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ABSTRACT

Research entails derivation of statistical description of output from an MFSK

receiver which uses self-normalization of the output from quadratic detectors. The

system uses fast frequency hopping to provide diversity and assumes independent

channels for each hop when the signal is recombined. The effects of fading channels

are investigated for both Rayleigh and Rician fading channel descriptions. Probability

of bit error for the uncoded performance is plotted for various signal-mt-noike ratin.%

(SNR) and different levels of diversity versus worst-case partial-band jamming.

Analysis for Forward Error Correction coding is included for rate 1/2 and 1/3

convolutional codes and (n,k) Reed-Solomon Block codes. Probability of bit error

is plotted for each code with various signal-to-noise ratios and diversity levels I to

4 versus worst-case partial-band jamming.
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I. INTRODUCTION

Military satellite communications systems currently rely on geostationary

satellites as their means of connectivity. The greatest advantage afforded by the

stationary orbit is that a relatively small number of satellites provide communication

coverage for the entire earth's surface. The disadvantages include extremely high cost

(hundreds of millions of dollars), requirement of telemetry and tracking systems for

station keeping and accurate alignment of antenna systems, and the presentation of

stationary targets for counter-measure operations.

A major concern is the vulnerability of the geostationary satellite to anti-satellite

(ASAT) systems. Since the communication network is comprised of a relatively small

number of satellites, the loss of even one could severely degrade the effectiveness of

the system. At present, their 22,000-mile orbits make them relatively safe from

countermeasures; however, developing technology ensures a future threat of

destruction or disruption.

The development of a low-altitude-satellite (LASAT) communication system

could alleviate many of the problems mentioned above. The design methodology is

to build relatively low-cost (several million dollars) satellites that would be put into

low-altitude random orbits. The proposed usage would be as an emergency restoral

system in which a large number of satellites are launched in rapid succession. The
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large number of satellites would essentially preclude any ASAT system, no matter

how sophisticated, from totally disrupting the network.

This document provides a general overview of the LASAT proposal and analysis

of a self-normalization receiver to be used in the proposed LASAT system. Chapter

II provides a LASAT overview and a detailed discussion of the communication

channel and problems associated with use of multiple repeaters in a single network.

The analysis of the communication link in Chapter III includes:

" effects of multipath fading on the signal,

" derivation of the probability of bit error for a Frequency-hopped Binary
Frequency shift Keyed (FH-BFSK) signal, and

" derivation of the probability of bit error for a Frequency-hopped M-ary
Frequency Shift Keyed (FH-MFSK) signal using a union bound.

Chapter IV discusses application of forward error correction (FEC) coding on the bit

stream. The results of all analyses are presented in Chapter V and conclusions are

discussed in Chapter VI.
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II. BACKGROUND INFORMATION

A. LOW-ALTITUDE SATELLITE SYSTEM

The primary mission of Low-Altitude Satellites (LASAT) is emergency restoral

or short-term crisis communications. As such, the satellites will be expected to

provide communication support for no longer than several weeks. The system will

consist of a large number of satellites placed in random low orbits, thereby

eliminating the need for station-keeping and telemetry subsystems. The satellite will

provide access for digitized voice and encrypted data between major ground force

commanders.

The satellites will use broad-beam antennas that provide coverage of the entire

visible portion of the earth relative to its orbital location. Due to the physics of the

low orbit, the area of coverage will be considerably smaller than that associated with

a geostationary satellite (see Figure 1), and the window for communications with any

particular satellite will be on the order of minutes [Ref. l:p. 44]. This will require a

high density of satellites to provide continuous communications to the users. The only

control system required for the satellite is a gyroscope and earth sensor to keep its

Antenna pointed radially at the center of the Earth's surface directly beneath it.

There is no requirement in this application for satellite-to-satellite communications,

since they will be used strictly as repeaters.

3



GEOSTAT1ONARY ORBIT

RTH COVERAGE
FROM LASAT LASAT ORBIT

EARTH COVERAGE

FROM GEOSTATIONARY
SATELLITE

Figure 1. Comparison of Geostationary Satellite Earth coverage versus LASAT
Earth coverage.

Although the use of random orbits and multiple satellites lessens the threat

against them, it also necessitates employment of omni-directional antennas for the

ground stations. These antennas have inherently low gain, so it is expected that the

system must operate at fairly large values of input signal powers. An additional
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drawback is that the antenna will accept signals from any satellite with;n view and

from any direction. Multiple signals, originating from several satellites and/or

multipath reflections, create fading effects on the desired signal. This is discussed

further in Chapter II.B.

Finally, the use of some type of access-restriction coding may be required to

prevent unauthorized use or to enhance anti-jamming capabilities of the satellites.

This, however, is beyond the scope of this research. This section concentrates on the

distribution of satellites in random orbits and the average number that will be seen

by a particular ground station.

The satellites are assumed to be contained within the volume of a shell between

altitudes h1 and h 2 above the Earth's surface with volume

3--4 (R-R (2.1)

where

R= R, + h, (2.2)
R2 -R + h2

and R. is the radius of the earth. The probability density function (pdf) for the

number of satellites in view has been derived [Ref. 2] as a function of the total

number of satellites in orbit and a ratio of the volume of space that is observable to

a ground station versus the total volume of space surrounding the earth to an altitude

of h2 . This area is shown in Figure 2 as the shaded portion between the two

5



a = 5 degrees
Takeoff
angle

ak

Figure 2. The Portion of Low-altitude Satellite orbit with Satellites visible to
an Earth Station.

outermost concentric circles. The pdf for the number n in view results from dividing

the area into m small volume elements of volume v and taking the limit as v - 0 and

m - . The result is a Poisson distribution:

fh.n (pV)r

n) ()- e-P, (2.3)
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where p is the density of L satellites in the total volume described by (2.1). The

mean and variance of the Poisson random variable are

- = LvV 
(2.4)

2 Lv
0 , = V

Therefore, the number of satellites in view will depend directly on the number in

orbit and inversely on the altitudes of their orbits.

For L = 250 total satellites, assuming h1 = 550 km (300 NM) and h2 = 750 km

(400 NM), the number in view averages 11.54; for L = 150 satellites, the average is

6.92. Since all satellites in view are expected to receive and retransmit any signal at

its input, the ground stations will have to contend with multiple copies of the same

information originating from sources at different locations. The combination of

multipath signals in the i eceiver causes the fading phenomenon mentioned above and

is elaborated on in the following section.

B. THE COMMUNICATION CHANNEL

The multiple signals arrive at the desired ground station with various arrival

times, phases, and amplitudes. The result is similar to the effect of a single

transmission that is reflected, refracted and/or delayed by a time-varying channel. In

this situation, multiple signals are developed by multiple transmitters and variations

in the atmosphere. Since the effects are similar for both cases, the analysis here

7



simply combines all effects and follows the discussion presented by Proakis [Ref.

3:pp. 454-457] on the effects of a time-varying channel on received signal

components. Multipath fading, that is due primarily to the combination of two

reflected signals that arrive as mirror images of the intended signal, is referred to as

specular. When the received signal is the combination of many signals, it produces

a noise-like component referred to as diffise. The received signal here will consist

of the sum of all signals with different delays and attenuation factors associated with

the path to each of the originating transmitters. This can be represented numerically

as

rtQ) = a.(t)s[t- ,(t)] (2.5)

where a(t) is the attenuation factor for the signal received from the nth source or

path and r,(t) is the delay associated with that path. If the transmitted signal were

a single sine wave, the attenuation would have to be quite severe to have an

appreciable effect on the received vector. However, the overall effect of multiple

signals is the result of combining several signals with various phases. The phase of

a sine wave changes by 2ir radians whenever r,, changes by 11fe, where f, is the

carrier frequency of the desired signal. Since the system will probably operate in a

range from upper Very-high-frequency (VHF) to the Super-high-frequency (SHF)

spectrum, 1/f, is a relatively small number. Therefore, small changes in delay or path

8



length can cause large changes in the signal phase. The wavelength at 100 MHz, for

example, is

= - 3 m, (2.6)

where f0 is an average carrier frequency and c = 3 x 108 m/s is the free space speed

of light. Thus, a difference of only 1.5 m between two path lengths would result in

destructive interference at the receiver. The numerous phases, or corresponding

delays, of the multiple received signals can be due to path length differences to the

various satellites, fluctuations in the atmospheric conditions between transmitter and

receiver, or reflections from objects in the path. Regardless of the cause, the effect

at the input to the receiver is a signal that appears to fade at random times due to

destructive addition of the sine waves with unequal phases. T,. phase changes can

be viewed as uniformly distributed from 0 to 2n. The summation of multiple samples,

by means of the Central Limit Theorem, leads to a Gaussian random variable. The

fading signal phenomenon affects the amplitude of the received composite signal,

which can be viewed as the envelope of the process (this is important later since a

noncoherent envelope detector will be used). Therefore, the amplitude of the faded

signal can be represented as a Rayleigh-distributed random variable. Assuming that

the received signal contains both a direct (or specular) and some number of indirect

(or diffuse) signal components leads to a Rayleigh distribution with a mean value

9



other than zero, or (more often termed) a Rician random variable. The amplitude

of the received signal can be described statistically [Ref. 4:p. 108] by the pdf,

2a) - ex a22 !a--) a >0, (2.7)

where U2 is the power in the direct component, 202 is the power of the diffuse

components, and 1o(x) is the zeroth-order modified Bessel function of the first kind.

