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ABSTRACT

The modeling of picosecond pulse propagatiun on microwave integrated circuit

interconnections is considered. Autoregressive moving-average (ARMA) and autore-

gressive (AR) parametric models are derived for lossy dispersive microstrip transnis-

sion lines and cascaded microstrip step discontinuities. We formulated mathematical

expressions to relate the model parameters to the physical microstrip properties.

New lumped-distributed equivalent circuit models are presented. Dispersive pulse

propagation on high-frequency integrated circuit interconnections is modeled using

frequency-dependent lumped parameters and lossy distributed transmission-line sec-

tions. \Ve verified the equivalent circuit models through computer simulations and

experimental measurements. Modern parameter estimation techniques are applied

to system identification modeling. We develop several algorithms to estimate the

model parameters from input and/or output measurements. The performance of the

algorithms are evaluated using computer simulations and experimental results.
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I. INTRODUCTION

Microwave and high-speed very large scale integrated (VLSI) circuits are liji-

ited by tile propagation characteristics of the on-chip interconnections [ltef. 1]. The

effects of signal dispersion and loss become even more predominant as devices and

circuits are scaled to smaller dimensions. At microwave frequencies, the intercon-

nections between elements on a dielectric substrate, such as silicon (Si) or gallium

arsenide (GaAs) where considerable wavelength reductions occur, must be treated as

planar waveguide structures. The analysis and design of circuits consisting of these

guided wave structures are facilitated by the use of equivalent circuits. Accurate

high frequency characterization of picosecond pulse propagation on these structures
including dispersion and losses requires extensive numerical techniques. The eiii-

pirical equations that have lten derived for the propagation parameters from these

iminerical results do not lead to an equivalent circuit model with realizable series and

shunt branches. Furthermore, reliable and accurate empirical models for many useful

structures such as microstrips on dielectric substrate used in monolithic microwav(

integrated circuits (MMIC's) are not available (Ref. 2: pp. 256-2621.

Knowledge of the transient signal behavior on microstrip transmission lines is es-

sential for the design of MMICs at high switching speeds or high frequencies. High-

speed time-domain measurements must be used to properly understand and model

the transient response. The microwave techniques available for picosecond pulse prop-

agation characterization are scattering parameter measurements, high-speed sam-

pling oscilloscope measurements, and picosecond photoconductor measurements. The

scattering or s-parameter measurement method is a small-signal frequency-domain

technique which is widely used by microwave network analyzers. High-speed sam-

pl~ng oscilloscopc measurements can characterize low-level signals and have a higher

signal-to-noise (S/N) ratio than the s-parameter mithod. Picosecond photoconduc-

tor measurements are a new high-frequency measurement technique made possible by

advances in laser technology. The generation of optical pulses with sub-picosecond

duration are shorter than those that can be generated solely by electronic means [Ref.
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3: pp. 117-124. An opto-electronic transducer such as a photoconductor permits the

conversion of these sub-picosecond optical pulses to picosecond electrical signals. The

significant advantage of this technique is the photoconductors can be integrated on

the substrate material to facilitate very high-speed measurements with extremely high

S/N and sensitivity to microvolt signal levels. The disadvantage of the s-parameter

and sampling oscilloscope measurement methods is they suffer from poor connections

in terms of high-frequency signal transmission on the substrate.

There is an urgent need for the development of computer-aided design (CAD)

models tailored specifically to the special demands of MMIC technology. MMIC's are

not readily tunable after manufacture, and the time and costs involved in a design

are high. In addition to the development of new models for CAD design, a diagnostic

testing procedure that permits on-wafer characterization of MMIC's before dicing the

wafer into individual chips is highly desirable [Ref. 4: p.14].

It will be useful to formulate a digital signal processing framework to solve this

modeling problem. The motivation for this approach is simple. The availability of in-

put and output time-domain measurements invites the transition from an equivalent

circuit model to a parametric model. For our purposes, we will define a parametric

model as a discrete mathematical description of the actual propagation mechanism of

the system in terms of specific model parameters or coefficients. Three particularly

important discrete-time parametric models are the moving-average (MA), the autore-

gressive (AR), and their combination, the autoregressive moving-average (ARMA)

model. These models are described as linear transformations of respective input-

output time series.

The model-building process is determined from a priori (structural) knowledge

and a posteriori (measurement) knowledge of the system. The basic approach taken

in this dissertation, with respect to the modeling of microwave integrated circuit

(MIC) interconnections, is to represent them as linear time-invariant bystems. This

allows linear algorithms to be applied to the solution of the modeling and parameter

estimation problem. The structural knowledge of the microstrip line permits the use

of empirical and analytical expressions to formulate lumped-distributed equivalent



circuit models which can characterize the system. Rational network functions are

evaluated from the circuit models and discrete linear transformations are employed

to produce the parametric models.

Another main emphasis of this research is on the system identification aspect.

Identification is defined by Zadeh [Ref. 5: pp. 856-865] as: "the detcrmination on the

basis of input and output, of a system within a specified class of systems, to which the

system under test is equivalent." Consequently, the identification problem is reduced

to that of model parameter estimation based upon measurement knowledge.

A. HISTORICAL BACKGROUND

Numerous authors have focused their research on various computational

approaches to analyze and model microstrip on different substrates [Refs. 6,7]. Ac-

curate and complete analysis, however, requires elaborate mathematical models and

time intensive numerical techniques. Quasi-TEM mode calculations combined with

frequency-dependent expressions can achieve accuracies within one percent of the full-

wave analysis [Ref. 8]. Computer-aided design (CAD) programs are available with

the capability of both synthesis and analysis of microstrip lines. The extensive de-

velopment of closed-form expressions for the frequency-dependent effective microstrip

permittivity eff(f), has produced rapid computation of the microstrip parameters.

However, the empirical equations that have been derived for the frequency-dependent

propagation terms do not lead to an equivalent circuit model with realizable series and

shunt circuit impedances. It is these equivalent impedances that relate to the physi-

cal microstrip properties. Therefore, the effective microstrip permittivity of different

dielectric substrates is critical for the synthesis and validation of IC interconnections

models.

Recently, optical techniques have been successfully used in the characterization

of microwave devices and integrated circuits. Frequency-domain measurements have

been performed using electro-optic probing of a. microstrip line. In this work, the

microwave signal is launched onto the circuit using coplanar waveguide (CP\V) con-

tacting probes. Hung et al. [Ref. 9] have developed an on-wafer GaAs MMIC

3



measurement system using a picosecond pulse sampling technique proposed by Aus-

ton [Ref. 101. This optoelectronic characterization has been demonstrated to achieve

a broad-band frequency response for both the magnitude and the phase of a K,-baud

(27-40 GHz) MMIC.

The problem of system identification is the determination of a mathematical

model that provides an optimum characterization for a system or process. Usually

our knowledge of the system is limited by observable input-output measurements.

The inverse scattering problem as applied to electromagnetic systems has close con-

nections to several signal processing concepts such as the design of digital filters, the

development of linear prediction algorithms and their lattice filter implementations.

In particular, transmission-line systems on planar dielectric materials (an be inter-

preted as layered, wave scattering structures. Two successful analogous applications

have been in speech and seismic signal processing. In speech, the vocal tract has been

modeled as an acoustic tube of varying cross-sectional area [Ref. 11]. The inverse,

or model identification, problem is to determine the medium properties from its re-

flection response measured at an observable boundary, to some incident input signal.

This also relates to the seismic problem. Here, an impulsive input to the earth, such

as an explosion, will generate seismic waves propagating downwards. Reflections are

produced as the wave encounters respective earth layers. From the resulting reflected

waves, the layered structure beneath the surface can be identified.

Bruckstein and IKailath [Ref. 12] have specified conditions on the layered structure

that permits the use of recursive parameter estimation algorithms. Their first algo-

rithm takes scattering data and processes it to identify a unique layer and then, at each

iteration, replaces the data by a set of "synthetic" scattering data. This procedure

is called the layer-peeling method. The second approach, called the layer-adjoining

method, propagates the original scattered data through the previously identified layer

to determine information about future layers. The layer-adjoining method is the

Levinson-Durbin alogrithm for solving the Toeplitz normal equations. For lossless

structures, the layer-peeling method is the Schur algorithm. The primary difference

between the layer-adjoining and the layer-peeling process is that the latter method

4



has avoided the requirement to compute inner products. These algorithms will pro-

vide background for the derivation of model parameter estimation algorithms that

will be presented in Chapter V.

Bruckstein, Levy and Kailath [Ref. 13] have discussed several classes of physical

models that are equivalent descriptions of a lossless scattering media. They presented

how a lumped circuit model for a uniform lossless transmission line, described by par-

tial differential equations, can be formulated into a discretized wave scattering layered

model. This model illustrates how propagating waves through a lossless transmission

line can be descrilbed as a multi-layered medium. Each layer is characterized by its

impedance function which directly relates to a layer reflection coefficient. In Chap-

ter I\/, multiple microstrip discontinuities are compared to the multi-layered model;

however, loss and dispersion are considered.

B. OBJECTIVES OF THE RESEARCH

The first objective of this research is to develop an equivalent circuit model for

a dispersive lossy microstrip transmission line which is compatible with the standard

circuit analysis and design techniques, including computer-aided design (CAD) tools.

The proposed circuit model will then be extended to describe abrupt width dimen-

sion changes, called impedance discontinuities, of the microstrip line. The transient

analysis of these equivalent circuits will simulate the picosecond pulse propagation

on dispersive lossy microstrip lines and the effects of impedance discontinuities can

be modeled. The circuit models will be verified using photoconductor measurements

from IC interconnections and experimental results from fabricated microstrip test

structures.

The second objective of the thesis is to derive ARMA and AR parametric mod-

els for three microstrip test structures. These include 1) an impedance matched

microstrip transmission line, 2) a cascaded icrostrip step discontinuity, and 3) a

multi-section microstrip step discontinuity. The impedance matched microstrip line

describes the typical MIC interconnection [Ref. 3: pp. 18-19]. As discussed eariler,

the formulation of these parametric models provides an opportunity to exploit existing

5



parameter estimation algorithms, as well as develop new algorithms to characterize

transient signal propagation on MIC's.

The last objective is the development of parameter estimation algorithms. This

research work will focus on the estimation of both ARMA and AR model parameters

from ohe impulse response of an electrically short microstrip line section. Addition-

ally, the system identification of the multi-section microstrip structure will also be

investigated. The detection of each section impulse response will be complicated

by pulse dispersion, propagation loss, and multiple reflections due to the impedance

discontinuities. A new layer-probing algorithm will be presented to overcome these

difficulties. Computer simulations of the algorithms are performed to validate their

performance.

C. ORGANIZATION OF THE REPORT

Chapter II derives a lumped-distributed equivalent circuit that includes the ef-

fects of microstrip loss and dispersion. The bandwidth of the propagating pulse will

establish a maximum wavelength of interest. The physical length of the IC intercon-

nection being considered will be very much less than a quarter-wavelength. Under

this condition the lumped-element circuit approximation is used to characterize the

microstrip line section.

Chapter III presents the parametric models for the impedance matched quarter-

wavelength microstrip transmission line. An ARMA parametric modcl is derived

from the network function of the equivalent circuit model. The ARMA model coef-

ficients are shown to be directly related to the equivalent lumped capacitance and

inductance of the circuit model. An AR parametric model will also be presented.

Relationships are given to evaluate the effective microstrip permittivity directly from

the ARMA/AR model parameters.

In Chapter IV, microstrip discontin uities will be considered. Equivalent circuit

models are derived for a cascaded microstrip step discontinuity. Similarly, ARM A and

AR parametric models are developed using discrete transformations of the equivalent

circuit network functions.
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Parameter estimation algorithms are the emphasis in Chapter V. Several esti-

mation algorithms are developed for both deterministic and stochastic data. Three

deterministic based algorithms are presented. A weighted least squares (WLS) algo-

rithm is derived to solve the ARMA model parameters from a finite-length impulse

response. An alternative technique will analytically approximate a transfer function

of the microstrip section using measured input-output rise and delay times of a tran-

sient pulse. Finally, AR model parameters are estimated from the impulse response

using the Schur algorithm [Ref. 14]. The stochastic algorithms will assume that a

white noise source is applied to the input of the microstrip structure. The Schur

algorithm will estimate the AR model parameters from the output data. When input

and output random data are available, an ARMA parameter estimation algorithm

based on a generalized Mullis-Roberts (M-R) criterion [Ref. 15] is employed. How-

ever, if only the output datd can be measured, a modified two-stage least squares

algorithm is presented to estimate a second-order ARMA model. Finally, new sys-

tem identification algorithms for the multi-section microstrip step discontinuity are

presented.

Chapter VI presents simulation and experimental results WNaveform compar-

isons are made between measured data, equivalent circuit simulations, and paramet-

ric model simulations for each microstrip test structure. The performance of the

parameter estimation algorithms will be investigated.

Chapter VII is a summary of the significant contributions presented in this dis-

sertation. It draws conclusions from the results and proposes some important future

directions for this research.

Three appendices are included. Appendix A contains an alternate proof of the

Schur algorithm. Appendix B contains the equivalent circuit model listings that

are uscd by the transient analysis program. Appendix C contains listings of the

FORTRAN programs used in the simulations presented in this report.
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II. MICROSTRIP CHARACTERIZATION

In this chapter equivalent circuit models are derived for a lossy dispersive mi-

crostrip transmission line. The propagation characteristics of the transmission line

are modeled by lumped-distributed equivalent circuit models. In order to derive the

expressions for the equivalent lumped circuit elements, the models are defined for

a maximum frequency of interest which is restricted by the physical length of the

microstrip line and the dielectric constant of the substrate. The empirical equations

described in the literature for the propagation parameters do not usually lead to an

equivalent circuit model [Ref. 16].

The equivalent circuit models presented are compatible with standard circuit

analysis and design techniques including the use of computer-aided design tools such

as PSPICE [Ref. 17]. The proposed models will include the effects of dispersion

and loss at microwave frequencies.

A. IC MICROSTRIP INTERCONNECTIONS

Integrated circuit interconnections can be described by microstrip transmission

lines because their geometries are similar. The abrupt dielectric interface showni

by the open microstrip geometry in Figure 2.1 makes it incapable of supporting

a single model of propagation. However, microstrip propagates the bulk of its

energy in a field distribution which approximates the transverse electromagnetic

(TEM) mode and is usually referred to as the quasi-TEM or quasi-static mode

(Ref. 18]. Several computational approaches are available utilizing quasi-TE'M mode

calculations combined with closed-form frequency-dependent expressions [Ref. 6].

It is this latter approach which is considered in this work.
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The characteristic impedance of a TEM transmission line is described by

Zo = (2.1)
C

where L and C are the equivalent lumped inductance and capacitance of the mi-

crostrip section, respectively. With microstrip geometries, the same type of di-

electric substrate is used below the conductor. However, there is air above the

conductor.

Top Conducting Strip

Dielectric Substrate

Ground Plane (Conducting)

Figure 2.1 Generalized open microstrip geometry

The dielectric constant used in the design must take into consideration the dielectric

constant of air (c, = 1) and that of the substrate material. The effective microstrip

perm.ttivity Qf I will be ;ntroduced. This quantity is unique to mixed-dielectric

transmission line systems and it provides a useful link between different wavelengths,

impedances, and propagating velocities.
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An expression for the static-TEM effective inicrostrip permittivity has been calcu-

lated by Owens [Ref. 19]:

r0l 5 55

ff- 2 C - (--- 1 + 10 (2.2)

where cr is the relative dielectric constant of the substrate. Using the effective nii-

crostrip permittivity, the characteristic impedance at TEM frequencies is calculated

by

60 (Sh w'\z0 - h);7 T +  zi, < h (2.:3a)

+ 1.393 + 0.667In + 1.444) ?c - /1 (2.31,)

where w and h are microstrip conductor width and substrate thickness, respectively

[Ref. 20]. A correction factor is applied to account for the fringing fields associated

with a finite conductor thickness. Bahl et al. [Ref. 21] have introduced an effective

width parameter into (2.3) in order to improve the Z0 calculation. The effective

width we, replaces the w in equation (2.3)

1.25t ( (4_w w 
we = U-+ I +ln < - (2.4a)7r ( ( - 27,-

1.25/ (n2h)) w I
1 W+ +1n -- >2 (2.4b)7T ' h - '27,

where t is the conductor thickness.

B. FREQUENCY-DEPENDENT MICROSTRIP MODELS

The quasi-TEM analysis of inicrostrip transmission lines mentioned above I)(,-

gins to lose accuracy at high microwave frequencies. The characteristic impedance

and the effective microstrip permittivity are dependent upon the dielectric thickness-

to-guide wavelength ratio, 27rh/Ag [Ref. 22]. In addition, different loss mechanisms

become important and the attenuation function is also frequency dependent. This

frequency-dependency of the microstrip is caused by a hybrid mode of propagation

10



that describes a coupled version of both transverse electric (TE) and transvorse

magnetic (TM) modes.

The propagation group velocity of a signal also depends on the frequency-

dependent effective microstrip permittivity as

Vg(f) c (2.5)

where c is the velocity of light in a vacuum. Pulses which have a spectral component

above the TEM mode frequency regime will be dispersed because the higher har-

monics of the pulse will travel at a slower phase velocity than the lower harmonics

[Ref. 18]. Therefore. the phase constant (,3) is a non-linear function of frequency.

which leads to the phenomena of dispersion.

