
REPORT DOCUMENTATION PAGE

AD- A232 656 -AO DAE Ca a"
C a40aqm."I oni suaiqui. 0" Asag"hiingot07"4 1 sons..~

4., N Jan. 15, 1991 FINAL: Jan. 15, 1989 - I:

4. TIT'LE AND SU*Tn ;,7 ,: S. FUNDING NUMIERS

Mathematicl 6dations of Databases AFOSR Grant 89 - 0244
._. _61102F 2304/A2

6.AUT4OR(S) Seymour Ginsburg, Principal Investigator

Stephen Kurtzman, Research Assistant
Xiaoyang Wang, Research Assistant

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) . PERFORMING ORGANIZATION

Computer .Science Department REPORT NUMBER
University of Southern California
Los Angeles, CA 90089

9. SPONSORING/MONITORING AGENCY NAME(S) AND AOORESS(ES) to. SPONSoRING/MNiTORINGAGENCY RUCQIT NUMBER

Air Force Office of Scientific Research /NM
Bolling Air Force Base, DC 20332-6448 AFOSR-89-0244

11. SUPPleMENTARY NOTES

12a. DISTPIUTIONIAVAILABIUTY STATEMENT u.o

Approved for public release; distribution unlimited

13. ASSTRACT (Maximum 200 wolvW

Two distinct topics were studied, each by one of the research assistants
and each destined to be part of his doctoral dissertation. The first topic,
"Properties of Spreadsheet Histories", formalized the use of spreadsheets
for modelling the history of accounting-like information. Thi investigated
subtopics included database operations (such as selection, projection,
each- of the database operations were also presented. The second topic,
"Declarative Sqence Operations and Their Usage in Query Languages",
introduced a.1001y of sequence operations based on the regular expressions
from formal L $Se theory. The itdms examined included their
mathematical yferties (such as their expressive power) and their usage in
various query Unguages (e.g., SQL) of database systems. A number of
example queries were also exhibited.

14. SUBUECT TERMS 15. NUMUIR Of PAGES

Database theory, spreadsheets, historical information,
sequences, sequence operations, query la'guages, regular is. PRICI cooE
exoress ions

17. SIC.J'T7y CL%5V. IK.IQI 13. SZC!..ITY (LAS. ,F'c .UICN 119. SECURI'rr CLAS 'CAT1ON 20. UMITAnlONOCOASTXACT
C' AVCV.1T CF TH4IS PAGj OP AaZS.'Uc7
Unclassified Unclassified Unclassified UL

~I ~I7 C-I. 30 .. "Gardc '1 01%(~ . 2-i-:1

AFOSR FINAL REPORT, JANUARY 15, 1991

Title: Mathematical Foundations of Databases

Principle Investigator: Seymour Ginsburg, Fletcher Jones Professor of Computer Science

AFOSR Grant Number: 89-0244

Other Investigators: Stephen Kurtzman, Student
Xiaoyang Wang, Student

Purpose: To examine theoretical asp?cts of relational databases(and its extensions) suggested by
computer science considerations.

Accomplishments: Two distinct topics were investigated during the grant period. Each was
studied by one of the above research assistants and is to become an integral part of his PhD thesis.
A brief summary of the results obtained are now given. Enclosed with this review are two reports,
describing in more detail the results obtained.

The first report, "Properties of Spreadsheet Histories", is by Stephen Kurtzman. In this report,
some theoretical aspects of one of the most widely used types of small-business data-processing soft-
ware, namely the spreadsheet program, are studied. In particular, a formal model for spreadsheet
histories is presented and examined with respect to two questions. First, the database operations
of selection, projection, cohesion and union are considered. The primary question here is whether
or not these operations preserve the formal model The answer is yes for selection, cohesion and
intersectior, and no for the remaining two. A necessary and sufficient condition is then given
for projector and union to preserve the basic model The second question concerns a notion of
spreadsheet-history equivalence based on the projection operation. This concept, projection sim-
ulation, is defined and three sufficiency conditions presented for when it preserves an important
subclass, the "history bounded", of the data model.

The second report, "Declarative Sequence Operations and Their Usage in Query Languages", is
by Xiaoyang Wang. In this report, a family of declarative sequence operations (based on regular
expressions from formal language theory) is introduced and studied. The operations were chosen
for their power and simplicity in describing the access of sequential information. There are two
parts to the investigation. The first part is devoted to the study of these sequence operations. In
particular, they are characterized by a type of automaton. The decomposition of operations is then
considered and an infinite non-collapsing hierarchy of sequence operations established. The second
part of the report introduces both a database model with sequences as a basic data construct, and
a query language defined in terms of the sequence operations. Numerous examples are given to
demonstrate the practical utility of the sequence operations.

91 3 06

h

Declarative Sequence Operations and
Their Usage in Query Languages t

Xiaoyang Wang

Computer Science Department

University of Southern California

Los Angeles, CA 90089-0782

Abstract

A family of declarative sequence operations based on regular expressions is in-

troduced and their properties studied. Using these operations, an extension of SQL

is presented over a simple database model with sequence constructors.

1 Introduction

In a typical complex-object database system, tuple, set and sequence (or list) are the three

major "bulk" data constructors [3, 5, 15]. While tuples and sets have been extensively

studied [1, 2, 4, 9, 14], very few investigations about sequences in databases have been

reported, and notably, no declarative query system on sequences has ever been proposed

in the literature. The purpose of this paper is to introduce such a system using regular

expressions as declarative operations over sequences.

The basic idea of this paper is to use the regular expressions as patterns. One can

view the patterns as describing the ways of merging several sequences or of selecting

a subsequence from one sequence. Regular expressions can be used to describe many r
r •

natural patterns and in a simple way. This fact leads to powerful, yet simple, declarative

languages on databases with sequences. As an example of using the sequence operations

in query languages, a simple data model involving sequences and its query language are

t This report summarizes the work supported by the Air Force Office of Scientific Research (AFOSR)

grant 89-0244. A more detailed presentation, including formal proofs, will be provided in the author's
Ph.D. thesis.

-

defined in this paper. The data model is basically a relational one but with every entry

of a tuple being a sequence of (zero or more) (basic) values. This is an overly simplified

complex-object database model (which contains neither sets nor nested structures). The

simplicity of the model permits one to focus attention oLL sequences. Nevertheless, the use

of the sequence operations in the query language over this simple model is quite general.

The sequence opeatons can a!rz b - -sed in query languages over inuie luaiplicated data

models.

The rest of the paper is organized as follows. In Section 2, the motivation of the

work is presented. In Section 3, the sequence operations based on regular expressions are

formally defined. Also in Section 3, a type of a-transducer ig defined to characterize the

operations based on regular expressions and to serve as "operational semantics" of the

operations. Some properties of the operations are studied in Section 3. The data model

mentioned above is defined in Section 4. In Section 5, an extension of SQL, SSQL or

Structured Sequence Query Language, is proposed using the sequence operations described

in Section 3. We conclude the paper with some remarks in Section 6.

2 Background and Motivations

Sequence constructors are used in applications where order is significant. For example,

consider the tour schedules in Figure 1, where the order of the cities being visited in a

tour is as displayed (thus, the cities are not simply in a set). The following are two natural

queries:

(1) Find all tours whose second city is Atlanta; and

(2) Find all tours visiting only the cities in Tour 356, and in the same order.

To handle these queries, at least two methods in the literature can be used.

One method is to view Figure 1 as a nested relation with arrival and departure dates

as time stamps (see, for example, [6, 10, 18] and, to some extent, [7]). The order of the

cities in a tour is implicit here, since the order is according to the arrival dates of the

cities. Using the implicit orders, two sub-phrases may be necessary to express query (1):

one to make sure that Atlanta appears in the tour, and another to see that there is one

and only one city before it. This is a complicated way of dealing with such a simple query.
Another method is to directly view the cities as sequences, i.e., the order of the cities

is the order they appear in '.he sequence. In this method, the sequence form permits the

TOUR - NO CITY J ARRIVAL IDEPARTURE I COST 11

356 New York 3/14/90 3/16/90 1004

Atlanta 3/16/90 3/18/90

Miami 2/18/90 3/20/90

456 Los Angeles 3/18/90 3/20/90 1409

San Francisco 3/20/90 3/22/90

Portland 3/22/90 3/25/90

Vancouver 3/25/90 3/26/90

556 San Francisco 3/21/90 3/23/90 699

Denver 3/23/90 3/25/90

Figure 1: Tour schedules.

use of indices in expressing queries. For example, in the query language of 02 [5], query

(1) above can simply be written as:

Select x.ToURNO

From x in Tour-schedule

Where x.CITY[2]="Atlanta"

However, there is no natural way of expressing query (2) only using indices, since query

(2) involves the question of whether one sequence is a subsequence of another.

In this paper, we use explicit sequences and employ regular expressions as operations

on sequences. Both query (1) and (2) can then be easily written using the operations.

Intuitively, a regular expression denotes a set of patterns describing how to merge several

sequences into a new one. For example, (XIX2)° represents patterns indicating that the

elements of odd numbered positions and the elements of even numbered positions of a

merged sequence are from different sources (z, and X2, respectively). Because of this, we

use j(XIX2)*12 as a binary merging operation. For each pair of sequences of equal length

ul and u2, J(z2 2)* 2 (ul, u 2) is the "perfect shuffle" of the pair. See Figure 2 below.

