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Abstract

Microscopic particles within an optical hologram reconstruction have been
successfully measured using an image digitizer and a PC/AT computer.
The hologram was recorded during a test burn of some solid-rocket fuel
and captures a 2"x2"x2" volume of burning particles as they lift from the
fuel surface during combustion. The computer processes the digitized image
using feature identification algorithms and sizing in the feature's horizontal
dimension, its vertical dimension and its area. The operation of the algo-
rithms has been validated against calibration objects. Statistical tests show
that about 1,300 particles from several image frames axe required to obtain a
representative size distribution. Overlying speckle degrades the resolution of
the image and can be reduced by a variety of techniques. The performance
of these speckle-reduction techniques has been measured and compared in
the areas of speckle reduction, loss of resolution, and processing time. Pro-
gram size and processing time have been compared for both FORTRAN and
C-language versions of the processing program.
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Chapter 1

OVERVIEW

1.1 Introduction

Investigations have been made to study the effects of addition of aluminum
and other metallic particles on the magnitude of the performance losses in
propellant motors. Performance is sensitive to the particle size distribution
throughout the rocket motor and nozzle. Since no size distribution data ex-
ists in these regions of the motor for evaluation of existing analytical models,
direct observation has been undertaken to provide the needed information.

Holographic techniques have been employed to capture the dynamics of
the combustion chambers of small rocket motors while firing. These tech-
niques have been refined and upgraded. Concurrently, improvements in the
processing of the holograms to extract the particle size distributions are also
necessary. Once the hologram has been successfully recorded, it is desirable
to have a computer process the image to measure the particle size and to
produce a statistical description of the particle size distribution. It is the
purposc of this report to summarize the previous work in the development
of these computer-processing techniques.

The steps required to produce the statistical distribution follow (more
complete descriptions of each step are included later in this report):

1. image acquisition form the hologram reconstruction;

2. image digitization and storage on the computer system;

3. speckle reduction filtering to separate the particle image information
from the overlaying speckle;



4. application of an image threshold to separate the particle features from
the background features;

5. feature identification to find connected feature pixels and to "recog-
nize" the connected pixels as a single object;

6. feature sizing to measure the number of features, the area, x-chord

width, and y-chord width; and

7. histogram production using the size data of the prior step.

In this report the sizing problem is treated first and the speckle reduction
techniques are discussed in a separate chapter.

1.2 Hologram reconstruction

As mentioned in the introduction, holographic techniques are used to cap-
ture the image of a rocket combustion chamber during firing. The pulsed
ruby laser utilized in the recording process uses a glass diffuser in its illumi-
nation path. This diffuser is necessary to cut down the presence of Schlieren
interference fringes produced by the thermal and density gradients surround-
ing the burning particles in the rocket motor [1].

The reconstru-tion process is shown in Fig 1.1. The hologram is recon-
structed using a krypton laser and viewed through the microscope using 2x,
4x or 10x magnification. The diffuse light from the recording interferes with
the reference wave of the krypton reconstruction laser. This random inter-
ference causes speckle to be introduced into the image. By attaching a 0.5
lux low-light-level camera and a video cassette recorder to the microscope,
the speckle-corrupted image is recorded and preserved for later use. More
detailed descriptions of the reconstruction process are in Refs. [1] and [2].

1.3 Image digitization and processing

Once on VCR tape, the desired image is played back and digitized by
the PC/Vision image processing board controlled by either ImageAction or
ITEX/PC software. The digitized image then may be filtered immediately
or stored on floppy disk for later use.

An IBM PC/AT is the heart of the entire process of image manipulation,
from digitizing an image to speckle reduction to the counting of the fea-
tures. Installed on the IBM PC/AT are a PC/Vision frame-grabber board,
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ImageAction and ITEX/PC software (all by Imaging Technology, Inc.), the
computer monitor, a video monitor and a video cassette recorder (VCR).

A video image from the VCR can be "grabbed" by the frame-grabber
under control of the special software. Each of the picture elements (pixels)
in the 512x480 array comprising a video image is assigned an integer gray
level from 0 to 255 by the frame-grabber. Level 0 on the gray scale is
blackest-black. Level 255 is whitest-white, while values in between axe
various shades of gray. Each pixel is uniquely addressable and its gray level
alterable, thereby allowing the capacity to achieve digital filtering.

The ImageAction software is a set of menu-driven routines for use with a
mouse. A totally-closed system, it can perform image graphics, image analy-
sis, image processing and filtering. Particularly useful are the "grab" routine
described in the preceding paragraph, and the "histogram" routine which
outputs the image statistics (standard deviation, mean, variance) along with
the image's histogram. More details are described in Reference [3].

The ITEX/PC software performs most of the same functions as the
ImageAction software [3]. An important advantage is that the ITEX/PC
Pascal subroutines can be called from main programs written in Microsoft
versions of Pascal, C or FORTRAN. This allows the user a great deal of
flexibility in programming.

The ITEX/PC package consists of subroutines that may be called from
a main program to perform a specific function or to return a certain value.
For example, if the subroutine

CALL THRESH (Iowcut,highcut)

is used to threshold an image, all the pixel values between the integers
"lowcut" and "highcut" will be displayed as a new value of 255 (white). All
other pixels will be displayed as 0 (black). If, as in our work, "highcut" is
set to 255 and "lowcut" varied by the user during run-time, a binary image
results which presents black particles on a white background.

Sometimes an ITEX/PC routine is treated as a function. An example is

L = RPIXEL (x,y).

Here, the gray level of the pixel located at (x, y) is read and the value is
assigned to the integer L. The value of L may then be varied by one of the
filtering algorithms and the new value written back into the pixel at (x, y)
using

4



CALL WPIXEL (x,y,L).

Some specifics of ITEX/PC bear mentioning. A standard television
screen is made up of a 512x512 array of pixels. Of these, only 512x480
are actually visible. The lowest 32 rows are hidden out of view and may
contain other information.

On the monochrome PC/Vision frame-grabber board, four look-up ta-
bles (LUTs) may be utilized. A LUT serves to transform pixel value- before
they are displayed. The standard LUT is linear, meaning that the output
values equal the input values. Certain actions, such as thresholding, change
the LUT values. The actual values of the pixels in the frame-grabber board
memory remain unchanged by the threshold, but are simply altered by the
LUT in such a way that a binary image appears on the screen. If it is
desired to make the threshold permanent and actually change the frame-
grabber memory to their new values, the MAPLUT subroutine must be
called. If not, a call to INITIA to initialize the LUT's returns the screen to
its "before-threshold" likeness.

The PC/Vision board was successfully installed in a PC/AT computer
purchased to act as host. The ImageAction software proved to be extremely
simple but powerful in manipulating the images. Late in the FY86, the
ITEX/PC subroutine package was purchased and installed. It was success-
fully used in the study of speckle reduction techniques reported below.

In FY89 the image processing system was upgraded to a PC/Visionplus
image processing systems, including ImageActionplus and ITEX/PCplus
software. The board had more memory (to store two images), more LUTs,
and a reorganized memory scheme to allow the board to be compatible with
the software and boards offered by other vendors. While the subroutine
calls in the ITEX/PCplus software had a different syntax, the functions
performed were much the same as the prior versions of ITEX/PC.

1.4 Thresholding

A histogram of an image consists of a bar graph. A separate bar exists at
each gray level, with the height of the bar proportional to the numb,r of
pixels at that gray level. (See the inset of Figure 1.2 for an example.) Thus,
a histogram gives a visual representation of the general darkness or lightness
of the image and how widely separated in gray level certain features may
be. It can suggest where the best level to place a threshold might be.

5
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Figure 1.2: Histogram of representative image (inset).

Ideally, the feature data in an image would be very different from the
background in gray level, as in Figure 1.3. A threshold could then be placed
at a level midway between them with the result that the feature particles
would be black and the background white. The programs described in this
report could then be used to properly size and count the particles of interest.

In practice, Figure 1.4 is much more likely. The particles cover much of
the range of gray levels, as does the background speckle. A threshold placed
in an unfiltered image would cause portions of some particles to disappear
while part of the speckle would appear as particles. (The overlap is also
apparent in Figure 1.2.)

What is required is a method to process out the unwanted speckle noise
in the background. With a clear separation between the particles of interest
and the background, a threshold could then be applied with success. Fig-
ure 1.5 illustrates the result of a filtering operation to enhance the particle
against the background. While complete separation of the particles from
the background has not occurred, the hump at the center-left of the his-
togram indicates some improvement in the isolation of the particles from
the background.

6
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Figure 1.4: Histogram of representative image showing an overlap in the
gray-scales of the object pixels and the background pixels.
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Figure 1.6: LEOS Inc. calibration reticle.

1.5 Test objects

Three test objects have been used in our investigations to provide a resolu-
tion calibration. These objects were imaged under white light as the highest
contrast images with the most benign background. The objects wer also
recorded in holograms in the test setup to duplicate the test geometry.

