
Form ApprovedREPORT DOCUMENTATION PAGE J OMB No. 0704-0188

Public reporting Ourden #or this ollection Of 'nformatiOn s estimated to average 1 'o r oer response, incIu ing thie time for reviewing instructions. searching existing data source,.
gatherg and maintaining the clata needed, and Comoleting and revieming the collection of informatiOn Send comments regarding this burden estimate or any other aspect of this
collection of nformatton. nclufding Suggestions for r educng this ourcen to Nam ington Headquarters Services. Directorate for information Operations and Reports, 1215 jefferson
Davis Hiqway. Suite 1204. Arlington. vA 22202-4302. and to tie Offce of Management and Budget. Paperwork Reduction Project (0704-0188). Washington. DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE I 3. REPORT TYPE AND DATES COVEREDI Final Report, 01 Mar 88 to 30 Apr 90
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

SOFTWARE REVERSE ENGINEERING '-,- .. AFOSR-88-0116

_____ 61102F 2304/A2

6. AUTHOR(S)

Professor NoahS. Prywes

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

School of Engineering and Applied Science REPORT NUMBER

Dept of Computer & Information Science

University of Pennsylvania AFOSR- .
(200 South 33rd Street

Philadelphia, PA 19104-6389 JAW
9. SPONSORING/MONITORING AGENCY NAME(S) AND AD I) I 10. SPONSORING/MONITORING

4 AGENCY REPORT NUMBER

APOSR/NX AFOSR-88-0116
Bl1dg 410

11. SUPPLEMENTARY NOTES a- t

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CG.1E

Aprovd f 0, pu1hlle re'lecl5e,diatrbutGoA =mlimited*

13. ABSTRACT (Maximum 200 words)

The goal of this research was to develop algorithms to translate procedural
languages (such as FORTRAN and PASCAL) to non procedural languages. Such
algorithms are desirable for a number of reasons. Their semantics is easier to
understand since they resemble a set of specification for action rather than the
traditional flow of control. They are easier to modify since statements are not
dependent on one another. It is easier to verify their correctusessince standard
theorem provers used for program verifications require programs to be in non
procedural form. Lately, with the increase need in DoD of translating old programs
to new languages such as Ada (reverse software engineering). It is advantageous
to reduce old program to a common non procedural form before translation from that
form to the target language. This will permit the recapture of the program's
semantics, make desired modificaton, check its correctness, etc. Accomplishments
are 1) algoithms to translate FORTRAN programs to MODEL. FORTRAN representing a
procedurel language and MODEL represent a non procedural declarative languate.
2) Algorithm to translate concurrent FORTRAN programs to MODEL.

14. SUBJECT TERMS 15. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION I8. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAR

NSN 7540-01-280-5500 7% Standard Form 298 (Rev 2-89)
U 191 crbe b, ANSi Srid 139.'S

LNI VERSITY of PENNS YL VANIA

School of Engineering and Applied Science
Dep)artment of Computer and Information Science
200 South 33rd Street
Philadelphia, PA 19104-6389 Accession For

NTSGRA&I
January 11, 1991 DTIC TABUnannouwced

Justificatio

Dr. A. Waksman
Air Force Office of Scientific Research Distribution/
Boiling Air Force Base, DC 20332 Availability odes

Re: Contract #AFOSR-88-0116 Dist Special

Dear Dr. Waksman: 3 L
Please accept this letter as the Final Report for Contract AFOSR-88-0116 titled, "Software

Reverse Engineering". Research was conducted from March 1988 until April 1990 and the
funding was $171,970.

The discussion below describes the goals of the research, the accomplishments and future
research and development to exploit the accomplishments.

1. The Goals of the Research

The research focused on developing two-way automatic translation between two classes of
languages in which computer programs can be represented:

• procedural languages used widely for programming, and

• nonprocedural mathematical languages also called functional, assertive, etc.

being used in a new paradigm for programming.

Mathematical languages have simpler semantics and can be manipulated by a powerful
algebra and therefore are claimed to be easier to use, understand and verify.

Manual translations from procedural to mathematical languages are used in a number of
methodologies, ranging from program verification to parallel programming. Automating the
translation will provide strong impetus to these methodologies. The great importance of
such an automatic capability has recently become evident due to the increasing needs for
software reverse engineering - the conversion of old programs to new languages (Ada) and
new platforms. A two-way translation - of old procedural programs to a mathematical
language and hence to the new procedural language and to a new platform - is in effect the
embodiment of software reverse engineering. For these reasons, the capability to accomplish
the translation automatically will have a major impact on developing improved software
development paradigms.

The goal of the project was divided into two steps:

1. Developing a translation algorithm for purely sequential programs (typically used
in scientific applications).

2. Developing a translation algorithm for concurrent programs (essential for real-time
applications).

The MODEL language was used as an example of nonprocedural mathematical languages. It
can be manipulated by regular and boolean algebras. A translation from MODEL to
procedural languages (PL/1, C and Ada) has been developed at the University of
Pennsylvania over the past decade. Thus the project focused on the reverse translation: from
procedural languages to MODEL.

