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To analyze structures loaded at elevated temperatures, the stress-strain-time relation of the material

is required. This relation given by "time-hardening" and "strain-hardening" theories (Johnson and

Henderson, 1962) commonly used cften have large discrepancies with experimental results and

hence give large errors in the analysis. Lin et al., 1977, suggested to calculate this polycrystal creep

properties from the creep data of single crystals. However, the plastic and creep property of crystals

varies with their size. The size of a single crystal in tests is much larger than those in a polycrystal.

There will be significant error to use single crystal data in polycrystal calculations. A f.c.c. crystal
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has 12 slip system. Plastic and creep property of a crystal depends on the slip in all the 12 slip

systems. It is very difficult to obtain the effects of all the slip systems from single crystal tests

(Basani, 1990). Instead of waiting for more informative single crystal tests data, we attempt to

utilize the available polycrystal tests. Presently the polycrystal creep property is derived from

polycrystal test from its axial and combined tension and shear tests (Lin, 1984 Ribeiro, 1978, Wu,

1981), but the non-radial loading data were not used. The non-radial loading has a large effect on

the polycrystal creep property. Hence this inclusion of the non-radial loading data in the formulation

of the polycrystal creep response will improve greatly the calculated strain-time relations. This

approach will enhance significantly the accuracy of creep analysis of many structures.

Mechanical equation of state has been widely used in creep analyses. It is here shown that

this equation of state is valid for radial loadings.
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Derivation of Stress-Strain-Time Relationship of a Polycrystal

from its Radial and Non-Radial Loading Tests

by

T.H. Lin, X.Q. Wu and W. Zhong

Abstract: To analyze structures loaded at elevated temperatures, the stress-strain-time rdlation of

the material is required. This relation given by "time-hardening" and "strain-hardening" theories

(Johnson and Henderson, 1962) commonly used often have large discrepancies with experimental

results and hence give large errors in the analysis. Lin et al., 1977, suggested to calculate this

polycrystal creep properties from the creep data of single crystals. However, the plastic and creep

property of crystals varies with their size. The size of a single crystal in tests is much larger than

those in a polycrystal. There will be significant error to use single crystal data in polycrystal

calculations. A f.c.c. crystal has 12 slip system. Plastic and creep property of a crystal depends on

the slip in all the 12 slip systems. It is very difficult to obtain the effects of all the slip systems from

single crystal tests (Bassani, 1990). Instead of waiting for more informative single crystal tests

data, we attempt to utilize the available polycrystal tests. Presently the polycrystal creep property

is derived from polycrystal test from its axial and combined tension and shear tests (Lin, 1984

Ribeiro, 1978, Wu, 1981), but the non-radial loading data were not used. The non-radial loading

has a large effect on the polycrystal creep property. Hence this inclusion of the non-radial loading

data in the formulation of the polycrystal creep response will improve greatly the calculated

strain-time relations. This approach will enhance significantly the accuracy of creep analysis of

many structures.

Mechanical equation of state has been widely used in creep analyses. It is here shown that

this equation of state is valid for radial loadings.



INTRODUCTION

Structures subject to loads at elevated temperatures have been greatly increased during the

last few decades. At these temperatures, creep strain becomes significant and induces a redistribution

of stress in redundant structures. These redistributed stresses govern the creep rates and hence the

life of the structure. To analyze this stress redistribution in the structure at different time instants,

a realistic stress-strain-time relation of the material is needed. The stress-strain-time reaction given

by "time hardening" and "strain-hardening" (Johnson and Hutchinson, 1962) commonly used for

structural analysis often have large discrepancies with experimental results. These creep theories

do not consider the physical mechanism of deformation. This seems to be one main source of error

of these theories. The present study based on the physical mechanism of deformation is expected

to give a creep theory more representati ve of actual metals. As Dorn and Mote, 1963, have indicated,

among the different mechanisms of plastic deformation, slip is the main mechanism forface-centered

cubic metals at low and intermediate temperatures. Conrad, 1961 has also stated that at these

temperatures, the deformation of a f.c.c. polycrystalline metal occurs essentially by deformation of

the grains. Grain boundary sliding is only significant when the temperature approaches one half

the melting temperature of the metal. Present study is mainly concerned with such metals and alloys

at low and intermediate temperatures, hence slip is considered to be the sole source of creep

deformation.

