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ABSTRACT

In this paper we review the development of the shock-capturing methodology,
paying special attention to the increasing nonlinearity in its design and its relation
to interpolation. It is well-known that high-order approximations to a discontinuous
function generate spurious oscillations near the discontinuity (Gibbs phenomenon).
Unlike standard finite-difference methods which use a fixed stencil, modern shock-
capturing schemes use an adaptive stencil which is selected according to the local
smoothness of the solution. Near discontinuities this technique automatically switches
to one-sided approximations, thus avoiding the use of discontinuous data which brings
about spurious oscillations.
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1 Introduction

In this paper, we describe and analyze numerical techniques that are designed to
approximate weak solutions of hyperbolic systems of conservation laws in several
space dimensions. For sake of exposition, we shall describe these methods as they
apply to the pure initial value problem (IVP) for a one-dimensional scalar conservation
law Ut+f (,). =o, (1.1) U ()

To further simplify our presentation, we assume that the flux f(u) is a convex function,
i.e., f"(u) > 0 and that the initial data uo(x) are piecewise smooth functions which
are either periodic or of compact support. Under these assumptions, no matter how
smooth u0 is, the solution u(x,t) of the IVP (1.1) becomes discontinuous at some
finite time t = t.. In order to extend the solution for t > t,, we introduce the notion
of weak solutions, which satisfy

- Iu dx + f(u(b,t)) - f(u(a,t)) = 0 (1.2a)

for all b > a and t > 0. Relation (1.2a) implies that u(x,t) satisfies the PDE in (1.1)
wherever it is smooth, and the Rankine-Hugoniot jump relation

f(u(y + 0,t)) - f(u(y - 0, t)) = [u(y + 0, t) - u(y - 0, 0)]-Y (1.2b)

across curves x = y(t) of discontinuity.
It is well-known that weak solutions are not uniquely determined by their initial

data. To overcome this difficulty, we consider the IVP (1.1) to be the vanishing
viscosity limit e 1 0 of the parabolic problem

(U')t + f(u'). = u= u6 (x,O) =uo(x), (1.3a)

and identify the unique "physically relevant" weak solution of (1.1) by

u = lim u'. (1.3b)
e0

The limit solution (1.3) can be characterized by an inequality that the values UL =

U(y - 0, t), UR = u(y + 0, t) and s = dy/dt have to satisfy; this inequality is called an
entropy condition; admissible discontinuities are called shocks. When f(u) is convex,
this inequality is equivalent to Lax's shock condition or

a(uL) > a > a(uR) (1.4) []

where a(u) - f'(u) is the characteristic speed (see [8] for more details).
We turn now to describe finite difference approximations for the numerical solution

nf the IVP (1.1). Let v denote the numerical approximation to u(i, t,,) where

xj = jh, t,, = nr; let vh(X, t) be a globally defined numerical approximation associated ./
with the discrete values {v7 }, oo < j < cc, n > 0. ty Codes

and/or
1 zapeoiaL
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The classical approach to the design of numerical methods for partial differential
equations is to obtain a solvable set of equations for {vjn} by replacing derivatives in
the PDE by appropriate discrete approximations. Therefore, there is a conceptual
difficulty in applying classical methods to compute solutions which may become dis-
continuous. Lax and Wendroff [9] overcame this difficulty by considering numerical
approximations to the weak formulation (1.2a) rather than to the PDE (1.1). For this
purpose, they have introduced the notion of schemes in conservation form:

v '+1 = Vn _ A(fj+ _ 7'-_ .) = (Eh .V"),; (1.5a)

here A = -/h and fi+j denotes

I= f(vi-k+i,.. .,vi+k) (1.5b)

7(wI,... w2k) is a numerical flux function which is consistent with the flux f(u), in
the sense that

f(u, u,... u) = f(u); (1.5c)

Eh denotes the numerical solution operator. Lax and Wendroff proved that if the
numerical approximation converges boundedly almost everywhere to some function
u, then u is a weak solution of (1.1), i.e., it satisfies the weak formulation (1.2a).
Consequently discontinuities in the limit solution automatically satisfy the Rankine-
Hugoniot relation (1.2b). We refer to this methodology as shock-capturing (a phrase
coined by H. Lomax).