Several methods for evaluating the frequency-dependent effective micro.,trip per-

mittivitv are available [Refs. 23. 24]. However. Yamashita et al. [Ref. 7] have

derived an expression by curve fitting the data obtained from a full-wave analysis

as

ff (f /, f + (\c7-f f7 /1( + 4 F) (2.6)

where
F= f (4 h +--1 (!+2 (1

If the substrate material is lossless, the phase constant becomes

2 r, f VE, ff'1 = (2. 7)
C

However, finite resistivity of the conductor and finite conductivity of the substrate

introduce attenuation. At low microwave frequencies the conductor loss factor oL.

is given by [Ref.1S: p. 90]

0.072 Ag dB/Ag(2o- d/ (2.8)
wZ
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where f is in gigahertz. For higher frequencies, Pucel et al. [Ref. 23] have calculated

the conductor loss as

8.68 R + in 4r +  t (2.9a.

for W 
< I

h - 27r

OC 8.68 R,- + It 1h, 2h t (2.9b)

i ws.G 4, It" W,/ t)
for < - <

2 - h

oc8.68 R, U+ U'/(7,h

, + t1.) w'/(2h) + 0.94

Zo It +1 + III 27.c h +0 <941

1h 7r -- 12hfr h

I + t Ih s s I e In o s - e t(2.9c)

for 2<

where a, is in dB/cm and

T) = U) + .Aw

AW= (n ,, +1). for 2

[e2h N w I
Au' = (n- +1 for h >

and R, is the surface skin resistance in ohms given by

, f~f u (2.9d)
a~c

where p is the conductor permeability and ac is the conductor conduct ivi ty. Anl

expression for dielectric loss ad has been derived by Hammerstad and Bekkadal

[Ref. 26] as

ad = 27.3 fr((cff - 1)tall 6 dB/Ag (2.10)
(Cff((r - 1)
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where tan b is the lcss tangent of the substrate. For lossy semiconductor substrates.

the general attenuation and phase constants for the microstrip are derived from an

analysis of a transmission line section modeled by series and shunt resistances to

represent the conductor and dielectric loss mechanisms [Ref. 27] as

V/( + 4) (i02o + 4a,) - !30 + 4 Ocod2  
0 2 (2.11a)

0 + 4a) (3o2 + 4o) + #/2 - 4 Ocod
32 C +4 0 _4,Od.(2.11 b)

2

C. PICOSECOND PULSE PROPAGATION

One of the research objectives is to accurately characterize picosecond pulses

propagating on microwaye IC interconnections. Researchers have studied the ef-

fects of dispersion on picosecond pulses by performing computer sinmlations in the

frequency domain [Refs. 28,29]. An input time-domain signal v(t, 0) is transformed

using Fast Fourier transform (FFT) techniques to produce the input frequency spec-

trum. F{v(,O) }. A frequency-dependent propagation function - '(,f) acts upon each

spectral component as

F~v(t.0)}6Y(f) I

where the propagation function is -,(f)= o(f) + j3(f) and I is the propagation

distance along the microstrip. The distorted temporal pulse is determined using an

inverse Fourier transform as

The approach taken in this work is similar, but the exponential propagation term

is replaced by a discrete parametric model of the microstrip section. Specifically,

the phase term 0(f) is modeled by a digital transfer function H(z), while a discrete

loss multiplier describes the attenuation constant a(f) of the microstrip line section

at a maximum frequency of interest. Chapter III will introduce the parametric

models for several microstrip transmission line structures.
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D. DERIVATION OF EQUIVALENT CIRCUIT MODELS

A microstrip transmission line is approximated by cascading several electrically

short sections [Ref. 30]. A single section of microstrip line having a characteristic

impedance Zo and terminated in a matched load impedance is shown in Figure

2.2a. The load impedance Z(.+,), is the equivalent input impedance of the (n + 1)-

th section. The normalized input impedance to the n-th section is derived [Ref. 30]

as
Zn _ Z+ 1 cosh(-yl) + Zo sinh(-yl)
Z0  Zn+l sinh(-yl) + Z0 cosh(yl)

where the propagation function, -f = a + j, describes the attenuation a, and phase

shift # of the n-th section. Equation (2.12) is rewritten as

Z .1 + tanh(yl)
- th Z+l (2.13)Z0 I + Zn1tanh (y/)'

The hyperbolic function, tanh(-,l), is expanded to

tanh(-1) = tanh(al) + j tan(31)
I + j tanh(rl) tan(0l) (2.14)

Substituting (2.14) into (2.13) yields

Zn i + tanh(a/)
Zn- = TO-) (2.15a)
Zo 1 + (Z,+' )'tanh(al)

where
Zn+1 + j tan(0l)

Zo Zo (2.15b)
(Zn+i) + j(Z n+i )taG

1 J) tan( / )

A physical interpretation of (2.15) is illustrated in Figure 2.2b. The original n-

th section is equivalent to three sub-sections of the same characteristic impedance

cascaded together. The first and third sub-sections provides attenuation but no

14



phase shift, and are modeled by purely resistive attenuator pads. The total loss of

the microstrip line is divided equally between each r-attenuator. The center sub-

section has a pure imaginary propagation function and no attenuation. This type

of reactive network corresponds to a lossless transmission line having a phase shift

equal to the original section.

In classical filter theory the reactive lossless, two-port network has been de-

scribed as a constant-k lowpass filter. Two variations of this filter network will now

be presented. A reactive r-network is used to derive the lumped-pararneter

zoZ0 I

0 0c
Vsz

°  z o-

z z
0 n Z

n+n

(a)

R2 vvzvI R

1 2Z 2  I R1 R1Zn+l

R1 R

(b)

Figure 2.2 Microstrip line section equivalent circuit

equivalent circuit model and a reactive T-network is used to derive a lumped-

distributed equivalent circuit model.
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1. Lumped-Parameter Equivalent Reactive fl-Network

The lossless reactive network of Figure 2.2b is modeled by an equivalent

7r-network. The complex impedances are

Z 1  zo (2.16a)

j tan (if2

Z2= jZo sin(fil). (2.16b)

Equations (2.16a) and (2.16b) represent a capacitive and an inductive lumped re-

active impedance, respectively. Solving for the susceptive (Bc) and reactive (XL)

lumped elements yields

BC = -0tan 2 (2.17a)

XL = Zo sin(d). (2.17b)

Assuming a very short section lcagth (1 << Ag/ 4 ), the equivalent shunt capacitance

and series inductance can be approximated as follows [Ref. 18]

1
C r - (2.1 8a)

2Z 0 f Ag

L, zo 1 (2.18b)
A g f

The guide wavelength Ag is expressed in terms of the frequency-dependent microstrip

permittivity ff(f) as

Ag = (2.19)
f /ff(f)

where f is the highest frequency of interest of the propagating signal [Ref. 18:

p. 70]. The resultant lumped-parameter equivalent circuit for the microstrip line

section is shown in Figure 2.3.
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2. Lumped-Distributed Equivalent Reactive T-Network

The reactive ir-network of Figure 2.3 can be replaced by an equivalent T-

network as shown in Figure 2.4a. The series inductive and the shunt capacitive

impedances are then given by

Z, = jZo tan (0) (2.20a)
Zo

Z2 = j (2.20b)

Solving for the reactive and susceptive lumped elements of Figure 2.4 yields

XL = 2Zo tan ( ) (2.21a)

BC = I' sin 2- 1 (2.21b)

R 2 Lt C R2

-z U (Zn+
I

I l

z (z )
n n+1

Figure 2.3 Lumped-parameter equivalent circuit model

Assuming a section length that is less than a quarter wavelength, the lumped ele-

ments can be approximated as follows [Ref. 18]:
Zol
LT ;(2.22a)
f Ag

CT Zof I- (2.22b)
Z0 f Ag

Next an equivalency between the series lumped inductance (LT) and a lossless

transmissiom line section is derived. Referring to Figure 2.4b. we define equivalent

17



impedances, Zeq, with respect to the shunt capacitance CT. The load impedance

ZL is equivalent to the characteristic impedance Z0 . Therefore, the equivalent

impedance yields

Zeq = ZL + jwLT. (2.23a)

Using (2.15), the n-th section input impedance for a lossless (a = 0), high impedance

transmission-line section is

Zn - Z.+i + jZo tan(/0/) (2.23b)
1 +±Jn-+1 tan(01l)

Assuming 1LlI K< 1, the input impedance can be approximated by

Zn : Z. 1 + jZ(Ol). (2.23c)

Equation (2.23c) is now equated to the equivalent input impedance Zeq.

R 2  L T  LT R 2

R1  R1  R z

/

Zn (Zn+1)

Figure 2.4(a) Equivalent T-network equivalent circuit

Assuming a small section length and taking the imaginary terms in (2.23a) and

(2.23c) into account yields

LT ' Zo ( -) - Zo td (2.24)

where td is the propagation delay through the lossless transmission-line section.
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Each lumped inductance LT can now be replaced by an equivalent distributed trans-

mission line as shown in Figure 2.5.

I LT LT I

0T 0

zZ Z Z L

zL eq eq L

Figure 2.4(b) Equivalent T-network equivalent circuit (continued)

RI I R2

SC T Z0 R Zo

0 0 0
14-- t - - 1 d---0t

z z0 0

Figure 2.5 Lumped-distributed equivalent circuit model

The accuracy of the circuit model is dependent on the microstrip line length

1, and the maximum frequency bandwidth wmaz of the propagating transient sig-

nal. The equivalent lumped-distributed circuit presented in this section is valid for

electrically short, high impedance transmission lines which satisfy the conditions

td < 1/Wmax and 11311 < 1.
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E. ESTIMATION OF CHARACTERISTIC IMPEDANCE

Picosecond pulses propagating on the IC interconnections are described as finite

energy signals and their maximum cumulative energy is defined by [Ref. 31: p. 35]

+00
Emaxi = Z Iv+[l, n]I 2  (2.25)

n=-00

where v+[1, n] is the sampled right-propagating voltage measured at the l-th length

along the microstrip. To discuss pulse propagation on a lossy microstrip line, we first

obtain the transmission-line equations by applying Kirchoff's voltage and current

laws to the alternative distributed equivalent circuit as shown in Figure 2.6. When

low-loss, high frequency conditions are assumed, the general solution for the voltage

and current at the l-th length is solved as [Ref. 32: pp. 437-445]

v(l' t) = v+ t 1 -t (2.26a)

W~,t) = To v +  t -+ (2.26b)

where the superscripts (+) and (-) denote the right- and left-propagating voltage

waves, respectively. When we compare these equations, the right-propagating cur-

rent and voltage are given by

i+(l, t) = 1ov+ (t - ) (2.27a)

v+(tt) = v+ (t - I) (2.27b)

where vg is the group velocity. The instantaneous power associated with the right-

propagating wave is

p+ (1,t) =. r(1, t) i+ (1,t) (2.28a)

S(Zo (2.28b)
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Since the pulse rise time is very fast (< 10 ps), the derivative of the cumulative

energy curve (i.e. the instantaneous power) is approximately constant. Therefore,

the maximum power of a causal, transient pulse is given by

1 N

Pm. 1 Iv+[1, n] 2  (2.29)
n=0

where IV is the number of voltage sample values. By equating (2.28b) and (2.29),

we have the characteristic impedance given by

Iv+[l, n]peak
2

Z0 = (2 30)
Pmax

where v+ [1, nhpeak is the peak amplitude voltage sample of the propagating pulse.

i(f(t) .() L(A c Ut) ( +Att)

v~t~) (]A{) C(A') v(U +A,&[t)

T
L (A0)

(Lumped-elements expressed as per unit length)

Figure 2.6 Lossy transmission line equivalent circuit (After Ref. 32)

In summary. distributed-lumped equivalent circuit models were derived for an

electrically short length of lossy microstrip transmission line. The lumped circuit

elements are evaluated at the maximum frequency of a bandlimited input signal.

The validity of the equivalent circuit models are controlled by the physical length

of the microstrip line. Therefore, we are interested in picosecond pulse widths

and specific IC interconnections lengths which satisfy the lumped-element modeling

criterion. Chapter III will use the proposed circuit models as a foundation to derive

the parametric models for an IC interconnection.

21



11. PARAMETRIC MODELING

The rationale for using a parametric modeling approach to approximate a mi-

crostrip transmission line is intimately related to the identification of the physical

microstrip properties. This chapter will present both autoregressive moving-average

(ARMA) and autoregressive (AR) models of the equivalent reactive networks pre-

viously derived for the IC interconnection. A second objective is to show how

the model parameters are related to the effective microstrip permittivity QEf the

characteristic impedance Z0, and the propagation group delay Tg of the microstrip

structul 2.

A. RATIONAL TRANSFER FUNCTION MODELS

1. ARMA Parametric Model

In this model, the discrete-time input sequence x[n], and the microstrip sec-

tion output sequence y[n], are related by the linear difference equation [Ref. 31)

q py~]= 1: bkX[n - k] - 1:akZ - k]. (3.1)
k=O k=l

where bk are the moving-average (MA) model parameters and ak are the autore-

gressive (AR) model parameters. The flowgraph representation of (3.1) is shown in

Figure 3.1. This difference equation describes an ARMA model of order (p, q) and

the corresponding system transfer function is

q 
kL bkz -  B

HARMA(Z) k=O B(z)(3.2)
PH- A(z)

k1- akz-k

k=2

22



2. AR Parametric Model

When all the bk coefficients, except bo = 1, are zero in the ARMA model,

equation (3.1) reduces to

P

y[n] = x[n] - Z aky[n - k] (3.3)
k=1

and the corresponding AR or all-pole transfer funct,on is given by [Ref. 33: p.111]
1 _ 1

HAR(z) = k - (3.4)
1 - akz

k=1

INPUT SEQUENCE - -
x [n ] '00 0 1

I X( b-4 X bq X

OUTPUT SEQUENCE
yrn]

Figure 3.1 Realization of the ARMA/AR parametric models

In Figure 3.1, a flowgraph realization of this model is shown by the weighted feed-

back signal path.
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B. IC INTERCONNECTION PARAMETRIC MODELS

1. Derivation of the ARMA Model

The network transmission function for the reactive 7r-network of Figure 2.3

yields

= 2W2 + W2 (3.5)H () = 2+ 2(wos +0 o

where w0 = (LC,)-°'5 and 4 = (2ZoC, wo) - 1 . This network function describes a

bandlimited frequency response for a second-order lowpass filter. Here we use the

impulse invariant design method to transform (3.5) into a digital transfer function

[Ref. 34]. Equation (3.5) can be expressed in the partial-fraction expansion form as

2 Ck (3.6)Ys - dk
k .l

where

C 1,2 = Lo e+7/2

'2f(2

and the complex poles are

di,2 = -(wO ± jWO Vl - 2.

Taking the inverse Laplace transform, the corresponding unit impulse response be-
comes

2

h(t) = Ckedkt for t > 0 (3.7a)
k=1

and its discrete representation is

2

h [n] : ZCk edT (3.7b)
k=1

where T is the sampling interval.
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It should be observed that for high sampling rates (say, T = 1.25 ps) the digital

filter has an extremely high gain. For this reason (3.7b) is expressed as
2

h[n] = T ZCedknT" (3.8)
k=1

The digital transfer function is then obtained by taking the z-transform of (3.8) as:

2( T Ck
HARMA(Z) = E 1 - ed.Tz1i (3.9)

After rearranging the terms and simplifying, we have

b?1z -1

HARMA(Z) - 1 -2 az - 
- (3.10)

where the filter coefficients, also called the ARMA model parameters, are:

woT -CLo T 7 -r: --
b = w 1 e  os ( wO/I - (2 T) (3.11a)

a I= 2e -Cwo Tcos (wo VYZ7-- IT) (3.11b)

a2 = - e-2(wo T. (3.11c)

The filter coefficient bi is directly linked to the AR filter coefficients a, and a2.

Given a2 and the sampling period T, (3.11c) yields (wG. Substituting this result

into (3.11b), a value for wo V/1 - can be found. Finally, specific values for w0 and

C are easily determined and the numerator filter coefficient b, can be calculated.

Therefore, the MA model parameter in (3.10) can be obtained from the AR model

parameter estimates. In Chapter IV we will take advantage of this computational

result in our discussion of parameter estimation algorithms.
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2. Derivation of the AR Model

The AR parametric model is derived from the lumped-distributed equivalent

circuit model of Figure 2.5. A network reflection function F(s) is solved as [Ref. 35]

r Y() = Yo(S) - YL(S) (3.12)

Yo(S) + YL(S)

where the equivalent admittances are given by

1Yo(S) =

YL() = Yc(s) + Yo(S)
1

=SCT+.zo

After simpilfying and rearranging (3.12), we have

F (S) = - (3.13)1~ (+S ) Z0

The network transmission function is then defined as

T(s) = 1 + r(s). (3.14)

By substituting (3.13) into (3.14), a first-order, single time constant transfer func-

tion is achieved:

T(s) =(3.15)
s+6

where 6 2 Taking the inverse Laplace transform yields the unit impulse

response

hAR(t) = 6e- 6 t for t > 0. (3.16)

The z-transform of the corresponding normalized sampled transmission impulse

response is given by

HAR(Z) for IzI > le-Tni. (3.17)
B -1-e-T z
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where T, is the normalized sampling interval. In order to satisfy the Nyquist sam-

pling criterion, the sampling intervals of the normalized and denormalized trans-

mission responses must be related by [Ref. 36: pp. 341-342]

T,, =,6T. (3.18)

To adjust the dc gain of (3.17) we can multiply the digital transfer function HAR(Z)

by the ratio of (3.15) evaluated at s = 0 to (3.17) evaluated at z = 1 ( which is the

dc value). Thus, the AR transfer function, after being adjusted for the dc gain,

becomes

HAR(z) - T n  for Jzi > I[-Tni. (3.19)
1 -Tn Z1

3. Effective Microstrip Permittivity

The effective microstrip permittivity is directly related to the ARMA model

parameter a2, the sampling interval T, and the physical microstrip length 1. Using

(3.11c), the propagation group delay is solved as [Ref. 18: p. 3]

(wO = -2 (3.20a)
In a2

= (in (3.20b)

where the group delay of the reactive network is Tg = (2L,,CY,)-° '5 . The propagation

group delay can also be related to the effective microstrip permittivity by [Ref. 18:

p. 62]

.= 7 (3.21)

Substituting (3.21) into (3.20b) yields the effective microstrip permittivity

[ 2T c 2(3.22)

(Ina2) (I)]
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eV¢ now derive an expression for the effective microstrip permittivity from the

AR model parameter. From (3.19), we recognize the first-order AR filter coefficient

is

a = e- Tn. (3.23)

The effective microstrip permittivity is now solved in terms of this AR model pa-

rameter and the propagation group delay:

T (3.24a)
in a

2Ta - (lnTa) (I) (3.24b)

Substituting (3.21) into (3.24b) yields the effective microstrip permittivity

= r 2 Tc) (3.25)

4. Modeling Propagation Loss

Both the ARMA and AR digital transfer functions were derived from a loss-

less equivalent circuit. In order to properly characterize a picosecond pulse prop-

agating on the IC interconnection, we must include a loss mechanism in the para-

metric models. The total propagation loss (in dB) experienced by a high-speed

transient pulse will be defined by [Ref. 37: p. 7]

LdB = 101og 0 [e- 2at 11 (3.26)

where at is the total attenuation factor (in nepers/m) and 1 is the propagation

distance (in meters) along the microstrip. The attenuation factor can be solved by

combining the theoretical conductor and dielectric attenuation factors from (2.8b)

and (2.10), respectively.

28



In summary, this chapter has presented ARMA and AR parametric models for a

lossy dispersive microstrip transmission line. Analytical expressions were derived to

relate the effective microstrip permittivity to the model parameters at a maximum

frequency of interest. We have assumed no discontinuities on the IC interconnection

because of impedance matching. In Chapter IV, we will extend the equivalent circuit

and paranetriz, models for a cascaded microstrip step discontinuity. Chapter V will

present several parameter estimation algorithms which will be used to approximate

the effective microstrip permittivity of the IC interconnection.
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IV. MICROSTRIP DISCONTINUITY MODELING

Numerous approaches have been made to use equivalent circuits tc, model the
microstrip discontinuities. Whinnery and Jamieson [Ref. 38] used Hahn's method

to match electromagnetic-wave solutions across discontinuities, Oliner [Ref. 39]

used Babinet's principle to describe stripline discontinuities, and Menzel and Wolff

[Ref. 40] calculated the frequency-dependent properties of various microstrip dis-

continuities.

