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PHASE TRANSITIONS AT LIQUID SOLID
INTERFACES: PADE APPROXIMANT FOR
ADSORPTION ISOTHERMS AND
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L. BLuM
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P.O. Box 23343
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1c PrEDRAS. PR 00931-3343, USA

DALE A. HUCKABY
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Abstract

A Padé approximant that is the natural extension of Langmuir’s ad-
sorption isotherm is used to study the adsorption in the liquid-solid interface.
The coefficients of this approximant are generated by a rccursion relation.
and can be computed from the fugacity series in closed form. We apply this
approximant to the underpotential deposition of metals on an electrode, and
obtain voltamogramms that show the sharp spikes seen in recent experiments.




1 Introduction

The growth of films on single crystal surfaces is of considerable tech-
nological interest which has been discussed extensively in the literature [1].
The occurence of phase transitions in the adsorbed layers has been known
for some time, but the studies, both experimental and theoretical, have heen
done in either dilute gas- solid interfaces, or vacuum- solid interfaces [2. 3].
The films adsorbed on single crystal surfaces do exhibit a rich variety of phase
behavior[2]. There is good reason to think that such a rich phase behavior
also exists in liquid - solid interfaces. However. the experiments to detect it
are much more difficult to perform, because most of the structural surface
analysis is carried out in ultrahigh vacuum, and the observation of adsorp-
tion isotherms is possible only for materials, such as graphite, that have a
large specific surface, and therefore very irregular. The situation in electro-
chemistry is different, because there exists a technique. polarography, that
is surface sensitive, even for single planar surfaces, and which is capable of
detecting the sudden formation of films at electrodes. It has been possible to
perform structural analysis of underpotential deposits of metallic monolayers
[4] on metal electrode interfaces using X-ray diffraction techniques [3, 6. 7).
which yield structural information about ordered phases of adsorbed mono-
layers on single crystal surfaces. The underpotential deposition (UPD) of
monolayers on electrode surfaces occurs suddenly and should be considered as
a phase transitiou at the surface [8, 9]. The adsorption isotherms and volta-
mograms of systems like the UPD films of Cu on Au(111). Cu on Pt(111).
Pb on Ag(111) show very clearly the sudden formation of ordered films. The
crystal nature of these films has been observed both in situ and also ex situ.
Very recently, scanning tunnel microscope (STM) experiments [10, 11} have
shown phase transitions of a complicated nature occur in the underpotential
deposition of copper on gold (111) surface. As was hinted by the extended
X-ray absorption fine structure (EXAFS) experiments, {12], the anion, in
{Li> case the sulfate, plays an important role in the phase formation.

The theory of the UPD [4, 13] has adressed the question of the binding
of individual atoms to the metal surface. but has not considered the coop-
erative effects of *he atoms in the adsorbed film. In the present worh we
discuss the effect of cooperative interactions in the formation of UPD films
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on a triangular lattice, which corresponds to the (111) face of an fcc crystal.
or the (100) face of an hcp crystal. We propose a Padé approximant that
interpolates the adsorption isotherm between the Langmuir isotherm when
the lateral interactions of the adsorbate are turned off, and the exact high
and low temperature series for the Ising model [14] when the interactions
are on. The coeflicients of the Padé approximant are generated by a recur-
rence relation to any arbitrary order in the fugacity z, and therefore can be
generated for other lattices and multiadsorption isotherms. One drawback
of our formalism is that it does not satisfy automatically the symmetry [15]
relationship between the high and low temperature series. These relations
will be satisafied if we take a large number of terms (perhaps 20 for the tri-
angular lattice), but we can either use a switching function to force duality
on our expressions, or alternatively use a two point Padé which will satisfy
this relation. We give a brief discussion of this latter approach, which has
the disadvantage of requiring the inversion of an N by N matrix, where N is
the order of the approximation. We believe that the switching function Padé
approximation produces good results even using as few as 8 terms.