Similarly, we can match the patterns described by a regular expression against a single

sequence and extract out subsequences from some target positions. For example, we can

use (z 1 U X2)* to match against sequences and extract out the elements from the positions

First operand a b c - Fill the positions of zi
Second operand | d j e I f -- Fill the positions of X2

21 22 X1 X2 X1 Z2 IL pattern in (Z122)*

The only result a d b e c f

Figure 2: The merging operation 1(X1X 2)*j 2 on abc and def.

z, occupies. We use [(z U X)*'1 to denote such an operation (wherethe superscript -1

means to extract out the elements from the positions of xi). See Figure 3 for an example.

Obviously, (Xl U X2)1' 1 (u) returns a subsequences of u.

The operand a b c d e f 4- Match against the pattern

X1 Z2 X1 X2 X2 Z1 - A pattern in (z1 U Z2)*

One of the results a c f 4- Extract according to z

Figure 3: The selecting operation [(X1 U X2) 12 on abcdef.

Utilizing a selecting operation, query (2) can easily be expressed as follows in SSQL

(defined in Section 4):

Select TOUR-NO

From Tour-schedule

Where CITY in I(XI U X2)*]W(Select CITY

From Tour-schedule

Where ToURNO=356)

in which the where clause tests whether a sequence is a subsequence of another one.

Also, for each positive integer i, we may use u[i] as a shorthand for jzz1IX2X (u), i.e.,

extracting the ith element of u. We can then express query (1) as -easily as the query

language of 02 does.

3 Sequence Operations

In this section, we formally define a family of operations over sequences and study their

properties. Throughout this section, we assume an infinite alphabet ,o, i.e., an infinite

set of abstract elements, and a countably infinite set of variables V,,, with V.. n E, = 0.

3.1 Regular Expressions as Sequence Operations

In order to define sequence operations based on regular expressions, the following notion

is needed.

Notation Let z be a variable in Vo and C a finite subset of E. Then P(x, C) is the

set of boolean formulas with z = c and x 3 c, where c is in C, as atomic ones.

A sequence u is said to satisfy p in P(z, C) if and only if each element of u satisfies

p. The empty sequence e satisfies all conditions. Let V4, = {i,.. . ,a,} be a set of n

variables. Then P(Vn, C) = U,,ZE-V, P(z, C). Let P be a subset of P(Vn, C). Then P(xi)

denotes the formula (pil) A ... A (pik) where {pii,... ,pkJ = P n P(xi, C).
To define the sequence operations, we also borrow the notions of projection ir and

selection o- from relational algebra. In particular, let (1) ?r(ui ... un) = vi... v, where v,

is a projection on the ith column (in the relational algebra sense) of (the tuple) uj for

each 1 < j <n and (2) o,(u) be the maximum subsequence of u whose element satisfies

the condition (p. We are now ready to define the (sequence) merging operations.

Definition 1 Let n > 1 be a positive integer, C a finite subset of E.0, Q a regular

expression over V = {z 1 ,.. . ,z, } and P in P(V,, C). Then iIQ,P], is an n-ary sequence

operation, called n-ary (sequence) merging operation, such that for all subsets L 1, ... , Ln

of E ,

[Q, P(L 1,.. .L) = {ulthere exists v in (E x Vn)" such that u = 7r1(v), 7r2(v) is
in L(Q) and, for each 1 < i < n, 7ro02=,,(v) is in Li and satisfies P(xi)J.

Thus, an n-ary merging operation defines a mapping from n sets of sequences (over
E) to a single set of sequences (over E). In a merging operation [Q,PIn, Q describes
patterns used to select elements from corresponding input sequences to form merged
ones, and P acts as a filter used to allow only certain input sequences participating in the
merging. (When P is empty, it is usually omitted.)

Example Consider [(XlX 2)*,(X 2 5 f)Az({ab},{cd,ef}). Since ef does not satisfy

P(X 2) (X2 I f), ef is excluded from the merging. Therefore, only ab and cd are

going to be merged according to the patterns described by (XlX 2)*. Since Xpr 2 X1a 2 is a

word in L((xlX2)*), the sequence acbd is obtained. It is easy to see that acbd is the only

result. Hence, [(Xzl 2)*, (X2 # f)h2(ab}, {cd, ef}) = {acbd}.

Example It is easy to see that EX 4f2* (L1 , L 2) returns the concatenation of L, and L2,

i.e., {[XX]j 2(Li, L2) is the set of all sequences of the form uv where u is in L, and v is in

L 2.

Regular expressions can also be used to extract out subsequences from given sequences

as follows.

Definition 2 Let 1Q,P,, be a sequence merging operation and I a subset of {1,...,n}.

Then IQ,P]-J is a unary sequence operation, called an n-ary (sequence) selecting opera-

tion, such that for each subset L of M"

JQ,P f-(L)={ u there exists v in (EJo x V)* such that ir(v) is in L, ir2(v) is in

L(Q), u = ir'72 Eez(v) and, for each 1 < i < n, 7rlc,2=i,(v) satisfies P(xj)}

where x, = {zili in I}.

Thus, an n-ary selecting operation defines a mapping from a set of sequences to another

set of sequences. When I consists of only a single element, we will write the element

instead of the set consisting of that element.

Intuitively, in a selecting operation Q, P]n', Q defines a set of patterns to extract out

subsequences from designated (by I) positions of input sequences, and P describes the

conditions certain positions of the input sequences must satisfy.

Example Consider [zX* 2z*3,(X 2 = b)]23({abcd}). Now (i) XzI 2z 3X3 is in L(lx~2 X), (ii)

abcd is an input sequence, and (iii) b satisfies P(X2) = (X2 = b) where b is the element

in abcd corresponding to z2 in zXz 2z 3z 3 . Hence, elements in abcd corresponding to X3 in

z 1 X2X3z 3 are extracted. Therefore, cd is one of the selecting results. It is easy to see that

it is the only result. Thus, [Xlz 2z*,(X 2 = b)]2 3({abcd}) = {cd}.

Example Let k be a positive integer and L a subset of Z . Then Ix k x* (L) =

P : a n d -z* (.) =

Consider a composition of merging and selecting operations in the following example.

Example Let F(L) = (XI 2),] 2 2(jX(X 2),] 2(j(Xz 2)* 2 l(L), [xj,*2'(L))). If L consists

of an even length word w, then F(L) returns the set consisting of the first half of w. For

example, F({abcd}) = { ab}. Notice that two variables are used in defining F. The same

operation cannot be realized with only one variable. Later we will see that, in general,

additional mappings can be realized if more variables are used.

3.2 Generic a-Transducers

We next define a type of a-transducer which gives an "operational semantics" to the

sequence operations based on regular expressions. We now formally define the device.

Definition 3 A generic n-tape sequential transducer with accepting states, abbreviated

generic n-tape a-transducer, is a 7-tuple Mn = (n, C, K, x, H, po, F), where

(1) n is an positive integer.

(2) C is a finite subset of E.. (the constants).

(3) K is a finite set (of states).

(4) x is not in C (the variable).

(5) H is a subset of K x (C U {x}) x {,...,n} x x (C U ,el}) such that

for each (pi,a,t, p2 ,b) in H, either b = a or b = c.

(6) po is in K (the start state).

(7) F C K (the set of accepting states).

The variable symbol z in a generic n-tape a-transducer acts as a place holder. When-

ever a symbol not in C is seen by the device it uses a transition rule containing x.

Therefore, a generic a-transducer is like a pattern or a schema. The behavior of a generic

a-transducer is formally defined in the following. First though, we need some auxiliary

notions. We will use d to denote d or e in the remainder of this section.

Notation Let M,, = (n, C, K, x, H, po, F) be a generic n-tape a-transducer and A a set.

For each h = (p1,z,t, p 2,;) in H and a in A, let h[a] = (p,a,t, p 2, a) such that a = e if

and only if i = e. Let1 H[A] = {h[a]Ih in H and a in A}.

'If h does not contain z, h[a] = h for each a.

Notation Let M, = (n, C, K, x, H, po, F) be a generic n-tape a-transducer. Define '-,

(or I- when M, is understood) to be the relation on K x E* x ... x (E: appears

n + 1 times) by letting

(pi,wi,...,awt,...,w,v) (p2 ,w,...,wt,...,w,,vb)

if (pl, a, t, p 2, b) is in H[Eo - C]. Let j-" be the reflexive, transitive closure of H . Let r

be the relation (f_)k for 2 k > 0.

We are now ready to define the mapping performed by a generic n-tape a-transducer.

Definition 4 Let M,, = (C, K, x, H, po, F) be a generic n-tape a-transducer and L be a

set of sequences on E,,. Then ML(L1,..., ,) = {w[(pO, Vz, .. . , v,, 6)- (p, ,... , _, w) for

some p in F and vi in Li for all 1 < i < n}.

The next result shows that the, composition" of generic a-transducers is also a generic

a-transducer. First though, we define a subclass of generic a-transducers.

Definition 5 A generic n-tape a-transducer M,, = (n, C, K.,,H, po, F) is c-free if, for

each (pi, a, t, P2, b) in H, b = a. Mn is uniform if, for each pair (p, a, t, p', a) and (q, b, t, q', b)

in H, (p, b, t, p', b) is also in H.

Proposition 1 Let k > 1 be a integer, M be generic n,-tape a-transducer for each

1 < i < k and M0 generic k'-tape a-transducer where k' > k. Then there is a generic

(F~i ni + k' - k)-tape a-transducer M such that for all subset- Lij (1 < i < A-. 1 < j < n)

of E:,,, and subsets L, (k + 1 < I < k') of E:,, M(Li,..., L,..., LlkILk+l,..., Lk)

= Mo(M(Ljj,...,L 1 ,) ,...,..Mk(Lkl,..., L , LLk+w .. , Lk,). Furthermore, M is e-free

(uniform) if each Mi (0 < i < k) is c-free (uniform).