2. Accomplishments

The project accomplished the above goals.

Algorithms were developed for the translation in two steps as follows.

1. Algorithm for translation of high level pure sequential procedural language
(e.g. Fortran) to the MODEL language: The algorithm is lengthy and complex.
Several of the staff examined and hand simulated the algorithm and suggested
modifications and ex# -nsions. For this reason a number of revisions of the report
of this algorithm were issued.

The translation consists of eight transformations. Starting with the source program,
each of a first group of six program transformations modifies a program into an
equivalent program which is progressively closer to the mathematical language. The
source program is first translated into a basic subset of constructs. It consists of
variable declarations (including types and structures), blocks (ifs and loops) and
assignments. The basic statements are general purpose and typical of high level
programming languages. The declarations, blocks, and assignments have a common
meaning in programming languages, although the syntax differs. "Goto's" are
translated in "whiles' Procedure calls are viewed as operations on their parameters.
Each of the first six .ransformations provides as output a program that is equivalent to
the input to the transformation. It starts with the source program and ends with a
single assignment, single value variable program that can be directly transformed into
mathematical equations and declarations.

There is a second group of transformations that make the specification easier to read,
understand and modify. The objective is not only that the specification is equivalent
to the source program. but also that it be readable and understandable. The
transformations in the second group use algebraic symbolic manipulations to operate
on the equations. They collect like factors to simplify logical expressions and use
substitutions to reduce the number of variables.

2

2. Algorithm for translation of concurrent procedural language to the MODEL
language: This algorithm was reported toward the end of the project. It consists
of an extension to the previously developed algorithm, to handle concurrent programs
with shared memory.

Concurrent programming examples were used to investigate the reverse translation of
typical real-time procedures that share memory with other tasks. We alsn ,iveloped
graphic visualizations in the form of dependency diagrams. Evaluation results are
displayed in a table to further explain the specification and outline the reasoning
about it.

Shared variables were viewed similar to external inputs and outputs. They provide an
interface between concurrent programs. Every reference to a shared variable value is
viewed as if it is newly read or written from, or to, an i/o device, and is given a
different name. In this way we can consider the shared memory with each of the
concurrent programs independently, instead of having to consider all the concurrent
programs simultaneously.

Publications

Reports

1. N. Prywes, X. Ge, I. Lee and M. Song, "Reverse Software Engineering", Technical
Report, Revision 3, Contract AFOSR-88-0116, submitted to the Air Force Office
of Scientific Research, Bolling Air Force, Maryland 20332, December 1989.
This report documents the algorithm for translating sequential procedural language
programs to a mathtmatical language.

2. M. Song, "Reverse Software Engineering of Concurrent Real Time Programs",
Technical Report, Contract AFOSR-88--0116, submitted to Air Force Office of
Scientific Research, Bolling Air Force Base, Maryland 20332, December 1989.
Also Master of Science Thesis in Computer Science, University of Pennsylvania.
This report documents the extension of the translating algorithm for concurrent
programs.

Journal

1. N. Prywes, X. Ge., I. Lee and M. Song, "Procedural to Mathematical Language
Translation of Computer Programs".
Accepted for publication by Science of Programming, to be published in 1991.

Conferences

1. X. Ge, N. Prywes "Reverse Software Engineering", Proceeding of the Workshop
on Reverse Engineering, Naval Surface Warfare Center, White Oak, Maryland,
20903-5000, April 1990.

2. N. Prywes, "Reverse Software Engineering of Concurrent Programs", Proceeding
of Knowledge Base Software Assistant Conference, Rome Air Development Center,
Rome, NY, August 1990.

3

Invited Talks

The results of the project were presented in a number of invited presentations at Confer-
ences (National CASE Conference, 1990) Universities (University of Pennsylvania, Stanford
University) and Laboratories (Avionics, Wright-Patterson Air Force Base; Navy Ocean Systems
Command).

3. Suggested Future Research

As noted, the developed algorithms can be used for software development in the re--engi-
neering paradigms. The use of the translation algorithms for software reverse engineering was
discussed above.

The representation of a program in a mathematical language allows manipulation using
regular and boolean algebraic semantics. It can be used in far reaching ways in a number of
methodologies ranging from program verification to parallel programming.

There is a potential for significant advances in software understanding through use of the
mathematical languages instead of the conventional programming languages. Our reports have
discussed the use of graphics for presenting the algorithms of the software. We proposed a
software understanding system that will utilize these graphs for software visualization. These
graphs will be displayed to the user. They will be used for understanding, modification,
verification and testing. This approach will make use of Artificial Intelligence Expert Systems
or/and Symbolic Manipulation Systems to explain the software to the user.

Sincerely yours,

Noah S. Prywesj

Principal Investigator
Professor of Computer Science

NSP:tc

4