Single crystal test at room temperature (Taylor and Elam, 1925, Taylor, 1928), have shown

that under stress, slip occurs along certain crystal directions on certain crystal planes. In a face-

centered-cubic crystal, there are four such planes, on each of which there are three slip directions

giving twelve slip systems. These planes correspond to dislocation glide planes and these directions

correspond to Burgers vectors of dislocations. From dislocation theory, (Read, 1953), the force to

move a segment of dislocation line is directly proportional to the shear stress on the slip plane along

the Burgers vector. This is shown in -ingle crystal tcstZ that slip depends on the rcsc'v\d shear

stress along the slip direction on the slip plane and is independent of the normal pressure on the
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plane, Taylor, 1938. The quantitative relations between plastic strain and dislocation movement

have been elegantly given by Mura, 1967, Kr6ner, 1958 and others. Tests on aluminum single

crystals by Johnson et al., 1953, 1955, show that deformation at elevated temperatures occurred by

slip in primarily the twelve slip systems that are operative at room temperature. There also may be

some slip on (311), (211) or (100) planes but their contribution is small and requires higher resolved

shear stresses than that for slip in the twelve slip systems. Hence in the present study, each crystal

is considered to have time dependent slip only in these twelve systems, and the rate of slip is taken

to depend on the resolved shear stress, Johnson et al., 1953, 1955.

Recent Works of Self-Consistent Theory of Polvcrystal Creep:

The main difference of a polycrystal from a single crystal is the presence of grain boundaries.

The grain boundary has been estimated to be only a few atoms thick, (Dorn, 1963, Barrett, 1952).

Hence, in the calculation of slip field of a polycrystal, the grain boundary can be regarded as a

surface of zero thickness across which crystal orientation changes from one to another. The ani-

sotropy of elastic constants of single crystals varies from one metal to another. This anisotropy is

small for aluminum, Barrett 1952. The present study concerns mainly with aluminum and its alloys,

hence this anisotropy is neglected. When an aggregate of randomly oriented crystals of homoge-

neous and isotropic elastic constants is uniformly loaded, the stress in uniform throughout before

creep occurs. However, crystals of different orientations have different resolved shear stresses.

Assume that a crystal deforms by creep only when the resolved shear stress in some slip system

exceeds certain critical value (Schwope et al., 1953). Creep occurs in the aggregate when the

resolved shear stress in the most favorably oriented crystal reaches the critical value. Consider a

fine-grained metal. The size of one crystal is much less than that of the aggregate. The slid crystal

can be considered as being embedded in a infinite medium. At the beginning, only the most favorably

oriented crystals slide and the distance between two slid crystals is large and the stress field within

and around each slid crystal is essentially the same as that of only one slid crystal in a infinite

medium. The stress field caused by slip in a crystal in a fine-grained aggregate decreases rapidly
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with the distance from the slid crystal (Lin et al., 1961). This is similar to the inclusion problem

in elasticity. Eshelby's results on ellipsoidal inclusions, (Eshelby, 1957), give uniform slip strain

accompanying uniform resolved shear stress in the slid crystal. This agrees with the dependency

of slip rate on the resolved shear stress, (Johnson et al., 1953, 1955). Hence, these Eshelby's results

may be used to calculate the stresses in the slid crystal at this loading.

The sum of loads carried by all crystals cut by a section must balance the external load on

the aggregate. The stress relieved by slip of one crystal must be carried by other crystals. Creep

or plastic strain in one group of crystals will increase the average stress taken by other groups of

crystals. This interaction effect between groups of crystals was first taken into consideration by

Kr6ner, 1968. Budiansky and Wu, 1962, rederiving Kr6ner's scheme of incorporating this average

interaction effect by a different physical reasoning and using Eshelby's results for ellipsoidal

inclusions, obtained numerical results for the time-independent plastic stress-strain curves of

strain-hardening f.c.c. polycrystals in tension and shear. Theories considering this average inter-

action effect are called self-consistent theories. Hill, 1965, had shown that Budiansky and Wu's

self-consistent model has certain limitations, since the pronounced directional weaknesses in the

constraint of an already-yielded aggregate, when loaded far beyond the elastic range, are disregarded.

However, Hutchinson, 1070, has compared the predictions of the more general models of Hill with

those of the simple model and has found that the two predictions are roughly similar in the range

of small plastic strains.

Assuming the rate of slip in a slip system to be governed by the resolved shear stress in that

system, Rice, 1970, has shown that it is possible to derive the polycrystal macroscopic creep strain

rate from a potential function of stress. Phillips, 1969, has experimentally obtained loading surfaces

of polycrystal aluminum under combined loading at elevated temperatures. Brown, 1970a, b, has

extended the application of the Budiansky-Wu's self-consistent model of plastic deformation to

creep strains. Assuming the slip rate y in a slip system to be a power function of the resolved shear

stress t in that system,
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-= c" (1)

where c and r, are constants and n varies from 3 to 8, Brown has calculated, by this self-consistent

model, the creep strain rates under a given path of non-radial loading. He has compared the calculated

results with experimental strain-rate vs time curves and has found that the experimental curves gives

much larger creep strain rate than the calculated results following each change in loading.

Hutchinson, 1975, has shown a more direct method of estimating the steady creep characteristics

of polycrystals composed of f.c.c. crystals whose slip rate in a slip system is related to its resolved

shear stress as given in Eq. (1). These studies have contributed much to the understanding of the

relation between the creep properties of single crystals and those of polycrystals.

