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1.0 INTRODUCTION

The purpose of this report is to evaluate the flutter characteristics of a control fin for the
Advanced Kinetic Energy Missile (AdKEM). First of all the two—degree—of-freedom equa-
tions of motion for a control fin under aerodynamic and actuator loads will be determined.
To present a worst case analysis of the problem. these equations will be simplified by ne-
glecting mechanical and aerodynamic damping terms. The fin characteristic equation will
then be found and the fin flutter regions will be plotted. Once the flutter regions are plotted.
the fin bending stiffness and actuator dynamic stiffness must be known to evaluate the possi-
bility for fin flutter occurring.

The fin bending stiffness is determined assuming a distributed load, equal to the dynam-
ic pressure, is applied to the fin. The fin bending moment equation is integrated numerically
to determine the fin slope and resulting bending stiffness at any point along the fin span.
These results are then modified for input into the stability equation.

The flutter analysis contained in Appendix A assumes that the actuator’s hinge moment
stiffness can be represented by a second order system. This report investigates the validity of
this assumption by comparing the second order system’s stiifness to that of a third order sys-
tem and a detailed non-linear actuator model. Results indicated that for the case of zero
damping, a worst case flutter condition, the second order system model provides a good ap-
proximation of the real actuator’s dynamic stiffness.

The values found for fin bending stiffness and actuator dynamic stiffness are then com-
pared to the fin stability plot to evaluate the possibility of fin flutter. The results show that
the fin design considered in the analysis lies in the flutter region.




2.0 FIN STABILITY EQUATION
The equations of motion of a missile control fin may be determined by considering the

fin free—-body diagram as shown in Figure 2-1. This figure shows a two—degree—~of-freedom
control fin with aerodynamic and actuator loads being applied. Appendix A contains two

reports entitled I_\LtD:gLﬁ:QLEmdgmﬂmmmmLMQdﬂ and ARAP Simplified

Criterion which were used as references in the development of the equations of motion.
These are

F;xx 1.‘,1 r:_‘ Co + (Q/Vm A Cla)Byy (Q/Vm A CLg)Byy 6
l_lxy lyy l_a (Q/Vm & CI, WBxy Ca + (Q/Vm A Clg)fxx a
Ko V2 A Clg Y 61 _ -
+[o Ki + Q A Clg xac] [a] =0 @-1)

These equations can be simplified by assuming that all damping terms are zero. This results
in the equations

Ixx IX)’ 0 + Kg QA Cl-a Yac 6 =0 (2 - 2)
Ly lyy a 0 Ki + Q A CLg X, a
The fin characteristic equation can now be determined ard written in Laplace form as

(Inxlyy = Ixyz)s4 + (IxKaa + IyyKo - IxyKaO)S2 + KagKg = 0 (2-3)

where

Kee = Ky + Q A Clg Xy (2-4)

Kew = Q A CLg Y, (2-5)
The dynamic pressure, Q, is a function of the Mach number and is found using

Q = Ing Pum Mach? 2-6)

The litt coefficient, CLy , center of pressure, and fin surface area and inettias of the fin
shown in Figure 2-2 have been estimated 2s shown in Table 2~1




TABLE 2-1. Control Fin Chatacteristics

MACH NUMBER CLa(rad™!) Xac (in) ]
0.5 4.0508 .60
1.0 4.9217 —{).78
1.5 4.5321 0.15
2.0 3.3232 0.28
. 3.0 2.1257 0.26
4.0 1.5699 0.204
5.0 1.2433 0.17
6.0 1.0428 0.15
6.5 0.9740 0.145
7.0 0.8995 0.14
Fin Reference Area = 3.463 in?
Yac = 0.9 in
Iyx = 285.43 (10~6) in-1bg—s2
Iyy = 122.77 (10-%) in-Ibr-s?
Ly = 28.672 (107%) in-Ib-s2

The location of the center of pressure in the x—axis, Xy, is measured from the fin hinge
line and is positive to the rear as shown in Figure 2-1. The roots of Equation 2~3 can now
be solved for as a function of fin bending stiffness, actuator stiffness, and Mach number and
the stability regions of the control fin can be plotted. A listing of the program used to deter-
mine the roots of Equation 2-3 is provided in Appendix B and the results are plotted in Fig-
ure 2-3.




3.0 CONTROL FIN BENDING STIFFNESS

The fin bending stiffness, Kg, must be found in order to deterrnine if the control fin de-
sign is unstable. Bending stiffness is defined as

Ko(y) = [dMd8] ][, (3-1)

The distance y is measured across the fin span from the root as indicated in Figure 2-1.
The equation for the bending moment, assuming a constant distributed load, Q, applied to the
fin, may be found by integrating the shear equation for the steel control fin root shown in
Figure 3-1. In order to evaluate the shear, the fin planar area must be deteninined. This is

Al = 3 y[2L+ (- 1) y/ig] (3-2)

Now the shear equation can be found by considering the force balance at a point y along the
span.

V(y) = Q[A(s) - AY)] (3-3)

where A(ls) is the total fin root area. Integration of Equation 3-3 results in the bending mo-
ment equation as a function of y.

