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ABSTRACT

Exception handling mechanisms were added to programming languages to segregate algo-
rithmic processing from error processing. However, there is no consensus on how to define
exceptions. In addition, attaching handlers to control statements clutters source text in much
the same way that testing parameters for suitability as inputs for an operation and significance
as results does. In this dissertation, we present a definition for exceptions and a set of
language features that support our definition by associating exceptions with the operations of a
type and handlers with data objects. We call our notation data-oriented exception handling to
distinguish it from the usual control-oriented versions. We describe the implementation of a
pre-processor from our notation to Ada. Case studies of programs indicate that control-
oriented exception handling mechanisms are poorly understood and used. Experimental results
indicate that data-oriented exception handling can be used to produce programs that are small-
er, better structured, and easier to understand and modify. With the exception of pre-
processing time, no significant time or space penalty is incurred using data-oriented exception
handling.

In order to verify and test programs written in our notation, we extend the proof rules for
several Ada constructs and develop new test coverage metrics to assess how well test data ex-
ercises bindings of raise statements and handlers. Comparisons of proofs of programs with
different exception handling approaches show that those for data-oriented exception handling
require less change in response to new raise statements for existing exceptions or new xccp
tion declarations. Algontnms to assess test coverage are also simpler for data-oriented than
control-oriented mechanisms.
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CHAPTER 1

Introduction

Programming languages evolve with our improved understanding of programming

practices. New features are added to languages to provide linguistic support for new

design methods, while some old features die out when they become obstacles to contem-

porary programming practices. Procedures were introduced to permit programmers to

refer to common code by name rather than duplicating it. Stepwise refinement further

encouraged the use of procedures to facilitate functional abstraction. Packages or

modules were added to languages to support information hiding or data abstraction.

Similarly, exception handling mechanisms were adopted to segregate error handling code

from code implementing algorithms.

It has been about twenty-five years since the first attempt at incorporating excep-

tion handling mechanisms into programming languages[PL/I 761. Although this time

period is relatively long compared to the short history of programming languages, few

widely used languages have incorporated these features. With increasing use of AdaiAda

821, it is now possible to investigate the use of its exception handling features in applica-

tion programs A.nd assess their impact on programming practices.

We define exceptions only in response to implementation insufficiencies [Black 83[,

which generally occur when the storage reserved for an object is inadequate to represent

its value or when performance constraints cannot be met. Although defining resource

requirements in an operation's specification might permit programmers to test for such
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cunditions explicitly before invoking an operation, such requirements cclmplicate

specifications. Our view of exceptional conditions as implementation insufficiencies

results in an exception handling mechanism that is tightly coupled with Ada's package

construct implementing abstract data types. Exceptions are defined and raised only in

packages because such conditions are defined in terms of an object's representation.

which can be manipulated only in a package body. Each data object declared has its

own set of (exception, handler) binding pairs specified in its declaration so users can

choose different responses to exceptional conditions. Attaching handlers to control state-

ments clutters source text in much the same way that testing suitability of inputs for an

operation and the significance of its results does. In contrast, associating handlers with

the declarations of types and objects separates centralizes information about exceptional

processing away from algorithmic processing. Empirical results indicate that data-

oriented exception handling can be used to produce programs that are smaller. better

structured, and easier to understand and modify. With the exception of pre-processing

time. no significant time or space penalty results from this change.

1.1. What is an Exception?

Although the terms exception and exception handling have been used for quite some

time, no rigorous definition for them is accepted. In [Goodenough 75], exception condi-

tions are defined as those that are brought to the attention of the operation's invoker.

These conditions can be errors like domain failure or range failure, or classifications of

the result of an operation. An exception condition can even be used to monitor an opera-

tion, making it another communication link between an invoker and the called operation.
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The designers of the exception handling mechanism in C(LU Liskov 79, ako defined

an exception generally as an unusual occurrence. However, if the exception handling

mechanism were efficient enough, exceptions might also be used to convey information

about normal situations. Exception handling mechanisms communicate information

among procedures at different levels. While such communication can be used to recover

from faults such as erroneous data and failures of lower level modules, it can also be used

for other purposes.

LevinlLevin 77! even avoided giving a definition of 'exception- because he %%as

afraid that doing so might limit the applicability of his proposea mechanism. lie pre-

ferred to include "errors" as a proper subset of exceptions and proposed using his

mechanism for inter-process communication.

In Ada:ichbiah 791, exceptions are "errors or other exceptional situations that arise

during program execution." The Ada Language Reference Manual (LRM) classifies errors

into the following four categories: errors that must be detected at compilation time by

every Ada compiler; errors that must be detected at run time by the execution of an Ada

program; erroneous execution; and incorrect order dependencies. For the second case. the

LRM further explains that "the corresponding error situations are associated with the

name of the predefined exceptions." Thus the LRM effectively defines exceptions in terms

of errors which are in turn defined in term of exceptions. As to the "exceptional situa-

tions," the LRM does not give any further definition. Therefore, a programmer has the

freedom of declaring any event to be an exception.

In summary, it seems that exceptions cannot be defined except. in terms of "errors,"

"exceptional cases." "rare situations," or "unusual events," which are themselves ill-
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defined terms. (living a rigorous definition for "exception" requires separation of -'nor-

mal" and "exceptional" cases. The subjectivity of this distinction can be seen by consid-

ering the exceptions associated with symbol table operations. When looking up an item

in a symbol table, it may be "exceptional" if the item is not in the table. Thus.

keynot_found is an exception assctiated with the look-up operation. However, when

an insertion operation is implemented using the look-up operation, exceptional cases of

keynot_found suddenly become the expected cases. Thus. the event key_not_found

can be either normal or exceptional depending on one's viewpoint. Since an exception

can be anything one likes, exception handling mechanisms have been designed that are

general enough to take the role of the procedure calls, multiple exits from procedures, or

even interprocess communication mechanisms.

To hav,, a precise and reasonable definition of the term -exception." we need to

eliminate events that are not exceptions. An exception should not be an unanticipated

program condition. Exception handling mechanisms deal only with well-specified.

expected situations. Detecting an unexpected program state is difficult enough without

trying to decide how to repair it. An exception should not be a programming error- If

an implementation does not conform to its specification. it. contains errors. These errors

must be corrected rather than handled in order for the program to function correctly.

We cannot use an exception handling mechanism to debug - program because the

mechanism is not designed to correct unexpected errors. On the other hand, if a program

raises an exception described in the specification, the responses are also defined in the

specification. Witti this point in mind, the inclusion of the exception condition and its

handler is not an error. but the accurate implemeintation of the specification.
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An exception should not be a "domain failure." The invoker of an operation must

make sure the operation's input assertion is satisfied when inoking the operation. If not,

the operation should not be invoked at all. When a partial function is called with an

input that lies outside its domain, there is no way for -uch a funcuu, to "fix" the errone-

ous input. The ,'unction can only report its undesired usage, and either return an arbi-

trary value or abandon program execution. If the invoker is careful enough to provide a

handler for such a failure. he could just as easi!y test the input assertion fir-t to avoid

unnecessary computation by the function. On the other hand. if the invoker is unavare

of the possible domain failure, then raising an exception will not help since the invoker

will not have provided a handler for the exception.

An exception should not be a "range i'ailure." If a function is implemented correctly

and if its input assertion is satisfied when the function is called, the function should pro-

duce an output satisfying the oLtput assertion. Otherwise, the implementation (toes not

agree with its specification. and errors exist in che implementation. Raising an exception

in response to a range error is unlikely to help the invoker since he has no idea how the

function is implemented.

Instead of being defined with respect to programming blunders. exceptions should

only be defined for situations where a function or operation is logically correct but, due

to some limitatitn imposed by the underlying system, could not be computed.

BlackiBlack 83, calls thes' sit nations "implemenhation insufficiencies." For example. an

overflow resulting from an addition operation is an exception because it is caused by

insufficient hardware resources (i.e., the word length is too small). Similarly, operations

failing to meet performance goals can be defined as implementation insufficiencies. In
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contrast, a stack underflow when invoking a pop operation is a domain failure rather

than an exception because the operation is only defined for non-empty stacks. Although

the problems of implementation insufficiencies could be partially resolved by defining the

resource requirements for an operation in its specification, this approach may not be

desirable because this detail clutters specifications by combining descriptions of size and

function together.

Conceptually. there is nothing wrong with a module when it fails to perform due to

a resource shortage. If more resources are obtained, the module can meet its

specification. There is no software error to be corrected in this case. An implementation

insufficiency is different from a "range failure." For example, if a push operation fails to

produce an enlarged stack due to insufficient pre-allocated memory space, the result

should still be thought of as falling into the range of the push operation since its range is

the set of all stacks (without regard to their sizes).

1.2. Components of an Exception Handling Mechanism

An exception handling mechanism allows a problem solution to be divided into nor-

mal and exceptional computations and isolates the cases from each other. The language

features supporting exception handling can be divided into a set of components: declaring

exceptions, binding handlers to exceptions, and raising exceptions. Among the language

design issues that arise for these components are how to provide information about the

environment. to the handler, where control should resume after an exception has been

handled, and what happens if an exception is not handled.
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1.2.1. Declaring Exceptions

In most existing exception handling mechanisms, there are usually two types of

exceptions: pre-defined and user-defined. Pre-defined exceptions are declared implicitly

and associated with conditions that can be detected by a language's run-time system.

The most common pre-defined exceptions are: numeric overflow, array subscript bound

error, storage error, etc. Pre-defined exceptions permit programmers to monitor and

respond to these conditions should they arise.

User-defined exceptions permit a programmer to declare conditions as exceptions by

associating identifiers with the conditions. These conditions are often defined in terms of

asome appiication domain at a higher level of abstraction. For example, an exception

stackoverflow can be declared as part of the specification of a user defined data type

stacktype.

1.2.2. Raiing Exceptions

When the conditions associated with some exceptions arise during program execu-

tion, these exceptions are brought to the attention of the exception handling mechanism.

For the pre-defined exceptions, detection and notification are usually performed automat-

ically by the run-time system. For user-defined exceptions, programmers write code to

test conditions and notify the handlers (generally with a raise or signal statement).

1.2.3. Binding Handlers to Exceptions

Corrective actions can be associated with exceptions in a program. Once a specific

exception is raised, an action associated with the exception (if any) is located and exe-
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cuted. This process is called handling exceptions and the code executed in correspondence

to the raised exception is called an exception handler.

Handlers may be associated with exceptions dynamically or statically. For dynamic

association, a statement must be executed binding a handler to an exception (e.g., the

PL/I ON statement). The binding remains in effect unil another such statement Iz exe-

cuted or the scope unit containing the statement terminates. Thus it is impossible for

the compiler to determine whether there is a handler associated with an exception at an

arbitrary point in the program. Static association is made by tagging a program unit

(e.g., block, statement, expression) with a handler which remains in effect while the unit

executes.

1.2.4. Propagating Exceptions

Exceptions are not always handled successfully. There may not be a handler bound

to the exception or the handler for the exception may not be able to repair the exception

satisfactorily. The same exception can be raised again in the invoker to search for a

handler, until either a handler is found or control passes out of the highest level of pro-

cedure invocation. This process is called propagation. Since an exception can propagate

outside its scope, an exception handling mechanism must provide a way to recognize such

an exception. Some mechanisms require that unhandled exceptions be converted to a

pre-defined, global exception before being propagated upward. Although propagation

makes an exception handling mechanism seem more flexible and powerful, once an excep-

tion is propagated outside its original environment much useful context information is

lost.
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1.2.5. Transferring Control after Exception Handling

There are two basic models for transferring control after a handler executes: termi-

nation and resumption. In the termination model, the program unit that raised the

exception is terminated and control transferred to the statement following the unit's

invocation. In the resumption model, control returns to the point following the state-

ment raising the exception. Care must be taken that the condition causing the exception

to be raised does not still exist or unpredictable results may be obtained.

The termination model is generally simpler than the resumption model because it is

easier to restore a well-defined program state (e.g., the caller's state saved when a pro-

cedure was invoked). However, the resumption model often provides useful functions.

For example, in adding a list of numbers if numeric overflow occurs, switching to a

number representation with a wider range to hold the intermediate results permits the

summation to continue. With the termination model, once the overflow occurs, all com-

putations up to that point have to be abandoned and restarted.

1.2.6. Passing Parameters

Some local context useful in diagnosis and treatment of exceptions can be transmit-

ted to handlers via parameters. A raise statement supplies the actual parameters for

an exception, and the corresponding handler uses formal parameters to access the infor-

mation passed to it. Few exception handling mechanisms permit exceptions to have

parameters. As a result, global variables are often used to transmit information, increas-

ing module coupling and program complexity.
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1.3. Organization of the Dissertation

In this dissertation, we define exceptions as implementation insufficiencies, and pro-

pose a new exception handling mechanism suitable for solving such problems. In our

mechanism, exceptions are defined on data types because implementation insufficiencies

are signaled by operations of the types; handlers are associated with exceptions in object

declarations so that users may specify different repair actions for different objects when

implementation insufficiencies arise on these objects. By analyzing programs with dif-

ferent exception handling methods, evaluating the impact of our mechanism on program

verification and validation, and comparing the performance of programmers as they con-

struct, study, and modify programs, we show that our view of exceptions and new

mechanism improve program quality.

Chapter 2 surveys several existing and proposed exception handling mechanisms.

Chapter 3 discusses problems inherent in conventional exception handling mechanisms

and presents an analysis of exception handling from Ada programs in the Simtel2O Ada

Repository.

In Chapter 4, a new exception handling mechanism associating exceptions with a

type's operations and binding handlers to exceptions in the declaration of data objects is

proposed and demonstrated. Chapter 5 describes the implementation of the proposed

mechanism in Ada.

Chapter 6 and 7 consider issues of program verification and validation. A set of

proof rules is formulated to prove the correctness of Ada programs employing the pro-

posed mechanism. The simplicity of our method becomes obvious when it is compared
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with the methods used for Ada's exception handling mechanism. A simple test coverage

metric is introduced. By comparing the number of test cases needed for testing a pair of

programs employing different exception handling methods, we can see that data-oriented

exception handling can help reduce the effort expended in program testing. We also dis-

cuss the implementation of a pre-processor to assess test coverage automatically.

Chapter 8 examines the results of some experimental studies which reveal how dif-

ferent exception handling mechanisms impact programmers as they build, study, and

modify programs. Chapter 9 summarizes this work and concludes the dissertation by

considering possible future research directions.
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CHAPTER 2

Survey of Previous Work

This chapter briefly surveys innovative exception handling mechanisms that have

been proposed or implemented.

2.1. Exception Handling in PL/I

PL/L was the first general purpose programming language to include facilities for

handling exceptions[PL/I 76] [MacLaren 77]. In PL'I's terms, these exceptions are called

conditions which are either predefined by the system (e.g., ENDFILE, ZERODIVIDE, etc.)

or declared in a program. When a condition is raised either implicitly or explicitly via a

SIGNAL statement, the execution of the program is interrupted and control is transferred

to the most recently established handler for that condition. If there is no handler associ-

ated with an exception when it is raised, a default action is taken.

A handler is associated with an exception by executing an ON statement, which

binds the handler to the condition named by the ON statement and deactivates the previ-

ous association for that condition. The newly established association remains in effect

until the end of its enclosing block is reached; at that time the handler for the dynami-

cally enclosing block (if any) again becomes active.

When a handler terminates (either normally or by executing an END statement,) the

signaler's execution is resumed. If resumption is undesirable or prohibited (e.g., for some

language-defined conditions), a handler can execute a STOP statement to terminate the

12



entire program or use a GOTO statement to transfer control to any place in the program.

A raised exception will be propagated to the current block's dynamic enclosing block (if

any) if there is no handler associated with it in the current block (i.e., no ON statement

binding a handler to the exception has been executed in the current block).

Each language-defined condition has a default handler, which is invoked if no user-

defined handler is established. However, default handlers do not treat exceptions uni-

formly; some default actions abort the program, while others resume the interrupted exe-

cution. For example, the UNDERFLOW condition for a floating point operation has a

default handler that prints an error message and the returns with zero as the evaluation

result. Conversely, the handler for FIXEDOVERFLOW condition is not allowed to return.

Most language-defined conditions do not take parameters, and user-defined condi-

tions are not allowed to take parameters. Thus, communication between a signaler and

its handler can only be achieved through global variables. Special cases are the file condi-

tions (e.g., ENDFILE and ENDPAGE), which pass file parameters to their handlers.

2.2. Goodenough's Mechanism

The first structured exception handling mechanism was proposed by

Goodenough[Goodenough 751. He argued that exceptions should be declared to be one of

three types in order to specify explicitly their resumption or termination constraints.

ESCAPE exceptions require termination of the operation raising the exception, NOTIFY

exceptions forbid termination, and SIGNAL exceptions may choose either termination or

resumption. An exception must be declared to be one of the three types and must be

raised by matching statements.

13



Handlers are associated with exceptions statically by attaching handlers to the end

of an executable program unit (e.g., expression, statement, or block), e.g.,

IF ( A + B > C ) [ Overflow : EXIT(TRUE); ] THEN ...

CALL P(A); [ ExceptionRaisedByP : CALL F;
[ ExceptionRaisedByF : ESCAPE E3; ]

Sum = 0;
CALL Scan( P, V ); [ Value : Sum = Sum + V; RESUME; I

The scope of a handler is the same as the scope of the fragment to which it is attached.

If a raised exception lies within the scope of a handler for that exception, the handler is

executed; otherwise, the same exception is raised within the subroutine's invoker.

If an exception is of type ESCAPE or SIGNAL, the handler can terminate the opera-

tion raising the exception by executing an EXIT statement, or by raising an ESCAPE-type

exception. Executing a RETURN statement causes the handler to exit and returns control

to the invoker of the subroutine containing the handler. For an exception of type

NOTIFY or SIGNAL, the handler can resume the operation raising the exception by execut-

ing the RESUME statement.

There are some system-defined exceptions like ENDED and CLEANUP. The system

supports declaring default exceptions and default handlers. Since exceptions do not take

parameters, any communication between an operation raising an exception and the

corresponding handler must be performed through global variables.

2.3. Levin's Exception Handling Mechanism

In rLevin 77j, exceptions are divided into two classes: structure-class conditions and

flow-class conditions. A structure-class condition is raised relative to a data instance,

14



and may impact all users of the data instance. In contrast, a flow-class exception is

raised relative to the invocation of an operation and is only interesting to the invoker.

As an example, a module implementing a file abstraction may specify (among others) two

exceptions: file-inconsistent and file-read-only. When a user attempts to write

to a read-only file, file-read-only will be raised. In this case, only the invoker is

responsible for the exception raised and a handler within the caller (if an appropriate one

is found) is executed. If file-inconsistent is raised (when two users write to a file

without either gaining mutually exclusive control), all the users of that file are notified to

handle the exception. To facilitate communication between the signaler and the

handler(s), exceptions may take parameters.