The first object is a calibration reticle produced by LEOS, Inc., shown
in Figure 1.6 The circular portion of the reticle consists of approximately
10,000 opaque circular features of twenty-three sizes ranging from five toninety-three micrometers in diameter. These circles are photodeposited in

an eight millimeter circular area. A rectangular array to the right of thecircular test pattern consists the twenty-three standard sizes arranged in
rows of five as seen in Figure 1.7.

The second object is the 1951 USAF Standard Resolution chart (see
Figure 1.8). This object was used for resolution studies as it provides
a more continuous measurement of resolution degradation than the LEOS
calibration array.

The final object was the reconstruction from rocket motor holograms
recorded during firing using propellant samples supplied by the Air Force.

Recently, we have begun a series of measurements [12] of scanning elec-
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tron microscope (SEM) images of exhaust particles caught on filter paper.
The particle sizes range from 0.25 pm to 2.0 pm.

1.6 Thesis efforts

The work reported in this report has enjoyed the support of many thesis
students working on degrees at NPS.

9 CPT Larry Klooster [4], USA, began the investigation by installing
and testing a Quantimet 720 image processing system.

e LT Phil Shook [5], USCG, followed Klooster and was able to improve
on the operation of the Quantimet system and to obtain some pre-
liminary results. The Quantimet instrument and its PDP-11 interface
was difficult to operate and to keep running, however. The invention of
image-processing boards for the PC/AT computer came at this time
offering significant ease of operation without any lessening of image-
processing power, so we decided to abandon the Quantimet effort and
to concentrate on the PC system study.

* MAJ David Redman [6], Canadian Forces, installed and used the
PC/Vision board, together with the ImageAction software, to digitize
and process images. Redman developed the algorithm used for sizing
the particles (based on Ref. [13]) and obtained preliminary measure-
ment results for the calibration objects and holograms. Due to memory
restrictions Redman was able to process only one-fourth of an image
frame at a time. Later efforts removed that limitation. His work is
discussed in more detail in the chapters on Measurement Results and
on Code Optimization.

e CPT Tom Edwards [7], USMC, worked o the problem of reducing
the speckle. lie implemented three non-linear filters used in the syn-
thetic aperture radar community and compared the performance of
the speckle reduction filters against each other, using the "speckle in-
dex" concept to quantify the amount of the speckle. More information
can be found in the chapter on Speckle Reduction.

LT(jg) Sami Orguc [8], Turkish Navy, worked to optimize the FOR-
TRAN code produced by Redman and Edwards. He was able to make
use of calls to the video memory of the image processing board, rather

11



than using arrays in the main computer memory, to process the full
image frame rather the than the quarter-frame images that were previ-
ously processed. This work is discussed in more detail in the chapters
on Measurement Results and on Code Optimization. He also investi-
gated the use of convolution filters to reduce the speckle and measured
data from experimentally-recorded holograms.

" MAJ Denis Carrier [91, Canadian Forces, continued the investigation
into the speckle reduction filters. He measured the speckle reduc-
tion produced by the rotating mylar diffuser screen used in the recon-
struction process and found it to be superior to the nonlinear filters.
However, the nonlinear filters proved useful in reducing the already-
reduced speckle that remained in the images produced with the rotat-
ing mylar screen. He also investigated using the computer to reduce
the speckle by averaging several frames from the non-rotating screen.
His work is discussed in more detail in the Speckle Reduction chapter.
A second problem that Carrier solved was the question of adequate
sample size to have confidence in the statistics. As one enlarges a
data sample, at some point the statistics begin changing by only small
amounts. Further increases in the sample size no longer produce a sig-
nificant variation in the sample size. Carrier was able to quantify this
effect and show that, for our holograms, a sample size of 1,200 par-
ticles was sufficient to produce a stable size O:stribution. A detailed
discussion is found later in the section on sample size on page 21.

" LCDR Dana Kaeser [10], USN, modified the FORTRAN programs for
use with an optimizing FORTRAN compiler (Microsoft FORTRAN,
Ver. 4.0). He also ported the code for all operation into the C language
for greater efficiency and operating speed. He introduced the concept
of virtual arrays so that large data arrays could be processed without
interference from the 640K DOS memory limit. (The fact that the
ITEX/PC library had to be used with a Microsoft compiler limited
operation of the image processing board to a DOS environment. Other
packages are available that allow operation of the board under UNIX.)
His work is discussed in the chapter on Code Optimization.

" LT Valerie Hockgraver [11], USN, optimized Kaeser's code for smaller
code size and faster running times and integrated the modular pro-
grams into one master program that allows centralized use. More
information is found in the chapter on Code Optimization.

12



a MAJ Yeoh-Lip Lee [12], Singapore Defense Forces, is currently inves-
tigating the use of the image processing programs to measure particle
sizes in images produced by a scanning electron microscope (SEM).
He is currently in the beginning stages of this work.

1.7 Organization of report

Following this iniroductory chapter, Chapter 2 describes the techniques used
to identify and size the features in an image and presents some experimental
results. It also presents results on the resolution of the images. Chapter 3
discusses techniques for reducing the overlying speckle in our images using
various techniques. It quantitatively compares the techniques and presents
the results in terms of the reduction in speckle, the loss in resolutio: and
the processing time. Chapter 4 describes the various iterations of the code
that developed for processing the hologram reconstructions. It traces the
evolution of the programs from their original FORTRAN implementation
to their present C-language versions. Chapter 5 presents some concluding
comments and a summary.
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Chapter 2

PARTICLE SIZING

2.1 Sizing process

The initial research effort by Redman [61 on the PC/AT image processing
system focused on image capture, image digitization, and particle sizing.
The ImageAction software was used under operator control to process the
image to remove the speckle and background effects. FORTRAN programs
were then used to process and size the images. Due to computation time and
to computer memory size constraints, initial efforts worked with only one-
quarter of the screen image (256x256 pixels). (Later, improved programming
and subroutines removed those constraints.)

Redman processed the digitized images as follows:

Image averaging to reduce speckle. Two techniques were explored;
the first used a spinning mylar screen as the focus of the image. The
motion of the mylar screen during the 1/30th of a second scan time
causes the speckle to blur and to reduce the speckle contrast compared
to the dark particles. Alternatively, digital averaging of images taken
without the mylar disk being present was used to reduce the speckle
contrast. It was found that after approximately fifteen images were
added, no further reduction of speckle was observed. Additionally
the speckle reduction was found to be no better than obtained with
the rotating mylar disk. Since the rotating disk was experimentally
easier to implement, it was chosen for use with all subsequent recorded
images. (These results were later quantified by Carrier [9] and are
discussed further in the following chapter on speckle reduction.)

14
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Figure 2.1:- Image after threshold without any speckle reduction.

Redman also further reduced the speckle with a processing algorithm
that was empirically designed. Using built-in routines of the Image-
Action software, a blur filter was applied, folowed by a lowpass filter.
The two-step process was then repeated. When correct filtering was
done, the speckle was significantly reduced. It was noted however
that resolution was also reduced and that close particles would tend
to merge into one unresolved clump after processing. No attempt was
made to quantize the loss of resolution at this point.

The next processing step is the application of a threshold to remove
all information from the background. Figures 2.1 and 2.2 shows a
comparison illustrating the filtering effect. Figure 2.1 is a thresholded
image after the image was averaged but not filtered before applying
the threshold. Significant error due to the speckle effects is present.
Figure 2.2 shows the same image but with the speckle reduction filter
applied before applying the threshold. Far less noise is present. (The

calibration array oLject also suffered some physical damage before the

1.5

| I H I
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Figure 2.2: Image after threshold with speckle reduction.

image was made, causing the loss of the center circle in the top row of
Figure 2.2 as well as some damage to some of the larger circles.)

9 The thresholded image was then processed by the FORTRAN routine
for object identification, counting and sizing. The object identification
was done by scanning the data array for adjacent pixels in the horizon-
tal and vertical directions only, with no check made on the diagonals in
Redman's algorithm. (Orguc [8] added the diagonal checks in a later
version of the algorithm.) Adjacent dark pixels are joined to form one
object or "feature". The area and maximum chord widths are then
computed for each object and written into a data table. (If desired,
a roundness test can applied to the chord length measurements to
eliminate nonspherical particles.) This data table was processed by a
data processing program written by Redman to produce the final his-
togram data on particle size. (Later efforts used commercial statistical
packages to handle the data analysis and histogram formation.)
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Figure 2.3: Predicted histogram of LEOS calibration object using manufac-
turer's size data.

2.2 Measurement results

Figure 2.3 [6] shows the histogram of particle size on the LEOS calibration
array (Figure 1.6 on page 9) as provided by the manufacturer. Imaging
tests showed that the system is unable to resolve particles smaller than
the size marked as "threshold" on Figure 2.3. This resolution threshold
is approximate due to the coarse quantization of the particle sizes in the
sample.

Using the hologram reconstruction system, the smallest particle resolved
was on the order of 20 um in Redman's work. Adjusting the manufacturer's
data for this resolution threshold produced the histogram of Figure 2.4.