When the direct component power goes to zero, which occurs in times of deep fading

on the channel, the function reverts to the Rayleigh function described above and the

pdf becomes

fA(a) = --- -2 a>. (2.8)

The expected fading distribution is averaged over the receiver output samples to

obtain a probabilistic description of the most likely transmitted signal that caused the

outcome. The fading that occurs on the channel can be defined as slow or fast

relative to the signal bandwidth and duration. Slow fading is when the channel

remains constant for the duration of a single transmitted signal, while fast fading

results in significant change in the channel through a single transmitted signal. The

two terms used to describe the effects of fading are the coherence bandwidth and

coherence time of the channel [Ref. 3:pp. 464-4661.
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The coherence bandwidth of the channel is -defined as the frequency range over

which the amplitude and phase of the transmitted signal are relatively constant (the

signal tasses undistorted). It is represented as
I

(A) 1 -(2.9)

where (Af), is the coherence bandwidth and Tm is the multipath spread of the

channel. That is, Tm is a measure of the shift allowed to produce a non-zero output

for the autocorrelation of a very narrow pulse sent over the channel. If two sinusoids

with frequency separation greater than the coherence bandwidth are transmitted

simultaneously, they will be affected differently by the channel. In fact, the output for

each frequency can be considered as though it were from an independent channel.

If the signal bandwidth is small compared to the coherence bandwidth, the channel

is described as frequency non-selective and vice versa as frequency selective. A

frequency selective channel is undesirable since the signal is severely distorted during

transmission.

The coherence time is defined as

1
(A0) = -, (2.10)

B d '

where Bd is the Doppler spread of the channel. Doppler spread is the measure of

spectral spreading of an impulse sent through the channel. A slowly changing channel

has a large coherence time and, correspondingly, a small Doppler spread. This

11



implies that signals of duration less than the coherence time pass through the channel

relatively unaltered. If the transmitted signal has duration longer than the coherence

time, distortion in the form of intersymbol interference may result.

The distinction between fast and slow fading can now be expressed in terms of

the spread factor of the channel as

T.B, d (2.11)

where the less than criteria holds for slow fading. This implies that if a signal can be

found with a bandwidth W < < (AJ) c and a signal duration T < < (A t)c, the channel

can be modelled as slow fading.

Fast fading, or scintillation, by definition is the rapid variation in the amplitude

and phase of the transmitted signal (or when the spread factor > 1). This is caused

primarily by turbulence or irregularities in the channel. Lack of a simple model of

the effects of fast fading make analysis difficult, if not impossible. However, proper

choice of the signals used in the system, as described above, preclude the occurrence

of fast fading, so it is ignored in most applications and analyses.

The M-ary FSK signals discussed here are assumed to have a bandwidth less

than the channel coherence bandwidth. Additionally, the signal duration is assumed

shorter than the channel coherence time (i.e., the signal rate is much greater than the

Doppler spread). Selecting signals such that their center frequencies are separated

by greater than (Af), Hz insures the received signals are independent and some type

12



of signal processing can be used to improve the ability of the receiver to determine

which of the M signals was transmitted.

C. DIVERSITY TECHNIQUES AND FREQUENCY-HOPPING SPREAD

SPECTRUM

The most common technique used to improve receiver performance is diversity

of some type. Diversity is the action of sending identical information from the source

to receiver by L independent means, either simultaneously or sequentially. The

receiver gleans the information contained in each of the separate signals, combines

the individual channels, and delivers a best estimate of the information sent to the

receiver. Diversity is accomplished using one of the following techniques [Ref. 3:p.

4631:

" Frequency Diversity - use of L frequencies to transmit the signal (frequency
spacing assumed greater than the coherence bandwidth (Afj)).

" Time Diversity - the signal is sent in L time slots (the slot separation is greater
than the coherence time (At),).

* Spatial Diversity - the system employs more than one antenna (separated by at
least 10 wavelengths of the carrier frequency).

* Polarization Diversity - the signal is transmitted simultaneously over multiple

polarizations.

Each of the above schemes offers advantages and disadvantages. Spatial and

polarization techniques are not applicable due to the mobility of ground stations and

the changing path associated with LASAT systems. Frequency and time diversity offer

the simplest methods for implementation. Frequency-hopping (FH) and Direct-

sequence (DS) spread spectrum (SS) are the two means to be considered. DS-SS

13



employs transmission over L frequencies simultaneously, while FH-SS transmits on

L single frequencies sequentially. These methods each have advantages and

disadvantages and, while either method is suitable for the LASAT system, the

emphasis here will be on a frequency-hopping system.

Frequency-hopping (FH) systems use a pseudo-random generator to select

sequential carrier frequencies for transmission. A typical FH transmitter-receiver pair

is shown in Figure 3 [Ref. 5:p. 349]. Consider here that the information bits with rate

Rb are modulated onto the carrier by means of an arbitrary scheme. The goal is to

provide multiple independent copies of the same message that can be processed to

obtain a best estimate of the transmitted signal. Fast hopping (when the same

information is carried on more than one hop) provides the desired frequency and

time diversity for improved receiver performance.

A fast hopping FH communication system can be used to offset the effects of

both thermal noise and partial band noise jamming, which has been shown to be

effective against a FH system [Ref. 5:pp. 570-580]. Provided that the hops are spaced

by time intervals

, 1 (2.12)

where RH is the hopping rate of the transmitter, and that the adjacent output

frequencies are greater than (AI), the output of the receiver from each hop is

independent of any other hop. This is based on the requirements for independence

in terms of the coherence time and bandwidth of the channel.

14
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Figure 3. Typical FH Transmitter and Receiver [Ref. 5:p.349].

M-ary frequency-shift-keyed (MFSK) modulation is the usual choice for FH

systems. One of M frequencies is chosen to modulate the carrier based on k bits

input to the M-ary source coder of Figure 4, where M = 2 k. The frequencies are

assumed spaced to be orthogonal to all others, which implies they are at least 1/kTb
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Figure 4. FH-MFSK Transmitter.

Hz apart, where Tb is the bit duration. The information rate Rb and symbol rate R s

are related by

Rb :kRS : k (2.13)

R b1/TbMETEK 7

or equivalently,

TR=kTb (2. 13a)

where Ts is the symbol duration. Each symbol is divded into L chips for a fast

hopping system. Since the chip duration T is shorter than the symbol duration T,

orthogonal signalling now requires that the M frequencies be spaced B = 1/TH =

L/kTb. The total bandwidth for the system now becomes
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W = NRMB = NHML (2.14)
KTb

where NH is the total number of carrier frequencies generated by the frequency

synthesizer, and the bandwidth is still constrained by,

ML ( . (2.15)
k T

This satisfies both the channel and orthogonality requirements to obtain independent

samples and minimizes distortion of the signal over a single hop.

D. THE SELF-NORMALIZATION RECEIVER

The MFSK signal is easily generated by the transmitter in Figure 4, but

demodulation at the receiver can be accomplished by a number of different schemes.

Coherent detectors have been found to deliver the best performance (lowest error

rates) for a given signal-to-noise ratio (SNR) [Ref. 6:pp. 138-152]. However, signals

through a fading channel undergo rapid phase changes that make the use of a

coherent detector impractical since they rely on the information contained in the

phase for demodulation. Use of a noncoherent detector is the best alternative, given

that the modulation scheme can be designed to produce orthogonal signals under the

constraints in the preceding section. For purposes of the analysis, the receiver (Figure

5) employs a square-Law detector, or synonymously a quadratic detector, to facilitate

simulation of the receiver performance. A comparison of the error performance

versus SNR for envelope and quadratic detectors used for MFSK systems without
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Figure 5. Self-Normalization FH-MFSK Receiver.

normalization has been shown [Ref. 4:p. 263] to be less than 0.2 dB for all values of

M. This same assumption is applied here since analysis would not be possible

otherwise. The receiver is considered subject to worst-case partial-band jamming.