The declaration of an exception does not explicitly specify its class as a structure or

flow condition. Such a distinction is made in a raises clauses attached to the heading

of the exception's signaler, e.g.,

condition file-inconsistent
condition file-read-only

function file-write( f : file )
raises file-inconsistent on f
raises file-read-only on file-write

Since file-inconsistent is raised on an object (a file), it must be a structure class con-

dition. In contrast, file-read-only is raised on a function invocation and is therefore a

flow-class condition.

A handler is associated with an exception statically by attaching the handler to the

end of an executable program unit (e.g., statement, block, or function body). Several

handlers may be eligible for execution if a structure-class exception is raised. thus
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selection policies are formulated to choose one or more of them for execution. For exam-

ple, if a storage-pool-low exception is raised, any process using the object on which

the exception was raised can handle the exception by releasing some storage it holds. To

coordinate processing among the processes when such an exception is raised, Levin sug-

gests three selection policies: broadcast-and-wait, in which the exception is raised in

every process eligible and the signaler waits until all handler operations are completed:

broadcast, in which the signaler does not wait; and sequential, in which the handlers are

executed one by one but whenever the exception condition is handled the remaining

handlers are not executed. Thus, handling structure-class exceptions is actually an

inter-process communication and resource management problem. Levin's mechanism

does itot provide an explicit rule concerning unhandled exceptions. It is implied that this

might be a programming errorrLevin 771.

Levin's exception handling mechanism forbids a handler from terminating the execu-

tion of an operation raising the exception. The signaler's execution always continues

immediately following the raise statement after the handler finishes execution. Thus. a

handler is not allowed to execute a statement like exit or return to abort the signaler.

Levin argues that this is necessary for ensuring that an abstraction raising an exception

will always be in a consistent state.

Although a handler cannot alter the flow of control in the signaler, it can change the

local flow of control within its associated context. This is intended to cope with prob-

lems where control should not return to the point following the invocation if an exception

is raised. Levin thus introduces a special syntax form:

statement I condition : handler - control-transfer
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into his mechanism for that purpose. Consider the following example:

Sl; condition cond-i
L: begin function P2 ( ..

... begin
P2 [cond-i: Hi -* leave L]; ...
S3; raise cond-1;
... SS;

end ...

S4; end

When cond-1 is raised in P2. the associated handler (i.e., HI) is executed. After HI

finishes execution. P2's execution is resumed at S5. However, upon P2's termination

control will not transfer to S3: rather, the' whole block labeled by L is exited ;111d S4 i-.

the next statement to be executed.

2.4. Exception Handling in CLU

CLUiskov 791 uses a single-level termination model. Raising an exception ter-

minates the signaling procedure, and the exception can only be handled by the immediate

caller. Thus, instead of a single return path, each procedure has several return palths.

One of these is considered the normal path, while others are considered exceptional.

In a procedure heading, a list of exceptions (which fiay take parameters) can be

declared. These are the exceptions that can be raised by the procedure. CLU has one

language-defined exception, named failure, which may be signaled by every procedure.

failure is implicitly declared for every procedure and need not be listed in the procedure

heading explicitly. If an invoker does not supply a handler for an exception raised in the

invocation, that exception is automatically converted to the exception failure and the

invoker itself is terminated, failure takes a string parameter explaining the reason for

the exception being raised.

17



In CLU, handlers are statically associated with invocations and handlers may be

attached ,1', to statements. An exception raised within a handler body causes the pro-

cedure or block containing the handler to terminate. Thus, there is no risk of recursively

raising an exception in its handler. The handler body may also be terminated by an

exit statement, which is another way to raise exceptions. The difference betw,Pn a

signal statement and an exit statement is that the former activates a handler in the

calling procedure invocation, while the latter activates a handler in the current procedure

invocation. In the following example,

test = proc(x, y : int) returns(int) signals(badnum(int))

begin % beginning of a block
A sign( x ) except when neg( I :t )

Si

signal badnum(x)

end
B = sign( y ) ex-ept when neg( I :t )

S2
exit done

end

end except when done ... end

end test

the signal statement terminates execution of the procedure test and returns to its

invoker to search for a handler associated with bad num. while the exit statement

transfers control to the end of the block to execute the handler associated with done.

Among all the exception handling mechanisms that have been proposed or imple-

mented. CLU's is perhaps the simplet. Because it employs the single -level termination

model, its semantics can be simulated in a programming language without an exception

handling mechanism.
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2.5. Ada's Exception Handling Mechanism

Ada's designers chose the termination model as the basis for its exception handling

mechanism Ichbiah 791. Handlers are associated with exceptions at the end of a block, a

subprogram body, a package body, or a task body. A handler at the end of a package

body applies only to the initialization sequence of the package and not, to subprograms in

the package. When one of the declared excep'ions is raised, the execution of the block

(or the subprogram body, etc.) is abandoned. If there is a handler for that exception at

the end of the block (or subprogram body, etc.), the handler is executed, finishing rhe

execution of the whole block (or subprogram body, etc.). If no matching handler is

found. the same exception is raised again at the point following the block (or in the cal-

ling subprogram). The propagation of the exception continues along the dynamic calling

chain until either a matching handler is found or a task boundary is encountered.

Since unhandled exceptions propagate automatically along dynamic calling chain, it

is possible for an exception to propagate outside its scope. As an example, consider bhe

following package implementing a symbol table:
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package symboltable_manager is

procedure enternewblock;

procedure leavecurrentblock;
procedure store symbol( ...

procedure lookupsymbol( ...

end symbol tablemanager;

package body symbol table-manager is

package stackpkg is

stack-overflow exception;

procedure push( ... ) -- may raise stack overflow

end stackpkg;

package body stackpkg is separate;

procedure enter new block is
begin

push( ...

end enter new block;

end symboltablemanager;

In the body of symbol_table_manager, there is an internal package stackpkg

which declares an exception stackoverflow. The procedure enter new block of

symboltablemanager invokes push defined in the stack package to push a new frame

onto the stack. Since push may raise the exception stack overflow which is not. han-

died by enternew block, the exception is propagated outside its scope to a user pro-

gram invoking enternew block. (The scope of stack overflow starts from the

exception's declaration and extends to the end of symboltablemanager's body). The

automatic propagation of stackoverflow reveals that symboltable manager is

implemented using stack. Thus we fail to achieve the design goal of hiding the
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implementation of the package from its users. Since Ada does not require that subpro-

gram headings list exceptions that can be raised in their bodies, the behavior of a subpro-

grarm in Ada can only be understood by examining its implementation.

In Ada, handlers can be attached to blocks but not to statements. This often causes

a program to be cluttered with blocks to insert handlers in the middle of statement lists.

Ada's exceptions are not allowed to receive parameters; all communication between the

sigrals and handlers must be accomplished through global variables.

2.6. Black's Thesis

Black Black 831 argued that exception handling is neither necessary nor desirable.

It is unnecessary because one can always use procedure parameters to replace a

resumption-type handler, and use multiple result types along with explicit testing in an

invoker to replace the termination of a signaler. He wrote in his concluding chapter:

"'The fact remains that exception handling mechanisms have been proposed
and implemented, and we may therefore ask what facility they add to a pro-
gramming language. The answer is that they are a new control structure, in
some languages carefully restricted in application, and in others so general
as to replace the goto."

In Black's proposal, functions return result values with union (i.e., oneof) types.

Exceptions are declared as enumerated types, each containing a single value, e.g.,

type underflow is new singleton;
type overflow is new singleton;

function stacktop-elem( Z . int stack )
return oneof( integer, underflow);

Boolean functions determine the type of the current value of a variable, e.g.,
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function isinteger( v: oneof(integer, underflow) ) return boolean;

function is underflow( v: oneof(integer, underflow) ) return boolean;

Thus, instead of using termination-type exception handlers, an invoker tests the result of

a function call in the following fashion:

I : integer;

element oneof( integer, underflow );

begin
element stacktopelem( S );
if is underflow(element) then

error-message( "Stack underflow occurred" );
else

I := to-integer( element );

end if;

where tointeger is a function that converts a union-type variable to a variable of type

integer.

To replace resumption-type exception handlers, Black proposed using parametric

procedures. An invoker of a procedure needs to supply handler procedures as actual

parameters to the invoked procedure. These handler procedures can then be invoked to

handle the exceptions that may be raised in the called procedure.

It is worth pointing out that Black's method does not replace all exception handling

mechanisms. Indeed, he intentionally avoided applying his proposed method to a

mechanism like Goodenough's or Yemini's[Yemini 851 where a handler has the freedom to

choose whether to terminate or resume the signaler. His method prevents a signaler from

deciding whether to terminate itself and return a special value representing the exception

being raised, or to invoke a procedure parameter and handle the exception.
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2.7. Dony's Mechanism

Dony proposed an exception handling mechanism for object-oriented programming

languagesIDony 891. In Dony's mechanism, exceptions are classes (i.e., types) which are

instances of a dedicated meta-class (i.e., "generic type"). Exceptional evi'nts are objects

instantiated from exception classes. An exception class can have its own slots (i.e.. fields

in a type) and methods (i.e., operations defined on- a type). An exception object can be

inspected, modified, or 'mriched as other first class objects in an object-oriented

language. Exception classes are organized in a hierarchy, and each instance of a class

,nherits the properties of its ancestors. An instance can also overload certain properties

of its ancestors.

Figure 1 shows an example of how exception classes are organized in a hierarchy.

The nodes in the graph denote exception classes, and direct edges denote relationships

between classes and subclasses. The exception class exceptional_event is the ancestor

of all other exception classes shown in the graph. It is created by instantiating the excep-

tion meta-class exceptionclass (not shown in Figure 1). exceptional event has

two subclasses: fatalevent and proceedable event. A fatalevent exception has a

method for termination, while proceedableevent has one for resumption. The excep-

tion class error is the set of exceptional events for which resumption is not allowed,

whereas exception class warning is the set of exceptional events for which resumption is

mandatory. The exception class exception, as a subclass of both fatal event and

proceedableevent, is the set of the exceptional events that allows both termination

and resumption. This is made possible by multiple inheritance. In Figure 1, the excep-

tion window largethanscreen is a user-defined exception that rcfines the system
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exceptionalevent
slots: signalingcontext_object, ...

methods: handledefault, look jor_handlers,

fatal-event proceedable event
method: exit slot: protocols_for_resumptionmethod: resume

error exception warning

slot: fatal_p

window_displayexception

slot: window_ tobedisplayed

window_largethan screen

methods: describe-exception
do_display_visible_part

wrongwindoworigin

methods: describeexception
do wrap_around

Figure 1. An Exception Hierarchy
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defined exception window displayexception.

Note that in the definition of exception class wrong_window origin, the method

describe_exreption defired in its ancestor orindow_large_titan_screen is overloaded.

If a message is sent to the method describe-exception of a wrongwindoworigin

object, the method defined in wrongwindoworigin is invoked.

Signaling an exception during execution of a method (of any object in the system) is

accomplished by instantiating the corresponding exception class to create an exception

object. After the exception object is created, a message is sent to one of its methoAs

(e.g., lookforhandlers) asking it to locate and execute an appropriate handle,r.

When an exception object is created, some of its slots can be explicitly assigned, while

others take default values. In the following code,

if [ [w length] > [oself length] I then
[window largethanscreen signal window co be displayed : w]

signal instantiates the exception class window largethan screen to create an excep-

tion object and assigns the object's window to be displayed slot the value w. signal

then sends the instance the message look for-handlers understood by all instances of

exceptions to invoke a handler.

Since exceptions are organized hierarchically, invoking a signal primitive may sig-

nal multiple exceptions if the exception being signaled has subclass exceptions. Similarly,

since all handlers are aware of the exception hierarchy, defining a handler for an excep-

tion amounts to defining a handler for all exceptions that are subclasses of it.
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2.8. Summary

In the preceding sections, we surveyed several influential exception handling

mechanisms proposed or implemented in the past. Space considerations preclude our cov-

ering other relevant mechanisms in this brief survey, e.g., Yemini's replacement

model[Yemini 85] in which a handler uses its result to replace the result of expression

raising the exception; Knudsen's proposal[Knudsen 87] for using sequels (essentially pro-

cedures that are passed as parameters) to handle exceptions raised in nested blocks: and

Mesa's exception handling mechanism[Mitchell 791.

All implemented exception handling mechanisms associate handlers with exceptions

via control components in a program, either dynamically by executing a statement mak-

ing a handler available for a particular exception or statically by attaching a handler to

an executable program unit. Attaching handlers to control statements clutters source

text in much the same way that testing parameters for suitability as inputs and

significance as results does. Generally, these mechanisms fail to achieve the goal of segre-

gating normal algorithmic processing from error processing in a program.

Without a clear definition of exceptions, programs treat control-oriented exception

handling mechanisms as just another control structure. Although exceptions can be sig-

naled in response to software failures, they can also be used in normal processing situa-

tions. Thus in implementing algorithms, programmers are forced to choose from a wider

set of primitive language features. Exception processing is fault-prone because it is the

least well documented and tested part of an interface[Horning 791.
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Nonetheless, we remain sanguine about the usefulness of exception handling

mechanisms in identifying and segregating code that is executed in special circumstances.

By equating exceptions with system insufficiencies as Black does and associating handlers

with objects rather than control structures as Levin and Dony propose, exception han-

dling mechanisms may still prove to be valuable implementation aids.
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CHAPTER 3

Problems with Existing Mechanisms

This chapter discusses some general problems of control-oriented exception handling

mechanisms and reports specific results of a case study of the use of exception handling in

Ada programs.

3.1. Multiple Exit Points from Compound Statements

In a structured programming language, control-flow structures observe the "one-in,

one-out" rule for regulating control flow (i.e., each construct has a single entry point and

a single exit point). If return statements are forbidden in subprograms, then functions

and procedures also observe this rule. However, exceptions add a large number of poten-

tial exit points. Beside the original ex;t , nint, every place where an exception can be

raised may also transfer control out of the structure. A loop in Ada

sum : 0;
while not end of file loop

get( n );
sum := sum + n;

end loop;
put( sum );

contains at least three abnormal exit points in addition to its normal exit point: get(n)

could raise dataerror, the addition operator could raise numeric-error, and the

assignment operator could raise constraint-error.
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3.2. Inter-Module Coupling

Control-oriented exception handling mechanisms also increase the strength of

inter-module coupling by adding exceptions to the interfaces of modules. Often the

exceptions are implicit interface components. Although handlers are generally associated

with control units statically, exceptions raised in procedure bodies are not listed in pro-

cedure headings. In languages with automatic propagation of exceptions, it may not be

possible to tell if exceptions are part of an interface even after examining the procedure's

body.

3.3. Mixed Algorithmic and Exceptional Code

Control-oriented exception handling mechanisms are designed to separate the code

dealing with "normal" computation from the code dealing with "exceptional cases."

Under different mechanisms, a handler can be attached to the end of an expression. a

statement, a block, or a subprogram. No matter what scheme is used. handlers are still

embedded in statement lists. Ada places exception handling code at the end of blocks.

When a new handler is needed for an exception, blocks must be nested inside one

another. The following example

get( n
begin

factor := size * n;
sum s= sum + factor;

exception
when constraint-error => handler_1;

end;

shows a block that contains two statements performing arithmetic operations. If

constraint error is raised by either of the assignment opterators, handler I is exe-
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cuted. However, if different handling actions are needed for numeric errors raised by

different arithmetic operators, additional blocks must be introduced:

get( n )
begin

begin
factor := size * n;

exception
when numeric_error => handler_2;

end;
begin

sum := sum + factor;

exception
when numeric-error => handler_3;

end;
exception

when constrainterror => handler 1;
end;

The nested blocks added for the sole purpose of attaching handlers interleave algorithmic

and exception handling code.

Replacing a statement with a block having an attached handler may also lead to

surprising results. In the example in Section 3.1, the summation of numbers read from

the input file will never be printed because encountering end of file raises the exception

end error terminating the block enclosing the loop without executing the put state-

ment. Correcting this problem by introducing a block with a handler for end-error

causes different problems.

sum := 0;
loop

begin
get( n );

exception
when enderror => put( sum );

end;
sum := sum + n;

end loop;
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This solution results in an unbounded loop because after handling the exception

end-error, only the block, not the loop, is terminated.

3.4. Difficulties for Code Optimization

Control-oriented exception handling complicates code optimization; improvements

based on code motion are inhibited if the effects of exception handling need to be

guaranteed. For example, when using strength reduction to optimize a simple loop, some

computations will be introduced prior to the loop's entry point. If these computations

raise exceptions, the behavior of the loop could be changed.

Consider the following code segment:

begin
I := C;
while I <= 10 loop

N : I * A;
I : I + B;

end loop;
exception

when NumericError =>

end;

After applying strength reduction, this code is transformed into:
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begin
I C;
t i  I * A;
t 2 :=A *B;

while I <= 10 loop

N ti;

I I + B;
t t, + t2

end loop;

excoption
when NumericError =>

end;

By substituting cheaper addition operation,, for more expensive multiplication operations.

the loop executes faster. This transformation poses no problem as long as no exceptions

are raised in either version. However, suppose A*B produces an overflow and the pre-

defined exception numeric error is raised. In the case where the loop is not entered. the

original loop will not raise an exception, but the optimized loep will. Thus, in the pres-

ence of exceptions, conventional optimization methods cannot guarantee preservation of

the semantics of an Ada program.

As another example, consider how exceptions in Ada affect the semantics of out

and in out parameters of subprograms. If. a subprogram is terminated by an exception.

then the values of out and in out parameters are not guaranteed. While scalar param-

eters will not have been updated, aggregate parameters may or may not be changed since

a compiler may adopt either reference or copy-in, copy-out implementation strategies.

3.5. An Analysis of Exception Handling in Ada Programs

To investigate the use of Ada's excepion handling features in application programs

and assess their impact on programming practices, wt -nalyzed about two dozen pro-
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grams in the Simtel2O Ada Repository. The e ,eption handlers found in these programs

were divided into the following seven categories:

1). Sending error mczsages (ipeluding error logging, etc.);

2). Propagating exceptions;

3). Initializing and/or finalizing operations on objects (e.g., open/cilos? a file.

Usage of Exception Handling Mechanism in Ada Programs

F)ile Stint Handler Strut in Error Propa- Init & Term & Change Ignore Control

Name Number Number Handlers Message gatlon Final Abort Globals (null) & Othern

expert.ada 400 0
mlns.srr 856 20 45 6 7 22 3 2 2 3
ed2.src 771 11 42 20 4 13 2 2 1
wpoorrinon.src 1552 9 9 5 2)
wpcr.src 2197 0
wprtorat.,rc 4902 31 51 19 2 7 17 6
wdhor.src 2035 39 59 18 3 20 9 3
ftp.src 2993 179 334 152 153 14 4 7 4
irace.sre 573 9 10 5 5
simtp.src 100 71 11 66 46 5 1
smrpwicat.rr 1139 70 118 68 47 3
tcpstand.src 217 1 1 1
tcpsub.src 3981 141 224 218 6
tcptest.sre 667 5 17 17
tcpvdict.src 2706 168 252 233 6 12 1
teinet.src 2476 94 198 104 94
telwicat.src 2242 95 188 97 91
w catmissrc 297 3 3 2 1
rorrrO.sre 2869 160 320 66 90 12 21 32 92

foratet.src 163 2 2 2

mrnpord.src 1052 44 140 52 2 1 5 2 12 66
i.sre 784 27 31 8 7 4 8 4

rrousre 2633 209 398 158 181 33 1 9 3 13

manpover.src 350 13 17 11 6

pplanner.src 5112 161 480 266 89 35 45 3 7 35
trackensrc 4343 97 325 294 10 6 14 1

Table 1. Usage of Exception Handling Mechanism in Ada Programs
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set/flush a buffer, etc.);

4). Terminating a block or sub-program or aborting a task;

5). Changing the values of global variables to record the significance of raised

exceptions for later treatment;

6). Ignoring the exception being raised (null handlers); or

7). Performing significant repair or diagnostic actions (e.g., determining the site

where a constraint-_error is raised).

