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BACKGROUND SIMULATION AND FILTER DESIGN USING

ITERATED FUNCTION SYSTEMS

0 Introduction:

One of the basic problems in signal processing is that of determining whether a known

signal embedded in a noisy environment can be detected using some sort of algorithm.
Typically, the signal is perturbed by an unknown noise source, and the algorithm is a con-
volution of a filter with a signal. (For a review of linear filtering theory, see Kalaith, 1974.)
The convolution may be adaptive over the signal [Stein,1987, or it may be fixed, as in the
matched filter [Gardner, 1986, pp.269-2 721. In the case of the matched filter, the filtered

signal-to-noise ratio is maximized by enhancing those frequencies that are above the noise
power, and de-emphasizing those frequencies for which the signal is noise dominated.

Typically, matched filters fall into one of three well- known types: low pass filters, high
pass filters, and (mid-)band pass filters. The design of such a filter requires that the statis-

tics of the noise be known apriori. In particular, the autocorrelation (equivalently, the pow-
er spectrum [van Kampen,1981,p.621) must be known. As a result, almost all filters that

are applied to wide sense stationary processes having a known power spectrum are de-

signed in the frequency domain by using Fourier transforms.

On the other hand, Nature exhibits examples in which the statistics of the noise are un-
known in space and/or time, or the statistics may be non-stationary. In this case, a matched

filter for a known signal cannot be designed, since the power spectrum is unknown. Alter-

natively, in addition to being unknown, the spectrum may be spread over a large range of

frequencies. Examples of noise possessing such a range are 1/f noise [West, 1989], or

broadband noise of a chaotic attractor [Parker,1987]. The implication is that it may not be

advantageous to design a filter in the frequency domain, but instead work in the space-

time domain. We define a filter designed using a least mean squares technique to be a least
mean squares filter (LMSF).

The goals of this paper are twofold. First, we derive a three-dimensional filter designed in
a space-time domain to detect a known signal in an unknown but smooth background. We

assume the background to be smooth in order to demonstrate the technique of filter design

and background modelling. In the detection of moving objects or the extraction of moving

features from a bank of images, the three dimensional domain consists of two space di-
mensions and one time dimension. We remark here that the modeling of smooth back-

grounds deterministically has also been considered in [Chen,1989] and [Longmire et al,
19881 in feature extraction problems.

Although models for, arid fitcrs based upon smooth backgrounds are easy to derive, they

are crude approximations when trying to model backgrounds wh,..h aAe nonsrmooth. Ex-

amples of nonsmooth backgrounds abound in nature in which there is no preferred length

scale over a particular wave band. Such nonsmooth examples occur ai fracial coud

boundaries [Lovejoy,1982,1985,1986], fractal properties of wind driven sea states [Baren-

blatt,1981;Elgar,1989;Stiassne,1986;, and Zaslavskii, 1987], and 1/f noise [West,1989].

Manuscript approved November 7, 1990,



The prototypical example of a nonsmooth curve is the well-known Weierstrass function,
which is continuous everywhere, but nowhere differentiable. Hughs [1980] demonstrates
that the Weirstrass function is fractal. Another example of a nonsmooth curve generated
by a stochastic process is Brownian motion [Wong, 19 85,pp. 46ff]. It too can be shown, in
a probabilistic sense, to be fractal. Therefore, our second goal is to model deterministically
a nonsmooth but continuous background, such as the Weierstrass function, in one-dimen-
sion.

Since the backgrounds we are dealing with are fractal, the tools of choice used in model-
ling them used are those of Iterated Function Systems (IFS) [Barnsley, 19881. Current and
past research in IFS theory has focused on data compression, and not filter design. The
main result of this paper is the design of a linear filter which models (in a least squares
sense) a fractal background and detects a known signal shape. Furthermore, the unknown
background may be simulated as an attractor of a nonlinear dynamical system which con-
sists of a set of a small number of chosen maps, yielding information about the roughness
or dimension of the background. The advantage of using such an approach is that self sim-
ilar backgrounds having fractal dimensions, such as cloud edges and cloud intensities,

may be modelled with only a few parameters.

The layout of the paper is as follows. Section 1 contains the design of a three dimensional
linear filter for a smooth background. The analysis of the filter on known smooth back-
grounds is done in Section 2. When the background is assumed to be a correlated Gauss-
ian, a multivariate statistical formulation of the filter along with its performance is given in
Section 3. In many applications, it is useful to know how the LMSF performs with a back-
ground that is normal. If the background noise is Gaussian and uncorrelated, then a
matched-filter detector minimizes the probability of detection error when a threshold is
properly set and applied to the filtered signal [van trees, 1968, pp. 2 86-29 0]. One relevant
criterion used in characterizing the probability of error detection is the probability of de-
tection of a signal that is not present, called a probability of false alarm (PFA). It is shown
in this paper how the PFA depends upon the LMS filter weights. Section 4 briefly de-
scribes the machinery of an iterated function system (IFS), and the basic results needed to
simulate a known background. Section 5 extends the analysis to the design of a model of
an unknown background in terms of an IFS. Numerical examples of the IFS-based filter
are given in Section 6. Our conclusions are presented in section 7.

1.0 Three dimensional filter design on smooth backgrounds:

This section sets up the notation and machinery to detect a known time-dependent signal
moving through space. The signal may have a time-dependent intensity or brightness. Ex-
amples of a known signal would be an aircraft hivi'g a given velocity !Tuving aross ,a
sensor's field-of-view, a moving boundary in an experiment, or a communications signal
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in the presence of noise. The noise or clutter might be the brightness from a bank of
clouds, sensor noise, turbulence, or low dimensional noise such as noise generated deter-
ministically that is chaotic. Much work has been done in feature extraction, or the detec-
tion of features in one and two dimensions [See Chen,1989, for example] for smooth
backgrounds, but we begin with the analysis of a three dimensional space. The main ad-
vantages of incorporating time is an overall increase in performance of the receiver oper-
ating characteristics [Scribner, et al, 19881.