(meaning the jammer concentrates its noise jamming power over a portion rj of the

total hopping bandwidth, where 0 < l 1). The jammer determines the value of r"1

to produce the highest data error ratio in the receiver based on knowledge of the

signal-to-noise ratios for both jammer and thermal noise at the receiver. In this

respect some of the ,1ops will have both thermal and jamming noise, while others

have just thermal noise. In order to neutralize the effects of the noise, the output of

the detector is normalized by the sum of the outputs from all M channels. Assuming

the noise is a zero-mean Gaussian process, the sum of the M samples will tend

toward a constant value when a signal is present in any of the channels since the sum

of the Gaussian noise samples will tend toward zero. After normalization, the

18
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channel with a signal present will be averaged toward one and the other channels

with be averaged toward zero. Then combining the L independent hops will produce

the largest output from the detector with its corresponding signal present at the

receiver input. The receiver error performance is found from a probabilistic

description of the normalized samples (Chapter III). The assumption that the jammer

can find the optimal value of q to cause the highest possible error ratio is not likely,

but it does provide an upper bound on error rates for the self-normalization receiver.

E. ERROR CORRECTION CODING

While the system described above is dependent on the received SNR for a given

performance level, the actual performance for the system can be significantly

improved using various forward error correcting (FEC) coding methods. This increase

in performance is called coding gain and is defined as the difference between the

SNR required to achieve a given error performance with coding and without. In

particular, convolutional codes and Reed-Solomon codes are applied to the data

streams in Chapter IV. Convolutional codes were selected for their ease of

implementation and Reed-Solomon for the power of their correction capability [Ref.

7:pp. 170,288]. The Reed-Solomon codes are very well suited for correction of burst

errors (errors in successive bits), which are highly likely in the case of electrical

storms or the energy-saturated electromagnetic environment of the battlefield. Also,

transition from satellite-to-satellite may provide periods of missing -data if no other

satellites are available to retransmit the desired signals. The convolutional co-des used

are binary codes with constraint length 7, and rates 1/2 and 1/3. The rate indicates
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the ratio of information bits to total bits transmitted (for a rate 1/2 code, the number

of information bits equals the number of overhead bits).

F. METHOD OF RESEARCH

The thesis entails derivation of the equations necessary to obtain system

performance of the self-normalizing receiver for varying levels of SNR and signal to

jamming ratios. The system equations derived in Chapter III are modelled in a

computer simulation and curves plotted for several cases of uncoded and coded

performance. Chapter IV provides details of the data coding schemes used to

improve system performance and Chapter V the results of the analysis. The final

chapter provides conclusions and comments on the results from the simulation and

suggested topics for further investigations.
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III. THE COMMUNICATION CHANNEL

A. DESCRIPTION OF THE SIGNAL

Analysis of the communications link proceeds from the discussion in Chapter II

for the fading channel to derive an analytical expression for the probability of bit

error. Derivation of probability of error begins with a description of the signal used

as the communications means, M-ary Frequency Shift Keying (MFSK). The received

signal will be represented by one of M frequencies occurring one at a time at the

input of the receiver. We assume that the frequency has been dehopped with perfect

timing. A'though this is not a trivial matter, synchronization has been accomplished

by many methods and can be assumed available for our purposes. The received

signal, assuming the presence of the frequency associated with the first channel, will

take the form of:

(3.1)
rk(t)= Vl"ak cos(t+Ok) + nk(t), k=1,2 ...,L,

where k is a reference of the hop being received and w 1 is the frequency of the first

channel. This signal can be rewritten in terms of in-phase and quadrature

components as:
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rk(t) = v k(cos wIt cosOk -sin wIt sinOk)

+ nk(t) ow (a + nt(t)sin (ait

= [V2ak Ok + nd()]ocoswIt - O/aksinek + nt(t)]sin c It

= xCk(t) cos WIx(t)snWIt (3.2)

where nck(t) and nsk(t) are the independent in-phase and quadrature components of

a white Gaussian noise process. The time dependency is dropped based on sampling

the output at times kTH. Then the quadratic detector output for channel 1 provides

an envelope squared signal of the form:

2 2
xk= Xck + xs

= (V2akcosOk + nk)2 + ( 2 aksinOk + n,) 2  (33)

and the other M-1 channels

2 2xik = nck + nA, i23,...,M. (3.4)

The channels are assumed subject to partial band jamming as described in

Chapter II. The jammer concentrates its total power over a fraction 11 of the

bandwidth W, where 0 < il < 1. Since the jammer has an average spectral density
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value of Nj = JIV W/Hz, the jamming spectral density in the fraction of W that is

jammed is Nj/ W. The jamming signal is added to the received signal as another

Gaussian noise source with variance a2 = N.B/rl. The resulting output from the

detectors are

XIt= (F2SaCOo.~ + n,+ jk2+ (ffla.SinO. + nk + jJ(.5 (3.5)

and for the other channels

xi = (rik + jk)2 + (nt + j)2, i =2,3,...,M. (3.6)

where Jck and Isk are the in-phase and quadrature components of the jamming signal.

The error probability for binary FSK without fading have been derived in

previous studies [Ref. 8]. The results are extended here for the MFSK case over a

fading channel. Without loss of generality, it is assumed that the signal for channel

1 was sent. Assuming equally likely M-ary symbols, the probability of symbol error,

given signal 1 is present, is

L (3.7)
P,(e) = P, P,(e I/)
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where

p,= (L) 1 (- ) - (3.8)

is the probability that i out of L hops are jammed, and

P,(e 1) = 1 -P,(c 1I) (3.9)

is the probability of an error decision based on i hops out of L total hops jammed.

The probability P,(c i) in (3.9) is the probability of a correct decision given signal

1 was sent and i hops were jammed.

The probability density function of the output signal is required to calculate the

probability of error for the system. When the input to a quadratic detector is a sine

wave plus Gaussian noise, the output can be described statistically as a non-central

gamma distributed random process. The gamma distribution is the generalized chi-

squared distribution for an arbitrary variance where chi-squared has variance

normalized to one. The density function for a given amplitude ak is [Ref. 4:p. 118],

fxUIA( 2o2 2 2 a 2 (3.10)
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where

2 rBN. with probability i--q1 (3.11)
k [B(N. + Nflrl) with probability il

which corresponds to non-jammed and jammed hops respectively.

The fading component is considered to be Rician as described in Chapter II, and

its probability density is

ak1 akkck
f(at) ak _ _.ex ak +°t]ak t

JAk k) 2 2o 2  2 (3.12)

where a k is the relative strength of the direct component and 20 2 is the power of the

indirect (or diffuse) components as discussed previously. The unconditional pdf is

found by evaluating

.]A(x'k) = f f. fak(Xk I ak) fA (ak)dak
0

ak exp exp × (3.13)
o2a2a22 20 20F2

k k I. 0

5 a ar J da.
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The integral yields (a complete derivation is given in appendix A)

fx, (xlk) = 2(0k2 +2S0 2) 2[2 y k +2 So 22 " (3.14)

This is the probability density function of the signal at the output of the

quadratic detector shown in Figure 4. After sampling, the outputs from all M

channels are summed to produce the self-normalization factor C kas

M

" g (3.15)

Each of the outputs are divided by Ck which yields the desired self-normalized

samples Zmk. To obtain the pdf of Zmk, the new random variable,

M

P,.2 (3.16)

is introduced as an auxiliary variable. The pdf of each of the M-1 channels with only

Gaussian noise present is Gamma distributed with one degree of freedom

2ak ckJ
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where Ok2 is given in (3.11). The sum of M - 1 of these variables is gamma

distributed with M - 1 degrees of freedom [Ref. 4:p. 112] and the result is

fVk(k) 1 2 ((M -2) [ 2 'k (3.18)

where

r(M-1) -(M-2)i. (3.19)

Now the normalized output from channel one is defined as

Xlk Xlk (3.20)
Zl1k ==--

Xlk + Vk Ck

The outputs from all Xik channels are independent as a direct result of using

orthogonal signalling waveforms. Therefore, xlk and vk are independent as well.