Tables 1 and 2 summarize our results. Most of the handier actions apply only the

simplest form of exception handling, such as propagating the exception until termination,

or printing error messages without doing anything else. Only two programs have more

than 11% of their exception handling statements belonging to the last category (i.e.,

non-trivial algorithms).

Many of these simple handler actions can be simulated with other features of Ada.

Error messages can be printed where the errors are detected by substituting handler

bodies for raise statements. Propagating exceptions can be simulated by returning spe-

cial values. Terminating a subprogram can be accomplished with a return statement.

A null handler is a strong indication that the piece of code can be simply rewritten

without exception handling. Changing the values of global variables to record the

significance of raised exceptions shows a severe defect in Ada's exception handling

mechanism. The global variables introduced tend to increase the complexity of a pro-

gram by causing the modules in the program to be strongly coupled.

It is interesting to note that some programs never use any exception handling at all.

This indicates either the authors were not comfortable with Ada's exception handling
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Distribution of Exception Handling Actions (in percentage)

File Error Propa- Init & Term & Change Ignore Control
Name Message gation Final Abort Globals (null) & Others

expert. ada

mins src 13.3 15.6 48.9 6.7 4.4 4.4 6.7
ed2.src 47.6 9.5 31.0 4.8 4.8 2.4
wpcommon src 55.6 22.2 22.2
wpcrt.src
wpformat.src 37.3 3.9 13.7 33.3 11.8
wpeditor src 30.5 5.1 33.9 15.3 5.1 10.2
ftp src 45.5 45.8 4.2 1.2 2.1 1.2
iface.src 50.0 50.0
smtp.src 55.9 39.0 4.2 0.8
smtpwicat.src 57.6 39.8 2.5
tcpstand.src 100.0

tcpsub src 97.3 2.7

t,.ptest.src 100.0

tcpwicat.src 92.5 2.4 4.8 0.4
telnet.src 52.5 47.5

telwicatsrc 51.6 48.4

wicatmisc src 66.7 33.3
form2.src 20.6 28.1 3.8 2.2 6.6 10.0 28.7
formtest.src 100.0
compord.src 37.1 1.A 0.7 3.6 1.4 8.6 47.1
mman.src 25.8 22.6 12.9 25.8 12.9
mmgr.src 39.7 45.5 8.3 0.3 2.3 0.8 3.3
manpower src 64.7 35.3
pplanner src 55.4 18.5 7.3 9.4 0.6 1.5 7.3
tracker src 90.5 3.1 1.8 4.3 0.3

Table 2. Distribution of Exception Handling Actions

mechanism or they felt the programs could be better constructed without exception han-

dling. There are only a few programs with deeply nested exception handlers, and not

surprisingly, these programs are very hard to understand.

For our case study, we examined compord.src, one of the two programs with non-

trivial handlers. This program calculates the correct compilation order of Ada source
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program units. One of its procedures, put_infoindag, uses the data type direct acy-

clic graph, to represent objects containing compi.,ion dependencies of Ada program

units. A dag object named withs-dag is used to record compilation dependencies

derived from the with clauses preceding Ada compilation units. If a new edge is added

to withs_dag, a cycle occurs. The newly added nodes and edges are entered into

cycledag for error reporting later. Three exceptions are declared in dagpkg:

illegal_node is raised when a node is not in a dag, or when it is and should not be;

duplicateedge is raised by attempts to add an edge already in the graph, and

makescycle is raised if a newly added edge would cause a cycle. A slightly edited ver-

sion of the body of this procedure appears below. Two procedures, addnodetodag

and add to cycle_dag, have replaced in-line code to reduce the length of the code and

to make futre comparisons between exception handling methods more fair.
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1 begin

2 label
3 value wdag.get_value( withs_dag, parentnode );

4 ...
5 if not geninst then ...
6 wdag.setvalue( withsdag, parent-node );
7 end if;
8 exception

9 when wdag.illegalnode => addnode to dag( withsdag,
10 end;

ii ... ;
12 while id_listpkg.more(i) loop

13 id_llst_pkg.next( i, withname )
14 begin

15 ...
16 wdag.addnode( withs dag, withnode )

17 wdag.addedge( withs_dag, parentnode, withnode );
18 exception

19 when wdag.illegalnode =>
20 begin
21 wdag.addedge( withs_dag, parent_node, with-node );

22 exception
23 when wdag.makescycle =>

24 begin
25 add to cycledag(cycledag, parent-node, with node);
28 exception
29 when idag.illegal_node I idag.makescycle => null;
30 end;
31 when wdag.duplicateedge => null;
32 end;
33 when wdag.makes cycle =>

34 begin
35 add to cycledag( cycle_dag, parent_node, withnode );
38 exception

39 when idag.illegal node I idag.makescycle => null;
40 end;

41 end;
42 end loop;

This program has four blocks containing exception handlers; three of these blocks

aie nested within one another. Handler responses to exceptions vary for different data

objects. For example, when makes_cycle is raised by addedge on line 17, the signaler

manipulates withsdag. The handler (on line 33) puts related information into

37



cycledag. A similar situation exists when makescycle is raised on line 21 and han-

dled on line 23. However, when makes cycle is raised inside add to cycledag on line

25 and 35, the signalers are processing cycledag. In such cases, the handlers (on lines

29 and 39) ignore the exception.

Examining the code more carefully, we found the exception handling code on lines

33-40 to be unreachable. In order for control to arrive at line 33, the procedure

add_edge (line 17) must raise the exception makescycle. This implies that procedure

add-node (line 16) completed without raising any exceptions that would have terminated

the block on lines 14-41. Thus, addnode's argument, withnode, is a fresh node just

added into withsdag. In addition, withnode must be a node different from

parent-node or illegalnode would have been raised. Since there is no edge connected

to withnode when it is added to withs-dag and withnode is different from

parentnode, adding an edge from parent-node to with-node will never generate a

cycle.

This analysis indicates that Ada's exception handling mechanism is not being used

very effectively. Most handlers have actions that could easily be simulated by other

features of Ada. The program chosen for our case study has such complex exception han-

dling that unreachable handlers went unnoticed.

38



CHAPTER 4

The New Mechanism

In the previous chapters, we showed that control-oriented exception handling

mechanisms lack clear guidelines of use, duplicate existing language capabilities, interact

with existing language features in undesirable ways, and seem to be underutilized by pro-

grammers. In this chapter, we propose a new mechanism in which exceptions and

handlers are associated with data types and objects rather than control features.

4.1. A Data-Oriented Exception Handling Mechanism

We define exceptions as events arising during the execution of an operation where

more system resources are required to represent the result. We associate exceptions with

types rather than control structures. Generally, users of operations know best how to

respond to exceptions raised[Parnas 76]. In the examples we have examined (e.g.,

compord.src in the previous chapter), different responses are required for different

objects. Thus handlers should be associated with objects in declarations. Control-

oriented exception handling mechanisms introduce extra testing code to distinguish data

objects and multiple handlers to cope with the same exception raised for different objects.

In the procedure putinfo in dag shown at the end of Chapter 3, responses to excep-

tions vary for different data objects. When makescycle is raised, if the signaler is pro-

cessing withs_dag (e.g., line 17), the handler invokes addtocycledag (e.g., the block

on lines 34-40); if the signaler is processing cycledag (e.g., line 35), the handler ignores

the exception (e.g., line 40). In addition, handling code on lines 23-30 is an exact copy of
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that on lines 33-40 due to duplicated call to add edge (line 21) inside the handler for

illegal_node.

Our design is based on the programming language Ada[Ada 82], particularly its

package construct which is useful in implementing user-defined data types. The follow-

ing package specification defines the data type stack:

generic
type elem type is private;
tentative_size_limit : positive; -- tentative initial size

package stack pkg is

type stack is limited private;

procedure create( S : out stack );
procedure push( S " in out stack; E • elem type );
procedure pop( S • in out stack; E • out elem_type );

procedure copy( S • stack; T : out stack );
function is empty( S • stack ) return boolean;
function equal( S. T " stack ) return boolean;
function size( S : stack ) return natural;
function max-size( S : stack ) return natural;

procedure expand( S : in out stack; amount : positive );

private

type stackobject;
type stack is access stack-object;

end stack_pkg;

An abstract stack object has unlimited size, although an initial size is specified. The pro-

cedure expand can be called to expand the pre-allocated storage for a stack S by

amount percent.

Our data-oriented exception handling mechanism is built into Ada by extending the

definition of the base language. We introduce two clauses, #exception and #when, to
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declare exceptions and associate handlers with exceptions for objects; as well as an addi-

tional statement, #raise, to signal exceptions.

4.1.1. Declaring Exceptions

Exceptions are defined on data types by attaching an #exception clause to the

type definition exported from the specification part of a package. The syntax of the

#exception clause is given by modifying the following production in Ada Language

Reference Manual (LRM) Section 7.4:

privatetypedeclaration ::=
type identifier [ discriminantpart [is [limited ] private;

to

privatetype_declaration
type identifier [ discriminantpart ] is [limited ] private

exception_clause

exceptionclause ::= #exception exception_formalspecificationlist

exception_formal-specification list
exception_formal-specification { , exception formalspecification I

exception_formalspecification ::= identifier formal_part

Table 3. Syntactic Specification of #exception Clauses

Note that the syntactic categories discriminant_part, identifier, and formal-part are

defined as in LRM, Section 3.7.1, 2.3, and 6.1, respectively. As an example, the rollowing

#exception clause can be attached to the data type stack declared in the package

stackpkg:
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type stack is limited private
#exception overflow( S : in out stack; place : string ),

storageexhausted( S : in out stack );

Two exceptions overflow and storageexhausted define system insufficiencies involv-

ing stack objects. These exceptions are declared by attaching an #exception clause to

the type declaration, emphasizing that only the operations defined on the type can raise

the exceptions. Ada exceptions declared in the visible part of a package can be raised not

only by any subprogram defined in the package, but also by any other subprogram using

the package. An operation on an object of type stack will raise the exception overflow

when the object grows beyond its size limit. The exception can be handled by increasing

the size of the stack and allocating more storage for the object. Once overflow has been

handled, the original computation can be resumed. In the event that all system memory

resources have been exhausted, the more severe exception storageexhausted is raised.

All exceptions take parameters to facilitate communication between their signalers

and handlers. The two exceptions declared in the previous example both take a parame-

ter of type stack to indicate which stack object needs more storage. overflow takes an

additional parameter place of type string to identify the signaler. The first parameter

in the formal parameter list of an exception declaration must belong to the type currently

being declared. This parameter is used to denote the data object for which the exception

is raised.

4.1.2. Raising Exceptions

In the body of a package implementing a user-defined data type, exceptions can be

raised within the statement sequence of an operation. To raise an exception, a #raise

statement is executed for a particular data object.

42



To give the syntax of #raise statements, we need to modify the following produc-

tion in LRM, Section 5.1:

simplestatement ::= null-statement
assignmentstatement I procedurecallstatement
exit-statement return-statement
goto-statement entry_-call_statement
delaystatement I abort statement
raise statement code statement

to

simple-statement ::= null _statement
I assignment_statement I procedurecall statement
I exit statement return statement
I goto statement entry call statement
I delay_statement abort statement

raise statement code-statement
data-oriented raise statement

data oriented raise statement ::=
#raise identifier actual_parameter_part

Table 4. Syntactic Specification of #raise Statements

The syntactic category actual_parameter_part is defined in Ada Language Reference

Manual, Section 6.4. The numbers, types, and positions of the actual parameters sup-

plied in a #raise statement should agree with those of the formal parameters declared in

the corresponding #exception clause.

Unlike in Ada where a raise statement can be executed wherever a statement can

be invoked, our #raise statement can only occur in the body of a package implementing

a user-defined data type with which the exception is declared. For example, in package

stackpkg, the operation push can raise an. exception overflow when the pre-allocated
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storage for a stack object does not have enough room to accommodate more items.

procedure push( S : in out stack; E : elem_type ) is
begin

if ( there is not enough room to hold the new item I then
#raise overflow( S, "in procedure PUSH" );

end if;
-- add item E to the top of S

end push;

Note that an exception is usually raised for an object passed to an operation as a

parameter. In the above example, the exception overflow is raised on S which is a

parameter of the operation push. Users of the stackpkg are able to declare their own

stack objects and associate handlers for overflow with these objects. Exceptions can

also be raised for local objects inside the body of a package.

4.1.3. Binding Handlers to Objects

Handlers are associated with exceptions in the declaration of a data object. A

#when clause can be attached to the declaration of an object, supplying one or more

handlers to the corresponding exceptions defined on the data object. A handler body is

limited to a single statement.

The syntax for object declarations in Ada found in LRM, Section 3.2 is as follows:

objectdeclaration
identifier list • r constant subtype_indication [:- expression ]

I identifier list • [constant] constrained_array_definition [:z expression 1j

To give the syntax for the #when clauses, we need to modify the above production to:
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objectdeclaration -

identifier list [ constant subtype_indication [ expression
[when clauseI ;

I identifier-list [constant ] constrainedarray_definition
[:= expression

when clause := #when handler association list

handler association list ::= handler association {, handler association }

handler association
exception_formalspecification => handler statement

Table 5. Syntactic Specification of #when Clauses

The definition for the syntactic category exceptionformal-specification can be

found in Table 3 of this chapter; while actual_parameter part is defined in LRM. Section

6.4.

When associating a handler with an exception, the exception name and its formal

parameter list are specified to the left of the symbol "=>". In the exception specification.

the types and positions of the formal parameters must be exactly the same as those

appearing in the corresponding #exception clause. However, any names can be used for

the formal parameters. In a handler, the name of a formal parameter of an exception

appearing on the left of the "=>" symbol can be used as an actual parameter of a pro-

cedure call on the right of the ">" symbol.

When an exception is raised for an object, if there is a handler associated with the

exception, the handler will be executed and control then returns to the point following

the #raise statement; however, if there is no handler associated with the exception, the
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execution of the whole program is terminated.

As an example, the following code segment declares two integer stacks S1 and S2,

and associates a handler with the exceptions overflow and storage_exhausted:

with stack_pkg;
procedure main is

package integerstack is new stack pkg( integer, 20 );
use integerstack;

procedure urgent-action;

S1, S2 : stack
#when overflow( S in out stack; place : string )

=> expand( S, 40 ),

storage exhausted( T : in out stack )
=> urgent-action;

procedure urgentaction is separate:
begin

end main;

When the exception overflow is raised by some operatioi- (e.g.. push') trying to

update S1 or S2, the operation expand is executed. If the execution of the handler

expand succeeded, the storage for the object involved is expanded by 40'0. Note that the

actual parameter S of the procedure expand can denote either Si or S2, depending on

which object is passed by the corresponding #raise statement. If storageexhausted

is raised, urgentaction is invoked.

If a handler is a visible operation of the data type, it can raise another exception

during its execution. For example, expand can raise storageexhausted if it, realizes

that there is no more system storage available to expand the stack. To avoid endless

recursion, the handler is not permitted to raise the same exception with which it, is asso-
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ciated. In the example given above, expand is not allowed to raise the exception over-

flow. Care must also be taken to prevent indirect recursion involving two or more

handlers. A possible solution for this problem is to assign different degrees of severity to

exceptions and force handlers to raise only more severe exceptions.

In the previous example, the exception storage-exhausted is associated with a

handler urgent_action to prevent the program from being terminated should this

exception he raised. Two possible alternative solutions that urgent-action can thoose

are:

0 Abort the program after performing cleaning-up actions. Such actions include

finalizing some data structures (e.g.. closing open files), and issuing farewell

messages;

0 Initiate system garbage collection for the system-maintained heap.

In most cases, a handler for an exception is an exported operation declared in the

visible part of a package implementing a user-defined data type. Since exceptions are

defined for implementation insufficiencies occurring in operations of a data type and the

representation of the type is hidden, operations defined in a package can handle excep-

tions most efficiently. However, a user may supply a procedure other than the operations

exported by the data abstraction as the handler for an exception because he wants some

special treatment for the exception. In the following example, the programmer discards

the oldest values in a stack to make room for the newer items when overflow is raised:
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with stack_pkg, textlo; use textio;
procedure main is

package integerstack is new stack pkg( integer, 50 );
use integer stack;

procedure makes-room( S : in out stack;
discard : positive; where string );

SI, S2 : stack
#when overflow( S in out stack; place string )

=> makesroom( S, 20, place );

procedure makes-room ( S in out stack;
discard : positive; where : string ) is

parttokeep : positive;
T stack;
E integer;

begin
put_line( "*** stack overflow occurred " & where );
part to keep := integer( float(maxsize(S)) *

(1.0 - float(discard)/iO0.0) );
create( T );
for I in 1 .. part to keep loop -- save upper part in T

pop( S, E );
push( T, E );

end loop;
while not isempty(S) loop -- throw away oldest elements

pop( S, E );
end loop;
for I in 1 .. part to keep loop -- move back to S

pop( T, E );
push( S, E );

end loop;
putline( "*** bottom" & integer'image(discard)

& "%" & "of the stack discarded" );

end makes-room;

begin

end main;

Note that makes-room is not implemented efficiently because the user does not know the

representation of the stack data typp However. this example shows that users do have

flexibility in constructing their own handlers.
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4.2. Compord.src Revisited

To demonstrate the impact our exception handling mechanism might have on pro-

grams, we rewrote putinfoindag shown in Chapter 3. Although the exceptions are

not limited to system insufficiencies, marked improvement can still be observed in pro-

gram structure. The transformed program declared exceptions on the dag data type as

follows:

package dagpkg is

type dag is private
#exception duplicatenode( g : dag; 1 : label ),

nodenotin dag( g : dag; 1 • label ),
duplicateedge( g : dag; 11, 12 : label ),
makes cycle( g : dag; 11, 12 : label );

end dagpkg;

All handler actions associated with exceptions raised concerning cycledag are null

actions. Therefore, in the transformed version. we attach null handlers for

duplicate_node and makescycle to cycledag in the object's declaration:

cycledag : idag.dag
#when duplicatenode( g : dag; 1 : label ) => null,

makes_cycle( g : dag; 11, 12 : label ) => null;

The situation is not as simple for withs_dag since it is an in-out parameter with

different exception bindings in other scopes. However, introducing a new local variable,

tempdag, and attaching handlers to it is straightforward:
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tempdag wdag.dag
#when duplicatenode( g : dag; 1 : label ) => null,

nodenot in dag( g : dag; 1 : label ) =>
addnode todag( g, 1 ).

duplicateedge( g : dag; 11, 12 : label ) => null,
makes cycle( g : dag; 11, 12 : label ) =>

add to cycledag( cycle_dag, 11, 12 )

The revised version of the procedure is shown below:

tempdag withs_dag;

label =

value := wdag.getvalue( temp_dag, parent-node )•

if not geninst then ...
wdag.set_value( tempdag, parent_node );

end if;

while id_llstpkg.more(i) loop
id-listpkg.next( i, with name );

wdag.addnode( tempdag, withnode );
wdag.addedge( tempdag, parent-node, with node );

end loop;

withs-dag := temp_dag;

The original procedure and the revised version (including the extra procedures) have

about the same number of statements. Since the two versions of the procedure accom-

plish the same task with the same algorithm, we should not expect this number to change

greatly. However, the new version breaks the original code into three smaller procedures.

resulting in better modularity and functionality. As for the complexity, the original ver-

sion has up to three levels of nested handlers, one of which was unreachable. In contrast,,

the revised version has no handier code mixed with the main code of computation, thus

emphasizing the main algorithm and enhancing readability. Sample execution on worse-

case data show no difference in execution time between the two versions and approxi-

mately a 5( space penalty in the compiled code of the data-oriented version.
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CHAPTER 5

Implementation

We have implemented a pre-processor for translating pseudo-Ada programs with

data-oriented exception handling to logically equivalent Ada programs. Although there

are some restrictions imposed by the features of the Ada language, the implementation of

the pre-processor is still relatively straightforward because of the simplicity of our

mechanism. More importantly, this pre-processor provides us with the necessary means

for conducting experiments to investigate the effect of using different exception handling

methods on program construction. In this chapter, we will discuss in detail the design

decisions made and implementation methods adopted in implementing the pre-processor.

