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1.0 INTRODUCTION

The purpose of this report is to evaluate the flutter characteristics of a control fin for the
Advanced Kinetic Energy Missile (AdKEM). First of all the two-degree-of-freedom equa-
tions of motion for a control fin under aerodynamic and actuator loads will be determined.
To present a worst case analysis of the problem, these equations will be simplified by ne-
glecting mechanical and aerodynamic damping terms. The fin characteristic equation will
then be found and the fin flutter regions will be plotted. Once the flutter regions are plotted.
the fin bending stiffness and actuator dynamic stiffness must be known to evaluate the possi-
bility for fin flutter occurring.

The fin bending stiffness is determined assuming a distributed load, equal to the dynam-
ic pressure, is applied to the fin. The fin bending moment equation is integrated numerically
to determine the fin slope and resulting bending stiffness at any point along the fin span.
These results are then modified for input into the stability equation.

The flutter analysis contained in Appendix A assumes that the actuator's hinge moment
stiffness can be represented by a second order system. This report investigates the validity of
this assumption by comparing the second order system's stiffness to that of a third order sys-
tem and a detailed non-linear actuator model. Results indicated that for the case of zero
damping, a worst case flutter condition, the second order system model provides a good ap-
proximation of the real actuator's dynamic stiffness.

The values found for fin bending stiffness and actuator dynamic stiffness are then com-
pared to the fin stability plot to evaluate the possibility of fin flutter. The results show that
the fin design considered in the analysis lies in the flutter region.



2.0 FIN STABILITY EQUATION

The equations of motion of a missile control fin may be determined by considering the
fin free-body diagram as shown in Figure 2-1. This figure shows a two-degree--of-freedom
control fin with aerodynamic and actuator loads heing applied. Appendix A contains two
reports entitled Two-Degree-of-Freedom High Speed Flutter Model and ARAP Simplified
Criterion which were used as references in the development of the equations of motion,
These are

Sly+ Co + (Q/V'm A C La)flyy (O /V m A CLr)A xy1

['XY IYJ [a] [(Q/Vm 'I CI, )fx Cu + (Q/Vm A Cl4-a J []

+ 0 Kd + Q A CI-a Xac

These equations can be simplified by assuming that all damping terms are zero. This results

in the equationsE,= ,'yl [61+ [rK Q A CL- Yac] ] (2-2)
Ix lyy 0 Kd + Q A Ci., Xacj

The fin characteristic equation can now be determined and written in Laplace form as

(Ixxlyy - Ixy 2 )S4 + (IxKa + lyyKo - lxyKa0)s 2 + KaaK0 = 0 (2-3)

where

Kaa Kd + Q A Cl. Xac (2-4)

Kao = Q A CL-a Yac (2-5)

The dynarric pressure, Q, is a function of the Mach number and is found using

Q _ -Inai, Pt Mach 2  (2-6)

The lift coefficient, CL0 , center of pressure, and fin surface area and inextias of the fin
shown in Figure 2-2 have been estimated .,s shown in Table 2-1
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TABLE 2-1. Control Fin Characteristics

MACH NUMBER CLct(rad-1) Xac (in)

0.5 4.0508 -0.60

1.0 4.9217 -4078

1.5 4.5321 0.15

2.0 3.3232 0.28

3.0 2.1257 0.26

4.0 1.5699 0.204

5.0 1.2433 0.17

6.0 1.0428 0.15

6.5 0.9740 0.145

7.0 0.8995 0.14

Fin Reference Area = 3.463 in2

Y5 c = 0.9 in
lxx = 285.43 (10-6) in-lbr--s2

Iyy= 122.77 (10-6) in-lbj--s2

Ixy = 28.672 (1"-) in-lb.-s2

The location of the center of pressure in the x-axis, Xac, is measured from the fin hinge
line and is positive to the rear as shown in Figure 2-1. The roots of Equation 2-3 can now
be solved for as a function of fin bending stiffness, actuator stiffness, and Mach number and
the stability regions of the control fin can be plotted. A listing of the program used to deter-
mine the roots of Equation 2-3 is provided in Appendix B and the results are plotted in Fig-
ure 2-3.

3



3.0 CONTROL FIN BENDING STIFFNESS

The fin bending stiffness, K0, must be found in order to determine if the control fin de-
sign is unstable. Bending stiffness is defined as

Kl(y) = [dM',d0] (3-1)

The distance y is measured across the fin span from the root as indicated in Figure 2-1.
The equation for the bending moment, assuming a constant distributed load, Q, applied to the
fin, may be found by integrating the shear equation for the steel control fin root shown in
Figure 3-1. In order to evaluate the shear, the fin planar area must be determined. This is

A(y) = 1 y [21r + (it - 1,.) y/Is] (3-2)
2

Now the shear equation can be found by considering the force balance at a point y along the
span.

V(y) = Q [A(ls) - A(y)] (3-3)

where A(ls) is the total fin root area. Integration of Equation 3-3 results in the bending mo-
ment equation as a function of y.

M(y) = Q [A(ls) (y-Is) -I Ir (y2 - Is 2) - (It - It) (y3-lS 3)/61S] (3-4)

Next, the fin slope must be determined. The difference in slope of two points along the
fin root is defined as

Yb

0 b -0a = (M/El) dy (3-5)
Y.

