
AD-A232 290

RADC-TR-90-101, Vol II (of three)
Final Technical Report

June 1990

DECENTRALIZED COMPUTING
TECHNOLOGY FOR FAULT-TOLERANT,
SURVIVABLE C31 SYSTEMS Functional
Description

Carnegie-Mellon University DTICt'%EEcTEi'

Sponsored by SE EC D
Strategic Defense Initiative Office

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the Strategic
Defense Initiative Office or the U.S. Government.

Rome Air Development Center
Air Force Systems Command

Griffiss Air Force Base, NY 13441-5700

91 t 01 01 ,

This report has been reviewed by the RADC Public Affairs Office (PA) and is
releasable to the National Technical Information Service (NTIS). At NTIS it will be
releasable to the general public, including foreign nations.

RADC-TR-90-101, Vol II (of three) has been reviewed and is approved for
publication.

APPROVED:

+HOMAS F. LAWRENCE
Project Engineer

APPROVED:

Raymond P. Urtz, Jr.
Technical Director
Directorate of Command and Control

FOR THE COMMANDER:

IGOR G. PLONISCH
Directorate of Plans and Programs

If your address has changed or if you wish to be removed from the RADC mailing list,
or if the addressee is no longer employed by your organization, please notify RADC
(COTD) Griffiss AFB NY 13441-5700. This will assist us in maintaining a current
mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document requires tLat it be returned.

I iiu•n l nlBi[

DECENTRALIZED COMPUTING TECHOLOGY
FOR FAULT-TOLERANT, SURVIVABLE C I SYSTEMS

Functional Description

J. Duane Northcutt E. Douglas Jensen
Edward J. Burke Raymond K. Clark
James G. Hanko Donald C. Lindsay
Ddvid F. Mayntrd Franklin D. Reynolds
Samuel E. Shipman Jack A. Test
Jeffrey E. Trull

Contractor: Carnegie-Mellon University
Contract Number: F30602-85-C-0274
Effective Date of Contract: 29 Aug 85
Contract Expiration Date: 30 Dec 88
Short Title of Work: Decentralized Computing Tech-

nology for Fa.,lt-Tolerant,
Survivable C I Systems
Functional Description

Period of Work Covered: Aug 85 - Dec 88
Principal Investigator: E. Douglas Jensen

Phone: (508) 393-2989
Project Engineer: Thomas F. Lawrence

Phone: (315) 330-2158

Approved for public release; distribution unlimited.

This research was supported by the Strategic Defense Initia-
tive Office of the Department of Defense and was monitored
by Thomas F. Lawrence (COTD), Griffiss AFB NY 13441-5700,
under contract F30602-95-C-0274.

I~~~~~ AGECYLE Oi.?Evebda

Jun 199 aawp W0- Fina AIug 85ow OEM Dec I 88 "9SOg

TOLECYEANT, 4~RVOft" L L C I SY TE Functional APAES COVERED

&ALJThORS) J. Duane Northcutt, E. Douglas Jensen, TA- 0

Edward J. Burke, Raymond K. Clark, James G. H-anko, U-1

Donald C. Lindsay, David P. Maynard, (Cont'd)

7. PERORMING ORANIZATIlON NtMM) AND ADORESSChS) I.PERFORMING ORGANIZATION
REPORT NMBUER

Carnegie-Mellon University
Pittsburgh PA 15213-3890

0 SPONSOINGOMOWOMAING AGENCY MC(S) AND ADDAESS4ES) 10 sPONsoRNGOMONTORNG AGENCY

Strategic Lefense InitiativeREOTNMR
Office, Office of the Rome Air Development Center (COTD) RADC-TR-90-1O1,
Secretary of Defense Griffiss AFB NY 13441-5700 Vol 11 (of three)
Wash DC 20301-7100

11 S$.PPLEMENTARY NOTUS

RADC Project Engineer: Thomas F. Lawrence /C OTD/(315) 330-2158

12&. OISTRh~IB~lOW4AWLABILIY STATENT 120. DISTIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (AauiMD110 2W W

Alpha is an operating system for the mission-critical integration and operation of large,
complex, distributed, real-Jime systems. Such systems are becoming increasingly common in
both military (e.g., BM/C , combat platform management) and industrial factory and plant

automation (e.g., automobile manufacturing) contexts. They differ substantially from the
better-known timesharing systems, numerically-oriented supercomputers, and networks of
personal workstations. More surprisingly, they also depart significantly from traditional real-
time systems, which are predominately for low-level periodic sampled data monitoring and

14 SULATTERMSIS NU0Ef OF PAGES

'Zeal-Time System Decentralized Control 1 1;1)
Distributed Operating System Fault-Tolerance is. PRICE CODE

17 E rr-CA55116ft16Is SECURITY CSI"FCAIO 19 SECURMY CLASSI ICATION 20. LIMITATION OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAR

NSN '.16.S06Aa .fY 9 OU
&-I oiot

6 (Cont'd). Franklin D. Reynolds, Samuel E. Shipman, Jack A. Test, Jeffrey E. Trull

Contents

Part A: Alpha Release 1 Programming Model

Part B: Alpha Release 2 Design Summary

Accesion ~

Ir- o [r

Fwucdoal Description

Ll rreface

Preface
Alpha is an adaptable decentralized operating system for real-time applications, being

developed as a part of the Archons project's on-going research into real-time distributed
systems. Alpha is the first systems effort of the Archons Project, and an initial version
(i.e., Release I) has been created at Carnegie-Mellon University directly on Sun work-
station hardware. It has been demonstrated with a real-time control application written
by its first industrial user, Genieral Dynamics. A second version of Alpha (i.e., Release
2) is being produced at Concurrent Computer Corporation. Both versions of Alpha are
sponsored by the USAF Rome Air Development Center and are in the public domain for
U.S. Government use.

This report consists of two main parts: the first provides a functional description of
Release 1 of the Alpha kernel, and the second provides a summary of the design changes
between Releases I and 2, along with the rationale for the changes. The focus of the first
part of this report is on the conceptual programming model being projected (primarily) by
the kernel layer of the (Release 1) Alpha operating system. The intent is to describe the
native programming paradigm of the kernel, without delving into the specific details of the
kernel's programming interface, or into issues related to the various client-specifiable
system functions (e.g., virtual memory policies, device drivers, and 1/0 handling).

The second part of this report describes the major differences between the Alpha
Release-2 and Release- 1 designs and the motivations behind those differences. in so
doing, an attempt was made to highlight significant ideas and themes in the thought pro-
cess behind the Alpha Release-2 design. This part of the report is a companion to the
Release-2 Kernel Interface Specification which should be referred to for detailed interface
specifications.

Functional Descnptwn

Alpha Release I Programmung Model 4-.

Table of Contents

A bstract .. A -1

1 Introduction .. A -2
1 1 Research Context ... A-2
1.2 Technical Approach .. A-3
1.3 System Structure .. A-4

1.3 1 Software ... A-4
1.3.2 Hardware .. A-6

1.4 Key System Features ... A-8
1.4.1 Tim eliness .. A-8
1.4.2 Distribution .. A-8
1.4,3 Robustness .. A-9
14,4 Adaptability ... A-11

2 Basic Programming Abstractions ... A-12
2.1 O bjects .. A-12

2.1.1 Basic Definitions ... A- 12
2.1.2 Associated Features ... A-16

2.1.2.1 O bject M anagem ent ... A-16
2.1.2.2 Standard Operations ... A-16
2.1.2.3 Object Attributes .. A- 17

2.1 .3 Key Characteristics A- 18
2.2 Threads .. A-20

2.2.1 Basic Definitions .. A-20
2.2.2 Associated Features ... A-21

2.2.2.1 Thread M anagem ent .. A-21
2.2.2.2 Standard Operations ... A-22
2.2.2.3 Thread Attributes ... A-22

2.2.3 Key Characteristics .. A-23
2.2.3.1 Orphan Thread Sections .. A-24
2.2.3.2 Thread Concurrency ... A-24

2.3 Operation Invocation ... A-25
2.3.1 Basic Definitions .. A-26
2.3.2 Associated Features ... A-27

2.3.2.1 Fault Containm ent .. A-27
2.3.2.2 Invocation Exceptions .. A-29
2.3.2.3 Flow of Control .. A-29

2.3.3 Key Characteristics .. A-30

3 Ancillary Programming Abstractions .. A-32
3.1 Access Control Abstractions ... A-32

3.1.1 Basic Definitions .. A-32
3.1.2 Associated Features ... A-33
3.1.3 Key Characteristics .. A-35

Functional Description

.4-it Alpha Release 1 Programnung Model

3.2 Concurrency Control Abstractions ... A-37
3.2.1 Semamhores .. A-38
3.2.2 Locks I A4............................ 4

4 K ey Svstem Features ... A -50
4.1 Tim e Constraints .. A-50

4 , 1 Time-Value Functions .. A-S0
4.1.2 Tim e Constraint Blocks ... A-52

4. 1.2.1 Dynamic Application of Tim e Constraints A-53
4.1.2.2 Dealing with Unsatisfied Tim e Constraints A-53

4.1.3 Time-Driven Resource Management Policies A-55
4.1.3.1 A Best-Effort Scheduling Policy ... A-56
4.1.3.2 Im plications of Time-Value Functions A-58

4.2 Exception Handling ... A-58
4.2.1 M echanism s .. A-59

4.2.1.1 Operation Invocation .. A-60
4 2.1.2 Exception Blocks ... A-62

4.2.2 Exam ple Usage .. A-64
4.3 Robustness .. A-69

4.3.1 Atomic Transactions .. A-70
4.3.1.1 Conczpts ... A-71
4.3.1.2 Approach .. A-72
4.3.1.3 M echanism s ... A-73
4.3.1.4 Usage ... A-75
4.3.1.5 Issues' ... A-76

4.3.2 O bject Replication ... A-76
4.3.2.1 Concepts ... A-77
4.3.2.2 Approach .. A-78
4.3.2.3 M echanism s ... A-78
4,3.2.4 Usage .. A-79
4.3.2.5 Issues .. A-81

5 Comparisons with Other Models A-85
5.1 Conventional Approaches ... A-85

5,1.1 Process/M essage Approach ... A-85
5.1.2 Client/Server Approach ... A-86

5.2 An Exam ple and Issues/Im plications .. A-88

6 A cknow ledgm ents .. A -93

R eferences ... A -94

Appendix I: Programming Example .. A-99

Functional Description

Alpha Release 1 Programppung ,fodel .A - i

List of Figures

Figure I Logical System Software Structure .. A-5
Figure 2 Testbed System Structure .. A-7
Figure 3 Example Object .. A- 14
Figure 4 Example Object Type Specification ... A- 14
Figure 5 Example Thread/Object Snapshot .. A-21
Figure 6 Example of Thread Attribute Nesting .. A-23
Figure 7 Example Operation Invocation ... A-28
Figure 8 Example Object Type Specification ... A-42
Figure 9 Example Lock Usage .. A-48
Figure 10 Components of a Time-Value Function ... A-52
Figure II Example Use of Time Constraint Blocks A-54
Figure 12 Example of Thread Maintenance .. A-61
Figure 13 Exception Handling Example--Compensation A-65
Figure 14 Exception Handling Example-Time-Limited Operations A-67
Figure 15 Exception Handling Example-Using Partial Resuls A-68
Figure 16 Typical Process/Message Interactions .. A-89
Figure 17 Typical Thread/Object Interactions A-9 1

Functional Descrptwn

41pkica Reea~e. Pron~yammxg W1odCI

List of Tables
Table t Lock Compatibility Table.. A-46

Functional Description

Alpha Release 1 Progranwung Model 4-

Abstract
Alpha is an adaptable decentralized operating system for real dme applications, being

developed as a part of the Archons project's on-going research into real-time distributed
systems. Alpha is unique in two particularly significant ways-first, it is decentralized,
providing reliable resource management transparently across physically dispersed nodes,
so that a distributed application can be implemented and executed as though it were cen-
tralized; and second, it provides comprehensive, high technology support for real-time
applications, particul,'rly supervisory control systems (e.g., industrial automation applica-
tions) which are characterized by predominately aperiodic activities, executing under criti-
c.al time constraints (such as deadlines). Alpha is extremely adaptable so as to be easily
optimized for a wide range of problem-specific functionality, performance, and cost.
Alpha is the first systems effort of the Archons Project, and the prototype is bei.,g creat-
ed at Carnegie-Mellon University directly on Sun workstation hardware [Northcutt 88b].
It has been demonstrated with a real-time control application written by its first industri-
al user, General Dynamics [Clark 88a]. While the second-generation, commercial-quali-
ty version produced by Kendall Square Research is portable, its initial target is their new
multiprocessor. Both versions of Alpha are sponsored by the USAF Rome Air Develop-
ment Center and are in Lie public domain fcr U.S. Government use.

The focus of this report is on the conceptual programming mnoiel presented (primarily)
by the kernel layer of the Alpha operating system. Thc intent is to describe the native
programming paradigm of the kernel, without delving into the specific details of the ker-
nel's programming interface or into issues related to the various client-specifiable sys-
tem functions (e.g., virtual memory management policies, device management, and I/O
handling).

This report describes the functionality of the kernel of the Alpha operating system as
seen by a programmer. It begins by briefly defining the context and rationale for this
work, the overall technical approach taken, and the key features of the system. The basic
programming abstractions provided by Alpha are then described, followed by a descrip-
tion of the ancillary abstractions that serve to complete the programming model. Finally,
the Alpha programming model is compared and contasted with more conventional pro-
gramming models that are in use today.

Functional Description

A-2 Alpha Release) Programming Model

Introduction
Alpha is an adaptable decentralized operating system designed to provide reliable

resource management transparently across physically dispersed nodes, in support of real-
time applications. The real-time applications of particular interest for Alpha are supervi-
sory control systems (e.g., industrial automation applications), which are characterized
by predominately aperiodic activities, executing under critical time constraints (such as
deadlines). Alpha has furthermore been designed to be extremely adaptable so as to be
easily optimized over the wide range of problem-specific functionality, performance, and
cost requirements commonly associated with real-time applications.

The focus of this report is on the conceptual programming model presented (primarily)
by the kernel layer of the Alpha operating system. The intent is to describe the native
programming paradigm of the kernel, without delving into the specific details of the ker-
nel's programming interface (which is described in [Northcutt 88d] and (Shipman 88]), or
into issues related to the various client-specifiable system functions (e.g., virtual memo-
ry management policies, device management, and I/O handling). This report was written
from the perspective of the builder of Alpha's kernel layer, and throughout the remainder
of this document all references to Alpha should be interpreted as meaning the kernel of
the Alpha operating system.

The following sections describe the research context in which Alpha was developed,
the general technical approach taken to the system design and implementation effort, and
the key features of the system.

1.1 Research Context
The Alpha programming model was derived from the requirements defined for the Alpha

operating system's chosen application domain-i.e., distributed real-time command and
control applications. A unique combination of requirements is implied by this application
domain, and existing systems either ignore some of the requirements or fail to provide a
comprehensive, well-integrated solution. The Alpha programming model provides fea-
tures that meet each of the main requirements of the defined application domain.

Some of the requirements adopted for Alpha are unique to the supervisory control con-
text, while others, although generally applicable to a wide range of systems, are especial-
ly important in this domain. These requirements can be grouped into four categories:

l timeliness requirements,
" physical distribution requirements,
• robustness requirements, and

• adaptability requirements

In addition to the examination of the problem area's requirements, the programming
model that was developed for Alpha stems from an in-depth study of several key tech-
niques, often involving the synthesis of new concepts for solving fundamental problems.
The approach taken explored both hardware and software alternatives in order to effec-
tively implement the basic system concepts.

This research resulted in the creation of a set of programming abstractions that are
intrinsically well-suited to modular, reliable, decentralized operating systems, along with

Functional Description

Alpha Release I Prograrmmng Model .4-3

the design and implementation of a set of kernel-level mechanisms to support them.
Alpha is not a monocentric system, featuring one particular concept over all others, nor is
it a collection of facilities grafted onto an existing operating system. All of the system's
features were designed based on the requirements of the application domain and imple-
mented in concert with each other, resulting in a well-integrated solution within a mean-
ingful framework.