5.1. Some Implementation Issues

The semantics of our exception handling mechanism strongly suggests passing

handler procedures as parameters when the objects to which the handlers are bound are

actual parameters. For example, the following statement invoking the copy operation in

stackpkg:

copy( S1, S2 );

where S1 and S2 belong to type stack can be translated to:

copy( S1, over1, storl, S2, over2, stor2 );

where over, and stor i are handler procedures supplied to the declaration of Si:
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Si stack
#when overflow(S: in out stack; place: string) => overi( ...

storageexhausted(S: in out stack) => storl( ...

S2 : stack
#when overflow(S: in out stack; place: string) => over2( ...

storageexhausted(S : in out stack) => stor2( ...

#raise statements are translated to procedure calls on the appropriate procedure param-

eters. The pre-processor identifies the data object involved and uses the object name in

conjunction with the exception name to locate the formal handler procedure supplied.

Although this transformation scheme is intuitively appealing, it cannot be used since Ada

does not support procedure parameters.

Another implementation technique associates natural numbers with data objects

and exceptions, passes these numbers as additional parameters when an object is passed

as an actual parameter, and invokes a dispatch procedure visible to both the caller and

callee when the callee raises an exception. A dispatch procedure with two formal param-

eters identifying the object and exception would be used to invoke the appropriate

handler.

procedure handler-dispatch( objnumb : object_number;
exception-numb : exception-number ) is

begin
case obj numb is

when 1 =>
case exception_numb is

when 1 => handler 1;
when 2 => handler_2;

end case;
when 2 =>

end case;
end handler-dispatch;

The pre-processor translates an invocation to copy into:

52



copy( Si, i, S2, j );

where 1 and j are object numbers assigned to S1 and S2 respectively. Assuming the

exception number assigned to storage exhausted is 2, the procedure copy in the body

of stack pkg is then translated to:

procedure copy( S : stack; objl : object number;
T : out stack; obj2 : object-number ) is

begin

-- #raise storage exhausted( T );
handler dispatch( obj2, 2 );

end copy;

This translation scheme has a severe drawback. For the scheme to work correctly,

the dispatch procedure has to be visible to both a user subprogram and the operations

(e.g., copy) in a package body. The dependence of the package body on the dispatch

proccdufr results in the package only being used by one program for each compilation. A

package is generally stored in a library, used by many programs, and is often imple-

mented before a user program is developed. Although it is possible to make a dispatch

procedure visible to both a user subprogram and a library package by putting it into a

separate library package and be "with"ed by both the user subprogram and the library

package, the library package must be recompiled every time it is used by some user sub-

program.

A third translation scheme utilizes generic formal subprogram parameters to pass

handler procedures from a user program to a library package implementing a data

abstraction. With this scheme, a package specification is translated to:
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generic

with procedure formal handler_1( ...
with procedure formalhandler_2( ...

with procedure formalhandlern( ...
package packagename is

end package_name;

When the generic package is instantiated, the pre-processor supplies actual procedures to

match these generic formal procedures. The actual procedures are the collection of all

handler procedures given in the #when clauses attached to object declarations. In the

body of the package, a #raise statement is translated to an invocation of one of the

generic formal procedures.

This translation scheme, like the other two discussed earlier, still fails to solve our

problem. The total number of different handler procedures that could appear in a user

subprogram cannot be predetermined at the time the generic library package is written.

Therefore, it is impossible to determine the number of generic formal handler procedures

before the package is used. Secondly, a #raise statement could be mapped to one of

several generic formal handler procedures depending on which object is bound to the for-

mal parameter appearing in the #raise statement. Finally, only the types visible to

both the library package and a user subprogram can be used as formal parameters in a

generic formal subprogram. Like the previous translation scheme, this approach couples

library packages too tightly with user subprograms. The resulting library package can-

not be shared among different user subprograms.
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5.2. The Translation Scheme

After carefully examining the translation methods discussed in the previous section,

we realized that the right approach must combine the strengths of the feasible methods.

Our translation scheme is a hybrid of dispatch procedures and generic formal subpro-

grams. We create dispatch procedures in a user subprogram and pass them to the pack-

age body as generic actual parameters. Each of the dispatch procedures deals with only

one exception, checking the data object involved and selecting the right handler pro-

cedure for execution. Under this scheme, the number of generic formal subprograms

declared in a package specification is exactly the same as the number of exceptions

declared on the data type within the package specification. Inside the package body. a

#raise statement is translated to an invocation of a corresponding generic formal pro-

cedure.

5.2.1. Numbering Objects

To distinailish different objects ,' a user-defr,,ed type so that a dispatch procedure

associated with an exception is able to select a handler for execution, sequential positive

numbers are assigned to different objects. When an object is passed as a parameter, the

number is passed as well. If an exception is raised inside the body of an operation. the

object number of the object involved in the exception is passed to a generic formal

(dispatch) procedure dedicated to that specific exception. This dispatch procedure uses

the object number to locate the corresponding handler for invocation.
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5.2.2. Passing Addresses with Object Numbers

In a #when clause, a handler associated with an exception can have an actual

parameter passed by a #raise statement. For example, the local variable S4 in the fol-

lowing block is passed to my_handler when overflow is raised for it:

declare
S4 : mnt stack.stack

#when overflow( S : in out stack; place : string ) =>
myhandler( S, place ),

storageexhausted( S : in out stack ) =>
put-line( "storage exhausted, ignore it." );

begin

end;

The pre-processor should translate S to S4 before copying my_handler into a dispatch

procedure. However, S4 is a local object and not visible to the nonlocal dispatch pro-

cedure for overflow. To avoid this problem, we must pass addresses of objects from a

user program to the operations in a package so that a #raise statement can pass

addresses to a dispatch procedure. The original objects can then be reconstructed and

used in a handler invocation. In a later section, we will discuss how the actual parame-

ters in a handler are processed before the handler is put into a dispatch procedure.

Thus, whenever a subprogram is invoked with an object of a user-defined type as a

parameter, the address of the object and the object number are added to the actual

parameter list along with the object itself. To obtain the address of an object, the Ada

attribute address can be used. As an example, the following is a call to the copy opera-

tion declared in stackpkg:

copy( S, 4, S'address, T, 6, T'address );

where S and T are of type stack assigned object numbers 4 and 6, respectively. The
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pre-processor makes sure that subprogram headings in a package specification, package

body, or user program are translated correspondingly. For example, the procedure copy

declared in the specification part of stackpkg is translated to:

procedure copy( S: stack; zzzobjl: integer; zzzaddrl: address;
T: out stack; zzzobj2: integer; zzzaddr2: address);

The variable names introduced by the pre-processor always start with the prefix zzz_.

5.2.3. Translating Package Specifications with #exception Clauses

When translating a package specification containing an #exception clause, the

pre-processor uses the information provided in the #exception clause to construct a set

of generic formal procedure parameters for the package. The text of the #exceptioh

clause attached to the exported type definition are placed in comments and a semicolon is

appended to the end of the keyword private to terminate the type declaration. For

instance, the following code segment can be found in stackpkg:

type stack is limited private;
-- #exception overflow( S : in out stack; place : string ).
-- storage-exhausted( S : in out stack );

For each exception expt i declared in the #exception clause, a generic formal pro-

cedure parameter named zzzexpt, is added before the package heading. Each formal

parameter of the exception expt, of the type being defined is translated to an integer

parameter zzz_obj and an address parameter zzzaddr Other formal parameters

of expt, are simply copied over. to the formal parameter list of zzz-expt 1 except their

types are converted to type address. In order for an Ada compiler to recognize type

address, the package system is made visible to the current package by introducing a
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with clause before the first line of the package. For example, the heading of the package

stack pkg is changed to:

with system; use system;
generic

type elemtype is private;
size : positive;

with procedure zzzoverflow( zzz-objl : integer;
zzzaddrl : address; place: string);

with procedure zzz storageexhausted( zzzobji • integer;
zzz addrl • address )

package stackpkg is

end stack_pkg;

For each subprogram oper i exported from the package, if it has a formal parameter

of type being defined, two additional formal parameters are added: integer zzzobji and

address zzz addr . The procedures specifications for push and copy in stackpkg are

translated to:

procedure push( S: in out stack; zzz-objl: integer;
zzz_addrl: address; E: elemtype );

procedure copy( S: stack; zzzobjl: integer; zzzaddrl: address;
T: out stack; zzzobj2: integer; zzz addr2: address);

5.2.4. Translating Package Bodies with #raise Statements

A package body containing #raise statements can only be translated by the pre-

processor after the corresponding package specification has been processed. Each subpro-

gram in the package body has its formal parameter list altered to match the changes

made in the specification. The subprogram headings of both the visible operations

exported from the package and the internal subprograms should be modified in this way.
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Care must be taken to transform nested subprogram declarations. If additional parame-

ters zzz-obj, and zzzaddrj are added to the heading of an inner subprogram, the

names of these parameters must differ from those in the enclosing subprograms.

The pre-processor replaces a #raise statement for an exception expr with an invo-

cation of the corresponding generic formal procedure zzz-expr. The actual parameters

supplied to zzzexpr are obtained as follows: if an actual parameter ap1 supplied to a

#raise statement is of the type being defined, it is converted to the corresponding

zzz_obj, and zzzaddr. as the actual parameters for zzzexpr: otherwise, it is

translated to an address in the form of ap,'address as the corresponding actual parame-

ter for zzzexpr. The invocation of the generic formal procedure zzzexpr actually

invokes a dispatch procedure in the user program. As an example, the following code

segment shows how a #raise statement in the body of procedure push is translated by

the pre-processor:

procedure push( S : in out stack; zzzobji : integer;
zzz addrl : address; E elem type ) is

begin
if S.top = S.storage'last then

-- #raise overflow( S, "in procedure PUSH" )
zzzoverflow( zzzobjl zzzaddrl, "in procedure PUSH" )'

end if;

end push;

In a package body, if a subprogram is invoked with an actual parameter api of the

type being defined, its additional actual parameters (i.e., an object number and an

address) are added to the actual parameter list. The additional actual parameters are

obtained by observing the following rule: if api is a formal parameter in an enclosing
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subprogram, the corresponding zzzobj, and zzz_addr, are used; otherwise, the object

number assigned to ap, as well as an address in the form of ap1 'address are supplied.

5.2.5. Translating User Programs with #when Clauses

A user program with #when clauses attached to declarations can only be processed

after a package specification containing a corresponding #exception clause has been

translated. The pre-processor scans the with-clauses preceding the program heading

and uses the package names in the with-clauses to obtain information about exceptions

declared by the package that the pre-processor stored in a file. The file contains the type

name to which an #exception clause was attached and the names and parameter types

of the exceptions declared for the type.

Translating a user program results in the construction of a set of dispatch pro-

cedures which are passed as generic actual subprogram parameters when a package is

in3tantiated. The number of dispatch procedures required is exactly the number of

exceptions declared in the corresponding #exception clause. The names of the dispatch

procedures are constructed based on the names of exceptions declared in the #exception

clause and the name of the package to be instantiated. The number and types of formal

parameters required by a dispatch procedure is determined by the formal parameters of

the corresponding exception expt. The formal parameters of expt that are of type for

which the exception is defined are translated into two formal parameters: zzz objt of

type integer and zzz-addri of type address for the dispatch procedure. Other

parameter names of expt are copied over as the parameter names of the dispatch pro-

cedure; however, their types are changed to address. The following code segment
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demonstrates the instantiation of the generic package stack pkg to produce two stack

types:

procedure zzzint_stackoverflow( zzzobjl : integer;
zzzaddrl : address; place : string )

procedure zzz-int-stack-storage-exhausted( zzz_obji integer;
zzz addrl address )'

package int-stack is new stackpkg( integer, 20,
zzzmnt_stackoverflow,
zzzint_stack storage_exhausted);

procedure zzz real stackoverflow( zzz_objl : integer;
zzzaddrl : address; place : string )

procedure zzz realstack storageexhausted( zzzobjl integer;
zzz-addrl address )

package real-stack is new stackpkg(real. 10
zzzrealstackoverflow,
zzzreal stackstorageexhausted);"

The dispatch procedures collect all the handlers supplied to #when clauses appearing

in a program (including local variables). If the source text is only scanned once, the

dispatch procedures must be placed after the last line of the program. Ada's separate

compilation facility easily resolves the problem of physical code placement by putting

body stubs for dispatch procedures at the end of the main declaration list, and generating

the code for them as separate compilation units after the program text.

The contents of a dispatch procedure zzzint_stackoverflow for exception

overflow declared in package stackpkg in the following example is derived by collect-

ing all #when clauses attached to the stack objects declared. The body of

zzznt_stackoverflow contains a case statement which selects a handler according

to the object number passed to it.
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with text io, stack_pkg; use textio;
procedure main is

zzzabort : exception;

procedure myhandler(S: in out int_stack.stack; zzzobjl: integer;

zzzaddrl : address; amount : positive );
procedure last-wish;

growthrate : positive;

Si S2 : int stack.stack;
-- #when overflow( S : in out stack; place : string )

=> my-handler( S, growthrate )o
-- storageexhausted( T : in out stack) => last-wish;

procedure zzzint_stack overflow( zzz_objl : integer;

zz addri : address; place : string ) is separate;
begin

declare

S3 : int stack.stack;
-- #when overflow( S in out stack; place string )

=> my-handler( S, 30 )

begin

end;

end main;

with unchecked conversion;

separate( main )
procedure zzzintstackoverflow( zzz-objl : integer;

zzzaddrl : address; place : string ) is
type zzzptr is access int_stack.stack;
function zzzaddrtoptr is new

uncheckedconversion( address, zzz_ptr )
zzzpl : zzz_ptr := zzz_addr_toptr( zzzaddrl )

begin

case zzzobjI is
when 1 => my handler( zzz_pl.all, 1,

zzz addrl, growthrate )
when 2 => my-handler( zzz_pl.all, 2,

zzzaddrl, growthrate )

when 3 => my-handler( zzz_pl.all, 3, zzzaddrl, 30 )
when others => raise zzz abort;

end case;

end zzz int stack overflow;

Three stack objects S1, S2, and S3 are declared with type nt-stack.stack and
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assigned object numbers 1, 2 and 3, respectively.

An object of type stack can be declared without associating a handler for a specific

exception. According to the semantics of our mechanism, if such an exception is raised

on that object, the whole program should be terminated. This is realized by the "when

others" arm of the case statement in the corresponding dispatch procedure which raises

the Ada exception zzzabort. Since there is no Ada exception handler for zzz abort,

termination of the program is guaranteed.

The parameters of a handler are translated before the handler is ready to be put

into a dispatch procedure. An actual parameter of a handler can be a formal parameter

in the exception specification appearing before the "=>", a literal, or a global variable in

the user program. Local variables cannot be used as actual parameters of a handler

because they are not visible to a dispatch procedure declared as a first-level subprogram

in a user program.

When constructing a handler in a dispatch procedure from a corresponding handler

in a #when clause, the actual parameters that are global variables or literals are simply

copied. However, parameters of a #when clause that are formal parameters of a handler

require more attention. The pre-processor inserts code to use the addresses of objects

supplied by #ralse statements to retrieve a copy of the object. unchecked-conversion

initializes an access variable so that it references an object with proper structure. The

access variable can then be de-referenced to produce the object,. In the dispatch pro-

cedure zzzlntstackoverflow, zzz addrl is converted to an access value referencing

an object of type lnt_stack.stack and is then used to initialize zzzpl. When invok-

ing myhandler, the stack object is obtained by de referencing zzzpl (i.e..
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zzzpl. all). The object number and address of a stack object is also passed in the

invocation of myhandler so that any exception raised on the stack object can be prop-

erly handled.
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CHAPTER 6

Program Verification

In this chapter, we present proof rules for our exception handling constructs. The

Floyd/Hoare(Floyd 67J[Hoare 69] axiomatic approach is used for expressing proof rules

and operational specifications are given for package operations rWuif 76 . A comparison

between these rules and those proposed for control-oriented exception handling meclan-

isms demonstrates the simplicity of our approach.

6.1. The Operational Approach to Correctness of Modules

The operational approach to specification gives a recipe for implementing an opera-

tion with types and operations from well-defined T bstract domains. For example.

sequences can be defined informally as in Table 6[Wulf 76].

Using sequences, the abstract input and output assertions of an abstract operation

pop in the package stack pkg can be given as follows:

procedure pop( S : in out stack; E : out elemtype );
-- S S S A S # <>

-- 3pos S = leader(S') A E = last(S')

The behavior of an operation exported from a package is specified using a pair of asser-

tions about values in the abstract domain: an input assertion 3 pre and an output, asser-

tion /3post. Correspondingly, in the package body, the implementation of the same opera-

tion is defined with a pair of assertions about values of the concrete variables used to

represent abstract objects: an input assertion13in and an output assertion 3,u*
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<Sly ..., Sk> denotes the sequence of elements specified; in particular,

"< >" denotes the empty sequence, "nullseq."

s " x is the sequence which results from concatenating element x
at the end of sequence s.

length(s) is the length of the sequence "s."

first(s) is the first (leftmost) element of the sequence "s."

trailer(s) is a sequence derived from "s" by deleting the first element.

last(s) is the last (rightmost) element of the sequence "s."

leader(s) is a sequence derived from "s" by deleting the last element.

seq(V,n,m) where "V" is a vector and "n" and "m" are integers, is an
abbreviation for the sequence "<Vn, V+ 1 ... , VM>

alternately, seq(V,n,m) = seq(V,n,m-1)- Vm .