In the following, we list the numerical flux function of various 3-point schemes
(k = 1 in (1.5b)):

(i) The Lax-Friedrichs scheme [7]

7(w1,w2) = 2[f(wI) + f(w2) - .(w2 - W1)] (1.6)

(ii) Godunov's scheme [1]

f(w 1 , w 2) = f(V(O; w1, w 2)); (1.7a)

here V(X/t;w 1 , w 2) denotes the self-similar solution of the IVP (1.1) with the initial
data

UO(x) I X . (1.7b)
W2 x>0

(iii) The Cole-Murman scheme [12]:

7(W1, W2) = 2[f(wI) + f(w2) - Id(Wl, w2)I(w2 - w1)] (1.8a)

where
f(W2)-f(w1) if W1 54 W28b=dWW2 2W (1.8b)a(w,) if wi = w2
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(iv) The Lax-Wendroff scheme [9]:

AWI, W2) If (WI) + f (W2) - Aa (W1 + W2) if(W2) - f(Wi)]}. (1.9)

Let E(t) denote the evolution operator of the exact solution of (1.1) and let Eh
denote the numerical solution operator defined by the RHS of (1.5a). We say that the
numerical scheme is r-th order accurate (in a pointwise sense) if its local truncation
error satisfies

E(T) . u - Eh . u (hr+l) (1.10)

for all sufficiently smooth u; here T = 0(h). If r > 0, we say that the scheme is
consistent.

The schemes of Lax-Friedrichs (1.6), Godunov (1.7), and Cole-Murman (1.8) are
first order accurate; the scheme of Lax-Wendroff (1.9) is second order accurate.

We remark that the Lax-Wendroff theorem states that if the scheme is convergent,
then the limit solution satisfies the weak formulation (1.2b); however, it need not be
the entropy solution of the problem (see [4]). It is easy to see that the schemes of
Cole-Murman (1.8) and Lax-Wendroff (1.9) admit a stationary "expansion shock"
(i.e., f(uL) = f(uR) with a(uL) < a(uR)) as a steady solution. This problem can be
easily rectified by adding sufficient numerical dissipation to the scheme (see [11] and
[3]).

2 Interpolatory Schemes and Linear Discontinu-
ities

Let us consider the constant coefficient case f(u) = au, a = const. in (1.1), i.e.,

ut + au, = 0, u(x, 0) = uo(x), (2.1a)

the solution to which is
u(x, t) = u0(x - at). (2.1b)

In this case the schemes (1.6) - (1.9) take the form
K +

+  Ce(v)vi+i = (Eh .v") 3  (2.2)
1=--K-

where v = Aa is the CFL number. The coefficients CI(v) are independent of the
numerical solution v'; this makes Eh a linear operator.

We say that the numerical scheme Eh is (linearly) stable if

II(Eh)jl < C for 0 < n-r < T, r = O(h). (2.3a)

In the constant coefficient case the scheme is stable if and only if it satisfies von
Neumann's condition

K +

I C1(v)4eL < 1 for all 0 < <r. (2.3b)
*- -K-
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It is easy to see that all the 3 point schemes (1.6) - (1.9) are stable under the CFL
conditioi,

lvi = [Aa[ < 1. (2.3c)

The notion of stability (2.3a) is related to convergence through Lax's equivalence
theorem, which states that a consistent linear scheme is convergent if and only if it
is stable (see [13] for more details).

Let us dencte by Sr the stencil of (r + 1) successive points starting with xi

S = {Xi,,x,... ,xi+r}, (2.4a)

let P(x; Si, u) denote the unique polynomial of degree r interpolating the (r+ 1) values
of u on this stencil and let Q(x; u) denote the piecewise polynomial interpolation of
U

Q(!r;u) = P(x;S(,);u) xj- 1 _ x < xj (2.4b)

We refer to the numerical scheme

v ,+  Q(xj - ar; v') (2.4c)

as interpolatory scheme. Clearly, the interpolatory scheme (2.4) is r-th order a, -urate.
When Q(x;v) is the piecewise linear interpolation of v (i.e., r = 1,i(j) - j - 1
in (2.4b)) then (2.4c) is the first-order accurate upwind scheme; in the constant
coefficient case this scheme is identical to those of Godunov (1.7) and Cole-Murman
(1.8).

Next let us assume a > 0 and consider the second order case r = 2 in which
Q(x; vn) is a piecewise-parabolic interpolation of v. There are two different choices of
stencil in (2.4): Taking Q in [x _1 , x3 ] to be the parabola through S?_1 = {x,- 1 , xj, xj+1}
(i.e., i(j) = J - 1) results in the JLax-Wendroff scheme (1.9); taking Q in [x1 1,,xj]
to be the parabola through S?_2 = {xj.- 2, Xj 1 ,xj} (i.e., (i(j) - j -2) results in the
second-order upwind scheme.