M(y) = Q[As) (y-Is) -5 I (v? - 1s%) = (ks - 1) (y*Is*)/6ls] (3-4)
Next, the fin slope must be determined. The difference in slope of two points along the
fin root is defined as
b
O 6, = I (M/EI) dy (3-5)
Y,

At the fin root the slope, 8, is assumed zero. Therefore, the slope at any location y may be
calculated as

Y
o) = (UE) [ M)y (3-6)
0




assuming that the modulus of elasticity, E, is constant. Since both the bending moment and
the moment of inertia are functions of y, Equation 3—6 could be better solved using numeri-
cal integration. In that case, Equation 3-6 takes the form

y
By) = OV/E) D [M]; (3-7)
j=0

where Oy is the integration step size. In order to determine the slope at a point on the fin, the
cross—sectional moment of inertia must be found as it varies with span. The development of
these equations for the fin root in Figure 3-2 is shown in Appendix C.

Knowing the bending moment and slope at any location, the bending stiffness may be
calculated from Equation 3-1. This equation can also be expressed as

Ko(y) = [M(y) - M(y-0y))/[6(y) - 8(y-0y)] (3-8)

where the notation ‘(y—0y)’ denotes the moment or slope at the previous integration point.
Note that the dynamic pressure, Q, cancels out in the calculation of bending stiffness.

The equations discussed above have been incorporated into a computer program, listed
in Appendix D, which calculates the fin bending stiffness and other parameters. This pro-
gram first calculates the cross—sectional moment of inertia at the particular span location us-
ing the equations developed in Appendix C. Then the bending moment at that location is
calculated from Equation 3—4. This is used in Equation 3-7 to calculate the slope of the
point and the bending stiffness is determined using Equation 3-8. Also calculated is the de-
flection of the fin normalized to dynamic pressure. These data are then written to a file for
plotting. This process is repeated along the length of the span.

The fin geometry parameters shown in Figure 3-3 were used as input to the program
discussed above and the results are shown in Figure 3—4. This plot shows the fin bending
stiffness and normalized deflection as they vary along the span.

Since the fin characteristic equation developed in Section 1.0 assumes that the dynamic
pressure is resolved as the lift force applied at the center of pressure, a comparison of the two
methods has to be made. This can be done by letting the deflection of the distributed load
case at the fin tip equal the deflection of the simple case at the fin tip and solving for the
bending stiffness that would allow this deflection to occur. This is shown pictorially in Fig-
ure 3-5. Summir.g moments about the fin root for the simple case shows that

FL Yac = Kegs 65 (3-9

Solving for the spring stiffness, Kgs, by relating the lift force to dynamic pressure and the
bending angle to deflection shows that

Kas = [A(ls) Yac 's)/[2(15)/Q] (3-10)




where z(15)/Q is the absolute value of the normalized deflection of the fin at the tip and is
taken from Figure 3—4. Taking the value of z(l5)/Q from this figure shows

z(15YQ = -0.910(10%

and substituting this into Equation 3-10 results in an equivalent spring stiffness of

Kygs = 5280 in—lbsrad

This value can now be used in conjunction with the actuator dvnamic stiffness to determine,
using Figure 2-3, if the fin design lies in the flutter regions.

4.0 ACTUATOR DYNAMIC STIFFNESS

The flutter analysis contained in Appendix A uses a second order linear system to repre-
sent the actuator’s hinge moment stiffness. The intent of this section is to determine how
well a second order system represents the dynamic stiffness of an actual open center valve
pneumatic actuator. To accomplish this the second order system’s dynamic stiffness is deter-
mined and compared to that of a linearized actuator model, as well as a detailed non-linear
actuator model.

The second order system’s dynamic stiffness is determined by considering the equation
of motion of a second order system subjected to a torque disturbance.

lyd + Caa + Kega = Tocos(Q) (4-1)
The steady-state solution to this equation is given by
ag =a, cos(Q-¢) (4-2)
Substituting Equation 4-2 and its derivatives into Equation 4—1 results in

- Inyzc!,i cos(f2t - @) — CoQa, sin(Qt-¢) + Kya, cos(RQ - ¢) = Tocos(Qt) (4-3)
Since each term in this equation represents a force acting on the inertia, the equation can be
represented by a force vector polygon, from which it is easily seen that

To? = (Kga, - Iyygzal)z + (CaQaa)z (44)

and




tan(¢) = CoR/(Kq - lnyZ) (4-5)

Solving for the amplitude of the steady—state fin position, a,, and recalling expressions for
frequency ratio, natural frequency and damping factor results in

a, = (To/Ko)/I(1=17) + (200)°)F (4-6)

From Equation 4-6 the desired expression for the second order system’s dynamic stiffness is
obtained

Ke = (Toa,) = Kgql[(1-19)? + (28r)%]'7 (4-8)

An expression for the dynamic stiffness of the third order, linearized actuator model,
represented by the block diagram in Figure 4-1, was obtained from Reference 1 and is given

by
Kg = (1/s)(Iyys3+Bs? + (Kq~=Hg) s + KgKiGo) (4-9)

Sctting s equal to )2, an expression for the magnitude of Equation 4~9 is obtained, which is
the desired expression for the third order system’s dynamic stiffness.

Ks = [(Ka + Ho - 1y ®)? + [BR - (KaKiGe/IY? (4-10)

Substituting expressions for frequency ratio, natural frequency and damping factor, which
were defined for the second order system, Equation 4-10 becomes

1
Ka = Ka {[1-7 + (Ha/Ka)[? + (281~ (K,Go/Q) (4-11)

Note that for the condition where Hg is small compared to Kq, the dynamic stiffness deter-
mined by Equation 4-11 approaches that of Equation 4-8 at high frequencies. However, at
low frequencies the dynamic stiffness determined by Equation 4-11 approaches infinity,
while Equation 4-8 approaches K, .

In order to apply Equations 4-8 and 4-11, an expression for the actuator’s static stiff—
ness must be determined. From the diagram shown in Figure 4-2, an expression for torque
about the hinge line is determined.