In previous work we have proposed a simple model of chemisorption on
crystal surfaces [26, 16, 17], in which the binding process of individual atoms
is essentially decoupled from the cooperative effects that take place at the
surface. This model, which we call the sticky site model (SSM) is a combi-
nation of the sticky potential model. first proposed by Boltzmann [18]. but
solved and discussed in detail by Baxter[19], and the adsorption site model
of Langmuir [20]. The sticky potential of Baxter was used by Perram and
Smith [21] to study adsorption onto a smooth interface. In that work only
the density profile near a smooth hard wall was discussed, and the properties
of the adsorbed film were not studied. The properties of this adsorbed film
is the central issue of our present work.

The sticky potential has the form

e Pl =1 L A§(r — 07). (1)

where 3 = 1/KT is the usual Boltzmann thermal factor, u(r) is the inter-
molecular potential. A is the stickiness parameter, r = (z.y. z) is the relative
position of the center of the molecules, and ¢ is the diameter of the molecules.
The right hand side term represents the probability of two molecules being




stuck by the potential u(r): this occurs only when the twe molecules are in
contact, and for this reason we use the dirac delta function é(r — ¢~ ). which
is zero when the molecules do not touch, is infinity when they do, but the
integral is normalized to one. The parameter A represents the the probability
of adsorption of an individual molecule onto the surface. It has the form of
a fugacity,

2\ = e~ [ralr)] (2)

where 4 is the free energy of the adsorption of an individual molecule onto
the surface. This quantity is obtained from a quantum mechanical calcula-
tion.

The Langmuir adsorption sites can be represented by a collection of
sticky sites of the same form as was suggested by Baxter. Only that now
we do not have a sphere covered uniformly by a layer of glue, but rather
a smooth, hard surface with sticky points, which represent adsorption sites
where actual chemical bonding takes place. In this model, Eq. 1 has to be
changed to

e~ = 1 4 A\(R)6(z). (3)
with
A(R) = ) A(R - nay — naaz), (4)
niy,n2

Here R = (r,y) is the position at the electrode surface, and z the distance
to the contact plane, which is at a distance ¢/2 from the electrode. In 4,
ni, ny are natural numbers, and aj, ag are lattice vectors of the adsorption
sites which are the sites of a lattice A on the surface. The requirement of
point adsorption sites rather than extended regions around the sites is not
essential to our discussion. It is clear that phase transitions will occur even
in smooth surfaces, simply because the two dimensional gas does ondergo
such phase transitions. Less localized forms of the adsorption potential are
equivalent to the soft potential models discussed by Steele and collaborators

[22], and models of commensurate-inconmensurate adsorption such as the
ones discussed by McTague and Novaco [23], and by Shiba [24].

Consider the case of a simple salt dissolved in water, near a metallic
electrode: in the general case there will be three species of the liquid phase




that will be adsorbed onto the metal surface: the anion, the cation and the
solvent. If the metal is charged. then only the ions of opposite charge will be
adsorbed and will compete with the solvent for the adsorption sites. If the
metal is neutral, then all three species can compete for the sites. This case
corresponds to a three state Ising model in two dimensions: it leads to a very
rich and complicated phase diagram for the adsorbate and was discussed in
detail recently [25]. When the metal is charged. then the adsorbate consists
of ions of the same sign, which repel each other. This situation corresponds
to the two dimensional antiferromagnetic Ising model, which for first nearest
neighbor interactions has an order-disorder phase transition. In the limiting
case of infinite strong repulsion, it is inathematically isomorphic to the hard
disk problem on a planar lattice, which is known to undergo second order
phase transitions. Alternatively the adions can be neutralized by the elec-
trons of the metal, and form metal bonds between the surface atoms. This
occur as in the UPD : the interactions between neighbors are attractive, as
in the case of the ferromagnetic Ising model on a two dimensional lattice,
and one should expect first order phase transitions in the adsorbed film. We
should remark that the existence of phase transitions is not a consequence of
the existence of an ordered array of adsorption sites: they occur also in the
smooth surface as a phase transition of the two dimensional gas.