When a polycrystal is loaded at an elevated temperature, many or all crystals may slide; then

the distance between two adjacent slid crystals may become very small. Hence the application of

Eshelby's results considering the average interaction effect may cause significant error. The

assumption of creep rate of a single crystal as a function of the resolved shear stress only, neglects

the transient creep. This neglect of transient creep and the use of the self-consistent theory seem

to be the man cause of the discrepancy between Brown's calculated and experimental results (Brown,

1970a, b).

Method of Calculating Stress Field Caused by a Given Creep Strain Distribution:

Ductile polycrystalline metals undergo considerable creep deformation before cracks occur.

Hence, a rigorous theory of polycrystal creep should satisfy, throughout the aggregate, the conditions

of continuity of displacement, condition of equilibrium and the stress-strain-time relation of the

component crystal. A method satisfying all these three conditions to calculate the stress fields

caused by given creep strains is here shown. This method was originally developed by Lin et al.

1966, 1970, 1975, 1978, for calculating plastic stress-strain relation of polycrystals from that of a

single crystal and is here modified for creep calculations.
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Referring to a set of rectangular coordinates (x1j) where i = 1, 2, 3, the strain components e,

consists of elastic and creep parts

e = eE + e (2)

where the superscript E and c denote elastic and creep respectively. The stress-strain relationship

for this isotropic medium is represented by

=E

8 j X(e a - e') + 2 t(eq - e') (3)

where 8ij is the Kronecker delta, X and t are Lame's constants and the repeated indices denote

summation. The condition of equilibrium within a body is given as

ri,1i +F, = 0 (4)

where subscriptj after comma denotes partial differentiation with respect to xj-axis, and F denotes

the i-component of body force. Substituting (3) in (4), we obtain

5 ke + 2. ejj - (8o )Le,,j + 2gt ej>j) + F = 0 (5)

It is seen that the parenthesis term is equivalent to Fj in causing strain field eq and hence is called

the equivalent body force and is denoted by Fi. Creep strain caused by slip produces no volumetric

strain hence F, reduces to

F = 2. eJ (6)

The strain field eij caused by F, may be obtained by solving the differential Equation (5) with

F = 0. The stress field caused by this F,, denoted by e may be obtained from the strain field.

S = 8ij X. ek + 2 t e (7)
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Consider a point x' in the aggregate sliding in the nth slip system. Let ct(x, n) be the unit

vector normal to the sliding plane at x with xc , n) as its component along x -axis and
be the ul~it vector along the sliding direction at x' with p3jc, nj as its component along xaxis.

Denoting the magnitude of the creep strain caused by slip in this slip system at x by e' j, n ), the

creep strain components due to slip in this slip system, referring to x-coordinates may be written

as

ei'(x')= n eX n  (8)

where n,, = c(x n', n) n) + cz({X, n) n). The equivalent body force is then

F,, n) nki (9)

After creep occurs in a number of crystals, the stress in the polycrystal becomes highly

heterogeneous. To find the stress field caused by the heterogeneous slip, the following imaginary

process is considered. Imagine that the load is removed and the creep strain remains. This creep

strain causes a residual stress field TR. Noting (7), we have

= 86j(e-e'a)+2 t(ejj -e) = 'r.-2.e' (10)

Then imagine that the polycrystal is reloaded. No additional creep strain occurs during this

imagina process of unloading and reloading. This reloading is purely elastic and hence causes a

uniform applied stress Tj in the aggregate. The resulting stress in the aggregate is the sum of the

heterogeneous residual stress T and the applied homogeneous stress T.

t= t+ T = TA+te -2e (11)
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Consider a fine-grained metal. Each component crystal is much smaller than the aggregate.

To calculate the stress field caused by a slip in a crystal at the interior of the aggregate, the equivalent

body force due to creep strain gradients can be considered to act in an infinite medium. The

displacement field is an infinite isotropic elastic medium caused by body force FkX') acting in

volume v has been given by Kelvin (Love, 1927). From this displacement field, the stress field is

obtained. From Kelvin's solution, the stress field caused by equivalent body force

acting in v is given as

ttsj(x) {Ajk , ') ( V'

- ~e 2kdv~~ Q *ifkI~x~d (12)

where

-3 (xi- X.) (xj X;)(Xk Xk)

87(1 -a)r

+ I(-2- 5) Xk -Xk) - jk (xj -x;) - O' (x i - X  (13)

87r(l -()Ir3

r 2 = (xi - x5) (xi - x:) and ; is the Poisson's ratio.

From creep strain field ei, the equivalent body force F3 is readily obtained. The stress field

caused by F3 can be found by Equation (12), then the stress field is computed by Equation (11).