T = [APc - (Ac-A)Ps] L (4-12)




Differentiating this equation with respect to a results in

dT/da = AL(dP/da) (4-13)

From the actuator gecometry, a difterential change in volume is related to a hitferential
change in actuator position according to the relation

da/dV = -1/AlLsec?(a) (4-14)

If the compression of the gas above the piston follows an isentropic process then pressure
and volume arc rclated according to

P.V" = constant (4-15)
Differentiation of Equation 415 results in
dPy/dV = -nP/V (4-16)

Combining Equations 4-13, 4-14, and 4-16 provides an expression for the actuator’s static
stiffness.

Ka = nP(LA;)sec’(a )V (4-17)

The dynamic stiffness was determined for the small and large AAKEM pneumatic ac-
tuators using Equations 4-8, 4-11, and 4-17. The following parameters were used for the
small actuator.

P. = 1587.3psia L = 0.6in Ac = 0.2961 in?

Vo = 0.046in3 n = 1667 B = 0.50 in-lby/rad/s
Hy = 0 in-lbgrad G.- 1.0 K, = 124.64 rad%/s
Iyy = 122.77(105~° in-lbg-s?

From which the small act::ator’s static stiffness and natural frequency are determined at the
null position (a = 0°).

| X, =1808 in-Ibgrad
Q, = 611 Hz

The small actuator’s dynamic stiffness obtained from the second order model is compared to
that of the third order model in Figures 4-3 thru 4-5 for various values of 8. A good match
is seen for 8 = 0.50, which requires that C, = 0.47. A comparison for the case of zero
damping is shown in Figure 4-6.




The large actuator’s dynamic stiffness was detesmined bascd on the following parame-

ters.
P. = 1492.2psia L = 0.560in A, = 0.586in?
V, = 0085in? o= 1607 B = 0.50in-Ibyrad s
H, = Oin=lbjrad Go= 10 K, = 124.0drad™s

245.54(10)7 in-lby-s?

Iyy
From which the large actuator’s static stiffness and natural frequency are determined at the

null position (@ = 0").

Kg = 3138 in-lbg/rad
Q, =569 Hz

The large actuator’s dynamic stiffness obtained from the sccond order model is compared to
tha. of the third order mode! in Figures 4-7 thru 4-9 for various valucs of . A good match
is scen for & = 0.25, which requires that C; = (.44 . A comparison foi the case of zero
damping is shown in Figure 4-10.

As a final comparison the stiffaess of the small AJKEM actuator was determined using
a detailed non-linear actuatcr model. A block diagram of this model is shown in Figure
4-11. The stiffness was determined by applying a torque disturbance and detcrmining the
resulting deflection. Simulation results are shown compared to the second and third order
models in Figures 4- 4 and 4-6 for & = 0.50 and 6 = 0 respectively. Note that for the case
with damping the detailed non-linear model indicates a sharp drop in stiffness at the closed
loop system’s natural frequency, which is not predicted by the linear models. However, for
the case of zero damping the models are in fairly close agreement.

Based on the above discussion it may be concluded that the linear second order system
model used in the flutter analysis realistically represents the stiffness of the AJKEM actuator
for the case of zero damping. Further, since zero damping is 2 worst case for flutter, the use
of a second order system model with zero damping should provide a conservative flutter pre-
diction.




5.0 CONCLUSIONS AND RECOMMENDATIONS

Referring to the values of control fin bending stiffness and actuator dynamic stiffness
determined and comparing them to the fin stability regions shows that the fin lies in the flut-
ter region for the small acteator design. This is shown in Figure 51 1tis also seen that the
large actuator design is very close to the flutter regions. One way of eliminating this prob-
lem is to increase or decrease the actuator stiffness. Since actuator st.ffness is largely a func-
tion of the hinge moment requirement this value can not be readily changed. Therefore, it is
required that the fin bending stiffness be changed. Referring to Figure S-1 shows that the
best approach would be to increase the fin bending stiffness because this would aveid the
flutter regions should the hinge moment requiiement, and thus the actuator stiffness, be re-
duced. Therefore, it is recommended that the fin root thickness be increased and the flutter
analysis be performed again.




‘//

a (Fin Rotation)
(Bending Rotation)

T (Shaft Torque)
y

Figure 2-1. Two~Degree-of-Freedom Control Fin.
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NOMENCLATURE

A Control fin surface area (in?)

A(V) Control fin root surtace area as 1t vares along the span (in-)

Ac Actuator control piston area (in)
A, Actuator rod area (in®)
B Viscous friction coefficient (in-lbg/rad/s)

Cla Control fin 1ifi coefficient (rad™!)

Ca Actuator rotational damping factor (in-~lbg—s/rad)
Co Control fin bending damping factor (in-lbg—s/rad)
E Modulus of elasticity for steel (Iby/in?)

FL Lift force (1bg)

G, Actuator compensator gain

Ha Hinge moment coefficient (in—lbg/rad)

Lex Fin moment of inertia about x—axis (in-Ibg—s?)

Iy Fin product of inertia (in-Ibg~s?)

Iyy Fin moment of inertia about y—axis (in~lbe—s?)