We turn now to consider the application of these schemes to the step function
H(x)

H(x)={ 1 x 0 H { 0 j_1 (2.5a)

For the first order upwind scheme we get that

0 x <0
Q(x;H) x/h 0<x <h (2.5b)

I h <x

for the Lax-Wendroff scheme

0 x<-h

{2h(h) +_h<Q(x; H)= - (2.5c)!( (- A)(2 - E) 0 < x <h
2 h h h<x
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for the second order upwind scheme we get that

0 X <0
S0~ + V 0 < x < h (2.5d)

f - 1)(2 - f) _ _h<x<2h
1 2h < x

We observe that Q in (2.5b) is a monotone function of x; consequently the numerical
solution by Godunov's scheme to these data is also monotone. On the other hand
Q for the second order schemes (2.5c) - (2.5d) is not a monotone function. For the
Lax-Wendroff scheme Q is negative in -h < x < 0 and has a minimum of -0.125;
similarly for the second order upwind scheme Q is larger than 1 in h < x < 2h
with a maximum of 1.125. This observation explains the Gibbs-like phenomenon of
generating spurious oscillations in calculating discontinuous data with these second
order schemes.

We say that the scheme Eh is monotonicity preserving if

v monotone =€, Eh" -v monotone. (2.6)

Clearly the numerical solution of a monotonicity preserving scheme to initial data of a
step-function is always monotone and therefore the discontinuity propagates without
generating spurious oscillations.

Godunov has shown that the linear scheme (2.2) is monotonicity preserving if and
only if

C1(v) > 0, -K- < < K+; (2.7)

this implies that a monotonicity-preserving scheme which is linear is necessarily only
first-order accurate. It took some time to realize the Godunov's monotonicity the-
orem does not mean that there are no high-order accurate monotonicity preserving
schemes; it only means that there are no such linear ones. Hence high-order accurate
monotonicity-preservinig schemes are nonlinear in an essential way.

The second-order accurate schemes mentioned above are linear because the choice
of the stencil (2.4) is fixed. Let us consider now a piecewise-quadratic interpolation
which is made nonlinear by an adaptive selection of the stencil in (2.4b). For the
interval [xi- 1 , xi let us consider the two stencils S,?. 2 = {X, 2 , Xvi_, X3 } and S?71 -

{xj- 1 , xj, xj+1 }, and select the one in which the interpolant is smoother. If we measure
the smoothness of u by the second derivative of the corresponding parabola we select

j- 2 if I d2 P(x;S?2 ,u)I < I- 2 P(x;S]_,u)
dwj 2= (2.8a) S 1

Ci~) = j 1 otherwise (2.8a)

When we apply this selection of stencil to the step-function H(z) (2.5a) we get that
for [x-,, x00 we choose the stencil S2 2 = {X_ 2 , X-1, X0} for which P(X; S 2 

2 , H) = 0; for
the interval [X1 , X 2] we choose the stencil S2 = {x 1 ,X 2, X 3} for which P(X; S2,H) 1.
As is evident from comparing (2.5c) and (2.5d) it does not matter which stencil we
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assign to [x0, X1] since both parabolae are monotone there; with (2.8a) we select S. 1
for fxo, xl]. Thus we get in (2.4)

) = 1 0 X _< _O

Q(O; H) = 1 0 < x < h (2.8b)
I h<x

which is a monotone function of x although it is actually a piecewise-quadratic poly-
nomial.

The use of an adaptive stencil is the main idea behind the Essentially Non-
Oscillatory (ENO) schemes to be described later in this paper. It extends to high
order of accuracy in a straightforward manner: For r-th order accuracy we consider
for [xjx 3] the r stencils _,_+,..,S_ 1 . We choose i(j) in (2.4b) to be the

one which minimizes

drP(x;Sr,u)j fori=j-r,...,j-1. (2.9)

3 Total Variation Stability and TVD Schemes

An immense body of work has been done to find out whether stability of constant
coefficient scheme with respect to all "frozen coefficients" associated with the problem,
implies convergence in the variable coefficient case and in the nonlinear case.

In the variable coefficient case, where the numerical solution operator is linear
and Lax's cquivalence theorem holds, it comes out that the stability of the variable
coefficient scheme depends strongly on the dissipativity of the constant coefficient
one, i.e., on the particular way it damps the high-frequency components in the Fourier
representation of the numerical solution.