To formulate the problem, define the spatio-temporal location of the signal by coordinates
xi = (x1ix2i,x3i). The signal maps out a smooth curve C as a function of time t,

C : x 2  = 2 " (t) ,t E[t0.tj l,(.)
LX 3 3 W/)

where yi, i=1,2,3 are smooth functions. We will think of the problem as being analyzed in
a stack of image planes, with each discrete coordinate in each plane denoting a pixel. The
coordinates are discretized at times ti; i.e., (x Ii, x 2, x ) = (Yt ('i)" Y2 (ri) , 3 (ti) ) is the
location of the ith pixel. Following Pratt (1978, page 127], pixels are ordered by columns,
as illustrated in the example below.

Example of column ordering:

[ 31 5 j7

L I (1.2)2 4 t-68 _

x 3  1 x 3 2

In the example, there are two 4X4 frames of data at times x3= I and x3=2. If the signal ap-
pears in the pixels labelled 1 and 7 in the above two frames, then we assign signal coordi-
nate (1,1,1) to pixel I and (1,2,2) to pixel 7.

Now suppose the signal brightness at pixel i is a function of position (x,x 2 ,x3) , i.e.,

3



S= (x). 0.3)

where 3 is a scalar function of xi = (xi,x 2i,x 3). Since the signal is a function of 3 dimen-
sions, the filter designed will be a 3D filter. (For other examples of 3-D filtering, see Reed
et al, 1988, Hecht-Nielsen,1987.)

If N 1, N 2' and N 3 denote the number of pixels in the 3 directions, the total number of
pixel, that needs to be considered is K = N • N 2 ' N3 . Each pixel has some probability

of containing a time dependent signal and background. Designing a filter based upon an
unknown background that is smoothly varying in both space and time requires that the

background be approximated by some model. Suppose the signal and background are add-
ed together. The model of the signal at pixel i consists of a triple designating space and
time coordinates given by x1, and a brightness given by si. (Here i ranges over the number

of pixels K.) Assume the center-of-mass of the 3-D grid is the origin, and
I N N 2 E -N X , N 2 3E -N X ,

xi ] 2 2 ] and x 2 Since the approximation of the

background is assumed to be smooth in space and time, the background can be modeled

locally at each pixel by a Taylor series expansion in x about the origin. Specifically. the i'h

component of the model is given by
kl

[.f(x, s) ] i = A I si +A 2 ui+ Bl.x +B 2 1k. x .+B 3 kl i
(1.4)

where I is a K-dimensional vector function of x = (Xl,X2,...,XK) and s = (sIS2....SK). In

Eq. (1.3) i runs from 1 to K and repeated superscripts j,k,l are assumed to be summed over

their limits. The jth component of the vector u is defined by [uj = 1, j = 1,...,K, and de-

notes the constant level of the background, implying it is not necessary that the back-
ground have zero mean. The first term on the RHS of Eq. (1.3) is proportional to the signal

strength at (xi , xi, xi). The remaining terms model linear and higher order variations in

the background. The coefficients A1,A2,B ij,.... are constants to be determined. Notice that

for each polynomial of degree m in the background approximation, there are at most
3+m-l +(3 +m-1 ) !

In m! 2! distinct monomials of degree m. Less than this number can

be allowed since some directions may not be as smooth as others. For example, in some
cases it may be sufficient to assume that the background is linear in time and quadratic in
space.

The above notation is compressed in the following way. Introduce the K-dimensional vec-
tors zj, where the ith component is defined by
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[zlz21 ui Iz3 i 2 I Z41i =

= [3 I I. z8]2 1 X'3

[Z91i X 2.x2 [z I = X 3  [zz] . X -...

9  = ~ [ 1 0 ]. = Xix [ 1  - (1.5)

Using this transformation, the model in Eq. (1.4) may be written in the simplified form

M+2

f(A) = A zi. (1.6)

where f is a function mapping RM+ 2 to RK. The value of M is the number of monomials
having degree less than or equal to m; i.e.,

m

The vector of parameters, A = (A1 .  AM+2), is to be determined.

Letting the K measured observations at each pixel be denoted by the vector v, define the
residual error to be e(A) = f(A) - v. The residual error is to be minimized by finding A such

that II ell2 is minimized in the Euclidean norm. Minimization of the residual error resuits in
a least squares problem, and is equivalent to finding an M+2 dimensional vector A that

satisfies the normal equations

(f(A) - v) = 0 (1.8)

Since f is a linear function of A, the matrix of coefficients is independent of A., and Eq.
(1.8) may be written as

S.-A = =- -Jj . (1.9)

where S is a symmetric matrix having its ijth element given by z'. • z1.

Now suppose S is nonsingular, and let B be its inverse. Then Eq. (1.8) can be solved for A

uniquely. In particular, since

5



I--A A .V] = i -v. (1.10)

the signal coefficient A1 is given by

M+2

A1 = I (1.11)
j= 1

- k [ [B I . [zj IvIk (1.12)
k=l Ij= I

Coefficient A1 now may be written as a one dimensional convolution. Let w be a K-di-
mensional vector with kth component defined by

M+2

[w]K+lk= [B] l[zj]k (1.13)

j=1

Then Eq.(1.11) may be written as

K

Al = [W]K-k+lVk
k=l

=w v (1.14)

The symbol * in Eq. (1.14) denotes a one dimensional convolution between the vectors w

and v. Components of the vector w are the weights of a filter designed for a given signal s.
The idea is that convolving w with any background that is smooth up to degree m in space

and time should have a null result. This is indeed the case as will be shown in the next sec-
tion.