In the limiting case of the SSM. the sizes of the different species play
a crucial role in the possible ordering of the adlayers at the interface. It
will be convenient to picture the ion: as having a hard sphere core with a
diameter o,, 03 , and the solvent as having a hard core with diameter o,.
The lattice spacing of the atoms in the metal surface is d, and because it is
the most stable surface, we will restrict ourselves to the (111) surface of the
fcc crystals, or the (100) face of the hep crystal. that is, the triangular lattice.
When the adions are bigger than the lattice spacing and the adsorption sites
are extended rather than point like, then the geometry of the adlayer is
different of that of the substrate, and in general incommensurate with it.
This case was studied in a separate commuuication [17].

In this paper we consider the case of a triangular lattice of sticky points.
The spacing between the sites of the lattice is d. This surface is in contact
with a solution. Only two states of occupation are allowed: the sites are
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either occupied by an ion or by the solvent, or alternatively in the case of a
pure fluid, by a fluid particle or none. The fluid particles have an exclusion
diameter o, which may or may not be associated with a hard core potential.
Otherwise the interactions are arbitrary. We assume, however, that the pair
correlations on the surface decay sufficiently fast so that we need to take into
account first neighbor interactions only. There are two possible situations:
If the adsorbate diameter o is smaller than the lattice spacing d, then there
are two possible phases, a dense, crystalline one and a dilute disordered one.
There is a first order transition between them. If the adsorbed particles
exclude all next nearest neighbors, that is when

d<o <+/3d, (5)

then the problem is exactly analogous to the hard hexagon problem of Bax-
ter [15]. In this case there is a second order phase transition between an
ordered /3x /3 phase and a disordered one. This interesting case will not
be discussed here.

2 Basic Formalism

Consider a fluid of only one kind of particle of diameter o . near a
smooth, hard wall with sticky sites. The fluid has N particles and the volume
of the system is V. The Hamiltonian of the system is

H=H0+H,. (6)

where Hj is the Hamiltonian of the system in the absence of the sticky sites
on the hard wall, and H, is the sticky sites interaction

—
~1
~—

M
H, = Zu,-(r),
i=1

where u®(r;) is the sticky interaction of Eq. 3. The canonical partition
function of this model is




N
= (1/N) /dr‘ve““"’ TTI1 + MR)S(=:)]. (8)
=1

Expanding the product in Eq.8 and integrating the Dirac delta functions
we get, using the single component notation to avoid heavy and unnecessarily
complex equations, ( with the understanding that in the multi component
case N is a vector quantity with components Ny, .V, ..V, ., the necessary
modifications of N! and the integrations have to be made).

N

Z=27,Y (A*/n) Y. pARi.Ry.Ry) (9)

n=0 {Ri}CA

where

P11tz k) = (Zo(N — n))7! [ g dryeo, (10)

N
= gl(ri.ro.r,) [ pY(x (11)

i=1

Here g2(r,.r;..r,) is the n-body correlation function, and p{(r;) = p?(=;) is
the singlet density of the inhomogeneous smooth wall problem. The partition
function is

1/N')/dr‘ ~3Ho (12)

In the sticky sites model (SSM), the excess properties of the interface
depend only on the correlation functions of the smooth interface. Introducing
the potentials of mean force w,(R;,R;,..R,;)

gn(Ri, Rz.R,) = e7un(Ra R, (13)
Combining these expressions we arrive at

Z|Zy = Z [Ap)( )]"/n!e_’i“"’(r"r"""), (14)
R,cA

which is the central quantity of our work. The excess free energy is

=1




AfT = (=1/3)In(Z]Z,). (15)

where A is the area of the interface. We also deduce the the fraction of
occupied sites 6, [26]
AIANOAf®

