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1 Abstract

It is shown that the direct correlation function of a mixture of hard ions
in the mean spherical approximation of Hiroike [1],(MSA) can be expressed in
terms of overlap functions of charged spherical spherical shells. In particular,
if the system has a mixturc of pairs of ions of equal size and opposite charge,
then the MSA direct correlation function is given by the electrostatic energy
of a pair of charged shells, of radius equal to the radius of the hard ion plus
s5. As in the theory of Rosenfeld [2] this direct correlation function can be
derived from a free energy functional, and a simple extension to non-uniform
systems is given.

2 Introduction

Liquid state ‘heories like the MSA and the HNC can be derived as varia-
tional problems of the free energy functional, which is written in terms of
the Ornstein-Zernike direct correlation function . This view was recently
introduced by one of us [2, 3, 4], for systems of hard objects in general, and
hard spheres in particular . In that work the relation between the grand
potential, the direct correlation function and the scaled particle theory was
clearly shown. We extend now this analysis to the case of charged hard
spheres in general, and to the primitive model of electrolytes in particular.
The asymptotic limit of strong Coulomb interactions between the charged
particles , that is the limit in which either the charge goes to infinity or
the temperature goes to zero, is the starting point of our present discussion
{5, 6]: In this limit the free energy and the internal diverge to the same order
in the the coupling parameter while the entropy diverges at a slower rate
and therefore the free energy and the energy coincide. The mean spheri-
cal approximation (MSA) and the hypernetted chain approximation (HNC)
coincide. This is a very gratifying feature, because the HNC, which from
the diagram expansion (and numerous test cases) point of view is the more
accurate theory, is in general difficult to solve numerically, while the MSA
is analytical in most cates, and in the asymptotic limit, of a rather surpris-
ingly simple form. In the asymptotic limit the excess electrostatic energy is
identical to the exact Onsager lower bound, which is achieved by immersing
the entire hard core system in an infinite neutral and perfectly conducting




(liquid metal) fluid. The Onsager process of introducing the infinite con-
ductor, naturally decouples all the different components in the system which
may differ in size, shape, charge distribution an relative orientation in space.
As a result, the variational free energy functional in the high coupling limit
diagonalizes, and the mathematical solution of the asymptotic problem is
given in terms of geometrical properties of the individual particles in the
system. This novel approach is based on the finding that both the weak and
strong couphug solutions of the HNC equation are bounded from below by
these limits. This is an exact new result. The Onsager approach to charged
hard particle systems, as outlined above, has been developed for plasmas of
various kinds (charges of one sign, with no hard core excluded volume con-
straints, and in an uniform neutralizing background of opposite sign), and
for uncharged hard particle systems both in the uniform an non uniform
cases. These two cases provide the basis for the treatment of the more gen-
eral cae of the charged hard particle system. As it has been shown in the case
of the non-uniform hard particles, this new approach provides an excellent
starting point for the quantitative discussion of inhomogeneous uncharged
hard sphere systems. We show that the MSA free energy is the appropiate
functional from which the charge part of the direct correlation function is
obtained by functional differentiation. This also suggests a simple extension
of the pair MSA to inhomogeneous charged systems.

3 Direct Correlation Functions in Terms of
Geometry and Electroststics

Consider an arbitrary mixture of charged hard spheres of radius R; =
0i/2, charge z; and number density p; = N;/V. The temperature is T and
Boltzmann’s constant is kg. We use the notation 8 = k—lT- We can imag-
ine that the charges in our system can be turned on gradually: Then, the
Helmholtz free energy F is the sum of two contributions, a term due to the
excuded volume effects of the hard spheres F** and a term due to the charges

Fh . which usually will include cross terms of charge and excluded volume




(cavity effects).
F = Fh 4 M54 (1)

The hard sphere term was discussed in detail in the original work of Rosenfeld
(2, 3, 4], and can be written, for the general inhomogeneous system

FMSA — / dr, & (r) (2)

where ®°*(r) is the local Helmholtz free energy per unit volume. In this note
we use the mean spherical approximation (MSA) to compute this magnitude:
In the homogeneous bulk phase [1, 8]

&h ~ MSA — peharge | T3 /35 (3)
where the local internal energy per unit volume is
BEHRTI = Z piziV; (4)
with 3 fe?
T wksT | € )

In this equation the parameter N; represenis on Lalf of the potential of a
spherical shell of radius b; = R; + 1/2T". This energy is the sum of the energy
of a collection of uncorrelated spherical capacitors of radius b;. We could
use the Onsager picture of spherical shells in liquid metal to represent this
system.