3.3 Characterizations and Properties of the Sequence Opera-

tions

In this subsection, we characterize the sequence operations in terms of the generic a-

transducers and study several properties of the operations. The first result shows that

e-free uniford, -.-tape a-tran5dlcers have the same expressive power as the n-ary merging

operations. Notice that a mapping from E;. x ... x E* (E; appears n times) to Y' o is

called an n-ary sequence operation.

Theorem 1 Let F be a sequence operation. Then F is equivalent to an n-ary merging

operation if and only if it is equivalent to an n-tape c-free uniform generic a-transducer.

It is easy to see that not every a-transducer is equivalent to an c-free uniform one.

Therefore, the above theorem suggests that there exists an a-trdnsducer which has no
equivalent merging operation. There are examples which show that it is indeed the case.

Thus, we have:

Theorem 2 For each n > 1, there are n-ary a-transducers which have no equivalent

merging operations.

Theorem 1 also shows that each merging operation has an equivalent uniform E-free

a-transducer. Therefore, by Theorem 1 and Proposition 1, the following corollary holds.

Corollary I Let WQo, Pk be a k-ary merging operation and JQ,, Pj,, be ni-ary merging

operations for each 1 < i < k. Then there exists a (E n.)-ary merging operation IQ, Pn

such that jQ,P],(L, . . . ,L,, . .. , Lkl,.. . , Lk,) = Qo, Po~k([Ql, P1], (1 11, . .. , Lin,),
I . Q k , P k ,n ,(L ki , . . , L k ,,)) .

The next theorem shows that the selecting operations are equivalent to unary a-

transducers (not necessary un..orm or c-free ones).

Theorem 3 Let F be a unary sequence operation. Then F1 is equivalent to a generic

1-tape a-transducer if and only if it is equivalent to a selecting operation.

By the above theorem and Proposition 1, it is easily seen that the selecting operations

are closed under composition.

Corollary 2 Let [[Q 1,P 1]," and [Q2,P2]nt2 be two selecting opcrations. Then there is

a [Q3, P3]'I such that Q3 P3j'3(L) = [Q1,p]-' (IIQ2,P 2]j7 '(L)) for all L.

We now consider the following question: Can one define additional sequence opera-
tions by using more variables? The answer is positive. Instead of giving examples of the

sequence operations realizable using n variables but not n - 1 variables, we first char-
acterize when a merging operation is decomposable, i.e., is a composition of some other
mcrging operations. Obviously, if and only if a merging operations is decomposable, it
can be realized by using fewer variables.

Notation Let V be a subset of V,, w and u sequences over V, and Q a regular expression
such that L(Q) = {w}. Then w[V//u] = ,wij!Q] 'V(wi) = u and IQ}JjIv--V(w1) = w}

where Iv = {ijx, E V} and Ivs-v = {ilz, E V, - V}. Given a sequence w over Vn and
a subset V of V,, let Q be a regular expression such that L(Q) = {w}. Then w!V -

Q] Iv(w) where Iv = {i, V}. Let L be a subset of V'. Then L(V = UweLWiV.

Definition 6 Let Q be a regular expression over V. A subset V of V, is said to Oe
independent in V with respect to Q if L(Q) = UEL(Q) and ,EL(Q)V w[V//v].

Theorem 4 Let IQ, P , be an n-ary merging operation. Then IQ,P],, is decomposable
if and only if there is a proper subset V, with #(V) > 1, of V, such that V is independent

in V, with respect to Q.

To see whether a merging operation IQ, PE,, is not decomposable, we thus only need to
test that each proper subset of Vn, of arity greater than 1 is not independent with respect
to Q. For example, [(XlX2 U X2Xa)*j 3 is easily seen not decomposable. It is also easy to

see that for each n > 2, [(X1X 2 U X2X3 U... U zX,_X)* is not decomposable. Hence, we

have the following result.

Theorem 5 For each n > 2, there is an n-ary merging operation which is not decompos-

able.

Let IQ, P]-' be a selecting operations. If P is empty, then it is easily seen that there
is a regular sequence Q, over V2 such that IQ,] ' is equivalent to [Q, PJjg. If P is not

empty, then we can see that the more variables used, the more mappings can be realized.

4 Tuple Sequence Database Model

In this ,'ction, a data model 's described which is basically relational, but uses sequences

C .

In the following, U is assumed to be a non-empty set of attribute names. Members

of U are denoted by A, B and C etc., possibly subscripted. For each A in U, there is an

associated non-empty set DOM(A). Let 7 denote the set of all finite subset of U. Each

member of R? is a relational schema and is denoted by R, possibly subscripted. Each finite

subset of 7 is called a database schema.

In the Tour-schedule example, suppose U contains TOUR-No, CITY, ARRIVAL, DE-

PARTURE and COST. Then {ToUR_No, CITY, ARRIVAL, DEPARTURE, COST} is a

member of 7, and therefore a relational schema.

For each A in U, Seq(DOM(A)) is the set of finite sequences of elements from DOM(A),

i.e., Seq(DOM(A)) = {al ... anjn > 1 and a, in DOM(A) for each 1 < i < n}U{e}, where

c is the empty sequence. A tuple t of R ={A1,...,Am} in 7Z is a total function from R to

U7- Seq(DOM(Ai)) such that t(Aj) is in Seq(DOM(A)) for each 1 < i < m.

A tuples is usually presented in table form. In the tour schedule example, San Francisco

and Denver are in DOM(CITY). Therefore, the sequence "San Francisco, Denver" is

in Seq(DOM(CITY)). Similarly, 556 is in DOM(TouRNo) and the sequence"556" in

Seq(DOM(TouRNo)). Hence, we have the following tuple:

TOuR-No. CITY ARRIVAL DEPARTURE COST

556 San Francisco 3/21/90 3/23/90 699

Denver 3/23/90 3/25/90

An instance of a relational schema R is a finite set of tuples over R. A database

instance I of a database schema {R,,...,Rkd is a sequence In,,..., IRa such that 1p. is

an instance of R for each 1 < i < k. In the tr,ur schedule example, the table in Figure 2 is

an instance of the relational schema {TOURNO, CITY, ARRIVAL, DEPARTURE, COST}.

The model presented above is a proper extension of the relational model (8]. Fur-

ther extensions may be necessary for practical purposes. For example, instead of using

sequences of only basic values, we may allow sequences of tuples as elements of another

tuple. However, for simplicity, we only consider the simple model presented.

5 SSQL: an Extension of SQL

In this section, we propose an extension of SQL, SSQL or Structured Sequence Query

Lanjuage, as a query language over the data model defined in the last section. The

i"

query language is essentially SQL but with sequence operations appearing in the Select
and Where clauses in original SQL queries. Because of the length restriction, we only
consider the select statement. Also, we will be quite informal in presenting SSQL. In the
following, a sequence operation F is called single valued if F(U 1,..., U,,) contains only a
single sequence whenever U is a set of one sequence for all 1 < i < n.

We begin with an example to show the basic features of SSQL. The syntax will be
defined later. Consider the query "Display the tour numbers and the second cities of all
tours visiting only the cities in Tour 356 and in the same order." In SSQL, the query can

be expressed as follows.

(1) Select TOUR-NO, CITY[2]

(2) From Tour-schedule
(3) Where CITY in (x1 U X2)]I1-(

(4) Select CITY

(5) From Tour..schedule
(6) Where TOUR-lOO=356)

Lines (4)-(6) are as an ordinary SQL query and return the sequence of cities of tour 356.
Line (3) is another form of u E [X1 U X212'(W) where u is the list of the cities in question
and w is the list of the cities returned from lines (4)-(6). Therefore, line (3) tests if the
cities in question is a subsequence of the cities of tour 356. Finally, line (1) returns the
tour number which satisfies the test of line (3) and the second city of the tour. Note that
CITY[2] is a shorthand of [x12X*] -2(CITY).

Notice that in the above example, we used sequence operations in a set membership
test and in the select clause. In general, an SSQL select statement is in the form:

Select FI (Rl.A,,, ... I Rlr,.A,.,), . ,F(Rj.A,1.... , Rl,.,.A,.,)

From R 1,.. . ,Rk

Where 4'

where F is a ri-ary sequence operation for each 1 < i < I (notice that the attribute
names in a specific Fi are all the same and if F is the unary operation Ex*11, then it is
usually omitted), %F is a formula involving logical connectives and, or and not, arithmetic

comparison operators =, <=, and so on, set comparison operators C and D etc., and the

membership test in. When fhe arithmetic com-)arison operators are used, each e',cnt

of the sequence on the left hand side is compared to each element of the sequence on

the right hand side, and the result of the arithmetic comparison is true if and only if all

these comparisons are true. A (nested) select statement can appear in either side of a

set comparison and the right side of in. Single valued sequence operations can be used

on the sequences on either side of all comparisons, while other sequence operations can

only be used on sequences on either side of a set comparison and on the right side of

a membership test. Finally, only one attribute can appear in select clause of a nested

statement.

As SQL queries, SSQL queries can be interpreted in tuple calculus forms. The general

form of SSQL query can be translated into the following:

{sj(3t,,..., tk)(Ri(ti) A ... Rk(tk) A A s.A,, E Pj(tjj.A,,,...,It,".A,) ^..