At the fin root the slope, 6a., is assumed zero. Therefore, the slope at any location y may be
calculated as

Y

0(y) = (1/E) f (M/I)dy (3-6)

0
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assuming that the modulus of elasticity, E, is constant. Since both the bending moment and
the moment of inertia are functions of y, Equation 3-6 could be better solved using numeri-
cal integration. In that case, Equation 3-6 takes the form

Y

0(i-) = (bNy/E) [Milbj (3-7)
j :

where by is the integration step size. In order to determine the slope at a point on the fin, the
cross-sectional moment of inertia must be found as it varies with span. The development of
these equations for the fin root in Figure 3-2 is shown in Appendix C.

Knowing the bending moment and slope at any location, the bending stiffness may be
calculated from Equation 3-1. This equation can also be expressed as

KO(y) = [M(y) - M(y--y)]/[0(y) - 0(y.-y)] (3-8)

where the notation '(y--y)' denotes the moment or slope at the previous integration point.
Note that the dynamic pressure, Q, cancels out in the calculation of bending stiffness.

The equations discussed above have been incorporated into a computer program, listed
in Appendix D, which calculates the fin bending stiffness and other parameters. This pro-
gram first calculates the cross-sectional moment of inertia at the particular span location us-
ing the equations developed in Appendix C. Then the bending moment at that location is
calculated from Equation 3-4. This is used in Equation 3-7 to calculate the slope of the
point and the bending stiffness is determined using Equation 3-8. Also calculated is the de-
flection of the fin normalized to dynamic pressure. These data are then written to a file for
plotting. This process is repeated along the length of the span.

The fin geometry parameters shown in Figure 3-3 were used as input to the program
discussed above and the results are shown in Figure 3-4. This plot shows the fin bending
stiffness and normalized deflection as they vary along the span.

Since the fin characteristic equation developed in Section 1.0 assumes that the dynamic
pressure is resolved as the lift force applied at the center of pressure, a comparison of the two
methods has to be made. This can be done by letting the deflection of the distributed load
case at the fin tip equal the deflection of the simple case at the fin tip and solving for the
bending stiffness that would allow this deflection to occur. This is shown pictorially in Fig-
ure 3-5. Summing moments about the fin root for the simple case shows that

FL Yac = KOS OS (3-9)

Solving for the spring stiffness, Kes, by relating the lift force to dynamic pressure and the
bending angle to deflection shows that

KOs = [A(ls) Y sc 1
5]/[z(ls)/Q] (3-10)
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where z(ls)/Q is the absolute value of the normalized deflection of the fin at the tip and is
taken from Figure 3-4. Taking the value of z(ls)/Q from this figure shows

z(Is)/Q = -4.910(10-3)

and substituting this into Equation 3-10 results in an equivalent spring stiffness of

I Kos = 5280 in-lbf'rad

This value can now be used in conjunction with the actuator dynamic stiffness to determine,
using Figure 2-3, if the fin design lies in the flutter regions.

4.0 ACTUATOR DYNAMIC STIFFNESS

The flutter analysis contained in Appendix A uses a second order linear system to repre-
sent the actuator's hinge moment stiffness. The intent of this section is to determine how
well a second order system represents the dynamic stiffness of an actual open center valve
pneumatic actuator. To accomplish this the second order system's dynamic stiffness is deter-
mined and compared to that of a linearized actuator model, as well as a detailed non-linear
actuator model.

The second order system's dynamic stiffness is determined by considering the equation
of motion of a second order system subjected to a torque disturbance.

Iyya + Can + KaU - Tocos(Q2t) (4-1)

The steady-state solution to this equation is given by

a = aa cos(1,t- ) (4-2)

Substituting Equation 4-2 and its derivatives into Equation 4-1 results in

-IyyQ 2a, cos(Qt -0) -CaD~a. sin(Ut- ) + Kaa. cos(Ot - 0) = To cos(Qt) (4-3)

Since each term in this equation represents a force acting on the inertia, the equation can be
represented by a force vector polygon, from which it is easily seen that

T0
2 = (Kan. - Iyy2 2 aa) 2 + (Ca,,a) 2  (4-4)

and

6



tan(O) = CaQ/(Ka - IyyQ 2) (4-5)

Solving for the amplitude of the steady-state fin position, a,, and recalling expressions for
frequency ratio, n'a.ural frequency and damping factor results in

(I = (To/K.)/[(1 -r2 ) + (26r)21 (4-6)

From Equation 4-6 the desired expression for the second order system's dynamic stiffness is
obtained

Kd = (Tt/ea) = Ka [(1-r 2)2 + (28r) 2]1/ 2  (4-8)

An expression for the dynamic stiffness of the third order, linearized actuator model,
represented by the block diagram in Figure 4-1, was obtained from Reference 1 and is given
by

Kd = (1/s) (IYs 3 + Bs 2 + (Ka - Ha) s + KaKaGc) (4-9)

Setting s equal to jQ, an expression for the magnitude of Equation 4-9 is obtained, which is
the desired expression for the third order system's dynamic stiffness.

Kd = {(Ka + H6 - IYQ')2 + [B1 - (KaKaGc/")12}" (4-10)

Substituting expressions for frequency ratio, natural frequency and damping factor, wl'ich
were defined for the second order system, Equation 4-10 becomes

Kd = K,, {[1r2 +(Ha/K,)]2 + [26rr-(KaGc/Q)]}2 (4-11)

Note that for the condition where H. is small compared to Ka, the dynamic stiffness deter-
mined by Equation 4-11 approaches that of Equation 4-8 at high frequencies. However, at
low frequencies the dynamic stiffness determined by Equation 4-11 approaches infinity,
while Equation 4-8 approaches Ka .

In order to apply Equations 4-8 and 4-11, an expression for the actuator's static stiff-
ness must be determined. From the diagram shown in Figure 4-2, an expression for torque
about the hinge line is determined.