T T ox

Eq. 14 shows that the SSM model maps the adsorption on a flat sur-
face onto a two dimensional lattice problem of a very general kind. which
is in general not amenable to analytic treatment. It can be simplified by
introducing the Kirkwood superposition approximation

(16)

(R, R..R,) = [] 993(RiR;), (17)
i, j<n
where
9 (Ri,R;j) = g3(IR; - R;|), (18)

is the pair distribution function. Further restriction of the interactions to
nearest neighbors makes this problem equivalent to that of the Ising model.
The partition function can be written as

Z)Z0 =Y ME aE g =01, (19)
{t:}

where 3 = 1/kT ,

3e = —In[gy(d)]. (20)
g5(d) = g3(Ri, R;) [i.j = nearest neighbors] (21)
Bu = In[Ap}(0)] (22)

This partition function can be mapped onto an Ising model with spin vari-
ables s; = +1 by means of the transformation

8 = Qt,' -1 (23)




When we turn off the interactions in the surface then e = 0 and Eq. 19
becomes

Z|Z2° = y et (24)
{n}
or
Z/Zo — (1 + f).iu)].\l. (25)
and using Eq. 16. we get
6 = A-a— In((1+ )] (26)
oA ’
Furthermore since
e’ = Ap1(0), (27)

we get the Langmuir isotherm

__Ai(0)
= T A(0)° (28)

3 Phase Transitions at Electrode Surfaces

There is a phase transition in the ferromagnetic Ising mode] only when
the external field is zero [27]. For the two dimensional lattice gas this means
that when v <0

= wq/2 (29)

or

Ap°(0) = [g3(d)] "2, (30)

where g is the number of nearest neighbors of the lattice. 4 for the square
lattice and 6 for the triangular lattice. The exact spontaneous magnetization
of the ferromagnetic Ising model on the triangular lattice [28] vields the

expression
169, )
6=(1/2){1+£(1- . 31
(/)( ( (92— 1)* (92 +3) ) s




Setting § = (1/2) this equation yields the condition

g2 = go(d) lerie= 3. (32)
and the value for the critical sticky parameter A is
Ap%(0) |erir= 1/27. (33)

As was mentioned already in the electrochemical case. the contact pair
correlation function in the bulk for ions of equal sign is practically zero. be-
cause of the Coulomb repulsion which prevents ions of eqnal sign to approach
each other. In the adsorbed layer the interactions of these ions must be at-
tractive, if the formation of a layer occurs suddenly. and therefore the state of
ciiemical bording, or more precisely the electrovalence, must change during
the adsorption process.

Condensed phases in the ad layers are observed in electrochemistry. In
particular the under potential deposition of some metals on electrodes occurs
at certain very well defined values of the potential bias [8]. For example, the
deposition of Cu on the Au(111) face forms two phases according to the
deposition potential. These phases have been observed ex-situ [8] and in
situ [3] [29] [30], [10]. [11]. At a lower potential a dilute ordered phase is
formed. At a higher potential a dense commensurate phase is formed. It is
clear from the above considerations that in the dense ad layer case the ions
must be discharged, because then they would form a metallic bond, which
makes w negative, and therefore ferromagnetic. This is supported by the
features of the EXAFS spectra. In the high density phase the near edge
structure corresponds to that of metallic copper. which has a characteristic
double peak.

In the electrosorption of ions, the charge of the ions can be neutral-
ized by the electons in the metal electrode substrate. If this happens then
the normally repulsive effective interaction between equally charged ions can
become attractive because of the formation of a metallic bond. The change
is known as the electrosorption valency, and has been studied extensively by
Schultze and coworkers [31]. From the structure of the Fqs.30 and Eq. 31
it is clear that no phase transition will occur if the adsorbed ions keep their
charge, and their repulsive interaction as the potential changes. The conclu-
ston is that the adions , in this case Cu. attract each other in the adsorbed

10




layer. and therefore are chemically different in the adlayer than in the bulk
solution.