In the nonlinear case, under assumptions of sufficient smoothness of the PDE, its
solution and the functional definition of the numerical scheme, Strang proved that
linear stability of the first variation of the scheme implies its convergence; we refer
the reader to [13] for more details.

In the case of discontinuous solutions of nonlinear problems, linearly stable schemes
are not necessarily convergent; when such a scheme fails to converge, we refer to this
case as "nonlinear instability." The occurrence of a nonlinear instability is usually
associated with insufficient numerical dissipation which triggers exponential growth
of the high-frequency components of the numerical solution.

The following theorem states that a stronger sense of stability, namely uniform
boundedness of the total variation of the numerical solution, does imply convergence
to a weak solution.

Theorem 3.1. Let vh be a numerical solution of a conservative scheme (1.5).
(i) If

TV(vh(., t)) <_ C . TV(uo) (3.1)

where TV( ) denotes the total variation in x and C is a constant independent of h
for 0 < t < T then any refinc-icit sequence h -- 0 with 7- = 0(h) has a convergent
subsequence h -, 0 that converges in Lfr° to a weak solution of (1.1).
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(ii) If vh is consistent with an entropy inequality which implies uniqueness of the
IVP (1.1), then the scheme is convergent (i.e., all subsequences have the same limit,
which is the unique entropy solution of the IVP (1.1)).

We say that the scheme Eh is Total Variation Diminishing (TVD) if

TV(Eh . v) < TV(v) (3.2)

where
TV(w) = w+l - w31. (3.3)

I

Clearly TVD schemes satisfy (3.1) with C = 1 and therefore are TV stable.
In [2] we have shown that if the scheme can be written in the form

V7+ =V + C+.A 1. ,"-C - 1A v (3.4a)
"J + -t 3- 1 -

where C1 satisfy for all j

C > 0, C + C <1 (3.4b)

then the scheme is TVD; here Ai+ Vn = Vn 1 - v. Applying this lemma to the
general scheme

V' =vo - Ap+ -Jf- ) (3.5a)

1

fj+= (f, + f 3+,- q,+ A,+ V )  (3.5b)

we get that if Aq satisfies
A 1d+ 1. -  Aqj+ < 1 (3.6a)

then the scheme (3.5) is TVD; here

13+' -h
/-+1 = I (3.6b)

This shows that the Cole-Murman scheme (1.8) for which q = dl is TVD subject to

the CFL restriction AI a+ .i < 1.

Using conditions (3.4b) it is possible to construct TVD schemes which are second-
order accurate in the L,-sense (see [2] and [14]). However, TVD schemes are at
most second-order accurate (see [5]). In order to design higher-order accurate shock
capturing schemes we introduce the notion of Essentially Non-Oscillatory (ENO)

schemes.

4 ENO Schemes

In this section we describe high-order arcir,te Godunov-type scher-:. which are a
generalization of Godunov's scheme (1.7) and van Leer's MUSCL scheme [10].
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We start with some notations: Let {Ii} be a partition of the real line; let A(I)
denote the interval-averaging (or "cell-averaging") operator

A(I).-w= w(y)dy; (4.1)

let .Iz A(Ij) . w and denoteT = {u5}. We denote the approximate reconstruction
of w(x) from its given cell-averages {W,} by R(x;ui). To be precise, R(x;u!) is a
piecewise-polynomial function of degree (r - 1), which satisfies

(i) R(x;U7) = w(x) + 0(hr) wherever w is smooth (4.2a)

0ii) A(!j).- R(.; U) = Tj (conservation). (4.2b)

Finally, we define Godunov-type schemes by

Vn+ 1 = A(1j).- E(-r) .R(.:'vn ) E (-Eh . Vn), (4.3a)

v' = A(I,)uo; (4.3b)

here E(t) is the evolution operator of (1.1).
In the scalar case, both the cell-averaging operator A(I) and the solution operator

E(r) are order-preserving, and consequently also total-variation diminishing (TVD);
hence

TV(-Eh .T) < TV(R(.;UT)). (4.4)

This shows that the total variation of the numerical solution of Godunov-type
schemes is dominated by that of the reconstruction step.