2.0 Analysis of a three dimensional LMSF:

Suppose the vector v contains no signal, but has a smooth background (or clutter) given by

6



M+ 2

V I CZ (2.1)v= 2~
j= 2

where the Ci are arbitrary real numbers and the zj are defined in Section 1.

Proposition 2.1: For the background given in Eq. (2.1), if S is nonsingular, then A1  0,
and Ai = Ci, i=2,....t+2

Proof: Using the background specified by Eq. (2.1) in the linear system of Eq. (1.9) results

in solving a system of the form

S.A = A.C (2.2)

where A is an M+2 x M+1 matrix and C is vector whose components are

(C2,C3 . .. CM+2). The ijth component of A is given by t which implies that A is a minor

of S.

Let C1 = 0, and augment the right hand side of Eq. (2.2) as follows:

- C 1

zlzi

* C2
A = . (2.3)

L
ZM+2Zl CM+2

The result immediately follows from the nonsingularity of S.

If one used the filter weights derived in Section 1 and convolved the weights with the
smooth background, a similar result holds.

Proposition 2.2. Suppose v is as defined by Eq. (2.1). Then w * v = 0, where the compo-

nents of w are given by Eq. (1.8).

7



Proof: The result can be proven by direct computation. By using the linearity and defini-

tion of the convolution, we have

M+2 K

A1 = I Ci I [w1K+ I-[zl I} "  (2.4)

i=2 k=I

Substituting the explicit expression f r the components of the weight vector and simplify-

ing yields

M+2 M+2

A = C, [B! jz'z} (2.5)

i=2 j=1

Since [Sti = zzi, and

M+2 (2.6)

[B] t[S]ji = 1, ifi=l
j=1

= O, otherwise

the result follows because the outer summation on i in Eq. (2.5) does not include i = 1.

The two propositions show that the convolution of a smooth background up to terms of or-

der specified by the model with the weight vector yields a signal amplitude that is zero. A

given sequence of images, then, having this background, can always be considered to be

zero after convolution.

3.0 Analysis of the filter on correlated Gaussian backgrounds

Multivariate Formulation: When formulated as a convolution, the LMS filter is generally

thought of as operating on a smooth background. This section analyzes the operation of an

LMS filter on a background that is normal with a given mean and covarance matrix.

In the previous section, it has been shown how the three dimensional background, filter

and convolution are formulated in terms of one dimensional arrays. Specifically, if AI de-

notes the scalar result after convolving the filter with the background, it was shown that

A1 = w*v, which may be written as an inner product:

Al = a . v (3.1)

where a,v E RK . If w is the vector whose components are the weights of the filter, then

8



a' = (WK,'WK , WK-2 ... w)

Suppose the vector v is a vector with each conponent a random variable (RV). In particu-

lar, v is assumed to be normal having mean .i an3 correlation matrix X. Let

n(vlI t,1) = (21r) 2 1111 exp - ( -v (3.2)

denote the multivariate normal density of RV v. The question addressed is, what effect do

the weights have on the signal coefficient Al? Specifically, what is the density of A,?
Since A1 is a linear function of the RV v. it follows that the density of A1 is also Normal.
To see this, it is easy to construct a nonsingular transformation that maps v into another

vector, say y, in Rn whose first component is A1. Let the transformation be given by

Y = a t P (3.3)

Yi = vj2i=-2,K

Therefore, there exists a matrix A such that y = Av, where det A = a1 --0. The density cor-

responding to y is n (y A g.,AEA t ) ). To get the marginal density for y1 means integrat-

ingy 2,y 3.... y,, from--o to -. An alternative way to derive the density of A1 is bypartitioning the vector v. Let V1 = vI R', and V2 E RK, whereV2 (v2, ,v ) Thus

v =(3.4)

Likewise, the mean is partitioned as

(3.5)

The matrix E is partitioned into four submatrices by

S 21 2 (3.6)

L12 221

where

9



Y. E E (V I -  11 )  (V i -  l) ,

£22 = E (V 2 - 2) (V 2 - 2)'
(3.7)

1 12 =E(VI- Li) (V 2 - 9 2 ) t

121 = . 12

The dimensions of 1.I1, E22, 112 are (I x 1), (K-I x K-I), and (I x K-I), respectively. In
terms of the partitioned vectors, AI = aV 1 +aV 2 , where a2 = (a, as).

Let y denote an n-dimensional vector, and partition y in a manner similar to v;i.e.,
y = (Y 19 Y2 ) "

Proposition 3.1: If

I +a I z #0 (3.8)

then there exists a nonsingular transformation y = Tv such that
E(Y I -vI) (Y2 -v 2 ) # 0, where Vi = E (Yi), i = 12.

The proposition implies that the RV's Y, and Y2 are independent, even though V1 and V2

are not. Therefore the density of y is just the product of the Normal densities correspond-
ing to Y, and Y2.

Proof: Define the transformation by

Y=a V l + a t. V
2= 2 2(3.9)

Y2= V2 +b" V1

where bER - I. We claim there exists a b such that 0 = E (Y - v1 ) (Y 2 - v2) t. Indeed,

O= E(Y 1 -vi) (Y2 -v2)'
{[aV+a. V (3.10)

= a,1 12 + a2  -22 + (z 11 + a2 21) bt

Clearly, the cross-correlation is zero if and only if

10



(-a,) Z12 - (a' (311)bt  12 231

FII +a2" E21

The matrix of the transformation is given by

[a at1a2

T = [ bK 1  (3.12)

where IK-I is the identity on RK. 1.