Alpha differs from other operating system efforts in a number of ways. Alpha was
designed in a top-down fashion based on a high-level requirements, not bottom-up
based on a set of implementation detailst. Furthermore, Alpha was not constrained to be
compatible with existing (system or application) software, and so the exploration of the
major research concepts was not compromised by having to force newly developed fea-
tures into an existing system context. For this reason, the Alpha operating system inte-
grates concepts in the most effective way to achieve its objectives. If the Alpha operat-
ing system's requirements included a constraint such as UNIX compatibility, many of the
system's trade-offs would be made differently and compromises would undoubtedly have
to be made in the conceptual fabric of the system. Alpha represents the results of uncon-
strained development of a series of (application-requirements-driven) concepts, and not
the force-fitting of ideas into some incompatible, artifact-ridden structure.

Alpha was designed to be executed on architectures consisting of a set of loosely-cou-
pled nodes, where each node could be either a uniprocessor or a multiprocessor. Addi-
tional constraints placed on the implementation of Alpha dictate that the system must be
able to run on standard, off-the-shelf processors (i.e., the system cannot be dependent
on specialized hardware support to make its implementation practical) and that the sys-
tem's native programming model must be similar in concept and implementation to tradi-
tional models (i.e., the system cannot demand that its programmers learn and adopt a
radically different approach to programming).

Complete documentation of the context, assumptions, objectives, and rationale for this
effort is to be found in (Northcutt 88a].

1.2 Technical Approach
This report describes the facilities provided by Alpha to a programmer at its native ker-

nel interface. The Alpha kernel provides a set of simple and uniform programming
abstr'ztions from which modular, reliable, and distributed real-time control applications
may be constructed. The purpose of a kernel is to provide fundamental abstractions and
mechanisms that support a range of different system interfaces (i.e., operating systems
and languages, similar to [Habermann 76]), which is not the same as a trivial operating
system or an executive. The Alpha kernel mechanisms hat,. been carefully and deliber-
ately constructed to be devoid of all policy decisions, and are meant to support the explo-
ration of a wide range of decentralized operating system policies.

The interface provided by the kernel is not necessarily the same interface that the
Alpha operating system presents to its application programmers. In most cases, there is

Of course, no design proceeds in a purely top-down manner, oblivious to the realistic underlying capabilities
of a system. The point here is simply that we have attempted to build what we want, not what we already
know how to build.

Functional Description

A4-4
Alpha Release I Programming Model

a system layer on top of the kernel that can provide the applications programmer with ahigh-level programming language, or a more abstract system interface (possibly indepen-
dent of any specific programming language). The client programmer of the Alpha kernelcould be: a systems programmer involved in the construction of the higher levels of theAlpha operating system; the creator of a run-time support package for some standard,high-level programming language to be used by applications programmers; or an applica-
tions programmer creating an embedded application by programming directly on the ker-
nel's interface.

The abstractions provided by the kernel of Alpha are based on a combination of the prin-ciples of object-orientation [Bayer 79], atomic transactions [Bayer 79], replication
[RandeU 78], and decentralized real-time control [Jensen 76a).

The general programming paradigm supported by the kernel of the Alpha operating sys-tern is known as object-oriented programming (Goldberg 83, Cox 86), and the primary
abstractions supported by the kernel are: objects, invocations, and threads. In Alpha,objects adhere to the common definition of abstract data types and interact with otherobjects via the invocation of operations on them. Threads are the manifestations of con-trol activity (i.e., the units of concurrent computation and scheduling) within the kernel.

The Alpha thread abstraction is in many ways comparable to the process abstraction
found in many conventional systems. Unlike conventional processes however, threads
move among objects via invocations, and do so without regard for the physical nodeboundaries of the system. Furthermore, the kernel's object abstraction extends to allsystem services and devices-i.e., Alpha encapsulates all of the system's physical
resources within standard object interfaces.

1.3 System Structure
The following is a brief description of the structure of the software and hardware in theinitial implementation of Alpha. The intent of these descriptions is to provide an

overview of the framework in which the Alpha kernel exists. A detailed description of thestructure of the Alpha system software can be found in [Northcutt 88c]; details of the
system's hardware structure can be found in [Northcutt 88b].

1.3.1 Software
The Alpha operating system lies between the application code and the hardware and(in its current implementation) has the internal, logical structure shown in Figure 1. The

application layer consists of a collection of objects and threads, def'med by one or moreapplications programmers. These objects and threads execute without any special sys-tem privilege (with respect to priorities, access to internals, etc.). The separation of
application-level object address spaces is enforced by the underlying hardware.

The system layer consists of a collection of objects and threads, identical to those foundin the application layer (i.e., unprivileged with hardware-enforced separation of addressspaces). System-level objects and threads are distinguished from their application-levelcounterparts only by their access privileges-i.e., the capabilities that they possess (seeSection 3.1 for an explanation of the access control mechanisms). Objects in the systemlayer provide the higher-level operating system services-e.g., name, authentication,
directory, and reconfiguration servers, as well as user interface and programming environ-
ment support facilities.

Functional Description

Alpha Release I Programmang Model 4-5

Application

Executivef

Kernel

Monitor

Figure 1: Logical System Software Structure

The executive layer extends the functionality of the kernel and is composed of a collec-
tion of special entities known as kernel objects and kernel threads. These appear to the
programmer who specifies them as normal objects and threads, but they have special
characteristics and are implemented in a different manner. Kernel threads and kernel
objects exploit optimizations that permit the system-builder to easily migrate a limited
number of threads and objects into the lower layers of the system, primarily for reasons
of performance (as well as access to kernel or device shared data). Kernel object types
are specified in the same way as normal objects, however kernel object instances are
linked into the system at system-build time and coexist within the kernel's address
space. Kernel threads and objects are used to implement system daemons (e.g., inter-
rupt handlers, virtual memory pagers, transaction managers, and garbage collectors). In
addition, the executive layer is where the policy modules that govern the behavior of the
local kernel mechanisms reside.

The kernel layer provides the basic system abstractions upon which the remaining por-
tions of the system are constructed. The kernel consists of:

" system service objects-i.e., routines that present object interfaces to the client
and provide essential services (e.g., object and thread managers, and
semaphore and lock managers)

" kernel subsystems-i.e., collections of routines that collectively provide a major
internal system facility (e.g., virtual memory, scheduling, communications, and
secondary storage)t.

• the kernel proper-i.e., routines the provide the bulk of the kernel's basic func-
tionality (e.g., objects, threads, operation invocation, trap handling, subsystem
interfaces, and physical memory and 1/0 peripheral interfaces)

Many of these facilites are executed, 'wholly or in part, on processors separate from the one on which the
remainder of the kernel executes.

Functional Description

A-6 Alpha Release I Programming Model

Finally, the monitor layer consists of software that exists within each processor's on-
board PROM storage. Included in the functions provided by the monitor layer are: low-
level I/O support (including the "printfO" routine); TFTP-based [Solhns 81] boot,
upload, and download support; power-on reset initialization and diagnostics; and low-
level debugging support.

1.3.2 Hardware

The hardware base on which the Alpha operating system executes consists of a loose-
ly-coupled collection of dedicated-function multiprocessor nodes, constructed from largely
off-the-shelf system components. The testbed supports the development of software by
a collection of system programmers working from individual (remote) workstations. Fur-
thermore, the nodes of the testbed allow the exploration of various operating system con-
cepts that may benefit from hardware support.

At a high level of abstraction, the testbed consists of three components---the develop-
ment and control system, the distributed computer system, and the application system
(see Figure 2). The development and control system consists of a collection of Sun
Microsystems workstations, running the UNIX operating system, that are connected to
the distributed computer system via both Ethemet and 9600 baud serial lines. This part
of the testbed is used to develop application programs, to control applications running on
the distributed computer system, and to monitor the operating system as well as the
application during experiments. The software tools that exist on the Sun Microsystems
workstations (editors, compilers, linkers, "make", window managers, etc.) provide an
effective development environment, permitting the testing and debugging of low-level
system code by multiple, remote users.

The testbed's distributed computer system is the host on which the Alpha operating
system executes. It consists of a collection of processing nodes interconnected by a glob-
al communications subnetwork. The distributed computer system is logically a single
computer, where the network is analogous to the backplane and the nodes correspond to
the cards of a conventional computer. The distributed computer is partionable into sepa-
rate computers, and interfaces with the outside world via a gateway machine (i.e., a stan-
dard Sun Workstation running UNiX).

The application system is comprised of a set of application devices, and is the interface
between the distributed computer and the physical system it is controlling. Application
devices can be sources of data to the computer (e.g., sensors) or data sinks (e.g., actua-
tors), and they can be a combination of both actual and simulated devices. The applica-
tion system interfaces to the distributed computer system in a variety of ways--directly
through nodes, through the network, or through gateway machines. All of these cases
are illustrated in Figure 2.

Functional Description

nn nmmmnuu m m mml Ml l

Al1pha Release I Pro gramrtung Model A7

Development and Control System

Distributed ComRuter System

ARRllcation System

Figure 2: Testbed System Structure

Functional Description

A-8 Alpha Release 1 Programming Model

1.4 Key System Features
Alpha was designed, from the hardware up, to support application domain require-

ments, as defined in [Northcutt 88a], concerning timeliness, distribution, robustness, and
adaptability. Concern for these requirements permeated the design and implementation
process of Alpha, and the effects of this are perceptible throughout the system. The fol-
lowing subsections briefly describe these requirements areas and the effects they had on
the Alpha programming model.

1.4.1 Timeliness

The most visible manifestations of the concern for timeliness in the design and imple-
mentation of Alpha is the use of time-driven resource management based on application-
specified time constraints and resource management policies. Alpha uses a novel and
highly effective technique to explicitly express an application's time constraints-as the
time-dependent value to the system of completing specified computations-in a straight-
forward and natural fashion. A guiding principle in the design of Alpha was that all
resource management decisions should be made based on the time constraints of the
entity making the request for system resources, and when all of these requests cannot be
met in a timely fashion, an application-specific overload handling policy should be fol-
lowed to deal with the requests. To this end, the thread abstraction was developed as
the fundamental activity with which to associate time constraints (which, in turn, are
used to accomplish global, time-driven resource management).

The time-driven management of system resources in Alpha depends on the correspon-
dence between the programmer's and system's view of application computations
(provided by threads), and application-specified importance and time constraint informa-
tion (provided by attributes)f threads). Threads represent the programmer's logical
view of each concurrent stream of execution that makes up an application, and the sys-
tem's physical manifestation of these logical computations. Thus, threads provide a
direct means for associating the timeliness requirements that clients specify for their
computations, with the specific, run-time entities that the kernel manages. In this man-
ner, global importance and urgency characteristics of computations can be propagated
throughout the system and used in resolving contention for system resources according
to client-defined policies.

The thread abstraction in Alpha was not designed with only timeliness in mind--distri-
bution, robustness, and adaptability requirements were also considered. Threads provide
a unified means of managing all resources in the system, both within and among the pro-
cessing nodes in the distributed system. The application-specified timeliness attributes
of computations are carried with threads as they move through objects and across the
system's nodes. This allows a globally consistent form of distributed resource manage-
ment to be provided through a form of implicit coordination: at each node, the same
resource management policies are applied to the threads' global attribute information.

1.4.2 Distribution

A!pha was designed to execute on a physically distributed computing system because
real-time process control applications tend to be physically distributed by their very
nature, as well as for reasons of robustness and performance. To obtain the benefits

Functional Descrption

Alpha Release I Programmnng Model A-9

offered by distributed systems, a number of functions must be performed and problems
must be addressed that either did not exist in centralized systems or could safely be
ignored. In general, either the system software or the application programmer must per-
form inter-node resource management and deal with the effects of physical distribution.

The Alpha operating system deals explicitly with the effects of distribution by provid-
ing, for example, a facility for efficiently providing reliable, physical-location-transparent
communication at a low level in the system-i.e., the operation invocation facility. The
operation invocation facility is the primary kernel service upon which all other abstrac-
tions depend. By making the invocation of operations on objects reliable and location-
transparent, the effects of physical distribution are reduced, in effect, to the semantics of
procedure calls that return an indication of the success or failure of the invoked operation.
Furthermore, by having all objects (and even mechanisms within the kernel) use the
invocation mechanism, it is possible to enforce a uniform access method to all system
resources, regardless of their actual location within the system. System resources can
therefore be managed and accessed uniformly regardless of their physical location.

The operation invocation facility represents the single focal point of all interactions
among objects, as well as between objects and the kernel. This provides a convenient
point where system access control and data format translation functions can be per-
formed. Alpha has attempted to eliminate any alternate communications channels (such
as shared memory) that might be used by programmers and would inhibit the system's
ability to perform dynamic reconfiguration. Also, the full visibility of all instances of inter-
object communication makes possible a number of system resource management opti-
mizations that make use of object/thread interaction patterns.

In addition to the operation invocation facility, many of the Alpha operating system's
other mechanisms are designed to cope with the effects of the system's physical distribu-
tion, including mechanisms to dynamically (and transparently) migrate objects among
nodes.

1.4.3 Robustness

The robustness techniques employed in Alpha are supported primarily by kernel mecha-
nisms that provide a client interface at which failures in the underlying system are
abstracted into a set of well-defined, predictable behaviors. In particular, the following
robustness goals are addressed: consistent behavior of actions, availability of services
and data, graceful degradation, and fault containment.

While the Alpha operating system provides a set of mechanisms to support these
objectives, its robustness mechanisms are not intended to form a wholly self-contained
facility. Rather, the kernel is intended as a framework within which policy issues relating
to these robustness techniques can be explored.

The Alpha operating system's concern for reliability is manifest at all levels within the
system-from the basic assumptions, to the programming abstractions, and all the way
down through the system's design and implementation. The variety of object-orientation
in Alpha was chosen in the belief that it would be well-suited to the type of robustness
techniques that have been developed by the Archons project for real-time command and
control applications (Clark 88b, Sha 85]. The Alpha object model provides a stylized con-
trol structure for interactions among software components that is more manageable than

Functional Description

.4-10 Alpha Release I Programming Model

those of the common process and message-based system model, and that prevents unre-
stricted access to data. Among other things, this serves to simplify the task of tracking
the operations performed on distributed data on behalf of atomic transactions. The fact
that the object model centralizes all access to encapsulated data reduces the complexity
involved in structuring operations so as to maximize the concurrency that can be obtained
from objects (both within and outside of atomic transactions). Furthermore, it is possible
to make incremental changes to objects with increased hopes of correctness because the
code that manipulates specific data items is centralized within an encapsulating object.

The Alpha kernel provides mechanisms for handling a wide range of user- and system-
defined exceptions in a manner consistent with the system's objectives and programming
model. For example, because of the distributed nature of Alpha, processing nodes may
fail while threads span nodes. This means that it is both possible for an invocation to fail,
and for portions of the computations to become detached (or orphaned). Therefore, Alpha
provides a means of indicating the failure of operation invocations, as well as a means for
detecting and eliminating orphan threads in a timely fashion. Furthermore, Alpha pro-
vides a means of dealing with the exceptions that stem from the inability of a computation
to meet its given execution time constraints. Handling these exceptions requires the
same prompt attention as is needed for the elimination of orphaned threads. In addition,
atomic transactions require similar thread manipulation mechanisms to handle exceptions
related to the abortion of transactions--due to either a node failure or an explicit abort
command.

To manage these exceptions (as well as machine- and user-defined exceptions), Alpha
provides a mechanism to divert a thread's control to an appropriate exception handler
whenever an exception occurs. Furthermore, this exception handling mechanism pre-
serves the state of the thread that incurs the exception in order to permit the graceful
recovery of a computation following the exception. When a thread encounters an excep-
tion in Alpha, the objects affected are returned to a consistent state by executing the
exception handlers for each block of code that the thread is active within when the excep-
tion occurs. This allows a thread to perform its own clean-up operations, executing with
its own proper attributes (e.g., time-constraints), while possibly spanning multiple
objects and nodes.