Present Polycrystal Model:

A large three dimensional region embedded in an infinite isotropic elastic medium is con-

sidered to be entirely filled with innumerous identical cubic blocks, each of which is compsed of

64 f.c.c. crystals (Fig. 1) having different orientations. The average incremental stress A , vs
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average incremental creep strain Ae-' of the interior center basic block is taken to represent the

macroscopic incremental stress AT1 vs creep strain AE,' of the polycrystal (Lin et al., 1974, 1975).

The size of the total region may be considered to be infinite as compared to the size of one block.

The creep strain distribution of the blocks in the interior region are taken to be the same. Here,

to calculate the stress field ;n the center block, the values of Ae'" n) and at (X;, x2, X3 ) are

take , to be the same as those at any point (x; - ml a, x2 - M2 a, x3 - M3 a), where mn, m2, in 3 , are

any integer and "a" is the linear dimension of the basic cube-shaped block. Then the integral in

(12) over the three L. -ensional infinite region reduces to an integral over one basic block with

(jk(1(x, x) expressed as ijk(xj, x2, x3, xi - mI a, x2 - a, x - M 3 a) with m, M 2, M3, summed over

all positive and negative integers.

Crystal Orientations:

Polycrystals considered are composed of crystals of random orientations. Let specimen axes

be denoted by x1, x2 andx 3. Creep tensile stra'n under tensile loading along x,-axis should be about

the sane as that along x2 or x3-axis. Under a tensile loading, the creep shear strain components E'1,

E' and E3, approach zero. Under shear loading T12, T23 or T31, E'1 . E22 and E' are zero and the

macroscopic shear stress-strain-time relations should be about the same. This is here referred to a-

the initial isotropy of polycrystal creep.
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Figure 1: The Basic Block of 64-Crystals

In order to satisfy this property of initial creep isotropy, a 64-crystal model has been developed

(Lin et al., 1974, Lin and Ribeiro, 1981). The 64-crystal in a basic cubic block are divided into

eight groups, each of which has 8-crystals and occupies one octant of the block. The orientations

and arrangement of crystals of one group are chosen so as to give mirror images of other groups

with respect to three coordinate planes of the specimen axes. This gives three planes of symmetry

an hence satisfies the property of orthotropy.

The actual orientations of crystals in a metal can be quite random or with preferred orientations.

To simulate the one with random orientations, we orient one of the 8-crystals in the first octant such

that this resolved shear stress in the most favorable slip system under T 1 equals to that under T 2 at

10



the loading T 12 equals .577 T. This would give Von Mises criterion for initial yielding. A different

orientation of this crystal can yie ld Tresca'-, criterion of yielding. Another crystal of the eight is

oriented to give a mirror image to the first with respect to the plane making 450 with both x2 and x3

axes. These give two crystals associated with T11. Similarly there are two such crystals associated

with T22 and with T33. These take six crystals. The remaining two crystals have their crystal axes

coinciding with the specimen axes xj, x2, x3. These 8-crystals are positioned in the first octant in

such a way as shown in Fig. 1, as to give no preference to loadings T 1, T22 or T33. By this way, the

polycrystal has the property of cubic orthotropy i.e. El vs T11 under T11, E22 vs T 2 2 under T 2 2 and

E' vs T33 under T3 3 are the same. This property holds for actual metals of random orientations with

arbitrary orientations of specimen axes. The present 64-crystal model gives this initial creep isotropy

only when the crystal orientations are fixed to the specimen axes. The orientations of these 8-crystals

uses in our calculation and listed in Table 1.
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Table I

Orientation of the First Slip Systems of the Crystals
in the First Octant with Respect to Specimen Axes

Crystal Number Slip Axes

1 ot = (0.577350, 0.577350, 0.577350)

= (0.000000, -0.707107, 0.707107)

y = (0.816497, -0.408248, -0.408248)

2 C = (0.156435, 0.966105, 0.205352)

= (0.987688, -0.153016, -0.032525)

y = (0.000000, 0.207912, -0.978148)

3 = (0.205352, 0.156435, 0.966105)

= (-0.032525, 0.987688, -0.153016)

y = (-0.978148, 0.000000, 0.207912)

4 X = (0.205352, 0.966105, 0.156435)

= (-0.032525, -0.153016, 0.987688)

y (-0.978148, 0.207912, 0.000000)

5 a = (0.966105, 0.205352, 0.156435)

= (-0.153016, -0.032525, 0.987688)
y - (0.207912, -0.978148, 0.000000)

6 a = (0.966105, 0.156435, 0.205352)

P = (-0.153016, 0.987688, -0.032525)
y = (0.207912, 0.000000, -0.978148)

7 a = (0.156435, 0.205352, 0.966105)

= (0.987688, -0.032525, -0.153016)

y = (0.000000, -0.987148, 0.207912)

8 a = (0.577350, 0.577350, 0.577350)