The measured histogram from a hologram reconstruction of the calibra-
tion array with 228 particles in the field of view is shown in Figure 2.5.
Again the lower size bin is not empty due to quantization effects and noise,
but the general shape of the curve is iih agreement with the size data supplied
by the manufacturer.
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Figure 2.4: Adjusted histogram from manufacturer's data. Unresolved par-
ticles less than 20 ym in diameter have been removed from the data.

18



a LXPERIMcNAft OnTR

19228 PRRTICLE SRWLC

C a

,* O_

R

0.0 LU 40 ... 00.0 5.
PortLcLo DMametemr (Pix*lsl

Figure 2.5: Histogram of measured size for 228 particles in the LEOS cali-
bration object.
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Figure 2.6: Histogram of particle sizes (in pm) for 1,592 particles contained
in 16 fields of view.

The 20 pm minimum resolution was disappointing; we had expected to
be able to resolve smaller particles based on a preliminary calculation [15].
From these preliminary resolution results, we decided to further explore the
loss of resolution in the processing steps further by using the Air Force
Resolution chart as an object, since it has more steps in its quantization of
resolution. These steps provide a finer gradation in the ability to measure the
resolution than the LEOS calibration array. Additionally, other techniques
for the reduction of speckle were required for small objects since we suspected
that the smaller objects might have been removed by Redman's blur filter
steps. (The work on speckle reduction is reported in a separate chapter that
follows.)

Later measurement results by Orguc [8] expanded the number of par-
ticles measured. Figure 2.6 shows a frequency histogram of particle size
distribution as measured from an experimental hologram taken during a
rocket firing. The horizontal axis is the x-width of the particle. The data
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represents 1,592 particles that were obtained by combining the data from 16
different regions in the hologram reconstruction. Other results with fewer
particles are shown in the section on sample size that follows in this chapter.

2.3 Sample size

The field of view of the microscope system is determined by the magni-
fication required to resolve the smallest particle. The number of particles
within the field of view depends on the size of the field of view. For the small
fields of view required for small particles, the number of views to completely
cover a hologram can approach the millions. One question of interest, then,
was how many particles were enough to provide a meaningful set of statis-
tics. Figure 2.7 represents the data from 96 particles in one field of view;
Figure 2.8 represents the data from 681 particles in 7 fields of view. These
histograms are incomplete and show major changes in shape as more parti-
cles are added to the data sample. Figure 2.9 is the data from 984 particles
in ten fields of view; it has the general shape of the distributions from larger
numbers of particles for this hologram. For this hologram we experimentally
concluded that approximately 1,000 particles need to be measured before the
distribution stays about the same. Carrier [9] found that the proper statis-
tical test to ensure an adequate sample size to have confidence in the prob-
ability distribution is the Kolmogorov-Smirnov two-sample test [16]. This
test determines if two data samples are from the same distribution. (The
Kolmogorov-Smirnov one-sample test decides how closely a single sample
of data fits a hypothesized distribution.) We are given two samples; sample
A has been made with n values and sample B has been made with m values
(where n > m). We want to test the hypothesis: sample A has the same
probability distribution (or sample-size frequency distribution) as sample B
(or, conversely, we want to test whether the data samples are from different
distributions). It is assumed that the samples are independent of each other
(i.e., they are taken from independent fields of view with no overlap). The
test requires that two cuitiulative distributions, Si(x) and S2(x), be made
up from the samples (see Figure 2.10). The Kolmogorov statistic T, is
the largest vertical distance between the distributions, as also shown in the
figure. Then

T, = MAXOF{ IS,(x) - S2 (X) }, (2.1)

wheie the MAXOF{.} operator takes the maximum value of its argument.
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Figure 2.7: Histogram of particle sizes (in pm) for 96 particles contained in
1 field of view.
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Figure 2.8: Histogram of particle sizes (in pm) for 681 particles contained

in 7 fields of view.
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Figure 2.9: Histogram of particle sizes (in pm) for 984 particles contained
in 10 fields of view.
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Figure 2.10: Two independent cumulative frequency distributions and the
Kolmogorov statistic Ti.
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[ Xi Y, IS,(Z) - S2(X)l Ii Xi 1' IS)(X) - s2(X)
5.2 10 - 1/151 = 3/45 9.8 15/9 - 8/151 = 1/45
5.7 10 - 2/151 = 6/45 9.9 16/9 - 8/151 = 6/45
5.9 10 - 3/151 = 9/45 10.1 17/9 - 8/151 = 11/45
6.5 10 - 4/151 = 12/45 10.6 18/9 - 8/151 = 16/45
6.8 10 - 5/151 = 15/45 10.8 18/9 - 9/151 = 13/45

7.6 11/9 - 5/151 = 10/45 11.2 19/9 - 9/151 = 18/45
8.2 1l/9 - 6/151 = 13/45 11.3 19/9- 10/151 = 15/45

8.4 12/9- 6/151 = 8/45 11.5 19/9 - 11/151 = 12/45
8.6 13/9 - 6/151 = 3/45 12.3 19/9 - 12/151 9/45
8.7 14/9- 6/151 = 2/45 12.5 19/9- 13/151= 6/45

9.1 14/9 - 7/151 = 1/45 13.4 19/9 - 14/151 = 3/45
9.3 15/9 - 7/151 = 4/45 14 19/9 - 15/151 = 0/45

Table 2.1: Two-sample distributions. (After W.J. Conover, Practical Non-
parametric Statistics, John Wiley and Sons, 1971.)

We decide whether to reject or accept the hypothesis with a by comparing
T1 with a tabular value found in various statistical texts (see Figure 2.11).
The table shows the quantile p for the one-sided and two-sided test at the
top. The hypothesis is accepted with a significance of 1 - p if the value of
T1 is less than the table entry for the values of m and n of the samples. The
significance value of a conclusion has the value of 1 - p if th hypothesis is
accepted as a result of the test.

To illustrate the use of the table, we consider a simple example from
Ref. [16] where we have two independent samples, one of nine particles
(Xi, i = 1... 9) and one of fifteen particles (Y, i = 1... 15). The samples are
given in Table 2.1. Scanning the table we observe that the largest difference

is 18/45 (at the 11.2 value of the samples), so T' = 18/45 = 0.40. For this
set of data we enter the Kolmogorov table at N, = 9 and N2 = 15. The top
heading gives the confidence level desired (we want to use the "Two-Sided
Test" values).

We can accept the hypothesis with a significance of 57( (= 1 - 0.95, i.e.,

p = 0.95) if the measured value of T is less than the table value of 8/15 =
24/45. Since our measured value of 18/45 is smaller than the table value of
24/25, we conclude that we have met the test and that the hypothesis tha
the distributions are the same is true with a significance value of 5%. We
now want to see if we can raise the significance value to a higher number.
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Oue-Sided Test: p - .90 .95 .975 .99 .995
Two-S1dd Test: p - .80 .90 .95 .99 .99

N - 7 N, - 8 27156 33/6 5/8 41156 314
9 31163 519 40/63 517 47/63

10 33/70 39170 43170 7/10 5/7
14 3/7 1/2 417 9114 5/7
28 3/7 13128 15128 17/28 9/14

Nm 8 N'M 9 4/9 13/24 5/8 213 3/4
10 19/40 21140 23/40 27/40 7/10
12 11/24 1/2 7/12 5/8 2/3
16 7/16 1/2 9/16 5/B 518
32 13/32 7/16 1/2 9/16 19132

N - 9 N,-= 10 7/IS 1/2 26/45 213 31/45
12 4/9 i/2 519 1118 2/3
15 19/45 22145 112 315 29/45
Is 7/13 4/9 1/2 519 11/18
36 13/36 5/12 17136 19136 519

N, - 10 N, - i5 215 7/15 112 17130 19/30
20 2/5 9120 12 11/20 3/5
40 7120 2/5 9/20 112

Ng = 12 Ng= 15 23/60 9/20 1/2 IlV20 7112
16 3/8 7/16 23/48 13.24 7112
is 13/36 5/12 17/36 19/36 59
20 11/30 5/12 7/15 31/60 17130

N, = 1S N3 = 20 7/20 2/5 13130 29/60 31/60

N,- 16 N, -20 27/80 31/80 17/40 19140 41/80

Large-sample 1 n 12 w i +/ j M.63
approximation 1 ., I+2 2 L 4 1.52 ma

Figure 2.11: Quantiles of the Smirnov test statistic for two samples. (From
W.J. Conover, Practical Nonparametric Statistics, John Wiley and Sons,
1971.)
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Two-sided11P=08 
. .5Test p = 0.80 0.90 0.95 0.98 0.99

Value 1.07V -_ 1.22,/--n 1.36, 1.52 v ' 1.63 7 n

Table 2.2: Large-sample approximation for the Smirnov test statistic.

We can accept the hypothesis with a significance of 20% (= 1 -0.80, i.e.,
p = 0.80) if the measured value of T, is less than the table value of 19/45.
Since our measured value of T is 18/45, we conclude that we have met the
test and that the hypothesis that the distributions are the same is true with
a significance value of 20%. Unfortunately he table does not contain values
for higher levels of significance; we cannot try to raise the significance value
any higher.