The robustness of Alpha is enhanced by optimizing the design and implementation for
the exception cases, instead of the expected cases. Examples of the application of this
priiuciple can be found in the system's exception handling mechanisms, communications
protocols, and operation invocation facility. For instance, the kernel does not use hints in
any form-e.g., the internal global identifiers used to access Alpha programming entities
(e.g., threads and objects) do not include an explicit reference to the physical location of
the referenced entity.

The Alpha operating system supports the graceful degradation of function through a col-
lection of resource management facilities that make use of an ordering function (currently
based on thread timeliness constraints and relative importance) associated with all
requests for services, in order to sacrifice lower-valued requests in favor of higher-val-
ued ones when resource allocation conflicts arise.

Alpha supports the objectives of fault containment by placing each object in a separate
(hardware-enforced) address space, and by separating these software components into

Functional Description

Alpha Release I Programmung Model .4.11

private system-enforced protection domains, with all interactions restricted to those
explicitly allowed by the system's capability facility. This approach provides a degree of
defensive protection, where errors are prevented from propagating among objects in an
unconstrained fashion.

1.4.4 Adaptability
One of the reasons for choosing the form of distributed computer system upon which

Alpha executes is the high degree of extensibility that is inherent in loosely coupled, bus-
structured, distributed systems.

The adaptability of the system resource management facilities in Alpha is supported to
a great extent through the use of (both static and dynamically acquired and applied) appli-
cation-specified information. In particular, a wide range of application- and system-spe-
cific attrnhates can be associated with computations, embodied by threads, that are then
carried along with the theads as they move through the system. The application-speci-
fied information allows the system's resource management algorithms to adapt to the
changing demands placed on the system by the application as the availability of system
resources changes.

In additon, the adaptability requirements of Alpha are addressed in two major
ways-modularity for the operating system's clients is supported through the use of the
object-oriented programming model supported by the operating system, and adaptability
within the operating system itself is provided by the use of a policy/mechanism separa-
tion approach [Hansen 70].

The kernel provides a simple and uniform interface to its clients that centers around the
operation invocation facility. The object programming abstraction supported by the oper-
ating system exhibits the same benefits associated with object-oriented programming
abstractions in general, among which are information hiding, increased modularity,
enhanced uniformity and simplicity of the programming interface, and reduced life-cycle
costs [Bayer 79, Cox 86].

Alpha's kernel is implemented as a collection of mechanisms from which policy deci-
sions were carefully excluded. Each major logical function in the kernel is manifest in an
individual mechanism, and a great effort was made to ensure a proper separation of con-
cerns among these mechanisms. Adaptability is achieved through the separation of func-
tions into mechanisms; implementation changes are restricted to individual mechanisms,
and changes in system policy do not require changes in the functionality of mechanisms,
just changes in the use of mechanisms. In addition, most of the major subsystems con-
sist primarily of a collection of mechanisms set into a framework upon which a wide range
of differing policies can be imposed, allowing the easy addition or modification of resource
management policies.

Functional Description

A-12 Alpha Release I Programmng Model

2 Basic Programming Abstractions
The Alpha kernel is based on a small set of basic mechanisms, similar to the those in

Accent [Rashid 81]. The Accent kernel is based on the process and interprocess commu-
nication abstractions, while the Alpha kernel is based on the abstractions of objects, the
invocation of operations on objects, and threads. As in Accent, where system calls are
performed by sending messages to processes, all kernel services in Alpha are provided
by the invocation of operations on objects.

Alpha implements an interface on top of the system hardware that provides the ker-
nel's basic programming abstractions of objects, operation invocation, and threads. The
following sections define each of these basic abstractions, and describe their characteris-
tics and features.

2.1 Objects
At a high level of abstraction, the Alpha object model is similar to the common defini-

tion of simple abstract data types, as it is in other object-oriented operating systems
(e.g., [Allchin 831, [Almes 85], [Liskov 841, or [Schantz 851). In Alpha an object encap-
sulates data and provides a set of operations to manipulate that data. An object can only
be accessed via the operations that constitute its interface (i.e., the object's operation
entry points). Additionally, the operations specify the number and types of parameters
that are to be passed into and out of the object when the operations are invoked.

The Alpha object model emphasizes a simple and uniform system interface, minimizing
the specialized artifacts that are introduced into the (logical as well as physical) program-
ryung model--everything appears as an object to the programmer. In particular, the object
abstraction in the Alpha kernel extends to all system services, and encapsulates all of
the system's physical resources, thereby providing programmers with object interfaces to
all system-managed resources (e.g., memory and devices). This uniform system inter-
face allows operations to be invoked on a wide range of entities, ranging from user or sys-
tem objects and threads, kernel routines, to system hardware.

2.1.1 Basic Deflnitions

Objects in the Alpha kernel are roughly equivalent to abstract data types-i.e., some
encapsulated data along with the code for a set of operations with which the data is
manipulated. Objects are written by programmers as independent modules, composed of
the object's data and the operations that define its interface.

In Alpha, objects are passive entities; there is no activity within an object until an oper-
ation has been invoked on it. Upon operation invocation, an object becomes active-i.e.,
it executes the code associated with the invoked operation (which may, in turn, involve
the invocation of operations on other objects). Once the operations invoked on an object
complete, the object again becomes inactive, awaiting further invocations.

In a running Alpha system, all objects are instances of various object rypes. An object
type is a template that defines the structure of an object, the initial values of the object's
data, and the operations associated with the object. Object types are passive entities,
defined by programmers and maintained within the system object store. New object type

Functional Description

Alpha Release I Programming Model A-13

definitions can be dynamically created and added to the system at run-time'. Object
instances are the executable, run-time manifestations of objects in Alpha that may be
created and deleted dynamically. In the following discussion (except where explicitly not-
ed otherwise), the term object refers to an instance of a specific object type.

In addition to the attributes of modularity, information-hiding, maintainability, etc. nor-
mally associated with an object-oriented programming paradigm [Cox 86], the program.
ming model described here is especially well-suited to support decentralized, highly-con-
current implementations of the major robustness mechanisms in Alpha (i.e., atomic trans-
actions and replicated objects). Because the basic abstractions of Alpha were developed
to meet the system's special requirements, its definition of objects differs somewhat from
more common object definitions. For this reason, insofar as possible, the names of the
Alpha programming entities were chosen to avoid confusing references to existing object-
oriented programming terminology (including the terms: message, method, and class).

Objects in Alpha are simple, passive entities, the main characteristics of which are the
rigid encapsulation of state information and clear definition of an interface to the encapsu-
lated information by a set of operations. To enforce the encapsulation of information with-
in objects, each Alpha object exists in a separate address space [Lampson 69]. To
enforce the integrity of the interface projected by an object, the kernel ensures that execu-
tion within an object can begin only at entry points corresponding to the object's opera-
tions, and these operations can only be accessed by employing the operation invocation
facility. In addition, the only manner in which information can be exchanged among
objects is via the explicit passing of parameters on operation invocation.

A simplified example of an object in Alpha is illustrated in Figure 3. In this example the
object is a prototypical queue object named Queue, with three client-defined operations:
INITIALIZE, INSERT, and REMOVE. This queue object includes the data that make up the
elements of the queue, the code that implements the operations, and other code and data
that comprise the internal implementation of the object (e.g., storage for the queued ele-
ments, various utility subroutines, pointers used to keep track of the entries within the
object, or data required for internal synchronization). This figure reveals the internal
structure of the object-however, only the entry points defined at the interface are visible
to the objects that use it.

Figure 4 provides an example of an object type specification for the sample queue object
shown in Figure 3. This object is specified in the extended C programming language used
by the Archons research project to write application programs for Alpha (see [Shipman
881 for details of this interim object programming language).

This reflects changes made to the orig.inal programming model as a part of the Alpha Release 2.0 work being
done at Kendall Square Research.

Functional Description

A.14 Alpha Release I Programming Model

Queue]
Initialize tion

Code D

Remove Operation
Code

Utilit Additional

~Routine) Data
~Cod

Figure 3: Example Object

/" An Exarple Queue Object Type Specircation "
OBJECT ueueType()

," Declarations */
static boolean qtull, qempty, inft - FALSE;
static char queue[OSIZE];
static Int qtail, qhead;

/" Operations /
OPERATION Initialize0

/9

" Initialize the queue object. Initialize the queue pointers and flags,
" and then return successfully.

/* initialize the queue pointers "/
qhead - mail = 0:

/" initialize the queue's status flags /
Wfull a FALSE;

qempty - TRUE;

/" Indicate that the queue has been initialized /
init - TRUE;

Figure 4: Example Object Type Specification

Functional Description

.Alpha Release i Programrrung Model A-15

OPERATION Insert(IN char: chr)

" Take a character and insert it /a the queue if it is not full. If the queue is full, or has not
" been initialized, a failure is indcated, otherwise a SUCCESS' is returned.
o,

" check if the qL'eue has not been initialized or is full '/
if ((init I. TRUE) II (qfull .- TRUE)) RETURN FAILURE;

/- insert a character into the queue /
queue[qhead++] - chr:
qhead %. QSIZE;

/- check if the queue is now full "/
if (qhead = qlail) qfull - TRUE;

/* indicate that the queue is not empty'°
qempty - FALSE_;

1;

OPERATION Pemove(OUT char: chr)

" Remove a character from the queue, if it is not empty. If the queue is empty, or has
" not been initialized, a failure is returned, otherwise a 'SUCCESS' indication is
" returned.

/ check if the queue has been initialized "/
if (init !u TRUE) RETURN FAILURE(ONOTINIT);

/* check if the queue is empty '/
if (qemptv w- TRUE) RETURN FAILURE(QEMPTY);

/9 remove a character from the queue "/
chr - queue[qtail++];
qtail 06- 0_SIZE,

/9 check if the queue is now empty "/
If (qhead -a qtail) qempty - TRUE;

/9 indicate that the queue is not full /
qfull a FALSE;

}/* end of the queue object "/

Figure 4, continued

Functional Description

A-16 Alpha Release 1 Programming Model

2.1.2 Associated Features

Objects have a number of additional features associated with their use in Alpha. Some
of these features are supported by kernel mechanisms, such as those that permit the
manipulation of objects (e.g., their creation, deletion, and physical placement). Other fea-
tures are extensions of the basic definition of objects, such as the standard operations
which are defined on all objects by the system (in order to manipulate the internal repre-
sentatons of objects). Finally, some of these features are attributes associated with
objects that affect the manner in which the system manages them.

It should also be noted that some of these features are not strictly a part of the logical
programming model, but rather reflect the ways in which physical reality intrudes on a
logical design.

2.1.2.1 Object Management

Objects are created and destroyed by invoking operations on a kernel-provided object
management objct To create an object, an invocation is made on the create operation of
the object manager. The parameters of this invocation include: a specification of the type
of object to be created; the attributes that are to be (initially) associated with the newly
created object; and the initialization parameters for the object being instantiated (e.g.,
maximum data size, object attributes, and replication factor). This operation invocation
returns an identifier for the newly instantiated object, which is used in all subsequent ref-
erences to the object. Objects are deleted from the system by invoking the delete opera-
tion on the object manager and passing, as an invocation parameter, the identifier for the
object to be deleted. (See [Northcutt 88d] for a detailed description of the system-pro-
vided object management object).

An object is created on the node at which the create operation was invoked, and an
object cannot be split across nodes (i.e., an object exists on a single node at any point in
time). Furthermore, the kernel provides a mechanism with which a given object can be
migrated to a specified node. With these kernel mechanisms, a wide range of policies for
initial object placement and object migration can be implemented at the system level of
Alpha.

While the Alpha system philosophy would have all operations performed on the target
object itself, this is not possible for the object creation operation. It is for this reason that
the kernel provides the object manager. Note that, while it would be possible to destroy
an object by invoking a delete operation directly on it, for reasons of symmetry the delete
operation is performed on the object manager instead.

2.1.2.2 Standard Operations

In addition to the client-specified operations that are defined by way of an object's type
specification, all objects have a set of special, system-provided operations defined on
them. These standard operations are automatically associated with all objects in order to
allow the manipulation of the object's internal representation in a conceptually consis-
tent, object-oriented manner.

Functonal Description

Alpha Release 1 Programming Model A-17

The system-defined operations on objects provide the ability to:

" move an object among nodes

" suspend or continue the execution of threads within an object

" move the state of an object to and from its secondary storage image
" commit or abort the effects of the operations performed on an object by threads

executing atomic transactions
• extend and contract an object's dynamically allocatable memory region

These operations are useful for such purposes as: debugging objects, dynamic object
reconfiguration, applying atomic transaction semantics to objects, and maintaining a con-
sistent representation of an object's state information across node failures. As with
client-defined operations, standard operations can be invoked directly by either client
objects or the Alpha system itself. Exceptions (or other kernel-generated events) may
involve manipulating objects asynchronously, in a potentially unsolicited manner, by
invoking standard operations on objects.

It is possible for clients to customize an object's standard operations by specifying
operations with the same name as system-defined operations. In such cases, the client-
provided operations take precedence over the system-defined (default) operations.
However the system-defined operations can still be called by their client-defined coun-
terparts (either before, during, or after the client-provided code). This feature proves
useful, for example, in supporting compound transactions (see Section 4.3), where the
client can increase the performance of applidations which perform atomic transactions on
objects, by providing a specialized set of operations to replace the standard operations
for atomic transactions. The client-defined replacement operations take advantage of an
understanding of the semantics of the object's operations to provide the desired effects of
atomic transactions more efficienly than would be done automatically by the kernel. This
is because there is frequently a way in which the consistency of an object can be achieved
following a transaction abort, without restoring each bit of the object to a previously con-
sistent state.

See the Alpha kernel interface specification [Northcutt 88d] for a complete listing of the
standard operations defined on objects.

2.1.2.3 Object Attributes
The kernel provides mechanisms to allow clients to construct objects with a range of

characteristics that allow differing trade-offs to be made among such attributes as perfor-
mance and robustness. A typical trade-off makes an object appear more reliable (in the
sense that there a greater probability that the effects of operations invoked on it will per-
sist across failures) at the cost of performance (in the sense that the operations will take
longer to complete).

When an instance of a specified object type is created, its optional attributes are speci-
fied along with its initial parameters. In addition to being able to specify these object
attributes when an object is created, the kernel provides a means by which an object's
attributes can be modified during the course of an its execution (i.e., via a standard opera-
tion that modifies the attributes of the object).

Functional Descripuon

A-18 Alpha Release I Programming Model

An object's attributes are organized as follows:
• Permanence: the attribute of an object that dictates whether an object's state

persists across node failures. The options are:
transiemt - the state of the object is lost when a node failure occurs.

permanent - the state of the object persists across node failures. In this
case, the state of an object may be moved between primary memory and
its non-volatile image in secondary storage.

" Atomicity: the attribute that determines whether an object's permanent state
is updated atomically with respect to node failures. The options are:

non-atomically updatedt - the system makes no attempt to ensure that
changes to an object's secondary storage image are made atomically with
respect to node failures.
atomically updated - changes to the secondary storage image of an object
are made atomically with respect to both normal system behavior and fail-
ures. Such an object exhibits the property of atomically changing from one
consistent state to another (where consistency is defined by the client on a
per-object basis), and at no time can the object be observed in some inter-
mediate state.

" Availability: the attribute that governs the degree to which an object remains
available for access in the face of node failures. This feature is achieved through
the physical redundancy provided by the replication of objects. The options are:

non-replicatedt - a single copy of the object's state is maintained within
the system.
replicated - more than one copy of the object's state is maintained within
the system. The replication policy that is used to manage the copies is
defined by layers of the system above the kernel.

2.1.3 Key Characteristics
Objects in Alpha may exist only at a single node at a time; however, objects may be

dynamically migrated, in their entirety, between nodes. From the kernel's programming
perspective, objects exist in a flat universe-i.e., objects are undistinguished by the oper-
ating system. Any structure, organization, or discrimination among objects (such as
"parent/child" or "system/application") is imposed by the programmer, and enforced by
the kernel. Objects are def'ned by the programmer-in-the-small, as weU as the program-
mer-in-the-large.

In keeping with the goal of providing a simple, uniform programming model, files do not
exist as separate abstractions in Alpha; the functionality of traditional files is subsumed
by objects in Alpha and so there is no need to introduce another abstraction at the kernel
level (although a traditional file system could be constructed above the Alpha kernel).