Note: first, trailer, last, and leader are undefined for "< >"

Table 6. Informal Definition of Sequences

Suppose in the body of stack_pkg the type stack is implemented as a record with

fields storage and top, where storage is a one-dimensional array and top is the.index

of the top element (if any) in the stack. If a stack is empty, its top component has value

0.
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package body stackpkg is

type vector is array( positive range <> ) of elemtype;
type vector_pointer is access vector;

type stack_object is record
storage vector_pointer;
top natural;

end record;

procedure push( S : in out stack; E : elem type ) is
begin

if S.top = S.storage'last then

#raise overflow( S, "in procedure PUSH" );
end if;
S-top := S.top + 1;
S.storage(S.top) := E;

end push;

end stack_pkg;

A representation function mapping concrete values to abstract values relates the
assertions 3in and 3, to 3 and 3 . The representation mapping for stacks takes

iMt pre post'

the record components S.storage and S.top into sequences:

A( S.storage, S.top ) = seq( S.storage, 1, S.top

Using the verification steps shown below, we can demonstrate that package

stackpkg is correctly implemented (ignoring initialized variables).

1). Prove that for a concrete object x, the concrete invariant I implies the

abstract invariant I. (with proper mapping):

I(x) ) I(A(x))

2). Show that the body of each concrete op.ration P satisfies its concrete

input/output specifications /in and 13o,' and maintains I for any arguments:
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/3 n(x) A 1(x) { P ) 00,,(x) A I(x)

3). Show that the concrete operation satisfies its abstract input/output

specifications:

a). I,(x) A 13pre(A(x)) /(x)

b). Ic(x) A 3pre(A(x')) A Oout(x) f post(A(x))

6.2. Proving Programs with Data-Oriented Exception Handling

The operational approach to correctness for modules can be extended to verify a

program with data-oriented exception handling. Verification is divided into two parts:

proving the correctness of modules containing #exception clauses and #raise state-

ments and proving user programs containing #when clauses.

6.2.1. Specifying Pre-Conditions and Post-Conditions for Exceptions

In a package specification, we describe behaviors of exceptions and visible operations

exported by the package. The expected behaviors of an exception can be specified

abstractly by means of a pair of assertions Epre and Eost, whose roles are similar to

those of /3 pre and O post for visible operations. EPre represents the conditions that must be

satisfied before the exception E is raised, and EPost specifies the conditions that should be

true after E is properly handled. For example, in the package specification part of

stack_pkg, the #exception clause attached to the declaration of type stack can con-

tain assertions for overflow which are specified abstractly in terms of sequences:

type stack is limited private
#exception overflow( S : in out stack; place : string ),

-- Epr length(S) = maxsize(S) >0

-Epot 0 < length(S) < max_size(S)
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6.2.2. Supplying Input/Output Assertions for #raise Statements

For each #raise statement R in the package body, an input assertion Rin and an

output assertion Rout are expressed using terms from the concrete level. Rin specifies the

state of the computation before execution of the #raise statement, and Rout describes

the conditions that should be true when control returns to the point following the

#raise statement. As an example, the following code segment shows the input/output

assertions for a #raise statement in the body of procedure push:

procedure push( S : in out stack; E : elemtype ) is
begin

if S.top = S.storage'last then

-- Rin : S.top = S.storage'last _> 0
#raise overflow( S, "in procedure PUSH" )-

-- Rout : 0 < S-top < S.storage'last

end if;

end push;

6.2.3. Proving #raise Statements in Package Bodies

To demonstrate that a #raise statement raises an exception correctly, we need to

use a representation mapping A to show that for each #raise statement R signaling an

exception E, R's concrete input assertion Rin implies E's abstract pre-condition Ere

(after proper mapping with A). The second proof rule requires that E's abstract post-

condition (after proper mapping with A) should imply R's concrete output assertion.

Thus after the raised exception E has been properly handled, if control returns to the sig-

naler (the operation containing R), the expected conditions for resuming the signaler's

execution should be satisfied. If control does not return to the signaler, Eos is false

which always implies Ru t. More concisely, we need to show that:
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R in ( x ) D Epre(A(X) ), Epot ( A ( x) )  D R ot( x

Rin( x) { #ralse E( x) I Rout( x)

where A( x ) is the representation mapping. This mapping is applied to variables in R.

and Rout, before they are substituted for formal parameter names in Epre and Epo,,.

For example, to prove that the #raise statement in the procedure push raises the

exception overflow on S correctly, we need to show:

R S) Ere( A(s)).

The code segment for push shows that Rin(s) is:

S.top = s.storage'last >0,

and Epre(S) for exception overflow raised on S is:

length(s) = max-size(s) k 0.

After applying the representation mapping for stacks defined in stackpkg:

A( S.storage, S.top) = seq( S.storage, 1, S.top).

E pre(A(S)) is:

length( A(S) ) maxsize( A(S) ) > 0,

length( A(S. storage, S. top) ) = max-size( A(S. storage, S. top) ) 0,

length( seq(S.storage, 1, S. top)) max-size( seq(S. storage, 1, S. top) ) 0.

Since length( seq(s. storage, 1, S. top) ) = .top

and maxsize( seq(s.storage, 1, S.top) ) = s.storage'last,

Epr( A(S) ) becomes: S.top = S.storage'last 0

which is exactly Rin( S ). Therefore, it is established that

s ) Epre( '(s )).
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Similarly, we prove that after a handler associated with overflow for S is exe-

cuted, the assertion following the #ralse statement in the procedure push holds. That

is

EPost( A(s)) Rout( s

E ost(A(S)) is:

0 < length(.A(S) ) < max-size( A(S) ),

0 length( A(S.storage, S.top) ) < maxsize( A(S.storage, S.top) ),

0 length( seq(S.storage, 1, S top) ) < max-size( seq(S.storage, 1, S.top.),

Since length( seq(S. storage, 1, s. top) ) = S . top

and max-size( seq(S.storage, 1, s.top) ) = S.storage'last,

EPost( A(s)) becomes: 0 S.top < S. storage'last

which is exactly Rout( S ).

According to the proof rule, the truth of the premises

Rin ( S ) D Epre( A(S ) ), E Post ( A (S ) )  Rout( S

leads to the conclusion Ri.( S ) { #raise E( s ) } Ro s ), which is:

S.top = S.storage'last >_ 0
{ #raise overflow( S, "in procedure PUSH" ) }

0 _ S.top < S.storage'last

6.2.4. Proving #when Clauses in User Programs

We also need to verify that programs using the package handle exceptions correctly.

Users of a package understand its operations and exceptions in terms of values from the

abstract domain via the information in each operation's j3pre and 3po and each

exception's Epre and E ost. In a #when clause, the semantics of a handler associated with
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an exception should conform to the abstract specifications of the exception.

To prove that handler H processes exception E correctly, we need to associate an

input assertion Hn and output assertion Hut with the handler in a #when clause. Two

proof steps are necessary to complete the verification. The first step confirms that the

pre-conditions Epr e establish the truth of Hin, and the second step requires that the out-

put assertion 1-t implies the post-condition E The proof rule for the declaration of

an uninitialized variable rMcGettrick 821 has been modified as follows:

Z I- P A X# = undefined { declare D(X#/X) begin S(X#/X) end } 

P ( declare X : T #when E( x ) => H( x ); D begin S end } Q

Here Z contains the proof obligations stated in Section 6.1 for the type declaration. X#

denotes a unique identifier, and the notation P(X#/X) denotes systematically substituting

X# for all free occurrences of X in P. D represents a list of declarations, and S represents

a list of statements. x denotes formal parameters of an exception, a handler, or a predi-

cate. A similar proof rule can also be given for variable declarations with initial values.

Proofs are carried out with objects and values at the abstract level. If an object lhas

no handler associated with an exception E defined on its type, the program is terminated

if E is raised. Thus we can assume a default handler abort is associated with E. and

that the pre-condition and post--condition for abort are true and false, respectively.

Since

Eprp( xr) J true

false D EIot( x

are always valid, it, is never iunsafe to a.ssociate a, hand ler abort with an exception '.
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We now give an example showing how to verify the correctness of a #when clause.

Consider the following object declaration:

S3 : real-stack.stack

#when overflow( Stk : in out stack ) => expand( Sik, 100 )

where expand is a procedure declared in the package stack pkg with the following

input/output assertions:

procedure expand( S :in out stack; amount : positive )

-'dpre max -size(S) =M > 0 A length(S) = L A L M

-- os max size(S) =M * (1 +' amount/100) > 0 A

length(S) = L A L M

Substituting the actual parameters of expand in the #when clause for the formal parame-

ters in '31pre and /3os above results in:

H : max-size(Stk) =M > 0 A length(Stk) =L A L ! M

H ~may _size(Stk) = M * (1 + 100/ 100) > 0 A length(Stk) =L A L Mi

For exception overflow on type stack, the pre-conditions and post-conditions (after

parameter substitutions) are:

Epre length(stkc) = max-size(Stk) 2: 0

0 1t : ength(Stk) < max-size(Stk)

E pre implies Hn

length(Stk) = max-size(Stk) 2t 0D

max-size(Stk) = M > 0 A length(Stk) =L A L <5 M,

H implies E 0 -~

max-size(Stk) = M * 2 > 0 A length(Stk) = L A L !5 M

0 :5 length(stk) <- max_size(Stk) because 0 <M (2 M f)

The final step Hn ' H I Hffl~ is obviously true since 11 is expand(Stk 100). Hun is
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expand's pre-condition, and H is expand's post-condition.

out

6.3. Proving Programs with Control-Oriented Exception Handling

Control-oriented exception handling mechanisms hinder verification because they

introduce multiple exit points from operations and permit exceptions to be

propagated[Luckham 80][Cristian 84]. In [Luckham 80] an exception is not allowed to

propagate outside of its scope in an Ada program. Otherwise, it may be impossible to

verify a program since the number and nature of exceptions that are propagated to a

piece of code are unpredictable. Even with this restriction, proof obligations for opera-

tions increase faster than the number of exceptions propagated.

Exceptions that are propagated out of a subprogram are specified in the

subprogram's heading. In the following example, exception E is propagated from pro-

cedure p. Callers may assume that if E is propagated, then assertion A holds.

procedure p( ... ) propagate E assert A is

begin
begin

raise E; -- B is associated assertion

exception
when E assert B =>

end;

raise E; -- A is associated assertion

end p;

The meaning of raise Ei is described by the raise axiom:

a i { raise Ei } false.

The meaning of a block is specified by the following axiom:
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P S}o IQ, Bi { S} Q

P { begin S O exception E i assert Bi => Si end Q

Assume p is a procedure with fi, f4 and fio as formal in, out, and in out parameters,

respectively, and that the correctness of the body of p has been established with respect

to the input condition I(fi, f,,) and output condition 0(', f,, fi)" Let ai, a,, and a.o be

the corresponding actual parameters of a call to p; then this call is described by the rule:

P D I(ai, aio) A Vao, a.o (O(ai, ao, ai ) D Q

P [(ai, a.) ,\ Vao, ai.o (A1(a i. a, aio ) D B,)

P I(ai, aio) A Vao, ai. (A, (ai, a., ai ) B)

P { p( ai, a,, aio ) I Q

where the clause P D I(ail aio) A \a o, a.0 (Aj(ai, a0, aio ) D B. ) has to be proved for each

propaga, exception E. with assertion A. appearing in the procedure header and handler
j J

pre-condition B. associated with E. in the calling environment.

Consider the effort needed to verify a program when a new exception E, is raised

in an operation p of type T. In either exception handling method, the new body of the

operation needs to be verified. For control-oriented exceptions, the worst case for re-

verification occurs when the exception is propagated, the operation's specifications

change, and handlers are added to each block containing an invocation of p. Each invo-

cation of the operation needs to have an additional premise discharged:

P D !(ai, aio) A Vao, a.o" (A n.I(a r a0 , ao ) D B,,I )

Also. we need to demonstra, that each new handler body estabiihes the post--condition

of the block in wii(h it, is embedded.
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For data-oriented exceptions, the worst case occurs when every variable of type T is

declared in a separate statement and that each declaration contains a #when clause for

E+1 .The three proof obligations for the declaration rule must be carried out for each

object. Since there are generally more operation invocations than declared objects in a

program, it may be easier to verify data-oriented exception handling programs than their

control-oriented exception handling counterparts when programs change.
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CHAPTER 7

Testing

Most programs are simply too big and complex to be verified. Thus programmers

resort to traditional- testing methods to increase their confidence about their software.

This chapter introduces a simple structural test coverage metric for exception handling.

We compare the test cases needed to satisfy this metric for a (slightly simplified) version

of compord.src found in the Simtel2O Ada Repository with the d'ta needed to test

another version of the program using data-oriented exception handling. Finally, we show

how to build a tool based on the metric to assist users in constructing better test cases.

7.1. A Structural Coverage Metric for Testing Exception Handling

During irograr testing, a set. of test cases is constructed and the program is exe-

cuted. For each test, case, results are checked against a specification (generally an

input output pair) to detect any inconsistencies. Since only a relatively small number of

the possible test cases can be executed it is natural to ask how representative the test

cases selected are. Structural test coverage metrics are used to measure how well a set of

test cases exercise particular program units, e.g., the percentage of' statemnts tested or

branches followed. Programmers need to provide enough test data to justify the struc-

ture of their programs. For example. if a particular statement is not executed bY any

test data. either the statement is unreachatble or the test data. is deficient. Often, struc-

tural coverage inetrics help programmers discover errors by testing their (ode more

thoroughly than hey would have ,otherwise.
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Our structural coverage metric measures the percentage of all explicit signaler-

handier bindings exercised during program testing. We define an ESH-set as a set whose

elements are triples (e,s,h) where e is the name of an exception; s is the statement

number of a signaler for the exception e (either a raise statement or a procedure invoca-

tion containing a raise statement); and h is the statement number of a handler invoked

to deal with the exception e raised by s. For example, the following Ada code segment

procedure P( A, B : integer ) is
N natural;

begin
1: N A * B; -- can raise numeric-error or constraint error

5: N := B; -- can raise constraint-error

exception
when numeric-error =>

8: Hi;

when constraint-error =>
9: H2;

end P;

has two signalers (statements I and 5), and two handlers H1, H2. The program's ESH-

set is:

{ (numeric error,i,8), (constraint error,1,9), (constraint error,5,9) }

This metric measures more than statement coverage. Consider the case where statement

I is executed and raises numericerror and (on a subsequent invocation of P) statement

5 is executed and raises constraint error. Statements 1, 5, 8, 9 are all executed: how-

ever, the binding represented by the triple (constraint error, 1,9) in the ESH-set is

not exercised.
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7.2. A Case Study

Our structural coverage metric can be used to determine the effort required to test a

program by considering the number of test cases needed to satisfy the metric for the pro-

gram. We again examine the procedure putinfo in dag that utilizes an abstract data

type dag specified in the file abstract.src:

with set_pkg; ...
generic

type label is private;
type value is private;

package dagpkg is

type dag is private;

illegalnode: exception;
duplicate_edge: exception;

makescycle: exception;

procedure addnode( g: in out dag; 1: in label; v: in value )
-- raise illegal-node if the node is already in the dag

procedure addedge( g: in out dag; 11: in label; 12: in label )
-- may raise duplicateedge or makescycle

procedure set_value( g: in out dag; 1: in label; v: in value )
-- raise illegal node if the node is not in the dag

function get_value( g: dag; 1: label ) return value;
-- raise illegal-node if the node is not in the dag

end dag_pkg;

In the file compord.src, several package specifications are referenced by the procedure

put info in dag:
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with dag_pkg; with nodes: ...

package unitsdagpkg is new dagpkg ( , dag_node,

with dag_pkg; with nodes; ...
package minidagpkg is new dagpkg C .. , emptynode, ...

with units dagpkg; with mini dag_pkg; ...

package compilerorderdeclarations is

subtype units dag is units_dagpkg.dag;

subtype infodag is mini_dagpkg.dag;

withsdag: unitsdag unitsdagpkg.create;
filesdag' infodag ' minidagpkg.create;

cycledag. infodag = minidagpkg.create;

end compilerorder declarations;

put info in dag is a procedure in the body of package compile_order utilities

which puts information about compilation dependencies of Ada program units into

withs_dag. If a new edge added to witbs_dag results in a cycle, the newly added edge

and nodes are entered into cycledag for later error reporting.

with compile_orderdeclarations; ...

package body compileorderutilities is

package COD renames compileorderdeclarations;

package WDAG renames units dagpkg; -- WDAG for withs dag
package IDAG renames mini-dagpkg; -- IDAG for info dag

procedure putinfo in dag( node label : in SP.stringtype;
info_list : in out COD.id-listpkg.list ) is

i : COD.id_listpkg.listiter;

with node SP.string_type;

with name SP.stringtype;
label SP.string_type;
value nodes.dagnode;

gen Inst boolean;

begin

begin
label = SP.upper(node label);
value = WDAG.getvalue(COD.withs_daL, label);

geninst = SP.equal(COD.current file, "")
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If not gen-inst then

WDAG.set-value(CODwiths-dag, label, value);

end If;
exception

when WDAG.illegal node =>

-the node doesn't exist yet so we must add it
value :=CODdefault node;
valuefile SP.malce_persistentCCOD.current-file);
valuename SP.make_persistent(node-label);

WDAG.add-node(withs_dag,

SP.make persistent (label), value);
end;

I COD id list pkg.MakeListlter(info-list);
while COD ldlistpkg.more(i) loop

CODid-list plcg.next(i, with-name);

begin

WDAG.add -node(COD.withs_dag, with node, value);
WDAG add edgeC~ODwiths_dag, label, with-node);

exception

when WDAG.illegal node =>

-Raised when the with -node is already in
-the dag. No harm done so ignore the error

-- and add the edge.
begin

WDAG.add -edge(COD.withs_dag, label, with-nod&,;

exception
when WDAG.makes-_cycle =>

begin

IDAG. add-node (COD. cycle dag,
SP.maepersistent(label),

COD default -empty node);

IDAG .add-node(COD. Cycle dag,
SP.makepersistent~with Tnode),

COD default -empty node);
IDAG.add_edge (COD cycle dag, label,with-node);

exception

when IDAGillegal node I IDAGmakes-cycle =>
null;

end;

when WDAG.duplicate edge =>

null;
end;

when WDAG.makes -cycle =>

-- need to keep track of where the cycles are.
begin
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IDAG.addnode(COD.cycledag,

SP.makepersistent (label),

COD.default_empty node);
IDAG.add node(COD.cycledag,

SP.makepersistent (withnode),
COD.default_empty node);

IDAG.add_edge(COD.cycledag, label, with-node);
exception

when IDAG.illegalnode I IDAG.makescycle =>

null;
end;

end;

end loop;

end put info in dag;

end compileorderutilities;

