
AD-A232 633

Naval Research Laboratory
Washington, DC 20375-5000

NRL Memorandum Report 6787

A New Asymptotic Theory for the
Periodically Forced Laser

THOMAS ERNEUX

Northwestern University
Dept. of Eng. Sciences and Applied Mathematics
McCormick Schbool of Eng. and Applied Sciences

Evanston, IL 60208

IRA B. SCHWARTZ

Naval Research Laboratory
Plasma Physics Division

Special Project for Nonlinear Science
Code 4700.3

Washington, DC 20375-5000

OTIC,
February 19, 1991 mI-M LECTErn

Approved for public release; distribution unlimited.

91 3 04 040



Form ApprovedREPORT DOCUMENTATION PAGE OMB No. 0704-0188
Public reporting Ourden for this collection of information is estimated to average I hour Per response, including the time for reviewing instructions. searching existing data sources,
gathering and maintaining the data needed, and completing and revewming tihe collection of information Send comments regarding this burden estimate or any other aspect Of this
collection of information. including suggestions for reducing this burden to Washington Headquarters Services. Directorate for information Operations and Reports. 1215 jetferson
Davis Highway. Suite 1204. Arlington, VA 22202-4302, and to the Off ice of Management and Budget, Paperwork Reduction Project (0704-0188). Washington. DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
1991 February 19 Interim

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
A New Asymptotic Theory for the Periodically Forced Laser 47-3638-O-1

6. AUTHOR(S)

Ira B. Schwartz, Code 6522
Thomas Erneux (Northwestern University)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) B. PERFORMING ORGANIZATION

Naval Research Laboratory REPORT NUMBER

Code 4700.3 NRL Memorandum
Washington, DC 20375-5000 Re 6787

Report 6787

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

Office of Naval Research AGENCY REPORT NUMBER

Arlington, VA 22203 RR Ol-0241

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

Sustained relaxation oscillations and irregular spiking have been observed in many
periodically modulated lasers (2). These observations have been substantiated
numerically by recent studies of the laser rate equations (3,4). In this paper,
we propose a new asymptotic analysis of the laser equations which assunes that
the laser bscillations correspond to relaxation oscillations. We identify a
large parameter and construct these periodic solutions using perturbet.on
techniques. We obtain the equations for the Poincare map and determine the first
period doubling bifurcation.

14. SUBJECT TERMS 15, NUN BER OF PAGES

Nonlinear dynamics Chaos 15

Bifurcation theory Nonlinear Optics 16. PRICE CODE

17. SECURITY CLASSIFICATION 1B. SECURITY C!' 'S'lCAIION 3. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAR

NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)
Prelscri bd by ANSI S i 29. 18
i98o102



CONTENTS

1. FORMULATION ............................................................................................ I

2. THE CONSERVATIVE SYSTEM ....................................................................... 3

3. SMALL DAMPING AND SMALL AM!PLITUDE FORCING ..................................... 3

4. THE PERIODICALLY MODULATED CONSERVATIVE SYSTEM ............................ 4

5. THE SINGULAR PERTURBATION ANALYSIS .................................................... 6

6. THE POINCARE MAP ....................................... .. ........................... 8

7. CONCLUSIONS ............................................................................................. 10

ACKNOWLEDGMENTS ........................................................................................ II

REFERENCES ..................................................................................................... 1

Accession For

NT ,-RA&I
PT!C. TAB

j ;,. f tclo io

Distarlbti ....

AvalabilitY CodeS

lAvail an,!/or

iii



A NEW ASYMPTOTIC THEORY FOR THE
PERIODICALLY FORCED LASER

LO-OITION

We consider the laser rate equations for a single mode, ' h3ogene-isly

broadened and periodically modulated laser. They consist of two ordinary

differential equations for the intensity I and the inversion of population

D. We investigate the effect of periodic modulations of the cavity decay

rate of the form x(T') - xO(1 + Acos(aT')) where a and o are the amplitude

and the frequency of the periodic modulations, respectively. In terms of

dimensionless variables, the problem is then formulated as [1]:

A' - 21(-l + AD - Acos(wT)] (1)
dT

Q- 7(l - D(l + I)] (2)
dT

where T is defined as T - xoT'. A is the pump parameter, 7 is the loss rate

for the population divided by the cavity decay rate x and w - a/IC0 .