K, Equivalent actuator valve gain (rad/s/rad)

Ky Actuator dynamic stiffness factor (in-lbg/rad)

Ka Actuator static stiffness (in-lbg/rad)

Ks Fin bending stiffness factor (in-lbg/rad)

Kes Simplified fin bending stiffness factor (in-lbg/rad)

L Actuator lever arm (in)
I Fin root length (in)

I Fin span length (in)

N Fin tip length (in)

M(y) Finbending moment as it varies along the span (in-lbg)
Mach  Missile Mach number

n Specific heat ratio of helium
Ngir Specific heat ratio of air
a Actuator position (rad)

31




a g Actuator steady-state position (rad)

Paim Atmospheric pressure (psia)

P. Actuator control pressure (psia)
P Actuator supply pressure (psia)
Q Dynamic pressure (psia)
r Frequency ratio (2/€2,)
Bxx Acrodynamic viscous damping factor (in”)
By Acrodvnamic viscous damping factor (in?)
Byy Aerodynamic viscous damping factor (in?)
T Actuator torque output (in—lby)
t Time (s)
To Torque disturbauce (in—lbg)
8 Damping factor (CzR2,/2Kg)
6 Fin bending angle (rad)
Q Frequency (rad/s)
6(y) Fin slope as it varies along the span (rad)
ok Natural frequency (Kq/lyy)? (rad/s)
dy Numerical integration step size (in)
A% Actuator control chamber volume (in3)

Vm Missile velocity (in/s)

V(y) Fin shear force as it varies along the span (Iby)

Xac Location of center of pressure from x-axis (in)
7/ Phase angle (rad)

y Distance along fin span from root (in)

Yac Location of center of pressure from y-axis (in)

z(ly) Fin deflection at tip (in)
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APPENDIX A
TWO DEGREE OF FREEDOM HIGH SPEED FLUTTER MODEL
and ARAP SIMPLIFIED CRITERION REPORTS




APPENDIX A
TWO DEGREE OF FREEDCM HIGH SPEED FLUTTER MODEL
Consider a fin and coordinate system located at fin center of compliance.

Center of Compliance

s

& ( Fin Rotation)
(Bending Rotation)

* T (Shaft Torque)

Figure A-1. Sketch of Fin Geometry.

A complete summary of system parameters is presented in Table A-1.
A summary of the dynamic equation of motion is presented in Equation A-1.




TABLE A-1. Description of System Parameters

Parameter

Yac

Ycg

Description

Fin surface area

Rotational damping

Bending damping

Panel lift force Coef.

Litt force on panel
Moment of incrtia
about x axis

M -ment of inertia
about y axis
Product of inertia

Rotational spring rate
Bending spring rate

Bending Moment
Dynamic Pressure
(172pV3)

Shaft Torque.
Velocity

Dist. of C.P. from
X axis

Dist. of C.G. from
X axis

Dist. of C.P. from
y axis

Dist. of C.G. from
y axis

Rotational angle

Ly/ JTex Ly

Bending angle

Aero viscous damping i

Coeff.

Aero viscous
damping Coeff.
Aero viscous
damping Coeff.

A-2

Units

in®
in-lb—sec/rd
in-lb-sec/rd
I/rd

1bg
in-Ib—sec?

in-lb—sec?
in-lb—sez?
in=lb/rd
in-lb/rd
in-lbf
Ib/in?
in=lb
in/sec

in

in

in

in
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(A~1) |
|
The aerodvpamic moments presented in Equation A-1 mav be expresced by (
|
Nvy Ny rH _ . 0 Y 0 - M
(-Q/V A Cly) [ } l_a] (Q A Cly) [“ X.;l [a T 1
. - |
|

Ny Nxx
(A-2)

Equations A-1 and A-2 mav be combined to vield:

Lex Ix FO G 0 n ”x] )
][] { a2 e
- <
K¢ 0O 0 va 6 =

(A-3)
Simplifying Equation A~3 Produces:
Ixx Ixy 8
C + (Q/V A CLp) Nyy (Q/V A CLy) Mxy 0 +
(Q/V A Cla) 7xy G + (Q/V A CLa) x:| | @

Ky Q A CL,Yac 0 -
[0 Kg + Q A Cchac)] [a 0 (A-4)
Consider solving for the roots of the characteuistic equation of expression 4 by taking
the Laplace transform of Equation A-4. This expression may then be expressed as:

[(Ixx 52 + Cog + KO) (lxy sZ + C@s + K"O)] [0] = 0 (A—S)

(Iyy s% + Cgugy) (Iyy s + Co s + Kag)| | @
Where:
C = G+ (Q/V A Cly) 7y (A-6a)
Cis6 = (Q/V A CLy) 1y {A-6b)
G = G + (Q/V A Cly) nx (A-6c)

A-3



Kaog = Q A ClgYac (A~6d)
Kae = Ko + O A ClyNuc (A=)
The systems characteristic equation is:
(Ixa 22+ Cps + Kg) (yy 80 + Cas + Kaa) -
(Ixy 8 + Cyo s + Kao) (xy ° + Cgps) = U
Which is also:
(xx lyy — Iy ?) s* + (ixx Cq + lyy G5 - 2Ly Gy 8
+ (Ixx Kga + Gy + lyy Ko - Ca'02 ~ Ixy Kap)
+ (Kag Cj + KgCa - Koo Cpy) 8 + Ko Kga = O (A=7)

Equetion .A-7 is the characieristic equation from which the appropriate roots may be
computed to determine stability.

The technique for studying fiutter consists of finding the flight conditions which gener-
ate roots of Equation A-7 with positive real parts. These solutions generate divergent oscil-
lations. A. sample solution for a high v flutter problem is found in Figure A—2. This figure
shows the boundary between flutter and flutter free operation as a function of rotational
springrate, Kq , and rotational damping, Cq . Note that K, and C, are dominaied by actna-

tor springrate and damping. Note also that the flutter boundary is plotted for five values of
bending springrate at a constant Mach number and altitude. Figure A-2 illustrates that there
are three ways o prevent simple fin fiutter.