T = [AcPc - (Ac - Ar)Ps] L (4-12)
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Differentiating this equation with respect to a results in

dT/da = AL(dPc/da) (4-13)

From the actuator geometry. a diflcrential change in volume is rclated io a Jditcrcntial
change in actuator position accoiding to the rclation

da /dV = -lkA,.Lsec 2(a ) (4-14)

If the compression of thc gas above the piston follows an isentropic process then pressure
and vo!umc arc related according to

PcVn = constant (4-15)

Differentiation of Equation 4-15 results in

dPc/dV = -nPc/V (4-16)

Combining Equtions 4-13, 4-14, and 4-16 provides an expression for the actuator's stotic
stiffness.

Ka = nPc(LAc)sec 2(a )/V (4-17)

The dynamic stiffness was determined for the small and large AdKEM pneumatic ac-
tuators using Equations 4-8, 4-11, and 4-17. The following parameters were used for the
small actuator.

P, = 1587.3 psia L = 0.6 in Ac = 0.2961 in 2

Vo = 0.046 in 3  n = 1.667 B = 0.50 in-lbi/rad/s
H-a = 0 in-lbf/rad Gc = 1.0 K. = 124.64 rad 2/s

lyy = 122.77(10)-6 in-lbr-s2

From which the small act,:ator's static stiffness and natural frequency are determined at the
null position (a = 00).

IKa = 1808 in-lbf/rad
L n = 611 Hz

The small actuator's dynamic stiffness obtained from the second order model is compared to
that of the third order model in Figures 4-3 thru 4-5 for various values of 6. A good match
is seen for 8 = 0.50, which requires that Ca = 0.47. A comparison for the case of zero
damping is shown in Figure 4--6.

8



The large actuator's dynamic stiffness was dctermined based on the following paramc-
ters.

P, = 1492.2 psia L = 0.560 in A, " 0.586 in2

V., = () 085 in 3 n = 1 .07 B = 0.50 in-lb1 raJ •
Il, = 10 in-lbi rad , = D.) KA = 124.04 rad 2 ',,

ly.= 245.54(1 '• in-lb1-s2

From which the large actuator's static stiffness and natural frequency are determined at the

null po•ition (ta = ").

Ka = 3138 in-lbf/rad-

On = 569 Hz I
The large actuator's dynamic stiffness obtained from the second order model is compared to
that of the third order model in Figures 4-7 thru 4-9 for various values of b. A good match
is seen for 6 = 0.25, which requires that Ca = 0.44. A comparison foi the case of zero
damping is shown in Figure 4-10.

As a final comparison the stiffness of the small AdKEM actuator was determined using
a detaihed non-linear actuatcr model. A block diagram of this model is shown in Figure
4-11. The stiffness was determined by applying a torque disturbance and determining the
resulting deflection. Simulation results are shown compared to the second and third order
models in Figures 4- 4 and 4-6 for 6 = 0.50 and 6,- 0 respectively. Note that for the case
with damping the detailed non-linear model indicates a sharp drop in stiffness at the closed
loop system's natural frequency, which is not predicted by the linear models. However, for
the case of zero damping the models are in fairly close agreement.

Based on the above discussion it may be concluded that the linear second order system
model used in the flutter analysis realistically represents the stiffness of the AdKEM actuator
for the case of zero damping. Further, since zero damping is a worst case for flutter, the use
of a second order system model with zero damping should provide a conservative flutter pre-
diction.

9



5.0 CONCLUSIONS AND RECOMMENDATIONS

Referring to the values of control fin bending stiffness and actuator dynamic stiffness
determined and comparing them to the fin stability regions shows that the fin lies in the flut-
ter region for the small acitLator design. This is shown in Figure 5--I It is also seen that the
large actuator design is ver\ close to the flutter regions. One \ay of eliminating this prob-
lem is to increase or decrease the actuator stiffness. Since actuator st.ffness is largely a func-
tion of the hinge moment requirement this value can not he rez"dily changed. Therefore, it is
required that the fin bending stiffness be changed. Referring to Figure 5-1 shows that the
best approach would be to increase the fin bending stiffness because this would avoid the
flutter regions should the hinge moment requitement. and thus the actuator stiffness, be re-
duced. Therefore, it is recommended that the fin root thickness be increased and the flutter
analysis be performed again.

10
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NOMENCLATURE

A Control fin surface area (in2)

A(y) Control fin root surface area ai, it varies along the "pan (ini)

A, Actuator control piston area (inz)

Ar Actuator rod area (in2)

B Viscous friction coefficient (in-lbf/rad/s)

CLa Control fin lift coefficient (rad-1)

Ca Actuator rotational damping factor (in-lb--s/rad)

CO Control fin bending damping factor (in-lbt--s/rad)

E Modulus of elasticity for steel (lbf/in 2)

FL Lift force (lbf)

Gc Actuator compensator gain

Ha Hinge moment coefficient (in-lbf/rad)

IXX Fin moment of inertia about x-axis (in-lbf-s 2)

Ixy Fin product of inertia (in-lbr--s2)

Iyy Fin moment of inertia about y-axis (in-lbf-s 2)

Ka Equivalent actuator valve gain (rad/s/rad)

Kd Actuator dynamic stiffness factor (in-lbf/rad)

Ka Actuator static stiffness (in-lbf/rad)

K0  Fin bending stiffness factor (in-lbf/rad)

K0s Simplified fin bending stiffness factor (in-lbf/rad)

L Actuator lever arm (in)