This uniform system interface concept allows operations to be invoked on a wide range of
entities, ranging from user or system objects and threads, kernel routines, and system
hardware.

These options are the system's default attributes for objects.

Functional Descriptwn

Alpha Release I Programming Model A-19

Objects in Alpha are similar in many ways to packages in Ada [Ada 831. The main dif-
ferences between the two are that each object in Alpha exists in a private address space
and objects can exist on separate nodes allowing concurrent execution, whereas Ada
packages assume shared memory and restrict concurrent access to packages (preferring
instead the use of its tasking model).

The Alpha kernel does not take the object model as far as more "pure" object-oriented
systems. For instance, in order to perform most efficiently, objects should be medium to
large in size-i.e., much larger than integers, and larger than simple procedures, but
smaller than entire programs. For example, typical objects in Alpha might contain on the
order of 100-10,000 lines of code. This assumption derives from some practical consider-
ations having to do with the distributed nature of Alpha and the overhead associated with
both inter- and intra-node communications. That is, in order for the system to be practi-
cal, the overhead associated with locating and accessing an object operation must be a
small percentage of the cost of actually performing the function associated with the opera-
tion.

Unlike systems such as Smalltalk [Goldberg 83], not all functions in Alpha are imple-
mented as objects; objects in Alpha can be composed of arbitrary programming modules,
possessing whatever internal structure is desired (e.g., subroutines). The Alpha kernel
reflects the belief that the appropriate granularity of objects is related to the cost of inter-
object communication, and that the cost of interprocessor communication in a distributed
computer system suggests the use of medium- to large-scale objects. Thus, Alpha sup-
ports medium-sized objects that are implemented with more-or-less standard process-
style techniques, on more-or-less standard hardware-not on more exotic hardware like
capability-based addressing architectures (e.g., CAP [Wilkes 79] and the Intel 432/
iMAX [Kahn 81]).

Any notion of inheritance is assumed to be handled at compile-time; there are no specif-
ic features of the kernel's interface that are meant to support inheritance. The standard
operations on objects are the only features that could be considered to be (a limited form
of) kernel support for inheritance. The kernel provides the code for the default standard
operations for all objects in the system, which may be overridden and accessed by client-
defined versions of these operations.

The globally unique identifier associated with each object is the exclusive means by
which operations can be invoked on an object. In order to control access to objects, the
kernel provides a simple capability mechanism [Fabry 74], with which a range of differ-
ent access control policies can be implemented. Access to objects is controlled by the
use of capabilities that encapsulate an object identifier and grant the possessor the right
to invoke a given set of operations on the specified object. Since all object interactions
are performed through the kernel's invocation mechanism, the capability mechanism pro-
vides a global, uniform means of controlling access to all objects. The capability mecha-
nism is described in greater detail in the following chapter.

Functional Descripuon

A-20 Alpha Release I Programming Model

2.2 Threads
Threads represent loci of execution control that move' through objects via operation

invocations. Intuitively, a thread corresponds to the conventional notion ca process.
Unlike conventional processes however, threads move among objects withoj regard for
the physical node boundaries of the system. Threads are the run-time man~itations of
concurrent computations in the system--ftey are the units of activity, con tudiuncy, -nd
scheulability in Alpha. All activity in the Alpha system is provided by threads; objects
are passive and all operations are invoked on objects by threads.

2.2.1 Basic Definitions

Threads are independent of any specific object, providing animation for these otherwise
passive entities, but having no special association with any one. When, in the course of
a thread's execution within an object, an invocation command is encountered, the thread
continues execution within the specified operation in the target object. Threads move
among objects via invocations independently of the physical location of the objects
involved. From a conceptual standpoint, the Alpha notions of thread and object represent
the cleaving of the point of execution from the code and data definitions of the standard
process abstraction.t

Threads are the form taken by all activity in Alpha--a thread is created each time a
new concurrent activity is to be performed. Each thread in the system executes in a&yn-
chronous concurrency with respect to the other threads. The system does not limit the
number of threads that can be actively executing within an object at any given time. Fur-
thermore, while the Alpha kernel provides mechanisms with which threads can be syn-
chronized, the system does notimpose a specific synchronization policy on threads.

Threads can be dynamically created and deleted in the course of an application's execu-
tion. When a thread is created, an object and an operation within that object are specified
as the initial starting point for the new thread. The initial object in which a thread begins
is known as the root of a thread (or a root object). As a thread moves through the root
object, making invocations, it enters and exits other objects in a nested fashion
(independent of the physical node boundaries in the system).

Each thread includes the local state information for the computation the thread repre-
sents. This information includes the parameters passed to an object on its invocation,
the thread's private data (i.e., per-thread automatic variables), and the various
attributes of the thread. The attributes of the thread are propagated with it as it moves
among objects in the application. Threads have attributes related to the nature of the
computation they represent. A thread's attributes communicate the application's service
requirements to the system (e.g., robustness requirements, timeliness constraints, and
relative importance) to facilitate effective management of the system's resources. The
local storage associated with a thread is maintained as a heap-i.e., arbitrarily sized
blocks of memory can be allocated and deallocated, either automatically by the invocation
facility, or at the explicit request of the client.

It is noteworthy that this cleaving of activity from static codeldata is true at the implementation level as
well; in Alpha. a thread together with an object is implemented in much the same fashion as a typical process.

Functional Descripton

Alpha Release I Programming Model A-21

Figure 5 is a snapshot of an application running on Alpha, consisting of three separate
threads in the process of moving through three different objects in the course of perform-
ing their computations. Note that physical node boundaries do not appear in this, the pro-
grammer's, logical view. Also, notice that both ThreadB and Threadc are simultane-
ously active in Objec3 .

TireadA Thread8 Threadc

Objectz Object2 Object 3

M- i-

Figure 5: Example Thread/Object Snapshot

2.2.2 Associated Features

As is the case with objects in Alpha, the kernel provides nxechanisms for the manage-
ment of threads, a set of standard operations are defined on threads, and threads have
attributes associated with them.

2.2.2.1 Thread Management

Threads are created and destroyed dynamically by invoking operations on the kernel-
provided thread management object. To create a thread, a CREATE operation is invoked
on the thread management object. Identifiers for the object and operation in which the
thread is to begin execution are given as parameters to the invocation of the thread cre-
ation operation. The initial attributes to be taken on by the newly created thread (e.g.,
importance and a time constraint) are also given as parameters to the creation operation.
In addition, any parameters for the thread's initial operation invocation are also provided
to the thread creation operation.

An identifier for the new thread is returned as a result of a successful thread creation
operation. This identifier is used to manipulate the thread, by means of the system-
defined operations on threads. As with objects, a thread is destroyed by invoking an
operation on the thread manager object, passing the desired thread's identifier as a
parameter to the invocation. (See [Northcutt 88d] for a detailed description of the sys-
tem-provided thread management object.)

Functional Descripnon

A-A22 Alpha Release I Programming Model

2.2.2.2 Standard Operations

In the same way that operations are invoked on objects, operations can be invoked on
threads as well. As with objects, operations are invoked on threads with the target
thread's identifier as the invocation's destination; invocation parameters may be included
as well.

The system-defined operations on threads provide the ability to:
* stop and restart (either immediately or following a delay period) the logical

progress of a thread

• abort a thread's current stream of execution

" modify a thread's attributes in a non-block-structured fashion (e.g., change its
importance)

" modify a thread's attributes in a block-structured fashion (e.g., begin or end a
thread's exception block, time constraint block, or transaction block)

" allocate and deallocate heap storage for a thread's local variablest

Unlike standard operations on objects, the standard operations on threads cannot be
customized or overridden by the programmer. Also, there is no means for defining arbi-
trary operations on threads; the standard operations are provided on threads as a means
of manipulating a thread's representation in a fashion that is consistent with the Alpha
programming model.

2.2.2.3 Thread Attributes

A thread has associated with it information related to the nature of the computation
that the thread represents. This information, which is a collection of the thread's
attributes, is used to express application-specific requirements to the operating system
at run-time, allowing the system to more effectively manage its resources. The informa-
tion represented in a thread's attributes includes the computation's reliability require-
ments, timeliness constraints, and relative importance. This information provides the
basis for resolving contention for system resources (e.g., processor cycles, communica-
tion bandwidth, buffers, or 1/0 devices) on the basis of the global characteristics of the
individual computations.

In Alpha, each thread represents a client-level computation that has a direct physical
manifestation within the kernel. Prioritization of computations can be performed on a per-
thread (and therefore a per-computation) basis, as opposed to the per-process basis
that is typical in most process/message systems. This is analogous to having a process
dynamically alter its priority based on the priority of the process which is the source of
the last message received. The direct association of logical computations in Alpha and
system entities (and their attributes) helps the system in making effective global
resource management decisions. This point is expanded upon in Section 4.1.

Threads carry their attributes along with them as they move through objects (and,
transparently, between nodes) in the system. A thread's attributes are modified as it
moves through objects. The modification of a thread's attributes is typically performed in

This r:.flcts changes made to the original programming model as a part of the Alpha Release 2.0 work being
done at Kendall Square Research.

Functional Description

Alpha Release I Programming Model A-23

a nested fashion. This is represented by the thread in Figure 6, which acquires various
attributes in the course of its execution. Figure 6a is a schematic trace of ThreadA,
which began execution in Objects, acquiring its initial attributes on creation, and tnen talc-

ing on an additional set of attributes in the course ot its execution within this object.
While operating with these attributes, ThreadA invokes an operation on Object2, and

soon thereafter acquires new attributes, then invokes an operation on Object3. Within

Object3, tne thread takes on another set of attributes, executes with these attributes,
discards them, completes the operation, and then returns to Object2. The thread contin-

ues executing within Object2, discards the attributes it acquired within this object, and

continues execution to the point where the "snapshot" is taken. Figure 6b provides a
"straightened-out" representation of the thread, and shows how its attributes change in
the course of the thread's execution.

ThreadA
-- Object, Object2 bet

a)

Object] Object2 Object3 Object 2

ThreadA

• i i time -

b)

Figure 6: Example of Thread Attribute Nesting

2.2.3 Key Characteristics

The choice of the Alpha thread and object abstractions stems directly from the sys-
tem's requirements, and there are a number of significant characteristics of the Alpha
thread abstraction that set it apart from existing programming paradigms. In particular,

Functional Description

A-24 Alpha Release 1 Programming Model

with threads it is possible to implement a wide range of system-level control policies,
ranging from low-concurrency structures (such as monitors [Hoare 74]) to medium- and
high-concurrency ones. The thread abstraction simplifies the task of time management in
the kernel by being a run-time manifestation of client-defined computations (see the fol-
lowing chapter for further details). Threads are also more efficient than most process-
and message-basea clienise-ver model implementations, because each step in the com-
putation does not necessarily involve an interaction with the system scheduler (this point
will be expanded on in Chapter 5).

The thread abstraction masks from the client issues related to the physical location of
objects and the failure of nodes in the underlying distributed system. Furthermore,
threads provide a means of exploiting the concurrency inherent in applications, within a
distributed computer context, with either uniprocessor or multiprocessor nodes.

2.2.3.1 Orphan Thread Sections

To simplify both the programming model and the implementation, threads in Alpha can-
not be forked (i.e., the divergence of a single thread into multiple points of control). How-
ever, the same objectives can be met by Alpha since new threads can be dynamically cre-
ated when a concurrent activity is to begin. While the forking of threads is not permitted
under this model, certain types of system failures can generate similar effects. For exam-
ple, the failure of nodes or communication links can cause threads to become segmented,
resulting in what are known as orphaned computations [Nelson 81]. Orphans can occur
whenever the execution of a thread extends across multiple nodes. A thread is consid-
ered to have been broken when a failure occurs at a node that lies along the path between
the thread's root node, and the node where the head of the thread is currently executing.
The sections of a broken thread, other than the one that contains the thread's root object,
are known as orphans.

Orphans pose a number of problems. First of all, orphans result in an effect similar to
the splitting of threads, which is not permitted in the current implementation of the ker-
nel. Furthermore, orphans continue to consume resources as they execute, yet their exe-
cution is disconnected from the root of the computation that a thread represents, and
therefore cannot contribute to the successful completion of the desired computation. It is
therefore important that orphans be detected and eliminated in timely fashion by the ker-
nel. To this end, the kernel's invocation facility supports the notion of thread repair.
Thread repair involves the detection of the segmentation of a thread, the abortion of all
the thread's segments other than that containing the root, and the restoration of the head
to the point on the remaining section that is farthest away from the root.

2.2.3.2 Thread Concurrency
Threads are the units of activity, concurrency, and schedulability in Alpha. They exe-

cute asynchronously with respect to each other; multiple threads can be active within a
single object at any point in time; and multiple simultaneous invocations of operations on
an object are possible. Because of this, it is sometimes necessary to synchronize the
execution of threads in order to maintain the consistency of the data shared by threads
within objects.

Functional Description

Alpha Release 1 Programming Model A-25

Concurrency control could be provided by either the system, which could apply a blanket
policy that would restrict the concurrency of all application threads in a similar (brute-
force) fashion, or by the application programmer who could be responsible for managing
the concurrent execution of the application threads on a case-by-case (i.e., object-by-
object) fashion. In Alpha, support for synchronization among threads is provided by a set
of kernel-level concurrency control mechanisms (details of these mechanisms will be pro-
vided in the next chapter) that allow the necessary kinds and degree of concurrency con-
trol to be applied to computations at a cost that is reasonable in terms of overall system
performance. The kernel fills its proper role by providing mechanisms for managing con-
currency, but does not impose a synchronization policy-specific synchronization policies
are defined at the system level in Alpha, or by the application programmer'. Er.ch)bject
is responsible for providing the necessary synchronization for threads executing within
it. This approach ensures that the thread concept extends naturally to the multiprocessor
case (i.e., with concurrency within nodes, as well as among them).

By placing the responsibility for synchronization with the object, greater concurrency
can be obtained than would be achievable by blanket, system-provided synchronization
techniques. This is because the programmer of an object can use knowledge of the
semantics of the object's operations to maximize concurrency among threads by synchro-
nizing only at those points where it is necessary for only the length of time necessary.
While applying brute-force synchronization techniques (such as those used to create
monitor-like structures) to objects would relieve the programmer of the burden of provid-
ing synchronization, it would also require the entry of individual threads into objects to be
serialized, greatly reducing the potential for concurrency.

A number of benefits are derived from the fact that threads represent individual points
of control that move among the objects and provide the services required by the computa-
tions, and multiple threads can be active within an object simultaneously. For example,
the thread and object abstractions in Alpha do not suffer from the nested monitor problem
[Lister 77]. Also, when a thread is blocked within an object, it is only that thread whose
progress suspended. In a process/message system, each process has but a single point
of control, and should a server process block, no other requests can be serviced. For this
reason, the progress of all of the server's clients can be affected if a single client causes
the server to block.

2.3 Operation Invocation
The Alpha programming model employs a type of Remote Procedure Call (RPC) for the

invocation of operations on objects. The operation invocation mechanism is the funda-
mental facility on which the remainder of the Alpha kernel is based (this is analogous to
the role that the interprocess communication facility plays in Accent [Rashid 81]). The
operation invocation abstraction defines a facility that provides simple, uniform access to
all objects, whether local or remote and provides reliable RPC-like semantics.

It is worth noting that the kernel's client can be a language run-t me package, in which case the synchroniza-
tion policy imposed on the client programmer is given by the language defnidon, and supported by the kernel
mechansms.

Functional Description

A-26 Alpha Release I Programming Model

The major functions provided by the operation invocation facility in Alpha are: the physi-
cal-location-transparent, per-invocation location of the objects that are targets of invoca-
tions; the movement of invocation parameters between separate object protection
domains; and the management of the exceptions which can occur in the course of an oper-
ation invocation.

2.3.1 Basic Definitions
Operation invocation is the means by which all objects interact, and is the global, uni-

form interface to all client-defined objects, system-provided services, and physical
devices in the system. The invocations of operations on objects in Alpha can be nested,
and recursive invocations of operations on objects is permitted.

