972), 1061-1084); the experimental results were confirmed by Lyngaee-Jorgensen & Marcher
(Chem. Eng. Comm. 32 (1985), 117-151). (b) Nearly periodic disturbances were observed by Lim
and Schowalter (J. Rheology 33 (1989)) in piston-driven channel flow of a highly elastic and viscous
non-Newtonian fluid at a fixed volumetric flow rate and they were attributed to "stick-slip". (c)
In the third experiment, R. Larson and F. Morrison (preprint (1989)), measure the stress response
of highly elastic, viscous non-Newtonian fluids in "step-strain".

Until recently, the spurt phenomenon had been overlooked or dismissed by rheologists because
no plausible mechanism was known to explain it in the context of steady flows. Spurt was lumped
together with instabilities such as "slip," "apparent slip," and "melt fracture" which are poorly
understood (see article by M. Denn cited above). The mechanism that induces spurt was not
understood because popular numerical methods, based on steady viscoelastic fluid flows falter in
"high Weissenberg number" regimes and thus cannot model the spurt phenomenon. Our research
indicates that spurt and related phenomena can be modeled and explained by studying the full
dynamics of the unsteady equations of motion and constitutive equations.

The systems of time-dependent quasilinear PDE's used to model all three experiments under
incompressible and isothermal conditions are derived in [10], [12], [15], [23], [21] in a fully three-
dimensional setting. The total shear stress is decomposed into a contribution due to the polymer,
evolving in accordance with a Johnson - Segalman - Oldroyd (JSO) differential constitutive law
(with single and also multiple relaxation times) where the differential operator is objective, a
small Newtonian contribution and a pressure term. For a Newtonian fluid the governing system
reduces to the Navier-Stokes equations. A major emphasis during the grant period was placed on
understanding spurt and related phenomena discovered in extensive numerical simulation; analysis
of piston-driven and step-strain flows was initiated during the past year.

Major results obtained for the problems in (1.) are:
a. Pressure-driven unsteady flow through a narrow slit-die is modelled by an initial boundary

value problem for shear flow of a non-Newtonian fluid between parallel plates, symmetric about
the centerline and with initial data consistent with the no-slip boundary conditions at the wall.
The unknown flow variables are the velocity distribution, the polymer shear stress and a quantity
proportional to the first normal stress difference. For Vinogradov-type materials modelled by (JSO)
with a single relaxation time the dynamic response involves multiple time scales; it is shown in
[12] and [15] that there are two essential dimesionless flow parameters: a, the ratio Reynolds to
Deborah or Weissenberg numbers, and e, the ratio of Newtonian to shear viscosities. In [15], we
used asymptotic analysis for a model with two widely separated relaxation times and no Newtonian
viscosity to show that the dynamics of the two models are similar.

b. If c = 0, the governing system can change type (from strictly hyperbolic to elliptic [2]). For
smooth initial data in the strictly hyperbolic region, energy methods described in [2] can be used to
show that smooth solutions exist globally in time if the data are sufficiently small. By contrast, the
method of characteristics developed for viscoelastic problems in [1], [2] yields that initially smooth
solutions exhibit finite-time blow-up (of derivatives) if the initial data are sufficiently large. If c > 0,
the governing qv.tcm is ev3'lutiorary but caiiuL bc classified as to type. Genv-,fl theory d~veloped
in [161 for semilinear reaction-diffusion type parabolic systems to which the governing system can
be transformed yields global-time existence and uniqueness of classical solutions for smooth initial
data of arbitrary size, and also existence and uniqueness of global, almost classical, strong solutions
with discontinuities in the initial velocity gradient and stress components. Although globally well-
posed, it is difficult to prove that solutions to the governing system achieve steady states as t -- co.
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However, it is a simple matter to find the steady states and show that the total steady shear stress is
a nonmonotone function of strain rate (for relevant c) leading to multiple steady states that suggest
the possibility of existence of steady solutions having finite jumps in strain rate and existence of
steady velocity profiles with "kinks" (jump discontinuities in the steady velocity gradient) [10],
[12], [15].

c. Three distinct numerical algorithms for the governing time-depedent system were developed
in [6], [10], [12]: The first is based on a stable, finite-element, solid-mechanics methnd originally
developed by Malkus [6], [11], [20] in which the system is regarded as governing extensional motion
of an elastic-plastic bar. The second uses the equivalent reaction-diffusion system and is based
on solving a forced, nonlinear heat equation coupled with nonlinear ODE's. The third uses the
fact that the governing system can be transformed to conservation form [10], [12], and the numer-
ical solution is obtained by using techniques of hyperbolic conservation laws with a regularizing
Newtonian viscosity and is based on the solution of the Riemann problem when ( = 0; steady
numerical solutions are achieved by wave propagation and wave interactions. The third of these is
the only method capable of yielding satisfactory numerical solutions even in the absence of Newto-
nian viscosity [12]. Calculations with these methods produced similar qualitative and quantitative
results.