The contact probability parameter p;(0) is a function of the electric poten-
tial: an estimate of the contact can be obtained using the Poisson- Boltzmann
expression used by the classic Gouy- Chapman theory [32]

pi(0) = e~ ¥p,, (34)

where z; is the electrovalence and p; is the bulk density of ion i. ¥ is the
adimensional potential bias with reference to the so called potential of zero
charge, and is given by

¥ = ge[v(0) — vP*]. (33)

where e is the elementary charge, 3 = 1/kT. ¥(0) is the potential at the
electrode surface, and y'?*¢ is the potential of zero charge. Empirically. recent
experiments by Anderson [33] have shown that Eq. 34 works in systems where
the assumptions of the Gouy-Chapman theory do not apply . and where we
know that the discrete nature of the solvent will produce oscillatory charge
profiles [34]. Yet contact theorems of the type

kTY pi(0) =

£
8w

are valid for irregular surfaces with arbitrary interactions [12] in the mean
field sense. The reason is that the contact density p;(0) given by Eq.34, for a
particular value of the potential of zero charge v'7*¢, is accurate is presumably
that the pair interactions cancel out at the surface, where only the particle-
wall interactions exist, and in the mean field limit a relation like Eq.36 is
satisfied by this ansatz.

E* + kT pi, (36)

The fraction of occupied sites § Eq. 16 can be represented by a series
[14], at both low temperature (high fugacity z) and high temperature (low
fugacity z) . We consider the adsorption of a single ion only, (always the
counterion),

z= e':"pp,-/\ = p1(0)A, (37)

and in Domb’s notation

y=u’/(z), (38)
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u=e’ = [ga(d)] 7. (39)

6 at low fugacity is given by
1-6=3 o) (40)

and at high fugacity is given by
6= ry~"gnlu) (41)

r=1

Here g.(u) are polynomials, obtained from graph theory [14] (there are not
to be confused with the distribution functions). The first polynomials are

gi(u) =, (42)
.gz(u) = (1/2)(6u® — Tu®), (43)
gs(u) = (1/3)(6u® + 27u" — 90u® + 58u°). (44)

This series must satisfy certain limiting conditions: when y = 1, the critical
line should be obtained, for which an exact expression is known. For the
triangular lattice Potts found [28]

0=(1/2){1—<1—( (16w%) ))1. (45)

1 - u)¥(l+3u

A similar expression exists also for the square lattice. From the high
and low temperature series the correct critical exponent § = 1/8 can be
extracted. However the series has poor convergence properties. Furthermore
Eq. 45 diverges when the lateral interactions between the adions is turned
off, that is, from Eq. 38 when w = 0 or u = 1. The observation is that in
this limit both series Eqs. 40 and 41 yield the series

-1 .
=y loy iy .. =2 = —, 46
yooy oty 1+y1 1+ (40)

1 2
=1-y+y’ -y*-..= = . 47
yry -y 14y 1+: (47)




The resummed series is just Langmuir's adsorption isotherm, which is indeed
the correct physical limit of 8 obtained from Eqs.15, 16 and 19 when the
lateral interactions are turned off. This immediately suggests the form of the
Padé approximant for general z and v = 1/u = g,. For low fugacities

_z+z(w-1)P(w.z)
Tl 2+ z2(w - 1)P(w, 2)

(48)

and for high fugacities
1
T 1+ 1/[zuwd] + (1/[zw8])(w — 1) P(w,1/[zw5])’

On (49)

The Polynomial P(w,«) and the details of this Padé approximation
are discussed in appendix A, where we give explicit formulas up to order
8. As mentioned in the introduction, this approximation does not satisfy
the duality symmetry relation. An alternative Padé which does satisfy this
relation is discussed in Appendix B. Our approximation here will consist in
adding the two expressions for the high and low fugacity limits with a smooth
switch function, which we have taken to be