1.  Generate a high value of rotational springrate, Kg . Fer Kg > 8200 in—b/rd no combi-~
nation of conditions can generate flutter.

2. Generate a high value of bending springrate, Kg . For Kg > 10000 in-1b/rd flutter can
not occur. There is no value of K, and G, that will generate flutter.

3. Generate sufficient Kg and C, to prevent actuator stiffniess and damping characteristics

from intersecting the flutter zone. Note a hyvdravlic damper may be required to achieve
sufficient rotational damping in such a scheme.

Note that the technique number one is the traditional solution to fin flutter. However,
techniques two and three may be required with a pneumanic fin actuation system.

Figures A-3 and A-4 have been included to show the affect of damping on the flutter
boundaries. The analysis of Figurc A-3 shows where the flutter boundaries exist when the
bending damping, Cg , is reduced to 0. Likewise, Figure A~4 shows the affect of reducing
the acrodynamic damping terms to 50% of the value calculated for the specified flight
condition.




ARAP SIMPLIFIED CRITERION

A simplified criterion was developed by GPSD and Aeronautical Research Associates
of Princzion in order to evaluate K; and Ko for flutter free operation. This criterion only

applies to high v sepersonic Tins. A summary of the criterion follows,

If all damping terms are neglected in Equation A-¢ then:

- .
Ixx ixy l—() . Ko Q A Cl, Yac 0 - 0
Ixy lyy I_a 0 (Kg + Q A Clg Xao)| | @
- o~ (A-8)
Likewise the system characteristic equation becomes:
Uxx Iyy-Ixy”) s*+(ixx Kaa+1lyy Kg=Jxy Kgo) $*+Keg Ko = O (A-9)

If the characteristic equation is factored, the condition where all four ronts have the
same frequency (that is the condition where flutter begins) is:

(Ixx Kag) — 2 Ixx lyy Kag Ko — 2 Ixx Ixy Kae Kao
- 2 lyy Ixy Ko Kag + (Iyy Kg)? + (Ixy Kap)? (A-10)
+ 4 Ixy? Kg Kea =0

Equation A-10 which is the boundary of flutter is ploti~d for the sample case in Figure
A-5. In this figure the fin flutter boundary is presented as a function of rotational and bend-
ing stiffness. Of particular interest are puints A and B on this curve. If bending stiffness,
Ko , is greater than that defined by point A then no flutter can occur. If rotational stiffness,
Fa, is greater than that defined by point B, (nen no flutter can occur. Points A and B are de-

fined by:

Point A Ko 2 Ixx/Ixy GA Clg Yac

(No Flutter) (A-11a)
Point B K, > Iyy/Ixy QA Clg Xac-QA CL, Xac

(No Flutter) (A-11b)

Refering to Figures A-2, A-3, A—4, and A-5, the following conclusions may be
reached:

1. Figure A-2 illustrates that increasing C, can increase the value of K, that is required
tor absolute sisbility. Figures A-3 and A—4 illustrates that decreasing either bending
damping or aerodynumic damping wil! increase the rotational stiffncss necessary for
absolute stability (Foint B).

2. The analysis of Figures A-2, A-3, and A—4 shows that the criterion for the bending
springrae required for absolute stability, (Point A), is affected only slightly by system

A-5




damping. The bsnding stiffness requirement, for absolute stability, that is predicted as
suming z=ro damping is 9650 in-lh/rd. Variations in the damping terms increased this
figure only slightly to 10,000 in-lb/rd.

The simple criterion described above can therefore be used as 4 useful guide 1o predict
the bending stiftness, Kg. that can be used to eliminate flutter regardless of the values of ro-
tational stiffness, Kq . and rotational damping, C, .

A more detailed analysis is required to predict the rotational stiffness, K , that is re-
quired to produce absolute stability because of the significant affects of system damping on
the flutter boundaries. Using such an approach to eliminate flutter is therefore much more
involved and may requite controlling both rotational stiffness, Kq , and damping, Cq .
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APPENDIX B
STABILITY EQUATION PROGRAM LISTING

D)

PROGRAM NAME: FINSIMP FOR

~

Steve Cavson

US Army Missile Command 1
Rescarch, Development, and Engincering Center |
Redstone Arsenal, AL

OCT-NOV 8§89

This program is uscd to calculate the flutter regions for the

AdKEM control scction fin using cquations developed in a paper
written by Garrett Fluid Systems Division in Phoenix, AZ. The
cquations were developed using a two~degree—of-freedom model for
a control surfacc assuming no damping terms. The characteristic
equation for this system was then found and used to calculate the

fin stabilty regions based on fin and actuator stiffness and
aerodynamic parameters. The region is solved for and the data is
written to a file, FLUTTER.DAT, that can be plotted.