A discrete parametric method is presented in this chapter to model the reflec-
tion and transmission characteristics of a cascaded microstrip step discontinuity,

assuming the quasi-TEM mode of propagation. Equivalent circuits are developed

using the shunt capacitance circuit model presented by Gupta and Gopinath [Ref.

41]. Both reflection and transmission network functions are derived from the circuit

models. ARMA and AR digital filters are described using discrete transformations

of the respective network functions. This method has the advantage that complex

microstrip circuits containing discontinuities can now be modeled by linear differ-

ence equations.

A. MICROSTRIP DISCONTINUITY EQUIVALENT CIRCUITS

1. Single Step Discontinuity

A single microstrip step discontinuity exists at the junction of two microstrip

lines having different widths and characteristic impedances. This type of discon-

tinuity is seen in the design of microwave matching transformers, couplers, filters

and transitions [Ref. 41].
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The geometric configuration of the step discontinuity and its equivalent cir-

cuit are shown in Figure 4.1.

D

IL

w, W2 Cd 7 .

I D D

Figure 4.1 Microstrip step discontinuity and the equivalent circuit

The effect of the total discontinuity inductance (Ld) may be separated into L1 and

L2 as

LI = L Ld (H) (4.1a)
Lwi + Lw2

L2 - L 2  Ld (H) (4.1b)
LI 1 + L. 2

where Lwj and Lw2 are the inductances per unit length for the microstrip of width

W 1 and W2 given by

Lwm= , m = 1,2 (H/m) (4.2)
C

where Zom is the characteristic impedance and ceffm is effective permittivity of the

width Win, and c = 3 x 108 m/s. The closed-form expressions for Cd and Ld have

been derived from curve fitting numerical results. These expressions are [Ref. 41

Cd =101lg WIC_ = (2.33) - 12.6 log c - 3.17 (pF/m)

(for e, < 10; 1.5 < W/W 2 :5 3.5) (4.3a)
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and

VV2  WW

where C, is the relative dielectric constant and h is the substrate thickness. Equation

(4.3a) yields a percentage of error less than 10 percent and equation (4.3b) has an

error less than 5 percent for W1/W 2 < 5 and W2 /h = 1.0.

2. Cascaded Step Discontinuity

The cascaded microstrip step discontinuity is formed by combining two sin-

gle step discontinuities as shown in Figure 4.2(a). Short (< Ag/4) lengths of high

impedance (narrow width) microstrip line will behave predominantly as a series in-

ductance (L,). Whereas, a very short < Ag/4 length of low impedance (wide width)

line will act predominantly as a shunt capacitance (C,) [Ref. 18: pp. 212-216].

End-inductances (L,) are also introduced in the low impedance line as its length

approaches a quarter-wavelength. The predominant series inductive reactance of

the line of length 12 is

= Z02 sinh ( "g2) (4.4)

Assuming the small-angle approximation such that (27rI 2/Ag2 <Kir/4), equation (4.4)

is approximated as

L, -Z 2 12 
(4.5)

fAg2

where the frequency-dependent microstrip wavelength is
c

Ag2 =

eff MUY
When high impedance widths (W2) are equal, the equivalent circuit can be described

by Figure 4.2(b).

32



The predominant shunt capacitive suspectance of the line of length 11 is

1 12 r 11
wCs = I sinh 2r 1 (4.6)

W2 Zo02 zo Zow
Z 1__ 1

(a)

Le L e
...... S 1 L2 L2 I " -  TEL2 I s

L

0 0 -0/o

STEP DISCONTINUITY STEP DISCONTINUITY

(b)
Figure 4.2 Cascaded Step Discontinuity and the Equivalent Circuit

and for 24r1 /Agr < 7r/4, the shunt capacitance is approximated by

11
C, f Zo1 Ag" (4.7)

Similarly, the end-inductances are obtained as

L, Z 1 (4.8)
f AgI
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The relatively low characteristic impedance Z01 will cause a very small inductive

effect (LI) at each step discontinuity. Therefore, at frequencies up to a few giga-

hertz, the inductance L1 in the equivalent circuit can be neglected [Ref.18: p. 217].

A modified equivalent circuit is formed by converting the low impedance equivalent

T-network into a ?r-network as shown in Figure 4.3(a). The shunt capacitances

Cs/2 and the discontinuity capacitances Cd are added to form C,. Also, each step

discontinuity inductance L 2 is combined with their adjacent series inductance L, to

form a new inductance Lh. Assuming very short microstrip lengths and from (2.24),

the new inductance can be approximated as a lossless, distributed transmission line

section having a characteristic impedance of Z 02 and a time delay approximated by

t d . (4.9)Z02

Figures 4.3(b) and 4.3(c) show the complete lumped-distributed equivalent circuits

for the cascaded microstrip step discontinuity.

L S L2 Le L2 s

)C d  S CS C
d d

I I

(a)

Lh Le Lh

(b)

Figure 4.3 Modified cascaded step discontinuity equivalent circuit
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Zo 2 CR C I Zo 2
T n

0 00 0

td  14 t--- d

(c)

Figure 4.3 Modified cascaded step discontinuity equivalent circuit (continued)

3. Capacitive Shunt Equivalent Circuit Model

An alternative equivalent circuit is presented that is designed to yield an "all-

pole" transmission network function. The equivalent 7r-network of Figure 4.3(b) is

converted into a T-network and the series inductances are combined as shown in

Figure 4.4(a). The combined inductances are approximated as lossless, distributed

transmission line sections having time delays of
• t = (2Lh + L,) (.0

td - 2Z0 2

The shunt capacitance equivalent circuit model is shown in Figure 4.4(b) where td

represents the propagation delay time.

L L

h 2 2hL _L e

I ,.T..2 Cn

a- 0I I

(a)

Figure 4.4 Capacitive shunt equivalent circuit
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Z0 2 I2 C Z0 2I I T i

(b)

Figure 4.4 Capacitive shunt equivalent circuit (continued)

4. Modeling Propagation Loss

Chapter II presented a resistive r-network attenuator to model the total

propagation loss in a single microstrip line section. This scheme will again be used

for the equivalent circuits of Figures 4.3(c) and 4.4(b). Figure 4.5 illustrates how the

half-symmetrical losses of the cascaded microstrip step discontinuity are modeled.

Using (2.8b) and (2.10), a total propagation loss can be obtained for the micro .rip.

R2 R 2

R 1Lossless Reactive R

Equivalent Network I 1

t........ . .. I-

Figure 4.5 Lossy cascaded microstrip step equivalent circuit

Next, we equally represent the total loss by two identical resistive 7r-networks as

shown in Figure 4.5.
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B. PARAMETRIC MODELS FOR MICROSTRIP DISCONTINUITIES

1. Reflection and Transmission Network Functions

The characteristic impedance mismatch caused by the abrupt change in the

width dimension will produce both reflected and transmitted traveling voltage wave-

forms. The objective of this section is to derive reflection and transmission network

functions which accurately characterize the cascaded microstrip step discontinuity

propagation effects. Initially, a third-order transmission network function is derived

from the equivalent circuit shown in Figure 4.3(c). This network function is trans-

formed into an ARMA model. Next, a first-order approximation is solved from the

single capacitive shunt equivalent circuit of Figure 4.4(b). This single-impedance,

single-capacitor network function is then transformed into an AR model.

a. Third-Order Transmission Function

The reflection network function for the ir-network of Figure 4.3(c), ex-

pressed in the complex s-domain, is defined as [Ref. 38: p.21 7]

r(s) = Y02(s) - YL(S) (411)=Y02(S) + YL(s)

where the admittances 1b2(s) and YL(s) are obtained as indicated in Figure 4.6.

Le

z0 02

Y02 YL

Figure 4.6 Characteristic and load adhnittances
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Substituting for 1'02(s) and YL(s) in (4.11) and manipulating the resultant expression

yields

(CL Z'o )Ss + (2Cr Z2 + L,)s

3 (s) = (C2LZ 2 )S 3 + (2CrLeZo2)S 2 + (2CTZ022 + Le)s + 2Z02 (4.12)

where the subscript (3) denotes a third-order network function. The transmission

function is defined as [Ref. 38: p. 2171

T3(s) = 1 + r 3(s). (4.13)

Substituting (4.12) into (4.13) yields

T3 (S) 2  s 2  C 2  (C Z 2  (4.14)
S2 -Z (2GCZ 2 +)

T s)02" 
L e2

b. First-Order Reflection and Transmission Functions

A first-order approximation of the reflection network function is deter-

mined by solving (4.11) for the equivalent circuit of Figure 4.4(b). Evaluating

(4.11) yields

r(s) = (CZ02 ) (4.15a)1+ S (C Z02.)

and the transmission network function becomes

1
TI (S) = 1 (4.15b)I + s(CZo 2 ) (4.15)

2. ARMA/AR Models for the Cascaded Step Discontinuity

a. Autoregressive Moving-Average Parametric Model

The first step is to perform a partial fraction expansion of equation (4.14).

The s-domain expansion is generalized as

K1  K2 e.'8  K 2 e -' °

T3(s) ( ) + + (4.16)
(s-d ) (s-d2)
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where the three poles are:

di =
C, Z02

d2 = -Or + j,.;

d2 = -or - jw.

Using the impulse-invariant design method, a digital filter transfer function is ob-

tained from (4.16) as

T(z) = 1 - e- dj Tzi

2K 2 cos() - 2K 2e- o Tz-1 cos(O - w T) (4.17)

1 - 2e-o T COS(w T)z-1 + e-dl Tz-2.

After considerable complex algebra the generalized ARMA transfer function be-

comes

T3 (Z) bo + b1z- I + b2 z- 2

1 - az 1 - a2Z- 2 - a3z 3  (4.1)

where

b0 = K 1 + 2K 2 cos(O)

bi = -2 [K2 e- dT cos(O)+ e- ° T (K cos(wT) + K 2 cos(O - wT))]

b= e-diT [K1 + 2K 2 e-UT cos (0 - wT)]

a, = 2e- T cos(wT) + e - dlT

a2 = - [2e - ( +dl)T cos(wT) + e-dlT

a 3 = e
- 2d T

The most significant filter coefficient a3 identifies the time constant (Zo2 C,,) of the

network. In terms of the sampling interval T, this filter co(fficient is

a = exp CZ2 (4.19)
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A reflection digital transfer function is obtained from the bilinear transformation of

equation (4.15a) as [Ref. 34: pp.206-211]

rF(z) =17(s)IS= _
- z- 1

2C1 Z02(l - z - 1)
(T + 2C 1 Zo2 ) + (T - 2C Zo2)z -l

r b(z - 1) (4.20a)
1 + alz - 1

and the transmission transfer function is evaluated as

T(1 + z - 1 )
Ti(z) = (T + 2C1 Z0 2 ) + (T - 2CZo2 ) z-1

T -(z) = bo(1 + z-1) (4.20b)

1 + alz - 1

which is a 1st-order ARMA model. The parameters are defined as follows:

b° = ( T+2- zO '

b'o -- ( ,2c r2---z °

and (;- 2CZ02)a T + 2CrZo2

b. Autoregressive Parametric Model

A first-order AR digital filter of the transmission network function is ob-

tained using the matched z-transform design method. The single pole of equation

(4.15b) is directly related to the pole of the AR transfer function [Ref. 42: pp.

666-667] as (T
TAR(z) ( T ) (4.21)

1-e CZo2 z 1
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c. Realization of the Lossy Parametric Model

The proposed ARMA/AR reflection and transmission transfer functions

were derived from lossless reactive networks. The propagation losses which are as-

sociated with both the low and high impedance microstrip lines must be included in

the parametric models. These losses are represented as constant "loss" multipliers.

The value of the multiplier is defined by

L = exp [-(at 1)] (4.22)

where I represents the microstrip line length and at is the total attenuation factor

in nepers per unit length. Figure 4.7 describes the lossy parametric model for the

cascaded microstrip step discontinuity.

3. Parametric Models for Multiple Discontinuities

In this section a parametric model is developed for a multi-section microstrip

structure described by a combination of cascaded step discontinuities. Wave prop-

agation in the multi-section microstrip structure exhibits several of the physical

characteristics of the multi-layered earth model developed in geophysical signal

processing [Ref. 35: pp. 306-315]. Similarly, two different propagating waves exist

within each microstrip section, an incident (right-propagating) wave and a reflected

(left-propagating) wave. Unlike the lossless multi-layered earth model, propagating

signals in microstrip are influenced by frequency-dependent losses and dispersion.

Energy conservation is established across each discontinuity boundary. However,

energy loss will occur between adjacent discontinuities. A linear time-im-ariant

system is used to describe each discontinuity boundary. At each discontinuity an

incident signal is partially reflected and partially transmitted into the next section.

A proportional response of each component is given by the concurrent convolution

of the incident signal with both a reflected and a transmitted impulse response of

the linear system. A lattice-like system flowgraph relating right-propagating v+(z),
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and left-propagating v- (z) signals at the m-th discontinuity boundary is shown in

Figure 4.8. The reflection transfer function Fm(z)

Z'
1

a

REFLECTED RESPONSE

-bbL

Xi[nl o -]_
INCIDENT SIGNAL

I; I

TRANSMITED RESPONSE

Figure 4.7 1st-order ARMA model realization of the cascaded step discontinuity

and the transmission transfer function Tmn(z) are the 1st-order ARMA models of

(4.20a) and (4.20b), respectively. The overall parametric model for multiple dis-

continuities may then be constructed by using the lattice as building blocks, and

interconnecting the lattice sections with lossy delay lines. Figure 4.9 describes two

adjacent discontinuity sections of a multi-section structure. Here an incident voltage
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sequence v$)'[n] initially enters a lossy delay line Dn(z), and a reflected voltage

sequence v(-)'[n] is the resultant outcome after multiple reflections from the other

discontinuities.

V()()T(z) I Zm MM+1

(- ~-___I__ V ()Z

Figure 4.8 Discontinuity lattice configuration

The flowgraph of the model shows an interaction of right- and left-propagating

waves through the multi-section structure. We will characterize the lossy delay line

for an m-th section by the transfer function

Dm(z) = e-[m) / m] z-T,, (4.23)

where Or4 m) is the m-th section attenuation factor, 1m the section length, and Tm is

the discrete-time propagation delay per section.

In summary, both equivalent circuit and ARMA/AR parametric models were

presented for a cascaded microstrip step discontinuity. Losses were included in

the circuit model by resistive r-networks. Corresponding lossless reflection and

transmission network functions were derived from the reactive networks. Next,
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discrete transformations were performed on the network functions to derive the

ARMA/AR digital transfer functions. Multiple microstrip step discontinuities were

modeled by cascading the lossy equivalent circuit of a single step discontinuity.

A lattice-like 1st-order ARMA model was introduced to describe a multi-section

microstrip structure. In Chapter VI, transient analysis simulations of the equivalent

circuit models will be compared with experimental measurements to validate

(+) v (+) (Z)(+)

IIn

jn~z i +1 ()m +2

Figure 4.9 Multi-section lattice model

the accuracy of the circuit models. In the next chapter, we will develop several pa-

rameter estimation algorithms, and introduce new system identification techniques

for multi-section microstrip structures.
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V. PARAMETER ESTIMATION ALGORITHMS

The parameter estimation algorithms presented are based upon deterministic

and stochastic methods. Figure 5.1 describes an unknown system to be identified.

The observable input and output signals can be either deterministic or stochastic.

The ARMA and/or AR model parameters of the unknown system are determined by

the parameter estimation algorithms. Additionally, simulation results are presented

to study the performance of the algorithms.

INPUT SYSTEM TO BE OUTPUT
IDENTIFIED

MEASURABLE ALGORITHM MEASURABLE
INPUT OUTPUT

SYSTEM MODEL

Figure 5.1 Block diagram representation of the p, uneter estimation problem

The deterministic methods to be presented are the weighted least squares (WLS)

algorithm, the network function approximation method, and the Schur algorithm.

The WLS algorithm is a method for finding the filter coefficients of a p-th order

recursive digital filter, which gives an optimum least squares approximation to a

known sample impulse response. The network function method approximates an

s-domain network function from the unit step response characteristics, such as rise

and delay times, of a propagating pulse. Finally, the Schur algorithm estimates
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the AR model parameters from a given sample impulse response. Our emphasis

will focus on the deterministic methods because avaliable microwave measurement

techniques have deterministic excitation sources.

In the discussion of the stochastic methods we assume that a nearly white

wideband microwave noise source excites the microstrip structure. When the noise

source and the output random data are both available for signal processing, an

ARMA parameter estimation algorithm based on a generalized Mullis-Roberts (M-

R) criterion is used [Ref. 15]. However, if the input noise source cannot be measured,

an estimate of the driving source can be obtained from the output process. This

restriction in observable data precludes the direct application of the general estima-

tors. Therefore, a suboptimal two-stage least squares ARMA estimation algorithm

will be presented to solve this problem.

In Chapter IV, we presented a lattice parametric model for the multi-section

microstrip discontinuity. New algorithms will now be introduced that will estimate

the ARMA/AR parameters for this model using reflected and transmitted time-

domain measurements.

A. DETERMINISTIC PARAMETER ESTIMATION

1. Weigthed Least Squares (WLS) Algorithm

a. WLS Algorithm Derivation

Evans and Fischl [Ref. 43] presented a computational algorithm for es-

timating the coefficients of a pth-order ARMA digital filter whose unit impulse

respou, e best approximates, in a minimum mean-square error sense, a prescribed

impulse response of finite length. Here we derive a slightly modified version of their

original least squares solution to estimate the ARMA parameters.

The transfer function HARMA(Z) of (3.2) can be expressed in terms of samples

of the impulse response

HARMA(Z) - ho + hlz - 1 + h2 z - 2 + .... (5.1)
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The first m samples of the estimated impulse response forms the m-vector

h = h1  j(5.2)

and the m samples of the prescribed impulse response is

h h1  (5.3)

L h,-1J

The error vector is defined by

e=-h-. (5.4)

By long division of (3.2), we can relate the AR and MA parameters (a, b) to the

estimated impulse response h_(a, b) as

(5.5a)
-1 =- 1 [R]

where
Fo 1aol

b= and a= (5.5b)

ho 0 ... 0 01

[hI 1 hi h ... 0 0(5)
[Hi]l (5.5c)

hp- hp-2 ...'o 0

hP -h 1  ... hi
[j21= hp+1  h ... h1  (5.5d)

m hm2 ... hm.piIj

A least squares solution can be determined by minimizing

II t (a, b) = e,(a, b)2 (5.6)
4 i7O
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with respect to the coefficients (a, b).