1(y,s) = (1/m)[5 + arctan(ys)] (50)

where s is .001 for w > 3 and s = (3.001 — w)/5 when w < 3. This averaging
procedure produces an isotherm that has the correct shape for both the
region above the critical value of w = 3 and for the region below, where
no sharp transition is expected to occur. In figure 1 we show a series of
isotherms for different values of w, and we show, for comparison, the critical
line from the exact solution of Potts. Since the calculation was done with
only 8 terms, we think that the agreement is satisfactory. We could, with the
published expressions of g,(u) go up to order 20, but this is certainly beyond
the accuracy of our current needs. The final expression for the fraction of
occupied sites is

0 = n(y,s)0 + [1 — n(y. s)]on, (51)

A final observation is that the mean field result [35] can also be cast in
the form of a modified Langmuir adsorption isotherm:

P zuw?®
Tl zwe

(52)
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We also quote the results of the two point Padé approximant, which is
discussed in Appendix B. The advantage of this approximant is that it satis-
fies automatically the duality theorem. The disadvantage is that it requires
the inversion of an N by N matrix, where N is the order of the approximant.
We have computed this Padé up to order 3, and found that this is not enough
since the adsorption isotherm near the critical line deviates strongly from the
exact result for the triangular lattice. And also. even the order 5 Padé yields
an expression that takes about 20 pages to write down. Above the critical
point a [2, 2] two point Padé approximant yields

(=T+6g2+g2%) 2+ 6(—1+ g2) g2°22

0p = :
P 8(C1+g) 9522+ (14025 (1 + 2)

(83)

The fraction of occupied sites as a function of applied potential is shown
in figure 2 for two values of w = 2.3, well below the critical value for film
formation, and for w = 3.1, which is above the critical point. Clearly a phase
transition occurs when y = 1/zw® = 1. This shows also in the voltamogram
as a sharp peak. The charge potential curve of the voltamogram can be
obtained by differentiation:

_ 09 dy

y) = o 2 54
I(+) 50 dt (54)
If the scanning rate is constant and we neglect diffusion and double layer
effects [32] the derivative of § with respect to the applied potential should
give a repesentation of the voltamogram.

The curves are shown in figure 3, and show a sharp peak for the first case,

and a rather broad peak in the case w = 2.3 .

We believe that the procedure discussed in this work can be extended
to other systems, and in particular to multicomponent adsorption, where the
location of the critical points is known, and where sufficient terms of the high
and low fugacity series are known.

14




4 Appendix A: The Saturation Padé Ap-
proximant

In this appendix we discuss the Padé approximaunt that has the general form

_A(z)
o= T A (52)
where v
A(z) = Y Aid, (56)
i=1

and we have to find the coefficients A; in this equation. We remark first that
this equation is the natural generalization of Langmuir’s adsorption isotherm
to the case of interacting films, since for real and positive A(z) , 1 > 6 > 0.
The low fugacity series Eq. 40 can be written as

N .
B(z) =Y. Biz', (57)
i=1

where the coeffients B; are functions of u' and can be obtained directly from
the work of Domb [14]: The first few are

Bl = 1, (58)

B, = ~T + 6w, (59)

B; = 58 — 90w + 27w? + 6w?, (60)

By = =519 + 1152w — 714w? + 20w® + 48w* + 12uw°, (61)

Bj; = 4856 — 13980w+13185w? — 3400w® — 885w* +90w® + 105wt +30w’, (62)

Bs = —46780 + 165330w — 209520w’ + 100842w°
—819w* — 7920w’ — 1668w’ + 198w’ + 252w® + 84w, (63)

B: = 460027 — 1926288w + 3065979w? — 2152332w* +
447090w* + 148176w® — 21049w®
—~18774w" — 3948w + 168w’ + 735w!®

+210w!! + Tw'?, (64)
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Bs = —4593647 + 22229424w — 42593040uw? + 39240200w® — 152627 70w
~469344w® + 1327156 w® + 246600w” — 70872uw® — 42504w°
—14580w® + 960w + 1816w'? + 552w'® + 48w'(65)