7.2.1. Builddag with Control-Oriented Exception Handling

The original program is very complex. In addition to more than 2,000 lines of code

in compord.src, the program uses about 13,900 lines of code in abstract.src contain-

ing a variety of generic packages implementing about two dozen data types. We built a

simplified version of the program that maintains the original algorithms and control logic

in putinfo in dag, but disregards other unrelated activities. The main procedure

builddag is:

with genericdag_pkg;

procedure builddag is
package unitsdagpkg is new genericdagpkg( character )

use unitsdag_pkg;

withs_dag, cycledag : dag;

procedure add to cycledag( parentnode, withnode : character )
is separate;

-- may raise duplicate-node, duplicateedge, makescycle

procedure putinfo in dag( parent-node, withnode : character )
is separate

begin
I: withsdag := create;
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2: cycledag = create;

3: put_infoin dag( 'A', 'A' ); -- with A; package A is ...
4: put_infoin dag( 'A', 'B' ); -- with B; package A is ...
5: put_infoin dag( 'A', ' ); -- with B; package A is ...
6: put_infoin dag( 'A', 'A' ); -- with A; package A is ...

end builddag;

separate( bullddag )
procedure put-info in dag( parent-node, with-node • character ) is
begin

7: begin

8: checknode( withsdag, parent-node )
exception

when node not in dag =>
9: addnode( withs_dag, parent-node )

end;

10: begin
11: addnode( withsdag, with_node);
12: add-edge( withs_dag, parent_node, withnode );

exception
when duplicate-node =>

13: begin
14: addedge( withs_dag, parent-node, with-node )

exception

when makescycle =>
15: begin
16. add to cycledag( parent_node, withnode),

exception
when duplicate_node I makes_cycle =>

17: null;

end;
when duplicateedge =>

18. null;
end;

when makescycle =>

19 begin
20 add to cycle_dag( parent-node, withnode);

exception
when duplicatenode I makescycle =>

21 null;

end;
when dupllcate_edge =>

22 null;

end;
end putinfo in dag;
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separate( builddag )
procedure add to cycledag( parentnode, withnode : character ) is
begin

23. addnode( cycle_dag, parent-node);
24: addnode( cycle_dag, withnode);

25: add-edge( cycle_dag, parent-node, withnode);

end addto cycle_dag;

Comparing the program shown above to the original version, we see that exceptions

raised and handled in the original procedure are also raised and handled similarly in the

simplified version. An ESH-set for this program can be constructed by studying the con-

trol flow and exception handling behavior of the program. In a later section, we will

present an algorithm for building this set automatically. The ESH-set contains the fol-

lowing 12 (e,s,h) triples:

{ (nodenot in dag, 8, 9), (duplicatenode, 11, 13),

(makes_cycle, 12, 19), (duplicateedge, 12, 22),
(makes_cycle, 14, 15), (duplicateedge, 14, 18),
(duplicate node, 23, 17), (duplicatenode, 24, 17),
(makes_cycle, 25, 17), (duplicate node, 23, 21),
(duplicatenode, 24, 21), (makes_cycle, 25, 21) }

Statements 3 through 6 constitute a set of test cases for testing the procedure

put info in dag. The particular test case set was chosen because it is a minimum test

cases needed to cover all accessible triples. Statement 3 attempts to add edge ('A',A') to

withs_dag, raising exceptions in the following statements. Statement 8 raises

node-not in dag when it finds withsdag has no nodes; statement I1 raises

duplicatenode when it tries to add with_node (whose value is 'A); and statement 14

raises makescycle when adding the edge ('A','A'). add to cycledag is then invoked

to add parent-node, with node, and the edge ('A','A') to cycledag. Again,
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duplicatenode is raised when adding withnode to cycledag and the invocation to

put info in dag is terminated. After the second test case (statement 4) successfully

adds a new node 'B' and an edge ('A','B') to withs-dag, statement 5 causes

duplicateedge to be raised when trying to add the same edge to withsdag. The final

test case (statement 6) causes duplicate node to be raised when trying to add *A' as

parentnode to cycledag.

Any test set with less than four test cases fails to cover some part oi the reachable

code. Statement 1-I (addedge) cannot raise duplicateedge and makes_cycle at the

same time. Two invocations of putinfo in dag (statements 3 and 6) that cause state-

ment 14 to raise makescycle for withsdag are needed in order for statement 23

(addnode) to raise duplicate_node on cycledag. Since statements 3 and 6 do not

add any edges to withs_dag because ('A','A') would be a cycle, two additional execu-

tions of putinfo in dag (statements 4 and 5) that do not raise makescycle are

needed to cause statement 14 to raise duplicate_edge. Thus, a test data set exercising

all reachable (es,h) triples for this program should contain at least four invocations to

put-info in dag.

Table 7 shows the (e,s,h) triples exercised by executing these statements. The exe-

cution of the test cases leaves six triples in the ESH-set:

(makes_cycle, 12, 19), (duplicate_edge, 12, 22),
(duplicate_node, 23, 21), (makescycle 25, 17),
(duplicatenode, 24, 21), (makescycle, 25, 21)

No extra test data exercises these bindings because the code associated with these triples

is unreachable. For example, the four triples:
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Statement ESH triples exercised

3 (nodenot in dag, 8, 9), (duplicate-node, 11, 13),
(makescycle, 14, 15), (duplicate-node, 24, 17)

4

5 (duplicate-node, ii, 13), (duplicateedge, 14, 18)

6 (duplicatenode, 11, 13), (makes cycle, 14, 15),
(duplicatenode, 23, 17)

Table 7. ESH Triples Exercised by Executing Build_Dag ( Control)

(makes_cycle, 12, 19), (duplicatenode, 23, 21),
(duplicate-node, 24, 21), (makes_cycle, 25, 21)

are associated with the handler for makes_cycle starting from statement 19. In order

for control to reach this begin-block, the procedure invocation addedge (statement 12)

has to raise the exception makecycle. This implies that statement 11 (the procedure

invocation add-node) must be completed without raising any exceptions. In such a

situation, withnode is a fresh node just added into withs-dag. Note that withnode

must be a node different from parent_node, otherwise duplicate-node is raised by

statement 11. Since there is no edge connected to withnode yet and with node is dif-

ferent from parent_node, adding an edge from parentnode to with_node will never

cause a cycle. A similar argument holds for the null handler (statement, 22) associated

with the exception duplicateedge. Therefore, triple (duplicateedge, 12, 22) is

unreachable. The triple (makescycle, 25, 17) is also unreachable since makescycle
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is not raised at statement 25 unless the two preceding add_node statements (23 and 24)

have executed without raising any exceptions. Thus parentnode and with-node must

be new, distinct nodes in cycledag so adding an edge from parent-node to with-node

in cycledag never results in a cycle.

7.2.2. Build dag with Data-Oriented Exception Handling

To evaluate the effect of our exception handling mechanism on testing, we produced

another version of put info in dag with data-oriented exception handling. The

specification of genericdagpkg with data-oriented exception handling is:

generic
type label is private; -- labels of nodes

package genericdagpkg is
type dag is private;

#exception duplicate_node( g " in out dag; 1 : label ),
node notindag( g : in out dag; 1 label ),
duplicateedge( g : in out dag; 11, 12 • label ),
makescycle( g : in out dag; 11, 12 . label);

function create return dag;

procedure add-node( g : in out dag; 1 : label )
-- may raise duplicate_node

procedure add-edge( g : in out dag; 11, 12 : label )
-- may raise duplicate_edge, makescycle

procedure check_node( g : dag; 1 : label )
-- may raise node not in dag

private

type dagobject;
type dag is access dagobject;

end generlc_dagpkg;

The main procedure builddag is:

with generlc_dag_pkg;
procedure builddag is

package unitsdagpkg is new generic_dagpkg( character )
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use unitsdag_pkg;

procedure add to cycledag( parent-node, withnode : character )

withsdag : dag;
#when nodenot in dag( d in out dag; node : label ) =>

1: add node( d, node )
duplicate-node( g in out dag; 1 : label ) =>

2: null,

duplicateedge( g in out dag; 11, 12 : label ) =>

3: null,
makescycle( g in out dag; 11, 12 : label ) =>

4: add to cycledag( 11, 12 )

cycledag : dag;
#when duplicate-node( g : in out dag; 1 " label ) =>

5: null,

makescycle( g : in out dag; 11, 12 : label ) =>

6: null;

procedure putinfo in dag( parent-node, withnode ' character )
is separate;

procedure add to cycle_dag( parent-node, with-node • character )

is separate;
begin

7: withsdag : create;

8: cycledag = create;

9: put info in dag( 'A', 'A' ) -- with A; package A is ...

10: put info in dag( 'A', 'B' ); -- with B; package A is ...
11: putinfo in dag( 'A', 'B' ); -- with B; package A is ...

12: putinfo in dag( 'A', 'A' ) -- with A; package A is ...
end build-dag;

separate( builddag )
procedure putinfoindag( parent_node, with-node : character ) is

begin

13 checknode( withs_dag, parent_node )
14 addnode( withs_dag, withnode);

15 add-edge( withs_dag, parent-node, withnode )

end put_infoindag;

separate( builddag )

procedure add to cycledag( parent-node, with-node : character ) is

begin
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16: add_node( cycle_dag, parent node);

17 add_node( cycle_dag, with node);

18: add_edge( cycle_dag, with-node);

end add to cycle_dag;

This version is much simpler then the previous version. The procedure

put info in dag contains only three subprogram invocations because thc code for

exception handling is associated with exceptions in declarations. The ESH-set contains

the following seven (e,sh) triples:

{ (nodenot in dag, 13, 1), (duplicate_node, 14, 2),
(makes_cycle, 15, 4), (duplicateedge, 15, 3),
(duplicatenode, 16, 5), (duplicate_node, 17, 5),
(makes_cycle, 18, 6) }

Statement ESH triples exercised

9 (nodenot in dag, 13, 1), (duplicate-node, 14, 2),
(makescycle, 15, 4), (duplicate-node, 17, 5),

(makescycle, 18, 6)

10

11 (duplicate node, 14, 2), (duplicate_edge, 15, 3)

12 (duplicate-node, 14, 2), (makes_cycle, 15, 4),
(duplicatenode, 16, 5), (duplicatenode, 17, 5),

(makescycle, 18, 6)

Table 8. ESH Triples Exercised by Executing Build_Dag ( Data)
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Table 8 lists the (e, s, h) triples exercised by each of the four test cases (statements

9 through 12); the test data covers all triples in the ESH-set. The ESH-set for

build_dag with control-oriented exception handling is larger than that for build_dag

with data-oriented exception handling. The former contains six unreachable (e,s.h) tri-

ples, while all of the triples in the latter can be accessed. Note that (makescycle, 18, 6)

in the latter corresponds to an unreachable triple (makes_cycle,25,17) in the former.

Except this slight difference, the two versions of build_dag have the same logic, there-

fore both versions need the minimum of four operation invocations to cover all reachable

(es,h) triples.

The complexity of builddag with control-oriented exception handling makes it

more difficult to test the program when the number of exceptions that can be raised

grows. Assume a new exception uninitializeddag can be raised by check node.

addnode, and addedge. If this exception is always handled by a signaler's immediate

invoker. 11 more (e,s,h) triples are added to the ESH-set for builddag with control-

oriented exception handling. When statement, 8, 9, 11, 12, 14 raise the exception, it is

handled in the main program build dag; and when statements 23, 24, 25 raise the

exception, it is handled in blocks 15 and 19 respectively. Even after the unreachable code

in the control-oriented version is removed, there are still eight more (e,s.h) triples added

to the ESH-set. By way of comparison, in the data-oriented exception handling version.

only 6 (e,s.h) triples are added to the ESH-set.

7.3. Automated Coverage Metric Evaluation

A two-phase pre-processor can be built to assess structural coverage automatically.

The first phase constructs an ESH.-set for the program, while tire second uses the ESH-
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set to insert diagnostic code into the user program. Upon finishing execution, the

transformed program reports the (e,s,h) triples (if any) that have not been exercised dur-

ing the program's execution.

7.3.1. Algorithms for Constructing ESH-Sets

In this section, we present algorithms for constructing ESH-sets. Two algorithms

are introduced: one constructs ESH-sets for Ada programs and the other builds ESH-set

for pseudo-Ada programs with data-oriented exception handling. The first algorithm

uses a static call graph to analyze the subprogram invocation dependencies in an Ada.

program and attaches nodes representing exception handlers to nodes for subprograms or

blocks. An (e.s,h) triple is associated with an edge from a subprogram or block node to a

handler node. Once the whole program is processed, the graph is traversed and (e.s.h)

triples are collected to build the ESH-set, The algorithm consists of the following four

steps:

Step 1: Constructing a call graph. A call graph describing the subprogram invoca-

tion dependencies in the source program is created. Blocks are treated as anonymous

subprograms declared and invoked at the same place. Each node in the graph shows the

name of the subprogram called (or the name block if the node represents a block). In

addition, each node is labeled with a unique statement number to distinguish different

invocations of a subprogram. For example, a call graph shown in Figure 2 can be derived

from the following program skeleton: t

t For simplicity, consecutive numbers are used to label statements in different modules in our examples. As a I1iore
realistic statement labeling scheme, pairs in the form of (modulename, offset) can be used to label statemonts to si.' the
needs of separate !ompilaLion. For example, (mai., i,, .i m, , ... tr i. I), (Pt, 2),
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34 12
P1 block

17 18 516

P5 block P2 block

20 8

Figure 2. Call Graph of a Sample Program

procedure main is separate( main )
procedure Pl( ... ) procedure P1( ... ) is

is separate; begin

begin 15: if B then
... 16: raise El;

3: Pl( ... end if;
4: begin 17: P5( ...

5: P2( ... ); 18: begin
6: begin ...

... 20: P3( ...

8: P3( .. ); exception
end; ...
... end;

end; exception

12: P4( ... ); when El =>

exception 23: P6( ...

when E2 => 24: P7( ...

13: P2( ... ); when E2 =>

end main; ...

end P1;

In the graphic representation of the call graph, we use ovals to represent. subprogrmis

and rectangles for blocks, although these nodes a.re treated uniformly in our algorithm.

92



Step 2: Attaching handler nodes to subprogram/block nodes. For each subprogram

or block node N in the call graph, if the subprogram or block contains a raise state-

ment for exception E, perform one of the following two actions:

Step 2.1: If a handler H associated with E exists in the current subprogram or

block, atL,,th . liidler node i'ih as a child node of N. Nh is labeled with the state-

ment number of the first statement in the handler H. Any subprogram invocation

or block statement in H becomes a child node of N Such a child node is in fact

the root node of a sub--grqph bec-ause there can be further invocations in the sub-

program or block. The edge from N to Nh is labeled with a triple (E,S1,S,) where

S1 is the statement number of N and S, is the statement number of the first state-

ment in H. As an example, Figure 3 shows a handler node attached to node P1.

Smain

P5 blockn

20 2.3 24

Figure 3. Attaching a Local Handler Node
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The handler is associated with the raise statement (statement 16) and contains

two subprogram invocations (statements 23 and 24). Dashed edges are used to dis-

tinguish handler associations from subprogram invocations.

Step 2.2: If there is no handler associated with E in the current subprogram

or block, move upward along the path from N to the root node until either a sub-

program or block node N with a handler H for E is found or the root node is

passed. If a handler H is found, attach a handler node to N as ipi step 2.1. For
p

example. if in our sample program, P6 has a raise statement signaling th- excep-

tion E2 without a corresponding handler associated with E2 in P6. a handler node

will be attached to node main as in Figure 4.

Step 3: Repeat Step 2 for the new nodes. For each of the new subprogram or block

nodes introduced by the Step 2, repeat Step 2 until the graph cannot be expanded.

0
main

(E2,23, 13)

3 12 N 13

P1 block P4 handler

Figure 4. Attaching a Global Handler Node

94



Step 4: Building the ESH-set. Traverse the graph and collect all the (e,s,h) triples

attached to edges leading to handler nodes.

Figure 5 shows the call graph with handler nodes for build_dag with control-

oriented exception handling. The ESH-set for the program can be obtained by collecting

the 12 (e,s,h) triples attached to the edges leading to handler nodes in the graph.

The second algorithm constructs ESH-sets for programs with our exception han-

dling niechanism. It consists of the following steps:

Step 1: Constructing a call graph. As in the previous algorithm, a call graph is used

to describe the subprogram invocation dependencies in a program. However, blocks are

not treated as anonymous ;ubprogram invocations.

Step 2: Attaching handler nodes to subprogram invocation nodes. For each subpro-

gram invoked containing #raise statements, collect all the objects on which exceptions

are raised. If an object has a handler H defined for an exception, a node Nh representing

the handler invocation is inserted to the call graph as a child node of the subprogram

invocation node N. A triple (e,s,h) is attached to the edge from N to Nh, where e is the

exception raised, s is the statement number of the signaler represented by N, and h is the

statement number of the handler H.

Step 3: Repeat Step 2 for the new nodes. If the new node Nh added into the graph

represents a subprogram invocation, it can be further expanded to a sub-graph if the

handler invokes other subprograms.
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build-dag
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blockblc

/ / (duplicate- node. 12. 14 - dplaeeg,1:3
node~no in ag, 5. 10)

~j 10 9 14-- 12 18 nakesqck, 13,2 20 ~ 2

hader cek~node handler r dad_edge handler handler

10 11 14 20 28

add-node block block null
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haneler handler cycl de
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null block add-node handler ~ ~ e g

duc-t node 24N8
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18 A.V 18 17 1 22

a.dd-to_ ul
handler handler cycle dag handler nulhandler handler

1TI8 18 18 22 22

~ null

24 25 26
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Figure 5. Call Graph for Build_Dag ( Control-Oriented)



Step 4: Building the ESH-set. After all the nodes in the call graph have been pro-

cessed (including the new nodes introduced by handler invocations), the (e,s,h) triples

attached to edges leading to handler nodes are collected to form the ESH-set.