Burrus and Parks [Ref. 44] have proposed a linear-equation error vector in the

matrix formulation, given by

d(a) =[H2] a (5.7a)

where d1(a)
d2 (a) ]d(a) = a (5.7b)

dm-p(a)

The error vector e(a, b) of (5.4) is related to d(a) by rearranging (5.7a) as

d(a) = [B(a)]T h (5.8)

where the m x (m - p) matrix

ap 0 ... 0
ap-1 ap ... 0

B(a)= a0 a ... ap (5.9)

0 ao ... al

o 0 ... ao

We can substitute h of (5.4) into (5.8), and recognizing from the lower partition of

(5.5a) that

[B(a)]T h - 0, (5.10)

we have

d(a) = [B(a)]T e(a,b). (5.11)

An inverse relationship between the errors is formed using a transformation weight-

ing matrix [W(a)]. Hence, the minimization problem of (5.6) can now be expressed

as [Ref. 44]

min 11 f(a, b) = min [W(a)]d(a) 11 (5.12)
a,b a

where

[W(a)] = [B(a)][B(a)TB(a)]- '. (5.13)
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The computational algorithm begins with an initial estimate of 6(). Equation

(5.7a) can be partitioned as

= [-f I [X]] a (5.14)

where
h - ho...:: hi

hm-2 . .. hm-P-1.

-hP

f = : (5.16)

-hm-I

and the AR parameter vector

a2-

_ 2  (5.17)

The least squares solution of a yields

(O) = [XTX]- 1 XT f (5.18)

The initial estimate equally weights the error vector d(a). However, the error

formulation can be weighted differently depending upon the initial estimate. Then,

the weighted least squares solution at the i-th iteration is given by

(i) = XTw' (i-1))Tw (P-1)) x] x

[XTW ((i1))Tw (a(i - 1)) f] (5.19)
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where the weighting matrix [vv (('i) is in terms of the previous estimate a_'-uI

The iteration is continued until ii() ;- a('-'. Using the optimal estimate for _a, the

weighted error ew,(a, b) is calculated by

f. (a, b) = [W(f)) L(i) (5.20)

From (5.4), the estimate h(a, b) is given by

h(a, b) = h- ef(a, b). (5.21)

Finally, the numerator coefficient estimate vector b is calculated directly by

b=[HI] a. (5.22)

b. Simulation Results

The weighted least squares algorithm was implemented using a Fortran

program. Several reference models were estimated beginning with an ARMA order

(3,2), denoting AR order p = 3, and MA order q = 2. The transfer function is

0.5 - 0.4z - 1 + .89z 2
H(z) = 1 - 0.20z - 1 - 0.25z - 2 + 0.05z - 3  (5.23)

The actual reference model parameters and the WLS algorithm parameter estimates

are shown in Table 1. All results are obtained after one iteration of the algorithm

using 20 samples of the impulse response.

Table 1. WLS SIMULATION (3,2) MODEL RESULTS

Parameter Actual Estimated

AR: 0.2000 0.2000
0.2500 0.2500

-0.0500 -0.0500
MA: 0.5000 0.5000

-0.4000 -0.4000
0.8900 0.8899
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We next consider a second reference model with order (4,2) having transfer function

H(z) - 0.20z 1 + 0.2z - 1 - 0.99z - 2
1 - 0.20z - 1 + 0.62z 2 - 0.152z 3 + 0.3016z 4  (5.24)

and the obtained results are given in Table 2.

Table 2. WLS SIMULATION (4,2) MODEL RESULTS

Parameter Actual Estimated

AR: 0.2000 0.2002
-0.6200 -0.6197
0.1520 0.1529

-0.3016 -0.3014
MA: 1.0000 1.0000

0.2000 0.1998
-0.9900 -0.9902

The final example is a strictly AR model of order (4,0) having a transfer function

1 - 0.20z - 1 + 0.622z - 2 - 0.151z - 3 + 0.355z- 4  (5.25)

The actual and estimated AR parameters are listed in Table 3.

Table 3. WLS SIMULATION (4,0) MODEL RESULTS

Parameter Actual Estimated

AR: 0.2000 0.2004
-0.6220 -0.6221
0.1510 0.1513

-0.3550 -0.3551

The above examples demonstrate the estimation accuracy of the WLS algorithm

for (q < p) order models.

2. Network Function Approximation Method

The following method, introduced by Elmore [Ref. 45], can approximate

the normalized networ': function from the unit step response delay and rise times.

Assume that the microstrip section is excited by a unit step and that its step
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response v2 (t), has been normalized as v2fl(t). The microstrip group delay timc is

then defined as

I t V2n(t)dt 00

o = 0 t hn(t)dt (5.26)

J v2(t)dt 0
0

where v 2'(t) = hn(t) is the normalized impulse response. The rise time is defined

as

00 -1/2

Tr = v/2 f(t- rg) 2 hn(t)dt]

21/2

= \/2-7 f 2 hn(t)dt - 2 Tr. f t hn(t)dt + rg2 J hn(tQdtl
0 ~ 00

00 ]1/2

T, = t h. (t)dt- 7 (5.27)

Figure 5.2 describes a network voltage output response resulting from a unit step

input. The normalized network function is expressed as
o

Hn(s) = J hn(t)e-s'dt (5.28)

0

Expanding e- " in a power series in (5.28) yields

[h'1S 2 t2

H.(s) = h,()(1 - st + 2 .. )d,

0

f hn(t)dt - s t hn(t)dt + J2 h(t)dt ..

0 0 0

-1- Sg + (, + r 2) -"" (5.29)
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As shown in Figure 5.3, the microstrip trans-±ission line is described by
Al identical network sections iii cascade each with independent propagation delay

u (t) v C )

II
0.5 t

°_+
"2

Figure 5.2 A network N with its unit step response

times Tg, 9 2 ,... , 7gM, and rise times T,. , Tr2, ... , TrM . Then the overall normalized

network function is

M
Ha(s) =1 Hk(s),

k=1

fi [i ~ + ~(2k+ k) ]

M S 2 2 k 2 M 1
-sTgk + !j 2r -+Tk) + 2 E E Tgkgl . (5.30)

k=1 k-1 i=k+l
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Finally,

HI,(s) =1 - ' + + ... (5.31)
k=1 k=---=

where the total propagation group delay is

M

Tg = Ygk (5.32)
k=:l

and the overall rise time for M sections is
MT M2 = E T2k. (5.33)

k=1

o---- Hn I  Hn2 ,n m • n

Tr Tr2  TrM

Figure 5.3 Microstrip transmission line as M cascaded networks

Assume that the propagating pulse is the response of some networt ° to an unit step.

Evidently, the rise time (f the previous network(s) is T,,. Now the pulse continues

through an unknown network which has a rise time T,.. The resulting pulse then has

a total rise time 7'.2. From (5.33), the expected rise time of the unknown network

is given by

54



After estimating the network delay and rise times, the ARMA filter coeffi-

cients of equation (3.11) are solved from the polynomial coefficients of (5.29), while

the first-order AR filter coefficient is also related to rg and T, as follows:

a = exp 2 (5.35)
[2__r + 2

where T denotes the sampling interval.

3. Deterministic Schur Algorithm

The autocorrelation function (ACF) of the normalized impulse response of

equation (3.16) is computed as

R(r) = j h(t)h(t +r)dt, for r = 0,1, 2,..., N (5.36)

where r is the correlation lag. However, the sampled autocorrelation function will

give a discrete correlation vector as:

[R(O),R(1),R(2), ... ,R(N)] (5.37)

Next, the ACF data is applied to the Schur algorithm. The Schur algorithm is a

recursive algorithm that solves the AR model parameters (also called the partial

reflection coefficients) [Ref. 14]. The algorithm begins by forming a generator

matrix (GoT ) using the sampled autocorrelation vector as

GT= [R(O) Rl R2 ... R/N . (5.38)

Shifting the first column down yiel is

:1:0 R1 R 2 . R(N)I)] (5.39)
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The 1st-order model reflection coefficient is computed as the ratio of the (2,2) and

(2,1) terms of (5.39) as

ki = R( ) (5.40)

A new generator matrix is then formed, given by

Gr T e(k,)ff (5.41)

where

6(k1 ) 1 -k [ -' k1 ] (5.42)1i

Similarly, the 2nd-order model reflection coefficient is

k2 = R(2) - kjR(l)
R(0) - kiR(1) (5.43)

The algorithm repeats until the desired order reflection coefficient is obtained.

When the impulse response, h(t), describes a 1st-order AR transfer function, a sin-

gle reflection coefficient will result. From this reflection coefficient the time constant

of the impulse response is easily found. The computational efficiency is achieved by

iterating the autocorrelation vector through an Nth-order AR lattice structure. In

the next section, the Schur algorithm will be applied to an AR stochastic process.

B. STOCHASTIC PARAMETER ESTIMATION

The following algorithms are presented to estimate the ARMA/AR model pa-

rameters when the observable input/output signals axe stochastic processes. Assum-

ing a white noise process as the driving input, the system to be identified produces

an output process as shown in Figure 5.4. The efficiency of a particular estimation

algorithm is governed by the choice of model selected and its order. In practice, we

do not usually know a priori which model to choose. Once a model, either ARMA

or AR, has been chosen, we must specify the model order. In choosing a model for

the microstrip transmission line, we will select the ARMA/AR models proposed in

Chapter III.
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Autoregressive models are the most widely used models because the analysis

algorithms for extracting the model parameters are found by solving a set of linear

WITE NOISE
INPUTOUTPUT PROCESSINF~~r SYSTEM TO BEOUPTRCES

v n ynENTFID y [n]

_ PARAMTE ESTIMATION LOIH

H(z)

SYSTEM MODEL

Figure 5.4 Stochastic system identification problem

equations. When the AR modeling assumption is valid, these algorithms provide

very good estimates of the model parameters [Ref. 33: p. 131]. Unfortunately,

application of these algorithms to non-AR time series data usually results in poor

quality estimates. Furthermore, if an AR estimator is applied to a process that is

not AR, then the true AR model would be one of infinite order. Any finite order

AR model will introduce bias errors from modeling inaccuracies. A trade-off must

take place to choose order-p large enough to reduce the bias or to choose order-p

small enough to reduce the estimation errors.

In ARMA modeling, the best least squares estimate of the model parameters

is, generally, a nonlinear function of the past observations. Nonlinear optimiza-

tion techniques are usually computationally intensive and may not converge to the
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global minimum. Two ARMA parameter estimation algorithms will be presented

for stochastic data.

1. Schur Algorithm - Revisited

The AR filter coefficients (al, a 2, a3, ... , ap) are related to the autocorrela-

tion matrix of the data to be modeled and the noise variance (a 2 ) by the normal

equations:

Ryy(O) Ryy(-1) ...... Ryy (-n + 1) 01 aRyy(1) RYY(O) ...... Ryy (n)I ap1 0

(5.44)

nyy(n - 1) ... Ryy(1) RYY(0) )J 0

Several algorithms have provided efficient methods for solving the normal equations

[Ref. 33: pp. 116-118]. The Levinson algorithm for solving Toeplitz systems of lin-

ear equations is well-known in digital signal processing. However, the Levinson

algorithm has been discovered to be computationally less efficient than an alter-

native, the so-called Schur algorithm, because of a requirement to evaluate vector

inner products [Ref. 12: pp. 6-22].

We have previously introduced the Schur algorithm for estimating AR model pa-

rameters using deterministic signals. Assuming that the unknown system is driven

by a white noise process, the AR model parameters can be computed from the

output process using the Schur algorithm. The time average approximation of an

autocorrelation function (called the sample autocorrelation) is defined as [Ref. 46:

p. 27]
N-1-k

kyy[n]= N y[k+n]y[k] for 0< n < (N -1) (5.45)
k=O

where y[n] are tile measured output signal samples of length N. A derivation of the

Schur algorithm for stochastic signals is presented in Appendix A.

2. Generalized Mullis-Roberts (M-R) Algorithm

An ARMA parameter estimation algorithm based on a generalized Mullis-

Roberts criterion has been proposed by Miyanaga et al. [Ref. 47: pp. 619-621].
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This algorithm is derived by forming forward and backward prediction models using

available input noise and output data. Prediction errors are formed to satisfy specific

orthogonality conditions which are similar to those found in AR modeling problems

[Ref. 47: pp. 116-121]. Finally, autocorrelation and crosscorrelation functions

are calculated and then the forward and backward ARMA filter coefficients are

predicted from the correlation lags. A previous reference model is estimated using

the M-R algorithm in order to compare parameter estimates obtained by the WLS

algorithm. The transfer function of order (4,2), given by (5.24), was driven by a

white noise sequence. Table 4 shows the ARMA parameter estimates obtained

Table 4. M-R SIMULATION (4,2) MODEL RESULTS

Parameter Actual (WLS) Estimate (M-R) Estimate

AR: 0.2000 0.2002 0.1933
-0.6200 -0.6197 -0.6165
0.1520 0.1529 0.1462
-0.3016 -0.3014 -0.3010

MA: 1.0000 1.0000 1.0011
0.2000 0.1998 0.2057
-0.9900 -0.9902 -0.9893

from the M-R algorithm.

3. A Two-Stage Least Squares Algorithm

When the input noise is unobservable, the M-R algorithm cannot be applied

directly. A modified two-stage least squares approach is now presented. The name

two-3tage least squares is due to the use of a large order AR least squares estima-

tor followed by another ARMA parameter estimation algorithm. This approach

is known to be suboptimal because the noise input is unobservable and must be

estimated [Ref. 33: p. 320]. Nevertheless, we modify the two-stage least squares

algorithm to estimate the specific ARMA model parameters of equation (3.11). The

modification uses the M-R algorithm instead of the Levenison algorithm as sum-

marized in Table 6. A reference model was estimated having a transfer function
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of fHARMA 
0.1172z - 1

1 - 1.4513z - 1 + 0.570z 2  (5.46)

at a sample period of 1.25 ps. Table 5 lists the results of this algorithm. The M-R

algorithm (Step 3) produced very poor MA order coefficient results from the noise

estimate. However, the AR order coefficients a, and a2 were used to calculate the

Table 5. TWO-STAGE ALGORITHM RESULTS

Parameter Actual Estimated

bl 0.1172 0.1097

al 1.4513 1.4591

a2  -0.5700 -0.5701

single MA order coefficient with favorable results.

C. MULTI-SECTION MODEL PARAMETER ESTIMATION

In this section new algorithms are presented for the identification of the multi-

section microstrip structure. The layer reflection coefficient estimation algorithm

will approximate the number and location of cascaded microstrip step discontinuties

from the measured reflection data. The layer-probing algorithm is an iterative

impulse response estimation technique. The algorithm assumes that the multi-

section microstrip structure can be described by the lattice AR parametric model

of Chapter IV.

1. Layer Reflection Coefficient Estimation Algorithm

A single discontinuity between two lossy transmission lines having different

values for the characteristic impedance Zm, and propagation function -y,, is shown in

Figure 5.5. The m-th subscript denotes a single layer defined by equal propagation

time delay. Assuming that a current wave i(+ )' is incident at the discontinuity from

the m-th layer, we find that the incident current wave alone cannot satisfy the

boundary conditions at the junction [Ref. 35].
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Table 6. SUMMARY OF TWO-STAGE LEAST SQUARES ALGORITHM

Given the output process, y[n], of length N, the sample interval, T,
and L > N

Step 1: Predict the Lth-order AR parameters (ak)

Using the Levinson algorithm [Ref. 33: pp. 213-214] with output, (y[n])

Step 2: Estimate the noise input (i[n])

L

O[n] E ajk/[f - k]
k=O

Step 3: Estimate AR filter coefficients (a,) and (a2)

Use the Mullis-Roberts criterion algorithm [Ref. 15]

where (O[n]) =:. input and (y[n]) = output

Step 4: Solve ((wo T)

Substitute (a2) of Step 3 => (3.11c)

Step 5: Solve (W0 /1- 2 T)

Substitute (al) from Step 3 =. (3.11b)

Substitute (Cwo T) from Step 4 => (3.11b)

Step 6: Solve MA filter coefficient (b1 )

Use ((wo T) from Step 4, and

(wo V/ 1 - ( 2 T) from Step 5 to solve C
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Hence, a reflected current wave i - is generated. Using the boundary conditions

at the impedance mismatch, we then write

i(+)' + i(-)' = (+) + ,.)2m + m M+1 + im+1 (5.47a)

where

iM) = M ,- - (5.47b)

M= i( m- )  m (5.47c)

d=o d= (m

M+1

iI Y) I i + 1

m, m ~m+1 l

m m

Figure 5.5 Impedance discontinuity equivalent circuit

The voltage and current wave relationships are defined as follows:

= V) (5.48a)

Zm

M Zm (5.48a)
(-)I

j(+).= "+ (5.48c)
Sml-"Zm+l

j ( -) = - M + ( 5 .4 8 d )
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By substituting (5.48) into (5.47) we have

v(+)/,_ v(), z= Z H+
() VM = Zm+I (V$li-Vr4i). (5.49)

The instantaneous voltage at the mismatch is defined as

(+)/ H-)
V(t,lm,)= Vm Vm

= (+) - ) (5.50)
-m+1 m+1*

Taking (5.49) and (5.50), we solve for the incident voltage wave as

+ )I= (+)l ±pmo) (5.51a)

where the reflection coefficient Pm, and transmission coefficient rn at the mismatch

are
Pm = Zm+i + Zm (5.51b)

and

2Zm,

Zm+l + Zm

Tm I + P,. (5.51c)

While the reflected voltage wave at the m-th layer is

Vm=m+1 T-) + Vm+1 'T)

= V(+)I (Pm) - vM+ 1 ( - Pm). (5.52)

Using (5.51a), the voltage wave incident at the (m + 1)-th layer is

(+)1 - v(+ )' (1 + Pm) - V-+l (Pm). (5.53)VM+ 1 -- (.53

Combining (5.52) and (5.53) into a scattering matrix yields

V 1 [+Pm I [v1-PM (5.54)

( Pm - P Vm+(-)
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Next, we normalize the voltage waves with respect to their characteristic impedance

as
SV(+) v(+)' (5.55a)

and

M+ = | m+ . (5.55b)

M+1 1 1

Using (5.54) and (5.55), the normalized forward recursion matrix yields

Vm+1 1 -- I

The normalized incident and reflected voltages in (5.56) can be related to the prop-

agation function (-ym) as

[Vm+) C lMIM 0 V+
]= [eom 'm I l ]v +/ ]

= ~Ia~jfm~rn0] M ~ ~~ (5.57)0 e~o+m' [ v~m- •

Therefore, (5.56) can be expanded as

[(+] 1 [ Pm] [ em m 9m]

V~ #-M . 1 o (5.58
×0 C ' V~m-)"(.