Ir Fin root length (in)

is Fin span length (in)

it Fin tip length (in)

M(y) Fin bending moment as it varies along the span (in-lbf)

Mach Missile Mach number

n Specific heat ratio of helium

nair Specific heat ratio of air

a Actuator position (rad)
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a S Actuator steady-state position (rad)

Patm Atmospheric pressure (psia)

PC Actuator control pressure (psia)

Ps Actuator supply pressure (p,,ia)

Q Dynamic pressure (psia)

r Frequency ratio (Q/Q~)

P3xx Aerodynamic viscous damping factor (in2)

NY Aerodynamic viscous damping factor (in2 )

Pyy Aerodynamic viscous damping factor (in2)
T Actuator torque output (in-lbf)

t Time (s)

TO Torque disturbance (in-lbf)

8 Damping factor (CaQn/2Ka)

O Fin bending angle (rad)

9 Frequency (rad/s)

0(y) Fin slope as it varies along the span (rad)

On Natural frequency (Ka/Iyy)+' (rad/s)

by Numerical integration step size (in)

V Actuator control chamber volume (in3)

Vm Missile velocity (in/s)

V(y) Fin shear force as it varies along the span (lbf)

Xae Location of center of pressure from x-axis (in)

0b Phase angle (rad)

y Distance along fin span from root (in)

YaC Location of center of pressure from y-axis (in)

z(ls) Fin deflection at tip (in)
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APPENDIX A
TWO DEGREE OF FREEDOM HIGH SPEED FLUTrER MODEL

Consider a fin and coordinate system located at fin center of compliance.

.•• Center of Compliance

(Bending Moment

Figure A-i. Sketch of Fin Geometry.

A complete summary of system parameters is presented in Table A-1.
A summary of the dynamic equation of motion is presented in Equation A-1.
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TABLE A-1. Description of System Parameters

Parameter Description Units

A Fin ;urface area in2
Ca Rotational damping in-lbt-ýec/rd
Ce Bending damping in-lb-sec/rd
CLa Panel lift force Coef. I/rd
Fp Lift force on panel lbf
lxx Moment of inrrtia in-lb-sec2

about x axis
lyy M',ment of inertia in-lb--sec 2

about y axis
Ixy Product of inertia in-lb-sec2
Ka Rotational spring rate in-lb/rd
K0  Bending spring rate in-lb/rd
M Bending Moment in-lbf
Q Dynamic Pressure lb/in 2

(1/2pV 2)
T Shaft Torque. in-lb
V Velocity in/sec
Xac Dist. of C.P. from in

x axis
Xcg Dist. of C.G. from in

x axis
Yac Dist. of C.P. from in

y axis
Ycg Dist. of C.G. from in

y axis
a Rotational angle rd
, Iy/ IX Y 1

O Bending angle rd
TIXX Aero viscous damping in2

Coeff.
rlXY Aero viscous in2

damping Coeff.
Yy Aero viscous in2

damping Coeff.

A-2



I 16 +~ I al ,4 0 [, - [M (A1

L .,.1 [T (-I

The aerodynamic moment' presen'ed i,i Equation A-! may b1,e ':eP,,.J IN\

(-[/V A Cl-v) [X 1"] [ ( A CL X][, ] T

Equations A-I and A-2 may bc combined to yicld:

l,,: I>] [g1 + {[C'Y 01 + (0/V A C".) [17> )"JJ [ +

YY a0 ' IyFlu 0

xc 1 11 [C (A-3)

Simplifying Equation A-3 Produces:

[X lx iy] F] +[ý C+ (0/V A CLa) 17yy (0,V A CL,) j 1 e]
(0/V A CL0,) ?,• C0 + (0/V A CL0 ) I7j L

K9 Q A CLYac 1 [ 0 (A-4)
(Ka + 0 A C- 0 Xac) a

Consider solving for the roots of the characteiistic equation of expression 4 by taking
the Laplace transform of Equation A-4. Tnhis expression may then be expressed as:

(I 1 ,S 2 +C~s+Ke) (Iys2+ KO) [01 0 (A-5[ (zy$ 2 +Ca0) ([YY S + Kar s [a] K(

Where:

Ce = C9 + (0/V A CL•) i/yy (A-6a)

Ca = (Q/V A CL•) h,,y (A-6b)

Ca Ca + (Q/V AC,,) q. (A-6c)
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Ka0  = Q A CLaYac (A.-d)

KaO = Ka + O A CI.,,Xac A-'c)

Thc systcms characteristic equationi is:

(lxx :;" : Co s + 1-t) (yy s + C0 2 + K,,) -

(Ix, s- + C, S + '0 o) (Ixy s: + %Uo s) - U

Which is also:

(lxx lyy - Ixy 2) s4 + (ixx Ca + lyy C6 - 2l,, Co) s3

+ (lxx K., + CoCa + lyy KO - Ca0
2  _ Ixy Kao) S2

+ (K,• CJ + KOCa - Ko C., 0) s + Ko Kaa 0 (A7)

Equz.tion A-7 is the characteristic equation from which the appropriate roots may be
computed to determine stability.

The technique for swtdying flutter consists of finding the flight con',itions which gener-
ate roots of Equation A-7 with positive real parts. These solutions generate divergent oscil-
lations. A sample solution for a high v flutter problem is found in Figure A-2. This figure
shows the boundary between flutter and flutter free operation as a function of rotational
springrate, 4a, and rotational damping, Ca . Note that 4a and Ca are dominated by actua-
tor springrate and damping. Note also that the flutter boundary is plotted for five values of
bending springrate at a constant Mach number and altitude. Figure A-2 illustrates that there
are three ways to prevent simple fin flutter.