13 = (0.000000, -0.707107, 0.707107)
y = (0 816497, 0.408248, -0.408248)

12
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Averaging Microscopic Strains and Stresses:

Refer to Fig. 1 that shows the basic block of 64-Crystals, let Si or S,(xj) denote the intersection

of the plane x. = C (- < C a with the block. The macroscopic displacements on the surfaces of

the block are defined as

uA A ujdS (14)

where A = (a)2 is the area of each face of the block. The macroscopic strain of the block is defined

as

1 , F s(U ) - U, I + is,( .!)-, I- ,(_a I (15
E =~ 2a a

Substituting (14) into 15, we have

E. [ ui dxdS + f uidxidS]EO -2 aA __j f_

(no summation on i and )

- f (ui1 +uj)idV f V = e, (16)

where a bar on the top denotes the volume average over the block. In the present study, the summation

convention for product terms is used only for the coordinate indices unless otherwise stated. Eq.

16 indicates that the macroscopic strain of the block equals the average internal strain of this block

The above derivation also gives

j = Ej, i(17)

Let ej(p) denote the average strain of the pth grid in the block, then
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1 64

e - I eij(p) (18)

thus

1 64
Eij= - e , (p )  (19)

Let the macroscopic stress of the block be defined on the surfaces 7 by

T-= lfJstdS (20)

Since all the blocks are assumed to deform identically, the stress at any point on the surface SJ27

will be the same as that at the same point on the surface Sj (- ). Consider the equilibrium of a body

in the block cut by the planes Sj(a )and S,(xj), the resultant forces of the tractions on the four planes

exceptSj 2 and S1(xj) are zero. Therefore, the resultant forces of the tractions on S should be

balanced by that on S,(xj). Then the macroscopic stress in (20) can be evaluated on any surface

Sj(xj). Hence

1 fs j f2 l CV
T = A tdS = a ,dSdx V = ",, (21)

2

(no summation on j)

From (21), we also have

T,, = Tj, (22)

By the same reasoning s (18)

Ti)~ ~ = i64
= - '-'t1 (p) (23)

64p=1
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i.e., the macroscopic stress of the block is the average of the nominal stresses of the 64-crystals.

The macroscopic elastic strains are defined as
E

Eij = Mijr TV (24)

where Miju are the macroscopic compliance coefficients of the block which, for a homogeneous

elastic medium, are the same as that of the medium. From (21), we have

E 64 E(p)

Eii = mijka c tk = e y = -Xe = (25)

The macroscopic creep strains are defined as

Eq = Ej - E j (26)

Therefore,

-E - 1 6
Eic = ec = I ec(p) (27)

Letting At~i = ti - rtj Aej = - 7e,, the work done by the stress on the strain in the block is

given by

ft ijedV = f ('rij + Altqj) (ej + Aei)dV

= fV edV+ fV AtijAeidV

= V fs AtjnjAuidV (28)

Since the deformation states on Sj(!) and that on Sj(-!) are the same, we have

Atinj Is(!) = - At,,n1 Is-) (no summation on j) (29)
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and

u, sj(.) - U i sj(a) = u Is(-!) - U i s(-!) (30)

i.e.,

Auj Au is (31)

therefore,

I AltnAudV =0 (32)

hence

tqejj = te, =TE (33)

This satisfies the well known virtual work equation for polycrystal aggregates, which Bishop and

Hill, 1954 proved, based on a "non-correlation" hypothesis for a "unit" cube containing a sufficient

number of crystals such that it is "macroscopically homogeneous". Hill, 1967, showed that this

equation is valid for an aggregate as long as either the tractions or the displacements on the boundaries

of the aggregate are uniform, and it is valid approximately as long as those boundary conditions

are "macroscopically uniform". Havner, 1971 used these uniform boundary conditions in his discrete

model, which is practical for complex loading conditions only if his "unit" cube contains a sufficient

number of grains. In the present model, neither the tractions nor the displacements on the boundaries

of the basic block need to be uniform. The above derivation also holds for the case that the block

contains a finite number of single crystals that are of arbitrary shapes, sizes and orientations as long

as all blocks are assumed to deform identically. This model removes the assumption of non-

correlation shown by Bishop and Hill, 1951.
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Calculation of Residual Stresses Caused by Creep:

To simplify the numerical calculation, creep strain in each crystal is assumed to be uniform

and this average stress of each crystal is assumed to represent the stress over the entire crystal. With

this assumption, creep strain gradient in each crystal vanishes. Across the crystal boundary creep

strain drops from the uniform value to zero. This gives no equivalent body force but gives an

equivalent uniform surface force of the plane boundary surface of each crystal. Eq. 12 reduces to

tt(x) = 2g f, Ojk ( 'xn(x")ec(X n dS; (34)

where dS; is the projected differential area of the boundary of the volume v' normal to x1-axis.

dS, = iodS

where u, is direction cosine of the normal to the boundary of the differential area dS'.