It is now a trivial matter to compute the diagonal correlation matrices. In particular,

"I= E (Y1 - v1) (Y1 - v 1)

alla+aEa+a212 1 a222La2 (3.13)

= a'la

Likewise,

T 22 = E(Y 2 -v 2) (Y2 -v 2)

= b Ylb'+ bE 12 + [bE 12 1 + 22  
(3.14)

Since 2l2 = 21 = 0, Y and Y2 are independently Normally distributed. If

(3.15)

then the exponent in the distribution is

Q = (Y-v)'T - I (Y-v)
(3.16)

= (Y 1-v 1 )'9' (Y1 -v 1 ) + (Y 2 -v 2 ) 'P"(Y 2  v 2) (316

and the density for Y is given by

n ()I v, ') = n (Y11 VI, T I I) n (Y21 v 2, T2) (3.17)

By integrating over Y2, the density for YI = A, is retrieved. The following theorem has

just been proven.

11



Theorem 3.2: Suppose v contains a normal background given by Eq. (3.2). Then the den-

sity of the signal coefficient A1 is normal, and is given by n (Y 1j v1 , T 11) , where

vI = w" i, andTI' = W, rW.

Theorem 3.2 may now be used to formulate of the probability of detection. In section 2,

Proposition 2.2 showed that if the background was smooth in space and time and no signal
was present, then the signal coefficient, A1, is equal to zero. It is easy to see by using a

similar computation that if the signal is present in the absence of any background, A1 = 1.
For a signal in a target that is random, Y, = A 1 is a RV, and in general, will be somewhere
between 0 and 1. Detecting whether a signal is present, therefore, requires a thresholding
operation on the RV Y1. That is, after the vector v is convolved with w, the thresholding
hypothesis is:

If Y > t, then a signal is present

If Y < t, then a signal is absent.

An optimal threshold t is determined by comparing the PFA (the probability of detecting

a target when none is present) with the probability of misdetection (the probability that a
target is not detected when one is present). Here we are only interested in PFA in terms of
the filter coefficients.

Since the threshold density corresponding to the RV YI is given in terms of the weight
vector a and correlation matrix, the probability of exceeding a given threshold may be

computed. Letn (Yl v1 , 11 ) denote the density of the RV YI having meanv, and vari-
ance t'" The expressions for v1 andP 1l are given in Theorem 3.2. The probability that
Y1 is greater than a given threshold t is:

Pr[Y>'r] = I-Pr[Y<t]

= 1 - f n(Yl, I)dY (3.18)

We may assume that v is zero, and let a2 = 'P11 . Then

12



_y2

Pr[Y>tJ = I - 1fje ody(.
j~ica--(3.19)

='I ErfC.. '

where Erf(x) denotes the error function at x. Using Theorem 3.2, '-1 1 can be written in

terms of the weights and the FAR may be written as

Pr[Y>tc] = [-Erf( (3.20)

Equation (3.20) gives the PFA in terms of the weights and background statistics. Notice
that if a filter is designed which does not match the target exactly, then a perturbation anal-
ysis may be done to determine how the PFA changes. (See Schwartz, 1990.)

4.0 Iterated Function Systems - An Introduction:

In the next section, we consider modeling backgrounds which fail to be smooth in one- di-
mension. By nonsmooth, we will mean any curve that is continuous, but which may be
non-differentiable. The curve may also be scale invariant, such as a fractal curve. Iterated
function systems (IFS) will be used throughout this section and the next, so we discuss the
basic theory of IFS first. (The reader should consult Barnsley (1988) for a more detailed
description.)

Let K be a compact set in R2 supplied with a metric d (0, 0). Let wi: (K - K) for
i=l,...,N be strict contractions; i.e. there exists a positive constant s<l such that

d (w i (x), wi (y) ) :_ sd (x, y) (4.1)

for all x,y E K and i = 1,...,N. We define (K,wi:i=1,...,N) to be an IFS [Barnsley, 1986].
The basic result states that there is a unique compact attractor A c Ksuch that

A = U w i (A) (4.2)

To see that A is an attractor, assume we are given an arbitrary point x0 in K. Generate x,

by the rule

13



x I = w i (xo) with probability p, (4.3)

That is, associated with every map w i, ihere is a number (namely a probability) pi such

N

that 0 < pi < 1, and Y pi = 1. Attractor A may be computed by using Eq. 4.3 and a ran-
i= I

dom number generator. If there were only two maps (N=2), then each iteration could be
determined by the flip of a coin, where P, = P2 = 1/2.

The above technique generates an attractor with a certain distribution which depends on
the probabilities chosen for each map. In applying the techniques of IFS, we require the
location of the attractor at a set of pre-determined points. Therefore, we consider a deter-
rninistic generation of the attractor to an IFS. Since A is an attractor of a dynamical sys-
tem, it must be a fixed point of the IFS. To see that this is so, define H to be set of
nonempty compact subsets of K supplied with the Hausdorff metric

{(rmax' mrindI (rnax' {rin' }

h(B,C) = max axEB)(iyEc)d(,, y), (ma xeB )d(x, y) (4.4)

for all B,C E H. DefineW: (H -- H) by

W(B) = uw i (B) (4.5)

Then W is a strict contraction with

h(W(B),W(C)) < s h(B,C) for all B,C E H.

By the contraction mapping theorem [Barnsley, 1988], it can be shown that A is the unique
fixed point of W; i.e., A = W(A).

In contrast to the probabilistic iterative scheme given above, the set A may be computed
deterministically as follows:

Choose A0 e H arbitrarily.

Let An.,1 = W(An), n = 1,2,3,...

Then

A = lim A. (4.6)
,I ,.-* -o

Now we apply the IFS theory to a scalar function of a single variable.
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5.0 Modeling and filtering unknown backgrounds in terms of
IFS.