For our samples we will be dealing with many more particles in a sample
(on the order of 1,000 particles). For this large-sample case we use the large-
sample approximation on the bottom line of of the Table 2.1, repeated in
Table 2.2.

We now proceed to the use of this test to our particle distributions.
Carrier [9] sized the particles in two independent samples consisting of 909
particles and 1,059 particles. (As described before, previous intuitive mea-
surements of particle distributions had shown that about 1,000 particles
were needed to minimize changes in the size distribution.) Two cumulative
frequency distributions were plotted with the aid of the Statgraphics sta-
tistical analysis program. (Statgraphics is supposed to be able to do the
Kolmogorov-Smirnov test directly, but bugs in the program prevented us
from using it.) Manipulation of the distributions in a spreadsheet program
showed that T = 0.142. Using m = 909 and n = 1059, the values in the
test table are as shown in Table 2.3 Using the 5% significance value as an
arbitrary desired level of significance, we see that our measured value of
T, = 0.142 exceeds the table value of 0.0615, so our conclusion is that the
samples do not have the same distribution (to within a 5% significance level)
and larger sample sizes are required.

The experiment was repeated with sample sizes of 1,059 and 1,179 sam-
ples. The measured value of T was 0.020. The large-sample table was
recalculated for m = 1059 and n = 1179 with the results shown in Ta-
ble 2.4. Again using the 5% significance as an arbitrary desired level of
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Two-sided
Test p = 0.80 0.90 0.95 0.98 0.99

Value 0.0484 0.0522 0.0615 0.067 0.0737

Table 2.3: Large-sample approximation for the Smirnov test statistic for
m = 909 and n = 1059.

Two-sided
Test p = 0.80 0.90 0.95 0.98 0.99

Value 0.0453 0.0517 0.0576 0.0644 0.0690

Table 2.4: Large-sample approximation for the Smirnov test statistic for
m = 1059 and n = 1179.

confidence, we see that our measured value of T = 0.020 is less than the
table value of 0.0576, so our conclusion is that the samples do have the same
distribution (to within a 5% significance level) and larger sample sizes are
not required. In fact, inspection of the values in Table 2.4 shows that we
can raise the significance factor to 20% or more for our small value of T1.

Hence we conclude that we need at least 1100 particles in the sample.
More particles will raise the significance, but this is a diminishing return (i.e.,
equal increases in sample size bring diminishing increases in the significance
level).

Two points should be made about the test that was performed. First,
we assumed that the distributions obtained were independent even though
they were from the same hologram. Strictly speaking, the samples should be
taken from different holograms made from different firings. Second, we have
assumed that the two distributions were "representative" of all distributions
of the same sample size (i.e., there are no large anomalies in the distribution).
This assumption should be checked by accumulating and comparing many
distributions from the hologram data. Also, the 5% significance level was
arbitrarily chosen; more information needs to be developed to verify that this
significance level (or the 20% significance level of our samples) is appropriate.
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2.4 Summary

In this Chapter we have presented the sizing results obtained from cali-
bration objects and a hologram made during a motor firing. The sizing
algorithms are checked against a white-light image of the rectangular por-
tion of the LEOS calibration array whose sizes are known (see Figure 1.7
on page 10). Initial results by Redman showed that resolution was a po-
tential problem as he could resolve only to 20 pm. Since the hologram was
predicted to have better resolution capability than that (and was observed
to have better resolution when the hologram reconstruction was observed
by eye), we felt that Redman's crude speckle-reduction filter was severely
degrading the resolution. Efforts on speckle reduction techniques followed
and are reported in the next chapter.

Following Edwards' work on speckle reduction, Orguc returned to the
particle-sizing problem and produced measured results for both the LEOS
calibration object and a hologram reconstruction of a motor firing. His
histogram results have been presented in this chapter.

To minimize the amount of data required to reach a representative distri-
bution, Carrier used the Kolmogorov-Smirnov two-sided test to show that
about 1,200 particles were necessary to achieve a stable distribution in his
data set. This corroborated an intuitive estimate of 1,000 particles that had
been made in our prior work.
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Chapter 3

SPECKLE REDUCTION

During laser reconstruction of the hologram, speckle noise is introciuced
due to the optical diffuser that was required to avoid imaging the thermal
gradients present in the combustion process. This speckle noise can be of the
same size as some of the smaller particles of interest, and so it can cause a
faulty count in the number of features present. In an attempt to reduce the
speckle, Redman [6] investigated a imaging the hologram reconstruction on a
moving screen (a spinning mylar disk), averaging techniques, blurring filters,
and lowpass filtering. Twenty microns was the best resolution that was
achieved after the application of these filters. Some of the loss in resolution
may have been due to the optics involved; nevertheless, it became necessary
to explore other means of filtering out the speckle to get the best possible
resolution.

Edwards [7] explored three speckle reduction algorithms suggested by
work in the field of synthetic aperture radars. The initial step was to write
computer programs to support each algorithm. Once the programs were
running, a comparison was done to find which of the three was best at
reducing speckle while retaining as much resolution as possible.

Carrier [9] investigated the possibility of digitally averaging images with
different speckle patterns to reduce the speckle. He also quantified the
speckle reduction due imaging the reconstruction on the spinning mylar
disk for comparison with the other speckle-reduction techniques.
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Figure 3.1: Image without speckle present.

3.1 Speckle index

Speckle has the characteristics of random multiplicative noise in the sense
that the noise level increases with the average gray level of a local area [17].
The presence of speckle reduces one's ability to resolve fine detail. Fig-
ures 3.1 and 3.2 show images without and with speckle present. It can be
seen how the speckle is easily confused with the smaller feature particles.

As a figure of merit in determining the amount of speckle reduction, the
"speckle index" was used. In Reference [18], Crimmins showed that the ratio
of local deviation to local mean was a reasonable quantitative measure of
speckle, due to the multiplicative nature of speckle noise.

To compute the speckle index, a FORTRAN subroutine was written. The
algorithm used was [19]:

.1 M N d ev(31
speckle index (3_1)

M=N _=1 mean
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Figure 3.2: Image with speckle present.

where:

dev= max p(x+a,y+b)- min p(x+a,y+b) (3.2)- l a,b<l - l< a,b< l

mean= E p(x+a,y+b) (3.3)
a,b=-I

In the above equations, M and N are the dimensions of the array in the x
and y directions, and p(x,y) is the gray level of an individual pixel located
at x,y.

In simple terms, the local deviation is found by subtracting the smallest
gray level of a particular pixel and its eight immediate neighbors from the
largest gray level of the same nine pixels. The local mean is the average of
the nine gray levels. The subroutine was run with various values of M and
N to determine values for the minimum-size region that needs to be used
for the speckle index calculation. From Figure 3.3, it can be seen that a
small array can distort the calculation if there is a sharp local disturbance.

Based on the results of Figure 3.3, the values M = N = 240 were
chosen as representative array dimensions for speckle index calculations.

33



(OA2

is 3 64 it22

Pcits on a Side

Figure 3.3: Speckle index as a function of the area of computation.
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This size represents about 23% of the visible screen, yet does not take an
excessive amount of time to calculate. A 16 MHz IBM PC/AT with the math
coprocessor returns the speckle index of an image to the calling program in
75 seconds. Values for the speckle index can range from over 1.0 (rarely) to
a theoretical limit of zero. The value of zero could only be achieved if the
entire image was filtered to the point where every pixel had the same gray
level. This is, of course, an uninteresting image.

3.2 Speckle reduction filters

Three filters were implemented in software and will now be discussed. Two
filters depend to a certain degree on the statistics of the image. The third
filter uses a geometric hulling algorithm.

3.2.1 The sigma filter

The first speckle reduction filter [20] is based on the standard deviation of
a Gaussian distribution. By definition, 95.5% of all the pixels fall within
two standard deviations on either side of the mean. Any pixels within two
standard deviations of a given pixel's gray level are included in an averaging
scheme, whereas those outside the "2-sigma" range are excluded. Obviously,
the standard deviation of the image must be known beforehand. ImageAc-
tion was used to find standard deviations and histogram plots very quickly
and easily. (The later version of the ImageActionplus software did not calcu-
late the standard deviation of the image, so a software routine was written
to find this value.)

If a particular pixel is considerably different from its neighbors, perhaps
none of the neighbors will be within the 2-sigma range. This would indicate
a very sharp feature. To avoid the possibility that this sharp feature will
not be subject to the averaging process at all, a cutoff is established. If the
total number of pixels inside the 2-sigma range is less than this minimum
cutoff number (2 was chosen), the four-neighbor average then replaces the
central pixel's gray level value.

The sigma filter program uses the algorithm as follows [20]:

gx,y) =
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i=X-2 .,j- 2 6(i,j)p(i,j)
,t=x-2 J=,,-2 601, j)

if E-.,+2 +2
S=X Ej+ !-t22 6(i,.) > 2 (34)

p(x - 1, y) + p(x + 1, y) + p(x, y) + p(x, y - 1) + p(x, y + 1)
5

otherwise,

where

p(x, y) = gray level of a pixel in 5x5 local array,

g(x, y) = gray level of the filtered central pixel,

a = standard deviation, and

O(xY) I if (1 - 2o')p(z,y) <_ p(i,j) < (1 + 2a)p(,y) (35){ 0 otherwise.