0
build_dag

~~~~~~in di dg " • *( u-a°

is 14 1

check nodemo edg

S/ \

node ot in dag. 13. 1 dup\ite node, 14, 2 make cycle/ 15. 4 (up)Icate edge. 15. 3

&dd-to-
(.,] ... de cycledag nl

16 1

duplcate enode 18,5) (dupicatedde, 17. , 5 1 make_ yc. 18,

Q 6

Figure 8. Call Graph for Build-Dag ( Data-Oriented)
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Figure 6 shows the call graph for build_dag with data-oriented exception handling.

In the graph, edges with dashed lines represent handler invocations. The seven (e,s,h) tri-

ples associated with dashed edges are collected to build the ESH-set for the program.

7.3.2. Inserting Diagnostic Code to Source Programs

Once the ESH-set for a program is obtained, it is straightforward for the pre-

processor to add diagnostic code to the source program. The inserted code keeps track of

the (e,sh) triples covered in a program execution, and reports those triples that have not

been covered (if any) when the execution finishes.

Before the first executable statement in the main program, code is inserted by the

pre-processor to initialize a working esh-set that contains all the triples in the ESH-set

for the program. Before every handler statement, the pre-processor inserts code to

remove the coiresponding (e.s,tl) triple troiti the working esh-set. Finally. the pre-

processor appends code after the last executable statement in the main program to report

the content of the working esh-set after program execution terminates.

A global variable zzz stmt no is added to the declaration list of the main pro-

gram; its value is the statement number of potential exception signals. Similarly, a vari-

able zzzexceptname global to all compilation units is used to remember the name of

an exception raised. The contents of these two variables are used when removing an

(e,s,h) triple from the working esh-set. Note that in Ada a handler ean be associated

with more than one exception in a when arm, thus it is necessary to remember the name

of an exception being raised so that a specific (e,s,h) triple can be singled out.
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Places to insert, code to remove (e.s,h) triples from the working esh-set or to

update zzzstmtno or zzzexceptionname can be deduced from the triples in the

ESH-set. A statement updating zzzexcept,name i inserted befor a raise or #raise

statement in a package body if the exception name appears in one of the triples in the

ESli-set. Similarly, in the main program, a statement updating zzz stmr tno is inserted

before a statement whose statement number appearF in the second part of an (e.s.h) triple

in the ESH-set. Finally. the third part of an (e,sh) triple in the ESH set determines die

place where a statement removing a triple from the working esh-set should bv in.-erte,

in the main program. For example. the following statement

zzz_eshsetpkg.remove(zzzesh set, (zzz_exceptname. zzzst mtno, 10));

is inserted immediately before statement 10. The statement removing ain (e.s.h) triple

from the working esh-set is inserted before the handler is transformed and placed in the

corresponding dispatch procedure.

7.4. Summary

The structural test coverage metric introduced in this chapter helps programners

analyze the less well tested parts of their programs Horning 791. In the build dag exam-

ple with control-oriented exception handling, the six uncovered (e.s.h) triples reveal

unreachable code in the program.

Testing programs with control-oriented exception handling tends to be more

difficult than testing programs with data-oriented exception handling. The size of the

ESH-set for the version with control-oriented exception handling grows faster than that

for the version with data-oriented exception handling when additional exceptions are
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rase. omarngFgue~ . ad .we also see that the complexity of control or ented

exception handling makes it more difficult to construct an ESH-set for a program with

control-oriented exception handling. Figure 6 is simpler than Figure 5 because less comn-

plex\ 'onlt rol flows nieedl to be cotisidleredl in the process of collecting the (es. h tri ple,
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CHAPTER 8

Empirical Studies

We conducted two studies to investigate the effects of different except Ion iandliM11

mechanisms on program construction. comprehension, and modification. The subjec!s

were senior undergraduate students taking an advanced Ada (olrse in the U. nivers!ty f

Marvland. 1'niversitv College for adult (ontinuing education. . -\1 (All ofthe tudenft, we

experienced programmers working for commercial software companies. These studies

were performed on relatively small programs written by students to help substztit ale

clai-s about benefits provided by data-oriented exception handling. Although the

results cannot be generalized to large systems, the data encourages us to apply our

methods to these systems.

8.1. Program Construction

In our first study, subjects solved the same problem twice, first with Ada and then

with our version of Ada with data-oriented exception handling. A pre-processor was

provided to translate pseudo-Ad, programs.

We tested the following four pairs of null (HO) and alternative (I ) hypotheses:

1//[: programs for project I and 2 are the same sizes:

II: programs for projoct t are bigger than programs for project 2.

HO: programs for project t and 2 have the same number of statements per ul bpr,-

gram;
III: programs for project 2 have better mod it larit.v (fewer satenents per supr,

gram) than programs for project I.
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H0: the maximum statement nesting depths in programs for projects 1 and 2 are
identical.

Hi: programs for project 1 have greater maximum statement nesting depths than
those for project 2.

H0: the average nesting depth per statement in programs for project I is the same
as that for project 2;

Hi: the average statement nesting depth in programs for project I is larger than

that for project 2.

Although we evaluate the results of this study as if it were a controlled experiment, we

realize that substantial learning effects may bias the results.

Students designed and implemented a generic package supporting an abstract data

type hashtable. Two hashing functions are supplied when instantiating the package.

Initially, the table resorts to linear probing to resolve collisions. If hashing becomes too

inefficient due to repeated key collisions, a second function using a relatively complicated

algorithm that produces better key distribution is used instead. The size of a hash table

should be tv,*ice the cardinality of the set of keys to obtain sub-linear search timeBentley

87!. When it becomes too full, the hash table is expanded at run time. Several excep-

tions, such as toomanynonhit, tablehalffull and nomore_storage, are declared

and raised to facilitate function switching and table expansion. A driver routine tests the

exceptions raised at run time and takes appropriate haniling actions.

Of the 11 students who remained in the class to the end of the semester, nine of

them turned in the programs for both of the projects. Table 7 characterizes the driver

programs written by the students. Study of these programs shows that using data--

oriented exception handling can result in smaller (and perhaps simpler) code. On aver-

age, the driver routines in the first project have 152.67 Ada statements, about 25¢" more

statements than their counterparts in the second project (122.11 statements). On
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Statement and Subprogram Counts in Driver Programs

Project 1 Project 2
Account Statement Subprogram Statements Statement Subprogram Statements

Count Count per Subprogram Count Count per Subprogram

05 159 12 13.3 142 15 9.5

06 189 7 27.0 118 7 16.9

07 148 6 24.6 132 9 14.7

11 99 6 16.5 109 10 10.9

12 202 8 25.3 125 8 15.6

13 150 7 21.4 104 7 14.9

14 151 7 21.6 116 9 12.9

19 130 5 26.0 120 10 12.0

20 146 6 24.3 133 9 14.8

Average 152.67 7.11 22.22 122.11 9.33 13.58

Table 7. Statement and Subprogram Counts in Driver Programs

average, the subjects divided the driver routines into more sub-modules (procedures and

functions) in the data-oriented versions - 9.33 sub-modules, compared to 7.11 sub-

modules used in the control-oriented version. By calculating the ratio of the number of

statements to the number of sub-modules in the respective driver routines, we can see

that the average size of the procedures/functions in project 2 (13.58 statements sub-

module) is significantly smaller than that in project 1 (22.22 statements,,sub-module).
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To determine the statistical significance of the difference between two means P , and

/12, we need to use a nonparametric test such as the Wilcoxon rank-sum test[Bhatt 771.

A standard parametric test (e.g., t-test) may not be appropriate because we cannot

assume our sample data come from a population with normal distribution.

To perform the Wilcoxon rank-sum test on sample population of sizes m and n, the

values of the two sample populations are ranked jointly, as if they were one sample, in

increasing order of magnitude. The values of the joint population are then assigned the

ranks 1. 2 ... m-n. For equal values, each value is assigned the mean of the ranks that

the values jointly occupy.

To test the null hypothesis H0 versus the alternative hypothesis H, for the program

sizes, we calculate the following rank sums:

W 1 = 16 + 17 + 13 + I + 18 + 14 + 15 + 8 + 12 = 114

W,= 11 + 5 + 9 + 3 + 7 + 2 + 4 + 6 + 10 = 57

The Wilcoxon's rank-sum statistic table for both sample sizes of nine has the fol-

lowing selected values:

P[ W> 2 x for both sample sizes-9

x 104 105 106 107 108 109 110 111 112

P 0.057 0.047 0.039 0.031 0.025 0.020 0.016 0.012 0.009

Since P1 W 112 I = 0.009, the null hypothesis H, is rejected at, level of signilicance a
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0.009. Similarly, to test the hypotheses for program modularity, the following rank

sums are calculated:

W1 =5 + 18 + 15 + 10 + 16 + 12 + 13 + 17 + 14 = 120

W4, I + 11 - 6+ 2 +9 + 8+4+ 3 +7 =51

Since the reject region with c = 0.009 is established as W1 2 112 and the observed value

falls in this region, the null hypothesis H0 is rejected at level of significance c = 0.009.

Other improvements in program structure in the data-oriented versions can be

demonstrated by examining the main program part of the driver routine (the top-level

executable statement list). Analyzing the counts of executable statements, maximum

nesting depths, and average statement nesting depths in the main programs, we obtained

the data shown in Table 8. In addition, the means of these three measurements for each

project are calculated and presented in the table. On average, there are 36.89 executable

statements in the main blocks in project 1, which is more than twice the number in pro-

ject 2 (16.56 executable statements). Control-oriented exception handling forced subjects

to use more deeply nested syntactic structures (5.89 maximum nesting depth and 3.63 per

statement in project 1, compared to 3.22 and 2.00 in project 2.) To determine the sta-

tistical significance of the difference between two means for the maximum statement

nesting depth, we perform the Wilcoxon rank-sum test and obtain the following results:

W1 3 + 13 + 13 + 18 -+- 13 + 7 + 13 + 16 + 17 - 113

W2= 3 + 3 + 3 + 3 + 7 + 9 + 7 + 13 + 10 = 58

Thus the null hypothesis Ho for maximum statement nesting depth is rejected at o, ==
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Statement Nesting Levels in Main Programs

Project 1 Project 2

Account # Executable Maximum Nesting Level Executable Maximum Nesting Level
Statements Nesting Depth per Statement Statements Nesting Depth per Statement

05 8 2 1.625 8 2 i. Q5

06 65 6 3.338 18 2 1.667

07 54 6 4.333 18 2 1.500

11 33 9 4.455 12 2 1.500

12 22 6 3.409 14 3 1.929

13 25 3 2.560 23 4 2.174

14 34 6 3.559 11 3 1.909

19 45 7 4.378 17 6 2.882

20 46 8 5.000 28 5 2.750

Average 36.889 5.889 3.629 16.556 3.222 1.993

Table 8. Statement Nesting Levels in Main Programs

0.009. Similarly, the rank sums for average nesting depth per statement are calculated as

W,- 3.5 + 12 + 15 + 17 + 13 - 9 + 14 + 16 + 18 = 117.5

W= 3.5 + 5 - 1.5 + 1.5 +7 + 8 + 6 + 11 + 10 = 53.5

Again, the null hypothesis H0 is rejected at a = 0.009.
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8.2. Program Comprehension and Modification

Our second study was designed to test how the choice of the different exception

handling mechanisms would affect program comprehension and modification. Since this

study was conducted after concluding the previous study, the subjects were already fami-

liar with both exception handling mechanisms.

We tested the following pairs of null (H0 ) and alternative (H1 ) hypotheses:

H0: the average overall scores for problems in version C is identical to that for
problems in version D;

Hi: subjects scored higher for problems in version D than for problems in version

C.

H0: subjects spent the same amount of time for problems in version C as in version

D;
HI: subjects spent more time for problems in version C than version D.

This study took the form of in-class quiz. Each subject was required to solve prob-

lems involving a dynamic array (darray) and a direct acyclic graph (dag). For each prob-

lem, the subjects were asked to read a program of three to four pages and then answer

several questions, some of which involved comprehension and others modification. In

order to investigate the effect of different exception handling mechanisms on program

comprehension and modification, we designed two equivalent versions of programs for

each of the problems: a control-oriented exception handling version (C) and a data-

oriented exception handling version (D). Subjects were assigned to work on one version

of the darray problem and another version of the dag problem. The assignments of sub-

jects to versions of the tests were determined randomly. Six subjects worked on version

C of darray and version D of dag, and five subjects worked on version D of darray and
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version C of dag.

Table 9 shows the test scores of the subjects, as well as the time (in minutes) they

spent on each problem. The final score assigned to a student on a problem was calcu-

lated by counting the number of correct solutions divided by the number of questions.

Quiz Test Scores and Time Consumptions

Control-Oriented Method Data-Oriented Method
Subject Problem Total Time Problem Tctal Time

Typ Score Used Type Score Used

1 Darray 1.0 45 Dag 0.67 39

2 Darray 0.75 50 Dag 1.0 80

3 Darray 0.5 40 Dag 0.0 86

4 Darray 0.75 56 Dag 1.0 27

5 Darray 0.5 61 Dag 1.0 89

6 Darray 0.75 63 Dag 0.0 27

7 Dag 1.0 55.5 Darray 1.0 55

8 Dag 0.25 70.5 Darray 1.0 63

9 Dag 0.0 95 Darray 0.5 50

10 Dag 0.75 53.5 Darray 1.0 53

11 Dag 0.25 40 Darray 0.5 19

Average 0.591 57.227 0.697 53.455

Table 9. Quiz Test Scores and Time Consumption
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Thus, the final score should always fall into the range of 0.0 to 1.0, inclusively.

The analysis shows that the average score for the problems in version C (0.591) is

somewhat lower than the average score for the corresponding problems in version D

(0.697). Dividing the questions into two groups (comprehension and modification), we

determined that the differences of total scores mainly come from the latter group. Thus,

our data-oriented exception handling mechanism may have greater impact on

modification activities (a more realistic programming task) than on a programmer's abil-

ity to understand and answer questions about a program.

In addition to giving solutions, subjects were also asked to record the time spent on

each question. The total time given for the quiz is 150 minutes. The average time spent

on a problem for version C was 57.227 minutes, while that for version D was 53.455

minutes. Thus subjects spent less time on problems for data-oriented exception handling

versions, but still got better results.

When both of the sample sizes are large (greater than eight), the null distribution of

the rank-sum statistic is approximately normal and the test can be performed using the

standard normal table. Specifically, the following Z statistic is approximately N(0,l)

when H0 is true:

mX {m+n+ 1)

m x n x (m + n+ 1)

12

where x, is the ith element of the first sample set. The null hypothesis that both samples

come from identical populations can be rejected if the value of a standard variable Z is

109



less than the level of significance of the test. For example, testing the null hypothesis H0

that p I == '2 where MA is the average rank of total scores for problems in version C and

p, is its counterpart for problems in version D against the alternative < P we

obtain Z = 0.886. By looking up the standard normal statistic table, we find that

P[ Z < 0.886 ] = 0.812

which is mildly significant. Thus we reject H0 at a level of significance a = 0.188. For

the hypothesis about the mean amount of time used, the value of the standard variable Z

is 0.624. Since

P[ Z < 0.624 0.734

we cannot reject H0. The relatively small differences between the respective averages for

time consumed and small number of subjects both contribute to the lack of significant

differences.

In summary, the studies conducted indicate that data-oriented exception handling

can help producing better programs. Since the resulting programs are simpler and better

structured, they may be easier to understand and modify.
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CHAPTER 9

Conclusion

This chapter summarizes the issues discussed in the preceding chapters and

identifies some avenues for future investigation.

9.1. Summary

Exception handling mechanisms were added to programming languages to separate

exception processing from normal cases. Mechanisms were designed to permit invokers to

specify responses to exceptions. The result was to be simpler programs and higher qual-

ity code.

However, control-oriented exception handling fails to reach the expected goal. Our

case study showed that lack of clear definition of exceptions made it difficult, to deter-

mine what processing was associated with exceptions. Normal cases were often treated as

exception processing, e.g., adding a new node to a graph. Raising exceptions such as

nodenot In dag or duplicate_node to add a node to a graph only confused the algo-

rithm. Nesting blocks to associate handlers with exceptions interleaved exceptional and

normal code, and increased program complexity by increasing statement nesting levels.

Exception propagation permits users to specify handler actions, but increases inter-

module coupling and the risk of propagating an exception out of its scope. Although

control-oriented exception handling wa2 intended to lead to simpler and higher quality

code, the case study showed that the resulting code contained unreachable handlers.
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As an alternative, we proposed data-oriented exception handling. Exceptions are

defined as implementation insufficiencies and are therefore associated with type

definitions. Handlers are bound to exceptions in object declarations, centralizing informa-

tion about handlers and separating exception processing from normal cases. Without

exception propagation, our approach still permits users to specify different handler

actions for exceptions. On the other hand, the lack of exception propagation in our

mechanism makes it less complex than control-oriented exception handling mechanisms.

While the evaluations performed in this research work were not conclusive, all of'

them pointed in the same direction. The case study showed that even when exceptions

were allowed to be raised for conditions other than implementation insufficiencies. (e.g..

makescycle), data-oriented exception handling still increased program quality with

reduced statement nesting depth, increased modularity, and centralized and separated

handler code. The empirical studies revealed that subjects constructed smaller programs

with reduced nesting depth and increased modularity. The program comprehension and

modification experiment showed that subjects gained better examination scores in less

time. For program testing, we found that while the same amount of test data was

needed for programs with different exception handling methods, the version with data-

oriented exception handling has fewer exception/handler binding pairs. In addition. the

algorithm for monitoring structural coverage test is simpler for data-oriented exception

handling than for control-oriented exception handling.

A notable advantage of proof rules for our method is the orthogonality of proofs

about exception processing code and proofs of other parts of the program. Adding excep-

tions to a program requires relatively few changes in an existing proof. all of which occur
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in declarations. In contrast, in re-establishing the correctness of a program with

control-oriented exception handling, many proof steps in different portions of the pro-

gram need to be done again. Extra specifications for subprogram headings may be

required to prove assertions about control-oriented exceptions raised in programs. Addi-

tional restrictions are imposed on exception propagation in order to be able to prove pro-

grams.

9.2. Future Research Directions

It is possible to extend the syntactic and semantic definitions of the primitives in

our exception handling mechanism to make it more convenient to use. For example.

default handlers for exceptions can be specified in a type declaration and inherited bY

variables declared with that type.

type stack is limited private

#exception overflow( S : in out stack ) => expand( S, 10 ),
storageexhausted( S : in out stack; place : string )

=> put_line( place );

Thus, the declaration of S1 and S2 shown below would cause both data objects to over-

ride the default handler for overflow (i.e., expand(S,10)) and inherit the one for

storage_exhausted:

package integerstack is new stackpkg( integer, 20 );

use integerstack;

S1, S2 : stack
#when overflow( S : in out stack ) => expand( S, 40 );

Subtypes can also be declared in user programs with default handlers. For example:

subtype expandable-stack is stack

#when overflow( S : in out stack ) => expand( S, 40 );
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Then, the following object declarations