Considering the creep strain distributions in all cubic blocks to be the same as that of the

center block as indicated previously, the stress field at point x caused by the equivalent surface

forces due to slip in the nth slip system of the qth crystal is then

= 2. f Y,, Iijk(xx" m, m2', m)e(qn)n (q)dS; (35)
"1 "2 t3

Since ec(q, n) is assumed to be uniform in each crystal. This above can be written as

,jq,,(x) = 2g. e(q,n)n,(q)XI ii,(xx', in 2, im3)dS; (36)

then

t q,(x) = e.q(x)-2ge5(x) (37)

17



The residual stress field is hence determined. The average residual stress of the crystal "p" due to

a uniform creep strain due to slip in the nth slip system of the qth crystal ec(q, n) can be calculated

and written as

iRt q.(P) = aijq,(p)e(q,n) (38)

By tensor transformation, the residual resolved shear stress in the mth slip system of the pth crystal

is readily obtained and is written as

tR = a,,c, e , (39)

4 ,'.q is the average residual resolved shear stress in the mth slip system in the pth crystal due

to a unit uniform resolved shear creep strain in the nth slip system in the qth crystal and is called

the residual stress influence coefficient. These influence coefficients are the same as those used in

plasticity calculations, since both creep and plastic strains are inelastic strains (Lin, 1968).

These coefficients satisfy the reciprocal relations and give a symmetrical matrix in our cal-

culations. The above provides a more rigorous method to calculate the stress field from given creep

strain distributions than other proposed methods in the literature.

Single Crystal Characteristics:

A number of theories of creep in single crystal metals have been reviewed by Johnson et al.,

1953, 1955. Stowell, 1958 has indicated that all the then existing theories of transient creep which

is an important part of total creep, are inadequate to account for the actual behavior of polycrystalline

metals at elevated temperatures. Single crystal data under multi-axial creep under non-radial loading

are very meagre and difficult to measure. Since we have developed a method to calculate the

stress-strain-time relation of a polycrystal from that of the component crystal, we here calculate the

component crystal characteristics from the given available test data of the polycrystal under radial

and non-radial loadings. The size of single crystals used for single crystal tests is much larger than

18



that of the component crystal in a polycrystal and it is known that the creep property varies with

the crystal size. To calculate the creep characteristics of the component crystal from the stress-

strain-time relation of a polycrystal, has the advantage of automatically taking care of the size effect

of the crystals.

Most formula proposed for creep in metals under constant temperature have assumed the

creep rate y' on a slip system depending on its resolved shear stress t and the summation of creep

slip YC'y all of slip systems.

,Y C = 'YC('t, ,_y c ) (40)

One form of the above is given as

C 1 (41)

where c, d, a, Q, and P3 are material constants.

Plasticity studies have shown that active hardening is different from latent hardening, (Taylor,

1938). The rate of hardening also varies among this different latent slip systems. (Wu et al., 1990,

Bassani et al., 1990, Bassani, 1990). Hence the use of the sum of slip Xy in describing this slip

rate is not adequate. Hence Eq. 40 is changed to

"n = y:(tm, Y:) n = 1,...12 (42)

Now the creep rate in the mth slip system is a function of the resolved shear stress in this system

t and resolved shear creep strains in all the slip systems. A number of attempts have been made

to use Eq. 41 to simulate experimental creep data covering radial and non-radial loadings (Ribeiro

1978, Wu, 1981). However, the agreements between the calculated and the experimental results

are not satisfactory especially for the case of non-radial loading. The form given in (42) is much

less restrictive and hence should yield better agreements with experimental results.
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The present formulation divides the creep rate in a slip system on the transient and steady

parts

,= + (43)

= c 
(44)

T.

- e (45)

where -r0 is taken to be 10,000 p.s.i. in the range of loadings (1) to (3) considered, the material

constants have found to be

n = 4.3

c = c = 0.80xle-

Q = Qo= 0.75x10 -4  (46)

P = 60.0 x 104

The first step is to use Eq. 45 to calculate the strain-time curves for loadings given by the

paper "Short-Time Biaxial Creep of an Aluminum Alloy with Abrupt Changes of Temperature and

State of Stress" by Blass and Findley, 1971. Aluminum Alloy 2618-T61 was tested at 2000C. The

test data considered are

Time 0 to 2hrs. 2hr to 4hrs.

(1) Tensile Loading T = 20,000 p.s.i. - Al*

(2) Shear Loading T12= 11,500 p.s.i. - B 1

(3) Radial Loading T1 = 20,000 p.s.i.
C1

T12 = 11,500 p.s.i.