1. Generate a high value of rotational springrate, Ka. Fcr Ka > 8200 in-lb/rd no combi-
nation of conditions can generate flutter.

2. Generate a high value of bending sp;ingrate, K0 . For KO > 10000 in-lb/rd flutter can
not occur. There is no value of K, and Ca that will generate flutter.

3. Generate sufficient Ko and Ca to prevent actuator stiffness and damping charazteristics
from intersecting the flutter zone. Note a hydiavlic damper may be required to achieve
sufficient rotational damping in such a scheme.

Note that the technique number one is the traditional solution to fin flutter. However,
techniques two and three may be required with a pneumanic fin actuation system.

Figures A-3 and A-4 have been included to show the affect of damping on the flutter
boundaries. The analysis of Figure A-3 shows where the flutter boundaries exist when the
bending damping, C0 , is reduced to 0. Likewise, Figv~re A-4 shows the affect of reducing
the aerodynamic damping terms to 50% of the value calculated for the specified flight
condition.
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ARAkP SIMPLIFIED CRITERION

A simplified ..riterion was developed by GPSD and Aeronautical Research Associates
of Princeton in order to evaluate K1 and Ko for flutter free operation. This criterion only
applies to high v sc.pe",onic fin,, A sumnmary (if the criterion follows.

If all damping terms are neglecled in Equation A-4 then:

I xx %3, ro- ,[ 0 A CL,~ Ya c1
Ix[ ' lyy + [ (KK + Q A CLa Xac) aI I (A-8)

Likewise the system characteristic equation becomes:

(Ixx lyy - Ixy') s4 + (ixx 1, +lyy K9 -Jxy Io) s2- ÷K Ko - 0 (A-9)

If the characteristic equation is factored, the condition where all four roots have the
same frequency (that is the condition where flutter begins) is:

(Ixx Kaa) - 2 Ixx Iyy Ka KO - 2 Ixx Ixy Ka, Ka0
- 2 lyy Ixy K0 Kao + (Iyy KO)2 + (Ixy Kao)2  (A-10)

+ 4 Ixy 2 Ko K= = 0

Equation A-10 which is the boundary of flutter is plott.'d for the sample case in Figure
A-5. In this figure the fin flutter boundary is presented as a function of rotational and bend-
ing stiffness. Of particular interest are points A and B on this curve. If bending stiffness,
Ko , is greater than that defined by point A then no flutter can occur. If rotational stiffness,
Y,, is greater than that defined by point B, ;aen no flutter can occur. Points A and B are de-
fined by:

Point A Ko > ixx/Ixy Q A CL,, Yac
(No Flutter) (A-lla)

Point B K, 2t Iyy/Ixy 0 A C7- Xac - Q A CL• Xac.
(No Flutter) (A-11b)

Refering to Figures A-2, A-3, A-4, and A-5, the following conclusions may be
rý.ached:

1. Figure A-2 illustrate" that increasing Ca can increase the value of Ka that is required
tor absolute stwbility. Figures A-3 and A-4 illustrates that decreasing either bending
damping or aerodynamic damping wil! increase the rotational stiffness necessary for
absolute stability (Point B).

2. The analysis of Figures A-2, A-3, and A-4 shows that the criterion for the bending
springrate required for absolute stability, (Point A), is affected only slightly by system
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damping. The bending stiffness requirement, for absolute stability, that is predicted as
suming ze:ro damping is 9650 in-lh/rd. Variations in the damping terms increased this
figure only slightly to 10,000 in-lb/rd.

The simple criterion described above can therefore be used as a useful guide to predict
the bending stiffness, K0. that can be used to eliminate flutter regardless of the values of ro-
tational stiffness, K. . and rotational damping, Qa.

A more detailed analysis is required to predict the rotational stiffness, K,, , that is re-
quired to produce absolute stability because of the significant affects of system damping on
the flutter boundaries. Using such an approach to eliminate flutter is therefore much more
involved and may requite controlling both rotational stiffness, Ka, and damping, Qa
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APPENDIX B

STABILITY EQUATTON PROGR&,M LISTING

C IO(;RAý1N.\M %.\\1E: FINSNINI' FOR

C Steve Cayson

C US Army Missile Command
C Research. Developmcnt, and Engineering Center
C Redstonc Arsenal, AL
C OCT-NOV 89

C This program is used to calculate the flutter regions for the
C AdKEM control section fin using equations developed in a paper
C written by Garrett Fluid Systems Division in Phoenix, AZ. The
C equations were developed using a two-degree-of-freedom model for
C a control surface assuming no damping terms. The characteristic
C equation for this system was then found and used to calculate the
C fin stabilty regions based on fin and actuator stiffness and
C aerodynamic parameters. The region is solved for and the data is
C written to a file, FLUT'ER.DAT, that can be plotted.

C VARIABLE DESCRIPTION

C IXX Fin inertia about hinge line (in-lbf-s 2)
C IYY Fin inertia about root line (in-lbr.-s 2)
C IXY Fin product of inertia (in-lbf-s 2)
C REFA Control fin surface area (in2)
C Q Dynamic pressure (psia)
C MACH Mach number
C V Missile. velocity (in)
C CLIFT Fin lift coefficient (rad-1)
C XCP Distance of center of pressure from x-axis (in)
C YCP Distance of center of pressure from y-axis (in)
C KALFHA Fin bending stiffness factor (in-lbf/rad)

REAL IXX, IYY, IXY, KAA, KANI; KALPHA, KTHETA, MACH

DIMENSION A(11), B(11), C(26), D(26), E(25), F(25)

DIMENSION RR(10), RI(iO),AA(26), BB(26), RREAL(25), RIMAG(25)

OPEN(4, FILE='FLUITER.DAT' ,STATUS=-NEW')

C ***** CONSTANTS USED IN ROOT SOLVER SUBROUTINE *

C - ORDER OF POLYNOMIAL EQUATION
NN= 2
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C - INITIAL ESTIMATES FOR ROOTS
XO = 5.
YO = 5.
X = X0

Y = Yt)

C * INPUT FINC'! IAIRA(•TRISTI'S ..