By altering the value of a, varying degrees of filtering result. If a is
increased, the sigma range is increased and so more pixels are included in
the average. For this work, however, the true standard deviation of each
image was used when it was filtered.

For illustration of the sigma filter's effectiveness, images of the Air Force
Resolution Target axe presented. Figures 3.4 and 3.4 shows an image before
and after two iterations of the filter. Visually, the speckle has been reduced
considerably, although the edges have been blurred and the resolution has
decreased somewhat. Numerically, the speckle index has decrease from 0.305
to 0.103.

When a threshold is applied at a value of 140 (iteratively determined
as the best value) the effectiveness of the sigma filter is most dramatically
displayed. (See Figures 3.6) and 3.7.) Now it is much more evident that
good data can be retrieved from the filtered image, whereas the excessive
noise in the unfiltered image would lead to faulty data detection.

36



Figure 3.4: Image of Air Force resolution chart before filtering (SI = 0.305).

3.2.2 The local statistics filter

This filter [20] uses local estimates of the mean and variance in a 5x5 windcw
about the central pixel in question.

These local statistics are used to calculate a weight k. The k value then
determines where the new gray level of the central pixel will be placed: near
the original value of the central pixel, near the linear average of all pixels
in the 5x5 array, or somewhere in-between. Throughout this algorithm,
p(x, y) represents unfiltered pixels and g(x, y) represents the filtered central
pixel. To compute the filtered gray level of a pixel using the local statistics
method, the local mean E{g(x, y)} and variance varfg(x, y)} must first be
estimated [201:

1 x+2 y+2

Efg(x,y)} P-- 1 Z p(ij) (3.6)
25i-=x-2 j*y- 2

varfg(xy)}~ var{p(x,y)} + E2 {g(x,y)} _ E 2{g(x,y)}. (3.7)
C2 +
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Figure 3.5: Image of Air Force resolution chart after two iterations of the

sigma filter (SI = 0.103).
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Figure 3.6: Thresholded image without any filtering applied. (Threshold
value = 140.)
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Figure 3.7: Thresholded image after application of Sigma filter. (Threshold
value = 140.)
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where

va~~xi)1 1x+2 y~+2 }]
25 E E [p(i,j) - Efg(x, (3.8)

i=x-2j=y-2

The weight k may then be calculated as

k= varfg(zy)} (3.9)

a2 E2 {g(Xy)} + var{g(x,y)} (

Finally, the estimate of g(x, y) is

g(x,y) = Efg(x,y)} + k [p(x,y) - E{g(x,y)}] . (3.10)

From close scrutiny of the algorithm, some of the equations may be better
understood. Equation 3.6 states that the local mean is the average of the 25
pixels in the 5x5 local array. Equation 3.8 is the variance of the unfiltered
pixels in the 5x5 array; the mean value of the local array from Equation 3.6 is
subtracted from each of the pixels in turn. These differences are squared and
then summed over the entire array. For more detail on how the remaining
equations were developed, see Ref. [201.

Consider a region of an image which is flat, meaning adjacent pixels
have about the same gray level. Here, the variance approaches zero, and
so k approaches zero. The new estimate of g(x, y) is therefore close to the
mean of the local 5x5 array. Consider now a region of high contrast, say the
edge of a particle. Here, k approaches one and so g(x, y) is close to the value
of the central pixel. The filter therefore has a marked tendency toward the
retention of high contrast edges [20]. Figure 3.8 and Figure 3.9 show the
Air Force Resolution Target (of Figure 3.4 on page 37) after two iterations
of the local statistics filter, before and after thresholding at 140.

3.2.3 The geometric filter

Whereas the previously discussed filters depend to a certain degree upon the
statistics of the image to be filtered, the geometric filter is based on nonlinear
geometric concepts. The algorithm was developed in Reference [18] and [19].
It is a one-dimensional routine which is run horizontally, vertically and
then in the two diagonal directions. In each direction it applies a geometric
hulling algorithm to the image and then to the image's complement. The
algorithm [18] for this filter follows:

1. Let a = 1, b = 0. (This sets the values for a horizontal run.)
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Figure 3.8: Image (before threshold operation) after two iterations of local
statistics filter (SI = 0.115).
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Figure 3.9: Thresholded image of Air Force resolution chart after two iter-
ations of local statistics filter. (Threshold value = 140.)
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2. Let c = 3. (This is a counter to determine when to change directions.)

3. Let d = 1. (This controls whether the image or its complement is
being filtered.)

4. Compute

g(x,y) = maxp(x,y),nfin{p(x-a,y-b)- l,p(x,y)+ 1}]
for 1<x<M,1 <y_5N. (3.11)

5. Compute

p(X, Y) =

max [g(z, y),min{g(x - a, y - b),g(x, y) + 1,g(x + a, y + b) + 1}]

for 1<x<M,1<y<N. (3.12)

6. If d = 1, let a = -a, b = -b, d = 0 and go to Step 4.

If d = 0, let d = 1 and go to Step 7.

7. Compute

g(x,y) = min [p(x,y),max{p(x - a,y - b) + 1,p(x,y) - 1}]
forl<x<M,1<y<N. (3.13)

8. Compute

p(x, Y) =

min[g(x,y),max{g(x - a,y - b),g(x, y) - l,g(x + a,y + b) - 1}]

for 1<x<M,I <y<N. (3.14)

9. If d= 1, let a=-a,b=-b,d=0andgotoStep 7.
If d = 0, let d = 1 and go to Step 10.

10. Ifc = 3, let a = 0, b = 1, c = 2 and go to Step 4. (This sets up a
vertical run.)
Ifc = 2, let a = 1, b = 1, c = 1 and go to Step 4. (This sets up a
diagonal run.)
If c = 1, let a = 1, b = -1, c = 0 and go to Step 4. (This sets up the
other diagonal.)
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Figure 3.10: Image after two iterations of geometrical filter (SI = 0.129)
before application of threshold operation.

11. If c = 0, stop.

The algorithm used exhibits the interesting property that it will allow a
certain curvature in the terrain, but will tear down anything more drastic.
With a few exceptions [19], a curve sharper than 45 degrees at any vertex
will be filtered. What this means is that the narrow valleys comprising
speckle will be filled in and the walls torn down after sufficient iterations
of the filter. Of course, the objects of interest that should be preserved are
also filled in and torn down, but at a much slower rate. Generally, the larger
and darker the feature, the more slowly it will be degraded.

If an object of interest is almost as narrow as the speckle, they both will
be reduced at about the same rate. Hopefully, the object is much darker
than the speckle, so the speckle will be beaten down after a number of
iterations leaving the object of interest largely intact.

Figure 3.10 and Figure 3.11 show the Air Force Resolution Target (of
Figure 3.4 on page 37) after three iterations of the geometrical filter, both
before and after thresholding at 140.
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Figure 3.11: Thresholded image of Air Force resolution chart after three
iterations of geometrical filter. (Threshold level = 140.)
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Figure 3.12: Reduction in speckle vs. the number of iterations for the three

speckle reduction filters.

3.3 Comparison of the filters

This section will compare the three filters using the speckle index as a figure
of merit in gauging how much speckle has been removed. The filters will be
compared in how much speckle they remove per iteration, the computation
time per iteration, histogram differences, and, of course, visual differences.

3.3.1 Speckle index comparison

All three filters reduce speckle at their own rate. Figure 3.12 shows this fact.
The sigma and local statistics filters both reduce speckle by almost a factor

of two after only one iteratiorn, but then dramatically "slow down" with
increased iterations. This may be attributed to the fact that both filters are
actually various themes on the blurring technique. More iterations serve to
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FILTER TIME

Sigma 7 min, 20 sec
Geometric 18 min, 50 sec
Local Statistics 39 min, 45 sec

Table 3.1: Time per iteration (512x512 image, 16 MHz PC/AT)

merely increase the blur. Figure 3.12 shows that the geometric filter's curve
is more gradual, allowing the user to stop at a less severe level of filtering.
This is a particularly desirable trait, because resolution degradation becomes
a problem after only a few iterations. It should be noted that filtering cannot
stop at an arbitrary value of speckle index, only at discrete levels depending
on how many iterations have occurred. It is foreseeable that, in general, a
given filter may allow a degree of speckle reduction not achievable by the
others although our three particular filters all approach approximately the
same value of speckle index after several iterations.

On the basis of Figure 3.12, the geometric filter ranks first in its ability
to control the amount of speckle reduction, followed by the local statistics
filter.

3.3.2 Resolution comparison

Speckle reduction is a fundamental tradeoff against image resolution. Fig-
ure 3.13 shows a comparison of the measured resolution for each of the
filter types. The horizontal axis shows the number of iterations of the filter.
(Each iteration reduces the speckle further.) It is observed that the reso-
lution degrades from about 12 /Am to almost 18 pm after several iterations
of the filters. The geometric and local statistics filters are comparable to
each other up through seven iterations, and are superior to the sigma filter
in preserving the resolution of the image.