Since the variables are independent, their joint density is just the product of the two

individual densities or

fxlVt(XlklVk) 2 1a 2 _+2Sa_ 2 0 2 2SaJ 2
2(ik2 +2SO2) ° I 2s0

x 1 2)M-I) ( 1)1 v(M-2) e p - v1 2a-2J (M-2) V2ok 2 " (3.21)
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The density for Zik is obtained by performing a change of variables as follows. The

constant S is normalized to 1 without loss of generality. Defining !he following

transform definitions

Xlk =k ZU

(3.22)

Vk Ck(1-zk),

the density transformation becomes

1

fZA.(k(ZlkCk) = fA,v(.kZ1k1,k( -zlk))--(323 (3.23)

where I J is the magnitude of the Jacobian matrix for the transformation. In this

case it equals

azIk C1Ik

= ck aVk -
(3.24)

a k a~k  (k
&k avk

The joint density of Zlk and (,k as can now be written as
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fzlkCk(Zlk9Ck) 2(o1 2c 2) exp 2 2k 10 2 lt2ct2(°k +2o) x  02 +2So 2 I °a +2oy

x 2_L - 1 -(M1 (I_Zlk,-2
2ok (M-2)!

x exp-_ A( ZIk + (3.25)

For simplicity the following substitutions are made in (3.25)

Ok 
2

Pk -2

202

k 2  (3.26)

where P k is the signal-to-noise ratio (SNR) of the direct signal component and 13 k is

the SNR of the diffuse (or faded) signal component. After the substitutions, the joint

density becomes

1 1 )M [ 1k
fz~,ck(zkCk) = (1 + P k)  I

x (1 - 2 1 Cu-1
(M-2)1

x~~~ 1kp Pk k,2i-z~ 2

x exp k + Pk )Jd I0I 1+ k J (3.27)2a k 2 9(1 + O) + Ok
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The density for Zlk is found by integrating out the auxiliary variable C k (details are

contained in Appendix L). This yields

fZ,(lk) M-1Z~k)M[ (1 +P k) ]

(() + O) (1 + (Pk - Zlk))F

x exp Pk ( -Zlk)]
+ NO- kI

x (M-1 1 [ ZlkPk 1
-- 0o M-1-m M! (1 + P(+ PIP - zk) " (3.28)

The density for the other M-1 channels can be found be setting P k and Bk equal to

zero. The resulting density is

fz1.(zmk) = (M-1)(I - Zu)M- 2  for m= 2,3,...M . (3.29)

These density functions are normally used to calculate the probability of error

using

I ZI Zl t1

P(e = 1 - ffff... ,(ZZ ZM)dzldZ2  dzm (3.30)
000 0

where

fz1. ZIZ z.2."'ZM) = KZI a,.z, (ZlZ'"".Z t  (3.31)
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represents the L-fold convolution of the joint density function of the Zk'S for the Lth

level diversity combining. However, this requires the joint density function for the

normalized output of all M channels. Since the normalized outputs are no longer

independent, the joint density is not obtainable for the general case of arbitrary M

because the cross-correlation components are in terms of C k and unknown. The

general case can be approximated by solving for a specific case and then applying a

union bound to obtain the other cases. The only case that provides an analytical

solution is for M = 2, i.e., binary frequency shift keying (BFSK).

B. BINARY FREQUENCY SHIFT KEYING

For Binary Frequency Shift Keying (BFSK, M = 2) the density functions

becomes

(1+ [ (1 + NO Zlk))ffz,,(ztk)- (k(+ -

xe[ p* (1.- 5,>]

1 + NOi- Z1k)l

I Z~k Pk

(1 + Pd) + NO - Zlk)

(3.32)

for 0 < z. m=1,2.
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Then simplifying, the density for fzik(ZIk) is

P=kZlk 0 (l+k) [1 + Pk(I - Zlk)]
fz (zik) (1 + O - Zlk))'

x [x Pk(1 - Zk) ]
x 1 1+3(1 N -Zik)] (3.33)

Also, for M = 2 the system can be completely defined in terms of one variable.

Using (3.20) with Vk equal to X2k, we obtain the normalized outputs as

Xi z= k , for i = 1,2. (3.34)
XIk + X2k

Reworking this for i = 1 and 2 yields the variable dependence required to perform

the integration in (3.30) as

Z zt = k Z~k . (3.35)

Defining the output of the diversity combiner in Figure 2 as

L

Z i = E z,, for i=1,2 , (3.36)
k-i

leads to
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LZ2 E (1 - zk) = L - Z , (3.37)
k-i

where the relationship of (3.35) has been used. Then the probability of error given

that i hops contain jamming noise is

Pb(O = Pr(Z < Z2 I 0 = Pr(Z,< / 2 1 1. (3.38)

This is used in (3.7) to calculate the total probability of error as

L

P= E L)n ( 1 _n)L-i Pb(S) .(3.39)

The calculation of Pb(i) is dependent on the diversity level and the number of hops

that are jammed. From (3.38) the probability of error is found through the following

integral:

Pb() =f f ,(zj) dz1 , (3.40)
0

wheref,,(z, I i) is the density function for Lth level diversity and i hops jammed of the

density for fzlk(Zlk I i) given in (3.33). This can found by considering the jammed and

non-jammed as separate cases. The density function of both are identical except that

the noise power is

o= ( + N0)B , (3.41)
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for the jammed hops and

Gk = NoB, (3.42)

for the non-jammed hops. Defining fz)(Z,) as the probability density function when

jamming is present and fz(1(zlk) when no jamming is present, and using the

independence of the individual hops, the combined probability density function is

found by convolving these functions with each other as

where ei represents an i-fold convolution of the jammed or non-jammed density

functions. The value of i ranges from zero to L giving results for all combinations

from no hops jammed to all L hops jammed for a single bit. The probability of error

is found for each value of i from the integral in (3.40) and then combined in (3.39)

to yield the total average probability of error.

C. M-ARY FREQUENCY SHIFT KEYING

The analysis for M-ary Frequency Shift Keying (MFSK) is not obtainable by

analytical solution since the Zik variables are dependent on one another and their

joint probability density function is unavailable. The system performance can,

however, be evaluated by use of a union bound as mentioned above. The union

bound is derived from the following relationship
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Pr(AUBUCU ...) : Pr(A) + Pr(B) + Pr(C) + ...

- Pr(AnB) - Pr(AnC) - Pr(Bnc) - ... (3.44)

-Pr(AlBnC ... ),

where A, B and C would represent the cases of Z 2 > Z , Z 3 > Z1, and Z 4 > Z1 and

so forth, depending on the value of M for the system under investigation. The union

bound disregards the probabilities of the intersections assuming their values to be

small compared with the individual probabilities. The result is

Pr(AUBUCU ...) < Pr(A) + Pr(B) + Pr(C) +.., (3.45)

or in terms of the Z's,

Pr[(Z1<Z2 1)U (Z<Z3 1i)U(Z,<Z4 I ...

g pr(Z<Z2Ii + pr(Z1<Z3 1i + pr(Z<Z2 1i) + (3.46)

The bound equation can be further reduced recognizing that all the Zj's for

i = 2,3,...,M are identically distributed and, therefore, the probabilities Pr(Z1 < Z) are

of equal value. The bound then reduces to

M
Pr[ U(Z1<ZIli)J < (M-l)xPr(Z1 <Z2 10. (3.47)

j-2
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In the probability of error calculation the value for the bit energy-to-noise ratio is

replaced by the symbol energy-to-noise ratio

Es k Eb  (3.48)

NT NT.

where NT is the total noise on a single hop defined by (3.11). The calculations now

provide a measure of the symbol error for the system using the equations for the

binary system. Because the signalling waveforms were chosen for orthogonality, the

probability of bit error is easily calculated as

Pb() = (l) P,()(M-1)

2H Pr(Z1 <Z 2 11) (3.49)

: f f(z, jdz.2 f Z 1 l

where fzl(zl i) is given in (3.43). The average probability of error is then found

using (3.39).

D. NUMERICAL PROCEDURE

Results of the probability of error analysis are provided for L = 1, 2, 3, and 4

hops/bit for several signal-to-noise ratios. Direct-to-diffuse component ratios

corresponding to Rician fading, Rayleigh fading and nonfading provide an overall
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comparison of channel effects on system performance for the self-normalization

receiver. In all cases, the solution of (3.40) was accomplished via a numerical

integration routine. The average probability of error from (3.39) requires evaluation

of L + 1 integrals. For example, for L = 1 the two cases are one non-jammed hop

and one jammed hop. For L = 2 there are three cases: both hops non-jammed, one

hop jammed/one hop non-jammed, and both hops iammed, etc. Additionally, the

worst-case jamming ratio r (the value of il that produced the greatest probability of

error for each value of Eb/No and Fb/Nj) was used so the curves represent a worst

case bound on probability of error.

The solution for L = 1 is the evaluation (3.40) using the two signal-to-noise

ratios (Eb/NT) associated with a jammed hop and a non-jammed hop in (3.33) to

generate the density function fz1(zl). For L = 2 and L = 4, the conditional

probability density functions f, 1(z I i) are found using fast Fourier transforms (FFT)

of the probability density functions for each of the jammed and non-jammed cases.