For a lossy dispersive microstrip transmission line the attenuation a,; and phase

lIm terms are functions of frequency.
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Hence, the total attenuation per m-th layer is described by

M (f) ac(f) + Qd(f) (5.59)

where the conductor loss ac, and the dielectric loss ad were given by (2.8b) and

(2 10), respectively. Whereas, the phase term is related to the frequency-dependent

effective microstrip permittivity (,ff(f) as

Om(f) = 2irf /eff(f) (5.60)

c

Both the attenuation and phase terms are approximated as constants at the m-th

layer. Furthermore, the phase term /m is proportional to the rn-th layer propagation

delay time [Ref. 35] as

t m

/d,m N

where vgm is the group velocity in the m-th layer.

Next we develop the discrete-time recursion equations that solve the inverse

scattering problem. Taking the z-transform of the recursion matrix (5.58) and using

(5.61) yields

Vm+I(z)] = [Q(z)][ (Z) (5.62)

" m+l (Z)_

where
- _ _P z 10 CrM IM'

The variable z- represents the two-way propagation time delay of the m-th section,

while z-7 represents the one-way time delay. Using (5.58), the (777 + 1)-th layer

reflection coefficient is computed by

Pm+l- m+l (5.63)
m+l
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A layer characteristic impedance profile (in ohms) is determined from the layer

reflection coefficient sequence as

Zmn+i= Zm[ I + P.+1 (5.64)

where the initial impedance ZO is the measured input characteristic impedance. In

order to compensate for losses, the algorithm must have prior knowledge of the

total attenuation per layer am. Unfortunately, this loss information is not available

for the inverse scattering problem, but the overall attenuation per structure can be

estimated from the measured incident, reflected, and transmitted signals. Under

this assumption, we can obtain an average attenuation factor for each layer. A

method to estimate the attenuation factor from measured results will be introduced

in the last section.

2. Layer-Probing Algorithm

The multi-section microstrip structure is modeled as cascaded linear time-

invariant systems. Figure 5.6 describes the first iteration of the layer-probing algo-

rithm. The algorithm begins by exciting the structure with an impulsive signal vs[n].

A minimum-phase transfer function T1(z) is estimated for the first discontinuity us-

ing the WLS algorithm. Next, an inverse filter A1 (z) of the transfer function Ti (z) is

implemented and excited by the original impulsive signal. The inverse filter output

now becomes a new excitation signal. This new input is convolved with the first

discontinuity transmission impulse response, resulting in an impulsive signal vp[n]

which probes the second discontinuity. The subsequent reflected wave vT[n] now

contains the reflected impulse response of the second discontinuity. We can ignore

that portion of the reflection response caused by the first discontinuity, and record

the subsequent data. The recording window is defined by a time greater than the

two-way propagation delay time to the first discontinuity. Next, the windowed re-

flection response is deconvolved across the first discontinuity transmission impulse

response in order to observe the second discontinuity reflected impulse response.

Similarly, another AR model is estimated from this reflected impulse response, and
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then we repeat the procedure. Practically, the excitation signal is bandlimited by

the instrumentation, and this prevents the input from being an ideal impulse.

viiI-ot
S II v

Inverse Filter I  v n]

A, (Z)T, (z)

vo In)

Ist Discontinuity 2nd Discontinuity

Figure 5.6 Layer-probing of a unknown discontinuity

Also, the microstrip dispersion causes pulse spreading. As a consequence, when two

discontinuities are separated by less than the time-dispersive spread for the propa-

gating pulse, multiple reflections may introduce destructive interference. Therefore,

when the reflected impulse response is significantly distorted by destructive inter-

ference, the inverse scattering problem camlot be solved.

We will attempt to overcome this problem by measuring the output trans-

mission response resulting from the last impulsive probing signal. The remaining

unknown discontinuities will be described by an M-th order AR model. A technique

is required for estimating an appropriate model order. It is generally observed that

M'CN where N is the data segment length. The best order is typically within the

range from N/20 to N/5, but for particularly short data segments the best order

can be as large as N/3 or even N/2 [Ref. 48]. Consequently, we do have a priori
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knowledge about the order by assuming the model order and the detected num-

ber of discontinuities are equal. As discussed earlier, the layer reflection coefficient

algorithm can estimate the number of discontinuities within the unknown structure.

The transmission response now reveals sufficient transient information to

model the remaining unknown sections. Using the WLS algorithm, the transmission

impulse response is modeled by an ARMA transfer function T(z). Suppose for

simplicity, and not too much loss of generality, that we let the MA model (numerator

term) become a gain consta-it, so that

T(z) = bo (5.65)
A(z)

and the transfer function can be rewritten as

M

T(z) = 1 T,(z) (5.66)
r=1

where

Tr(z) bo
I - a, z - 1

and a, is the AR model parameter. As can be seen, the individual Tr(z) functions

are 1st-order AR transfer functions which model each discontinuity. Simulation

results are performed in Chapter VI to demo 'strate the performance of the layer-

probing algorithm.

3. Model Attenuation Factor Estimation

The total attenuation factor can be estimated by considering the energy l,3s

of the microstrip structure. An incident transient pulse delivers a fiite amount

of energy to the microstrip transmission line. Discontinuities in multi-section mi-

crostrip structure will introduce multiple energy reflections. We can only measure

the reft t i and transmitted voltage waveforms with respect to tho input/output
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measurement ports. Thus, we will treat the lossy multi-section structure as a sin-

gle cascaded microstrip step discontinuity. Referring to Figure 5.7, the cumulative

energy loss is given by
ELOSS = E(')- E(t) - E(r) (5.67)

1 2 1

where

Elr) is the cumulative reflected energy measured at the input port (1),

E t) is the cumulative transmitted energy measured at the output port (2),

and

E I) is the cumulative incident energy measured at the input port (1).

The cumulative energy values are calculated by [Ref. 31: p. 34]

N

E = 1 Iv[n] 12  (5.68)
n=0

where v[n] is the sampled voltage measured at the respective input/output ports.

Next, the energy loss is described in terms of an imaginary discontinuity boundary

(D) as

FLOSS () - E') (E - Er) + (E()- E(t)) (5.69)

where

E( E ; - 2ai 11

EF(r) =- (T),2ai Ii
'D I

(1 _ (1) 202 1.)El) El 2

Assuming a symmetrical microstrip geometry with respect to the boundary. we will

assume cl- = a2 and 11 = 1. Equating (5.67) and (5.69) yields the half-symmetrical

loss ( in nepers ) as

o' I E1  + h1 E, I (Np) (5.70)
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The half-symmetrical attenuation factor will be used to design the resistive 7r-

networks in Figure 4.5.

PORT PORT

Cc a

E(i) I )(t)

(EI WEE

lE

D

Figure 5.7 Cascaded step energy flow model

This chapter presented the use of several ARMA/AR model parameter esti-

mation algorithms for the characterization and transient response modeling of mi-

crostrip transmission lines. Both deterministic and stochastic approaches were dis-

cussed. Newly developed algorithms to improve the identification of lossy microstrip

lines consisting of multiple discontinuities were also derived. These algorithms were

the layer reflection coefficient estimation algorithm, and the layer-probing algorithm.

The purpose of these algorithms is to estimate the appropriate ARMA/AR model

parameters from available time-domain measurements. In Chapter VI, the algo-

rithms' performance will be studied using simulated and experimentally measured

data.
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VI. EXPERIMENTAL AND SIMULATION RESULTS

The purpose of this chapter is to verify the proposed microstrip models using

both experimental and simulation results. The lumped-distributed equivalent cir-

cuit and parametric models presented are now simulated for an integrated circuit

(IC) interconnection, a cascaded microstrip step discontinuity, and a multi-section

microstrip step discontinuity. The microstrip models are verified by comparing pi-

cosecond time-domain measurements with transient analysis and parametric model

simulation results. Finally, the performance of the ARMA/AR parameter estim.-

tion algorithms is studied using simulated and measured data.

A. INTEGRATED CIRCUIT INTERCONNECTION RESULTS

1. Optoelectronic Measurement Techniques

D.H Auston and A.M. Johnson of Bell Laboratories first demonstrated the

generation of picosecond pulses on silicon substrates in 1975 by using optically trig-

gered gating [Ref. 49,50]. They used quasimetallic photoconductivity produced by

the absorption of short optical pulses in silicon to both turn on and off a switching

gap. Figure 6.1 shows an optoelectronic switch using this technique. The microstrip

transmission line is fabricated on high resistivity (p = 104Q - cm) silicon and con-

tains a gap which forms the switch. Optical pulses generating mobile carriers within

the silicon produce the switching action. The work on silicon has been extended by

W.R. Eisenstadt and R.B. Hammond to produce picosecond optoelectronic switches

on bulk silicon [Ref. 51]. Their effort was focused towards the production of high

speed photoconductors which can be integrated along side other devices on an in-

tegrated circuit using standard VLSI fabrication techniques.
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The Photoconductor Circuit Element (PCE) is the best laser driven optoelectronic

transducer for high-speed sampling applications to integrate on a silicon substrate

[Ref. 52]. The primary goal of the PCE is to achieve an ideal impulsive sampling

gate.

Optical Pulse

Microstrip Line

Silicon SubstrateInput-"

Ground Plane

Figure 6.1 Diagram of D.H. Auston's picosecond photoconductor

2. Picosecond Pulse Propagation Measurements

D. Bowman [Ref. 53: pp. 82-941 performed a series of picosecond time-

domain measurements using a polysilicon PCE test structure. The structure shown

in Figure 6.2 illustrates the IC fabrication of the PCE sampler on the microstrip

transmission line. The length of microstrip beyond the last PCE sampler prevents

any reflections from the open stub end from returning in time to interfere with

the measurement. The experimental sampling system uses a colliding pulse mode-

locked (CPM) ring dye laser with a nominal 200 femtosecond optical pulse to excite

a 3.5 GHz bandwidth electrical pulse. The half power bandwidth of the electrical
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electrical pulse is determined from the magnitude spectrum using the Fast Fourier

transform. Table 7 lists the physical properties of the microstrip test structure.

PCE SAMPLER

1 2

, , icrotrip Line

IN-LINE PULSING POE

/Metal oy-i Metal

PCE SAMPLING GATE

Figure 6.2 Polysilicon PCE microstrip test structure

a. Sampled Waveform Measurements

A transient pulse was measured at different distances along a 100 pm

wide microstrip at a sampling interval of 1.25 ps. Figure 6.3 shows the measured

waveforms with magnitudes normalized to the peak of the first sampler. Successive

curves are the sampled m,!asurements at the second (500 pm), third (1000 pm), and

fourth (2000 pm) PCE sampler.
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Table 7. IC MICROSTRIP PROPERTIES

Material Properties Value

Characteristic Impedance (ZO) 73.24 Ql

Dielectric Constant (e) 11.7

Substrate Thickness (h) 350.5 pm

Conductor Thickness (t) 1.0 pm

Conductor Width (w) 100.0 pm

Substrate Resistivity (Si) (p,) 14.5 Q-cm

Conductor Resistivity (Al) (p,) 0.262e-05 02-cm

Conductor Length (1) 500 pm

(L 0.60

C3 3

0

z

0.0

....00 2.E-1 4.OE-@ 11 SO-Olt, BC-01Il iLac-aia lj!Z.-o 1.4C--O
TIME ( SECOND)

Figure 6.3 High frequency waveform propagation measurements
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The measured responses show the expected dispersive propagation with high losses.

This is evident from the increasing rise times of the pulses (pulse spreading) and

smaller peak magnitudes with increasing propagation distance [Ref. 53: pp: 84-85].

b. Propagation Velocity

The rate at which a pulse propagates down an IC interconnection is a very

important parameter, particularly for circuits involving critical timing applications

or pulse synchronization. At the high frequencies present with picosecond pulses,

propagation velocity varies with frequency and affects the shape of the pulse.

The relative time at which the peak magnitude of the pulse occurs can be

used to determine the velocity. The group velocity and not the phase velocity of the

pulse is actually measured by observing the relative delays of the peak magnitude.

Figure 6.4 reports the results of the measured propagation delays at the various

time differences between the peak magnitudes for each of the three samplers. The

theoretical propagation delay is calculated by [Ref 18: p. 62]

td ='- (6.1)c

for the different lengths of the microstrip. What is interesting about the results

is the almost identical slope for both the measured and theoretical delay. This

indicates a relatively constant velocity of - 112-114 pm/ps.

c. Propagation Loss

The decrease in the peak magnitude of the propagating pulse with distance

seen in Figure 6.3 is evidence of the significant losses present on silicon substrates.

Figure 6.5 shows the loss in decibels as a function of propagation distance. The

theoretical loss combines the numerical results for conductor loss (2.8b) and dielec-

tric loss (2.10) at three microstrip distances. The measured propagation losses were

obtained from relative cumulative energy results. The theoretical values reveal a

loss of 2.4 dB/mm while the measurements indicate a 3.6 dB/mm loss is actually

occurring. A possible explanation for the discrepancy between the theoretical loss
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and the measured loss is that (2.8b) yields a somewhat low result because surface

roughness is not considered, and the effective microstrip permittivity value used in

(2.10) actually varies with frequency [Ref. 18: p.90 ].

20.00 -

0

z- 0
0

15.00 .
00

U (L/ z

510.00

0

M 5.00

THEORETICAL [-- -- -

MEASURED .o--o--o

O.OOE+000 5.00E-004 1 .OOE-003 1.50E-003 2.00E-003 2.50E-003
MICROSTRIP LENGTH ( METER )

Figure 6.4 Pulse propagation delay on IC interconnection

3. Equivalent Circuit Simulations

The lumped-parameter and lumped-distributed equivalent circuits, derived

in Chapter II, are developed for a 500 pm length of microstrip in the PCE test

structure. Numerical results for the circuit model are presented in Table 8. Several

comments can be made about these theoretical calculations. The static effective mi-

crostrip permittivity significantly influences all subsequent calculations. It assumes

a TEM mode of propagation on the microstrip which is frequency independent.
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In the equivalent circuit model the lumped-elements are evaluated at a maximum

frequency of 3.5 GHz which corresponds to the bandwidth of the propagating signal.

8.00-

/0

.J I.

W6.00 -

04.00-

zo., -.oo""
00

02.00 - -
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0.00 ...... ...... 7,,, i

0.00E+000 5.66E-004 1.0E-003 I.50E-003 2.OOE-003 2.50E-003
MICROSTRIP LENGTH ( METER )

Figure 6.5 Pulse propagation loss on IC interconnection

At this frequency the physical microstrip length should be less than 4 mm (; Ag/8).

Consequently, the equivalent circuit models may lose their accuracy if significant

higher order modes are excited by microstrip discontinuities. Figure 6.6 shows
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Table 8. EQUIVALENT CIRCUIT THEORETICAL RESULTS

Circuit Parameters Equation Value

Maximum Frequency (f) 3.5 GHz

Static Effective Permittivity (fj'j) (2.2) 7.082

Effective Permittivity (fcff(f)) (2.6) 7.120

Characteristic Impedance (Zo) (2.3a) 75.22 Q

Guide Wavelength (A9) (2.19) 32.12 mm

Shunt Capacitance (C,) (2.18a) 0.03 pF

Series Inductance (L,) (2.18b) 0.33 nH

Propagation Loss

Conductor Loss (ac) (2.8b) 0.009 dB

Dielectric Loss (ad) (2.10) 1.204 dB

Total Loss (at) 1.213 dB

the schematic diagrams of the equivalent circuit, models.

74.230 10.492 0.332 nH

V S ( 0 1.065Y 0.03 pF 0.03 pF 74.23D

74.2311

(a)

Figure 6.6 (a) Lumped-element equivalent circuit

In modeling the IC interconnection using equivalent circuits, it is assumed that

impedance matching networks are used to prevent reflections. In Figure 6.6(a) a
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propagation loss of 1.213 dB is modeled by a resistive r-network and a propagation

delay of 4.46 ps is described by the reactive LC network. Transient analysis simu-

74.23f- 10.4W

v t) +K (74.23f) 0.06F

4.46 Ps

(b)

Figure 6.6(b) Lumped-distributed equivalent circuit

lations of the circuit models are performed using the PSPICE electrical circuit simu-

lation program (Ref. 17]. The PSPICE network listings for both equivalent circuits

are given in Appendix B. A piecewise-linear approximation of the normalized refer-

ence pulse, measured at the first PCE sampler, acts as the PSPICE voltage source.

Waveform comparisons between the second PCE sampler measurement and the

circuit model simulations are shown in Figure 6.7. The general shape of the simu-

lations are representative of the measured data; however, there are some significant

discrepancies. Two possible causes are suggested. First, on the decaying transient

the measurement contains a second peak caused by a reflected signal from the back-

plane of the substrate. This phenomena is not modeled by the circuit model because

of its complex wave nature [Ref. 53: p.90]. Second. the equivalent T-network circuit

model simulation indicates a decreased peak magnitude. This observation can be

explained as energy lost by a reflected voltage caused by the shunt capacitance.
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Next, we derive an equivalent circuit model for the 1000pm length of microstrip.

Using the same reactive r-network of Figure 6.6(a), we calculate the new shunt

capacitances and series inductance as 0.06 pF and 0.663 nH, respectively. The

1.0

0.8e

LiJ
0.6

0-

0 .4

< 0.2

<0.
z MEASURED

-00113 PSPICE T - MODEL a -- C3 - .-0

F 
PSPICE IC - MODEL o -- -D-- -.o

-0.2 .. .. ... .. 11I1 1 I 1 ... 1 .. I .. 111 I l I1111ll ' JJ l i ii I ~ lIl l l l l

O.OE+O00 2.6E-011I 5.2E-011I 7.8E-011 I 1.0E-01 0 1.3E-010
TI ME (S)

Figure 6.7 Waveform simulations of the equivalent circuit models

measured propagation loss of 3.891 dB is used to evaluate the resistive 7r-network.

Figure 6.8(a) compares the PSPICE transient analysis simulation with the measured

response. The simulated results tend to underestimate the rise time of the measured

pulse.

80



This error may be attributed to the breakdown in the lumped-element equivalent

circuit assumption as the physical length of the microstrip increases. Therefore, we

can improve the model by cascading two reactive 7r-network sections. A PSPICE

simulation was performed using the higher order circuit model.

0.80

0.60

I--

"i 0.40
0-

LJ
N 0.20

0
-0.00- - - MEASURED

PSPICE MODEL-----

-0.20 . ... .... . .... .
O.OE+000 3.0E-01 1 6.OE-01 1 9.OE-011 1.2E-010

TIME (S)

Figure 6.8(a) Single LC network simulation at the 1000pm PCE sampler

Figure 6.8(b) shows a significant improvement in the waveform agreement, especially

in the rise times. However, as the number of reactive lumped-elements increase, the

model order also increases.
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Then the mathematical relationships among the model parameters and the i-

crostrip physical properties will become more complex.