3.3.3 Processing time comparison

The times for an iteration of each filter are in Table 3.1 The local statistics
filter is slow due to the nested do-loops, frequent calls to subroutines, and
a large number of calculations required inside each do-loop. It should be
noted that speed is of secondary importance since there is no requirement in
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this application to achieve results within a given time limit. Also, dedicated
image-processing equipment can do the calculations much more efficiently
and faster. For example, Reference [19] reports times of 14 seconds per
iteration for the geometric filter using a VAX 11/780 and DeAnza IP-5500
digital video processor.

3.3.4 Visual comparison

The ultimate test of any procedure dealing with images is how the image
looks to the viewer. Comparisons of this type are difficult to justify, for each
person sees an image slightly differently. Nevertheless, based on numerous
runs of the filters, the geometric filter is judged best at retaining the edges,
basic shape and size of objects of interest while beating down the speckle.
This can be seen by close comparison of Figures 3.5, 3.8, and 3.10. All
three figures are close in speckle index, yet the local statistics and sigma
filters tend to smear and spread particle edges more than does the geometric
filter. This observation has been verified in runs using other images as well.
Once the threshold at 140 is applied (Figures 3.7, 3.9, and 3.11), the sigma
filter is definitely seen as the inferior of the three. The other two are very
close in performance. Close examination reveals a few small particles of
speckle that the geometric filter failed to eliminate which the local statistics
filter successfully handled. This is a consequence of the filtering stopping at
discrete levels. In most other cases, the geometric filter is superior.

3.3.5 Histogram comparison

All three filters produced histograms generally similar in shape and distri-
bution. Figures 3.14 and 3.15 shows the histograms of two filtered images.
Notable differences include the geometric filter's reduction of the spike at
255, the way it retained virtually intact the darker features, and its more
pronounced "valley" between the two "humps".

The claim was made earlier that the geometric filter had a tendency
to reduce smaller (hopefully speckle) particles much faster than the dark
features. The retention of the darker pixels in the histogram is evidence
that this claim is valid. All the filtered histograms pointed to a threshold
at about 140. Thus, this was the value used on all the images, including the
original, for comparison purposes.
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Figure 3.14: Histogram of image filtered with two iterations of the local
statistics filter.

I~~ 11C4

,3

Figure 3.15: Histogram of image filtered with three iterations of the geo-
metric filter.
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3.4 Moving-screen averaging

Another speckle-reduction technique is to record the desired image when
focused on a moving screen. If the screen moves, then the speckle pattern will
change while the particle images will remain constant. If the speckle pattern
changes during the integration time of the detector (1/30th of a second for
a TV camera), the averaging effect of the detector integration will cause
the speckle to "wash out" while the particle images remain the same. This
method combines an easily-implemented technique with one that achieves
good speckle reduction while maintaining resolution of small features. Our
measured value of speckle index for this technique is 0.0593 and the measured
resolution is 12.4 microns. This value of speckle index and resolution are
comparable to the best of the nonlinear speckle-reduction filters after several
iterations. In terms of ease of implementation and speed, this moving-SLreen
averaging technique is far superior to the nonlinear filters. It is recommended
that all hologram reconstruction images be recorded from images focused on
a moving screen and that the speckle-reduction filters be used only to further
reduce the speckle.

3.5 Multiple-image averaging

We wanted to find out just how good the speckle reduction to a speckle
index value of 0.0593 was and how the achieved resolution of 12 micrometers
resolution was, compared to a simple averaging technique. In the simple
averaging technique [14], N separate images with the same resolution chart
image but different speckle patterns were recorded and digitized. Then
N digitized images were then successively registered and averaged in the
computer with the result displayed on the screen. (The number of average
images ranged from I to N.) The speckle index was calculated from the
averaged data and the resolution was measured by an observer looking at
the image of the resolution chart. This method is known to theoretically
produce a reduction in speckle that is proportional to 1/V/.

Figure 3.16 displays the relative value of speckle index as a function of
the number of averaged images N. Since we are interested in the reduction
of speckle index, we have normalized the speckle index to the value for N =
1. The dashed curve shows the theoretical reduction in speckle as 1/V/N
Relatively good agreement is shown. Differences are probably attributable
to small registration problems with the images to be averaged. The solid

52



10 a aa Measured
Spinning disk

- - Theory

X 0.8
Q)

Q)0.6

a.)\

(f0.4 a N,

>) a 0

-20.2 o--.0 0 a o a

a)

0.0
0 .0 - ' I , , I I I I , , , ,I ' ' I

0 5 10 15 20 25

Number of images

Figure 3.16: Reduction in relative speckle index vs. number of images that
are averaged. Also shown for reference is the speckle index of an image
recorded from a moving screen.

53



line on the graph shows the speckle index measured from an image taken
with the moving screen. (In our experimental setup, the moving screen is
made by recording the images formed on a spinning mylar disk.) The data
show that the moving screen technique is better than the averaging of over
25 separate images. Further reduction in the speckle by averaging even more
images is not advised, since the knee of the curve has been passed and the
averaging of many more images would be required to achieve only minimal
reduction in speckle.

Figure 3.17 shows the measured resolution of the averaged images. Con-
trary to the application of the convolution filters or nonlinear speckle reduc-
tion filters, the resolution of the result improves rather than degrades. This
improvement is due to the removal of the overlying speckle that masks the
smaller features. (The ultimate resolution is determined by the limitations
of the hologram recording and reconstruction gejnetry and the ability of
the technique to exactly align the multiple images being averaged.) As the
speckle is reduced, the resolution improves by almost a factor of two. (The
measured resolution is quantized to the values of the AF Resolution chart.)
Also shown in Figure 3.17, for reference, is the measured resolution of the
image recorded with the moving screen. It is seen that the resolution of
the image from the moving screen has better resolution than the best of the
averaged images.

3.6 Conclusions

The IBM PC/AT with dedicated software and hardware is a viable sys-
tem to reduce speckle in reconstructed holograms. The ITEX/PC software
with the PC/Vision frame-grabber board may be used in conjunction with
FORTRAN programs to achieve the filtering desired. The best method of
reducing the speckle is to record the image off of a moving screen. In our re-
construction system, we focused the reconstructed real image on a rotating
circular mylar disk. (See Figure 1.1 on page 3). The screen must rotate fast
enough to allow sufficient integration of the image over the 1/30th second
frame time of the imaging tube. Modest rotation rates proved capable of
providing enough velocity for our disk.

While all three nonlinear filters are superior to current linear blurring
digital techniques, the geometric filter has been found to be the best of the
three. It combines the ability to hold the edges and shape of objects with
the desirable trait of less filtering per iteration. In this way, the user has
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more control over the amount of filtering to be done and to what degree the
speckle will be reduced. While the geometric filter has been found to be the
best overall filter, it may not be superior in every particular circumstance.
It has been noted that due to the discrete jumps in speckle index which
occur after every iteration, one filter may be able to reach the region of
optimum filtering when another cannot. For this reason, the local statistics
filter should be used along with the geometric filter and the results after 2
or 3 iterations compared.

Resolution of the original image was about 12 microns. This was de-
graded to about 14 microns in the filtered images. It is doubtful that much
more improvement can be made toward reducing the speckle degradation due
to filtering. Any further resolution improvements will most likely have to
occur in the recording and reconstruction process, and better optics. Some
improvements have been made recently in this area. Reference [7] reports
resolutions typically of 8 microns, and in certain cases, 4 microns. Taking
into account the degradation after filtering, a conservative estimate of 10
microns resolution is now possible in the finished filtered and thresholded
image.

Digital averaging of images is not recommended when the moving-screen
averaging technique can be used. Digital averaging requires large amounts
of disk storage for the images recorded and a fairly long time to perform
the average (due mainly to the disk reading operations required). It does
serve as a useful benchmark, however, for comparison of the other imaging
techniques as the mathematical description of the frame-averaging technique
is well understood.
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Chapter 4

CODE OPTIMIZATION

Significant effort was spent in this project to improve the speed and efficiency
of the programs. Early efforts were limited to a 256x256 picture due to
processing times (on the order of 4 hours) and memory constraints. We
can now handle 512x512 images in approximately 10 minutes from frame
digitization to production of the data table.

Improvements have been due to the commercial availability of software
that manipulates the fast-access video memory board, improved software
revisions on locally-produced programs, and the substitution of a faster
microprocessor. Further reductions in processing time, if desired, can be
made by using more powerful and more expensive computer hosts for the
image processing board. The final time required for our computations is
on an appropriate scale for the feasibility studies that we are carrying out.
Several iterations have been made in improving the execution of the code
as new optimizing compilers became available and as new image-processing
subroutine packages became available from Imaging Technology.