The kernel's operation invocation abstraction was intended to retain as much of the
familiar subroutine-call semantics as possible, despite the distributed nature of the
underlying hardware. To this end, the operation invocation facility in Alpha allows the
passing of arguments between objects, with value-result semantics. It is possible to
pass, as arguments in operation invocations, simple or structured data, as well as sys-
tem-protected identifiers (i.e., capabilities).

Objects can invoke operations on other objects at any point in the course of their execu-
tion. The invocation of an operation transfers execution from the invoking object to the
invoked object, and the only data shared between the invoking object and the invoked
object is passed in the parameters of the invocation. Each invocation is concluded by a
reply, with which the invoked object can retum to the invoking object a similar set of
parameters.

All operation invocations require an identifier for the destination object, an identifier for
the operation to be performed, and zero or more parameters (that may include identifiers
of other objects). Similarly, one or more parameters can be returned from an object fol-
lowing an invocation. The one parameter that is always returned from an invocation is a
status indication of whether the invocation has succeeded or failed, along with an indica-
tion of the cause of the invocation's failure, if appropriate.

All invocation (request and reply) parameters are passed by value, and are passed via
the thread's heap area. Two different types of parameters can be passed-variables
(which can be simple or structured data) and capabilities (which are system-protected
object descriptors). Also, for each invocation, the specification of a target object and
operation can be computed at run-time (i.e., Alpha supports the delayed binding of
objects and operation invocations)t.

In Alpha, operation invocations are made independently of the respective physical loca-
tions of the source and destination objects. While information about the target object's
physical location is not necessary to invoke operations on objects, it is made available for
those functions which require it (e.g., task placement or reconfiguration). The physical-
location-transparency made possible by the operation invocation facility facilitates the
simple and efficient migration of objects from one node to another in the system.

This represents a change made to the original programming model as a part of the Alpha Release 2.0 work
being done at Kendall Square Research.

Functional Description

Alpha Release 1 Programming Model A.27

Figure 7 illustrates the behavior of a thread performing an operation invocation. In this
example, ThreadA begins execution within OPERATIONX of Object1, and executes until it
encounters an operation invocation command (as represented in Figure 7a). At this
point, ThreadA traps into the kernel, the kernel substitutes Object2 for Object 1 in the
thread's address space, the kernel (logically) transfers the invocation parameters into
the target object's space, and then the thread continues execution within OPERATIONz of
Object2 (shown in Figure 7b). When OPERATIONz has completed. the thread traps back
to the kernel, which restores Object1 to the thread's address space, (logically) transfers
the return parameters to Objecti's address space, and then allows ThreadA to resume
execution following the invocation in Object1 (as illustrated by Figure 7c).

2.3.2 Associated Features

Among the more significant features associated with the operation invocation abstrac-
tion in Alpha are the application of controls to restrict the ability of individual threads to
invoke operations on given objects, the facility's ability to manage the exception condi-
tions which may occur when invoking operations, and the manner in which a thread's flow
of control is constrained by the operation invocation abstraction.

2.3.2.1 Fault Containment

The reliability requirements for Alpha (as defined in [Northcutt 88a]) indicate the need
to provide a high degree of fault containment in the system. Fault containment involves
the attempt to limit the effects of the failure of one component on the other components
within a system [Levin 77, Boebert 78]. Ideally, fault containment would guarantee that
a failed object could not interfere with the operation of any other object. The Alpha ker-
nel's access control mechanisms are designed, however, to only limit the scope of inter-
actions each object may have, and thereby limit the potential extent of a failed object's
damage.

The primary means of supporting fault containment in Alpha is by way of system-pro-
vided and enforced protection domains. The kernel places each object in a separate
address domain, enforces this separation with the underlying hardware, and controls all
interaction among objects and their domains. To provide the desired degree of protection,
the access control mechanisms in Alpha ensure that each object can invoke operations on
only those objects for which it has explicit permission to do so. By enforcing the separa-
tion of object protection domains, the general system objective of fault containment is
advanced.

The control of access among protection domains in Alpha is provided by a capability
mechanism. The invocation of operations on objects is controlled by the kernel through
the use of a system-protected identifier (i.e., a capability). In this way, the ability of
objects to invoke operations on other objects can be restricted to only that set of destina-
tion objects explicitly permitted. A capability is an object's local manifestation of a sys-
tem-protected object identifier, and provides the object with a means of accessing the
designated object.

To invoke an operation on an object in Alpha, the invoking object must possess a capa-
bility for the target object. *The very fact that an object possesses a capability implies

Functional Description

A-28 Alpha Release I Programpug odel

that the object has the right to access the object referenced by the capability (subject to
any restrictions associated with the individual capability). Since all interactions among
objects in Alpha are via invocations and all invocations use system promtected names,
capabilities provide globally uniform access control. Capabilities are used to uniformly
solve both the problems of object addressing and object access control in Alpha. Details
of the Alpha access control mechanisms are provided in Section 3.1.

Opeain,_ u Object,

a)

-rn--uA

ThreadAA I. -

b) ____
-'

__"'"_

Opeonx IObject,

Obj 2... pe.iofI..(ags)

} TreadA

Figure 7: Example Operation Invocation

Functional Description

Alpha Release 1 Programmung Model A.29

2.3.2.2 In .ocation Exceptions

The operation invocation facility does much to mas. the undesirable effects of the sys-
tem's physical distribution (e.g., node failure, packet/message errors, non-local objects,
and object migration) and provides time-driven orphan detection and elimination. This ts
to say that the operation invocation facility makes every attempt to guarantee that the
desired operation invocation has been completed (once, and only once), and if the system
cannot be certain of the successful completion of an invocation, the client is notified and
all orphaned thread fragments are destroyed. Details of the exception handing mecha-
nisms for the operation invocation facility are given in the following chapter.

Each invocation -eturns a success/failure indication on its completion. The kernel pro-
vides an error code along with the operation invocation failure indication, to notify the
client that an exception has occurred during the invocation. The types of invocation
exceptions that are detected by the kernel include:

* an invalid target object capability
" target object not found
" invalid or undefined operation
" bad capability passed to/from the target object
" thread break occurred during the invocation

(See [Northcutt 88d] for a complete description of the system's invocation failure sta-
tus indication values.)

It should also be noted that failures which occur above the kernel level (i.e., within the
target object's operations) are indicated via the normal return parameters for the- opera-
tion-these errors occur at a higher level of abstraction within the system and therefore
are handled at a correspondingly higher level in the syst-m.

2.3.2.3 Flow of Control
Operation invocation serves as both the means of interaction among objects and the

mechanization of the interface between an object and the system. These are clearly at
two different avels of abstraction; the interaction between the irvoking object and the
system is at the lower level, while the interaction between the invoker and the invoked
entity is at a higher level. At the lower level of abstraction, the control behavior is by
nature synchronous-when the invocation is made the invoking entity's logical progress
is suspended while the system (and possibly the invoked entity) performs work on the
invoker's behalf. Alternatively, the type of control behavior found at the higher level of
abstraction can generally be categorized as either synchronous or asynchronous. Syn-
chronous behavior at this level is represented by remote procedure calls, where the
invoking process is suspended until the invoked process completes the operation speci-
fied in the invocation. At the same level, asynchronous behavior is represented by mes-
sage-passing systems where the process which sends a message is suspended only to
the point where the system can register the message transmission request and then the
invoker's progress continues, independent of the destination process.

The lower level of communication must be considered separately from the higher level;
the lower level is by nature synchronous, while the higher level can be either syn-
chronous or asynchronous. Since the lower-level invocation semantics must be syn-

Functional Description

.4-30 Alpha Release I Progranmung Model

chronous, the only interesting design choices deal with the time at which the invoking
entity may resume execution (i.e., the time at which the invocation returns). Examples of
possible return times and the meanings associated with them include: "the invocation
request has been noted", "the invocation request is in the process of being serviced",
"the invocation message has been delivered to the destination object", "the invocation
message has been acknowledged by the destination object", and "the invocation has
been performed by the destination object and has responded." The higher-level aspect.of
communication semantics is most commonly thought to be a binary choice between syn-
chronous and asynchronous communication services. In Alpha however, we note the con-
tinuum of choices available for an invocation mechanism, and choose the semantics most
appropriate for our system. Therefore, the object invocation mechanism in Alpha is an
extremely synchronous type of high-level, end-to-end communication.

The Alpha kernel does not provide a message-style communication facility, and there
are currently no plans for adding one. This is not a limitation since it is believed that the
Alpha programming model is highly expressive and permits such a high degree of concur-
rency that an asynchronous message-passing facility is not called for. Nonetheless,
should a communications facility with asynchronous message-passing semantics be
desired, it is possible to construct such a facility with the existing mechanisms. For
example, a Port object type might be defined and instances of this type can be created. A
SEND operation on the port object could queue a client-defined message on the port. Such
a message could then be received by invoking the RECEIVE operation on the Port object,
which would pass back a message among its return parameters. Such a Port object could
be a client- or system-defined object, and could be made as efficient as a native mes-
sage-passing implementation.

2.3.3 Key Characteristics
The form of thread/object interaction provided by operation invocation has a number of

desirable features. The RPC style of communication used in Alpha tends to be both sim-
pler and more commonly understood by programmers than more general forms of commu-
nication (e.g., asynchronous message-passing) [Nelson 81]. Due to the nature of the
object and thread abstractions in Alpha, the synchronous form of communication provided
by the invocation facility does not suffer the limitations typically associated with syn-
chronous communication in process/message-based systems [Liskov 851. Furthermore,
it is believed that this programming abstraction can be implemented efficiently enough to
permit the construction of meaningful applications on top of the system.

The fact that objects exist in separate, hardware-enforced address spaces does not
imply that the cost of a full context swap is incurred as a result of each operation invoca-
tion. The only valid implication is that the memory translation tables must be altered on
invocation, to replace the current object table entries with those of the invoked object.
This activity incurs a much lower cost than a true context swap-where processor state
and potentially all of the memory translation table entries must be saved and reloaded.
Details of how the operation invocation facility is implemented in Alpha are provided in
[Northcutt 88c].

Because of the fact that all of Alpha's system services masquerade as objects, the
operation invocation facility subsumes the role of traditional "system calls" and consti-

Functional Description

Alpha Release I Programming Model A-31

tutes the single entry point into the system. Thus, the operation invocation facility pro-
vides a uniform, location-transparent means for accessing all system- and client-provid-
ed services. The fact that invocation is the only n anncr in which objects can directly
interact has a number of important benefits. Invocations provide the kernel with complete
visibility of interactions among objects. The kernel can track the movement of threads-a
feature that is useful in supporting atomic transactions, monitoring, and debugging. No
alternative channels of communication exist, so the kernel can create an accurate model
of the interactions among objects, and can follow the execution of computations through
successive invocations of objects-all of which contributes to the system's ability to
manage system resources more effectively. The invocation mechanism serves as the sin-
gle point through which all data is passed among objects. This provides an obvious point
where translations can be performed on exchanged data to accommodate different
machine-dependent data representations.

In the current research implementation of Alpha, a number of programming details con-
cerning operation invocation depend largely on the choice of the language interface provid-
ed to the kernel's client. Included among these details are: the actual syntax of operation
invocations; the manner in which the programmer specifies the parameters to be passed
and returned; how the programmer names object types and instances; the way in which
capabilities appear to the programmer, and how capabilities are distributed among
objects. It is considered the responsibility of this language to manage the initial access
restrictions by distributing the initial capabilities to objects and to perform whatever
degree of compile-time analysis is desired (e.g., invocation parameter type-checking).
The kernel provides a powerful set of mechanisms to support such a language interface,
but it is the responsibility of the language designer to decide exactly how these mecha-
nisms are to be presented to the client. Since this research project does not enjoy the
benefit of an accompanying compiler effort, object programming has been performed in the
C programming language, with a set of simple extensions provided by a pre-processor.
Appendix I provides an illustration of some example code written for use with the Alpha
kernel, and [Shipman 88] provides a description of the language extensions.

Functional Description

A-32 Alpha Release I Programming Model

3 Ancillary Programming Abstractions
This chapter describes a set of abstractions that the system provides to augment its

basic abstractions. Described here are the access control abstractions that are us'd in
conjunction with zpcratior. nvocation, and die concurrency control abstractions that are
provided in support of objects and threads.

3.1 Access Control Abstractions*

As outlined earlier, objects in the Alpha system are placed in separate address spaces,
and all access to objects is controUed by capabilities. In order to invoke an operation on
an object, the invoker must own a capability to the desired target object, and the capabili-
ty must permit the invocation of the desired operation.

The kernel supports capabilities as a basic system abstraction, and provides mecha-
nisms that allow desired applications-level access control policies to be implemented
through the distribution of capabilities among objects.

3.1.1 Basic Definitions

A capability is analogous to a logical pointer to an object that cannot be forged, nor
directly manipulated by objects. Capabilities in Alpha are long-lived, i.e., they exist inde-
pendently of the lifetime of the objects that create them and of the objects they repre-
sent. Capabilities are context independent-i.e., they refer to the same object regard-
less of their current domain. When a named entity in Alpha (e.g., an object or a thread)
is instantiated, a capability for the newly created entity is returned, that can subsequent-
ly be passed as an operation invocation parameter.

Each object in the system has an associated collection of capabilities (known as a c-
list) that defines the object's current access domain (i.e., the other objects on which it
can currently invoke operations). Capabilities are added to an object's c-list in only two
ways-by having them passed to the object as invocation parameters that are explicitly
copied into the object's c-list; or by having them inserted into the object when it is
instantiated (i.e., passed as a part of the object's initialization parameters).

When a capability is passed into an object as an operation invocation parameter, the
capability may only be accessed by the thread making the invocation. Hence, the invok-
ing thread can use its passed capabilities in addition to those that appear in the invoked
object's c-list, while, other threads in the invoked object are not aware of these passed
capabilities. When the invocation is complete (i.e., when the invoking thread leaves the
target object), the capabilities passed into the object by that thread are removed. Passed
capabilities are managed like the automatic parameters of a procedure call in a typical
block structured programming language-i.e., they are added and removed from the
object's access domain as nested invocations are initiated and completed, much as stack
frames are allocated and deallocated as nested calls are made and completed. In addi-
tion, capabilities passed back as reply parameters are brought into the invoking object
with the returning thread, and the visibility of these capabilities is restricted to the invok-
ing thread alone.

T s discussion reflects cmanges made to the original programming model as a part of the Alpha Release 2.0
work being done at Kendall Square Research.

Functional Description

Alpha Release I Programming Model A-33

Capabilities are added to and removed from an object's c-list as a result of an explicit
action taken by the thread that owns the capability that is an invocation parameter for
that thread. In order to make a caoability visible to other threads within an object (and to
persist beyond the invocation in which it was passed), the thread that has access to a
passed capability must perform an explicit operation on the object to add the capability to
the object's c-list. A capability can be explicitly destroyed (i.e., removed from an object's
c-list) only by the object that owns it. Note that capabilities that are not in an object's c-
list can be lost when the threads that are carrying them are destroyed (e.g., due to thread
breaks). Otherwise the capabilities in an object's c-list remain in existence along with
the object, independent of any particular thread or other object in the system.

It is the responsibility of the creator of an object to ensure that the necessary capabili-
ties are provided to the newly instantiated object. The capabilities to be passed, either
into or out of the object, are specified as part of the object's interface (within the formal
parameter list of the given operation), and appear in the proper location in the actual
parameter list of an invocation. If a capability that is to be used as an actual invocation
parameter contains restrictions that prohibit it from being passed to other objects, then
the invocation will fail and the system will indicate that the capability was restricted from
being passed.

The kernel maintains the actual representations of all of the capabilities in the system
and employs the hardware's protection mechanisms to limit access to the internal repre-
sentation of capabilities. Conceptually, the kernel-maintained representation of a capa-
bility consists of a globally unique object identifier used to address an object (or other
system entity), and a per-operation set of usage restrictions, that dictate how the capa-
bility can be used by the object that owns it.

Each time an object is invoked, all of the capabilities used in the invocation are validat-
ed. Checking the validity of a capability involves determining if the specified capability is
owned by the object from which the invocation request or reply is being made, and if so,
verifying that no restrictions associated with the capability prevent it from being used in
the indicated fashion. Then, as part of the invocation procedure, the kernel checks that
the capability for the invoked object is valid, and similarly checks the validity of all capa-
bilities passed as invocation parameters.