C - INERrlAS (in-lbf-s 2)
IXX = .00028543
IYY = .00012277
IXY = ,000028672

C - FIN REFERENCE AREA (in2)
REFA = 3.463

C - INPUT MACH NUMBER AND CALCULATE DYNAMIC PRESSURE (psia)
WRITE(-, 100)

100 FORMAT(2X, 'MACH NUMBER?T,2X)
READ (*, I10)MACH

110 FORMAT(F10.7)

Q = 10.29" (MACH**2.)

C - CALCULATE LOCAL VELOCITY (in/s) ASSUMING TEMP 70F
V = MACH* 13540.

C - INPUT FIN LIFT COEFFICIENT (rad- 1) AND CP (in) AT MACH NUMBER
WRITE(*, 120)MACH

120 FORMAT(/,2X,'LIFT COEFFICIENT AT MACH ', F5.2,' ? (1/rad)', 2X)
READ(*, 110) CLIFT
WRITE(*, 130)

130 FORMAT(/, 2X, 'DIST OF CP FROM HINGE LINE (+ is in aft direction)'
&, 2X)

READ(*, 110)XCP
YCP = 0.91

C ***** LOOP TO DETERMINE FLUTTER REGION
DO 200 K = 0, 10000, 20

KALPHA = K*1.0

C - PRELIMINARY CALCULATIONS
QUANT = Q*REFA*CLIFT
KAT - QUANT*YCP
KAA = KALPHA + QUANT*XCP

C - REAL COEFFICIENTS OF POLYNOMIAL - A(1) IS HIGHEST ORDER COEF.
A(1) = IYY**2.
A(2) = 4*KAA*(IXY**2.) - 2*IYY*IXY*KAT - 2*IXX*IYY*KAA
A(3) = (IXX*IXX*KAA*KAA) + (IXY*KAT)**2. - 2*IXX*IXY*KAA*KAT
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C -IMAGINARY COEFFICIENT'S OF POLYNOMIAL
B(I) 0.
B(2) =0.

B(3)=0.

C SOLVE FOR ROOTS USING SUBROUTINE RoUlS
CALL ROOTS(A, 13, NN, X, Y, RR. RI, NERR)

C -CHIECK TO SEE IF ROOTS ARE EOUAL, IF SO HIALTr PROCRAM EXECUTION
CHiECK = RR(I) - RR(2)
IF (ABS(CHiECK) .LT. .1)GOTO 99

IF (RR(I) .LT. 0.0) RR( I) = 0.0
IF (RR(2) .LT. 0.0) RR(2) = 0.0

C WRITE(*,10) KALPHA. RR(1), RR(2)
WRITE(4, 10) KALPHA, RR(1), RR(2)

10 FORMAT(2X, F7.I, 2(2X, FI0.3))
200 CONTINUE
99 END

SUBROUTINE ROOTS(A, B, NN, XO, YO, RR, RI, NERR)
DOUBLE PRECISION AA, BB, RREAL, RIMAG, C, D, E, FP,0X Y, TOL, DENOM,
R, RS
DIMENSION A(*), B(*), RR(*), RI(*)
DIMENSION AA(26), BB(26), C(26), D/26)
DIMENSION RREAL(25), RIMAG(25), E(25), F(25)
C INITIALIZE

NERR =0
R = 0.ODO
N=NN
NP1 = N+1
K=O
TOL = .5D-8
x = x
Y =Yo
DO05 1=1, NP1
AA(I) =A(I)

5 BB(I) =B(I)

C TEST FOR FIRST DEGREE EQUATION
10 IF(N .EQ. 1) GOTO 60

C BEGIN SYNTHETIC DIVISION FOR F(Z) AND F'(Z)
20 KTR=0

NP1 =N+l
IF(X .EQ. 0.QDO) X=.37D0
IF(Y .EQ. 0.ODO) Y=.37D0
C(l) =AA(1)
D(I) = BB(1)
E(l) = C(1)
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F(I) = D(i)
23 DO 25 I=2,NP1

IMI = 1-1
C(1) = AA(1) + X*C(IMI) - Y*D(IM1)
1)(1) = B1 ) + Y*C(I N1 - N*4 D(I,%l
IF(I .EO. NPI) GOTO 25
E(1) - C(1) + X*E(IN1 1) - Y*F(IN I)
F(I) =D(I) + Y*E(IM1) + X*F(IM1)

25 CONTINUE
C CALCULATE X AND IY

30 DENOM= E(N)**2+F(N)**2
P = (C(NPI)*E(N) + D(NP1)*F(N))/DENOM
Q = (D(NP1)*E(N) - C(NP1)*F(N))/DENOM
X=X-P
Y=Y-Q
RS=R
R = DSQRT(P**2+Q**2)
IF(R .T. RS) GOTO 40