VARIABLE DESCRIPTION

COCOOOOO0O00 O O00000000 000

IXX Fin inertia about hinge lin¢ (in-lbg-s2)
IYY Fin inertia abeut root linc (in-lbp-s?)
IXY Fin product of inertia (in-1bg-s2)
REFA Control fin surface area (in?)
MACH Mach number
\% Missile velocity (in)
CLIFT Fin lift coefficient (rad™!)
XCP Distance of center of pressure froni x—axis (in)
YCP Distance of center of pressure from y-axis (in)
KALFHA Fin bending stiffness factor {in-lbg/rad)
v REAL IXX, IYY, IXY, KAA, KAT, KALPHA, KTHETA, MACH

DIMENSION A(11), B(11), C(26), D(26), E(25), F(25)
DIMENSION RR(1C), RI(i0) ,AA(26), BB(26), RREAL(25), RIMAG(25)
OPEN(4, FILE="FLUTTER.DAT’ ,STATUS="NEW’)

C  ***** CONSTANTS USED IN ROOT SOLVER SUBROUTIHE *****

C - ORDER OF POLYNOMIAL EQUATION
NN=2

)
|
|
|
|
|
|
]
|
!
Q Dynamic pressure (psia) i
|
|
|
|
l

B-1




- INITIAL ESTIMATES FOR ROOTS
X0 =5.
YO0 =S,
X =X0
Y =YU

»ewrer INPUT FIN CHARACTERISTICS ==***

— INERTIAS (in-Ibf-s°)
IXX 00028543
IYY 00012277
IXY 000028672

- FIN REFERENCE AREA (in?)
REFA = 3.463

- INPUT MACH NUMBER AND CALCULATE DYNAMIC PRESSURE (psia)
WRITE(*, 100)

100 FORMAT(2X, "MACH NUMBER?*,2X}
READ (*, 110)MACH

110 FORMAT( F10.7)

Q =10.29* (MACH**2))

-~ CAL.CULATE LOCAL VELOCITY (in/s) ASSUMING TEMP 70F
V = MACH*13540.

— INPUT FIN LIFT COEFFICIENT (rad‘l) AND CP (in) AT MACH NUMBER
WRITE(*, 1200MACH

120 FORMAT(/,2X,’LIFT COEFFICIENT AT MACH ’, F5.2,’ ? (1/rad)’, 2X)
READ(*, 110) CLIFT
WRITE(*, 130)

120 FORMATY(/, 2X, 'DIST OF CP FROM HINGE LINE (+ is in aft direction)’

&, 2X)

READ(*, 110)XCP
YCP =0.91

*x*»% LOOP TO DETERMINE FLUTTER REGION *****
DO 200 K = 0, 10000, 20
KALPHA = K*1.0

- PRELIMINARY CAI.CULATIONS
QUANT = Q*REFA*CLIFT
KAT = QUANT*YCP
KAA = KALPHA + QUANT*XCP

— REAL COEFFICIENTS OF POLYNOMIAL — A(1) IS HIGHEST ORDER COEF.
A(1) = IYY**2,
A(2) = 4*KAA*(IXY**2.) - 2*IY Y*IXY*KAT - 2*IXX*IYY*KAA
A(3) = (IXX*IXX*KAA*KAA) + (IXY*KAT)**2. - 2*IXX*IXY*KAA*KAT

Hon i
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C -IMAGINARY COEFFICIENTS OF POLYNOMIAL
B(1) = 0.
B(2) = 0.
B(3) = 0.

C ~SOLVE FOR ROOTS USING SUBROUTINE ROOTS
CALL ROOTS(A. B, NN, X, Y, RR. Rl, NERR)

C - CHECK TO SEE IF ROOTS ARE EQUAL, IF SO HALT PROGRAM EXeECUTION
. CHECK = RR(1) - RR(2)
IF (ABS(CHECK) .LT. .1) GOTO 99

IF (RR(1) .LT. 0.0) RR(1) = 0.0
IF (RR{2) .LT. 0.0) RR(2) = 0.0

C WRITE(*,10) KALPHA, RR(1), RR(2)
WRITE(4, 10) KALPHA, RR(1), RR(2)
10 FORMAT(2X, F7.i, 2(2X, F10.3))
200 CONTINUE
99 END

SUBROUTINE ROOTS(A, B, NN, X0, YO, RR, RI, NERR)
DOUBLE PRECISION AA, BB, RREAL, RIMAG,C,D,E,F, P, Q, X, Y, TOL, DENOM,
R, RS
DIMENSION A(*), B(*), RR(*), RI(*)
DIMENSION AA(26), BB(26), C(26), D{26)
DIMENSION RREAL(2S), RIMAG(25), E(25), F(25)
C INITIALIZE

NERR =0

R = 0.0D0

N = NN

NP1 = N+1

K=0

TOL = .5D--8

X =X0

Y=Y0

DO 5 I=1, NP1

AA(D = A(D)

5 BB(I) = B(l)
TEST FOR FIRST DEGREE EQUATION
10 IF(N .EQ. 1) GOTO 60
BEGIN SYNTHETIC DIVISION FOR F(Z) AND F'(Z)

20 KTR=0

NP1 = N+1

IF(X .EQ. 0.0D0) X=.37D0

IF(Y .EQ. 0.0D0) Y=.37D0

C(1) = AA(D)

D(1) = BB(1)

E(1) =C(1)