4.1 FORTRAN programs

4.1.1 Original FORTRAN program

Redman [6] began the study on the PC after investigations concluded that
the Quantimet system was too unreliable for use. ie used Microsoft FOR-
TRAN together with the ImageAction software for his routines. ImageAc-
tion is a mouse-driven package that allows the user to manipulate the image.
(The software-callable routines of ITEX/PC were not commercially avail-
able at the time of Redman's work.) lie used the ImageAction software to

57



retrieve and save images and to apply speckle-reduction convolution filters
of his own design. The main feature identification and sizing algorithms
were written into separate programs, in modular form. The typical frame
contains 512x512 pixels, each represented by an 8-bit word, so each frame
requires 262 kilobytes (kB) of memory for storage or manipulation. This
large frame size, together with the Redman's programs, exceeded the 640
kB DOS limitation. (All of the Image Technology software that we used
was operated under DOS. UNIX versions later appeared, but our hardware
investment had already been made in the DOS-based machine.) Redman's
solution was to manipulate only one-fourth of an image at a time (i.e., 64
kB). This was easily implemented since the one-fourth frame is an available
option for all of the ImageAction manipulations. Also an operation called a
"quad squish" would retain every fourth pixel and reduce the size of a! .me
to one-fourth of its original size (accompanied by a loss of three-fourths of
the data). Redman also included a test object of his own devising to test
out his algorithms as they were developed. Redman's programs performed
the following operations:

" read the image frame into a 256x256 array in the computer memory,
(optionally) presented the data values of the upper left corner of the
image, and thresholded the image, by setting the array values to zero
if their value exceeded the upper threshold limit or their values were
less than the lower threshold limit specified;

" performed a feature identification algorithm that looked for connected
non-zero pixels and labeled the connected pixels with a unique feature
identification number (the algorithm is described in more detail in
Ref. [6]); and

" sized the features by measuring the maximum horizontal width (the
x-chord), the maximum vertical height (the y-chord), and the total
number of pixels in the feature (the area of the feature). The results
were each written to a data table for later statistical processing.

Each of these steps required a separate FORTRAN program that worked on
the results of the previous step. Each step required that the array of values
be saved at the end of the step and be retrieved at the beginning of the
following step for subsequent processing.

Once the measurement data table was available, conversion from pixels
to micrometers was done by the measurement of a known object that was
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Figure 4.1: Measured histograms of x-chord length from 151 particles in the
LEOS calibration test object.

recorded in the hologram. (The object was a screw with a known thread
period.) The data was processed to produce histograms of the desired pa-
rameter. Sample results are shown in Figure 4.1 and Figure 4.2.

The memorv limitations of the computer meant that a maximum of 250
particles could be measured in a single one-fourth frame. This was not very
limiting in practice as there were never more particles than this in the field
of view of the microscope. For a one-fourth frame to be processed it took
2-1/2 hours for the programs to run from start to finish on a 8 MHz PC/AT.
(Redman also demonstrated the capability to perform the processing calcu-
lations on a mainframe computer, but the reduction in computing time was
canceled by the time required to transfer the image data over slow telephone
lines.)
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The inability to process a full image and the long time required for
the image processing resulted in a major effort to improve the calculation
speed. A variety of techniques including the use of fast video memory,
the use of optimizing compilers that later became available, an increase
of the computer speed to 16 MHz, the use of virtual arrays, and the use
other programming techniques all combined to vastly improve the speed
and capacity of the processing system. These improvements are described
in the following.

4.1.2 Modified FORTRAN program

Orguc [8] continued the particle measurement work begun by Redman. The
ITEX/PC software had become commercially available and the computer
processor had been upgraded to a 16 MHz 386-based system.

The ITEX/PC package unbundled the routines that had been built into
the ImageAction software. The routines were written in Microsoft Pascal
and were included in a library that could be linked to a user program writ-
ten in either Microsoft FORTRAN, Pascal, or C. The routines were called
by the master program with the input and output parameters passed as
arguments to the routine. The key routines that were used in improving the
performance of the processing program were:

1. pixel read and write routines - These routines allowed the user to read
the value in a particular pixel location in the image processing board
memory, manipulate the value within the computer, and to write a
modified value back into the pixel location. These routines offered
a dual advantage. The data memory was no longer in the operating
memory of the computer, but was retained on the image processing
memory board. No longer did an array equal to the frame size have to
be declared within the computer memory for the image. Additionally,
the image memory on the computer board was very fast and access
was optimized to allow the board to handle real-time video images
(i.e., 512x512 bytes of data every 1/30th of a second).

2. image save and retrieve - These routines allowed simple calls to replace
the writing of the array to memory. Again the speed of the image
processing memory made these read and write operations very fast.
(The images were stored on Bernoulli disks with a 28 ms access time.)
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3. threshold - The threshold operation was done with a call to the thresh-
olding routine.

Orguc modified Redman's code to improve the efficiency of the algo-
rithms, as well as to incorporate the new subroutine calls, and to decrease
the processing time. The revised program consisted of three modular sec-
tions that had to operated sequentially (because the three combined pro-
grams still exceeded the 640 kB limit of DOS). The sections performed the
following operations (details of these processing steps are found in Ref. [8].):

1. thresholded of the image. (This thresholding could best be done un-
der the ImageAction program, but was also written as a FORTRAN
program for consistency in presenting a unified user interface.)

2. identified the features in the thresholded image and assigned each fea-
ture a unique gray-scale. (This step would limit the maximum number
of features in a frame to 256 due to the 8-bit frame memory, but a spe-
cial group count register was incorporated to allow the feature count
to exceed this value. This removed another limitation that was present
in Redman's work.)

3. sized the identified features and wrote a data table. This program finds
the x-chord, the y-chord, and the area of the feature. It incorporated
a conversion from pixels into micrometers by requesting the value of
the microscope objective magnification that was used to record the
reconstructed hologram images. The measured data was written into
a data table for subsequent postprocessing.

Orguc used the Statgraphics statistics program to process the data. This
program is a (relatively) user-friendly multi-function statistics program that
accepts data in a simple table format and allows the calculation and plotting
of the histograms with simple menu choices. The program also allows more
sophisticated processing of the data, if desired.

Orguc was able to process full 512x512 images rather than the one-
quarter images that Redman was limited to. The processing time required
for a full-frame image was reduced from five hours for Redman to 10 minutes
of time. Typical results of Orguc's work are shown in Figure 4.3 and
Figure 4.4.
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4.1.3 Final FORTRAN program

Kaeser [101 used an optimizing FORTRAN compiler (Microsoft FORTRAN
Compiler, Ver. 4.1) to improve the performance of the program written by
Orguc. Several subtle changes to the code were required to make the type
casting (e.g., INTEGER, CHARACTER) agree between the main program
and the ITEX/PC subroutines. The earlier compiler was not fussy about dif-
ferences in type casting between the main program and the subroutines (e.g.,
a CHARACTER*21 variable in the main program could work with a CHAR-
ACTER*22 variable in a subroutine). The later compiler would not accept
this difference, as it is incompatible with the FORTRAN 77 ANSI standard
that Ver. 4.1 adhered to. Also the order of the array declarations had to
be reversed to follow a change in syntax (e.g., a integer*2 jarray(9) [REFER-
ENCE,NEAR] declaration became integer*2 jarray[REFERENCE,N EAR] (9)).

The improvements in the program included a reduction in the program
size and the ability to run the program in a DOS 4.0 environment. (Previous
versions of the executable program would not run in the presence of any
other drivers loaded in the configuration program or in the presence of any
Terminate-and-Stay-Resident (TSR) programs. Two of the programs are
still large enough to require that the TSR programs be remove (or loaded
into high memory), but would operate in the presence of a standard set of
drivers needed to control the Bernoulli storage, the multi-partitioned hard
disk in the computer, and the 386 add-in board.)

The striking reduction in the executable program size, when optimized,
is noted by comparing the second ("Original") and third ("MSFORT")
columns of Table 4.1.

The optimized FORTRAN program execution times are shown in Ta-
ble 4.2. No significant improvement in execution time was observed due to
the optimizing FORTRAN compiler.

4.2 C programs

4.2.1 Original C program

Kaeser [10] initiated the conversion of the FORTRAN programs into the
C programming language. The C language offers several advantages for
our application. The language offers dynamic memory allocation during
runtime, eliminating the need to preallocate space for arrays. In addition,
the availability of a virtual array capability that allowed the use of hard-disk
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Filename I Original MSFORTI MSC
THRESH.EXE 131,882 44,795 31,467
SPECKLE.EXE 122,180 33,569 -
NEWSIZE.EXE 556,038 52,575 46,281
NEWID.EXE 569,830 46.655 32,509
SIGMA.EXE 379,704 48,293 49,483
STAT.EXE 544,626 44,143 49,475
GEOFIL.EXE 364,382 41,375 49,969

Table 4.1: Program sizes (in kilobytes) for particle sizing programs and
speckle-reduction filter programs in original form, after use of optimiz-
ing FORTRAN compiler (MSFORT), and after conversion to C language
(MSC).