C TEST LOOP COUNTER WHEN CORRECTION DOES NOT DECREASE
KTR = KTR+1
IF(KTR .LE. 25) GOTO 40
NERR = 1 GOTO 50

C CHECK FOR CONVERGENCE
40 IF(R .GT. TOL) GOTO 23

C ROOT FOUND - REDUCE POLYNOMIAL
50 K-=K+1

RREAL(K) = X
RIMAG(K) = Y
DO 55 I=1, N
AA(I) = C(I)

55 BB(I) = D(I)
N=N-1
GOTO 10

C SOLUTION FOR FIRST DEGREE POLYNOMIAL
60 DENOM = AA(1)**2+BB(1)**2

x = (-AA(1)*AA(2) - BB(1)*BB(2))/DENOM
Y = (AA(2)*BB(1) - AA(1)*BB(2))/DENOM
K K+i
RREAL(K) = X
RIMAG(K) = Y

C MOVE DOUBLE PRECISION ROOTS TO SINGLE PRECISION OUTPUT
70 DO 75 I=1,NN

RR(I) = RREAL(I)
75 RI(I) = RIMAG(I)

C
999 RETURN

END
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APPENDIX C

The leading wedgc of the control fin root is r-,3prcscntcd as shown in FigLure 3-2, The
width. hb(y. is calculated using

)3(Y) 1 0 - It.!)(Y 1,) + 10 (C.-I)

and the thickness, t30(). is found from the equation

t3(') = (tI- t,)00.l,) + t, (C-2)

The leading edge thickness can be calculated using

td(Y) = (tsIc - tric)(y/ls) + trie (C-3)

A trapezoid such as the one shown below has now been defined and the inertia about
the x-axis can be found.

tle (Y) b3 (Y)

- t3 (Y)
F_

Figure C-1. •I~•psl FinWedge Cross-Section

The trapezoid may be divided into two regions, the rectangular portion and the triangular
portion. The inertia of the rectangular portion is just

I3R(Y) = [bA(y) tie(y) 3]/12 (C-4)

The inertia of the triangular sections can b: found by integration of

13T = 2 f z2 dA (C-5)

A

where z is the distance as shown in Figure C-I. Substitution of the proper limits into Equa-
tion C-5 results in the double integral

b3(Y) mx+b3

13T = 2 f f z 2 dzdx (C-6)

0 b2
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where

b,3 = (y 1 '2 (C-7)

ialtld

fl,3 = 113(y) - bli(y)I'I2 h3(y )] (C-8)

Ev'aluation (f Equa.ion C-4, Icsults in

13T(Y) = b3(y')2 imf 3
3b3(y) 2/6 + 2n'. 3

2bh3b3(y)/3 + m -bz 3
2] (C-9)

and the total inertia of !he ieading wedge section ac a function of y is

13(Y) = 13R(Y) + I3T(Y) (C-10)

The incrtia of the trailing section is f•,und simiiarly. The inertia of the rectangular por-
tior is

IIR(y) = [bl(y) tte(y) 3]/12 (C-11)

and Lhe inertial of the triangular section is

I1T(Y) = [bl(y) 2 [mzl 3b,(y)2/6 + 2mzI 2bzibi(y)/3 + mzlbzl 2] (C-12)

where

b1(y) = (lti - lra)(y/Is) + lr (C-13)

tj(y) - (ts - tr)(y/ls) + t, (C-14)

tie(Y) = (tste - trte) (y/Is) + trte (C-15)

bzj = tte(y)/2 (C-16)

m = [ti(y) - tte(y)]/[2 bl(y)] (C-17)

Therefore, the total inertia of the trailing wedge is

lI(y) = IIR(Y) + IiT(y) (C-18)

The middle secticn of the fin is simply a rectangle and the inertia is found using

12(Y) = b2(y) t2(y) 3/12 (C-19)
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where

.(y) = (It-2 - ,:) (y/Os) + 1r2 (C-20)

and

,= - I) (OA/S) + t, (C-2 1)

The totat inertia of the scCtionl is then found from

11o,(Y) = I(y) + I1(y) + 13(Y) (C-22)
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APPENDIX D

BENDING PROGRAM LISTING

C PROGRAM NAMIE FU'LEI.IN F()

"'_ Steve ('aysotm

C I!S Army Missile Command
C Research, Development, and Engineering Center
C Control Systeni, Branch
C 04 DEC 89

C This program will calculate the fin bending spring rate for the
C stainless steel core of the AdKEM control fin assuming a constant
C distributed load (dynamic pressure) on the fin. First of all the
C fin geometry is input to the program. This includes the span,
C various thicknesses, and the root and tip lengths. Then a
C loop is used to calculate the moment and slope at each point along
C the span and solve for the stiffness measured in in-lbf/rad.
C The equation is
C
C K(Y) = dMOMENT/dTtIETA

C VARIABLE DESCRIPTION

C THKFACT Thickness multiplier for variable thickaesses
C LRI Trailing wedge length at root (in)
C LR2 Mid-section length at root (in)
C LR3 Leading wedge length at root (in)
C LRTOT Total fin length at root (in)
C TROOT Mid-section thickness at root (in)
C LTI Trailing wedge length at tip (in)
C LT2 Mid-section length at tip (in)
C LT3 Leading ,edge length at tip (in)
C LTTOT Total fin tip length (in)
C TSPAN Mid-section thickness at span (in)
C LSPAN Length of span (in)
C TSLE Thickness of leading edge at span (in)
C TRLE Thickness of leading at root (in)
C TSTE Thickness of trailing edge at span (in)
C TRTE Thickness of trailing edge at root (in)
C ATOT Total fin root area (in2)
C MOM1 Bending moment at fin root (in-lbf)

IMPLICIT REAL (I ,K-M)
DOUBLE PRECISION THETA1, THETA2, DELTHT, XDEF, DY
OPEN(4, FILE='FULL.DAT', STATUS = 'NEW'"
THKFACT = 1.0

C ***** INPUT FIN GEOMETRY SPECIFICATIONS ****
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C ROOT GEOMETRY (ALL DIMENSIONS IN INCIIES)
LR1 = .699
LR2 = .822
LR3 = .674
LRTOT = L.RI + LR2 I.R3
TROOT = TIHKFACT RI.