Our objective is to analyze the periodic solutions of the laser

equations in the limit 7 - 0 (A > 1). This limit applies for class B lasers

which includes ruby, YAG, CO2 and semiconductors lasers (2]. If A > 1 and a

- 0, the zero intensity solution is unstable and Eqs. (1) and (2) admit a

non-zero intensity solution given by
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I - A -l and D0 - 1/A. (3)

A linear stability analysis of this steady state solution shows that it

corresponds to a stable focus as 7 - 0. In this limit, small perturbations

from the steady state are decaying on an 0(7
"  time scale with 0(7 1/ 2

period oscillations. This suggests to reformulate Eqs (1) and (2) in terms

of the deviations from the steady state solution (3) and to introduce a new

basic time t - 71/2T. These new equations are formulated in [1,3] and are

given by

dt _ _ y " -e 2xy (4)

- (1 + y)(x - 6cos(ot)] (5)dt

where the new variables x, y, t, and the parameters e, 62, 6, 0 are defined

by

x - (D D0)A(j20
)1 / 2 , y - (I - 10)/o 0 9 t - (2710 )

1/2T (6)

and

" " 0A(-1-/2, '2 (0 1/2 6 -( )1 /2  Q - w/(2710 )I / 2  (7)
21o 0 2 6 -f 0I ~ o(y0~2

Note that £ and e2 are 0(7 1/2) small quantities. The parameters 6 and 0 are

two control parameters which we assume 0(l).

Numerical studies of Eqs. (4) and (5) are given in (3,4]. These

studies have shown that the bifurcation diagram of the periodically forced
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laser admits several branches of periodic solutions appearing either from

period doubling bifurcations or from saddle-node bifurcation points.

THE CONSERVATIVE SYSTE(

If 6 - C - e2 - 0, Eqs. (4) and (5) reduces to a conservative system of

equations given by

-M.. Y (8)
dt

Y- X(l + Y) (9)dt"

This system is conservative and admits a one-parameter family of periodic

solutions. A first integral is given by

C - Y - ln(l + Y) + X2  (10)

where C is the constant of integration. For each C 0, there exists a

periodic orbit in the phase plane (X,Y). The orbit is surrounding the origin

and is bounded below by the line Y - -1. An example is given in Figure la

for C - 4. The broken line corresponds to Y - -1. Figure ib shows Y(t). Note

that the oscillations of X(t) are almost triangular and Y(t) is nearly equal

to Y - -1 except during a short interval of time. These properties of the

periodic solutions becomes more dramatic as C becomes larger and will be

used in our asymptotic analysis.

SIMLL DAMPIN AND SMALL-AMPLITUDE FORCING

In [1] and [3], we proposed an asymptotic analysis of Eqs. (I) and (2)

which is based on the simultaneous limit of small damping constants (e - 0,
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'2 - 0(e)) and small amplitude forcing (6 - 0(e)). In this limit, 2wn/0-

periodic solutions (n-1,2,3,..) of Eq. (4) and (5) are constructed using a

regular perturbation analysis in e. We have found that there exist for each

n two distinct branches of periodic solutions which appear as 6 surpasses a

critical value 6 - 6n(e). The branching of these solutions from the limit

point located at 6 - 6n is called primary saddle node bifurcation in (31.

The branch of saddles emerging from this point is responsible for the

irregular spiking observed in [2]. The asymptotic analysis based on the

limit C - O(C2) 0 is valid provided that the values 6 - 6n(c) are O(e)

quantities. However, the exact numerical determination of the periodic

solutions for specific small values of e and e2 [3] indicate that the values

6 - 6n is 0(l) as n - 2, 3,.. and increases as n - -. Moreover, the 2rn/0-

periodic solutions are large amplitude relaxation oscillations similar to

the periodic solution of the conservative system (8) and (9) when C is

large. We have noted that these relaxation oscillations already appear for

the case n - 1 when 6 - 0(1). These observations suggest to analyze the

periodic solutions of Eqs. (4) and (5) as relaxation oscillations. To this

end, we propose a new asymptotic method based on the limit C - keeping e,

e2 and 6 fixed.