As.A,, E Pi(tjt.A,, .. . ,t,,,.A,)

The formal definition and detailed discussion of the tuple calculus over the data model

presented in Section 3 is omitted from this paper. However, we can see that the semantics

of SSQL is very similar to that of SQL.

We will not go into a detailed discussion of SSQL here. Instead, we give some example

queries written in SSQL. The examples are based on the tour schedule example in Section 1

(see Figure 2).

Example "List all pairs of tours such that the time periods of the two tours do not

overlap."

Select t1.TouRNo, t2 .TouR..NO

From Tour-schedule tj, Tour.schedule t2
Where jXjz 2] 2 (t1 .DEPARTURE) <= t2.ARRIVAL[1]

Following the convention of SQL, ti and t2 are aliases for the relation Tour-schedule.

Example "Find all pairs of tours such that the first city of the second tour is within the

first tour."

Select tj.TOUR2NO, t2.ToUR..NO

Prom Tour-schedule tj, Tour.schedule t2
Where t 2 .CITY[l] in x[X2 22 (t .CITY)

This example shows that testing whether an element is in a sequence can be expressed

easily.

Example "Find out all tours in which Los Angeles and San Francisco are visited con-

secutively."

Select TOURNO

From Tour-schedule

Where San Francisco in IX[zX 2 X 3X*, 2 = Los Angeles]1j3 (CITY) or

Los Angeles in [X*X2X3X3 , X2 = San Francisco- 3(CITY)

Example "List all tours which visit at least two more cities between Los Angeles and

San Francisco."

Select TOURNO

From Tour-Schedule

Where CITY in x X2 X3 X3 X 4 XZ,X 2 = Los Angeles,

X4= San Francisco4 {t12'3 '4}(CITY)

Example "List all tours which visit an even number of cities."

Select TOUR.NO

From Tour-Schedule
Where CITY in (X(zIX)* 2 }(CITY)

Example "List all tours which visit the same number of cities as Tour 456."

Select TOUR-NO

From Tour-Schedule
Where CITY in j(XX2)*j21Q (zz 2)i*2(CITY,

Select CITY

From Tour-Schedule

Where ToURNO = 456))

6 Related Research and Conclusion

One of the papers in the literature devoted entirely to the sequences in databases is [12].

Indeed, the only data constructor in the data model of [12] is the sequence. An algebraic

query language is proposed on the nested sequences in the data model. However, the

selection of operations is ad hoc in nature. There is no single formal mathematical system

behind the operations. Nevertheless, [121 introduces many powerful operations which

cannot be simulated by the sequence operations of this paper. It may be interesting to

see how to extend the sequence operations of this paper to include them.

The Tangram stream query processing system [16, 17] is, an attempt to use streams

(or sequences) as a common processing model both in AI systems and database systems.

The relations in a relational database are viewed as sequences of tuples rather than sets

of tuples. Query processing then becomes sequence processing. A powerful combination

of logic and functional programming language Log(F) is used as a base system in stream

(sequence) processing. Since Log(F) is a general programming language, all computable
transformations of sequences, including the highly intractable ones, are possible. However,
it is not clear how tuples and sets can retain their own characteristics in Log(F).

Our interest in the queries on sequences stems from the study of a group of context-
related interval queries [11]. However, the focus of [11] is on the preservation of the

computation-tuple sequence schemes. It is worth noting that all queries in [11] can basi-
cally be simulated by the sequence operations defined in this paper.

The contribution of this paper is the introduction of the first family of declarative
sequence operations based on a theoretically sound formalism, namely, zegular expressions.
It is shown, through examples, that sequence operations are quite natural as well as

powerful.

Using sequence operations in query languages is straightforward. We illustrate this in
a simple extension of SQL. Actually, the way of using the sequence operations in SSQL
is rather general. In the same way, we can extend various query languages on complex

objects to include these sequence operations to handle sequences.
Several important questions remain to be answered. One of them is the completeness

of these operations. In what sense is a set of sequence operations complete? Obviously,
there are still many conceivable operations not representable in the family introduced in
this paper. Hence, another question is how to extend the family.

References

[1] S. Abiteboul and C. Beeri. On the power of languages for the manipulation of complex

objects. Technical Report 846, INRIA, May 1988.

[2] S. Abiteboul and R. Hull. IFO: A formal semantic database model. ACM Transac-

tions on Database Systems, 12(4):525-565, 1987.

[3] A. Albano, L. Cardelli, and R. Orisini. Galileo: A strongly typed language for

complex objects. ACM Transactions on Database Systems, 10(2):230-260, 1985.

[4] F. Bancihon, T. Briggs, S. Khoshafian, and P. Valduriez. FAD: a powerful and simple

database language. In Proc. of the 13th VLDB Conference, pages 97-105, Brighton,

1987.

[5] F. Bancilhon, S. Cluet, and C. Delobel. A query language for the 02 object-oriented

database system. In Database Programming Languages: 2nd International Workshop.

Morgan-Kaufmann, Inc., June 1989.

[6] J. Clifford and A. U. Tansel. On an algebra for historical relational databases: two

views. In Proc. of 1985 ACM SIGMOD International Conference on Management of

Data, pages 247-265, 1985.

[7] J. Clifford and D. S. Warren. Formal Semantics for time in databases. A CM Trans-

actions on Database Systems, 8(2):214-254, June 1983.

[8] E. F. Codd. A relational model for large shared data banks. Communications of

A CM, 13(6):377-387, 1970.

[9] P. C. Fisher and S. J. Thomas. Operators for non-first-normal-form relations. In

Proc. IEEE Computer Software Applications conference, pages 464-475, 1983.

[10] S. K. Gadia and J. H. Vaishnav. A query language for a homogeneous temporal

database. In Proc. of 4th A CM Symp. on Principles of Database Systems, pages

51-56, 1985.

[11] S. Ginsburg, D. Simovici, and X. Wang. Content-related interval queries on object

histories. Accepted for publication in I:forrnaion and Corp't: ion.

[121 R. H. Gfiting, R. Zicari, and D. M. Choy. An algebra for structured office documents.

Technical Report RJ 5559 (56648), IBM Almamden Research Center, 1987.

[13] J. E. Hopcroft and J. D. Ullman. Formal languages and their relation to automata.

Addison-Wesley, 1969.

[14] R. Hull and J. Su. On the expressive power of database queries with intermediate

types. Technical Report 88-53, Computer Science Department, University of South-
ern California, 1988.

[15] R. Hull and 3. Su. On bulk data type constructors and manipulation primitives: a

framework for analyzing expressive power and complexity. In Database Programming

Languages: 2nd International Workshop, pages 396-410. Morgan-Kaufmann, Inc.,

1989.

[16] D. S. Parker. Integrating AI and DBMS through stream processing. In Proc. of the
5th International conference on Data Engineering, pages 259-260, 1989.

[17] D. S. Parker, R. R. Muntz, and H. L. Chau. The Tangram stream query processing

system. In Proc. of the 5th International conference on Data Engineering, pages

556-563, 1989.

[18] R. Snodgrass. The temporal query language TQuel. ACM Transactions on Database

Systems, 12(2):247-298, June 1987.

17

Properties of Spreadsheet Histories*

Stephen Kurtzman

Computer Science Department
University of Southern California

Los Angeles, CA 90089-0782

Abstract

This report looks at two questions about the Spreadsheet History

Model. First, several operations on spreadsheet histories (selection, projection,

cohesion, intersection, and union) which are analogues of some common rela-

tional-database operations are examined. The primary question of concern is

whether or not their results are SHS representable. Necessary and sufficient

conditions are presented for those operators which do not always preserve the

SHS formalism. The second question concerns a notion of spreadsheet-history

equivalence based on the computation-tuple-sequence projection operation

(projection simulation). Three sufficiency conditions are given for determining

when projection simulation preserves the history-bounded SHS.

* This report summarizes the results concerning the spreadsheet-history model which were obtained

under funding from the Air Force Office of Scientific Research (AFOSR) grant 89-0244. A more detailed

pre.enta:cn v"i1 appear in [X 92.

1 Introduction

One of the most widely used types of small-business data-processing software is the

spreadsheet program [DLL 88; Go 87; WS 861. The broad appeal of the spreadsheet is due

to its straightforward tabular method for describing computational relationships between

data. Spreadsheet programs, such as C-Calc [DSD], Excel [Ms 89], and Lotus 1-2-3 [Lot

85], have automated the design and use of spreadsheets. While there have been discus-

sions on spreadsheet-programming methodologies [Be 86; RPL 89], little of a theoretical

nature is known about spreadsheets themselves. The purpose of our research is to rigor-

ously examine a data model for describing spreadsheet histories and their properties.

The present report consists of four sections, including this introduction. Section 2

gives the basic definitions of the spreadsheet-history model. The model describes the use of

spreadsheets to represent historical, accounting-like data. It consists of sequences of com-

putation tuples defined by a spreadsheet-history scheme (SHS).

Section 3 examines several operations on spreadsheet histories (selection, projec-

tion, cohesion [GTa 89], intersection, and union) which are analogues of some common re-

lational-database operations [Co 70; U1 82; Ma 83]. The primary question of concern here

is whether or not their results are SHS representable. The answer is yes for selection, co-

hesion, and intersection, and no for the others. A necessary and sufficient condition is

given for projection and union to characterize when each preserves the SHS model. Some

additional characteristics of selection, projection and cohesion are also presented.

Section 4, concerns a notion of spreadsheet-history equivalence based on the compu-

tation-tuple-sequence projection operation. The concept of projection simulation is present-

ed and three sufficiency conditions are given for determining when projection simulation

preserves the history-bounded SHS.