d. Detailed numerical simulation of the Vinogradov quasistatic loading experiment at a very
small Reynolds number using the solid mechanics algorithm and a code developed by Malki' is
explained in [12]. The simulation produced excellent qualitative and quantitative agreement with
experimental results for all eight material samples that differ from one another only in molecular
weight. For samples relevant to polymer processing, the Weissenberg (Deborah) number is very
large. The dimensionless parameters a, c used in the model are both very small with a seven
to ten orders of magnitude smaller than e. The numerical solution exhibits discontinuities when
steady state is achieved and indicates that spurt occurs at a critical value of the total stress that is
independent of molecular weight (near the shear stress maximum of the steady equations) as the
driving pressure gradient is raised from values slightly below to slightly above critical; the dramatic
increase in the volumetric flow rate corresponds to a jump in the steady strain rate at the local
maximum which leads to a steady velocity profile with kink at a narrow layer near the wall. How-
ever, much more is revealed: There is also a local minimum in the steady shear stress, and further
numerical simulation in [12] suggests that unloading leads to a hysteresis loop whose magnitude
is governed by the difference between the stress at the local maximum and the local minimum.
The simulation also revealed "latency" (period preceeding spurt), "shape memory" under cyclic
loading and unloading, as well as behavior under flow reversal. This and other numerical testing
showed that the common key feature of differential constitutive models that capture these phenom-
ena is a non-monotonic relation between the steady shear stress and strain rate. Therefore, at least
for these flows, our approach to finding numerical solutions of the unsteady problems successfully
overcomes the "high Weissenberg number" problem that often plagues numerical simulation of
corresponding steady viscoelastic flows. To provide further credence to the mathematical model,
new experimental procedures are suggested in [12] to verify latency, shape memory, and width of
the hysteresis loop.

e. To explain results of numerical simulation analytically, we use the approximation that a is
nearly zero for highly elastic, very viscous materials such as the polyisoprenes in the experiments
of Vinogradov. For every value of the driving pressure gradient, the governing system of PDE's is
then reduced to a new, one-para.meter family of systems of two autonomous, first-order quadratic
ODE's, one for each point in the channel. There is a one to one correspondence between steady
states of the PDE's and critical points of the ODE's. The complete dynamics of this new quadratic
system has a rich structure that is determined completely in [12] - [15] by nontrivial application of
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phase plane and asymptotic techniques. The salient features of the quadratic system are:
i. Whenever the pressure gradient is such that the total steady shear stress fails between the

local maximum and minimum, two of the the three resulting critical points are locally asymp-
totically stable, while the third is a saddle; saddle-node bifurcations occur at the maximum
and minimum. For values of the total stress above the maximum or below the minimum, the
single critical point is locally an attractor.

ii. There are no periodic or homoclinic (separatrix) cycles.

iii. While the quadratic system does not define a gradient flow, a Lyapunov-like energy relation
enables one to determine invariant regions.

iv. As a consequence, we determined the location of the stable and unstable manifolds of the
saddle and the basin of attraction of each asymptotically stable critical point. Globally, every
solution of each quadratic system tends to a unique critical point as t -* o0; correspondingly,
when a = 0, every solution of the governing system tends to a unique steady state.
f. The analytical results summarized in e. explain the occurence of spurt and hysteresis

under cyclic loading and unloading [15]. When combined with additional asymptotic analysis
[15], they also yield two rather dramatic effects that were observed in the numerical solutions:
latency and shape memory. Roughly speaking, latency is the tendency of the polymer system
to have the appearance of steady, classical Poiseuille flow during a (possibly) long period during
which velocities and shear stresses do not change, while normal stresses change until a point of
catastrophic transition is reached and spurt occurs. The analysis also identified the parametric
dependence of latency and made precise predictions of what experimental evidence would be a
signature of this phenomenon. Shape memory was found to relate to the extent of the basin of
attraction of a "spurting" critical point (a globally attracting spiral point that lies above the local
shear stress maximum).