Si, S2 : stack
#when overflow( S : in out stack ) => expand( S, 40 );

S3 : stack
#when overflow( S : in out stack ) => expand( S, 40 ),

storageexhausted( S : in out stack; place : string )
=> last wish( S, place );

can be more conveniently declared as:

S1, S2 : expandable stack;

S3 : expandable stack
#when storageexhausted( S * in out stack; place : string )

=> last-wish( S, place );

More research work is needed to implement our mechanism with such extension. to

modify the proof rules discussed in Chapter 6, and to introduce new structural coverage

metrics to accommodate the new signaler-handler association patterns.

More experimental studies can also be conducted to compare different exception

handling mechanisms. Special tools can be designed to conduct such empirical studies in

a more realistic environment. For example, automatic recording of successive program

changes during construction or modification of large programs can provide more useful

information about how different exception hand!ing mechanisms affect programming

practices.

Finally, studies on programming methods, tools and environment associated with

the new exception handling mechanism can be conducted. The introduction of better

program constructs along with a better programming environment will ,riinlv Ielp

increase programming productivity and program quality.
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APPENDIX

Experimental Studies

A. Project Assignment : Expandable Hash Table

For this project, you are to design and implement a generic package supporting an
abstract data type hash table. A hash table should be represented as a one-dimensional
array of variable size, with linear probing to resolve any conflict in hashing. \Vhenever a
key is hashed to an array location already occupied, a linear seprch through the array is
conducted until a free location is found (if the end of the array is reached, the first loc:t-
tion of the array is checked in turn.)

The generic package takes the following formal parameters:

keytype -- the type of keys to be hashed
attr type -- the type of attributes associated with keys
null-key -- null value for the keytype

nullattr -- null value for the attr_type
initial size -- initial size for a hash table
maximum-size -- the maximum allowable size for a hash table
threshold -- the numUer of "non-hit" allowed before signaling
hash funcl -- the original function chosen for hashing
hashfunc2 -- the alternate function used for hashing

Three exceptions may be raised in the process of hashing:

too many_nonhit -- when number of "non-hit" exceeds threshold
table half full -- when the hash table is half full

nomorestorage -- when the table reached maximum_size and is full

Each hash table slot holds a pair (Key, Attr). All keys in the hash table must LW
different. If a slot is free, it contains (null_key, nullattr). Initially, the hash func-
lion hash funcl is used to hash keys into a hash table. The hash function associated
with a hash table can be switched to hashfunc2 if an operation
switch hashfunction is invoked. Thus, a simple (though inefficient) function can be
chosen aLs the original hashing function. If necessary, a more efficient (but complicated)
function can be used instead. Some research result reveals that the size of a hash table
should be twice the cardinality of the set of keys to result in non-linear search time.
Therefore, whenever the size of a hash table is half full, an exception is raised. The user
of the hash package can then decide whether to invoke an expand operation to grant the
table more storage. Note that re-hashing may be required after expanding the size of' a
hash ta)le because the hash function used may be dependent. on the size of the hash
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table. Of course, re-hashing is necessary after hash function switching.

The generic package should provide at least the following operations:

create hash table -- create an empty hash table
storepair -- store a pair into a hash table
fetchattr -- fetch an attribute associated with a key
makeiterator -- prepare iterating the hash table
morepair check if there is more pair to iterate
get nextpair -- obtain the next pair
switch hash function -- switch from hash funcl to hash func2
expandhashtable -- expand a hash table by certain amount
changethreshold -- in order for a user program to proceed after

handling the exception toomany nonhit

In addition, you need some inquire functions to test the current state of a hash
table.

After implementing the generic package, write a driver procedure to test your pack-
age. The driver procedure reads from the input file a sequence of words, and inserts the
words into the hash table. For each word, the key to be hashed is the word itself, while
its attribute is the word's sequential number. If a word has already been entered into the
hash table, just ignore it. After processing all input, or after the hash table reached the
maximal allowed size, dump the contents of the hash table.

The actual parameters used to instantiate the generic hash packages are:

keytype => fixed length string with length 20
attr-type => natural
nullkey => blank string with length 20
null attr => 0

initial size => 20
maximum size => 150
threshold => 8

hashfuncl => return: (length of the key) mod (current table size)
hashfunc2 => return: (sum of ASCII code of characters in the key)

mod (current table size)

If too_many_nonhit is raised when storing a pair into a hash table, temporarily
raise the threshold by one and re-try. However, if the hash Iable has been expanded 9
times in the pa jt and hash function I is currently in use. then switch to hash function 2.
Once the pair has been successfully stored into the hash table, the threshold should be
restored to its initial value. Note that too_manynonhit can be further raised in the
process of function switch. In such a case, the handler raises the threshold by one and
then re-tries.

If tablehalffull is raised. expand the hash table by adding 12 more slots to it.
Note that toomanynonhit may be raised when re-hashing. The handlh ,ction is
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similar to that stated in the previous paragraph except that the hash function should be
switched after 8 expansions rather than 9. Also, the generic package should not raise
table half full if the maximal size allowed for a hash table has already been reached.

If nomorestorage is raised, dump the current contents of the hash table and ter-
minate execution. Also, dump the hash table before switching from hash function 1 to
hash function 2.

B. The Darray Problem ( Control-Oriented Version)

generic
type elemtype is private; -- Component element type.

package darraypkg is

-- This package provides the dynamic array (darray) abstract data type.
-- A darray has completely dynamic bounds, which change during run-time
-- as elements are added to/removed from the top/bottom. darrays are
-- similar to deques, differing only in that operations for indexing
-- into the structure are also provided. A darray is indexed by
-- integers that fall within the current bounds.

type darray is limited private; -- The darray abstract data type.

initial bound constant 20;
maximumlimit constant 5 * initialbound;

uninitializeddarray exception;
out of high bound exception; -- index out of current high bound
out of lowbound exception; -- index out of current low bound
high_boundlimitmet exception; -- maximum high bound limit met
lowbound limitmet exception; -- minimum low bound limit met
storageexhausted exception; -- exceed pre-declared storage limit

procedure create( d in out darray );
procedure add_hlgh( d in out darray; e elemtype );
procedure addlow( d In out darray; e elemtype );
procedure shift_high( d in out darray; n positive );
procedure shift low( d In out darray; n positive )'
procedure expand_hlgh( d in out darray; amount positive )
procedure expandlow( d in out darray; amount positive )

private

end darray_pkg;

package body darraypkg is

procedure create( d : in out darray ) is
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begin
d.first index 1;
d.last index 0;
d.current-highbound initialbound;
d.currentlow bound - initialbound;
d.high bound_limit maximumlimit;
d.lowboundlimit - maximum-limit;

{ allocate storage ford }
end create;

procedure addhigh( d : in out darray; e : elemtype ) is
begin

if { d is not initialized } then
raise uninitializeddarray;

end if;
if d.last index = d.current highbound then

raise out of highbound;
end if;
d.last index := d.last index + 1;
{ store e into the slot }

end add-high;

procedure addlow( d : in out darray; e elemtype ) is
begin

if { d is not initialized } then
raise uninitialized darray;

end if;
if d.first index = d.current low bound then

raise out of low bound;
end if;
d.first index := d.first index - 1;
{ store e into the slot

end addlow;

procedure shifthigh( d : in out darray; n : positive ) is
begin

if { d is not initialized } then
raise uninitializeddarray;

end if;
if d.lastindex + n > d.current_high bound then

raise out of highbound;
end if;
{ shift all elements in d toward the higher end n places }

end shift-high;

procedure shiftlow( d : in out darray; n : positive ) is
begin

if { d is not initialized } then
raise uninitializeddarray;

end if;
if d.first index - n < d.current low bound then

raise out of low bound;
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end if;
{ shift all elements in d toward the lower end n places }

end shift-low;

procedure expandhigh( d : in out darray; amount : positive ) is
begin

if { d is not initialized } then
raise uninitializeddarray;

end if;
if d.current low bound = d.low bound-limit and

d.current_hlgh bound = d.highbound limit then
raise storageexhausted;

end if;
if d.currenthighbound = d.high_bound_llmit then

raise highboundlimit met;
end if;
d.currenthighbound := min( d.current_highbound + amount,

d.high bound limit
end expand high;

procedure expandlow( d : in out darray; amount : positive ) is
begin

if { d is not initialized } then
raise uninitializeddarray;

end if;
if d.current low bound = d.low bound limit and

d.currenthigh bound = d.high_boundlimit then
raise storage exhausted;

end if;
if d.current low bound = d.low bound limit then

raise lowbound limit met;
end if;
d.current low bound := max( d.current low bound - amount,

d.low bound limit
end expand-low;

end darray_pkg;

with darraypkg, text_io;
use text io;
procedure main is

package integerdarray is new darraypkg( elemtype => integer );
use integer_darray;

package int-io is new integer io( integer ); use ntlo;

d darray;
i integer;
amount : constant := 20;

begin
while not end of file loop
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get( i );
loop2: loop

begin
add high( d, I );
exit;

exception
when uninitializeddarray =>

create( d );
when out of high_bound =>

begin
expandhigh( d, amount );

exception
when high bound limit met =>

loop
begin

shift low( d, 10 );
exit;

exception
when out of low-bound =>

begin

expand_low( d, amount );
exception

when low bound limit met =>
shifthigh(-d, 0 );

end;
end;

end loop;
end;

end;
end loop; -- loop2

end loop;
end main;

Question #1 (Darray)

(Please record the time you spent on each of the following questions.)

1). Giving an input data file containing enough integers, how many successful
shift low operations will be performed? How many shift high operations will
be performed?

2). If the input file contains 400 integers, how will the program terminate?

3). Do we need the loop labeled loop2? Why?

4). If we change add_high(d, 1) to addlow(d. 1), give the necessary modifications
such that the program will perform similarly.
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5). Modify the main program such that the following rules are satisfied:

0 A new integer is always added to the lower end of the darray;

* If out of low bound is raised, shift the contents of the darray toward the
higher end over 10 slots;

* If out of high bound is raised, expand the high bound by 20 more slots (if
possible);

* If high_bound_limit_met is raised, first expand the low bound by 20 more
slots (if possible), then shift the contents of the darray toward the lower end
over 20 slots.

C. The Darray Problem ( Data-Oriented Version)

generic
type elemtype is private; -- Component element type.

package darraypkg is

-- This package provides the dynamic array (darray) abstract data type.
-- A darray has completely dynamic bounds, which change during run-time
-- as elements are added to/removed from the top/bottom. darrays are
-- similar to deques, differing only in that operations for indexing
-- into the structure are also provided. A darray is indexed by
-- integers that fall within the current bounds.

type darray is limited private
#exception uninitialized_darray( d : darray ),

outof_high bound( d : darray ),
out of low bound( d : darray ),
high boundlimitmet( d • darray ),
lowboundlimit_met( d • darray )
storageexhausted( d : darray );

initial bound • constant := 20;
maximum_limit : constant := 5 * initialbound;

procedure create( d : in out darray );
procedure add_high( d • in out darray; e • elemtype );
procedure addlow( d • in out darray; e • elem type );
procedure shift high( d • in out darray; n • positive );
procedure shift low( d : in out darray; n : positive );
procedure expand high( d • in out darray; amount : positive );
procedure expand low( d • in out darray; amount • positive );

private
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end darray_pkg;

package body darraypkg is

-- same as its control-oriented counterpart,
-- except substituting "#raise" for "raise"

with darraypkg, text_io;
use text_io;
procedure main Is

package integerdarray is new darraypkg( elemtype => integer );
use integer_darray;

package mnt_lo Is new integer_io( integer ); use int io;

amount : constant := 20;

i integer;

d darray
#when unlnitializeddarray( d : darray ) => create( d ),

out of high bound( d : darray ) => expand_high( d, amount ),
out of lowbound( d : darray ) => expand-low( d, amount ),
highbound limitmet( d darray ) => shiftlow( d, 10 ),
low boundlimitmet( d darray ) => shifthigh( d, 10 );

begin
while not end of file loop

get( i );
add-high( d, i );

end loop;
end main;

Question #1 (Darray)

(Please record the time you spent on each of the following questions.)

1). Giving an input data file containing enough integers, how many successful
shift low operations will be performed? How many shifthigh operations will
be performed?

2). If the input file contains 400 integers, how will the program terminate?

3). If we change addhigh(d, 1) to addlow(d, 1), give the necessary modifications
such that the program will perform similarly.
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4). Modify the main program such that the following rules are satisfied:

* A new integer is always added to the lower end of the darray;

* If out of lowbound is raised, shift the contents of the darray toward the
higher end over 10 slots;

If out of highbound is raised, expand the high bound by 20 more slots (if
possible);

If highbound limit-met is raised, first expand the low bound by 20 more
slots (if possible), then shift the contents of the darray toward the lower end
over 20 slots.

D. The Dag Problem ( Control-Oriented Version)

generic
type label is private; -- sbels of nodes

package generlc_dagpkg is

type dag is private; -- the dag abstract data type.

uninitialized-dag • exception;
nodenot in dag exception;
duplicate node exception;
duplicate-edge exception;
makescycle exception;

function create return dag;
procedure addnode( g • in out dag; 1 : label );
procedure addedge( g • in out dag; 11, 12 : label );
procedure checknode( g : dag; 1 : label );

private

end generic_dag_pkg;

pack:.ge body generic_dagpkg is

function create return dag is { ... } end create;

procedure addnode( g : in out dag; 1 • label ) is
begin

if { g has not been initialized } then
raise uninltlalizeddag;

end if;
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if { there is already a node in g with label 1 } then
raise duplicatenode;

else
{ add a node with label 1 to g }

end if;
end add-node;

procedure addedge( g : in out dag; 11, 12 : label ) is
begin

if { g has not been initialized } then
raise uninitializeddag;

end if;
if { there is no node in g with label 11 } then

raise node notindag;
end if;
if { there is no node in g with label 12 } then

raise node not-in-dag;
end if;
if { an edge from node labeled 11 to node labeled 12 is in g } then

raise duplicateedge;
elsif { the new edge will introduce a cycle in g } -chen

raise makescycle;
else

{ add the new edge to g }
end if;

end add-edge;

procedure checknode( g : dag; 1 • label ) is
begin

if { g has not been initialized } then
raise uninitializeddag;

end if;
if { there is no node with label 1 in dag g } then

raise nodenot-in dag;
end if;

end check-node;

end generic_dag_pkg;

with generic_dagpkg;
procedure builddag is

package unitsdagpkg is new generic_dagpkg( character );
use units-dagpkg;

withsdag, cycledag : dag;

procedure putinfoindag( parentnode: character;
withs_list : string ) is separate;

begin
1: withs_dag "= create;
2: cycle dag := create;
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3: putinfo in dag( 'B', "Al ); -- with A; package B is ...
4: putinfo in dag( 'C', AB" ); -- with A, B; package C is ...
5: putinfo in dag( 'A', "C" ); -- with C; package A Is ...

end build_dag;

separate( builddag )
procedure put_infoin dag( parentnode : character;

withs list : string ) is
with node : character;

procedure add to cycledag( parentnode,
with-node : character ) is separate;

begin
begin

6: checknode( withsdag, parentnode );
exception

when node not-in-dag =>
7: addnode( withsdag, parent-node )

end;

8: for I in withs_list'range loop
9: withnode : withs_list(I);

begin
10: addnode( withsdag, with_node);
11: add-edge( withsdag, parentnode, withnode );

exception
when duplicatenode =>

begin
12: addedge( withs_dag, parent_node, with-node );

exception
when makes-cycle =>

begin
13: addtocycledag( parentnode, with-node);

exception

when duplicate node I makes cycle =>
14: null;

end;
when duplicate_edge =>

15: null;
end;

when makescycle =>
begin

16: addtocycle_dag( parentnode, withnode);
exception

when duplicatenode I makescycle =>

17: null;
end;

when duplicateedge =>
18: null;

end;
end loop;
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end putinfoindag;

separate( builddag.put_info in dag )
procedure addtocycledag( parentnode, with-node : character ) is
begin

19: addnode( cycle_dag, parentnode);
20: addnode( cycle_dag, withnode);
21: add edge( cycle_dag, parent-node, withnode);

end add to cycle_dag;

Question #2 ( Dag)

(Please record the time you spent on each of the following quostions.)

1). Execute the program "by hand", complete the following trace table:

Statement # exception raised withsdag cycle_dag

3 node = " node ={
edge = edge=}"

6 node not in dag ditto ditto

7 node = { 'B' } ditto
edge = {_}

10 node = { 'B', 'A' } ditto
edge ={

11 node = { 'B', 'A' } ditto
edge = { ('A', 'B') }

2). Is statement 13 reachable? If the answer is "yes", what is the minimum input data
for control to reach it? If the answer is "no", give your justification.

3). Re-do question 2) for statement 16.

4). Suppose that we forgot to initialize the two dags in builddag (i.e., statements 1
and 2 were missing in the program). Modify the program by adding some exception

handlers for uninitializeddag such that the program will perform correctly.
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E. The Dag Problem ( Data-Oriented Version)

generic
type label is private; -- labels of nodes

package generlc_dagpkg is

type dag is private
#exception uninitialized_dag( g : dag ),

duplicatenode( g dag; 1 label ),
node not in dag( g • dag; 1 label ),
duplicateedge( g dag; 11 label; 12 label ),
makescycle( g : dag; .11 label; 12 : label);

function create return dag;
procedure addnode( g in out dag; 1 : label );
procedure add-edge( g in out dag; 11, 12 : label );
procedure check-node( g : dag; 1 : label );

private

end generic_dag_pkg;

package body generic_dagpkg is

-- same as its control-oriented counterpart.
-- except substituting "#raise" for "ralse"

end generic_dag_pkg;

with generic_dagpkg;
procedure build_dag is

package units_dagpkg is new generic_dagpkg( character )'
use unitsdagpkg;

withs_dag dag;

cycledag dag
#when duplicate_node(g: dag; 1: label) =>

1: null,
makes cycle(g: dag; i: label; 12: label) =>

2: null;
procedure putinfo in dag( parentnode: character;

wlths_list : string ) is separate;
begin

3: wlthsdag : create;
4: cycle dag := create;
5: putinfoindag( 'B', "A" ); -- with A; package B is ...
6: putinfo in dag( 'C', "AB" ); -- with A, B; package C Is ...
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7: putinfoindag( 'A', 1C" ); -- with C; package A is ...
end build_dag;

separate( builddag )
procedure putinfo in dag( parent-node - character;

withs list : string ) is
with node : character;

procedure add to cycledag( parentnode, with-node " character )
is separate;

tempdag : dag
#when nodenot in dag(g: dag; 1: label) =>

8: add node( g, parent-node ),
duplicatenode(g: dag; 1: label) =>

9: null,
duplicate edge(g: dag; 11: label; 12: label) =>

10: null,
makescycle(g: dag; 11: label; 12: label) =>

11: add to cycledag(ll, 12 )
begin

12: tempdag := withs_dag;
13: check node( temp_dag, parent node )
14: for I in withs_list'range loop
15: with-node *= withs list(I);
16: addnode( temp_aag, withnode);
17: add-edge( temp_dag, parent-node, with-node )

end loop;
18: withs_dag := temp_dag;

end putinfoindag;

separate( bulld_dag.putinfo in dag )
procedure add to cycledag( parentnode, with-node : character ) is
begin

19: addnode( cycle_dag, parentnode);
20: addnode( cycle_dag, withnode);
21: add edge( cycle_dag, parentnode, withnode);

end add to cycledag;

Question #2 ( Dag)

(Please record the time you spent on each of the following questions.)

1). Execute the program "by hand", complete the following trace table:
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Statement # exception raised withsdag /' temp_dag cycle_dag

5 node = } node ={
edge={} edge ={}

13 node not in dag ditto ditto
8 node = { 'B' } ditto

edge = { }
14 ditto ditto

16 node = 'B', 'A' } ditto
edge = { }_

17 node = 'B', 'A' I ditto
edge = { ('A'. 'B') }

2). What is the minimum input data for control to reach statement 11?

3). Suppose that we forgot to initialize the two dags in builddag (i.e.. statements 3
and 4 were missing in the program). Modify the program by adding some exception
handlers for uninitialized dag such that the program will perform correctly.
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