2 Spreadsheet Histories

In this section a formal model for spreadsheets and their histories is introduced.

In simple terms, a spreadsheet is a finite set of related data. Each datum occupies a
unique location and is either specified directly, using a constant, or indirectly, using a

function. Each datum location is called a cell. In Microsoft Excel, the cells are arranged in

a 16,384 row by 256 column rectangle, and are addressed by row and column indices. In

principle, the number of rows and columns in a spreadsheet may be arbitrarily large. The

functions are written in terms of the data locations in the spreadsheet.

EXAMPLE 1. 1: Consider a spreadsheet representation of a stock-purchase history.
Figure 1. 1 shows the spreadsheet as it might appear using the Microsoft Excel program.

Row 1 contains text that indicates the meaning of the data in each column. Each of the

rows 2 through 12 contains a single stock transaction. For each transaction:

(1) Information is recorded for:

DATE The date on which the transaction occurred.

TRANS The transaction type, either BUY, SELL, cr DIV(IDEND). For simplicity,

the dividend transaction only records dividends which are disbursed as

shares of stock.

SHARES The number of shares of stock involved in the transaction. Again, for

simplicity, only whole shares of stock may be entered.

PSV The per-share value of the stock for the current transaction (i.e. the buy

or sell price).

(2) And values are calculated for:

VALUE The total dollar value of the transaction.

PROFIT The profit earned for the transaction. (A negative value indicates a loss.)

If TRANS is BUY, then the profit is zero. If TRANS is DIV, then the prof-

it is equal to the VALUE. If TRANS is SELL, then the profit requires a

more complicated calculation. According to tax laws, when a share of

stock is sold, the prorlt is equal to the price received minus the original

A B C D E F

1 DATE TRANS SHARES PSV VALUE PROFIT CUMSH
2 7/2/86 BUY 1000 $6.00 $6,000.00 $0.00 1000

3 8/15/86 BUY 2000 $5.50 $11,000.00 $0.00 3000

4 9/10/86 BUY 3000 $5.00 $15,000.00 $0.00 6000
5 12/31/86 DIV 50 $6.00 $300.00 $300.00 6050

6 1/20/87 BUY 4000 $3.00 $12,000.00 $0.00 10050

7 6/30/87 DIV 40 $5.00 $200.00 $200.00 10090

8 12/31/87 DIV 50 $5.00 $250.00 $250.00 10140

9 6/30/88 DIV 60 $8.00 $480.00 $480.00 10200

10 8/13/88 SELL 5000 $10.00 $50,000.00 $23,000.00 5200

1 12/31/88 DIV 30 $8.00 $240.00 $240.00 5230
12.d 2/22/89 SELL 3000 $11.00 $33,000.00 $21,850.00 2230

Figure 1. 1

price paid. When selling stock you are required to sell in a first-in first-

out (FIFO) order.

CUMSH The cumulative number of shares of stock owned at the completion of the

current transaction.

The data in cells A2, B2, C2, and D2 are entered as input. The numbers in cells E2

and F2 are calculated using the formulas (written in the notation employed by Microsoft

Excel) =D2*C2, and =SMacs!TProfit(ROW0), respectively and in the specified order. [The

formula ROWO returns the row number of the current cell and SMacs!TProfit0 invokes

the TProfit macro stored in the file named "SMacs." The TProfit macro is a user-written

function that calculates the profit (using the FIFO formula required by the tax laws) for

the transaction recorded on the row number passed to it.] The value in G2 is also entered

as input, but because of the nature of the application, the value in G2 must agree with the

value in C2.

The data in line 3 represents the second event in the stock-purchase history. The

information in cells A3 through D3 is specified directly. The data in cells E3, F3 and G3

are calculated by the formulas =D3*C3, =SMacs!TProfit(ROWO), and =IF(B3="SELL",G2-

C3,G2+C3) respectively, and in the specified order. [The formula =IF(cond,exprl,expr2)

evaluates the logical expression cond and returns value of exprl if cond is true and the

value of expr2 if concd is false.] Note that the formula in cell E3 is a relativized version of

the one found in cell E2. Most spreadsheet programs provide a command to copy the

formulas from one column to another in this relativized fashion - see the "copy" and

related commands in [DSD; Lot 85; Ms 89].

For the remaining lines, the data in columns A, B, C and D are input as constants,

the numbers in columns E and G are calculated using relativized versions of the formulas

in E3 and G3 respectively, and the values in column F are calculated using the same for-

mula as found in cell F3. The calculations are performed for in row number order.

Each line (except 1) of the spreadsheet in Figure 1. 1 represents a single event in the

stock-purchase history. In use, a new line is added to the spreadsheet each time some

stock is received or sold. The history is modeled by a sequence of events or transactions.

This type of historical data modeling also occurs in many other spreadsheet applications,

for example the checkbook-management spreadsheets in [CA; DSD], the sales, cash-flow,

and budget-forecasting spreadsheets in [CA], and the "what-if' models in [Jo 89].

In this simplified example, each stock transaction is kept on a single line of the

spreadsheet. For a more detailed accounting, it may be preferable to display each event on

a single spreadsheet. Such details of data display are important human-factors concerns,

but are irrelevant for the analysis carried out in this manuscript.

Before proceeding to the formal mode!, some preliminary definitions are in order. It is

assumed that there exists an infinite set of domain values (denoted Dom.) and an infinite

set of attributes (denoted U.). The set U. is partitioned into two infinite disjoint sets, I_,

ard E., respectively called input attributes and evaluation attributes. For each A in U**,

Dom(A) is a subseL of Dom of at least two elements. All attributes are assumed to be ele-

ments of U... The symbols A, B, and C (possibly subscripted or primed) will denote at-

tributes and U, V, and W (possibly subscripted or primed) will denote nonempty, finite

sets of attributes. As is customary in the relational database literature, the union sets of

attributes will be denoted by juxtaposition. So, UV shall mean U U V. And, committing a

slight abuse of notation, AB and UA shall respectively mean {A) u {B) and U U (A).

There is a total order <00 over U. such that (i) A <. B for each A in I and B in E.;

and (ii) for each B in E,., there exists a B" ir E such t',at B <1 B'. Let X be a finite non-

empty subset of U. and A1, ..., A. the listing of the elements of X according to <_. Then

<X> will denote the sequence A1 - An and Dom(<X>) the Cartesian product Dom(A1) x ...

x Dom(A). For i > 2, <X I A,> denotes the prefix A1 , ... , A,-,. [A prefix of a sequence p, ...

Pm is a subsequence of the form p1 ... pi for some i, 1 < i < m.I

An important aspect of Example 1. 1 is the regularity of form exhibited by each line of

data in Figure 1. 1. To capture this detail in the formal model, each line will be considered

as constituting a separate spreadsheet and each spreadsheet will be represented by a sin-

gle computation tuple defined over a finite set of attributes. The cells of a spreadsheet

which are specified by constants will be modeled by input attributes while those cells

which have values determined by functions will be represented by evaluation attributes.

The entire sequence of spreadsheets will be represented by a computation-tuple sequence.

Segmenting the attributes into inputs and evaluations reflects the different roles

played by the cells in the spreadsheet. This partitioning will be specified by an attribute

scheme. An attribute scheme over <U> is an ordered pair (<I>, <E>), where <U> =<><E>,

I= I. nU#oandE = E. nU-o. [Given sequencesofattributes<U> =A 1 ,..., A m and

<U2 = B1, ..., B,, <U1 ><U 2> will denote the concatenation of the sequences, i.e., A1, ...,

Am, BI, ..., B..] That is, an attribute scheme divides <U> into a sequence of input

attributes, I, and a sequence of evaluation attributes, E.

A computation tuple over <U> is an element in Dom(<U>). A computation-tuple

sequence over <U> is a finite, nonempty sequence of computation tuples over <U>. The set

of all computation-tuple sequences over <U> is denoted by SEQ(<U>). For each <U> and p

> 1, SEQ(<U>, p) = {ii in SEQ(<U>) I Ii1 > p). [The length of a computation-tuple se-

quence u is denoted I u1 .1

The symbol A will denote the empty sequence, that is, the sequence which contains no

tuples. For each <U>, SEQ(<U>, 0) = (A) u SEQ(<U>, 1).

Unless otherwise stated, u, v, and w (possibly subscripted or primed) represent com-

putation tuples. Similarly, u, v, and w, represent computation-tuple sequences. And i, U,

and iv-, represent either computation-tuple sequences or the empty sequence. The catena-

ti;nn of setu.:, nces and tuples vi11 be denoted by juxtaposition.

Let u be a computation tuple over <U> and A an attribute in U. The value of u on A

will be denoted by u(A). If <V> is a subsequence of <U>, then u[<V>] and nv(U) both de-

note the tuple v over <V> with v(A) = u(A) for each A in V. The tuple v is called the

projection of u onto <V>. For each U_ = ul...un in SEQ(<U>), let tv(U-) = iv(ul)...nv(un). For

the empty sequence A, we define 7cv(A) to be A. For each' U Q_ SEQ(<U>), let iTv(U) = {nv(U-)

I U_ in U. Note that nV is the computation-tuple sequence analogue of the relational data-

base projection operator [Co 701.

The first component of the spreadsheet-history model is the spreadsheet scheme.