0.80 -

0.60

U-

n 0.40
0L

0

N 0.20

-0.00 - MEASURED
PSPICE MODEL-----
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O.OE+000 3.OE-01 1 6.OE-01 1 9.0E-01,1 1.2E-010

TIME (S)

Figure 6.8(b) Cascaded LC network simulation at the 1000jm PCE sampler
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4. Parametric Model Simulations

The following ARMIA digital transfer function is computed for the 500 Ym

microstrip test section using (3.10) and (3.11) at a sampling interval of 1.25 ps:

0.1172 z - 1

HARMA(Z) -- 1 - 1.4513 z - 1 + 0.57 z-2 (6.2)

The normalized reference pulse, measured at the first PCE sampler, is attenuated

by 1.213 dB and then iterated through a difference equation of (6.2). Similarly, an

AR digital transfer function is evaluated using (3.19) as

0.4295

HAR(Z) = 1 - 0.5705 z - 1 "  (6.3)

The normalized reference pulse is again attenuated by 1.213 dB and iterated through

a difference equation of (6.3). Figure 6.9 shows the ARMA and AR model simulation

results as compared with the measured pulse.

1.00

0.80

0.60

CL

0.40
0

o .20

ARMA MODEL
-0.00 MEASURED -o--o--o

-0.20 t . . . . . . . . . . . . .......... . .= . . . . ....... I . . .. . . .. . .

0.OOE+000 4.OOE-011 . .OOE-011 1.20E-010 1.60E-010
TIME (S)

Figure 6.9(a) 1st-order ARMA parametric model simulation
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Simulated pulses are shown by solid lines while the measurements are indicated

with dash lines. Both simulated waveforms have properly accounted for the loss

mechanisms on the 500jim microstrip section; however, the 2nd-order ARNIA model

result shows an outstanding waveform agreement as compared with the 1st-order

AR model. In the next section we will focus on the model parameter estimation

algorithms using both simulated and measured data.

1.00

0.80

i-- 0.60
o.5
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< 0.40
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0.20
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O.OOE+000 4.00E- 1 8.00E-01 11.20E-010 1.60E-010
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Figure 6.9(b) 1st-order AR parametric model simulation

5. Model Parameter Estimation Results

a. WLS Algorithm

The weighted least squares (WLS) algorithm of Chapter V can be used to

estimate model parameters from a given sample impulse response. First., we must

obtain an accurate impulse response from the available input/output measurements.

The impulse response was obtained by deconvolving the output data, measured at
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the second PCE sampler, with the measured normalized input data. The original

mreasured data, sampled at 1.25 ps, was decimated to a sampling interval of 5

ps to improve the frequency resolution of the FFT during deconvolution. Next,

the resulting sample impulse response was applied to the WLS algorithm. The

estimated ARMA model parameters are listed in Table 9. Figure 6.10 compares the

Table 9. ARMA PARAMETERS USING WLS ALGORITHM

Parameter Theoretical Estimated

bi 0.657 0.688

a, 0.285 0.187

a2 -0.106 -0.107

estimated impulse response to the measured and theoretical impulse responses at a

5 ps sampling interval.

0.80
MEASURED

THEORETICAL ARMA D----
ESTIMATED ARMA .o----O

0.60

0.40

- ......... ......... . ..............
0.0 5.0 1.15.0 20.0

TIME SAMPLE ( T - 5 PS)

Figure 6.10 Comparison of ARMA model sample impulse responses
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b. Stochastic Methods

ARMA and AR sample impulse responses were simulated using a PSPICE

transient analysis of the equivalent circuit models at a sampling interval of 1.25 ps.

Stochastic output processes are generated using the convolution summation

N

y[n] Zv[k]h[n - k] (6.4)
k=O

where v[n] is an input Gaussian white Doise sequence and h[n] is the simulated

sample impulse response. The white noise sequence was obtained using a pseudo-

random number generator program. The output process y[n], having a record length

of 1800 samples., and the original white noise sequence were applied to the M-R

algorithm. The ARMA digital filter coefficients were estimated for a (2,1) order

model. Table 10 compares these estimates to the theoretical parameter values at a

1.25 ps sampling interval.

Table 10. ARMA PARAMETERS USING M-R ALGORITHM

Parameter Theoretical Estimated

bi 0.1172 0.1137

a1  1.4513 1.4796

a2 -0.5705 -0.5905

The estimated results compare favorably with the theoretical model parameter val-

ues. There is, however, a limitation in using the stochastic approach. First, the

M-R algorithm requires input/output data to be simultaneously sampled to provide

accurate ARMA parameter estimates. Second, microwave measurement techniques

are usually based on frequency-domain scattering parameters, and high-speed pi-

cosecond sampling techniques are not commercially available.

The Schur algorithm is used to estimate a 1st-order AR model. Initially, a

1st-order AR sample impulse response was simulated using PSPICE at a sampling

interval of 1.25 ps. Using equation (5.45), a sample autocorrelation sequence is
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computed from the impulse response data. Then the Schur algorithm is used to

solve the AR reflection coefficients, and the normalized AR transfer function yields
_1

HAR(Z) = 1 10.57z_ (6.5)

Since the impulse response was simulated using a 1st-order AR model a single Schur

reflection coefficient should be expected.

c. Elmore Method

Network functions are now estimated from rise and delay time measure-

ments. Figure 6.11 describes two consecutive PCE sampler voltage measurements

denoted as v2 (t) and v3(t). A two-port network describes the 500pm length of

microstrip.

t 1 4.- t t
0g

PCE (2) PCE (3)

Figure 6.11 Cascaded network functions

The Elmore rise time (T,.) is defined as the reciprocal of the slope of the tangent

drawn to the response curve at its half-magnitude point [Ref. 46]. The delay times

are estimated at consecutive peak or half-magnitude points. Referring to Figure

* 6.12, a delay time of 4.41 ps is obtained by averaging the peak magnitude delay

(4.48 ps) and the half-magnitude (4.33 ps) delay times. A rise time of 2.06 ps is

computed using (5.34) for T,2 = 7.73 ps and Tr3 = 8.00 ps.
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A 2nd-order network function is evaluated as

99.3836 x 1021
H(s) = s2 + 438.282 x 109s + 99.3836 x l0 s ]  (6.6)

The characteristic impedance of the microstrip must be determined prior to solv-

ing for wo and ( in (3.5). The estimation of the characteristic impedance will be
addressed in the next section. Finally, the ARMA model parameters are calculated

at the sampling interval of 5 ps using equations (3.10) and (3.11).

1.25

MEASURED PCE (2)
MEASURED PCE (3)

0
0.75

0

N

o 0.25z

COE-01. 5. . . 1 ...... i- -1 S%-Ol' 1 . Oo--. I L-E-01 I 7.M-011 7. -01 I
TIME ( SECOND )

Figure 6.12 Elmore delay and rise time graphical estimates

Equation (5.35) solves the 1st-order AR filter coefficient in terms of the delay and

rise times. Both the estimated and theoretical ARMA/AR model parameters are

compared in Table 11 at a 1.25 ps sampling interval.
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The Elmore estimates for the AR model parameters, including the denominator AR

filter coefficients of the ARMA model, all show a slight increase over their theoretical

Table 11. MODEL PARAMETERS USING ELMORE

ARMA Parameter Theoretical Estimated

bl 0.1172 0.1165

al 1.4513 1.4602

a2 -0.5705 -0.5782

AR Parameter

a 0.5705 0.5782

values. This result will explain the increase in effective microstrip permittivitv

estimates presented in the next section.

d. Estimation of Physical Microstrip Properties

The characteristic impedance at each PCE sampler is computed using

(2.29) and (2.30). Table 12 lists the calculated characteristic impedance estimated

at each PCE samplei. The average impedance of 74.32 Q compares very favorably

to the actual microstrip characteristic impedance of 74.23 Q.

Table 12. CHARACTERSITIC IMPEDANCE ESTIMATES

PCE Sampler No. Zo

(1) 72.92 12

(2) 73.03 Q

(3) 77.06 Q

Average Value 74.34 Q

The effective microstrip permittivity (Eeff) is directly calculated from the

model parameter estimates using (3.22) and (3.25). Several theoretical expressions

have been cited in the literature for the effective microstrip permittivity. Here, we

have computed a value of 7.082 using equation (2.2). However, other closed-form

expressions will produce different results. For example, another expression for the
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effective microstrip permittivity. given the characteristic impedance, is [Ref. 18:

p.44]

12

Qff E- 1 + ( 2)7Q1 l)( 2 4)] (6.7)

c = 7.186

where ZO = 74.23 Q and c = 11.7 for silicon substrate. Table 13 lists the effectivc

microstrip permittivity values that were computed using the ARMA/AR model

parameters obtained from the different estimation algorithms.

Table 13. EFFECTIVE PERMITTIVITY ESTIMATES

Estimator ARMA AR

WLS 7.210

Schur 7.087

Elmore 7.511 7.496

These results indicate that the best model parameter estimators are the WLS and

Schur algorithms. These algorithms provide optimal estimates in a least squares

sense, while the Elmore method was extremely dependent upon obtaining accurate

rise and delay time measurements. Precautions should be made whenever we com-

pare the estimated results to the theoretical values. For example, the accuracy of

the theoretical expressions is dependent upon the shape ratio w/h range. In all

cases the shape ratio will be accurate to ±1 percent. For narrow lines (w/h < 1.3),

the effective microstrip permittivity has an error range +0.5-0.0 percent. When

calculated using (6.7), cei 1 is accurate to +1 percent [Ref. 18: pp. 45-46]. Ad-

ditionally, the effective microstrip permittivity is in fact frequency dependent, and

the values tend to be slightly higher than those given by (2.2) and (6.7).
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B. CASCADED MICROSTRIP STEP DISCONTINUITY RESULTS

The equivalent circuit and parametric models of Chapter IV are validated by

comparing model simulations with experimental measurements. Figure 6.13 de-

scribes a cascaded microstrip step discontinuity structure that was fabricated on

G-10 epoxy dielectric material. The physical dimensions of the cascaded step dis-

continuity were restricted by the available photolithographic equipment and the

dielectric substrate. A half power bandwidth of 400 MHz for the measured refer-

ence pulse was selected as the maximum design frequency. This frequency is used in

the theoretical calculations. Table 14 summarizes the theoretical microstrip results

obtained from the closed-form expressions.

0.437 rm 40.39 12 8.442 40.39 2 3.0 cmn

1.65 cm

Figure 6.13 Cascaded microstrip step discontinuity

1. Validation of Equivalent Circuit Models

The lumped-element values in Table 14 are associated with the equivalent

circuit models of Figures 4.3(c) and 4.4(b). A transient analysis simulation, using

PSPICE, is performed for each equivalent circuit. A piecewise-linear approximation
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of the measured input pulse was used if' the transient analysis simulations. A

half-synmmetric attenuation factor of 0.0348 nepers is computed from the measured

incident, reflected, and transmitted cumulative energy. Separate resistive at tenuator

7r-networks are designed to model each half-symmetric loss. The shunt resistors

(2.316 kQ) are given by [Ref. 37: pp.18G-192]:

Ri=z0(N+ (6.s)

and the series resistor (1.41 Q) by

R2 Zo( N (6.Sb)

where the loss in decibels is 20log1 0 N. Transmission and reflection output re-

sponses are simulated. These simulations arc compared to the measured responses

in Figures 6.14(a) and 6.14(b), respectively. The measured transmission

0.8 EXPERIMENTAL
O--O--O SHUNT CAPACITIVE

D3--O-] LC PI-NETWORK

~30.0
,! Y

Z 0.40  I
0

C 0.20 I
U)

"TIME ( SECOND

Figure 6.14(a) PSPICE simulated transmission response
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and reflection responses were obtained using the inverse FFT of the m.2asured scat-

terin -- rameters.

2. Parametric Model Simulations

Using equations (4.14), and (4.16) - (4.18), yields a 3rd-order ARMA trans-

fer function

6.776 x 109 - 7.295 x 109z- 1 + 4.323 x 109 z- 2

T3(z) = 1 - 1.702z - 1 + 1.5964z - 2 - 0.762z - 3  (69)

at a sampling interval of 40 ps. A sample impulse rcsponse is generated using the

difference equation of (6.9). The sampled incident pulse is then convolved with the

sample impulse response data to produce an output transmission response.

Table 14. CASCADED STEP THEORETICAL RESULTS

Microstrip Parameter Equation Value

Wide Width (3 cm) Segment

Static Effective Permittivity (6eff) (2.2) 3.953

Effective Permittivitv (Eff (f)) (2.6a) 4.024

Characteristic Impedance (Z01 ) (2.3a) 8.44 Q

Guide Wavelength (Ag01 ) (2.19) 373.90 mm

Shunt Capacitance (Cs) (4.7) 13.10 pF

End Inductance (L,) (4.8) 0.931 nH

Narrow Width (0.437 cm) Segment

Static Effective Permittivity (jCff) (2.2) 3.354
Effective Permittivity (Eeff(f)) (2.6a) 3.360

Characteristic Impedance (Z 02 ) (2.3b) 40.39 Q

Guide Wavelength (Ag02 ) (2.19) 409.16 mm
Series Inductance (L,) (4.5) 8.640 nH

Step Discontinuity Circuit Parameters

Shunt Capacitance (Cd) (4.3a) 0.559 pF

Series Inductance (L1 ) (4.1a) 0.054 nH

Series Inductance (L 2 ) (4.1b) 0.235 nH
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The normalized transmission response is compared to the RIeasured output in Fig irc

6.15. Next, the lst-order ARNIA reflection and transmission transfr functions aic
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EXPERIMENTAL

O--O--O SHUNT CAPACITIVE

[3--0-- LC PI-NETWORK

>
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. . . . . . . . . . . . . ."r i "€!!| i2.7E-009 3.7E-OOg 4.7E-009 5.7E-009 6.7E-009

TIME ( SECOND )

Figure 6.14(b) PSPICE simulated reflection response

obtained usini (4.20b) and (4.20c), respectively, as

l'I(z) = 0.746 (z-1 - 1) (6.10u)
1 - 0.492z - 1

and

T7'(z) = 0.254 (1 + z-') (6.10b)
1 - 0.492z - 1

at a sampling interval of 200 ps.
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Figures 6.16(a) and 6.16(b) compare the ARMA reflection and transmission re-

sponse simulations with the measured responses. The results show both the lossless

0.80

EXPERIMENTAL

0 OO-O ARMA (3RD - ORDER)

0L 0.50
C/)

LLJ

z
0
0)U 0.40

c° -o.oo -,B

z

0. 0 -

-0.20-

OE 060.00M 0

TIME ( SECOND )

Figure 6.15 3rd-order ARMA model transmission response

and lossy (0.0348 nepers) simulated output waveforms. When the attenuation loss

is included, the waveform agreement improves, especially with respect to the peak

amplitudes.

Finally, a 1st-order AR model is given by (4.21) as

0.68

TAR(Z) = 1 0.507z (6.11)

at a sampling interval of 200 ps. The normalized AR transmission response is

compared to the measured response in Figure 6.17.
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Figure 6.16 1st-order ARMA (a) reflection response and (b) transmnission response
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3. Estimation Results

a. Estimnation of Reflection Impulse Response

An appropriate parametric model for the cascaded microstrip step (Is-

continuity is estimated from only the measured incident and reflected responses.

An estimate of the reflection sample impulse response is obtained by deconvolving

the measured reflection response with the incident pulse. Figure 6.18 shows the

estimated reflection sample impulse response at a sampling interval of 200 ps.
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Figure 6.17 1st-order AR transmission response

b. Estimation of Model Parameters

The WLS algorithm estimates the 1st-order AR model parameter of equa-

tion (4.21) using the previously estimated reflection impulse response. The time

constant (C,,Z02 ) is solved as 291.51 ps using an estimated 1st-order AR filter co-

efficient of 0.5035.
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Next the 1st-order ARMA model parameters are calculated by substituting this

time constant value into equation (4.20c). Therefore, the unknown transmission

response can also be approximated from observing only the incident and reflected

data. Finally, the ARMA and AR model parameter estimates are given in

0.4

W 02
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Figure 6.18 Estimated reflection sample impulse response

Table 15. This approach will be exploited by the layer-probing algorithm in the

next section for the system identification of a multi-section microstrip structure

[Ref. 54].
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Table 15. MODEL PARAMETER ESTIMATES

ARMA Parameter Theoretical Estimated

b0 0.2538 0.2554

al 0.4924 0.4892

AR Parameter

a 0.5065 0.5035

C. MULTI-SECTION STEP DISCONTINUITY RESULTS

As we saw earlier, a cascaded step microstrip discontinuity can be modeled by

an equivalent circuit or by an AR parametric model. We will now extend these

models for a multi-section microstrip step discontinuity.