The Padé equation

N _ N N ‘
YA =[1+) A2 B, (66)
i=1 i=1 Jj=1
yields a recurrence relation for the coefficients .4;. We get
Al = 1. (67)
A; = B} + B, = 6(w — 1), (68)
A =3(-1+uw) (~15+ 11w + 2u?) , (69)

and so on. After some straightforward algebra we find

z+ z(w - 1)P(w. z)

= . 70
Tl z+z(w-1)P(w 2) (70)
where
N ]
P(w,z) = zpiz', (71)
i=1
and
b1 = 69 (72)
P2 = 3(=15 + 11w + 2uw?), (73)
ps = 2(187 — 266w + 46w? + 30w® + 6w?), (74)
ps = 3(—~1100 + 2306w — 1190w? — 156u® + 83w* + 45w’ + 10w®), (75)
ps = 6(5047 — 13944w + 11897w? — 1778w® — 1276w*
—~114w® + 99uw® + 56w’ + 14w®), (76)
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ps = — 285682 + 978458 u — 1161412w? + 459060u>
+677538w? — 41124uw® — 17876uw® — 1652w” + 1288u®
+952u® + 217w + Tw'!, (

-1
2

pr = 2751258 — 11237190w + 17065398w? — 10735704w*
+1150716w* + 1126218w® + 41376w® — 117342w’
—43824uw® — 7788w’ + 3810w'® + 2430w

+600w'? + 48w, (78)

5 Appendix B: The two Point Padé Approx-
imant

Consider the lattice gas with first neighbor attractions on the triangular
lattice . Following the work of Domb [14] we have high density and low
density expressions for the excess free energy and the fraction of occupied
sites @ of the lattice gas. For low z we have

0=z +(~T+6gs) 2% + (58 — 90ga + 270,° +6g,°) 2°.. (79)
N
0=A(z) =) A, (80)
i=1
For high 2
3
1-0 = 1/(29:°)+(-T7 + 69g2) /(zg26)2+(-58 ~ 90g, + 27g2° + 6g23) / (zggﬁ)
(81)
or
N .
1—0=B(z)=ZB,~/z'. (82)
i=1

The adsorption isotherm can be constructed from both these series by
a two point Padé approximant, which is required to satisfy both Eqs. 5 and
82 simultaneously. In fact, consider the Padé

_ _a(z)
T 14b(2)

(83)
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where

N
a(z) =) a;z, (84)
i=1
N
b(z) =D bz, (85)
=1
which for z — 0 must satisfy, to order N
a(z)
A(z) = . 86
(2) 1+b(2) (86)
and for 2 — oo must satisfy to order N
a(z)/zN -
= . 8
PE= e &

This forms a system of 2V linear equations that can be solved in closed
form: Defining the matrices

1 B1 Bg
W=| -4, 1 B (88)
—"42 -—.41 1
1 B, B,
B=|0 1 B (89)
0 0 1
- ‘41
A = Az (90)
A;
we get .
a=W-l4, (91)
and
b=B.d, (92)

which are vectors of the coefficients of the Padé Eq. 83 @ = (a;.a;...) and
b= (by,bs,...) .
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Figure 1: 6 as a function of the fugacity z for w = 3.5,3.1, 3.0 (critical
value) ,2.95,2.9,2.8, and 2.6. The squares are the spontaneous transition
curve of Potts.

Figure 2: Adsorption isotherm as a function of the reduced potential
¥, for two values of w = 2.3 and 3.1. Here 3y = 0.1.

Figure 3: Ideal voltamogram with no diffusion effects. We show a
reduced intensity in units of §/¥ for the same parameters of Figure 2.

Figure 4: The case with w = 3.1 blown up 10 times. This is a crude
way to picture the effect of diffusion broadening on the voltamogram.
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