DEFINITION: A spreadsheet scheme over <U> is a triple S = (<I>, <E>, S), where

* (<I>., <E>) is an attribute scheme over <U>; and

- S = {sc I C in E, sc is a partial recursive function from SEQ(<U>, p(sc)) x

Dom(<U I C>) to Dom(C), where p(sc) t 0). -

The functions in S are called spreadsheet functions. The number p(sc) is called the

rank of sc and p(S) = max{p(s c) I C in E} the rank of S.

The rank determines the number of computation tuples which must exist in a

sequence before the spreadsheet function can be applied.

The purpose of a spreadsheet scheme is to define a set of "valid" spreadsheet se-

quences, that is, sequences which are consistent with the functions in the scheme.

DEFINITION: Let S = (<I>, <E>, S) be a spreadsheet scheme over <U>. For each C

in E, denote the set of sequences valid with respect to sc by' VSEQ(sc) = {u,...u, I ui(C) =

Sc(UI... ui- ui[<U I C>i) for all p(sc) < i < n); and for each E', 0 * E c E, let VSEQ.E') = ("c

in E' VSEQ(sc). Let VSEQ(S) = VSEQ(S). Z

Given a spreadsheet function sc, every sequence in SEQ(<U>) of length at most

p(sc is in VSEQ(sc).

DEFINITION: For each 7V/ SEQ(<U>) and positive integer k, let prefix(U) I i"

is a prefix of some U in U and prefixk(ZI) = U' in prefix(Z) I I U1 < k). If U = prefix(U)

then U is said to be prefix closed.

1. The symbol denotes set inclusion while c denotes proper set inclusion.

2. For p€sC) = 0 and i = 1, ti...u. = u .

Notice that VSEQ(sc) is prefix closed. Thus, VSEQ(S) is also prefix closed.
To complete the spreadsheet-history model, there must be a mechanism to provide

the evaluation-attribute values at the beginning of a computation-tuple sequence. This is
done using a prefix-closed set of sequences of length at most the rank of the spreadsheet

scheme.

DEFINITION: Given a spreadsheet scheme S over <U>, an initialization (with re-
spect to S) is a recursively enumerable, prefix-closed subset I of {i in VSEQ(S) I Ili <

max(l, p(S)] 1. Given an initialization I, let VSEQ(1) denote the set I U (ii in SEQ(<U>) I _u

= 1u2 for some ii, in I of length p(S)1. D

Clearly, VSEQ(I) is prefix closed.

A set of spreadsheet histories is defined by a spreadsheet-history scheme. Formally:
DEFINITION: A spreadsheet-history scheme (abbreviated SHS) over <U> is an or-

dered pair H = (S, 1), where

• S is a spreadsheet scheme over <U>; and

* I is an initialization with respect to S.
Let p(H), called the rank of H, be max(l, p(S)}. ED

An SHS determines valid spreadsheet histories as follows:
DEFINITION: For each SHS H = (S, I) let VSEQ(H) = VSEQ(S) n VSEQ(I). A

spreadsheet sequence is said to be valid (for H) if it is in VSEQ(H). 0

Since both VSEQ(S) and VSEQ(I) are prefix closed, so is VSEQ(H).

EXAMPLE 1. 1 (continued): The stock-purchase history can be recast using the for-
mal model. The labels in line 1 of Figure 1. 1 will be ignored since they do not enter into
any of the calculations. Each of the other lines will be represented by spreadsheets (com-

putation tuples). An SHS over <U> for the income history is H = ((<I>, <E>, S), I), where
* <I> = <DATE, TRANS, SHARES, PSV>.

* <E> = <V LUE, PROFIT, CUMSH>.

• The domains of the attributes are the obvious ones.

sVALUE(*.u ,U n+1[<UIVALUE>]) = u n+1(PSV) x Un+1 (SHARES)

SPROFIT(u ."". Un'un+l[<U I PROFIT>]) =

AIW(U...Un), U n+1 [<I>] if Un+i(TRANS) = SELL and

(Un+1 (SHARES) < Un(CUMSH))

undefined if Un+ (TRANS) = SELL and

(Un+I(SHARES) > un(CUMSH))

Un+ 1I(VALUE) if U n+1(TRANS) = DIV

0 if U n+1 (TRANS) = BUY

SCMsH(U " "un'U n+[<U I CUMSH>])=

Un(CUMSH) - u n+1(SHARES) ifu n+1(TRANS) = SELL and

(U n+1(SHARES) -un(CUMSH))

undefined if Un+ (TRANS) = SELL and

(Un+1 (SHARES) > un(CUMSH))

Un(CUMSH) + un+l(SHARES) otherwise.

Figure 1. 2. Function definitions for Example 1. 1

I = (u in Dom(<U>) I u(TRANS) = BUY, u(SHARES) > 0, u(VALUE) =

u(PSV) x u(SHARES), u(PROFIT) = 0, and u(CUMSH) = u(SHARES). }

* The functions in S = (sVALUE, SPROFI' SCUMSH) are defined for each U ... Un in

SEQ(<U>, 1) and tuple un+1 in Dom(<U>) as shown in Figure 1. 2.

In Figure 1. 2, f(ni(Ul...U), un+l[<I>]) is the function from SEQ(<I>, 0) x Dom(<I>)

into Dom(PROFIT) which returns the profit for the sale of stock using the FIFO method

required by the tax laws. This is a straightforward, albeit detailed, calculation The

9

earliest-purchased unsold stock can be found by summing the most recently received

shares until the total equals or exceeds the current number of shares owned. The specifics

are omitted. (Note that f is defined solely over input-attribute values even though a

program for f could make use of some of the VALUE and CUMSH attributes in the

sequence.) Z

In the spreadsheet-history model, a spreadsheet function is defined with respect to

a computation-tuple sequence. In real-world applications, a spreadsheet function is often

determined solely by a bounded number of computation tuples at the end of the sequence.

Such history bounded functions represent those spreadsheet functions which, in one sense,

can be implemented efficiently. More formally:

DEFINITION: Let sC be a spreadsheet function in the spreadsheet scheme S = (<I>,

<E>, S) over <U> and k a non-negative integer. If sc(UU", w[<U I C>]) = sc(VY, w[<U I C>]) for

all sequences U5 w in SEQ(<U>), where I U I = k, then sc is said to be k-history bounded. A

spreadsheet function is said to be history bounded if it is k-history bounded for some k. If

all spreadsheet functions in S are k-history bounded, then S is also said to be k-history

bounded. Likewise, S is said to be history bounded if it is k-history bounded for some k.

If sc is k-history bounded, then k > P(Sc). Suppose sc is k-history bounded for some

k. If is easily seen that sc is also m-history bounded for all m _ k.

DEFINITION: An SHS H = (S, 1) over <U> is said to be k-history bounded (history

bounded) if S is k-history bounded (history bounded). 1i

In Example 1. 1 the spreadsheet functions SVAL- E and SCUMSH are both history

bounded, but SPROFIT is not. Thus, SHS is not history bounded.

In the sequel, the primary concern will be to examine the conditions under which

operations on sets of spreadsheet histories preserve the SHS formalism. Consequently, be-

fore proceeding to the technical results, we need one final definition.

DEFINITION: A set U or an SHS H is said to be (history-bounded-) SHS represent-

able if there exists a (history-bounded) SHS H' such that U = VSEQ(H') or VSEQ(H) -

VSEQ(H') respectively. []

3 Relational Operators

This section presents some spreadsheet-history analogues to the relational-database

operators [Co 70; Ul 82; Ma 83].

We first address a selection operator analogue, called the historical-selection opera-

tor. Historical-selection operators are unary functions from 2SEQ(<U >) to 2SEQ(<U>) which re-

turn prefix-closed sets of histories. Our first result shows that the historical-selection oper-

ator preserves SHS representability. The last result demonstrates the undecidability of de-

termining when a historical-selection operator maps a set to itself.

DEFINITION: For each computable mapping E from SEQ(,<U>) to [true, false), leta

be the function defined for each subset U of SEQ(<U>) by OeQ) = prefix({ i in 'U I E(u-) =

true)). The function % is called a historical selection operator. 0

In the preceding definition, the mapping E acts as a selection criterion to pick a sub-
set of the histories in E namely, those histories ii for which E(u-) = true. The query ao

takes the prefix closure of the collection chosen by E. The query is "historical" in the sense

that it is possible to reach each history in %(ZJ) from a length-one history.

The first major result of this section will show that every historical-selection opera-
tor preserves SHS representability, i.e., if U g SEQ(<U>) is SHS representable and E is a

computable mapping from SEQ(<U>) to (true, false), then %e(U) is SHS representable.

THEOREM 3. 1: Let H be an SHS over <U>, and E a computable mapping from

SEQ(<U>) to (true, false). Then ae(VSEQ(H)) is SHS representable. LI

The proof of Theorem 3. 1 uses a spreadsheet function that "performs" the "selec-

tion". Whether or not ae(VSEQ(H)) is history-bounded-SHS representable cannot in

general be inferred from the construction of the function.

A historical-selection operator selects a subset of histories using a criterion of inter-

est. Because a (VSEQ(H)) is prefix closed, some care must be taken when formulating a

selection criterion. Consider the following.