1. Equivalent Lumped-Distributed Circuit Model

a. Theoretical Results

The capacitive shunt equivalent circuit model, as shown in Figure 4.4,

will be used to characterize each cascaded step discontinuity. The high impedance

(narrow microstrip width) lines which connect each discontinuity are modeled as

lossless distributed transmission-line sections using (2.24). The propagation delay

time associated with each transmission line is determined from the physical length

and the frequency-dependent effective microstrip permittivity. Figure 6.19 describes

the multi-section microstrip structure which will be modeled and simulated using

PSPICE. Three different line width dimensions are referred to by numbered line

segments. Specific equivalent circuit numerical results are listed in Table 16 for

each line segment. The theoretical calculations use a maximum design frequency

of 4 GHz and a substrate relative dielectric constant c, of 4.3. Frequency disper-

sion is incorporated into the circuit model by using frequency dependent effective

microstrip permittivity c-ff (f) and characteristic impedance Zo(f) values.
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The characteristic impedance is calculated using [Ref. 18: pp. 81-82]

ZO(f) 376.6 h (6.12)

where

Weff - W
W+ff(f) -W

c

2 2 weff VF-/f

and the effective width is
_376.7 h

We ff = zo v '

0.3 cm -- - _"" r --1. -0.3 crm

10.3 cm

0.3 cm 3.0 cm

4.5 cm 1. c

2.153 cm

Figure 6.19 Multi-section microstrip discontinuity test structure

The theoretical propagation losses are given in Table 17 for each line segment. The

total segment loss in dB/Ag is the sum of each segment dielectric ad and conductor

ac loss, given by

ad - 27.3 c, (eff - 1) tanb (2.10)

feff (f, - 1)

0.072V IA (2.8b)

W Zof)

where tan b is the dielectric loss tangent and f is in GHz.
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Table 16. MULTI-SECTION MICROSTRIP THEORETICAL RESULTS

Microstrip Parameter Equation Value

Narrow (0.3 cm) Segment No. (1)

Static Effective Permittivity f) (2.2) 3.244

Frequency-Dependent Eff. Permittivity ce(f) (2.6) 3.358

Static Characteristic Impedance Z(1)  (2.3a) 51.3 Q

Frequency-Dependent Impedance Z0')(f) (6.12) 53.0 Q

Guide Wavelength A(1) (2.19) 41.00 mm

Wide (3 cm) Segment No. (2)

Static Effective Permittivity .(2) (2.2) 3.953eff

Frequency-Dependent Eff. Permittivity c)(f) (2.6) 4.100

Static Characteristic Impedance 0 (2.3a) 8.5 Q

Frequency-Dependent Impedance Z02)(f) (6.12) 9.5 Q
Guide Wavelength A(2)  (2.19) 37.04 mm

Shunt Capacitance C(2)  (4.7) 2.14 pF

Wide (1.5 cm) Segment No. (3)

Static Effective Permittivity (3) (2.2) 3.755eff
F-equency-Dependent Eff. Permittivity cf)(f) (2.6) 3.922

Static Characteristic Impedance Z( 3)  (2.3a) 15.7 Q

Frequency-Dependent Impedance Z03)(f) (6.12) 17.5 S1
Guide Wavelength A( 3)  (2.19) 37.87 mm

Shunt Capacitance C(3)  (4.7) 1.13 pF

Step Discontinuity Circuit Parameters

Shunt Capacitance Cd( 2)  (4.3a) 0.723 pF

Shunt Capacitance (4.3a) 0.213 pF
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The total propagation loss (in dB) for each microstrip line is modeled in the circuit

model by a resistive attenuator 7r-networks. Figure 6.20 shows the equivalent circuit

Table 17. MULTI-SECTION MICROSTRIP THEORETICAL LOSSES

Microstrip Attenuation Equation Value

Narrow (0.3 cm) Segment No. (1)

Dielectric Loss ad )  (2.10) 0.450 dB/Ag

Conductor Loss acl) (2.8b) 0.037 dB/Ag
Total Segment Loss a(1) 0.487 dB/Ag

Wide (3 cm) Segment No. (2)
Dielectric Loss (2) (2.10) 0.484 dB/Ag

aDielectric___Loss_______

Conductor Loss ac2 )  (2.8b) 0.019 dB/Ag

Total Segment Loss a( 2 )  0.503 dB/g

Wide (1.5 cm) Segment No. (3)
Dielectric Loss a(3) (2.10) 0.477 dB/g

Conductor Loss acz  (2.8b) 0.021 dB/,\g

Total Segment Loss a(3) 0.498 dB/Ag

model for the microstrip filter of Figure 6,19.

b. Simulation Results

The microstrip filter was fabricated on G-10 epoxy dielectric material.

Scattering parameter measurements were taken using the network analyzer. A

piecewise-linear approximation of the measured excitation signal is used in the

PSPICE circuit simulation. The transient analysis of the equivalent circuit model

provides both reflection and transmission responses. Shown in Figure 6.21 is a com-

parison between the measured and simulated reflection responses. The amplitude of

the simulated response indicates that the theoretical losses are slightly greater than
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than the measurcd losses. The magnitude spectrum of the reflection responses is

shown in Figure 6.22.

Z 0 R 11I R 21

IA A I - AAA
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Figure 6.20 Multi-section equivalent circuit model

The multi-section microstrip filter is also simulated by PUFF, a computer-

aided design (CAD) program for microwave integrated circuits [Ref. 55]. The PUFF

simulation solves the scattering parameters for the microstrip filter described in Fig-

ure 6.19. The inverse FFT is performed on the scattering parameters to obtain the

reflected and transmitted impulse responses. The PUFF program input excitation

is a gaussian-shaped unit amplitude pulse. In order to accurately compare both the

simulation results, a piecewise-linear approximation of the PUFF excitation was

used in the PSPICE transient analysis. Figures 6.23 and 6.24 compare the reflec-

tion and transmission responses, respectively. The PUF.:7 simulation model doe3

not account for propagation losses.
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Figure 6.24 illustrates the effect of losses in the equivalent circuit model. The

influx .. e of loss and dispersion on the multiple reflected signals can be observed in

the Figure 6.23 by the apparent phase shift in the PSPICE simulation.
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Figure 6.21 Comparison of PSPICE reflection response waveforms
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Figure 6.22 PSPICE reflection response magnitude spectrum

0.40

0.20 ''

'--0.00 II X / ' "•
I

o
.-0.20

z
0

on -0.40w
PUFF Model-----

-0.60 PSploe Model

-0.8
0.0( 4000 5.-010 .. 0.-000 1.5i-009 2.0E-009

TIME ( SECOND )

Figure 6.23 Comparison of simulated reflection responses
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2. Layer-Probing Simulation Results

A lumped-distributed equivalent circuit is developed for a three-sectioned

microstrip step discontinuity structure. A PSPICE transient analysis is performed
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Figure 6.24 Simulated transmission responses

using the equivalent circuit model. Reflection and transmission response data will be

applied to the layer reflection coefficient estimation and layer-probing algorithms.

The initial reflcction impulse response data is applied to a Fortran program im-

plementation of the layer reflection coefficient estimation algorithm. As shown in

Figure 6.25, a sign change in the layer reflection coefficient sequence corresponds

to an abrupt width change on the microstrip line. An estimated group velocity of
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2.53 mn/sample is computed from a measured propagation time delay of 707.9 ps

and a structure length of 112 mm. Figure 6.26 shows the impedance profile
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Figure 6.25 Multi-section layer reflection coefficient sequence

computed from the estimated layer reflection coefficients. The accuracy of the

impedance profile degrades rapidly beyond the first discontinuty because of loss and

dispersion. Nevertheless, we are able to detect the relative changes in the impedance

profile and then estimate the number of discontinuities within the structure. This

result is more qualitative than quantitative. The detection resolution performance
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of the algorithm is dependent upon the sampling interval used. Accurate layer

reflection coefficients are obtained only when the sampling interval is sufficiently

small.
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Figure 6.26 Multi-section impedance profile

The WLS algorithm was used to efficiently compute a 1st-order AR model

from the reflected impulse response shown in Figure 6.27. The layer-probing algo-

rithm next formulates an appropriate inverse filter using the estimated AR model

parameter. A new excitation signal is simulated from the difference equation de-

scription of the first inverse filter transfer function. We create a piecewise-linear

approximation of the customized input and initiate a second transient analysis in
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PSPICE to simulate the pulse propagating in the microstrip. The resulting second

reflection response is windowed to eliminate the reflected energy caused by the first

U)
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Figure 6.27 Initial reflection response waveform

discontinuity. The windowed reflection response is shown in Figure 6.28. The reflec-

tion response is now deconvolved with the estimated transmission impulse response

of the first discontinuity. Figure 6.29 shows the result of the deconvolution. The

WLS algorithm is used to estimate another 1st-order AR model that will describe

the second discontinuity. The prtvious AR model parameter estimates are used to

design a 2nd-order inverse filter. Next, we excite the difference equation description
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of the inverse filter using the original input pulse. A third excitation sequence is gen-

erated to probe the microstrip. Once again a piecewise-linear approximation of the

third customized input is entered in PSPICE. Figure 6.30 shows the transmission
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Figure 6.28 2nd windowed reflection response

response simulated by the multi-section equivalent circuit model. The simulated

transmission response immediately reveals the transmitted impulse response of the

third discontinuity. The transmitted impulse response is identified as the exponen-

tially decaying transient shown in Figure 6.30. Finally, a third AR model is
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obtained from the transmitted impulse response using the WLS algorithm. The

purpose of the layer-probing algorithm was to resolve the reflected and transmitted

impulse response for each cascaded step discontinuity. This was accomplished
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Figure 6.29 2nd reflected impulse response after deconvolution

by iterately "probing" the multi-section structure with customized signals synthet-

ically produced by inverse filtering. Table 18 compares the estimated AR model

parameters with the theoretical values used in the simulation.
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The multi-section microstrip structure of Figure 6.19 was excited by

a 18.5 GHz incident pulse. The performance of the layer reflection coefficient

Table 18. MULTI-SECTION MODEL PARAMETER ESTIMATES
Discontinuity Parameter Theoretical Estimated

a, (T = 2.0 ps) 0.9829 0.9816

a2  (T = 2.0 ps) 0.9560 0.9567

a3  (T = 2.5 ps) 0.9766 0.9769
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Figure 6.30 Third discontinuity transmitted impulse response
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estimation algorithm is studied using the measured reflection response shown in

Figure 6.31. The layer reflection coefficients are shown in Figure 6.32.
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Figure 6.31 Measured reflection response due to the 18.5 GHz pulse

However, the estimated reflection coefficient values rapidly decreased in amplitude

after the 30th sample value. In Figure 6.31, we can observe a significant initial

reflection which is followed by several lower amplitude transients. The primary

reflection is due to the first discontinuity, while the subsequent transients are dis-

torted by the multiple reflections. Next, the impedance profile is computed from

the estimated reflection coefficients using an initial impedance value of 50fl.
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Referring to Figure 6.33, a characteristic impedance of 12P is estimated for the first

step discontinuity as compared with a theoretical value of 9.511 at 4 GHz.
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Figure 6.32 Layer reflection coefficient estimate using measured data

The impedance profile estimates a 50fl microstrip line following the initial disconti-
nuity. This narrow impedance estimate compares favorably to the theoretical value

of 53Q1.

The simulation and measured results presented in this section have demon-

strated the performance of the layer-probing algorithm. However, the algorithm

assumes that the multiple discontinuities can be accurately modeled by cascading

minimum-phase transfer functions. A practical realization of the algorithm could

114



be achieved by using optoelectronic picosecond sampling techniques and real-time

digital signal processing. Finally, the layer impedance profile, using measured re-
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Figure 6.33 Characteristic impedance profile for multiple discontinuities

flection data, produced excellent impedance estimates for both the initial cascaded

microstrip step discontinuity and the narrow 0.3 cm microstrip line.
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Summarizing, we have presented both experimental and simulation re-

sults for three microstrip test structures. First, pulse propagation simulations were

performed using both the equivalent circuit and ARMA/AR parametric models of

an IC microstrip interconnection. Time-domain measurements were compared with

the simulation results. Second, a cascaded microstrip step discontinuity was inves-

tigated. Using the equivalent circuit and parametric models derived in Chapter IV,

reflection and transmission response simulations were compared with experimental

results. Third, an equivalent circuit model was developed for a lossy multi-section

microstrip structure consisting of several cascaded step discontinuities. The circuit

model was validated by comparing PSPICE and PUFF simulations with microwave

measurements. Finally, the parameter estimation algorithms, presented in Chapter

V, were applied to simulated and measured response data in order evaluate their

performance.
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VII. SUMMARY AND CONCLUSION

With the development of automated optoelectronic measurement systems suit-

able for the manufacturing environment comes the problem of how to characterize

microwave integrated circuit (MIC) devices and interconnections in MMIC's. This

thesis has presented new computer-aided design models and parameter estimation

techniques to model these MIC interconnections using picosecond time-domain mea-

surements.

A. SUMMARY OF SIGNIFICANT RESULTS

Equivalent lumped-distributed circuit models were derived for lossy dispersive

microstrip transmission line structures. The circuit models consisted of resistive and

reactive lumped-elements, and distributed lossless transmission-line sections. The

models were compatible with general computer-aided design techniques and simu-

lation programs, such as PSPICE. In addition, the circuit models for the cascaded

microstrip step discontinuity accurately characterized the reflected and transmitted

wave propagation in the structure. These models mark a significant improvement

over empirical modeling for which accurate generalized closed-form solutions are

not available for CAD programs.

The picosecond sampling performance of current optoelectronic measurement

systems motivates a digital signal processing framework for the modeling and anal-

ysis of high-speed transient signals. Parametric models of lossy dispersive microstrip

transmission-lines provide an innovative modeling approach not previously pre-

sented by microwave engineers. The parametric model approach is emphasized

for several reasons. First, the fitting of an autoregressive mo lel to an observable

time series is a linear process which can be handled using well tried and highly

efficient computing algorithms. Secondly, an autoregressive moving-average model

provides the smallest number of parameters for an optimal and most parsimonious
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representation of the propagation process. Finally, the identification problem in

parametric modeling, in other words choosing an AR or ARMA representation for

a microstrip line, was shown to be intimately related to the critical physical prop-

erties. We have demonstrated how the effective microstrip permittivity of a MIC

interconnection can be evaluated from ARMA or AR model parameters. Further-

more, parametric model simulations accurately characterized the picosecond pulse

propagation on lossy dispersive microstrip structures. A first-order AR model of

the cascaded microstrip step discontinuity formed the basis for the development of

the multi-section microstrip structure model.

Several parameter estimation techniques were presented. Both deterministic

and stochastic algorithms were developed to estimate the ARMA anUd AR model

parameters. The weighted least squares (WLS) algorithm estimated the ARMA dig-

ital filter coefficients or model parameters from a prescribed unit impulse response.

The algorithm rapidly converged when applied to several finite-length deterministic

examples.

A discrete transformation of the network function approximation method, in-

troduced by Elmore (Ref. 461, was presented. This method approximated either a

first-order "all pole" or a second-order "pole-zero" network function from measured

transient pulse delay and rise times. A first-order AR model and a second-order

ARMA model were derived using the impulse invariant transformation of the re-

spective network functions.

A layer reflection coefficient estimation algorithm was derived. This algorithm

estimated the reflection coefficients from the sampled reflection response of a lossy

multi-section microstrip structure. The algorithm assumed a constant attenuation

factor and group velocity throughout the structure. The algorithm detected major

discontinuities within the structure.

Finally, the layer-probing algorithm was developed to characterize multiple dis-

continuities within a multi-section microstrip transmission-line, consisting of several
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step discontinuities. A minimum-phase parametric model described each discontinu-

ity. Inverse filtering and deconvolution techniques were employod b," the algorithm

to iteratively probe successive sections of the structure.

B. CONCLUSIONS

The research ccnducted for this thesis has shown that the parametric modeling

approach provides an alternative framework to characterize and analyze dispersive

pulse propagation on microwave integrated circuit interconnections. The model-

ing of dispersive propagation on silicon and gallium arsenide microstrip structures

is important because it points to a limitation in IC speeds even when transistor

switching speed continue to improve. The measurements conducted and reported

in this work have verified that the proposed equivalent circuit models are compati-

ble with available computer-aided design (CAD) programs. The circuit models were

developed using a combination of frequency-dependent expressions available in the

literature and original analysis by the author.

The development of optoelectronic measurement systems will provide the ca-

pability to directly sample high-speed transients on the semiconductor substrates

without introducing significant parasitics. With the availability of time-domain

measurements, we developed new signal processing algorithms to estimate both the

ARMA and AR model parameters.

The layer-probing algorithm presented a technique to iteratively identify indi-

vidual step discontinuities in a multi-section transmission-line. Simulation results

showed how destructive interference problems caused by dispersion and multiple

reflections degraded the algorithm for some structures investigated. This problem

was overcome by measuring and modeling the transmitted impulse response.
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C. FUTURE DIRECTIONS FOR RESEARCH

The objectives of the research were successfully accomplished. Several sugges-

tions for future research are now presented.

Researchers are currently studying optical techniques to measure nonlinear and

multiport characteristics of MMIC components and circuits. Based on these experi-

ments, nonlinear parametric models should also be investigated. The high frequency

sampling capability of photoconductor devices can be integrated with pulsed laser

technology to develop a picosecond time-domain measurement system using a white

noise excitation. Here, several stochastic-based parameter estimation algorithms

can be applied to the modeling problem.

Equivalent circuit and parametric models need to be developed for coupled

microstrip, coplanar waveguide and other m icrostrip discontinuities, such as bends.,

crossings and the asymmetrical step discontinuities.

Improvements to the layer-probing algorithm should include: 1) the develop-

ment of a method to estimate the attenuation factor of each lossy section. 2) the

implementation of a minimum-phase ARMA parametric model for each section, and

3) the integration of cross-correlation techniques.

Another important aspect of this research is its extensions to other engineering

problems. Future efforts envision the application of the proposed system identifica-

tion algorithms to ultra-wideband (UWB) radar target identification. Emphasis is

required on time-domain electromagnetics in measuring and computing the impulse

response of targets, radar-absorbing materials, transmitting and receiving antennas.

and various other media. New signal processing algorithms must be developed for

impulsive radar.
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Appendix A Derivation of the Schur Recursion Algorithm

A recursive in order solution for the AR lattice filter reflection coefficients is

presented. This derivation of the so-called Schur algorithm will show the computa-

tional efficiency of this algorithm over the Levinson-Durbin algorithm [Ref. 12: pp.

6-22]. The algorithm derivation will assume that the signal data is stationary.

1. List of Symbols and Definitions.

The following symbols are used in the derivation:

y(77) The autoregressive (AR) signal sequence.

b The prediction error filter coefficient vector.

e(n) The forward prediction error.

(n) The backward prediction error.

${e} Expectation operator.

[RYY] The autocorrelation matrix of the signal y(z?).

B(z) The z-transform of the forward model parameter.

!b(z) The z-transform of the backward model parameter.

k(P+ I ) The (p + 1)-th order model reflection coefficient, or lattice filter

reflection coefficient.

E(z) The z-transform of the forward prediction error.

E(z) The z-transform of the backward prediction error.

&(P)(7,) The (p)-th order normalized forward prediction error.

f (P)(71) The (p)-th order normalized backward prediction error.

Q_(P)(n) The (p)-th order Schur forward recursion parameter.

/3(P)(n) The (p)-th order Schur backward recursion parameter.
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2. Algorithm Derivation.

The present output data y(n) can be estimated from the weighted summation

of the past values of the output for the (p)-th order autoregressive (AR) model. This

estimate is expressed as [Ref. 46: p. 150]

P

y(n) -b y(?? - i) (Ala)
1=1

or in matrix form

y-(n) = by(n) (A.lb)

where

bT=[b, b2 .. bp]

yT(n) [y(n - 1) y(n -2) ... y(n -p)]

The prediction error is defined as the difference in the signal and its estimate or

e(n) = y(n) - y(n)

= y(7) _ bT y(7) (A.2)

The mean squared prediction error, expressed as a function of the prediction error

filter weights b., is formulated as [Ref. 56: p. 20]

c2(n)j T [R~y ] b - 2bTRyy + RYY(O) (..3)

,'.ere

Ryy(0) Ryy(-1) ...... R y(-7) + 1)

[Ryy] Ryy(1) Ryy(O) ...... Ryy(0)

R~Y(p - 1) ... M Ryy(1 g(0)

and

RT = [Ryy(1) Ryy(2) ... Ry(p)]

The solution of (A.3) for the optimum filter weights is given by

bPj = [Ryy] -  Ry (.4)
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which is commonly call- ' the normal equations [Ref. 56: p. 221. The normal

equations can be written in matrix form as

RFy (O) Ryy(-1) ...... Ryy(-p+ 1) b, " 1
Ryy(1) Ryy(O) ...... Ry(p) b2] = R (2) (A.5)

. "Y(.. () R bp () LY(PI

The autocorrelation matrix [Ryy] is Toeplitz if the signals are stationary which is

assumed in this derivation. The Levinson algorithm provides the solution of the

(p + I)-th order model parameters by using the previously determined p-th order

model parameters. [Ref. 46: pp. 81-85 ]. The (p + 1)-th order model parameters

are obtained recursively by

B(P+')(z) = B(P)(z) - z-1k(P+1B(P)(z) (A.6a)

13(P+')(z) = z-'B(P)(z) - k(P+i)B(P)(z) (A.6b)

where B(P)(z) is the p-th order forward model parameter transfer function, 3(P)(z)

is the p-th order backward model parameter transfer function, and k(,+i) is called

the reflection coefficient. The z-transform of the forward and backward prediction

error is obtained by multiplying (A.6) by Y(z).