Test number of the short-time creep test.
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(4) Non-Radial T12  = 11,500 p.s.i. Tl1 = 11,500
Loading B2

T12 = 20,000

It was found that for case (4), Eq. 45 greatly under represent the creep strain after the start of the

non-radial loading. Due to symmetrical arrangement of the 64-crystal model, only 16-crystals have

different active slip systems under T11 and T12. Numerical calculations indicate that 14 of the 16

crystals have active slip systems changed. It is assumed that new slip systems slide more easily to

give large creep rate after the non-radial loading. To represent this higher creep rate, Q and c in

Eq. 45 are increased by AQ and Ac respectively. These AQ and Ac can vary from one slip system

to another and from one crystal to another. To simplify the calculation, AQ and Ac are assumed

to be constant and occur in all the 14-crystals with new active slip systems.

These AQ and Ac, after few trials, were taken as

AQ = QF(IY, I, At,,). Q,= 4.00 (47)

and

Ac = cjF( I y.c 1, At,) c1 = 3.00 (48)

where F(X'I y I, At,.) = tanh ((, I y. I)x(A,)IJ and only applies when (49)

At,, in increasing,

Using these equations the calculated axial and shear strain-time curves are compared with the

experimental data as shown in Figs. 3 to 6. The above creep slip rate in different slip systems as

given in Eqs. 45, 47 to 49 is expected to yield much more realistic polycrystal creep characteristics

for this material than the "time-hardening" or "strain-hardening" theories. If the structure is loaded

to give much hizher stresses, creep test data covering this high stress range in radial and non-radial

loadings should be included. Polycrystal creep test data seems to be much easier to obtain. This

procedure seems to be able to improve the accuracy of creep analyses of structures.

21



Test A
2000C

Tes

200

22 2



T12 TI

-~T --- - 1

2

TetBTest A Experimnt

2000C  200C- Present Theory

38

36

X 34

S 32

30

28

24 A l1 T , 2 ,000 Psi T1 2 0 M

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Time , Hours

Figure 3: Calculated and Experimental Curves under
Axial Loading (Al) and Non-Radial Loading (B2)

23



2 
Prsn hr

36 Test B
2000C

34

32

30

-E 28

t) 26

24

22

20

18

16
0.2 0.4 0.6 0.'8 1.0 1.2 1.4 1. a 20Time , Hours16 1. 20

Figure 4: Calculated and ExperiMental Curves under aNon.Radial Loading (BI) and (B2)

24



N

Test C
2000C

Experiment

32 K - Present Theory

X 30

S 28

S 26 0

24

22 k
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Time , Hours

Figure 5: Calculated and Experimental Curves under a
Radial Loading (Cl) Axial Strain

25



_______Experiment

-K -Present Theory

26

x
24

X 22

10,00PS

18

16
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Time , Hours

Figure 6: Calculated and Experimental Curves under a

Radial Loading (Cl) Shear Strain

26



Mechanical Equation of State:

Most structures are subject to stresses varying with time. Creep tests have generally been

done under constant load or constant stress. In applying these data to structures in which stress

varies with time, certain assumptions have to be made. One commonly used assumption for creep

analysis of structures is the existence of a mechanical equation between creep rate, stress, tem-

perature, and current creep strain. This Mechanical Equation of State is not derived from the physics

of the metals and therefore may not be valid for some metals. Under constant temperature, this

equation may be written for a polycrystal,

1= F(Ec1, T"11) (50)

where T 1 is the macroscopic stress and F denotes a function. Here the stress is assumed to depend

only on the current creep strain and its rate, and not on the strain rate during earlier stages of

deformation. The creep behavior of the component crystal is generally assumed of the following

form

= F(yc,c) (51)

Here r represents the resolved shear stress, y and ', denote the creep strain and creep strain rate,

respectively.
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Table II

Maximum Resolved Shear stress of Each Crystal
at Intersection of Creep and Relaxation Test

Crystal Max. Resolved Max. Resolved Resolved Percent
Number Stress-Creep Stress-Relax Stress-Diff. Error

(psi) (psi) (psi)

1 11186.0273 11188.6055 2.58 .023
2 13394.6367 13377.6797 16.96 .127
3 13394.6367 13377.6797 16.96 .127
4 11186.0273 11188.6055 2.58 .023
5 11319.9180 11340.3203 20.40 .180
6 11319.9180 11340.3203 20.40 .180
7 11319.9180 11340.3203 20.40 .180
8 11319.9180 11340.3203 20.40 .180
9 11319.9180 11340.3203 20.40 .180
10 11319.9180 11340.3203 20.40 .180
11 11319.9180 11340.3203 20.40 .180
12 11319.9180 11340.3203 20.40 .180
13 11186.0273 11188.6055 2.58 .023
14 13394.6367 13377.6797 16.96 .127
15 13394.6367 13377.6797 16.96 .127
16 11186.0273 11188.6055 2.58 .023
17 12671.5273 12671.4492 0.078 .0006
18 12671.5273 12671.4492 0.078 .0006
19 12671.5273 12671.4492 0.078 .0006
20 12671.5273 12671.4492 0.078 .0006
21 13394.6367 13377.6797 16.96 .127
22 11186.0273 11188.6055 2.58 .023
23 11186.0273 11188.6055 2.58 .023
24 13394.6367 13377.6797 16.96 .127
25 13394.6367 13377.6797 16.96 .127
26 11186.0273 11188.6055 2.58 .023
27 11186.0273 11188.6055 2.58 .023
28 13394.6367 13377.6797 16.96 .127
29 12671.5273 12671.4492 0.078 .0006
30 12671.5273 12671.4492 0.078 .0006
31 12671.5273 12671.4492 0.078 .0006
32 12671.5273 12671.4492 0.078 .0006
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Table II (Con't)