Example 3. 1: Let H be the stock-purchase SHS from Example 1. 1 and 0(u-) = true

if u- contains a stock purchase of 5000 or more shares. Ostensibly, ae(VSEQ(H)) should re-

turn only those histories which contain large stock purchases. But because ae(VSEQ(H)) is

prefix closed, ae(VSEQ(H)) = VSEQ(H). [Consider an arbitrary sequence u I ... Un in

VSEQ(H). Let un+1 be the tuple where un+l(DATE) = un(DATE), un+1(TRANS) = "BUY,"

Un+ 1(SHARES) = 5000, un+I(PSV) = $5.00, un+1(VALUE) = SVALUE(Ul ... Un,

Un+[<U I VALUE>]), un+I(PROFIT) = SPROFIT(Ul ... Un, un+0 [<UI PROFIT>]), and

un+I(CUMSH) = scumsH(uI ... Un, Un+l[<U I CUMSH>I). Then ul ... un+ 1 is in o8 (VSEQ(H)).

Hence, by prefix closure, so is uI ... Un.] E

Example 3. 1 shows that o(VSEQ(H)) may not be a proper subset of VSEQ(H). The

next result shows that it is recursively unsolvable to determine whether or not

O0(VSEQ(H)) = VSEQ(H) for an arbitrary historical selection.

THEOREM 3. 2: It is recursively unsolvable to determine for an arbitrary U, an arbi-

trary SHS H over <U> and an arbitrary computable mapping E defined from SEQ(<U>) to

(true, false) whether or not ae(VSEQ(H)) = VSEQ(H). D

Some of the properties of projection will now be presented. Clearly, projection pre-

serves prefix closure. However, it does not in general preserve SHS representability. In-

deed, let H be an SHS over <U> = <I><E>, then neither ni(VSEQ(H)) nor nE(VSEQ(H)) is

SHS representable. Problems may still arise even if the projection operator is restricted to

a subset V of U such that V ri I.0 # 0 and V n E.o # 0. It is possible that the loss of

information under the projection mapping could preclude the existence of spreadsheet

functions for the resulting VSEQ.

PROPOSITION 3.3: Let H he an SHS over <U> = <I><E>, <U'> = <I'><E'>, 0# 1'

I, and 0 * E' a E. Then xU.(VSEQ(H)) is SHS representable if and only if there exists some

r such that for all n > r and all pairs of sequences uI ... IUn and w1 ... wn in VSEQ(H),

(*) ~U.(u1 ... Un.1) = %uo(Wi ... Wn. 1) and ' 1r(Un) = 7r1(Wn) imply Un[E'

= w n[E]. IZ

The next result demonstrates that the VSEQ of every spreadsheet-history scheme is

the projected image of a history-bounded spreadsheet-history scheme.

Theorem 3. 4: For each SHS H over <U>, there exists a p(H)-history-bounded SHS

H' such that nu maps VSEQ(H') one-to-one onto VSEQ(H). LI

The proof of Theorem 3. 4 encodes the entire previous history in a single attribute

value. However, the complexity of encoding the historical information may be greater than

the complexity of the functions in the initial scheme.

A computation-tuple sequence analogue to the relational-database join operator,

called cohesion, was defined in [GTa 891. We now examine the cohesion of spreadsheet

histories. First we shall show that the cohesion of two SHS-representable sets is SHS

representable. Then we shall address a problem concerning minimum representations.

DEFINITION: Given <U> and <V>, the cohesion of _u in SEQ(<U>) and i6 in

SEQ(<V>), denoted U_ © , is

1) the computation-tuple sequence Y in SEQ(<UV>) such that nu(Y) =_ and

itv(W) = _ if nA(U-) = nA(V) for each A in U n V, and

2) undefined otherwise.

The cohesion of U ; SEQ(<U>) and Vc SEQ(V>), denoted IU © , is the set {- © I i in

U inV). F1

Since the attributes in U. are ordered by <., <UV> = <VU>. Hence, U © i = i7 © u_ for

each U_ in SEQ(<U>) and _V in SEQ(<V>).

A question which naturally arises is: Does cohesion preserve SHS representability?

In other words, is VSEQ(H1) © VSEQ(H 2) SHS representable for all SHS H, and H2? The

answer is yes. To demonstrate this, we need:

DEFINITION: Let Hi = ((<Ii>, <El>, S 1), I,) and H2 = ((<12>, <E 2>, S 2), 12) be SHS

over <U> and <V> respectively, and r = max{p(H 1), p(H 2)). For i = 1, 2 and each B in E,, let

siB denote the spreadsheet function for B in S i . The cohesion of H, and H2, denoted H, ©

H2, is the SHS ((<1112>, <E 1E2>, S), 1), where:

* 1 = prefixr(VSEQ(H1) © VSEQ(H 2)).

0 For each B in (E1 u E2) - (E1 n E2), 8B is the rank-r spreadsheet function de-

fined by sB(w-, x) = s1B(nu(w), x[<U I B>]) if B is in E, and s](W, x) = s2B(v(W),

x[<V I B>]) if B is in E2.

• For each B in E1 r) E2, 8B is the rank-r spreadsheet function defined by

13

SlB(7cU('-), x[<U I B>I) if SlB(7U('--), x[<U I B>]) =

SB(-, X) = S2B(nV(W), x[<V I B>])

undefined otherwise.

The first result concerning the cohesion of SHS shows that the cohesion operator

preserves SHS representability.

THEOREM 3.5: Let H1 and H 2 be SHS. Then

(*) VSEQ(H1 © H2) = VSEQ(H1) © VSEQ(H2).

Furthermore, if H1 and H2 are history-bounded-SHS representable, then so is H1 © H2. El

We now turn our attention to a question about "minimum representations" with re-

spect to cohesion. To motivate this idea, let H1 and H2 be SHS over <U> and <V> respec-

tively. Suppose a collection of spreadsheet histories U c VSEQ(H1) is maintained on com-

puter one and V'l" VSEQ(H 2) is maintained on computer two. To calculate U © Von com-

puter one, Vmust be transmitted from computer two via some communication channel. To

reduce the use of the channel, only histories in V which will participate in the cohesion

should be transmitted. It is easily seen that nv(U © 1/) is exactly the set which should be

sent. However, at site two the contents of U cannot be known without prior communica-

tion. Barring the existence of information about U at computer two, the best that can be

done is to send only those histories in Vwhich can participate in at least one cohesion with

some history in VSEQ(H1).

Ideally, we would like to find an SHS H' such that VSEQ(H1) © VSEQ(H2) =

VSEQ(H1) © VSEQ(Hj) and VSEQ(H') is a minimum with respect to containment in

VSEQ(H 2). (Of course, it would have to be established that such an SHS exists.) The

scheme Hj could then be used as a filter to possibly reduce the number of histories sent to
computer one (i.e., only histories in Vc VSEQ(H') need be sent).

If such an Hj exists, then a corresponding minimal H' might also exist by analogy.

If Hi and H i are minimal with respect to each other, then we call the pair a minimum rep-

resentation of H1 and H2. More formally:

14

DEFINITION: Let H1 be an SHS over <U> and H2 an SHS over <V>. An ordered pair

(Hi, Hj) of SHS is called a minimum representation of(H 1, H2) (with respect to cohesion) if

1) VSEQ(H 1) © VSEQ(H2) = VSEQ(Hi) © VSEQ(H'), and

2) VSEQ(Hi) c VSEQ(Hi') and VSEQ(Hj) g VSEQ(H) for all HI over <U> and

H2 over <V> such that VSEQ(H1) © VSEQ(H2) = VSEQ(H0") © VSEQ(HY). 0

The next theorem asserts that every pair of SHS has a minimum representation.

THEOREM 3.6: Let H1 and H2 be SHS over <U> and <V> respectively. Then (H 1,

H2) has a minimum representation (Hi, Hi). Furthermore, VSEQ(Hj) = nu(VSEQ(H1) ©

VSEQ(H2)) and VSEQ(Hj) = iv(VSEQ(H1) © VSEQ(H2)).]

Suppose both H1 and H 2 are history-bounded-SHS representable. From Theorem

3. 5, we know that H1 © H2 is also history-bounded-SHS representable. The question aris-

es: if (HI, H') is a minimum representation of (H 1, H2), then are Hj and H, also history-

bounded-SHS representable? It is straightforward to construct a counterexample.

Turning to intersection, note that VSEQ(H1) n VSEQ(H 2) = VSEQ(H1) © VSEQ(H 2).

Thus, as a corollary to Theorem 3. 5, we have:

PROPOSITION 3.7: Let H1 and H2 be SHS over <U>. Then VSEQ(H1) n VSEQ(H 2)

is SHS representable. Furthermore, if both H1 and H2 are history bounded, then

VSEQ(H1) n VSEQ(H2) is history-bounded-SHS representable. 0

The state of affairs for the union operator is not as good. Let H1 and H2 be SHS over

some <U>. In general, VSEQ(H1) u VSEQ(H2) is not SHS representable because the

spreadsheet schemes may have dibparate functions for their evaluation attributes. Howev-

er, if the spreadsheet functions in the two SHS are compatible with each other then the

union may be SHS representable.

DEFINITION: Let H1 and H2 be SHS over <U>. Then H, and H2 are said to be

compatible if there exists a spreadsheet scheme S over <U> such that VSEQ(H1) z

VSEQ(S) and VSEQ(H2) Q VSEQ(S). LI

PROPOSITION 3.8: Let H1 and H2 be SHS over <U>. Then VSEQ(H1) u VSEQ(H 2)

is SHS representable if and only if H1 and H2 are compatible. l

4 Projection Simulation

In [GK 881, the question of when two SHS (or CSS) describe the same set of histo-

ries was studied. The definition of "sameness", called "projection simulation," was based on

the computation-tuple-sequence analogue to the relational-database projection operator.

Under AFOSR support, this study was extended to the subclass of history-bounded SHS.

In this section, the formal definition of projection simulation is presented and then exam-

ined with respect to history-bounded SHS.