E(P1')(z) = E(P)(z) - z-lk(P+1),(P)(z) (A.7a)

E(P+I)(z) = z- 1E(P)(z) - k(P+1)E(P)(z) (A.7b)

In the time domain the prediction error equations become

e(P+i)(n) = e(P)(n) - k(P+1)(P)(z - 1) (A.8a)

E(P+=)(n) = (P)(n - 1) - k(P+l)c(P)(n) (A.8b)

To find e(P+l)(n) and E(P+')(n) from e(P)(n) and i(P)(n), respectively, it is only

necessary to determine k(P+I). Since the zero order prediction of a signal is -(??) = 0,

the zero order error is

e0 (n) ) = y(n) (A.9)

123



and equations (A.8a) and (A.8b) can be realized as a lattice structure as shown in

Figure A.1.

(0)(2
n (n) e (n)

y(n)

Z- z- I
e (n) .. 4(1)

C (n) C (n)

Figure A.1 Second Order AR Latticc Filter Model

The reflection coefficient k(P+l) can be determined by minimizing the square of the

expected value of equation (A.8a) and (A.Sb) with respect to the forward (kf) and

backward (kb) reflection coefficients, respectively. The forward reflection coefficient

is
kf(P+') - e(P)(n)i(P)(n- 1)} (A.10)

Ej (P)(n - 1)i(P)(n- 1)}

and the backward reflection coefficient is

kb (P + ) = cje(P)(n)i(P)(n- 1)} (A.11)
Eji(P)(n)Z(P)(n)}I

The forward and backward reflection coefficients can be related to the geometric

mean form as [Ref. 57: pp. 434-437]

k(P+l) - e(P)(n) (P)(n - 1)} (A.12)
VE/ [e(P)(n)]2 },{ [i(P)(n - 1)]2'
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By substituting (A.12) into (A.10), the forward reflection coefficient becomes

-f (P1 = (P 1 V6 [e(P)(n )]2 lei [i(P)(n - 1)]121(.1a

e{ [V(P)(n _ 1)121 A1a

-fPl k(+1 Ile '(n) 1 (A.13b)
[ii )( - 11,

where

Hle(P)(n)II = £{ [e(P)(n)] 2

and

II()n- 1)II = { (P)(n -1)2

Similarly, the backward reflection coefficient (A.11) yields

kb(~l = (PI) eFe(p)2(n)}E{ [ZP( - 1)1 2 (A11a
.[e(P)(n)1 2(A1)

-bPl = k( I1 VE~p(1~ - 1)II (A.14b)
1[e(P)(n )] 211

Substituting (A.13b) and (A.14b) into (A.9a) and (A.9b), respectivelyv yields

CP1n)= e(P)(n) -k(P+ 1 4 (P)(n - 1) 11 e()nlI (A. I5a)
11[EP)7 - 0] 2 1

-(+)k =EP( - 1) - kP1 )(n) jje(P(n - 1)11 (A.15b)
11 [eP)(n)]2 1

The normalized (p + 1 )-th order forward and backward prediction errors are defined

as
(P+O~= e((A. 16a)

Ije(P+')(n)li(.1a

i;(P+')(n~ -1) A 1b

jiV(P+l)(n - 1)11(.1b

Factoring Ile(P)(n)Il from the right side of (A.l5a) and normalizing yields

-(P+')(n) {&~nI P)(n) - (1Y)? - 1)} (A.1I7a)

125



Factoring 1i(P)(n - 1)I1 from the right side of (A.15b) and normalizing yields

;r-P+l)(n) = IIPl)()I { 01 (P)(n - - (+&)nj(A. 1 -b)

We will next show that

Ile(P)(n)II 1(A. 18a)
Ile(P+')(n)II 1, - [k(P+ 1)

and
P()n- 1)11 1(A.l18b)

IIEP+I(n- 1)11 1 - -[k(P+1)]

Proof: Equation (A.18) is defined as

11c(P)(n)II_ [e( (n] }] (A. 19a)
I~e(P~'(n)II [Ie(P±1)(n - 1)2}

Squaring (A.9a) and taking the expectation yields

E{ [e(P+')(n )]2 } = E{ [e(P) (n)] 21 - 2k/P+1),Fe(P)(n)(P)(n - 1)}1

+ [k(P±' )]2,{ I P( - 1)] } (A. 19b)

Substituting (A.10) for kf(P+1), and simplifing

F{ [e(P+1)(n )12 } = E{ [e(P) (n)]2 } - kf(P+1)S{e(P)(n)E(P)(n - 1)1 (A. 19c)

Returning to equation (A.19a), we substitute (A.19c) to yield

Ile(P)(n)II - =1
Ije(P+')(n)II 1

VI{ [e(P)(n)] 2 I - kf (P+ ),I ~e(P)(n)E(P)(n -1)}

[ e{ [( n )]2 }

[ kf (P+1) {e(P)(n)i(P)(n - 1)} 2A1d

£{ e(P)(n)]2}
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Finally, we substitute (A.13a) for kf(P+') into (A.19d), and multiply the denomina-

tor term E{ [e(P)(n)] 2 } by the ratio

_/ e P() [~ 2 PP) (n- 1)] 2

simplifying yields

Ie(P)(n)II 1(A. 19c)
Ile(P+')(n)ll

- f (P+ I) E I e(P)(n)EC)(n - 1

Ie(P)(n)HI * - 1 (A.19f)

I[e(P+')(n)I 1l_ [k(P+1)]2

Following the same approach using equations (A.9b) and (A.11), it can be shown

that II(P)( - 1)11 1(A.20)

Ii(P+I)(n - 1)jj 1 1

The normalized lattice recursion equations are from (A.17a) and (A.17b)

(P+l)(n)] I -k(p+I)] [;_( (P)(n) ] (A.21a)

= P+')1 - [k(p+)] 2 [-k(P+') 1 [r(P)(n -1)

or
oIP+l(n) - [kP -(P)(n)1 (A.21b)

wherewhere [k(P+l)]_1[ lk p l  -k(P+l)]

- 1 =-P+l)] 2 [k' - k(P+1
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In order to obtain the Schur recursion equations we will introduce two new param-

eters, a(P)(n) and fi(P)(n - 1) as

a(P)(n) = E{('P)(k) y(n)} (A.22a)

-E }()n)yn (A.22b)

_(P)(n) = Ry(n) (A.22c)Ijy(n)ll

where RY(n) is a (p x 1) correlation vector, and the norm =y(n)jj =/R-(0).

Similarly,

fk) (P)(n - 1) = £I (P)(n - 1) y(n)} (A.23a)

=j r(P)(n - 1) y(n) (A.23b)
1 jr(P)(n - 1)11

(P)(n - 1) = Ry,(n- 1) (A.23c)

Ily(n - 1)"11

Using the normalized lattice recursion equation (A.21) and the previously defined

Schur recursion parameters ((P)(n)) and (f_(P)(n - 1)), the Schur recursion equation

is [ (P+i)(n) 1 ((+) -P r (n)1 (A.24)_ ('n - 1) 1[=I (P)(n -1) 1 (A24

We will next show the ((p + 1))-th order reflection coefficient in terms of the

ratio of Schur recursion parameters. From equation (A.22a) and (A.23a) we form

______(n) £{1 ()(n) (n)} (A.25a)

_(P)(n - 1) {(P)(n - 1) y(n)}

S { (-)} (A.25b)
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_ c.( )-).l ( (-( - )11(A.25c)
£{e (P)(n - 1)} Ia(P)(- )jj

-{(P)((n) )e(P)(n) i5 - 1)}
#(-) = 1) ( (A.25d)

V 1 [e(P)(n)]} [(P)(-)}

Using stationarity and E{ [f(P)(n - 1)]'} = _6{ [e(P)(n) 2 }, we have [Ref. 46: p.
168]

________ = " e(P)(n) (P)(n - ) (A.25f)P(P)(n - 1) E{ [i(P)(n - 1)12}

= k(P+ D .  (A.25g)

3. Normalized Lattice Filter Realization.

This section describes the normalized lattice filter as a direct method of
solving k( P+1) given the autocorrelation sequence (_yy). Assume the zero order

Schur parameters are

a(°)(1) = R(1)

(°)(0) = R()

Inserting these initial values in (A.25) we have

0 ) =o()(1)0(o)(0)

R(1)

The first order Schur parameters for (n = 1, 2) are solved using the recursion equa-

tion (A.24) as

(1)() [(o)(1) - k(1)#(O)(O)
1 - [k()] 2
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and

c() (2)1 [a(o)(2) - k(1)#(o)(1)]
V1- [k(',)] 2

where a(°)(2) = R(2) and 8(°)(1)= R(1). The ,0)(n) parameters are

#(1)(0) = 1 1= [fl(o)(0) - k(1)a(o)(1)]
V1/ - [0()]

and
(1 [0()(1) -

1 - [k()]

where a(0 )(2)= R(2) and f8(0)(1)= R(1). Substituting the previous results into

(A.25g) yields

k(2) = a()(2)00)(0)

R(2) - k(')R(I)

R(O) - k(I)R(1)

The Schur recursion equation can be realized as a p-th order normalized lattice

structure as shown in Figure A.2.

It [kl ] 2-1/2

a (1)

R(I), R(O)) (1)2 '-12

p (0)
{- I- On

]  -1

Figure A.2(a) Zero Order (n = 1) Normalized Lattice Filter
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(I) - kC 1 / l) 2) /

((1) (2)221/
( R(I). R(O)) -k~1 2 / -k~ I- [k"J2 /

(0) ()
0) (0)

(~~ ~ I i(,12)-/O 1 [ 2] )-/

Figure A.2(b) First Order (n = 2) Normalized Lattice Filter
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APPENDIX B PSPICE EQUIVALENT CIRCUIT LISTINGS

IC INTERCONNECTION (PI-NETWORK AND MATCHED IMPED TERMINATION)

" MICSFOSTRIP T.ASM!SSON LINE SIMULATION (LCL) PI - MODEL
* TEST STRUCTURE (LENGTH a 500E-06 m)
* SILICON SUBSTRATE (ER - 11.7)

.OPT ACCT LIST NODE OPTS NOPAGE RELTOL=.001

.WIDTH IN*133 OUT-S0

.OPTIONS LIMPTS - 20000

.OPTIONS ITL5 - 50000

.OPTIONS TRTOL-5

.OPTIONS ITL4-5"
V 1 0 PWL(0 0 3.75p .11 7.5p .25 11.25p 1.45 15p 1.9 18.75p 2 22.5p 1.9 26.2 5p 1.85 37.5p 1.6 52.5p 1.2
75p .72 78.75p 0)
RS1 2 74.23
Ti 2 0 3 0 ZO-74.23 TD-1.25ps
Ri 2 0 1.065K
R2 2 3 10.4
R3 3 0 1.065K
Ci 3 0 0.03pF
Li 3 4 0.332nH
C2 4 0 0.03pF
RL 4 0 74.23
.TRAN 1.25pS 80ps 0 1.25pS
.PROBE
.END

IC INTERCONNECTION (T-NETWORK AND MATCHED IMPED TERMINATION)

.OPT ACCT LIST NODE OPTS NOPAGE RELTOL,.001

.WIDTH IN-133 OUT-80

.OPTIONS LIMPTS - 20000

.OPTIONS ITL5 a 20000

.OPTIONS TRTOL.5

.OPTIONS ITL4.5
* PIECEWISE-LINEAR APPROXIMATION OF NORMALIZED PCE SAMPLER 1
V 10 PWL(0 03.75p .11 7.5p .25 1125p 1.45 1Sp 1.9 18.75p 2 22.5p 1.9 26.25p 1.85 37.5p 1.6 52.5p 1.2
75p .72 78.75p 0)
RS 1 2 74.23
RI 2 0 1.065K
R2 2 3 10.4
R3 3 0 1.065K
T1 2 0 3 0 Z0-74.23 TD-2.23ps
Cl 30 0.O6pF
T2 3 0 4 0 Z0-74.23 TD-2.23ps
RL 4 0 74.23
.TRAN 1.2SpS 1OOpS 0 0.0ps
.PROBE
.PRINT TRAN V(4)
.END
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CASCADED-STEP DISCONTINU17Y PSPICE P1-MODEL SIMULATION

*DIELECTRIC: (G-I 0 ER a 4.2)
*INPUT SIGNAL~ (PIECEWISE-LINEAR APPROXIMATION OF THE MEASURED
*GAUSSIAN PULSE OF THE HP851i0 NETWORK ANALYZER)

.OPT ACCT I 1ST NODE OPTS NOPAGE RELTOLnO00l
.WIDTH IN=133 OUIT=SO
.OPTKONS UIMPTS - 20000
.OPTIONS ITL5 - 50000
.OPTIONS TRTOLm5
.OPTIONS rrL4-5
Vi 10 PWL(0 0 100P .06 300P .17 400P .37 S00P 1.88 900P 2.02 INS 1.93 1.4NS A .1i.5N5 .17 1.6NS
.044 17NS 0)
RS 12 41.24
Ti 20 3 0 Z-41.24 TD-750PS
Ri 3 0 3.118SK
R2 3 41.091
R340 3.11 SK
T2 4 0 50 ZO-41.24 TD=21 4PS
Ci 5 07.13PF
L4 5 60.362NH
C2 60 7.I3PF
T3 6 0 70 ZO-41.24 TDw2i4PS
R470 3.11 SK
R5 7 P 1 .091
R6803.iiSK
RI. 8 041.24
.TRAN 1OOPS 5NS 0 SOPS
.PROBE
.PRINT TRAN V(2)
.PRINT TRAN V(8)
.END
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CASCADED-STEP DISCONTINUITY PSPICE SHUNT CAPACITOR MODEL SIMULATION

* DIELECTRIC: ( EPOXY G-10 ER - 4.2)
* INPUT SIGNAL:- (PIECEWISE-LINEAR APPROXIMATION OF THE MEASURED
* GAUSSLAN HP510 NETWORK ANALYZER SOURCE)

.OPT ACCT LIST NODE OPTS NOPAGE RELTOL-.001

.WIDTH IN,133 OU'r,80

.OPTIONS UMPTS - 20000

.OPTIONS rrL5 - 50000

.OPTIONS TRTOL-5

.OPTIONS ritL4-5
V 10 PWL(0 0 100P .06 300P .17 400P .37 800P 1.88 900P 2.02 1NS 1.93 1.4NS .41 I.SNS .17 1.6NS
.044 1.7NS 0)
RS 1 241.24
TI 2 0 3 0 Z0=41.24 TD,750PS
RI 3 0 2.316K
R234 1.409
R3 4 0 2.316K
T2 4 0 5 0 Z0-41.24 TD-214PS
Cl 5 0 10.91PF
T4 5 0 6 0 Z07.424 TD-24.38PS
T5 6 0 7 0 Z0.7.424 TD-24.38PS
C2 7 0 10.91PF
T3 7 0 8 0 ZO=41.24 TD,214PS
R4 8 0 2316K
R5 8 9 1.409
R6 9 0 2.316K
RL 9 0 41.24
.TRAN 10OPS 5NS 0 30PS
.PROBE
.PRINT TRAN V(2)
.PRINT TRAN V(9)
.END
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MULTI-SECTION MICROSTRIP FILTER LAYER-PROBING PSPICE SIMULATION

* DIELECTRIC:EPOXY (ER . 4.3). H-i .59mm. DESIGN FREC - 8.79GHz
*CHARACTERISTIC IMPEDANCE - 59.2 Ohms (THEORETICAL)

* .OPT ACCT LIST NODE OPTS NOPAGE RELTOL-.001
.WIDTH 1Nm133 OUT.SO
.OPTIONS UIMPTS - 100000
.OPTIONS ITLJ - 100000
.OPTIONS TRTOL.t5
.OPTIONS flL4I-S

*THE FOLLOWING PIECEWISE-LINEAR APPROXIMATION DESCRIBES AN INIrTIAL 1lOOPS
*GAUSSIAN PULSE HAVING A 3DB BANDWIDTH OF 8.79 GHZ
*V3 1 0 PWL(0 0 1lOP .03 20P .33 30P .968 40P 1.68 SOP 2 60P 1.68 70P .968 SOP .33 90P .03 1lOOP 0)

THE FOLLOWING PIECEWISE-LINEAR APPROXIMATION DESCRIBES THE SIMULATED
INVERSE FILTER OUTPUT USING THE I1ST DISCONTINUITY AR COEFFICIENT.

*V3 1 0 PWL(0 0 lOP .03 20P .302 30P .668 40P .8 SOP .47 60P -.1426 70P -.562 SOP -.552 90P -.274
loop 0)

THE FOLLOWING PIECEWISE-LINEAR APPROXIMATION DESCRIBES THE SIMULATED
2ND-ORDER INVERSE FILTER OUTPUT USING 1 &2 DISCONTINUITY AR COEFFICIENTS.

*V3 1 0 PWL(0 0 l OP .03 20P .276 30P .398 40P .206 SOP -.238 60P -.558 70P -.436 SOP -.053 90P .22
l OOP .212 11OP .024 120P 0)
RS 12 259.22
TO02 0 3 0 Z59.2 TD-1 P
RI 3 0831.7
R2 34 .48
R3 4 0 831.7
T2 4 0 50 ZO-59-22 TD-292.6PS
Cl 5 03.57PF
TAI5 0 60 Z-59.22 TD-77.7PS
R4 6 0 1.55K
R5 6 74.52
R6 7 0 1.55K
TS 7 0 80 ZO-59.22 TD-77.7PS
C2 80 1.5PF
T6 8 0 90 ZOm59.22 TD-77.7PS
R7 9 0 1.55K
RO 9 10 4.24
R910 0 1.5K
17 10 011 0 ZO-59.22 TD-77.7PS
C3 11 0 3.57PF
TO 11 0 12 0 ZO-59.22 TD-104.4PS
R1 3 12 0 2.323K
R14 12133.02
R15 13 02.323K
RL 13 059.22
.TRAN 5PS 2.5N5S 0 5PS
.PROBE
.PRINT TRAN V(2)
.PRINTTRANV(13)
AEND
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