Maximum Resolved Shear stress of Each Crystal
at Intersection of Creep and Relaxation Test

Crystal Max. Resolved Max. Resolved Resoived Percent
Number Stress-Creep Stress-Relax Stress-Diff. Error

(psi) (psi) (psi)

33 12671.5273 12671.4492 0.078 .0006
34 12671.5273 12671.4492 0.078 .0006
35 12671.5273 12671.4492 0.078 .0006
36 12671.5273 12671.4492 0.078 .0006
37 13394.6367 13377.6797 16.96 .127
38 11186.0273 11188.6055 2.58 .023
39 11186.0273 11188.6055 2.58 .023
40 13394.6367 13377.6797 16.96 .127
41 13394.6367 13377.6797 16.96 .127
42 11186.0273 11188.6055 2.58 .023
43 11186.0273 11188.6055 2.58 .023
44 13394.6367 13377.6797 16.96 .127
45 12671.5273 12671.4492 0.078 .0006
46 12671.5273 12671.4492 0.078 .0006
47 12671.5273 12671.4492 0.078 .0006
48 12671.5273 12671.4492 0.078 .0006
49 11186.0273 11188.6055 2.58 .023
50 13394.6367 13377.6797 16.96 .127
51 13394.6367 13377.6797 16.96 .127
52 11186.0273 11188.6055 2.58 .023
53 11319.9180 11340.3203 20.40 .180
54 11319.9180 11340.3203 20.40 .180
55 11319.9180 11340.3203 20.40 .180
56 11319.9180 11340.3203 20.40 .180
57 11319.9180 11340.3203 20.40 .180
58 11319.9180 11340.3203 20.40 .180
59 11319.9180 11340.3203 20.40 .180
60 11319.9180 11340.3203 20.40 .180
61 11186.0273 11188.6055 2.58 .023
62 13394.6367 13377.6797 16.96 .127
63 13394.6367 13377.6797 16.96 .127
64 11186.0273 11188.6055 2.58 .023
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Using a component crystal with the stress-strain-time relation of the form (51), and following

the polycrystal model shown in Fig. 1. The strain-time curve at constant uniaxial loading T11 = 28.00

ksi and the stress-strain-time curves of the relaxation test at initial loading 30.00 ksi had been

calculated by the present theory are shown in Fig. 6.

The comparison of the maximum resolved shear stress for each crystal at the intersection

point of both tests are presented in Table III. It can be seen that the error is very small. This proves

that the calculated component crystal constitutive equations satisfy the mechanical equation of state

by numerical calculation.

Conclusions:

1. The theory developed to calculate the polycrystal creep characteristic from that of the com-

ponent crystals satisfies both equilibrium and compatibility conditions as well as the com-

ponent crystal stress-strain-time relations.

2. The size effect of crystals is automatically taken care of in this proposed approach.

3. A more accurate representation of a polycrystal creep characteristics. Single crystal stress-

strain-time relationship is taken to depend on the stress and the amounts of slip in different

slip systems in the crystal. The slip rate in one slip system depends on the resolved shear

stress in the slip system and the amount of slip in the active and all the eleven other slip

systems. An expression of this dependency was found to give calculated creep strain-time

curves agreeing well with the experimental curves of the test data obtained by Blass and

Findley, 1971 on an aluminum alloy tested at 200'C under both radial and non-radial loadings.

This expression is to be used n calculating the stress-strain-time relation of the material for

other radial and non-radial loadings. It is believed that this procedure will give much more

realistic creep responses than the "time-hardening" and "strain-hardening" theories. This

should improve greatly the creep analyses of structures.
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4. Single crystal stress-strain-time relations proposed, generally satisfies the relation of

mechanical equation of state. Using such a relation in calculating the polycrystal creep

response, it was found that this relation is also satisfied for polycrystals. One creep loading

and one relaxation loading of a polycrystal were calculated by the present theory. It was

found that at the intersection of the creep rate vs creep strain curves of the creep and relaxation

loadings, the resolved shear stresses in all the crystals are the same for the two loadings. This

shows this mechanical equation of state is sound for radial loadings (not for (non-radial

loadings).
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