3.1.2 Associated Features
When an object is created, the capability returned by the kernel-level object manager is

unrestricted-i.e., the capability can be used to invoke any operation defined on the new-
ly instantiated object, and the capability can be passed as a parameter in operation invo-
cations. The restrictions that can be placed on individual capabilities can limit their abili-
ty to be used to invoke particular operations on the object to which they refer, and con-
strain the manner in which they can be passed to other objects. Objects can further
restrict capabilities, but they cannot remove restrictions that have already been applied
to capabilities. That is, the kernel provides a restrict primitive, but no primitive for rights
amplification. It should be noted that, while the kernel's object manager always returns
unrestricted capabilities for newly instantiated objects, a system-level object manager
could be created that uses the kernel-level object manager, but also applies restrictions
to the capabilities for the newly instantiated objects that are returned to users. In this

Functonal Description

A-34 Alpha Release 1 Programming Model

way, the system can keep clients from obtaining access to an object's system operations,
and can be made to refuse to create certain kinds of objects for a given client (e.g., as a
result of an access-list or user-authentication activity).

The Alpha kernel provides a set of standard (system-defined) operations on all object
types that permit the manipulation of capabilities. These operations allow restrictions to
be placed on capabilities, allow the capabilities passed to an object via invocations to be
added to an object's c-list, and makes it possible to both duplicate *and destroy capabili-
ties within an object's c-list. In order to manipulate a capability, an operation is invoked
on the object which contains the desired capability within its c-list, passing the (object-
local) identifier for the capability as a parameter to the operation. Some of the capability
manipulation operations (e.g., the COPY operation) cause a new capability to be added to
an object's c-list, while other operations (e.g., the RESTRICT operation) modify the state
of a given capability, and yet other operations (e.g., the DESTROY operation) remove a
capability from an object's c-list.

The capability mechanism in Alpha has special features to support the concept of Well-
Known Objects (WKOs). WKOs are simply objects that have "well-known" names-
i.e., they have identifiers that are known at application configuration time, as well as at
run-time. Capabilities for WKOs are known as Well-Known Capabilities (WKCs) and are
simply the capabilities that are used in the invocation of operations on WKOs. A WKO
will have at least two different internal system identifiers-one will be the unique identifi-
er assigned at run-time when it is created; and the other is the well-known name that it
is assigned when the application is configured (and is used by the kernel as an alias for
the WKO). A WKC for any object is entirely equivalent to the same capability referring
to the WKO by its run-time kernel identifier, rather than its well-known identifier.

Well-known capabilities act only as aliases. and are not intended to provide any more
functionality than ordinary capabilities. In particular, objects that are invoked by means
of WKCs are not necessarily more robust than other objects. If the WKO is to be robust,
it must use the Alpha-supplied robustness mechanisms to satisfy its reliability and sur-
vivability requirements. Notice, however, that a WKC could be used to allow invokers of
a WKO to use a single identifier to reference the WKO--even if several different objects
actually provided the service or data over a period of time. (Of course, the regeneration
of these object instances is to be handled by the robustness mechanisms.)

Well-known capabilities address two concerns:

1. WKCs eliminate a start-up circularity arising from the fact that an object must
hold a capability in order to perform an operation invocation. The capability used
to make the first invocation in the system must either (a) be received as a
parameter in an incoming invocation, (b) be received as a return parameter from
a previous outgoing invocation, or (c) be heid by the object since its creation.
The first two cases are impossible because they involve invocations that must
occur before the first invocation in the system. Therefore, only the third case is
possible, implying that at least one object must possess at least one capability
at the time of its creation in order for any invocations to be performed. WKCs
provide the method for declaring and supplying such capabilities.

Functional Description

Alpha Release 1 Programming Model A-35

2. WKCs permit the definition of static application configurations, thereby allowing
Alpha applications to be created in a fashion more similar to traditional real-
time applications. Since Alpha represents a radical departure from typical real-
time supervisory control systems, it is often advantageous to design and
implement Aipha's features and facilities so that they can be related to (and be
at least as efficient as) the features and facilities found in more traditional
systems. (For instance, although Alpha provides the functionality of a
secondary storage system and offers a dynamic paging facility, there is no
requirement that these be used; rather, the user may choose to "wire down" all
of the objects in the system into a sufficiently large primary memory.) In the
case of capability distribution, Alpha accommodates a range of approaches. On
the one hand, a very dynamic approach uses a single object that initially creates
all of the other objects and threads in the system at start-up time. This
"master" object can then invoke each of these newly created objects in order to
supply them with the capabilities that they will need. On the other hand, Alpha
also supports a totally static system--one in which every object is "hardwired"
to all of the other objects with which it must deal. In this case, when each object
is created, it is given all of the capabilities that it will ever need. This approach
is facilitated by WKCs--each object would use WKCs to "know" about all of
the other objects it would ever access.

A mechanism to register WKOs is offered by the kernel, and is used by objects that
need to assume a well-known identity. In fact, this mechanism is used at initialization
time by the kernel to register the kernel-provided objects under common, well-known
aliases. Currently, the kernel also rgisters the object types of which it is aware. (In the
future, this mechanism may also be used to register the available object type definitions
that are stored in the storage management subsystem). Additionally, the mechanisms
that locate and manipulate objects based on capabilities handle WKCs as aliases that
are equivalent to capabilities using the objects' unique kernel identifiers.

All WKCs are generated by the Alpha configuration program (ACP [Shipman 88]). At
configuration time, the configuration manager must assign kernel identifiers to all of the
WKOs, including:

• the kernel-provided objects at each node,
* the object type definitions that are referenced in the configuration, and
* the objects that are declared to be WKOs in object definitions (using the interim

object programming language constructs (Shipman 88]).

3.1.3 Key Characteristics

The intent of the access control abstractions and underlying mechanisms in Alpha is to
provide the system with defensive, not absolute, protection. This approach is taken pri-
marily to limit the scope of this research effort to the issues of more immediate concern
and greater research value. Furthermore, the embedded nature of most real-time com-
mand and control computer systems restricts (but does not eliminate) the opportunities
for mounting determined attacks on the system. The emphasis in this work is more on
providing a reasonable degree of assurance (at a moderate cost) that programming errors
will not lead to serious system failures. It was decided that a full capability system (one

Fuactional Description

A-36 Alpha Release I Programming Model

in which a capability is required for virtually every bit accessed) is not called for in Alpha,
and a more suitable solution would be a higher-granularity type of protection scheme.
The access control mechanisms used in Alpha fit the Alpha object model-i.e., protection
is performed on a per-object and per-operation basis, as opposed to a memory segment
basis. This choice of protection mechanisms was motivated by the desire to construct
the kernel on traditional hardware, the goal that protection should add only a small
amount of overhead to the cost of operation invocation, and the belief that there is little is
to be gained (in this context) from fine-granularity protection.

The Alpha kernel provides mechanisms that can be used to enforce various protection
policies. One policy for capability distribution requires that all objects are created with a
single, well-known capability for an object known as a name server. The name server
object would typically have operations defined on it to allow objects to associate them-
selves with service names (e.g., client-defined strings), and operations to return certain
capabilities to objects associated with various service names. In this way capabilities
could be distributed to objects at run-time, with a single name server object providing
service for all other objects in the system. Also, higher-level access control schemes
(e g., access control lists) could be applied using the name server object concept. Alter-
natively, an object could encapsulate a set of capabilities for each object, which would
permit the implementation of environment objects that provide a standard set of capabili-
ties for objects. Such environment objects can be modified and inherited in much the
same way as UNIX shell environment variables.

The protection mechanisms provided by Alpha are more similar in this respect to the
protection schemes found in some message-passing systems than those of object- and
capability-based systems. The capability mechanism used in Alpha is similar to that
found in some message-passing systems where protection is provided by controlling
communication among processes (e.g., via port control, such as in [Baskett 77] and
[Rashid 81]), and is most closely related to that of the (centralized) CAL system
[Lampso.. 76]. The protection service of Alpha is much less comprehensive and provides
a lesser degree of protection at a more modest cost than the protection facilities in such
systems as Hydra [Wulf 81], StarOS [Jones 79] and System/38 [Berstis 80].

It should be noted that the Alpha protection abstractions and mechanisms, like all of
the abstractions and mechanisms in Alpha, are not necessarily intended to be the primi-
tives ultimately used by the application programmer. Exactly how capabilities appear to
the object programmer, and how they are passed in invocations, depends on the specifics
of the language or operating system that is to be built on the Alpha kernel. The kernel
mechanisms provide the kernel's clients with a means of inter-object protection.

As with many other systems that use capabilities [Levy 84], Alpha does not provide
for the actual revocation of capabilities. It may be worth noting however, that automati-
cally deleting the thread dependent capabilities when the thread returns from its invoca-
tion on the object represents, in some sense, a limited form of revocation.

In addition, the Alpha access control facility affords a greater degree of fault contain-
ment than the direct access (or access path) approach taken in other object-oriented sys-
tems that use capabilities more extensively than Alpha [Jones 79, Wulf 81]. In Alpha,
protection domains are compartmentalized, in that each object can only invoke operations
on objects for which it has a capability. Other systems allow objects to use capabilities

Functional Description

Alpha Release I Programming Model A.37

that they themselves do not have by referring to capabilities indirectly, through a chain of
other objects' capabilities (e.g., paths in Hydra). While objects can still fail in Alpha,
they can only access (and hence interfere with) those objects for which they themselves
have capabilities. In this way, the compartmentalization of object protection domains
helps to confine the effects of object failures. A compartnentalized approach to capabili-
ties allows programmers to set up firewalls that can detect the aberrant behavior of a
failed object and halt the propagation of its effects. However, in a system where paths
can be used in place of simple capabilities (allowing indirect access to objects via chains
of capabilities), if an object fails it can directly manipulate objects outside of its immedi-
ate protection domain.

3.2 Concurrency Control Abstractions
Threads, as they are defined in Alpha, are unconstrained with respect to their execution

relative to one another-in particular, multiple threads can execute concurrently within a
single object. In order to constrzt applications that behave correctly and predictably, it
is necessary to provide abstractions for controlling the concurrency among threads. The
concurrency control abstractions provided by Alpha allow a client to restrict the concur-
rent activity of threads where necessary to achieve the desired system behavior, while
still meeting the goal of maximizing concurrency of the threads in the system. Another
objective of the concurrency control mechanisms in Alpha is to provide support for a range
of reliable, modular programming disciplines (e.g., various object-oriented languages and
atomic transactions).

Typically, concurrency control mechanisms are based on the notion of controlling (in the
sense of starting and stopping) the logical progress of computations. In Alpha, this corre-
sponds to the control of thread execution. Therefore, the control of the virtual progress of
threads is the basis for all concurrency control mechanisms in Alpha and is the fundamen-
tal technique that supports higher-level synchronization facilities.

Because the object model constrains all access to data to originate from within the
object that encapsulates that data, the implementation, verification, and application of the
abstractions by the user of various synchronization conventions is greatly simplified. In
much the same way that monitors are an improvement over the use of generalized critical
sections, objects centralize the location of the code that shares access to particular
pieces of data, and therefore also centralize the locations where concurrency control is
required. Furthermore, object-oriented program structures make possible the use of
semantic information concerning the operations on the constituent data to obtain greater
application-level concurrency than is possible through more standard techniques. For
example, with objects it becomes more reasonable to consider such measures as enforc-
ing orderings on the individual steps of the operations defined on an object in order to
obtain increased concurrency [McKendry 84b].

In Alpha, there are two kernel abstractions that control thread execution-semaphores
and locks. These concurrency control abstractions both provide the means for starting
and stopping the logical progress of threads in order to achieve the desired synchroniza-
tion among computations. However, semaphores and locks accomplish their functions in
two different ways: semaphores provide control over the number of threads that can
simultaneously execute within a region of code in an object; locks control the number of

Functional Description

A.38 Alpha Release 1 Programming Model

threads that can perform various (read or write) operations on a given region of an
object's data. Together, these mechanisms provide a complementary and orthogonal pair
of synchronization abstractions, upon which arbitrary (higher-level) synchronization poli-
cies can be implemented (typically at the system level of Alpha).

The kernel-level synchronization abstractions in Alpha were designed and implement-
ed to provide support for the needs of real-time applications. For example, the synchro-
nization primitives are designed to consider timeliness constraints in their function. Each
time a thread performs a synchronization operation (i.e., manipulates a semaphore or a
lock), the scheduling subsystem is notified. When the time comes to unblock a thread
waiting for a synchronization token (e.g., when a V operation is performed on a
semaphore, or when a lock is released), the timeliness attributes of each of the blocked
threads is considered in choosing which thread to unblock. Furthermore, the timeliness
attributes of all of the threads waiting for a synchronization token held by a thread is con-
sidered by the kernel when determining when a thread should be preempted. In some
cases, it may be desirable to allow a thread with less stringent timing constraints to exe-
cute before one with tighter constraints in order to allow a thread with even tighter time
constraints to be unblocked, following the release of a synchronization token . Behavior
such as this is dependent on the system-level scheduling policies that the system imple-
ments; the kernel-level concurrency control mechanisms provide only the basic functions
and the hooks necessary to allow a wide range of policies to be carried out.

For reasons of adaptability, the attributes of threads (e.g., time constraints) are (by
convention), modified in a block-structured manner and are strictly nested within object
operations (e.g., a time constraint block begins and ends within the same object opera-
tion). This programming convention is encouraged by the system and provides a modu-
lar, structured way of managing thread attributes, and is not unlike the way in which mon-
itors confine all of the P and V operations on semaphores into a common module in order
to add structure to, and avoid the problems of, distributed synchronization. A similar
approach is taken for the use of the kernel's synchronization abstractions--semaphores
and locks can be used to control thread concurrency within code and data regions that lie
entirely within the scope of a single object.

3.2.1 Semaphores

The first (and most basic) synchronization abstraction provided by the Alpha kernel
can be used to provide functionality similar to that of critical secions-a construction
that restricts the concurrent access to a given region of code to a maximum of N threads
within an object. Critical sections are useful for ensuring that at any one time, a maxi-
mum of some given number of threads can be executing a section of code within an
object. Once the maximum number of threads have entered and are executing within a
critical section, all other threads that attempt to enter this part of an object are made to
wait (i.e., they are blocked) until one or more of the threads leaves the critical section. A
special case of critical sections, i.e., where N = 1, can be used to enforce the mutual exclu-
sion of threads within a region of an object. A mechanism commonly used to implement

This should be contrasted with the FIFO ordering discipline that is typically used to provide fairness (a prop-
erty that is not consistent with the needs of real-time systems), or to avoid starvaton (a condition that may be
perfectly acceptable ian a real-time system).

Functional Description

Alpha Release I Programmng Model A.39

critical sections is known as a counting semaphore, which Alpha supports through kernel-
provided Semaphore objects and a semaphore management object.

Semaphore objects feature operations corresponding to the P and V primitives of tradi-
tional semaphores, along with a non-blocking (or conditional) P operation (C_P). The
CP operation, like the standard P operation, attempts to acquire a (logical) synchroniza-
tion token, however, it never blocks the thread as a P operation would if a synchroniza-
tion token was unavailable, but instead returns a success or failure indication. The P and
V operations allow the creation of critical sections within an object's code (which is the
system's most fundamental concurrency control construct), and the C_P operation allows
the implementation of "spin-lock" services. Semaphore objects are created and
destroyed by invoking CREATE and DELETE operations on the kernel-provided
semaphore management object. Details of the interfaces to the semaphore and
semaphore manager objects can be found in (Northcutt 88d].

As an implementation-guided optimization, the capability passed back to an object by
the semaphore manager as a result of an operation to create a instance of a Semaphore
object is restricted from being passed on to other objects. This restriction ensures that
all accesses to a semaphore are made by the object that created them. This restriction is
useful in distributed systems that permit the dynamic reconfiguration of objects, because
it allows the system to keep each semaphore and the object that uses it on the same
node. This association between semaphores and their users is provided because the
overhead associated with having multiple objects on different nodes directly access the
same Semaphore object was considered to be prohibitive (and the kernel currently does
not offer a mechanism to allow the client to specify that a collection of objects should
remain co-located, regardless of the reconfiguration activities carried out by the system
or the client). Furthermore, this restriction is not considered a limitation, in that it does
not restrict the types of control structures that can be implemented in Alpha.