Numerical sequences, of length N = 211 = 2048, of the densities were generated from

(3.31) using the required Eb/NT for jammed and non-jammed cases. The sequences

are zero padded to a total length (N x L) before the FFT was performed to preserve

the desired linear convolution of (3.40). The transformed sequences were multiplied

point by point to produce the desired sequence of

Fzr(s) = [Fj'U,(s)]' X tFZ,(/S)IL-) (3.50)

37



This result was then inverse fast Fourier transformed to yield the desired sequence

for f 1(z1) to be integrated. The proctdure for L = 3 was similar to L = 2, except

that a discrete Fourier transform is used, because padding for a diversity of three can

not provide a sequence with a length that is a power of 2. The results are plotted in

Chapter IV for the different values of fading ratios and bit energy-to-thermal-noise

ratios versus the bit energy-to-jamming-noise ratios.
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IV. FORWARD ERROR CORRECTION

Although using fast-frequency-hopping to provide diversity can improve system

performance in the presence of partial band jamming, it is representative of a simple

repetition code, where the signal is tested against some threshold and the output with

a majority count would be selected [Ref. 13]. While diversity by itself does improve

system performance, technology today provides use of much more powerful block and

convolutional Forward Error Correction (FEC) codes capable of detecting and

correcting numerous errors. Diversity, along with ccding, will be used to provide

performance improvement of anti-jam and low probability-of-intercept capabilities.

The FEC coding provides coding gain to the system to decrease the required signal-

to-noise plus jamming ratio for a given system performance level, i.e., probability of

bit error. In particular, the analysis here will address rate 1/2 and 1/3 constraint

length 7 convolutional codes and Reed-Solomon non-binary block codes.

In order to implement the coding scheme, the transmitter and receiver of Figures

4 and 5 must be modified as shown in Figure 6 [Ref. 14]. In the transmitter, the

information bits arriving at rate Rb are mapped to Q-ary symbols where Q = 2q at

a rate of Rq = R,/q and then passed to the encoder. A special case is for q = 1,

which is called a binary encoder. For a binary encoder, the binary to Q-ary

conversion is a straight-through connection. The encoder outputs n Q-ary symbols for

every k Q-ary inputs and is defined as an (n,k) coder. The code rate then becomes
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SSynthesizer

(b) RECEIVER

Figure 6. FH-MFSK Transmitter and Receiver Modified for FEC Coding [Ref.

14].
r = k/n and the output symbols are created at RE flRq/k = nR/qk. The Q-ay

coded symbols are then converted to the M-ary symbols, where M = 2K, required by

the transmission channel at a rate Rd = qRc/K = nRb/kK. Another special case

exists if M = Q; then the connection here is again straight-through. The choice of M

and Q, in principle, is arbitrary; however, it is most convenient to choose K and q so
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that one is an integer multiple of the other to simplify the analysis. The M-ary words

are applied to the MFSK modulator which selects one of M baseband frequencies,

the same as for the uncoded transmitter, which mixes the signal onto the frequency-

hopping carrier. In order to maintain the orthogonal relationship of the transmitted

signals, the M frequencies are spaced B Hz apart, where B = Rh = LRd = nLRb/kK,

with L beirAg the diversity level and Rh the hopping rate. The bandwidth of the M-ary

group is MB = MLRd = nMLRb/kK [Ref. 14]. This indicates that the improvement

in performance requires the bandwidth to be increased by a factor of 1/r compared

to the uncoded system as indicated in (2.13). Although the cost is more bandwidth

in an already overcrowded electromagnetic spectrum, it is actually beneficial in terms

of the system bandwidth satisfying the coherence bandwidth requirement of the

channel (see Chapter II.B.). The total system bandwidth W is now

nLNhRb (4.1)
W= NhB= kK

where Nh is the total number of possible carrier frequencies from the frequency

synthesizer of Figure 6a.

The receiver shown in Figure 6b performs the decoding operation in reverse

from that of the encoder. The demodulator is the self-normalizing quadratic receiver

described in Chapter III. Thus, the performance at the output from the demodulator

is described by (3.39) for BFSK and (3.49) for MFSK with M > 2. The demodulator

makes a soft decision on which of the M-ary symbols was sent and passes it to the

M-ary to Q-ary converter. The Q-ary word in turn is passed through the decoder
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which makes a hard decision as to what symbol was actually sent. The Q-ary to

binary converter then recreates the best estimate of the data sequence [Ref. 7 :p. 332].

The performance of the total system is a measure of the demodulator's

performance plus any increase due to error correction ability of the particular coding

scheme. The analysis of the demodulator is identical to the uncoded case except the

symbol energy per coded M-ary word is

E = kKEb (4.2)
n

When applied to a fast-frequency-hopping system the energy per hop becomes

E d kKEb (4.3)
L nL

These values replace the symbol energy value in (3.28) when the density for the self-

normalizing receiver is found. Then the probability of 0-ary symbol error is found

through (3.39). The analysis for the coder performance depends on the ratio of q to

K.

If q > K, then q/K M-ary words are mapped to the Q-ary symbol. At the

receiver, the Q-ary symbol will be in error if any of the q/K M-ary symbols are in

error. Therefore, P, (the Q-ary symbol error ratio after the M-ary to Q-ary mapping)

is

P 1- (1 - Pd)K , (4.4)
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where Pd is the M-ary symbol error from the demodulator and q/K is an integer as

specified above. And if K > q, then d = K/q coded Q-ary symbols are grouped to

form one M-ary word for transmission. Using the fact that M = Qd, then, of the M

symbols consisting of d Q-ary symbols, Qdl = M/Q of the M-ary symbols have the

same Q-ary symbol in a given position. Therefore the probability of a Q-ary symbol

error given that an M-ary symbol error occurs is

Pr(symbol error I word error) = (M-1) (I - Q) (4.5)

The average symbol error rate then becomes

PC = --- (1 - 2 -q) Pal" (4.6)

(M-1)

This still requires that K/q be an integer. In the special case of the binary encoder

(q = 1) this becomes the formula for the orthogonal M-ary to binary conversion

pC = M12 Pd" (4.7)
(M-1)d

The decoder will then make hard symbol decisions based on the Q-ary symbol at its

input. Equations (4.5), (4.6), and (4.7) will be used as required in the following

sections for the specific codes under investigation.
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A. REED-SOLOMON NON-BINARY BLOCK CODES

Reed-Solomon codes are a special case of Bose-Chaudhuri-Hocquenghem (BCH)

codes from the Galois field GF(q) and as (nk) block codes exhibit the following

characteristics [Ref. 7 :p. 171]:

Block length: n = q- 1,
Number of parity bits: n - k - 2t,
Minimum distance: dmin = 2t + 1,

where t is the maximum number of errors the code can correct and dmin is the

minimum distance between codewords. Specifically, q = 2 m is used here because it

is the _anplest to implement in digital circuitry. The value of m can be any value

depending only on the constraints of the system under design (available memory size,

speed of operation, real-time versus non-real-time data, etc.). Then, choosing a code

such that Q > M (q > K), the 0-ary symbol error is given by (4.5) and the output

from the decoder will have a corrected probability of symbol error of

dI

(4.8)

+ i -nc~ p.)"'-

The probability of bit error is then

Pb = Q Pl (4.9)
Q-1
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B. CONVOLUTIONAL CODES

The convolutional codes used here are binary codes (q = 1); therefore, (4.7) will

be used where applicable in evaluating the performance of the convolution codes.

Use of the Viterbi decoding algorithm is assumed in all cases.

The constraint length for convolutional codes is defined to be [Ref. 7:p. 291],

n A an (?n,+1) , (4.9)

where n is the number of encoder outputs and m. is maximum number of memory

stages in any single input section. A simpler definition is the maximum number of

encoder outputs that can be affected by a single input data bit. The codes used here

have constraint length 7 and are called best rate 1/2 and 1/3, meaning that they

deliver the best performance of any other rate 1/2 or 1/3 convolutional codes from

a Viterbi decoder as defined in [Ref. 15). Analysis of the the Viterbi decoder

performance is approximated through use a Chernoff bound. For the rate 1/2 codes,

the information bit error rate is bounded by

Pb < l(36D1° + 211D'2 + 1404D14 + 11633D 6 + "'" ) , (4.11)

and the rate 1/3 codes by

Pb 1 (D 1 4 + 2OD6 + 53D" + 184D2 + ""), (4.12)
2
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where

D = 2VP,(I - Pe) (4.13)

The higher order terms in (4.11) and (4.12) are neglected since Pc (the symbol error

rate) is usually quite small.
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V. DISCUSSION OF RESULTS

Probability of error analysis for both the uncoded and coded systems is based on

worst-case partial-band jamming. The first computer runs were done for 15 values

of n from 0.001 to 1.0. The worst-case values were subsequently selected from these

15 values for each value of Eb/NJ from zero to 40 dB. After plotting the curves of

Figure 7 and 8, it was determined that the value of n which maximized the

probability of error in a Rician-faded channel continuously increased as the bit

energy-to-jamming noise density ratio (SNR3 ) was decreased. This allowed the

program to be modified to check two consecutive values of r and select the

maximum. If the larger of the two values of r caused the greatest probability of

error, the program compared the results of the second to the third and then the

third to the fourth and so forth, continuing until il = 1.0. This increased the speed

of calculations for all values of Eb/N j by a factor of five, since the simulation no

longer had to calculate 15 different outcomes for each value of Eb/Nj. Figure 7 for

low SNRT, however, implies that a jammer could obtain good results (reasonably high

error ratios) if broadband jamming (rl = 1.0) was employed at all times regardless

of the power it expected to deliver to the receiver. The predicted probability of error

for broadband jamming is only slightly better than for worst-case partial-band

jamming. In fact, worst-case partial-band jamming and broadband jamming produce

essentially the same probability of error at both high (30 to 40 dB) and low (0 to 10
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dB) SNRj ratios. There is only a slight difference in the range from 10 to 30 dB. This

is not the situation when the system operates at higher SNRT as witnessed in Figure

8. Although at both ends of the curve the results are the same, in the range of Eb/NJ

= 15 to 35 dB, the jammer would obtain an appreciable increase in effectiveness by

using an optimum jamming bandwidth.