C TIP GEOMETRY
LTI = .299
LT2 = .444
LT3 = .357
LTTOT = LT. + LT2 + LT3
TSPAN = THKFACT * 0.057

C SrAN LENGTH
LSPAN = 1.80

C LEADING AND TRAILING EDGE THICKNESSES AT ROOT AND SPAN
TSLE = THKFACT * .017
TRLE = THKFACT * .025
TSTE = THKFACT * .025
TRTE = THKFACT * .025

C CALCULATE TOTAL FIN AREA AND BENDING MOMENT AT Y=O
ATOT = LSPAN/2. * (LRTOT -I.7TOT)
MOM1 LSPAN/6. * (LSPAN*(LTTOT + 2.*LRTOT) - 6.*ATOT)

C ***** OTHER VARIABLES *****
C FIN COEFFICIENT OF ELASTICITY (ps!)

E = 28.5E06
C INTEGRAFION STEF SIZE

DY = .001
C DO LOOP TERMINATION VALUE CALCULATION

JOY = LSPAN/DY
C LOOP INITIALIZATION

SUMMOI = G0
THETAW = .0
ZDEF = .0
JPRINT = 1

C !!! !!!!!DON'T MESS WITHANYTHING BFLOW HERE!!:IIIIIiI

C ****" BEGIN NUMERICAL INTEGRATION TO SOLVE FOR STIFFNESS *****
DO1OJ = 1, JDY-9
Y = J*DY

C ****• CALCULATE CROSS-SECTIONAL INERTIA OF FIN AT Y *
C CALCULATE TRAILING SECTION PARAMETERS
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BI = (LTl-LRl)*Y/LSPAN + LRl
Ti = (TSPAN-TRO0T)*YfLSPAN + TROOT
'FIT (TSTE-TRTr-)*YIL.SPA.N + TRTE
MZI =(TI-TTE)/(2.*BI)

i3ZI TTE2.

C CALCULATE TRAILING SECTION INERTIA
C (RECTANGULAR PORTION)

XIIR = (I/12.)*BI*(FI'E**3)
C (TRIANGULAR PORTION)

XIIT = BI*( ((MZI*BI)**3)/6. +(2.*13Z1/3. )*(MZl*B1)**2 +
& MZI*Bl*BZ1**2)

C TOTAL
XIl = XI1R+XIIT

C CALCULATE MIDDLE SECTION INERTIA
Cl (LT2-~LR2)*Y/LSPAN + LR2
C2 ((TSPAN-TROOT)*YfLSPAN + TROOT)**3
C3 1 /12. X12 = C3*Cl*C2

C CALCULATE LEADING SECTION PARAMETERS
B3 = (LT3-LR3)*Y/LSPAN + LR3
T3 = (TSPAN-TROOT)*YfLSPAN + TROOT
TLE (TSLE-TRLE)*Y/LSPAN + TRLE
MZ3 =(T3-TLE)/(2.*B3)

BZ3 =TLE/2.

C CALCULATE LEADING SECTION INERTIA
C (RECTANGULAR PORTION)

X13R = (l/12.)*B3*(TLE**3)
C (TRIANGULAR PORTION)

X13T = B3*(((MZ3*B3)**3)/6. + (2.*BZ3/3.)*(MZ3*B3)**2+
& MZ3*B3*BZ3**2)

C TOTAL
X13 = X13R + X13T

C TOTAL INERTIA OF CROSS-SECTION
XITOT = X~ll+X12 +X13

C ***** CALCULATE BENDING STIFFNESS "'

C CALCULATE MOMENT/DYNAMIC PRESSURE AT Y AND CHANGE IN
MOMENT MOM2 = ATOT*(Y-LSPAN) -LRTOT/2.*(Y**2.-LSPAN**2.) -

& (L1TOT--LRTOT)*(Y* *3.-SPAN* *3.)/(6.*I.SP.AIN)
DELMOM = MOM2 -MOM1

C CALCALUTE THETAIDYNAMIC PRESSURE AT Y AN4D CHANGE IN THETA
RAT = MOM2/XITOT
SUMMOI =SUMMOI + (MOM2/XITOT)*DY
THETA2 =SUMMOI/E

DELTH4T =THETA2 - THETAI.
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C CALCULATE DEFLECTION/DYNAMIC PRESSURE
ZDEF = ZDEF + THETA2*DY

C CALCULATE FIN STIFFNESS
KFINY = .I;(I.ELM(•M DEITlIT)

MOMI = MOM2THETAI = THETA2

C *"** WRITE DATA TO FILE ****
C PRINT EVERY 10th DATA POINT

IF (JPRINT .EQ. 10) THEN

C WRITE SPRING RATE AT Y TO FILE
WR1TE(4, 100)N, KFINY, MOM2, THETA2, ZDEF

100 FORMAT(2X, F6.4, 2X, E15.3, 2X, F11.3, 2X, E15.3, 2X, E15.3)

JPRINT = 0

ENDIF

JPRINT = JPRINT+I

10 CONTINUE

END
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