As mentioned in the previous sections, the matched signal detection problem deals with a

signal in an unknown background. As such, a background model must be assumed in or-

der to derive a filter. (In this case, the filter is assumed to be linear.) When the background
model is assumed to be expandable in a Taylor series about some neighborhood, it is im-

plicitly assumed that the background is highly correlated. Furthermore, the neighborhood

considered is the defined length scale of the background. That is, the background cannot

be modelled any more accurately using a larger number of samples. However, if the back-
ground has no real length scale, as is the case in many physical instances (see for example,
Pentland, 1984), then a finite Taylor series expansion just averages over the samples with-
out taking into account any of the scale invariant features. An explicit example of such a
scale invariant background is the well-known Weierstrass function, defined by

B (x) =-X 'cos (2 tX- 'x).x t- 1,1, (5.1)
j= I

where X > X > 1. Notice, if the derivative of the function B(x) is computed formally, it
Sy

diverges, so that it is differentiable nowhere. Also, it can be shown that the capacity, or
Ln (X )

fractal, dimension of B(x) is given byd c = 2- Ln (X) (McDonald,1985). Natural back-

grounds themselves may exhibit such behavior, as found in the work of Elgar (1989) and
Lovejoy [19821, where oceans, clouds and rainfall have fractal dimensions. Therefore, one
would like a more general model of the background in order to handle many different

kinds of natural phenomena.

To this end, extensive use will be made of IFS-based models of the background. The mod-

el will be restricted to scalar valued functions of one variable. Let I M [x0, xN] , and
/,, = [x,_ , Ix,, ], n = 1,2,3,....N. The background is assumed to be continuous, and as-
sumes the values yi at the points xi. For the present, assume the background is known. We

follow Barnsley[19861 in designing an interpolation function based on IFS theory. Let
Ln: (/--+ !,) be defined by

(X - XO) (x" - x, _5.)L '. Wx = xn - +  
(5.2)- X

Clearly, the endpoints satisfy the conditions

L,, (X0) = x,, _ 1 (5.3)

L,, (XN) = x,
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The explicit model of the background is now given. Let-c < a < b < 0-, and define the

compact set K =- Ix [a,b] Let Fn (:K -4 [a, b] ) be given by

F" (x, y) = any + x + -y,, (5.4)

where Ia~I < 1, P, and yare to be determined. We remark that although Fn is linear in

both x and y, it need not be. The function Fn is defined such that

F. (x 0, Y0 ) = Y. - I

F. (xN, YN) =Y 
(5.5)

For each n =l,2,3,...,N, Eq. (5-5) defines On and y, in terms of a .

The 1FS for the background is defined by { K,Wn: n= 1,2,3...,N ), where Wn is given by

[- (x) (5.6)

It can be shown that iterations of the above IFS converge to the graph of a continuous
function, namely, (x,f(x)) such that f(xi) = yi (Barnsley,1986). One can generalize the

above results to more general functions than those used in Eq. (5.4), but the piecewise lin-

ear formulation is sufficient for our purposes here. The IFS as defined is an alternative
method for interpolating data. The attractor of the IFS is the graph of a continuous func-

tion that interpolates the data, and depends on a set of N parameters, namely,

ap al, ... aN" By assigning a probability to each map of the IFS, one can generate the
graph by iterating the IFS using a random number generator.

The free parameters a 1, a 2, .. , aN determine the dimension of the graph of the interpo-

lating function. Notice that by setting an = 0, n = 1, 2, 3, ... , N, the attractor of the IFS

asymptotes to well known linear interpolation formula, given by

X- X._ 1

f(x) = y,_ 1 + ' (Y"-Yn- (5.7)Xn - Xn _ I

n = 1,2,3,.... N. For the graph (x, f(x)) to be a fixed point of the IFS, it is a simple exercise
to show that F,, (x,f(x)) = f(L,, (x)), where f(x) is defined by Eq. 5-7. Therefore, the

dimension of the graph is 1.

When thean's are different from zero, the graph of f(x) will still interpolate the data

points, but may not have an integer dimension. By noninteger dimension, we mean the ca-
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pacity, or fractal dimension, which is defined as follows. Let c be the length of a side of a
box in R2, and let ( denote a set in R2 that is bounded. Let N(e) be the number of boxes
having side E needed to cover set G, and define

log 

Then the capacity is defined as

To see what effect the parameters an have on the attractor of the IFS, consider the follow-

ing interpolation problem. Let the unit box be denoted by R0 = [0,1 x[0,1], and let the in-
terpolation points be (0,0), (1/2,1), (1,0). Let wi(x,y), i = 1,2 denote two of the maps

defined by Eqs. 5.3-6. The area of RO is 1. To compute the number of boxes needed to cov-

er the attracting set, we need to compute the areas of the successive iterates of the IFS on
R0 . Since L1 and L2 map [0,11 to [0,1/2] and [1/2,1] respectively, each image has width

equal to 1/2. However, since Vd, < 1, the functions Fi, i=1,2 are both contracting in

the y direction. (See Fig. 1 for an example of the image of R0 where cI = 0.2 and

a2 = 0.5.) Therefore, after iterating once, the area of R0 is reduced by each map by

I a]' i=1,2, and the total area of the first iterate is

1 [a 11 + 10'211 (5.10)

After a second iterate (See Fig. 2.), applying each map to each sub-interval [0, 1/21,[ /2,1]1
results in four new intervals each of length -, and the total area is now given by

1 2.1al+a2 
(2.12 2- t [a11 +[t 2I]. 5.1

Repeating the process n times results in an area equal to

2 .t 1 + l 211" (5.12)

Assuming a + la 2ao  [, and letting E = -, then the total number of boxes needed to
cover the n iterate of R0 is2
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fla[ l +la 21]

2 = [la l + la2 1 1 2. (5.13)

It follows that

d c nlog { 2 [lalI + la2 5]14

(n + 1) log2 (5.14)

and

log [lalj + ja 21 (5.15)
log2

By applying a similar analysis for p maps, it can be shown that after n iterates on RO, we
have

dnlog {p [la+...+lcy (5

(n+1)logp

and,

log [ lat +...'+ IN1(5
c = 1 + logp (5.17)

In Eqs. (5.16 and 5.17)), it is assumed that Ill + ... > 1. The above analysis may be
summarized by the following theorem. Sketches of the proofs may be found in (Barns-
ley,1986,1988).