B-3




23

40
50

55

60

O

70
75
999

F(l) = D(1)
DO 25 1=2,NP1
M1 =1-1
CH = AA(D + X*C(IM]) = Y*D(IM1)
D() =BB() + Y*C(IMI1) + X*D{IM
IFQ .EQ. NP1) GOTO 25
E() = C) + X*E(IM1) - Y*F(IM1)
F(1) =D() + Y*E(IM1) + X*F(IM1)
CONTINUE
CALCULATE X AND 1Y
DENOM = E(N)**2+F(N)**2
P = (C(NPD)*E(N) + D(NP1)*F(N))/DENOM
Q = (D(NP1)*E(N) - C(NP1)*F(N))/DENOM
X =X-P
Y =Y-Q
RS=R
R = DSQRT(P**2+Q**2)
IF(R .LT. RS) GOTO 40
TEST LOOP COUNTER WHEN CORRECTION DOES NOT DECREASE
KTR = KTR+1
IF(KTR .LE. 25) GOTO 40
NERR =1 GOTO 50
CHECK FOR CONVERGENCE
IF(R .GT. TOL) GOTO 23
ROOT FOUND - REDUCE POLYNOMIAL
K =K+1
RREAL(K) = X
RIMAG(K) =Y
DOS5S I=1,N
AA(D = C(I)
BB(I) = D(I)
N =N-1
GOTO 10
SOLUTION FOR FIRST DEGREE POLYNOMIAL
DENOM = AA(1)**2+BB(1)**2
x = (-AA(1)*AA(2) - BB(1)*BB(2))/DENOM
Y = (AA(2)*BB(1) - AA(1)*BB(2))/DENOM
K=K+i
RREAI(K) = X
RIMAG(K) =Y
MOVE DOUBLE PRECISION ROOTS TO SINGLE PRECISION OUTPUT
DO 75 I=1,NN
RR(I) = RREAL(])
RI(I) = RIMAG(I)

RETURN
END
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APPENDIX C
The leading wedge of the control fin root is represented as shown in Figure 3-2. The
width, ba(v), is calculated using
h"(\) = (la - ll.’)(,“ I+ i (C'] )

and the thickness, ta(y). is found from the equation

1ay) = (s- VL) + 8 (C-2)

The leading edge thickness can be calculated using

te(y) = (tsie = tae)(¥s) + toe (C-3)

A trapcezoid such as the one shown below has now been defined and the incrtia about
the x-axis can be fourd.

t1e(y) b3 (y)—~ l
'E:f—' t3(¥)
L
Z

Figure C-1. Typical Fin Wedge Cross-Section

The trapezoid may be divided into two regions, the rectangular poriion and the triangular
portion. The inertia of the rectangular portion is just

I3r(Y) = [bs(y) te(y)’)12 (C4)

The inertia of the triangular sections can be found by integration of

Iir = 2 J z2 dA (C-5)
A

where z is the distance as shown in Figure C-1. Substitution of the proper limits into Equa-
tion C-5 results in the double integral

Us(Y) myx+b,
Is7 = 2 f f z2 dzdx (C-6)
0 by

-1




bea = 4e(y)2 (C-7)

and

mg = [‘3(}') - !Ic(y)l",lz hz()’)] (C"b))

Evaluation ¢f Equaiion C—6 1esults in

Iyr(y) = ba(y ) [mga*ba(y)?/6 + 2my,37babs(y)/3 + meabys’) (C-9)

and the total inertia of the ieading wedge section as a function of y is

Ix(y) = Isr(y) + I3n(y) (C-10) |

The ircrtia of the trailing sectivn is f<und similarly. The inertia of the rectangular por- |

tior is
i

Lir(y) = [bi(y) te(y)’)/12 (C-11) |

and ihe inertial of the triangular section is

Lir(y) = [51(y)* [mzr’ba(y)%/6 + 2m,1%b,1b1(y)/3 + maibz)?) (C-12) i

where !
5(y) = (lu = )(¥/ls) + 19 (C-13) {

t(y) = (ts ~t)(y/ls) + 4, (C-14) i

te(y) = (tsie — tne) (y/1s) + tre (C-15) ]l

ba = te(y)2 (C-16) '

ma = [t(y) - te(Y))/[2 br(y)] (C-17) ‘

Therefore, the total inertia of the trailing wedge is

Li(y) = Iir(y) + Iir(y) (C-18)
The middle secticn of the fin is simply a rectangle and the inertia is found using
i

I2(y) = ba(y) ta(y)*/12 (C-19)

C-2




where

ha(y) = (12 =1:2) (y/1s) + 12
and

y) = (=1 (Y1s) + 4

The total inertia of the section is then found from

Lo(y) = Ii(y) + Ix(y) + Is(y)

C-3/(C—4 Biank)

(C-20)

(C-21)

(C-22)
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APPENDIX D
BENDING PROGRAM LISTING

PROGRAM NAME: FULLFIN.TON

Steve Cayson

U5 Army Missile Command

Research, Development, and Engineering Center
Control Systems Branch

04 DEC 89

This program will calculate the fin bending spring rate fur the
stainless steel core of the AAKEM control fin assuming a constant
distributed load (dynamic pressure) on the fin. First of all the

fin geometry is input to the program. This includes the span,
various thicknesses, and the root and tip lengths. Then a

loop is used to calculate the moment and slope at each point along
the span and solve for the stiffness measured in in~Ibf/rad.

The equation is

K(Y) = dIMOMENT/dTHETA
VARIABLE DESCRIPTION
THKFACT Thickness multiplier for variable thickacsses

LRI Trailing wedge length at root (in)
LR2 Mid-section length at roo: (in)

LR3 Leading wedge length at root (in)
LRTOT Total fin length at root (in)

TROOT Mid-section thickness at root (in)

LTI Trailing wedge length at tip (in)

LT2 Mid-section length at tip (in)

LT3 Leading wvedge length at tip (in)
LTTOT Total fin tip length (in)

TSPAN Mid-section thickness at span (in)
LSPAN Length of span (in)

TSLE Thickness of leading edge at span (in)
TRLE Thickness of leading at root (in)
TSTE Thickness of trailing edge at span (in)
TRTE Thickness of trailing edge at root (in)
ATOT Total fin root area (in2)

MOM1 Bending moment at fin root (in-lbg)