In the case of Rayleigh fading, the worst-case jamming ratio ' was found to be

1.0 at all levels of jamming power. This would make the jammer's job much simpler

since it would not need to acquire any information about the receiver (location,

received signal strength, etc.) to be effective against it. In the following sections, the

importance of signal-to-thermal noise ratios and signal-to-jamming noise ratios are

discussed along with the ability of fast-frequency-hopping diversity to overcome their

effects.

A. UNCODED SYSTEM PERFORMANCE

The uncoded system performance versus signal-to-jamming noise ratio (SNRJ)

for BFSK, M = 2, and Eb/No = 20 dB is shown in Figures 9 through 12 for direct-to-

diffuse component fading ratios of 0.01, 1, 10, and 1000. These values represent

deeply and moderately-faded Rayleigh channels, a Rician-faded channel, and a

nonfading channel, respectively. Figures 13 and 14 show results for direct-to-diffuse

ratios of 10 and 1000, respectively, with Eb/NO = 13.35 dB. Additional graphs for

_b/N o = 13.35 and 30 dB are enclosed in Appendix C. These figures demonstrate

that fading can severely affect the performance of the self-normalization receiver,

particularly for low to moderate signal-to-thermal noise ratios (SNRT). They also
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show that diversity can be very effective in overcoming the effects of partial-band

jamming and the effect of fading channels associated with the multipath satellite

signals. An interesting point is illustrated in Figures 12 and 13, the results for Eb/No

= 13.35 in a Rayleigh-faded channel and a non-fading channel, respectively. As SNRJ

increases, the best diversity level (the diversity case that delivers the lowest

probability of error) increases from L = 1 to L = 3 in Figure 12, and then in Figure

13, at approximately 35 dB, it reverts to L = 1. This indicates that for low SNRT

ratios the best-case diversity level performance is only marginally better than L 1

100 i.:: !Binary I-SK ' : . : : ... . .:

-Eb/No = 20 1B"
DIETTO DIFFUSE - 0.01

LL.

C

© 10-2

1013 0. 30 40

05

"L=2 -o-"
L-3 -x-

0 10 20o 30o 40
BIT ENERGY-TO-JAMMING NOISE DENSITY RATIO, Eb/Nj (d0)

Figure 9. Uncoded System Performance for BFSK in deep-faded Rayleigh
channel for F/N. = 20 dB.

50



100

.. No 2Q B .......... ....
.....D. ITRECr TO*DIFFUJSE.-' * .....

Cd 10,1
we............. ..... ......

o 10-2 . .... ......

....0 . 20...0 40
......T.. EN R.T- ~ N NO..... SE.. DENSIT RAT.. E.......... .B

Fiur 10............ U.cde Syst .....m Pefrac fo BFSK..... in. a moderately-faded
Ra le g Channel......... with........ .bN .. 20...... d.... ..........

100....

Eb. .... 20 ....
10.3I C TO ... DIF US .... 10..

.....

0O 1 .0 2 .0 3 00 4 0

BIT ENERGY-TO-JAMMING NOISE DENSITY RATIO, EbNj (dB)

Figure 1. Uncoded System Performance for BFSK in a modc rtean -fadedne
Ralihanlwith Eb/N, 20 dB.

1051



in nonfading or Rician fading channels. In contrast, Rayleigh fading channels provide

the best performance by operating at the greatest possible diversity level at all SNRT

ratios. The phenomenon of the optimum diversity level reverting to L = 1 in Figure

13 also occurs at higher SNRT levels as the jamming power at the receiver goes to

zero; however, the crossover points on the other figures is outside the scale of the

figures. The cause is nonlinear combining losses that occur from not using the phase

information of the received signal in the diversity combining process [Ref. 81.

Examples of the results for the Union bound developed in Chapter III for M =

4 and M = 8, MFSK with Eb/No = 20 dB are shown in Figures 15 through 18.

Figures 15 and 17 show the results for Rayleigh fading and Figures 16 and 18 are for

100
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Figure 12. Uncoded System Performance for BFSK in a nonfaded Channel
with Eb/N, = 20 dB.
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Rician fading channels, respectively. The curves follow the same general form of the

curves of the BFSK cases since they are based on the same calculation technique,

with a different energy per hop and multiplicative factor. A better illustration of the

effects of using MFSK, with increasing values of M, are shown in Figures 19 through

22. These graphs are a direct comparison for M = 2 to 32 (k = 1 to 5) with Eb/No

= 20 dB and the four fading levels as used above. All four figures show that

performance improves as k increases or consequently as M increases. The results for

M = 8, 16, and 32 in Rayleigh fading (Figures 19 and 20) are almost identical over

the entire range of SNR, while Figure 21, for the Rician fading channel, exhibits a

general improvement in system performance as M increases. The non-fading channel

1 ( o= .... .. ....... .. .....

10-0,

r f4-ary FSK
q. EbN ==Z 9 ddB

.... DIRECT TO DIFFUSE:= 0.01

z 10,1

L=3 -..............

....... ......

0 0 .0.20 . 30.40
BIT~~~~~~~.. ENRG .O..MIG.OSEDNST....,EbN (B

Figure~~~~~~~~~ 15. ..ncoded...... Pefrac.o.-yFKi aleg-ae hne
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in Figure 22 again shows little or no distinction between M = 8, 16, or 32 until the

SNRj ratio is approximately 32 dB. This may be due to the inaccuracy of the bound

used to derive the results for M > 2, or it may be an accurate representation for the

receiver in that very little improvement in system performance is achieved for values

of M > 8, with the former being the most likely cause. As a comparison, the results

for a noise-normalization receiver (the samples from the quadratic dectector are

divided by an estimate of the ambient noise from a separate channel outside of the

bandwidth of the M signal frequencies) is shown in Figures 23 and 24 [Ref. 15]. The

self-normalization receiver can be viewed as a practical implementation of the noise-

normalization receiver since it essentially obtains an estimate of the noise power

directly from the M detectors of the demodulator. Therefore, the performance of the

two receiver designs should be similar. Comparing Figures 19 and 21 with Figures 23

and 24, it is evident that the noise-normalization receiver continues to improve as M

increases, while the bound for the self-normalization receiver shows little or no

improvement beyond M = 8. This is evidence that the bound may not be as accurate

as desired; however, it does indicate that the self-normalization receiver may provide

even better performance with higher values of M, contrary to the results of Figures

19 and 21.
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B. CODED SYSTEM PERFORMANCE

The coding results in all cases showed an appreciable improvement in system

performance as was expected. Figures 25 through 28 show results for (7,3) and (15,5)

Reed-Solomon codes on BFSK signals in Rayleigh and Rician fading channels with

Eb/No = 20 dB. These codes are able to correct two and 5 errors, respectively. The

ratio of n to k was chosen in all cases to yield code rates similar to those of the rate

1/2 and 1/3 convolution codes described in Chapter IV. This was a matter of

convenience to simplify comparing performance of the two types of codes. Also, q

was adjusted to provide a q/K ratio of two in most of the simulation runs. The only

deviation from that ratio was for K= 1 (BFSK). The ratio was changed here since a
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(3,1) code is nothing more than a repeat majority count code and provides little more

than the diversity of the frequency-hopping carrier. Therefore, the BFSK results are

given for (7,3), (15,7), and (15,5) Reed-Solomon codes which correspond to q =3 for

the first code and q = 4 for the latter two codes.

Comparison of the performance of the Reed-Solomon codes above with the

uncoded performance of Figures 9 and 11 shows that the (7,3) Reed-Solomon code

provides a coding gain of approximately 6 dB at an error ratio of Pb = 10" in a

Rayleigh-faded channel and 5 dB at Pb = 10-5 in the Rician-faded channel. The

(15,5) Reed-Solomon code provides 3 dB and 5 dB at the same error ratios. These

gains are based on the optimum diversity level. The optimum level being the level

that provides the lowest probability of error for a specific value of SNRT.

The rate 1/2 and 1/3 convolutional codes in Figures 29 through 32 show that

convolutional codes provide superior performance to Reed-Solomon codes for BFSK.