Theorem 5.1 Let (R2 ; Wn, n = 1,2,3,...,N} denote the IFS described above by Eqs. (5-2) to
(5-6) and defined with respect to the data set ((xn,y,), n = 0,1,2,...,N}. Assume that a., n =
1,2,3,...,N satisfies 0 < laj < 1. Then:

I. There exists a unique nonempty compact set G c R2 such that

N
G= L.W,. (5.18)

2. The set G is the graph of a continuous function f: ( x0 , xN] -- R I: i.e., G = ((xf(x)).. x E
IXO-XNJ.

3. The function f(x) interpolates the data: i.e., f(xi) = yi, i = 0,122...-N.

4. If
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Z 1 > 1 (5.19)

then the capacity, dc, of the set G satisfies

N d -I

IX l = 1 (5.20)

where a. = (x- - x) Otherwise, dc = 1.
(XNV - X0)

Notice that if the distance between any two adjacent points is equal, and [xo,xN] = [0, 1],

then acn = 1/N for all n and Eq. (5.20) is equivalent to Eq. (5-17) if N=p.

Examples of attractors using the IFS with probabilities are shown in Figs. 3-7. In all cases,

two maps were used with equal probabilities of 1/2, and the functions generated by the

maps interpolate the points (0,0), (1/2,1), and (1,0). Notice that in Fig. 4 where

cx1=ax2=0.25, the attractor is the graph of the parabola given by f(x) = 4(x-x 2). Indeed, it

can be shown using the definitions of the maps WI and W2 defined by Eq. (5-6) that

X

(x )(5.21)

W2[f()] _ _(x r((x+
2

In Figs. 5-7, as a increases, the dimension increases and the graph takes on a rougher ap-

pearance. It is clear from this example that by varying (x, and aX2, both smooth and fractal
approximations of a given background can be made.

Now we make the more realistic assumption that the background is unknown. Specifically,
our assumptions are:

A1) There is a signal s(x) known apriori that is to be detected.

A2) There is an observed signal, v(x).

A3) The background or noise source y(x) is unknown, and continuous.

A4) The observed signal is composed of the sum of a scaled signal s and the background

y;i.e.,

19



v(x) = A .s(x) +y(x) (5.22)

A5) The functions s,v,y are all defined on I = [x0,xN]. Let si,v i, and yi denote the values

s(xi),v(xi), and y(xi). Since the constants %3and y, in Eq. (5-4) need to be determined, by

assumption A3 and Eq. (5-5) we need to solve the system of equations

l o + P + }, n = 1, 2, 3, ... , N (5.23)

SJYN+ nXN+Y, = Y

Since the Yn'S are unknown, assumption A4 implies that the system given by Eq. (5-23)

has the 2N+1 unknowns A, (%n, Yn), n = 1, 2, 3, ..., N. The system to solve is intro-

duced by the following notation. Let p E R2N+! be defined by

p = (A, 01, Y 1 , 24 .... PN, YN) (5.24)

and let F: RN+xRN-> R2N be defined by

(F (s, a))' = (s- also, s, - aISN" S, - a 2S0 , S2 _ a 2SN, ... SN - aNso, SN - a NSN)

(5.25)

Let the 2x2 matrix X be given by

X - x 1(5.26)
Then Eq. (5-23) becomes

X
X

X

F (s, a) 0 p = F (v, a). (5.27)
0

0

In Eq. (5-27), s' (s O, SN),a = (a 'a.) ,and Y = (v0 ... vN) . Since s is a

known vector by hypothesis AI, the coefficient matrix on the left-hand-side of Eq. (5-27)

is a function of a only, and we may rewrite this system as
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Z (a) -p = F (v, a), (5.28)

where Z is a 2N x 2N+l matrix.

Since there are fewer equations than unknowns in Eq. (5-28), the system is underdeter-

mined of rank 2N, which implies the existence of infinitely many solutions. A particular

solution may be computed by minimizing the residual in the Euclidean norm;i.e., find p

such that

(Ri+ )IIZ(a) •p-F(v, Ct) 112 (5.29)

The solution to Eq. (5-29) is found by solving the normal equation

Z (a) [ [F (v, x) - Z(t)pl = 0. (5.30)

Assuming the rank of Z(a) to be 2N, a unique solution p* may be found by constructing

the singular value decomposition of Z(a) (Rao and Mitra [ 19711); i.e., there exist unitary

matrices, U and V, and a diagonal matrix D such that

Z(a) = U[DO]O (5.31)

Indeed,

• '= (a) F (v, ax) (5.32)

where Z (a) is the generalized Moore-Penrose inverse of Z.

The next proposition characterizes the basic properties of p*. Its statement and proof are

similar to those given in Section 2.

Proposition 5.2 Suppose Z(a) has full rank.
,1

I. If v = s (Signal in the absence of noise), then p = (1, 0, 0, 0, ..., 0) ). The IFS model

generates f(x)=O for all x F [xOXNJ.