Suppose we wish to implement a database application in which stock-transaction

histories are represented as computation-tuple sequences that are valid with respect to

the SHS H of Example 1.1. To uniquely identify a history we need to know its initializa-

tion and its subsequent inputs. From this and the history scheme, we can derive the value

for each evaluation attribute of each tuple in the history. Storing just the initialization

and inputs is a space-efficient way to maintain the database. From a computational-effi-

ciency perspective, however, this may be a poor method. For each query based upon the

values of evaluation attributes, the database system would have to calculate these values.

Furthermore, each time an update is performed (i.e., a new tuple is added to a history) it

may be necessary to recalculate the values of the evaluation attributes for the entire histo-

ry. [An update is not valid unless all of the evaluation-attribute values in the new tuple

are defined. In general, these values depend on the previous evaluation-attribute values.]

Suppose it is known that 95% of the queries will be base, on the input attributes

and the PROFIT evaluation attribute (the transaction profit). To strike a balance between

space and computation efficiency, we may want to store only the PROFIT evaluation-at-

tribute values. We could then process 95% of the queries without having to calculate the

other evaluation-attribute values. (The other 5% of the queries would still require these

calculations.) Ideally, we would like to find an SHS H' over <V> = <I><PROFIT> such that

the projection operator x¢ maps VSEQ(H) one-to-one onto VSEQ(H'). We could then main-

tain the database using the SHS H' and eliminate the need to calculate the values for the

evaluation attributes in E - (PROFIT) during an update.

In a sense, the two SHS H and H' would define the same set of stock-transaction

histories because each sequence in VSEQ(H) would correspond to a unique sequence in

VSEQ(H'), one comprised of the same inputs and a nonempty subset of the same evalua-

tion attribute values. The roles played by the attributes in H' are identical to those played

by the same attributes in H. Intuitively speaking, because we have a one-to-one onto map-

ping, the information lost by not maintaining the attributes in E - [PROFIT) is redundant

in that it is not necessary for discriminating between different histories.

We shall call the concept of sameness defined above, projection simulation or p-sim-

ulation. Formally, we have:
DEFINITION: Let H 1 be an SHS over <U> = <I><E> and H2 an SHS over <V> =

<I><E'>, with E' c E. H 2 projection simulates (p-simulates) H1 if 7cv maps VSEQ(H1) one-

to-one onto VSEQ(H2). 0]

We now present three separate conditions sufficient to insure that p-simulation pre-

serves history boundedness. Each condition is stated in terms of a special type of data de-

pendency called a history-bounded dependency.

DEFINITION: Let <U> be a finite sequence of attributes and r a non-negative inte-

ger. A history-bounded dependency over <U> is an ordered pair (X, Y), where XY C U. A

set U g SEQ(<U>) is said to rank-r satisfy (X, Y), denoted U r (X, Y), if for each B in Y

and each pair of sequences u1 ... ur+1 and v, ... v,+, in Interval(ZO, 7x(ul ... u,) = X(v1 ...

Vr) and3 E<X I B>(Ur+) = 7<XI B>(Vr+l) imply Ur+l(B) = v,,l(B). 0

Note that if U =r (X, Y), then 'U 1= (X, Y) for all s, s > r.

If U =r (X, Y) for some r, then we sometimes write U (X, Y) when the particular

value of r is unimportant.

Let sB be an r-history-bounded spreadsheet function defined from SEQ(<U>,r) x

Dom(<U I B>) to Dom(B). It is readily seen that VSEQ(sB) 1=r (U, B).

If V(z U and 'U =, (X, Y), then V 1=, (X, Y). [Indeed, let uI ... uN+1 and v1 ... v,+1 be

in Interval(V). Since u1 ... ur+1 and v1 ...Vr+1 are also in Interval(U), for each B in Y xx(uI

3. If B <. C for each C in X, then the value of the expression <XIB> is the empty sequence. In this case,
the expression -<XI B>(u) is defined to be a special value, called the zp'y tuple, which has the property
that 7<Xt 1 >() =,[<X 12.>(' 5c r :: ..;!z and,.

17

Ur) = iX(v1 ... V) and c<Xl B>(U 4) = <x 13>(vr+,) imply that u, 1 (B) = V,,1(B), i.e., V 1=
r (X,

Y).J
History-bounded dependencies are similar in spirit to functional dependencies (FDs)

[Co 72] in the relational database model. Analogous to the rules of FD inference [DC 73;
Arm 74; Ma 831, there are rules for inferring new history-bounded dependencies from a
given set of history-bounded dependencies. The following proposition states several such

rules.

PROPOSITION 4. 1: Let X1, X2 , Y1 and Y2 be non-empty subsets of U and U g

SEQ(<U>). Then

(a) U =r (Xl, Y1) implies U 1=r (XiX2, Yi);

(b) U I=r (X1, Y1) and U 1=8 (X2, Y2) imply 'U ma{r~sl (XIX2, YiY2); and

(c) U '=r (XI, Y1) and 'U 1= (YIX2, Y2) imply U Hr+s (X1X2, Y2)"

El

THEOREM 4.2: Let H be a history-bounded SHS over <U> = <I><E>, 0 Y c E, V =

U - Y, and VSEQ(H) 1= (V, Y). Then each SHS over <V> which p-simulates H is history-

bounded-SHS representable. LI

In the proof of Theorem 4. 2, the condition VSEQ(H) 1= (V, Y) guarantees that histo-

ry-bounded spreadsheet functions for the (E - Y)-attributes can be expressed solely in

terms of the V-attributes. In other words, VSEQ(H) 1= (V, Y) implies VSEQ(H) 1= (V, E -
Y). This last condition, VSEQ(H) 1= (V, E - Y), is necessary for H to be p-simulated by a

history-bounded SHS H' over <V>.

THEOREM 4.3: Let H = ((<I>, <E>, (sB I B in E)),) be a history-bounded SHS over

<U>, o# Y c E and V = U - Y. If VSEQ(H) 1 (V, E - Y) and sB is total for each B in Y,

then each SHS over <V> which p-simulates H is history-bounded-SHS representable. El

The final result of this section demonstrates the special nature of zero-history-

bounded spreadsheet functions.

THEOREM 4.4: Let H = ((<I>, <E>, S), 1) be a history-bounded SHS over <U>, 0 * E'

c E, and <V> = <I><E'>. If sB is zero-history bounded for each B in E - E', then there ex-

ists a history-bounded SHS over <V> which p-simulates H. E

Speaking intuitively, Theorem 4. 4 says that the roles played by zero-history-bound-

ed spreadsheet functions in an SHS may be subsumed by the other evaluation attributes

without affecting the history-boundedness of the SHS.

Bibliography

Arm 74 Armstrong, W.W. "Dependency structures of data base relationships."
Proceedings IFIP Congress. Amsterdam: North Holland, 1974.

Be 86 Berry, T. "How to Structure Spreadsheets." Bus. Software. Oct. 1986:
56-58.

CA Cobb, D., and Anderson, L. 1-2-3 for Business. Indianapolis: Que
Corporation.

Co 70 Codd, E. F. "A Relational Model of Data for Large Shared Data Banks."
CACM 13:6 (June 1970): 377-387.

Co 72 Codd, E.F. "Further normalization of the data base relational model."
Englewood Cliffs, N.J.: Prentice Hall, 1972.

DC 73 Delobel, C. and Casey, R.G. CZDewmpooliun u"a talatbase and the theory
of boolean switching functions." IBM J. Res. Development 17 (1973)
374-386.

DLL 88 Dishkin, B., Lahey, V., and Lahey, K: "Appraisers' Utilization of Comput-

er Technology." Appraisal Journal 56 (1988): 179-189.

DSD C-Calc Spreadsheet Reference Manual. Kirkland, Wa: DSD Corporation.

GK 88 Ginsburg, S., and Kurtzman, S. "Spreadsheet Histories, Object-Histories,
and Projection Simulation." ICDT '88 2nd International Conference on
Database Theory Bruges, Belgium, August/September 1988 Proceedings,
Lecture Notes in Computer Science, no. 326. Berlin: Springer-Verlag,
1988.

GTa 89 Ginsburg, S., and Tang, C. "Cohesion of Object Histories." Theoretical
Computer Science 63 (1989): 63-90.

Go 87 Gomersall, N.: "Beyond the Spreadsheet". Journal of Accountancy 100
(1987): 169.

Jo 89 Jorgensen, C. Mastering 1-2-3 Release 3. Alameda, Ca: Sybex, 1989.

K 91 Kurtzman, S. "Properties of Spreadsheet Histories." Ph.D. thesis, Univer-
sity of Southern California, in preparation.

Lot 85 1-2-3 Reference Manual Release 2. Cambridge, Ma: Lotus Development
Corporation, 1985.

Ma 83 Maier, D. The Theory of Relational Databases. Rockville, Md: Computer
Science Press, 1983.

Ms 89 Microsoft@ Excel Reference: Complete Spreadsheet with Business
Graphics and Database Version 2.2. Redmond, Wa: Microsoft Corporation
1989.

RPL 89 Ronen, B., Palley, M., and Lucas, H., Jr. "Spreadsheet Analysis and
Design." Comm. ACM 32 (1989): 84-93

U1 82 Ullman, J. Principles of Databasp Systems, Second Edition. Rockville, Md:
Computer Science Press, 1982.

WS 86 Wolfe, C., and Smith, L. "Recommending a Microcomputer System to a
Small-Business Client." The Ohio CPA Journal, Spring, 1986.