There are a number of observations to be made on the nature of the usage of
semaphores as a thread concurrency control abstraction in Alpha. It is expected that the
language (or operating system) that exists on top of the Alpha kernel will eliminate the
need for the explicit use of this synchronization abstraction by the client. For example, a
language might provide a block-structured CriticalSection primitive, a Monitor declara-
tion, or some higher-level synchronization primitive (e.g., path expressions(Campbell
741). In such languages the allocation and deallocation of Semaphore objects, as well as
the insertion of P and V operation invocations at the appropriate points within objects,
would be performed automatically. A client-level synchronization policy could allow
some of the synchronization activities to be implicit, even if it results in less than optimal
concurrency.

The semaphore abstraction can be used in conjunction with objects to implement moni-
tor-like structures. For example, when an object is initialized it could create a
Semaphore object with a count initially equal to one. Each operation in the monitor-like
object could then begin by invoking a P operation on the previously allocated Semaphore
object, and end with a V invocation on the same Semaphore object. This ensures that,
like a monitor, each object that adheres to this discipline can have exactly one thread
active in it at any time. It should be noted, however, that such monitor-like structures
quite severely restrict a computation's concurrency, and much greater concurrency can be

Functional Descripuon

A-40 Alpha Release I Programming Modcl

achieved through a more judicious use of the Alpha concurrency control abstractions. For
example, in many instances, higher concurrency could be achieved if critical sections were
used only in those parts of the code where undesirable side-effects may occur due to the
concurrent execution of threads within an object. That is, concurrency can be increased
by reducing the granularity of synchronization. It is also worth noting that semantic infor-
mation concerning the operations being performed by an object may be applied in order to
achieve greater concurrency; if nothing is known about an object's operations, only sim-
ple, conservative forms of synchronization can be used.

An example in which semaphores are used to coordinate the activity of multiple threads
is shown in Figure 8. In this example, a semaphore is used to enforce the dual restric-
tions that: the number of threads active in the REMOVE operation must be less than or
equal to the current number of elements in the queue, and the number of threads active in
the INSERT operation must be less than or equal to the current number of free entries in
the Queue object.

At the kernel level of Alpha, semaphore-induced thread deadlocks are to be detected
and resolved by Alpha's time-driven scheduler. However in the current release of Alpha,
deadlocks are dealt with by way of time-outs. Because the kernel already provides a
time-out mechanism (in the form of thread time constraints) there is no need to introduce
a special mechanism for dealing with deadlocks, or to include a time-out mechanism as
part of the Semaphore object's operations. Instead, the kernel mechanisms allow a hard
time-constraint (i.e., deadline) to be placed on the amount of time that a thread is willing
to wait while attempting to acquire a synchronization token. Should a thread wait for a
semaphore for longer than the specified amount of time, the system will notify the thread,
allowing the thread to give up and carry out a recovery procedure.

Conceptually, a semaphore manages logical system resources (known as synchroniza-
tion tokens) that represent a thread's ability to execute within a region of an object
where concurrent access is to be controlled. The kernel must not lose track of these syn-
chronization tokens, or else threads could be blocked indefinitely, or access to certain
regions of an objects could be permanently denied to all threads.

In Alpha, the kernel provides mechanisms to permit reliable programs to be constructed
at higher levels, without imposing a particular reliability policy. In keeping with this
approach, an application is responsible for managing the reliability (i.e., consistency, cor-
rectness, and availability) of application resources. Semaphore objects, however, are
system resources and should therefore be managed by the system. In order to ensure
that the consistency of the semaphores used by an object is maintained despite the abor-
tion of threads that might have affected its state, the system must receive information
from the client concerning the manner in which the semaphore object is to be used.

There are a number of actions that could be taken when a thread that is either waiting
for a synchronization token, or is already holding one, is aborted. For example, when a
semaphore is used to enforce mutual exclusion on a critical section of code within an
object, the system should reclaim the synchronization token from any thread that is abort-
ed while executing the critical section. On the other hand, when semaphores are used to
coordinate a producer-consumer relationship among threads as shown in Figure 8, the
logical synchronization tokens represent full and empty data item entries in a buffer.
Should a producer thread be aborted while holding a synchronization token (representing

Functional Description

Alpha Release I Programming Model A. 1

an empty buffer slot), the token should be returned to the system (to represent the return
of the empty slot to the buffer). If a consumer thread acquires a synchronization token
(representing a data item from the producer) and then aborts, the token should be
returned to the system (to indicate that the produced data has been returned to the
buffer, in order to be consumed once again). Note that the application must be carefully
written to permit data to be partially, but not completely, processed-and even repro-
cessed.

The corrective action that must be taken when such a thread is aborted must be speci-
fied when a Semaphore object is created. This is done by way of a parameter that is giv-
en to the semaphore manager object when a Semaphore object is created. Details of this
interface is given in [Northcutt 88d].

Functional Description

A-42 Alpha Release I Programmung Model

"An Example Queue Object Type Specification
I/

OBJECT Queue()

Declarations

#define OSIZE 100

static boolean init - FALSE;

static char queue(Q SIZE];

static int qtail,
qhead;

WELLKNOWN CAPA SemaphoreManager SemObj;

CAPA Semaphore FullSlots,
EmptySlots;

/*Operations

OPERATION lnitialize()
/,,

* Initialize the queue object by allocating the semaphores, setting the initialized flag,

* and then returning successfully.
• Return a failure if the allocation of semaphores is unsuccessful.

/* allocate and initialize the 'FullSiots' semaphore "
INVOKE SemObj.Create(0, FullSlots)
ON FAILURE {

RETURN FAILURE(QOSEMINITFAIL);
1.

/9 allocate and initialize the 'EmptySiots' semaphore 7
INVOKE SemObj.Create(0_..SIZE, EmptySlots)
ON FAILURE (

RETURN FAILURE(OSEMINIT._FAIL);

/" initialize the queue "
qhead - wail - 0;
init = TRUE;

};

Figure 8: Example Object Type Specification

Functional Description

Alpha Release I Programming Model A-43

OPERATION Insert(IN char: Chr)

" Take a character and insert it in the queue if it is not full. If the queue is full, block the
" thread until space is available and then insert the character into the queue and return
" 'SUCCESS'. Return a failure indication if the queue is not initialized or if any of the
" invocations on semaphores fail.

/" check if the queue has been initialized 7
if (init !. TRUE) RETURN FAILURE(OUNINIT);

/* get an empty slot "/
INVOKE EmptySiots.P0
ON FAILURE RETURN FAILURE(Q_EPFAIL);

/" insert a character into the queue /
queuefqhead++] - chr;
qhead 0,. 0_SIZE;

/" produce a full slot "/
INVOKE FuliSIots.V0
ON FAILURE RETURN FAILURE(OFVFAiL);

1;

OPERATION Remove(OUT char: chr)
/-
" Remove a character from the queue, if it is not empty. If the queue is empty, block the
" thread until a character is available and then remove one from the queue and return
" 'SUCCESS' Return a failure indication if the queue is not initialized or if any of the
" invocations on semaphores fail.

P check if the queue has been initialized 0/
If (infit ! TRUE) RETURN FAILURE(OUNINIT);

/P get a full slot "/
INVOKE FuliSlots.P0
ON FAILURE RETURN FAILURE(Q_FPFAIL);

/0 remove a character from the queue °/
chr = queue(qtail++];
qtail %0/ Q_SIZE;

/" produce an empty slot "/
INVOKE EmptySlots.V0
ON FAILURE RETURN FAILURE(QEVFAIL);

};

/ end of the queue object /

Figure 8, continued

Functonal Description

A-44 Alpha Release 1 Programming Model

3.2.2 Locks

In addition to semaphores, which may enforce the mutual exclusion of threads to por-
tions of code within objects, the kernel provides an abstraction with which to control
thread access to specific regions of data within objects. This function is provided by the
kernel-level concurrency control abstraction known as a lock. In Alpha, locking is the
means by which objects control access to the data they encapsulate. By locking only
those dza that are being manipulated by a thread within an object, greater concurrency
can be obtained than through enforcing the mutual exclusion of threads on regions of
code. This is because different pieces of data can be manipulated concurrently by each
thread executing a particular piece of code, allowing the possibility that multiple threads
could execute the same sections of code concurrently without interference. The lock
abstraction provides a means of controlling the concurrency of threads based on the data
they need to access at any point in time.

An object needing to synchronize access to its data would allocate a Lock object, speci-
fying as a parameter the data region with which to associate the lock. When the speci-
fied data is to be accessed, a thread must first acquire the lock (i.e., obtain the Lock
object's permission to access its associated data). The desired operation is then per-
formed on the locked data, and finally, the lock is released.

When a Lock object is created, it is associated with a contiguous span of an object's
virtual address space. Similar to semaphores, locks are created and deleted by invoking
an operation on the kernel-provided lock manager object. The data that a lock is to pro-
tect is defined when the Lock object is crated, by passing the address of the start of the
data to be protected, along with the data block's size. The lock manager object will
respond with an error if the" specified data region is invalid (e.g., if the data are not in the
data portion of an object, are in non-existent memory, or overlap with another lock's
region).

Once created, a lock is used to mediate all access to its specified data-all threads
wishing to access the data must first be granted permission by the Lock object. Concep-
tually, the act of requesting a lock represents the application's indication to the system of
its intention to access the data in a particular fashion (e.g., to write a new value to some
data element), and the granting of a lock represents the system's notification to the appli-
cation that the conditions for the desired manipulation of the data have been met (e.g., no
other thread has write permission for the data).

A Lock object allows a thread to manipulate its associated data (i.e., grants the thread
a lock) by allowing its virtual progress to continue following the completion of the
thread's lock request operation. A lock suspends the execution of (i.e., blocks) a thread
when its lock request conflicts with already grinted requests for the same lock. For
example, if one thread has already been granted an exclusive access lockt on a data item,
other threads will block when attempting to lock the data, and cannot be unblocked until
the thread currently holding the exclusive access lock releases it, thus allowing another
thread to acquire a lock for the data region.

The modes in which a lock can be acquired will be 'described in the following paragraphs.

Functional Descrzptwn

Alpha Release 1 Programming Model A-.45

A Lock object has operations defined on it for. locking data items (LOCK), conditionally
locking data items (CLOCK), unlocking data items (UNLOCK), and modifying locks
already held on data items (LOCKCONVERT). A Lock object's LOCK operation is used
to indicate a thread's desire to access the data associated with the lock. The CLOCK
operation is similar to the LOCK operation, except it does not block the thread if the lock
cannot be granted; instead, it returns a status indication of whether the lock was granted
or not. The UNLOCK operation is used by a thread to indicate that its manipulation of the
locked data region is now complete. The LOCKCONVERT operation is used by threads
to modify the mode in which a lock is being held, without first releasing it.

Locks in Alpha accommodate the fact that there are different types of data manipula-
tions that can be performed. Rather than simply enforcing mutually exclusive access to
data within objects, Alpha provides the potential for increased concurrency by using dif-
ferent types of locks to reflect the different types of manipulations that may be performed
on the data to be locked. For example, it is frequently the case that multiple reads can be
allowed simultaneously on a data item, without requiring synchronization among the
threads performing the accesses.

To express the types of data manipulation that could be performed, and which of these
manipulations are compatible, the Alpha kernel employs the notions of lock modes and
lock compatibility tables [Bayer 79]. A lock mode specifies the kind of access that a
thread intends to perform on the data associated with the lock. A lock compatibility table
specifies which lock modes are compatible with other, currently granted, lock modes. A
lock is termed compatible with another lock (i.e., the locks do not conflict) if the data
accesses defined by the lock modes can be meaningfully performed concurrently. The lock
modes defined in Alpha are:

" Concurrent Read - allows multiple readers of the data associated with the
lock.

* Concurrent Write - allows multiple readers and multiple writers of the data
associated with the lock; the lock holder may also read the data associated with
the lock.

• Exclusive Read - only one thread can have a read lock on the data associated
with the lock.

• Exclusive Write - only one thread can have a write lock on the data associat-
ed with the lock, and multiple readers are allowed; the lock holder may also read
the data associated with the lock.

" Exclusive Read/Write - provides complete mutual exclusion to the data, only
one thread can have access to the lock's data.

The compatibility table for locks in the Alpha kernel is shown in Table 1.

The Alpha lock facility has a number of features in common with the semaphores provid-
ed by the kernel. As is the case with semaphores, the language or operating system that
serves as the kernel's client would ideally make the locking of data within objects implic-
it. However, it is only with the knowledge of the semantics of the data manipulation in
question that locki'g can attain maximum concurrency. Upgrading (or promoting) lock
modes can also lead to deadlock, and automatic lock request generation can exacerbate
this problem. Most simple attempts at compile-time lock generation result in less than

Functional Description
I ~~~ II I

A-46 Alpha Release 1 Programwung Model

optimal concurrency. The Alpha locking mechanism is also accompanied by the possibili-
ty of deadlock, and as with semaphores, the lock mechanism can be used in conjunction
with thread time constraints to aid in recovery from deadlocks (as well as livelocks and
other failure conditions where computations are not making expected progress). Further-
more, as with Semaphore objects, capabilities for Lock objects cannot be passed to other
objects, requiring that Lock objects can only be manipulated by the object that created
them.

none,, ne Concurrent Concurrent Exclusive Exclusive Exclusive

Requested Read Write Read Write Read/Write
Concurrent :: :: iiiiiiii~:i~i:i~~

R e a d iii:.-: ..". .:_x

CConcuprraetnt NotXCopatibl
Write iTal1:Lo.ck Compbili yTae

Exclusive N:.;:,..
Read M

R a/ rtExclusive ; !::::.:..k_*::-::;: , :::::::::>::::::: N ...: N;. .,W:

Exclusive .. ; . -: - ,. !."

[i~ !!ii!l~:: ! -Compatible -Not Compatible

Table 1: Lock Compatibility Table

In addition to its role in concurrency control for objects, the lock abstraction plays a cen-
tral role in the implementation of atomic transactions in the Alpha kernel. Some aspects
functions of the lock abstraction in Alpha are specifically provided to support atomic
transactions. The attribute of serializability typically associated with atomic transactions
can be attained through the use of a two-phase locking discipline [Eswaren 76]. The
Alpha kernel employs an optimistic strategy in supporting the atomic update of modifica-
tions made by atomic transactions--each lock has a write-ahead log associated with it to
allow the changes made to the locked data item to be undone in case an atomic transac-
tion aborts. Details of the manner in which locks are used in atomic transactions will be
presented in the following chapter.

The current hardware does not adequately support the notion of locking in Alpha, and
so the system software is responsible for performing much of the functionality associated
with locks (e.g., detecting lock violations and enforcing the use of locks). This is an area
where hardware support can provide great value to the system in terms of enhanced per-
formance and improved functionality, and a research effort to construct the necessary
(general-purpose) hardware support functions is currently underway.

An example of the use of locks is shown in Figure 9. This is similar to the queue exam-
pie used previously, but now the Queue object's queue data and head and tail pointers
are locked to ensure that concurrently executing threads do not corrupt the queue's logi-

Functional Description

Alpha Release I Programmng Model A-47

cal structure or contents. By locking the queue pointers, consistency can be guaranteed
with a greater degree of concurrency than is achievable through simple mutually exclusive
access to the object's code. Note that in this case it is doubtful that the marginal
increase in potential concurrency would offset the overhead associated with performing
the locking operations. However, in more complicated situations the potential benefits of
additional concurrency are much more significant.

Functional Descripuon

A-48 Alpha Release 1 Programming Model

*An Example Queue Object Type Specification

OBJECT Queue(){

*Declarations

#def in. 0_SIZE 100

static char queue[Q..SIZE];
static int qtail.

qhead:
WELLKNOWN CAPA LockManager Lock~bj;
CAPA Lock QueueLock,

HeadLock,
TailLock;

*Operations

OPERATION lnitialize()

Initialize the queue object by allocating the locks, setting the queue pointers,
"and then returning successfully.
"Returr a failure if the allocation of locks is unsuccessful.