The remainder of part (1) summarizes work in progress on piston-driven and step-strain flows
related to the Lim-Showalter and Larson-Morrison experiments and remarks numerical techniques
for more comples flows.

g. To model the seemingly periodic disturbances observed in piston-driven shear flow of highly
elastic, viscous iLon-Newtonian fluics at fixed volumetric flow rate, we use recent work by Deiber
and Schowalter (private communication) showing that the data of Lim-Schowalter are consistent
with the assumption of non-monotonicity of the total steady shear stress vs. strain rate curve. We
model the flow by the initial-boundary value problem described in a. above with the additional
constraint that the pressure gradient is to be determined to keep the volumetric flow rate constant.
The resulting nonlinear feedback control problem is globally well-posed in time [23]. Taking a = 0
(for the reasons described in d. above) and finding the feedback control provides a reasonable
approximating system in the form of a new quadratic system of functional differential equations
(QFDE) that is also globally well posed. Our results to date in [23] are:

i. The linearization of (QFDE) has a complicated spectrum; there is a continuous component
and the point spectrum is difficult to determine even numerically.

ii. Numerical simulation of the Lim-Showalter experiment using an algorithm for solving (QFDE)
developed by Malkus is encouraging. The numerical solutions appear to be very nearly periodic
over a time interval that corresponds to the experiment, with an apparent period consistent
with experimental observations.

iii. Numerical simulation also suggests how (QFDE) can be approximated further by a globally
well-posed system of four first-order quadratic, autonomous ODE's; its dynamics is compli-
cated! The three critical points and their local nature can only be found numerically (done by
two different methods). For appropriate data the numerical solution of the system of ODE's
decays very slowly as t - oo in a nearly periodic fashion (consistent with the experiment and
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the numerical simulation of (QFDE)) to a unique critical point. Since the 4-dimensional flow
is not gradient-like, it is extremely difficult to rule out periodic and homoclinic orbits and to
determine the global dynamics by known analytic methods.
Results in [23] obtained to date raise the possibility that the appearance of stick-slip flow

(asserted by Lim-Showalter) can be emulated by spurt and may derive from the same physical
mechanism. This possibility was raised in the review article by M. M. Denn cited above.

h. The step-strain experiment for a highly elastic, viscous non-Newtonian fluid is modelled
as planar unidirectional Couette flow between parallel plates in which the lower wall is fixed and
the upper wall is moved suddenly at t = 0. Using the JSO constitutive law leads to a nonlinear
initial-boundary value problem similar to that described for pressure-driven flow in a. above, with
no pressure term, zero initial data, and with an inhomogeneous boundary condition that measures
the strain at the upper plate [21]; the problem is globally well-posed in time. Numerical solution by
Malkus and Kolkka of the dynamic governing system using Vinogradov's material data, shows that
at a sufficiently high average strain, a spurt-like inhomogeneous flow develops while the stresses are
relaxing and the initial flow has essentially ceased. The stress response in the numerical simulations
agrees very well at moderate strains with the Morrison-Larson experiments that used a different
material; there is disagreement at higher strains. There are plans to redo the experiment using
Vinogradov type materials.

To gain deeper insight, a formal, composite singular perturbation expansion of the solution to
the governing system for step-train in powers of the parameter a is found in [21] using initial layer
corrections. When a = 0, the reduced problem is another nonautonomous, quadratic system of
functional differential equations that is globally well-posed in time; all of its solutions are bcinded,
and can be found numerically. Higher order terms in the expansion are found recursively and are
readily computable. Spatial inhomogeneity develops at order one in a, and grows to order one in
the nonlinear response, consistent with numerical simulation of the full governing system.

i. We close this section with remarks on current development of computational methods
that generalize our techniques for shear flows to more complicated flows. The kcy feature leading
to the success of the method for shear flows is that it treats the short time-scales associated
with Newtonian viscosity (or short relaxation processes) and shear-wave propagation implicitly,
while treating the long relaxation processes explicitly. The method has been generalized to flows
with non-constant strain-rate histories in the context of the well-known fiber-drawing problem
[20]. Analysis of the numerical methods shows that the ratio of short to long relaxation times or
the Newtonian viscosity ratio is a key parameter in the stability and accuracy of the methods.
When this is properly accounted for, the techniques described in [20] work well in shear and
extensional flows and show promise for two-dimensional flows. A pressing question about two-
dimensional flows being addressed is: Are steady, spurt-layers in shear flows stable to higher-
dimensional disturbances? If not, are the unstable modes periodic and do they have wave numbers
characteristic of known processing instabilities? We are exploring the possibility that at least a
partial answer to these questions can be provided by a combination of techniques already developed
for one-dimensional flows with spectral methods. This approach, of independent scientific interest,
will provide a natural technical bridge to the study of more complicated, two-dimensional flows.