The rate 1/2 code provides coding gains of 9 dB at Pb = 103 in the Rayleigh channel

and 8 dB at Pb = 105 in the Rician-faded channel. The rate 1/3 code provides a

coding gain of 8 dB in the calculation for the Rayleigh channel and 8.5 dB gain in

the Rician-faded channel at the reference points for probability of errors indicated

above. The comparison is better illustrated in Figures 33 and 34, which show the

results of all four coding schemes for L = 2 (solid lines) and L = 3 (dashed lines) in

Rayleigh and Rician channels. Notice here that the (7,3) Reed-Solomon code was

replaced with a (15,7) Reed-Solomon code in the comparison to keep the ratio of q

to K the same in both coding schemes, and thereby provide a direct relationship of
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Figure 33. Coded Performance for BFSK, L--2 (solid) and L-3 (dashed) in
a Rayleigh channel with Eb/No = 20 dB.

system performance to number of symbol erros that can be corrected. The maximum

number of correctable bit errors are 4 and 5 ,respectively, for the two codes shown.

The power of the Reed-Solomon block codes is further illustrated by Figures 35

through 38, where the block length is increased from 15 to 63 for 4-ary MFSK

(meaning that the constraint specified previously that q/K -- 2 is increased to qj/K

= 3). These figures show the difference in system performance between Reed-

Solomon and convolutional codes narrowing for both Rayleigh- and Rician-channel

models as the block length increases from 15 in BFSK to 63 in the 4-ary FSK system.

In Figure 36 the (15,5) Reed-Solomon code performance surpasses that of the (15,7)

at Eb/NJ = 14 dB for L=2 and at 16.5 dB for L=3. This figure also shows the rate
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1/3 convolutional code is still superior to all the codes with respect to best

performance. In Figures 37 and 38 the block length of the Reed-Solomon code has

been increased to 63 resulting in (63,31) and (63,21) codes to maintain rates close

to 1/2 and 1/3 for comparison. Notice that, where the results of Figures 35 and 36

show the rate 1/2 and 1/3 convolutional codes superior for jamming power ratios

down to 12 dB, the Reed-Solomon codes become superior at 19 dB for L = 2 and

16.5 dB for L = 3 in Rayleigh fading (Figure 37) and at 12 dB and 12.5 dB in Rician

fading (Figure 38). In theory, the block length can be increased to any value without

changing the overall code rate. Thereby producing further improvement in system

performance, so that the Reed-Solomon block codes should eventually out perform
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Figure 36. Coded Performance for 4-ary FSK, L =2 (solid) and L =3 (dashed),
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in a Rayleigh channel with Eb/NO 20 dIB.
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Figure 38. Coded Performance for 4-ary FSK, for L=2 (solid) and L=3)
(dashed), in a Rician-faded channel with Eb/NO, = 20 dB.
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the convolutional codes regardless of the jamming power ratio. The performance

increases further still by using M = 8, as shown in Figures 39 and 40, where q/K =

2 is used again. Here the Reed-Solomon codes have surpassed the performance of

the convolutional codes without increasing the block length over the previous value.

The analysis for a (511,255) Reed-Solomon (q/K = 3) was attempted for M = 8, but

the small values of probability of error caused a numerical underflow in the

computer calculation of (4.8). The main drawback of the approach of increasing

block length to obtain an acceptable performance standard is that the large block

size requires larger and larger memory circuits to form the codewords for

transmission. This inherently prevents the transmission of real-time data because of

the codeword formulation time.
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Figure 39. Coded Performance for 8-ary FSK, for L=2 (solid) and L=3
(dashed), in a Rayleigh-faded channel with Eb/NO 20 dB.
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Figure 40. Coded Performance for 8-ary FSK, for L=2 (solid) and L=3
(dashed), in a Rician-faded channel with Eb/NO = 20 dB.
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VI. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

Theoretical results for the self-normalizing quadratic detector have been

presented for both the uncoded and error correction coded performance in Rayleigh-

and Rician-faded channels. The effects of fading were detrimental for either fading

model, but it was found that fast-frequency-hopping in general could provide a means

to overcome, at least partially, those effects as well as the effects of worst-case

partial-band jamming. This was especially true for the Rayleigh-fading model, as

higher levels of diversity always provided improved performance. However, the

Rician ..hannel for low values of SNRT and without jamming present perform best

for slow-frequency hopping (L = 1).

Inco,poration of FEC coding always improved the performance of the system in

either Rayleigh- or Rician-faded channels. The improvement in bit-error ratios is

seen to be exponential in nature, i.e., as uncoded performance improves, the coded

performance improves exponentially faster for the same signal-to-total-noise ratio.

In particular, the research investigated Reed-Solomon (n,k) block codes and

constraint length 7, best rate 1/2 and 1/3 convolutional codes. In cases of low SNRj,

the rate 1/3 convolutional codes proved superior in performance to all other coding

schemes, provided the block length of the Reed-Solomon codes was kept within

reasonable limits. If the system were for data transmissions only, the Reed-Solomon
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codes with large block lengths would be preferred over the convolutional codes since

they would not only provide equal, if not better, performance, but also are well suited

to correcting burst errors as described in Chapter II.

B. RECOMMENDATIONS

Theoretically, the self-normalization receiver performs well in fading channels

with partial-band noise jamming. To verify the results presented here, a hardware

system should be built and tested to obtain actual data for performance comparisons.

The coding schemes presented have been used in numerous real-world systems, so,

although the results for a tested system would be of interest, they are already well

documented and need no further analysis on the basic codes. However, the benefits

of the Reed-Solomon codes for burst error correction capabilities were not addressed

here and should be pursued in the future. Additionally, the use of concatenated

coding schemes and the advantages provided by interleaving the bit stream between

hops would both be practical and provide significant improvement in system

performance. Therefore, the benefits of these two schemes should also be addressed

by further investigation and studies as well.

Since the LASAT system will be used for voice and data simultaneously, the

effects of mixing voice and data packets should be investigated and the protocols

necessary to perform the mixing need to be developed. Additionally, research should

be done to determine the effects of increasing the block length of the Reed-Solomon

codes on throughput of the system for both voice and data packets, including the

effect of round-trip transmission delay to the satellite.
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APPENDIX A - Derivation of Equation (3.14)

The unconditicnal probability density function Xk is fo,nd by integrating the

conditional probability density function over the range of the conditioning variable.

The conditioning variable is the amplitude value ak and the integral is

W

fZlk(Xlk) =f f'l I~k(Xl I ak) fAk(ak)c'ak
0

ak_ 1 a
22exp 2 lexp 2a2 x(A. 1)

0°2]. °22 ]

2 Slkaj da

where fx, fA,(xk I a.) and fAk(ak) are given by (3.10) and (3.12) respectively. The

solution of the integral is found using the following equality [Ref. 17:p. 314]

ft e .-" J,(at)J,(bt)dt = _--e -(' + , I ab ) , (A.2)
0 2P 2  12p2

where J,(x) is the vth order Bessel function of the first kind. Using the relationship

1o(x) = J0 (Jx) and the following substitutions
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t = a., v, 0,

22

Ok
2 2Sa

the result is,

2Sxzkt a2  IT 2S ak (A.4)
4 4 202

k  Okk

x exp 2

2 + 2So 21 + 2So 2

2 2 _22 22
Ok 00 J

Rearranging the terms yields
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fx"(xk) = 2( 2+(a 2Sa 2)

2 2

x 1 2 2

This can be rearranged again to yield

I l(xk+sa2 V/" (A.6)

f (x ,,) 2(o 2+2S a2) " 2 o  2+2S o k 2o + 2

which is (3.14).
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APPENDIX B - Derivation of Equation (328)

The unconditional probability density function for Zk is found by integrating the

conditional density over the range of the auxiliary variable Ck. This integral is

fz(lk fZ~~zlc)dk (B. 1)
0

This becomes

f(z 1 ) - (1  k (-Jk) exp - 4 k j 1 ) (M-2)!

('+Pk) 2 k ( 1 + Pk(M2)- ex C. +N -Zk
0f C:- exp - ak 2k (1+ k)d

2d zl-k Pt k A

ok2 2V d "

× {2 1 + k (B.2)

The solution of the integral is found using the following identity [Ref. 18 :p. 720].

- -"
2 " (B.3)

fx e-, jv(2pv')dx = n! P e a' - - L n (Ba
0

where L.v(x) is the generalized LaGuerre polynomial
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L~x)= ~(1) n+v (x (.4OWI n-m) in!