2. If v = y (no signal present, just noise), then p*' = (0, 13t' y'1 132' . 13 N, YN) where

the %3randy,, are those parameters for the IFS which interpolates the data set ((xn,yr),

n=O,I,2,.... N.

Notice that since the scaling coefficient of the signal, A,. is the first component of p!, in

the first part of the theorem there is a perfect match (A 1 = 1), while in the second part of the
theorem, no detection of a signal is made (A1 =--0). Design of a linear filter based upon the
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IFS model of the unknown background is now given, the proof of which is straight for-
ward.

Theorem 5.3 Let zij = (Z " ] ij The signal amplitude A defined in hypothesis may be writ-

ten as a discrete convolution:

A W v, (5.33)

where the filter weights are given by an N+ I dimensional vector w.

N-I

w0 = z 1,(l N) - z1. 2ja i
j=1

N-i (5.34)
wN = z, I 1ad) - Zt,.2j+ 10C]+

j=I
wj = z,2N_ 2j+ I + Z1,2N-2J 

= 1, 2, 3, ... , N- I

The above results dictate how to design a linear filter which detects a signal in a back-
ground that is continuous. If one solves the full system, thereby generating the parameters
for the IFS, a model of the background can be generated as an attractor of the IFS. Further-
more, if ,here is no known length scale. Theorem 5.1 will yield the dimension of the back-
ground. In addition, the results of Theorem 5.3 when combined with Eq. (3.20) will yield
the PFA for the weights based upon the IFS filter.

6.0 Numerical examples:

In this section, we give some simple examples of the IFS-based techniques. The technique
of approximating backgrounds can be demonstrated by considering a sample signal array
of 500 points, and the signal is assumed to contain a constant target. That is, the signal is
background only with a constant offset. Figure 8a shows a sample background signal
which was generated, having a maximum amplitude of 0.2. To this background, a constant

background was added, having an amplitude of 1/2. (The offset is not shown.) Figure 8b
shows the IFS prediction of the background only using only 10 maps at intervals of 0. 1.
The 10-dimensional parameter controlling the dimension, c, was chosen to minimize the
residual error along the signal. The values of ot used in predicting the hackground are
(0.25, 0.8, 0.7, 0.5, 0.3, 0.2, 0.25, 0.8, 0.3, 0.4). The IFS predicted signal does well in ap-
proximating the actual signal except in tLe region between 0.4 and 0.7, where the charac-
teristic shapes do not agree in shape. However, the amplitudes are in the same range.
Improvements can be made by adding more maps, or, if information about the dimension
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is known aprioi, a constraint can be added. From the figure, it is seen that only 10 parame-
ters can be used to model 500 points.

When a signal is present, backgrounds may still be simulated by solving the relevant equa-
tions for 13 and y in terms of the contraction constants x. In Figs. 9a and 9c, a ramp func-
tion is randomly embedded in a noisy signal which has a dimension approximately equal
to 1.41. Figures 9b and 9d show the simulated signal generated by the IFS defined by the

coefficients 13 and y. Ten sub-intervals were used over each convolution length of 100
points, and a is chosen to take thc same value for each subinterval. In Fig. 9b, the value of
a was chosen to give the graph of the background a dimension of 1.41, while the dimen-
sion of the graph in Fig. 9d is equal to 1.95. Notice that by changing x so that the dimen-
sion increases, the simulated background in Fig. 9c becomes rougher and has more local
wiggles. Extreme values of the simulated backgrour,1 having higher dimension are also
larger.

To see the effect t has on the actual convolution of a filter designed using an IFS, we first

examine a normal function having standard deviation of 1/2 as the signal to be detected.
Signal plus noise is generated by adding the normal function to a noisy signal which has a
bound of 25 percent noise and a dimension approximately equal to 1.4. Figure 10a shows
such a signal. As before, only 10 sub-intervals were used for each convolution segment of
100 points, and a takes the same value on each subinterval. In Fig. 10b, a is chosen so the
dimension of the background is 1.43. Notice that in addition to the signal being passed
upon convolution, the noise is also passed. This is a result of the linearity of the filter, and
the fact that the window is shifted point by point to the right along the signal. Because the
known signal is smooth and the background is fractal, the noise might be considered al-
most orthogonal to the filter weight vector. This can be seen from Fig l0b since the noise
is reduced in overall amplitude in intervals where the signal is absent. If a is increased so

that the dimension of the simulated background is increased to 1.99, as is done in Figs. 10c
and lOd, then negative trends in the convolution appear magnified. Overshoot in the con-
volved signal becomes dominant, and it is easy to see that many false signals might be

passed through a threshold operation.

Returning to the ramp function, we now examine graphically how the convolution be-
tween the signal and filter behaves. Figures 1 la and 11 b depic, the result of a convolution
where a has been chosen to model a background with dimension of 1.41. Notice that be-

cause there is an increasing or decreasing trend in the background, the noise is amplified
as well as the signal. That is, the filter tries to magnify the trends appearing as ramps in the
noise. If the dimension of the modelled background is assumed to be higher, as is the case

in Figs. I lc and d, convolution values of -I may be achieved, along with noise amplifica-
tion, implying the existence of a greater number of false alarms when a threshold is im-
posed. Given the appearance of the overshoot and noise amplification in the case of
greatly differing dimension between the noise and modelled background observed in the
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previous two examples, we conjecture this holds true in general for linear IFS-based fil-
ters. That is, if the signal is smooth, and the background fractal having a dimensio.- db,
there is a neighborhood about db in which the false alarm rate is relatively constant. Out-
side this interval, however, the false alarm rate increases. This idea will be pursued in de-
tail elsewhere.