Program MSFORT MSC

FeatureID I m ls I m0s
Feature sizing I m 15 s 1 m 35 s
2sigma filter 7 m 20 s 6 m 33 s
Local stat filter 39m 45s 13 m0 s
Geometric filter 18 m 50 s 6 m 17 s

Table 4.2: Program execution times for particle sizing programs and speckle-
reduction programs after use of optimizing FORTRAN compiler (MSFORT)
and after conversion to C language (MSC). Programs work with only one-
fourth of an image frame to allow comparison with Redman;s results.
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space for array storage and manipulation freed the computer memory of the
storage requirements for large arrays (at some sacrifice in processing speed
due to the read/write overhead). The program structures were also improved
by the elimination of numerous GO TO statements that had appeared in
the FORTRAN programs.

The programs were again arranged in a modular fashion, as the combined
program would have exceeded the computer's memory capability. The mod-
ules were:

1. a header program that contained files and parameters that were com-
mon to all modules and the INCLUDE statements that were necessary
to ensure compatibility with the libraries used. In this way redefinition
of constants was easily accomplished in one location without having
to work with multiple files.

2. a general function program that contained the functions used through-
out the modules (again to add portability and to ease redefinition of
a function),

3. a threshold program to threshold the screen image (and allow the user
to change it) until the desired thresholded image is achieved,

4. a program to measure the speckle index of an image for the purpose
of quantifying the speckle level,

5. a virtual array program that contained the virtual array functions as
in Ref. [21] (with minor modifications),

6. a program to identify the features (based on the programs of Redman
and Orguc),

7. a program to size the features identified in the prior program (based on
the algorithms developed by Redman and Orguc) and to write a data
table suitable for use with the Statgraphics analysis program, and

8. programs to implement the speckle reduction filters studied by Ed-
wards, based on his FORTRAN programs.

The programs were verified by reproducing the results that had been made
in Refs. [7] and Orguc:87.

The reduction in the executable program size is noted by comparing the
third ("MSFORT") and fourth ("MSC") columns of Table 4.1 on page 66.
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The sizing programs were slightly smaller than the optimized FORTRAN
programs. The speckle-filter programs were larger than the optimized FOR-
TRAN programs due to the added speckle index calculation code and the
added virtual array code that was incorporated into the C-language version
of these programs.

The program execution times for the C-language programs are shown
in the last column of Table 4.2 on page 66. Modest improvements in exe-
cution time were observed for most programs with significant improvements
occurring for the local statistics speckle-reduction filter and the geomet-
ric speckle-reduction filter programs. The improvements in program logic
and execution speed overcame the additional overhead of the virtual array
operations.

4.2.2 Modified C program

Hockgraver [11] followed up Kaeser's work seeking to improve the C pro-
gram. She implemented a new image processing board (a PCVISIONplus
board from Imaging Technology) with a new software library, ITEX/PCplus.
The new board has sufficient memory to store two frames of an image (al-
though this feature was not used), implements a memory architecture that
makes the board more compatible with other commercially-available image
processing boards, and contains more image prucessing capability than the
prior-generation board.

The modular arrangement of the programs is shown in Figure 4.5.

e The support programs speckle.c, vir-arry.c, and genfunc.c are shown to
side of the main flow.

* The images are processed with one of the speckle-reduction filters (if
desired) and passed to the thresholding program.

e The thresholded image is passed to the feature identification module
which uses the video memory to record the features that are found by
the algorithm.

* The feature image is passed to the sizing module for feature sizing and
data table generation.

9 The data table is passed to the commercially-available Statgraphics
software for data analysis.
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Figure 4.5: Modular program structure of C programs.
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At the completion of each module the user is asked whether the program
should save the output to disk (for safekeeping). After answering the prompt,
the user initiates the next step in the process from the control menu.

The following summarizes the changes that were made at stage of the
study:

" All of the calls to the subroutines in the ITEX/PCplus library were
modified to follow the revised syntax of the new package.

" Programming improvements included more use of the general function
program module that Kaeser had included, but underutilized. In addi-
tion, all remaining GO TO statements were eliminated by a rewriting
of the code, allowing agreement with structured programming concepts
and increased portability.

" An over-arching menu program was incorporated to provide a user-
friendly interface that allows the user to run the modules of the rou-
tines in sequence by selection from a menu, rather than with command-
line inputs.

" Much of Kaeser's C-language code was revised to improve the modu-
larity of the programs.

" A subroutine was added in the local statistics filter program and the
sigma filter program to compute the standard deviation of the gray
levels in the image. In previous versions, this value was computed by
the ImageAction software and was supplied by the user as an input at
the beginning of the local statistics filter program. The new version of
ImageActionplus does not compute this value, so a routine was needed
to perform the calculation.

* Another change to all of the programs was required by a change in
the handling of the file name and the comment associated with an
image that is saved to disk. In the new software, pointers were used
to indicate these quantities, rather reserved arrays. The code was
changed accordingly.

The executable program size is shown in Table 4.3. The programs have
all increased in size (but are still much smaller than their FORTRAN coun-
terparts). This increase in program is attributed to the increased complexity
of the subroutine calls to the ITEX/PCplus subroutines over the calls to the
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Filename ITEX/PC ITEX/PCplus

THRESHIT.EXE 31,467 63,101
FEATID.EXE 32,509 64,407
SIZEIT.EXE 46,281 65,429
2SIGMA.EXE 49,483 65,491
LSTAT.EXE 49,475 65,499
GEOFIL.EXE 49,969 66,317

Table 4.3: Program sizes (in kilobytes) for particle sizing programs and
speckle-reduction filter programs in original C language form for use
with ITEX/PC software package and after modification for use with
ITEX/PCplus software package.

ITEX/PC subroutines and to the fact that the entire ITEX/PCplus library
was linked to the programs rather than the individual subroutines as in
Kaeser's programs. A comparison of the source code, shown in Table 4.4,
reveals that the original code was greatly shortened and that the expansion
occurred in the compiling and linking process.

The modified C-program execution times using a hologram image are
shown in Table 4.5. The processing times were significantly longer than the
previous C program processing times noted in Table 4.5 on page 72. Most
of this increase in execution time is attributed to the fact that the modified
programs treat the full frame image rather than the one-fourth frame that
was the basis of the timing measurements made by Kaeser. (He used the
one-fourth frame to compare his results against Redman's results.) Due to
the new frame storage structure used in ITEX/PCplus, timing measurements
could not be done on one-fourth of a frame, so direct comparison of the
timing results cannot be done. It should also be noted that the processing
times for a full frame should increase more than four times the processing
time of the quarter-frame, due to the nesting of the DO lops in the programs.
These processing times for the full frame are still too long and work is
currently proceeding to reduce them by trying to further improve the code
efficiency.
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Filename Original C Modified C

THRESHIT.C 5,807 1,336
FEATID.C 10,130 6,003
SIZEIT.C 11,011 7,426
2SIGMA.EXE 14,623 5,396
LSTAT.EXE 14,434 5,396
GEOFIL.EXE 14,888 7,916

Table 4.4: Source program sizes (in kilobytes) for particle sizing pro-
grams and speckle-reduction filter programs in original C language form
for use with ITEX/PC software package and after modification for use with
ITEX/PCplus software package.

Program Modified C

Feature ID 13 min 30 s
Feature sizing 29 m 40 s
2sigma filter 12 m 41 s
Local stat filter 22 m 4 s
Geometric filter .56 m 43 s

Table 4.5: Program execution times for particle sizing programs and speckle-
reduction programs after use of optimizing FORTRAN compiler (MSFORT)
and after conversion to C language (MSC). Programs work with a full image
frame.
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Chapter 5

CONCLUSIONS

5.1 Summary

This work has shown that computer image processing can be used to locate
and size particles in a hologram reconstruction.

Algorithms were developed for the Imaging Technology, Inc., line of im-
age processing boards made for installation in AT-compatible computers.
These boards and their associated software offer a cost-effective way to digi-
tize, store, and process the images. Images of test objects recorded in white
illumination and as holograms were successfully processed and served to
validate the algorithms. Data from reconstructions of holograms made of a
test motor firing were also successfully processed. Comparison with other
measurement techniques is required to validate the measured results from
the test firings.

Speckle-reduction was required due to the pronounced speckle that over-
lay our reconstructed images. Removal of the speckle comes at the cost of
reduced resolution capability and increased processing time. The speckle
index can be used to quantitatively compare the amount of speckle in an
image. The resolution was best measured from holograms and images of
the Air Force standard resolution chart. The best speckle-reduction tech-
nique for our images was to record the images from a moving diffuse screen.
The integration of the image by the TV tube reduced the speckle consider-
ably. Of the nonlinear filters used to reduce speckle in synthetic aperture
radar images, the g-ometric filter proved to be the best combination of
speckle reduction, resolution maintenance, and processing time. Techniques
for digitally averaging the images were successful but required considerable
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computer storage and processing time to produce an image that was inferior
to the moving-screen images in terms of the amount of speckle present. The
nonlinear filters and image-averaging techniques might prove useful, how-
ever, in reducing the residual speckle found in the moving-screen images.

The original code that processed only one-fourth of an image in four
hours has been optimized and sped up to the point where we can process an
entire image (without speckle-reduction filtering) in approximately ten min-
utes. Further increases in speed can be accomplished with faster hardware
and more the development of better sizing algorithms.
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