Then using the relationship, 1(x) = Jo0(jx), and the following substitutions

v=0, n=m-1,

Z I PA (B.5)

a 1 + P,,-z ) b = 2

2a~( 2 b~ + Ak

the density becomes

M-1 (1 - 2 + ]

(1 + Pk) (1 + ZNO) - ZIk))

expV 1 (1 - z )

I + Ok(1 - z1l)

0( M--m) MI (1 + 0,P0 + ZIk)

(B.6)

This is the unconditional density function for Zlk given in (3.25).
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APPENDIX C - Additional Illustrations

This Appendix contains additional figures that illustrate various cases of signal-

to-thermal-noise ratios and direct-to-diffuse ratios for fading channels. These are

intended to provide the reader with supplemental information to the cases discussed

in Chapter V. The specific information about each case is contained on the graphs

and in the graph titles.
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Figure C.1 Uncode-d Performance for BFSK in a deeply-faded Rayleigh
channel with Eb/No = 13.35 dB.
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Figure C.2 Uncoded Performance for BFSK in a moderately-faded Rayleigh
channel with Eb/NO = 13.35 dB.
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Figure CA4 Uncoded Performance for BFSK in a moderately-faded Rayleigh
channel with Eb/No = 30 dB.
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Figure C.5 Uncoded Performance for BFSK in a Rician-faded channel with
Eb/No = 30 dB.
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Figure C.6 Uncoded Performance for BFSK in a non-faded channel with
Eb/NO = 30 dB.
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Figure C.7 Uncoded Performance for MFSK, M=4, in a moderately-faded
Rayleigh channel with Eb/N,, -~ 20 dB.
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Figure C.8 Uncoded Performance for MFSK, M=4, in a deeol-faded Rayleigh
channel with Eb/N,, = 30 dB.
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Figure C.10 Uncoded Performance for MFSK, M =4, in a moderately- faded
Rayleigh channel with Eb/NO = 30 dB.
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Figure C.12 Uncoded Performance for MFSK, M=4, in a non- faded channel
with Eb/NO = 30 dB.
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Figure C.13 Uncoded Performance for MFSK, M=8, in a Rayleigh-faded
channel with Eb/N. = 30 dB.
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Figure C.14 Uncoded Performance for MFSK, M=8, in a Rician-faded channel
with Eb/NO 30 dB.
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Figure C.15 Uncoded Performance for MFSK, M = 16, in a Rayleigh- channel
with Eb/N. = 20 dB.
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Figure C.16 Uncoded Performance for MFSK, M = 16, in a Rician -faded
channel with FJNO = 20 dB.
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Figure C.17 Uncoded Performance for MFSK, M = 16, in a Rayleigh-faded
channel with Eb/N. = 30 dB.
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Figure C.18 Uncoded Performance for MFSK, M= 16, in a ±ician-faded
channel with Eb/N. = 30 dB.
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Figure C.19 Uncoded Performance for MFSK, M=32, in a Rayleigh-faded
channel with Eb/N. = 20 dB.
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Figure C.20 Uncoded Performance for MFSK, M=32, in a Rician-faded
channel with Eb/NO, = 20 dB.
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Figure C.21 Uncoded Performance for MFSK, M=32, in a Rayleigh-faded
channel with Eb/N. = 30 dB.
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Figure C.22 Uncoded Performance for MFSK, M=32, in a Rician-faded
channel with Eb/NO 30 dB.
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Figure C.23 Uncoded Performance for MFSK, M = 2 to 32, in a deeply-faded
Rayleigh channel with Eb/NO, = 13.35 dB.

90



100

MFSK
Eb/ho =- 13.35 dB
DIRECT TO DIFFUSE 1

0

LU10.'

LL.

0 M=4 ---
M=4 -0-
M = 16 --M=32 +

0 10 20 30 40

BIT ENERGY-TO-JAMIMING NOISE DENSITY RATIO, Eb/Nj (dB)

Figure C.24 Uncoded Performance for MFSK, M =2 to 32, in a moderately
faded Rayleigh channel with Eb,/N. 13.35 dB.
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Figure C.26 Uncoded Performance for MFSK, M=2 to 32, in a non-faded
channel with Eb/NO, = 13.35 dB.
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Figure C.27 Uncoded Performance for MFSK, M=2 to 32, in a deeply--faded
Rayleigh channel with Eb/N. = 30 dB.
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Figure C.28 Uncoded Performance for MFSK, M=2 to 32, in a moderately
faded Rayleigh channel with Eb/NO 30 dB.
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Figure C.29 Uncoded Performance for MFSK, M=2 to 32 in a Rician-faded
channel with Eb/NO, = 30 dB.
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Figure C.30) Uncoded. Performance for MFSK, M=2 to 32, in a non-faded
channel with Eb/NO, = 30 dB.
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Figure C.31 Reed-Solomon (7,3) Coded Performance for BFSK in a deeply
faded Rayleigh channel with Eb/N, = 30 dB.
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Figure C.32 Reed-Solomon (7,3) Coded Performance for BFSK in a Rician
channel with Eb,/N. = 30 dB.
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Figure C.34 Reed-Solomon (15,5) Coded Performance for BFSK in a Rician
channel with Eb/N. = 30 dB.
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Figure C.35 Convolutional Code Rate 1/2 Performance for BFSK in a deeply
faded Rayleigh channel with Eb/N 0 = 30 dB.
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Figure C.36 Convolutional Code Rate 1/2 Performance for BFSK in a Rician
channel with Eb/NO, = 30 dB.
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Figure C.37 Convoutional Code Rate 1/3 Performance for BFSK in a deeply
faded Rayleigh channel with E,3/N, = 30 dB.

97



100
nvolutional Coded Binary FSK

10 i _ ... .. ... Rate. 1/
Eb/No =3OdB.

o 10-2 ... ... DIR.EC7T TO ,D.IF.F.U.S.El-, 10......

0
10-5 . .......

L=1~

L=2 -o-
10-8 L=3 -x-

L=4 -

109~
10 12 14 16 18 20

BIT ENERGY-TO-JAMMING NOISE DENSITY RATI, EbINj (dB)

Figure C.38 Convolutional Code Rate 1/3 Performance for BFSK in a Rician
channel with Eb/NO = 30 dB.
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Figure C.39 Convolutional Code Rate 1/2 Performance for 16-ary FSK in a

deeply-faded Rayleigh channel with Eb/N. = 20 dB.
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Figure C.40 Convolutional Code Rate 1/2 Performance for 16-ary FSK in a
Rician channel with E,,/t4 = 20 dB.
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Figure C.41 Convolutional Code Rate 1/2 Performance for 16-ary FSK in a
deeply-faded Rayleigh channel with E,3/N. = 30 d.B.
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Figure C.42 Convolutional Code Rate 1/2 Performance for 16-ary FSK in a
Rician-channel with Eb/NO, = 30 dB.
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Figure C.43 Convolutional Coded Rate 1/3 Performance for 16-ary FSK in a
deeply-faded Rayleigh channel with E./N. = 20 dB.
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Figure C.44 Convolutional Code Rate 1/3 Performance for 16-ary FSK in a
Rician channel with Eb/NO, = 20 dB.
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100 ( volutional Coded 16&ary FSK.:
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Figure C.46 Convolutional Coded Rate 1/3 Performance for 16-ary FSK in a
Rician. channel with Eb/N. = 30 dB.
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Figure C.47 Convolutional Code Rate 1/2 Performance for 32-ary FSK in a
deeply-faded Rayleigh channel with E1,/N0, = 20 dB.
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Figure C.48 Convolutional Code Rate 1/2 Performance for 32-ary FSK in a
Rician channel with Eb/NO = 20 dB.
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Figure C.49 Convolutional Code Rate 1/2 Performance for 32-ary FSK ina
deeply-faded Rayleigh channel with Eb/NO = 30 d.B.
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Figure C.50 Convolutional Coded Rate 1/3 Performance for -3 2-ary FSK in a
deelyade yeg channel with Eb/NO = 20 dB.
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Figure C.52 Convolutional Code Rate 1/3 Performance for 32-ary FSK in a
Rician channel with Eb/NO = 20 dB.
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Figure C.53 Convolutional Code Rate 1/3 Performance for 32-ary FSK in a
deeply-faded Rayleigh channel with Eb/NO = 30 dB.
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Figure C.54 Convolutional Coded Rate 1/3 Performance for 32-ary FSK in a
Rician channel with E-b/NO, = 30 dB.
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Figure C.55 Coded Performance for BFSK in a deeply-faded Rayleigh channel
with Eb/No = 30 dB.
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Figure C.56 Coded Performance for BFSK in a Rician channel with E.b/NO =

30 dB.
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Figure C.57 Coded Performance for 4-ary FSK in a deeply-faded Rayleigh
channel with E,3/N0, = 30 dB.
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Figure C.58 Coded Performance for 4-ary FSK in a Rician channel with Eb/No
= 0 d B.
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Figure C.59 Coded Performance for 8-ary FSK in a deeply-faded Rayleigh
channel with Eb/NO = 30 dB.
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Figure C.60 Coded Performance for 8-ary FSK in a Rician channel With Ebt /N.
=30 dB.
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