Tz}
Ni -1 + FU,’ (6)
where the effective charge is
2! = z; + no; (7)
and 7 is defined by
| pioiz
E' 14lo; (8)

n= —
2/7)(1 - &) + T 2
with

& = (r/6) L PR (9)
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The parameter 7 is generally small for ionic solutions, and is zero for the
restricted case of ions of only one diameter, and also when neutral pairs of
ions are of the c<ame size. The paramenter I' is obtained from the optimization

condition ek
T =0 (10)

which turns out to be exactly equivalent to the equation obtained directly
from the boundary conditions of the MSA [7, 8]. The energy in the MSA
can be considered as the sum of the energies of spherical capacitors of ca-
pacitance C; = 5;[9]. The extension of 4 to non uniform systems is quite
straightforward. Consider the total internal energy U

UMsA — /drlEMSA(rl) (11)
where the local internal energy is

BEMSA(r) = ‘mZPi(l‘)ZiNi (12)

We rewrite this equation using the charge neutrality sum rule [10, 11, 12} for
the inhomogeneous system

— 2= / dr Y py(r1)z5hij(r1, v2) (13)

Here the function h;; prevents the overlap of ions. In the Onsagerian picture
of the MSA, the plausible form of this function corresponds to completely
uncorrelated distribution function for non overlapping pairs. Therefore this
function is -1 when the distance r < ¢;j, and zero otherwise. Substituting 13
into 11 yields

BUMSA = —70/dr1/drzZz,-ij;(rl)p,-(rz)h.-,-(rl,rz) (14)

Consider now the interaction of two charged shells of radius b;, 5; , with
centers at positions r;, r;. From simple electrostatics we know that

‘I’i.j(bi’bﬁ ri2) = (1/2)/dr39i(r1 - r3)¢j(r3 - 1'2) 2= —r (15)
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where the electrostatic potential ¢ is defined by

d
1'32 / 1‘4, r32 sy | (16)

The charge density of the shells 1s

opolrl-b) (17)

4(r) =
The total energy is given by 14
BUMSA = —(1/2)70/dl‘1 /dl‘z Y- pi(r1)pj(r2) i ;(bi, by r12) (18)
"Yj

where we have made use of the extension of the electroneutrality relation 13
to the case of smeared charge distributions. Consider again the interaction
of the spherical shells 15: When they overlap we get

ZiZj

‘I’i,j(bi,bj;l') b b

—2[(b; — b;)* — 2r(b; + b;) + ] (19)

If we rearrange this expression, we obtain

BUMSA = —(1/2), [ dra ¥ Qi(ra)®;(ra) (20)
where
Qu(ra) = [ dripilr)ai(e = v3) (21)
and
85(rs) = [ drapy(r2)dy(rs = 2) (22)

For nagraveslapping tcanfigurationsy asspatially uniform systems 20 is just

equal to the starting equation 4. In fact, simple integration of Jand 22 with
17 yields

Q,’(l‘g) =2 (23)

and

®,(r3) = —2N; (24)




We recall now the relation between the Helmgholtz free energy and the
direct correlation function

62,HFMSA
~ 8pi(r1)6p;(r2)

Let us now restrict to the case in which = 0.Functional differentiation will
yield

MSA

G ; (r,r3) = (25)

cM3A(r1,r2) = (1/2)710 Wi 5(bis bji r12) (26)

"J

which is exactly identical to the direct correlation function first derived by
Hiroike (1]

Equation 26 is the natural extension of the MSA direct correlation
function to inhomogeneous sytems. To a first approximation we may take
the bulk value of I', aliLough refinements are possible. The pair correlation
functions which are computed from the Ornstein Zernike equation, can be
shown to satisfy the local electroneutrality condition 13. A more detailed
discussion will be published in the near future.
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