IMPLICIT REAL (I ,K-M)
DOUBLE PRECISION THETA1, THETA?2, DELTHT, XDEE, DY
OPEN(4, FILE="FULL.DAT’, STATUS = ‘NEW’}

THKFACT = 1.0

*e#x% INPUT FIN GEOMETRY SPECIFICATIONS *****
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ROOT GEOMETRY (ALL DIMENSIONS IN INCIIES)

LR1 = .699
LR2 = 822
LLR3 = 674

LRTOT = LRI+ LRI« [LR3
TROOT = THKFACT * 0.1

TIP GEOMETRY

LT1 = .299
LT2 = 444
LT3 = .357

LTTOT = LT+ LT2 + LT3
TSPAN = THKFACT * 0.057

SI'AN LENGTH
LSPAN = 1.80

LEADING AND TRAILING EDGE TEICKNESSES AT ROOT AND SPAN
TSLE = THKFACT * .017

TRLE = THKFACT * .025
TSTE = THKFACT * .025
TRTE = THKFACT * .025

CALCULATE TOTAL FIN AREA AND BENDING MOMENT AT Y=0
ATOT = LSPAN/2. * (LRTOT + LT70T)
MOM1 = LSPAN/6. * (LSPAN*(LTTOT + 2.*LRTOT) - 6.*ATOT)

¥**% OTHER VARIABLES *****
FIN COEFFICIENT OF ELASTICITY (psi)
E = 28.5E06
INTEGRATION STEE SIZE
DY = .001
DO 1.OGP TERMINATION VALUE CALCULATION
JOY = LSPAN/DY
LOOP INITIALIZATION
SUMMOI = §
THETAL = .0
ZDEF = .0
JPRINT = 1

----------------------------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------------------

¥4+« BEGIN NUMERICAL INTEGRATION TG SOLVE FOR STIFFNESS *****
DO 1i0J = 1,JDY-9
Y = I*DY

*awxx CALCULATE CROSS-STCTIOMNAL INERTIA OF FIN AT Y **%**
CALCULATE TRAILING SECTION PARAMETERS
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Bl
Tl
TTE
MZ1
BZ1

(LT1-LR1)*Y/LSPAN + LR1
(TSPAN-TROOT)* Y/LSPAN + TROOT
(TSTE-TRTE)*Y/LSPAN + TRTE
(T1-TTE)/(2.*B1)

TTE?.

LT |

C  CALCULATE TRAILING SECTION INERTIA
C (RECTANGULAR PORTION)
; XIR = (/12.)*B1*(TTE**3)
C (TRIANGULAR PORTION)
. XIT = BI*( ((MZI*B1)**3)/6. + (2.*BZ1/3. )*(MZ1*B1)**2 +
& MZI*B1*BZ1**2)
C TOTAL
X1l = XIR +XIIT

C CALCULATE MIDDLE SECTION INERTIA

Cl = (LT2-LR2)*Y/LSPAN + LR2
C2 = ((TSPAN-TROOT)*Y/LSPAN + TROOT)**3
C3 = 1/12. XI2 = C3*C1*C2

C CALCULATE LEADING SECTION PARAMETERS
B3 = (LT3-LR3)*Y/LSPAN + LR3
T3 = (TSPAN-TROOT)*Y/LSPAN + TROOT
TLE = (TSLE-TRLE)*Y/LSPAN + TRLE
MZ3 = (T3-TLE)/(2.*B3)
BZ3 = TLE/2.

C CALCULATE LEADING SECTION INERTIA
C (RECTANGULAR PORTION)
XI3R = (1/12.)*B3*(TLE**3)
C (TRIANGULAR PORTION)
XI3T = B3*((MZ3*B3)**3)/6. + (2.*BZ3/3.)*(MZ3*B3)**2 +
& MZ3*B3*BZ3**2)
TOTAL
XI3 = XI3R + XI3T
TOTAL INERTIA OF CROSS-SECTION
XITOT = XI1 + XI2 + XI3
sss»% CALCULATE BENDING STIFFNESS *****
CALCULATE MOMENT/DYNAMIC PRESSURE AT Y AND CHANGE IN
MOMENT MOM2 = ATOT*(Y-LSPAN) - LRTOT/2.*(Y**2.—-LSPAN**2.) -
&  (LTTOT-LRTOT)*(Y**3.-LSPAN**3.)/(6.*LSPAN)
DELMOM = MOM2 - MOM1
C CALCALUTE THETA/DYNAMIC PRESSURE AT Y AND CHANGE IN THETA
RAT = MOM2/XITOT
SUMMOI = SUMMOI + (MOM2/XITOT)*DY
THETA2 = SUMMOI/E
DELTHT = THETA2 -~ THETAL

v
a0 O 0
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C CALCULATE DEFLECTION/DYNAMIC PRESSURE
ZDEF = ZDEF + THETA2*DY

C CALCULATE FIN STIFFNESS
KFINY = ABS(DELMOM DELTHT)

MOMI!1 = MOM2 THETAl = THETA2

C  =»*»* WRITE DATA TO FILE *****
C  PRINT EVERY 10th DATA POINT
IF (JPRINT .EQ. 10) THEN

C  WRITE SPRING RATE AT Y TO FILE
WRITE(4, 100)Y, KFINY, MOM2, THETA2, ZDEF
100 FORMAT(2X, F6.4, 2X, E15.3, 2X, F11.3, 2X, E15.3, 2X, E15.3)

JPRINT = 0
ENDIF

JPRINT = JPRINT+1
10 CONTINUE
END
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