THE PEIODICALLY MODUlATED CONSEVATI STEM

In order to clearly differentiate the effects produced by the periodic

modulations and the effects related to the damping coefficients e and £2, we
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consider the simplified problem with e - e2 - 0. From Eqs. (4) and (5), we

then find

six y (11)
dt

Y- (1 + y)[x - 6cos(rlt)] (12)

dt

The bifurcation diagram of the 2r/C-periodic solutions (period 1 branch) and

the 4f/f-periodic solutions (period 2 branch) has been analyzed numerically

for 0 - 0.9 using a continuation method. We have found that the bifurcation

diagram for e - e2 - 0 is a good approximation of the bifurcation diagram

when e P 0 and e2 o 0 [3] if 6 is not too small. The period 1 branch starts

at the origin of the amplitude vs 6 bifurcation diagram and is S-shaped. Its

left limit point is located at 6 - 0. The bifurcation diagram can be

determined by a perturbation analysis treating Eqs. (11) and (12) as a

weakly perturbed harmonic oscillator. The method is described in (1] and

correctly predicts the S-shaped bifurcation diagram. The period 2 branch

emerges from the period 1 branch at a period doubling bifurcation point (5

1.26), is S-shaped and admits a right and a left limit point at 6 = 3.61 and

6 - 0, respectively.

From the linearized theory for the 2xn/Cl-periodic solutions, it can be

shown that the periodic solutions are either neutrally stable (elliptic

point) or unstable (saddle point). This suggests that Eqs. (11) and (12) is

a conservative system of equations.
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THE SINGULAR PERTURBATION ANALYSIS

We now propose to construct the periodic solutions using a singular

perturbation method. As C - =, the closed orbit in Figure la becomes more

triangular and is characterized by a slow evolution near y - -1 and a quick

large O(C) pulse in y. This suggests to construct the periodic solution in

two parts. The first part (called outer solution) corresponds to the slow

evolution of the solution. The second part (called inner solution) describes

the rapid change of both x and y.

Outer solution. The outer solution is characterized by y -1. In first

approximation, we obtain the following equations

dx 1 and 1d1 - (1 + y)[x - scos(Ot)]. (13)

dt dt

We solve these equations with the initial conditions

x(t0) - x0 < 0, y(t0) - Y0 > -1. (14)

After integration, we obtain

X(t)- x0 + (t - t0 ) (15)

and

y(t) - -l + (y0 + l)ef(t) (16)

where

f(t) - Xo(t - tO) + 1(t - tO)2 - - sin(Ot (17)

Since x0 < 0, f(t) is negative near t - t0 and y + 1 is exponentially small

until f(t) becomes positive. The critical time t - t1 satisfies the

condition f(t) - 0 or equivalently

Xo(t to ) + 2 (t to ) 2 [sin(Ot1 ) sin(Dt0)] - 0. (18)
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At t - t1 , x(t) and y(t) admit the following values

X(t1) - x1 - x0 + (t - to) and y(tI ) - y0. (19)

However, as soon as t > tl, y(t) is increasing exponentially and the

approximation y = -1 is no more valid. We now assume that x and y are

changing rapidly and propose a new approximation of the solution valid for t

= ti.