(2.) The results summarized in (1.)a.-f. above strongly suggest that the dynamics of the
governing system of PDE's based on the JSO constitutive assumption, is very similar to that
of the one-parameter system of the approximating quadratic ODE's. A significant test of this
conjecture is to study the nonlinear stability of steady velocity profiles with kinks, at least when
the parameter a > 0 is small.

a. For a simpler model system of PDE's that can be arranged to have the same behavior in
steady shear as JSO system, it is shown in [16], [17] via a priori estimates that independent of a,
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all solutions are bounded; the total stress tends to zero, and every solution approaches a possibly
discontinuous steady state as t -* oo. Moreover, discontinuous steady states taking their values
on the strictly increasing parts of the non-monotone steady shear stress vs strain rate curve are
nonlinearly asymptotically stable with respect to perturbations of initial data that omit sets of
arbitrarily small measure surrounding each point of discontinuity in the steady strain rate. Such
steady states are local minimizers of an associated, generally non-convex, stored energy functional.

b. In research in progress [22], the nonlinear stability result is being established for the
governing system of PDE's based on JSO by combining geometric techniques for the equivalent
semilinear, parabolic reaction-diffusion system (see (1.)b. above) with dynamical systems theory
applied in suitably constructed neighberhoods of the manifold of equilibria of the one-parameter
quadratic ODE's. A crucial difficulty is that a priori estimates that are essential for the variational
approach in a. are no longer available. For small enough a > 0, the statement of the new stability
result is the same as in a. We expect that a delicate resolution of the saddle-node bifurcations that
take place at "top" and "bottom" jumping will also yield the nonlinear stability of a "spurting"
solution.

c. A formal, composite singular perturbation expansion of the solution to the governing system
of PDE's for pressure-driven flow in powers of the parameter a is found in [21] using initial layer
corrections. When a = 0, the reduced problem is the one-parameter family of quadratic systems
of ODE's the dynamics of which is known completely (see (1.)e.). An a priori estimate bounding
the total stres, by a constant (depending only on data) times a, proved in [21], implies that the
formal expansion is uniformly valid at zero order; very few rigorous results for singularly perturbed
systems of PDE's are available.

(3) Unsteady motions of viscoelastic solids with fading memory that are modeled well by
discontinuous strains and velocity fields are observed experimentally. This fact, coupled with results
concerning the formation of singularities in finite time for large smooth dat:. ([1], [2]) suggests that
one must allow for weak solutions in order to discuss global behavior of solutions for large data.
Despite the importance of the subject, comparatively little is known about existence of weak
solutions in the context of viscoelastic materials ([7] provides a survey of known results). In [8],
[9], we discuss a model hyperbolic system of Volterra integrodifferential equations in the important
special case when the two material functions appearing in the instantaneous elastic response and in
the history term (in the form of a convolution integral) are equal. We use the method of vanishing
viscosity and compensated compactness to obtain the global-time existence of a weak solution (in
the sense of distributions) for Cauchy data that are bounded, measurable and square integrable,
but are not restricted in size. If the memory kernel is identically zero, the analogous problem for one
dimensional elastic motions and for motions of isentropic gases was solved in pioneering research
by Di Perna ('83). The principal difficulty for the viscoelastic problem lies in establishing suitable
L' estimates for the regularized parabolic system that permit application of the compensated
compactness method. In contrast to the situation in Di Perna's work, such estimates are difficult
to achieve here by finding an invariant region because of the nonlocal nature of the memory. As
for other results of this type, there is no satisfactory uniqueness theorem.

In view of continued interest in applications of Di Perna's techniques by the conservation laws
community, we note that extending the results in [8],[9] to the more general viscoelastic case of
two unequal nonlinear material functions presents formidable difficulties; for a model problem of a
single conservation law with memory, such a result was recently obtained by Dafermos (1988) but
his technique does not seem to be extendable to systems. On the one hand, assuming the existence
of L11 estimates for solutions of an appropriately regularized system, it does not seem possible to
prove convergence to a weak solution as the viscosity parameter tends to zero, because of a lack
of entropies. On the other hand, it seems equally difficult to establish LOO estimates for solutions
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of an appropriately regularized system; when the nonlinearities are different, the approach used
in [8], [9] fails because the integral term can no longer be treated as a lower-order source term.
The situation is essentially the same as that encountered when attempting to establish existence
of weak solutions for nonisentropic gas dynamics (which alluded Di Perna and Tartar and remains
an open problem).
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