We turn now to describe the recently developed essentially non-oscillatory (ENO)
schemes of [5, 6], which can be made accurate to any finite order r. These are
Godunov-type schemes (4.3) in which the reconstruction R(x; T), in addition to re-
lations (4.2), also satisfies

TV(R(.;U)) _ TV(S) + 0(h't P), p > 0 (4.5)

for any piecewise-smooth function w(x). Such a reconstruction is essentially non-
oscillatory in the sense that it may not have a Gibbs-like phenomenon at jump-
discontinuities of w(x), which involves the generation of 0(1) spurious oscillations
(that are proportional to the size of the jump); it can, however, have small spurious
oscillations which are produced in the smooth part of w(x), and are usually of the
size Q(hr) of the reconstruction error (4.2a).

When we use an essentially non-oscillatory reconstruction in a Godunov-type
scheme, it follows form (4.4) and (4.5) that the resulting scheme (4.3) is likewise
essentially non-oscillatory (ENO) in the sense that for all piecewise-smooth function
W(X)

TV(Eh . ) TV(U) + O(h 1 *P), p > 0; (4.6)

i.e., it is "almost TVD." Property (4.6) makes it reasonable to believe that the total
variation of the numerical solution is uniformly bounded. We recall that by Theorem
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3.1, this would imply that the scheme is convergent (at least in the sense of having
convergent subsequences). This hope is supported by a very large number of numerical
experiments.

Next we describe one of the techniques to obtain an ENO reconstruction. To

simplify our presentation we assume that {Ij} is a uniform partition

Ij = (x,- ,x.), xj = jh.

Given cell averages {Wj} of piecewise-smooth function w(x), we observe that

hrj = ji w(y)dy = W(xj) - W(x,_.) (4.7a)

where
W(X) = w(y)dy (4.7b)

is the primitive function of w(x). Hence we can easily compute the point values

{W(x,)} by summation

W(x,) = h T ,. (4.7c)
j=io

Once we have computed the point values of the primitive function we use the ENO in-
terpolation technique (2.4), (2.9) to obtain Q(x; W), an r-th order piecewise-
polynomial interpolation of W, i.e.,

Q(x; W) = P(x; S,(,), W) for x,_i < x < x, (4.8a)

where P(x; Sr, W) is the unique r-th degree polynomial which interpolates W over

the stencil Sr = {x, x,+,. . ,x+r1 }, and i(j) is chosen so that

d- P(X;Sr" )W)[ min I dr Px;',W . (4.8b)
j-r<<j- dX Sir

We define R(x; !) by

R(x; U7) -= dQ(x; W). (4.9)
X

We observe that if w(x) is smooth in (xj, x,j) then for h sufficiently small the
algorithm (4.8b) will select a stencil Sr,5) in which w(x) is smooth. It follows then
from standard interpolation theorems that

R(x; u) = dP(x; s(,), W)I = -dW + 0(hr) = w(x) + 0(h r ) (4.10)

which is property (4.2a). Furthermore (4.10) holds in every interval except for those
in which w(x) has a discontinuity. As we have seen in the examples (2.5) and (2.8b)
the Gibbs-phenomenon is associated with intervals near the discontinuity and not
with the interval that contains the discontinuity. This is why the reconstruction (4.8)
- (4.9) satisfies the ENO property (4.5); in [2] we show that the second-order accurate
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ENO scheme is actually TVD. The conservation property (4.2b) fo'lows directly from
the definition (4.9):

A(I/)R(-;T) = - + Q(x; IV)dx = W) -Q(x-; W)]

(4.11)

1
= L[W(xj) - w(x,_,)] = uj.

The abstract scheme (4.3) can be written in the standard conservation form (1.5).
To do so let us denote by (x, t) the solution in the small of the IVP{ (9 + f/(f))X Z 0

D(x, 0) z- R(x; v') '1 0 < t < 7- (4.12)

and integrate this PDE over IJ x [0,r]; using the divergence theorem and (4.2b) we
get that vn' 1 in (4.3) can be expressed by

where we f (f(xj,t))dt 
(4.13b)

In the first-order case the scheme (4.13) is identical to Godunov's scheme and the
numerical flux (4.13b) can be expressed in a closed form by (1.7b). For higher order
schemes we use a numerical flux which is an appropriate approximation to (4.13b)
(see [6] for more details).

We remark that the ENO schemes are related to the interpolatory schemes of Sect.
2 as follows: In the constant :oefficient case a fixed choice of stencil (i.e., i(J) - J

constant in (4.8a)) results in the interpolatory scheme (2.4) corresponding to the
same choice of stencil.
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