Inner solution. The inner solution or inner layer solution describes the

sudden increase and decrease of y and is characterized by the fact that t

remains close to t . Thus, this solution satisfies in first approximation

Eqs. (11) and (12) with t - t

dx
d " y (20)

dt1dt ( + y)(x - 6cos( tl)J. (1

We solve these equations in the phase plane. A first integral is given by

C - y - in(l + y) + 2x2  6xcos(OtI) (22)

where C is the constant of integration. The assumption that the inner

solution is characterized by large values of both x and y implies that C is

large. We connect C to the value x - x, previously computed from the outer

solution by using matching conditions. To this end, we rewrite (22) as

y + 1 - exp[2Jx 2 - 6xcos(ntI ) - C + y] (23)

Matching implies that as y - -1, x - x . Since C is large, the condition for
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a bounded solution requires that the expression in brackets is zero at y - -

1 and x - x . Thus, x - x1 is the positive root of the following quadratic

equation

1x2 _ Sxcos(otI) (C + 1) - 0. (24)

The variable y is rapidly increasing and then decreasing. From (21) and then

from (22), we note that the maximum value of y appears at x - Scos(Ot1 ) and

is an O(C) quantity. On the other hand, the variable x is progressively

decreasing from x - x1 > 0 to x - x2 < 0 where y approaches y = -1. The

critical value x - x2 now corresponds to the negative root of Eq. (24) and

is related to x1 by the following relation

x - - x1 + 26cos(Ot1 ). (25)

THE POINCARE MAP

In summary, we have found a map describing the periodic solution of the

forced laser equations (11) and (12). This map connects the successive

minimum or maximum values of x. We denote by x - X2n < 0 and x - X2n+l > 0,

the minimum and maximum values of x corresponding to the times t - t andn

tn+l, respectively (n-0,l,2,..). From (18), (19) and (25), we have the

following relations between X2n' X2n+l, tn and tn+l:

(1) x2n+l - x2n + (tn+l - tn) (26)

( 2n (n+ tn) + 12(tn+l n ) [sin(Otn) sin(Otn)] - 0 (27)

(3) x2n+2 - -X2n+l + 25cos(t n+l) (28)
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We illustrate our analysis by seeking particular solutions of Eqs. (26)-

(29). We consider the cases of period 1 solutions and the period doubling

bifurcation.

Period I solutions. Period 1 solutions satisfy the conditions

X2n+2 - x2nandtn+1 -t - (29)

Inserting (29) into Eqs. (26)-(28) leads to the following relations between

X2n' X2n+l and tn:

x x 2n + (27), (30)

x 2 ( a) + I - 0, (31)

X2n - - x2n+l + 26cos(Qt n). (32)

From (32) and then from (31), we find x2n and x2n+l:

SZM(33)

X2n aX2n+1 a

Then from (32), we obtain

cos(Otn ) - 0 (34)

which implies

t 2nw (35)
n - TO + -

The period doubling bifurcation. Period 2 solutions satisfy the conditions

x2n+4 - X2n and tn 2 -t - 4 (36)

We introduce the first condition in Eqs. (26)-(28) and formulate the problem

for x2n' X2n+l, x2n+3, tn+l and tn+2* The analysis of these equations can be

simplified if we introduce the variable r defined as: r - tn+ I - tn - .
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r - 0, the period 2 solution becomes a period 1 solution. In terms of r, the

problem can be reduced to two equations for r and tn. Since the period

doubling bifurcation occurs as r 0 0, we have analyzed these equations in

this limit and have found the conditions

1 + 6nsin(lt n) - 0 and cos(nt) - 0. (37)

These conditions admit the solution

-- i 2n,-22 &+ and 6 - 1/0. (38)€n - 2.0-

For 0 - 0.9, the period doubling bifurcation is located at 6 - 1/ - 1.1.

The exact numerical value is 6 - 1.26.

CMHCUMIONS

In this preliminary report, we have shown how to use a singular

perturbation approach to obtain a discrete map for the driven conservative

laser problem. Periodic solutions of period 1 and 2 are located and the

position of the first period doubling bifurcation agrees with the position

obtained numerically for the laser rate equations.

It is known that the manifolds of the saddle periodic orbit governs the

global behavior of phase space such as chaos and chaotic bursting. Since our

technique may determine periodic orbits which are close to these branches of

saddle orbits, our laser map captures some of the global behavior observed

in the full system. The singular perturbatiun technique used here will be

applied to the damped laser problem to exploit other global features in a

future paper.
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