Finally, the results of applying a filter based upon a linear background model from Section
3 to a normal signal embedded in a large amplitude fractal background is presented in Fig.
12a and 12b. The background has dimension 1.4. The signal the filter is seeking is a nor-
mal curve with fixed standard deviation and random amplitude. Notice the overshoot of
the filter to large negative values, which could lead to high PFA. In addition, there are
many intervals in which the filter says the signal is there, but in reality it is not, leading to
a very high false alarm rate. The fractal based filter for the same signal is shown in Figs.
12c and 12d, where the dimension of the background model is equal to the dimension of
the imposed background Not only does the filter detect the signal location correctly, it
also gets the relative amplitudes correct. The overall noise is greatly reduced, yielding a
filtered signal with a much improved signal to noise ratio. The original signal in the ab-
sence of any noise is depicted in Fig. 12e.

7.0 Summary:

We have given a derivation of an LMS filter using a least mean squares technique based
upon smooth and nonsmooth (fractal) background noise sources. Backgrounds which are

unknown may be modelled using smooth or fractal functions. The filter is designed as a
linear convolution based upon a known signal, and may implemented in a detection mode
by using a particular thresholding operation. It was shown that the convolution with a giv-
en background upon which the filter was designed results in a nulling operation, while
convolving the filter with the known target in the absence of any noise results in the signal
coefficient having a value of unity. This implies that the filter can be used in a threshold
operation for the signal detection problem. The operation of the filter in a Gaussian back-
ground was considered, and o FA probability was derived.

Fractal backgrounds were considered, and a technique based upon IFS was used to model
them. Currently, the dimension is set as a free parameter, determined by the choices of the
contraction constants for the IFS. Simulation of unknown fractal backgrounds using the
IFS as a model may be done using a small number of parameters. The advantage is that
fewer points are needed to design a filter which operates on a signal in a structured back-

ground.

Since this paper only addresses how to design a matched filter using IFS-based models of
the background, much work needs to be done in specifying performance issues using vari-
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ous known metrics. Under the current assumptions, the signal is stationary, so one expects
parameter dependent quantities like scale-invariance or dimension to remain constant.
Therefore, LMS techniques can be used to find a vector contraction parameter, cz, to mini-
mize some least square error in the residual error. To perform such an operation requires
the computation of changes in the attractors of the IFS to small changes in parameters.
This may be done in parallel using the techniques of Withers [1987], and will be reported
on elsewhere.

The techniques of filter design using smooth backgrounds may also be extended to fractal
backgrounds. In sections 1,2, and 3, a linear superposition of smooth basis functions was
used. However, one may also use the same superposition in modeling fractals using wave-
lets [Argoul et al, 1989; Holschneider, 1988; Morlet et al, 1982, I, II].

The problem of non-stationarity may be dealt with by using adaptive filtering, and by mea-
suring the dimension and using it as a constraint in designing the filter. Of course, this is
longer to compute in practice, but if many samples are taken over a particular ensemble,
the dimension sought after may be found which optimizes performance. Other extensions
are those to higher dimensions, and these will be reported elsewhere.

Finally, by applying fractal-block coding techniques such as those in [Jacquin, 19901 to the
unknown background, one can automate the design of the filter and the model of the un-
known background entirely.
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FIRST IMAGE OF' UNIT BOX
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Fig. 1 - Shaded image is the first image of the unit box where a, = 0.2 and 0 2 =0.5.
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SECOND IMAGE OF UNIT BOX
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Fig. 2 - Same as Fig. 1, but the shaded region is the second image of the unit box
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Fig. 7 - Same as Fig. 3, except a, 0 h5 a2 - 0.75
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Fig. 8a - Sample noise having dimension d =1.65
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Predicted Background in the Presence of a Signal
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Fig. 8b - Predicted noise using 10 contraction parameters. The Sample noise in Fig. 8a

was offset by a constant signal of 1/2.
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Signcl plus noise Simuloted Bockgrounc
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Fig. 9a - Signal plus noise, where the Fig. 9b - Modelled noise based on the IFS
dimension of the noise is approximately 1.41. model using the LMS technique. Dimension of
The signal used is a ramp function, noise is 1.4
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Signal plus noise Simulated Background
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Fig. 9c - Same as Fig. 9a Fig. 9d - Same as Fig. 9b, except the
parameter a is chosen so that the dimension is
1.95
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Signal plus Noise convolved signai
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Fig. lOa - Same as Fig. 9a, except the known Fig. lOb - IFS-based convolution using a such
signal to be detected is a normal function that the noise dimension is approximately 1.4
having standard deviation of 1/2. The
dimension of the noise is approximately 1.41.
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Signal plus Noise convolved signal
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Fig. loc - Same as in Fig. 10a Fig. 10d -Same as in Fig. 10b, except the
modelled noise has a dimension of 1 .99
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Signal plus Noise convolved signal
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Fig. I ia - Signal plus noise, where the signal Fig. 1 lb - IFS-based convolution using a
is a ramp, and the noise dimension is 1.41 modelled noise having dimension 1.48
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Signal plus Noise convolved signal
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Fig. lI c - Same as in Fig. Ila Fig. I Id -IFS-based convolution with
modelled noise having dimension 1.97

45



Signal plus Noise convolved signal
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Fig. 12a - Signal plus fractal noise, The Fig. 12b - The convolved signal based on a
signal is normal with standard deviation of 1/2, filter derived using a linear background model.
and the background dimension is 1.41 The filter is derived from the methods in

Section 3 of the text.
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Signal plus Noise convolved signal
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Fig. 12c - Same as Fig. 12a Fig. 12d - The convolved signal using a filter
based on a fractal model of the background.
The dimension of the modell background is
equal to the simulated background.
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Unperturbed Signal
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Fig. l2e - The original signal in the absence of noise. The signal is normal, and was used in Figs. 12a and 12c
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