/allocate the queue data structure's lock7
INVOKE Lock~bj.Create(OueueLock, queue, Q,..SIZE):
ON FAILURE(

RETURN FAILURE(O..LOCKINITFAIL);

/* allocate the head and tail pointer locksI
INVOKE LockObl.Create(HeadLock. &qhead, aizeof(qhead));
ON FAILURE RETURN FAILURE(HLOCKINITFAIL);

INVOKE Lock~bj.Create(TailLock, &qtaii, aIzeof(qtail));
ON FAILURE RETURN FAILURE(T _LOCK_ NITFAIL);

/* initialize the queue
qhead - qtaii - 0;

Figure 9: Example Lock Usage

Functional Description

A4lpha Release I Programming Model A-.49

OPERATION Insert(IN Char: chr)

*Take a character and insert it in the queue, if it is not full. If the queue is full,
*return a failure indication.

1. check if the queue is full
INVOKE HeadLock.Lock(CONCUR RENT READ);
INVOKE TailLock.Lock(CONC URRENT -3EAD);
if (((qhead + 1) % OSIZE) .. qtail)(

INVOKE Headi-ock.Uni-ocko;
INVOKE Taill-ock.UnLockO:
RETURN FAILURE(QFULL); };

INVOKE TailLock. UnLocko;

/* bumnp the head pointer, and roll over if necessary .
INVOKE HeadLock.Convert(EXCLUSIVEREADWRITE);
+-.qhead %. 0_SIZE:

/, lock the queue, insert a character into it, and then uniock it7
INVOKE OueueLock.Lock(CONC URRENTWRITE);
queue(qheadl - chr:.
INVOKE QueueLock. UnLocko:
INVOKE HeadLock.UnLock();

OPERATION Remove(OUT char: chr)

*Remove a character from the queue, if Nt is not emrpty. If the queue is empty,
*return a failure indication.

P* check if the queue is empty7
INVOKE TailLock.Lock(EXCLUSI VEREAD WRITE):
INVOKE HeadLock.Lock(EXCLUSIVE-READWRITE);
if (qhead .. qtil) (

INVOKE Taillock.UnLockO;
INVOKE HeadLock.UnLocko;
RETURN FAILURE(Q_.EMPTY);).

INVOKE HeadLock.UnLocko:

/P' lock the queue, remove a character from it, and then unlock it .
INVOKE QueueLock.Lock(EXCLUSIVEREAD);
chr - queue~qtaill;
INVOKE OueueLock.UnLock();

P' bumrp the tall pointer, and roll over if necessary '
.-.qtail %. Q...SIZE;
INVOKE TailLock. UnLocko;

/* end of the queue object I/

Figure 9, continued

Functional Description

A-50 Alpha Release I Programming Model

4 Key Concepts and Features
This chapter provides a description of some of the most significant features of the Alpha

programming model which are not directly associated with a system abstraction, but
rather have to do with the interactions among the kernel's basic abstractions.

Described here are the timeliness model and the approach used to meet the demands of
time-critical applications, the different types of exceptions that can occur in a distributed,
real-time system, the method employed to handle them, and the extensions to the ker-
nel's basic abstractions that have been constructed in order to achieve a greater degree
of system robustness.

4.1 Time Constraints
The fundamental programming abstractions of Alpha were specifically designed to sup-

port the system's overall objectives of global, dynamic, time-driven resolution of con-
tention for system resources (e.g., processor cycles, communication bandwidth, memory
space, or secondary storage). In particular, the thread abstraction provides a framework
for injecting the application's time constraints into the system, and a basis upon which
application-specific system resource management policies can be defined. Threads pro-
vide a unified means of managing all resources in the system-both within and among the
processing nodes in the distributed system.

Many of the computations in a real-time application have time constraints associated
with them, and because threads are Alpha's representation of these computations,
threads also have time constraints associated with them. In order to provide globally
consistent time-driven resource management, these application-specified tine con-
straints for threads are carried along with the threads as they move through objects
across the system's nodes. The timeliness constraints of threads are expressed in a
form that provides a collection of application-specific timeliness information to the sys-
tem and permits a wide range of time-driven resource management policies to be imple-
mented. Time constraints are applied to threads in a nested, block-structured fashion.
The policy currently used in managing resources takes full advantage of the information
provided by the threads' time constraints in order to achieve a number of benefits over
more conventional policies.

4.1.1 Time-Value Functions

Effective time-driven management of system resources in Alpha depends on the corre-
spondence between the programmer's and system's view of application computations
(provided by threads), and application-specified importance and time constraint informa-
tion (provided by attributes of threads). Alpha uses a novel and effective technique for
explicitly, and expressively, manifesting an application's time constraints: as the time-
dependent value to the system of completing specific computations.

One thread attribute is the importance of the computation being performed by the
thread, relative to the other threads in the system. This attribute is given to a thread
when it is created and may be altered throughout the course of the thread's existence.
The importance attribute of a thread is an application programmer's indication to the sys-
tem of a computation's significance. Unlike a traditional priority, thread importance is not

Functional Description

Alpha Release 1 Programming Model A-51

used in Alpha to indicate the manner in which rtsources (particularly processor cycles)
will be apportioned to the thread. Instead, the timeliness information dictates the manner
in which system resources are dispensed, and a thread's importance is only to be used in
resolving contention for resources when insufficient resources exist to meet all of the
demands for them.

The timeliness information associated with threads includes: the expected completion
time for the execution of a block of code; the value (with respect to time) of completing
the execution of the block of code; and a probability distribution function that indicates the
likelihood of completing the block of code at any given time. Collectively, these attributes
are the Alpha system's manifestation of time-value Jwnctons, which represent the time-
varying value to the system of the execution of a computation (or parts thereof). Time-
value functions allow the system to distinguish between a computation's timeliness and
its importance, and represent a dynamic, powerful, and expressive notation for capturing
time constraint information.

In the current implementation of Alpha, time-value functions consist of several different
components, as illustrated by the example function shown in Figure 10. In this figure the
horizontal axis represents real time, and the origin is the point at which a thread acquires
the attributes represented by this time-value function. The vertical axis in Figure 10 rep-
resents the value to the overall system of completing the portion of a computation to
which this time constraint applies. This value is expressed in globally meaningful value
units.

To simplify the specification of time-value functions for practical applications, the full
generality of the conceptual time-value function is not used. At this time, it is not consid-
ered necessary to allow arbitrary time-value functions to be specified at run-time.
Instead, experience has shown that the selection of a critical instant in time, along with
pre- and post-critical time function shapes from a parameterized collection of curves is
more than adequate. By using a thread's importance attribute, its critical time and speci-
fied importance modifiers, the system can generate time-value functions that are capable
of expressing a wide range of application timeliness constraints. As shown in Figure 10,
each curve is scale bv the thread's impo/_-,nce. and the importance modifiers allow dis-
continuities to be introduced into the time-value function at the critical time. The particu-
lar curves provided by the system are defined at system-build time, along with the avail-
able resource management policies--e.g., the scheduling policy, as a part of the schedul-
ing subsystem's policy specification.

When associated with threads, time-value functions provide the information necessary
to execute a wide range of time-driven resource management policies in Alpha. The
information provided by the time-value function not only provides sufficient information to
meet the (rather substantial) needs of the best-effort processor scheduling algorithm
(described in detail in the following subsection), but it also provides the information nec-
essary to support round-robin, priority, rate-monotonic, shortest-processing-time-furt,
deadline, and slack-time processor scheduling algorithms, among others.

Functional Descriptwn

A-52 Alpha Release I Programming Model

I - thread importance
tc - critical time

te - expected execution time

a(te) - standard deviation of t,
S re - shape of value function, pre-critical time

Sost- shape of value function, post-critical time

'Pre - importance modifier, pre-critical time

- importance modifier, post-critical time

V

e

I(I + ipe) -

Sp

Time
te tc

Figure 10: Components of a Time-Value Function

4.1.2 Time Constraint Blocks
Timeliness attributes are first associated with threads when they are created, and may

be modified at run-time. In order to modify a thread's attributes, an invocation is per-
formed on the thread itself, invoking the system-provided operation that allows the
thread's attributes to be modified. When time constraint attributes are applied to a
thread, the kernel can indicate, at run-time, the probabilities of successfully meeting a
given time constraint. This feature provides an early indication of an exception and per-
mits the application to determine the proper course of action for each individual case.

The notion of a time constraint block in Alpha provides a convenient way for the pro-
grammer to define a time constraint for the execution of a specific block of code within an

Functional Descriptwn

Alpha Release 1 Programming Model A-53

object. Of course, the block may include invocations causing the thread to visit other
objects. Nonetheless, the time constraint is in effect for the thread no matter where it
goes until the block is completely executed (or the thread fails to complete the block in
time). As with all thread attributes, Alpha permits the application of multiple, nested
time constraints to threads. At all times, all of the time constraint blocks currently asso-
ciated with a thread are in effect simultaneously (i.e., a nested timeliness attribute does
not hide other timeliness attributes that are still in effect).

Figure 11 provides an example of the application of time constraint blocks to threads.
The example is written in the C programming language, with extensions provided to sim-
plify the act of programming the kernel interface directly.

There are a number of problems yet to be resolved concerning the application of time
constraints to threads. These problems are the subject of on-going thesis research pro-
jects described in [Clark 88b] and [Maynard 881.

4.1.2.1 Dynamic Application of Time Constraints

Alpha allows the programmer flexibility in providing the parameters of time constraint
blocks. For example, the time constraint block parameters may be defined at compile
time (i.e., early binding), or they may be defined whenever a thread enters the defined
block of code (i.e., late binding). Early binding is useful where it is desired that the code
within a time constraint block must be executed by a certain, constant time, regardless of
which thread is executing the instructions (e.g., when the combination of reading a sensor
and moving an actuator must be performed within a certain amount of time). Late binding
is useful where, although a block of code has a time constraint, the exact values of the
time constraint parameter must be computed each time before entering the block (e.g.,
when the time required to complete a testing operation is dependent on the velocity of a
specimen past a sensor). Furthermore, there are different types of late binding that can
be performed. On the one hand, the parameters for a time constraint block may be a func-
tion of the global state of the object alone, in which case the time constraint would be the
same for any thread executing the time constraint block. Alternatively, the time con-
straint block parameters may be a function of the local state of a thread (i.e., stack vari-
ables or incoming parameters) as well as the global object state, in which case the time
constraint parameters for the block of code would potentially vary for each thread execut-
ing it. This flexibility allows the programmer to more dynamically and accurately repre-
sent the timeliness needs of a computation to the system, thereby making it possible for
the system to manage resources more effectively.

4.1.2.2 Dealing with Unsatisfied Time Constraints

The very fact that time constraints exist and must be satisfied with finite resources
implies that perhaps all of the time constraints cannot be satisfied Tn that case, the pro-
grammer must deal with the effects of unsatisfied time constraints.

A time-value function's critical time indicates the nominal (i.e., desired) time of comple-
tion for the computation. The portion of the time-value function following the critical time
may define a point at which the computation no longer has any value, and so in some
sense such a time-value function represents a deadline-the time after which the com-
pletion of the computation no longer has positive value.

Functional Description

A-54 Alpha Release 1 Pro gramming Model

/* An Arbitrary Object Type Specification
OBJECT ObLA()

/the object's first operation7
OPERATION OPrj- (ParrnS)

/I start of the operation's code7

Ienter this operation's first time constraint block7
T1MWE..CONSTRAINT-BLOCK(parml, parrn2, parm3)

P* start of code that is to be executed under this time constraint .

P* an arbitrary conditional statement
It (condition)

Penter a nested time constraint block7
TIMECONSTRAINTBLOCK(parml, parmn2, parm3)

/I code to be executed under the nested time constraint .

ONABORT
P* code to be executed if the time constraint is missedI

I P end of the nested time constraint block '

)Pend of the first time constraint block '

/P enter this operation's next time constraint block7
TIME,..CONSTRAINTBOLOCK(parml, parmn2, parm3)

Pstart of code that is to be executed under this time constraint7

P* end of the first time constraint block I/

P* end of the first operation '

IPend of the object7

Figure 11: Example Use of Time Constraint Blocks

Functional Description

Alpha Release I Programming Model A-55

Whenever a thread's time-value function is no longer positive (e.g., the thread has
failed to meet its deadline), the thread's execution within the time constraint block
should be terminated. This action is taken because the thread's time constraint has not
been met, and its continued execution consumes resources and interferes with other
threads operating under time constraints. Furthermore, the work that the thread contin-
ues to do will probably require more effort to compensate for or undo the manipulations of
the object's data in order to restore it to a consistent state.

The fact that the continued execution of threads whose deadlines have been missed
may have undesirable consequences demands that the system must put a stop to the
execution of these threads in a prompt fashion. Simply halting a thread when its deadline
has been missed is a totally unacceptable solution-in a real-time system, missing dead-
lines is as significant as defining and meeting deadlines. A much more meaningful thing
to do when a deadline is missed is to redirect the execution of the thread to an exception
handler, specified by the programmer, that dictates what must be done. The program-
mer's options might include: killing the thread, returning the object to a consistent state,
reporting an exception to another object, compensating for the partial execution of the
block, reoexecuting the block, logging an event, or just proceeding on.

Alpha supports the clean-up of computations which fail to satisfy their time constraints,
to avoid wasting resources and executing improperly timed actions. This is done by
immediately and forcibly diverting the normal flow of the thread's control to a defined
exception handling block of code. By providing the programmer with a way of going to a
defined point in his code on exception with all of the state information of the computation,
a wide range of user-definable exception handling policies can be implemented. This is to
say, a time constraint block has a single entry point, but has two exit points--one for nor-
mal exits (i.e., the necessary computation was completed before the specified time), and
one for abnormal exits (i.e., the system indicates that the computation cannot be complet-
ed in the required time). A thread exits a time constraint block for one of three reasons:
the thread has completed executing the code (and is exiting normally); the thread was
aborted pursuant to a resource management decision by the scheduler (e.g., a missed
time constraint); or the thread was aborted for some other reason (e.g., it was in an
atomic transaction that has been aborted).

A time constraint is valid as long as the thread is executing code within the correspon-
ding time constraint block. This implies that once a thread's execution is directed to a
time constraint block's exception handling code, the block's time constraint is no longer
in effect and the thread assumes attributes of its next outermost time constraint block. In
this way, all execution of exception handling code is done under the proper computational
attributes (i.e., the system uses the next level of time constraints so that the thread's
attributes properly correspond to the thread's state). This means that the system contin-
ues to manage resources in the desired fashion, regardless of expired time constraints.
The manner in which exceptions are handled by time constraint blocks is essentially the
same way that block-structured, nested, mechanisms are used for handling other types of
exceptions in the system (e.g., atomic transactions).

4.1.3 Time-Driven Resource Management Policies

A significant feature of the Alpha programming abstractions has to do with the combina-
tion of the fact that threads maintain a strong correspondence between the program's

FunctionaJ Descripuon

A-56 Alpha Release I Programming Model

view of a logical computation and the system's manifestation of these computations.
This feature makes it possible for the client programmer to associate application-specific
attributes with computations.

Because threads are the physical manifestations of computations, each instance of the
Alpha kernel can explicitly track and manage the computations running local to it.
Threads provide a means of efficiently and effectively resolving contention for system
resources. Furthermore, the kernel can assign global priorities (or relative-value func-
tions) to the computations that are active in the system. Therefore, the thread-based
approach provides a number of potential benefits over other, more common computational
models. A discussion of these benefits is to be found ir Chapter 5.

The Alpha operating system was designed to support a range of real-time scheduling
policies. The resource management policy that has received the most attention by the
project so far is known as the best-effort policy, and is used primarily for the management
of processor cycles. The best-effort policy is the most ambitious and demanding of all
scheduling policies implemented in Alpha so far and serves as a forcing function, requiring
the greatest functionality of the mechanisms in Alpha.

Time-value functions form the basis for resolving all contention for system resources in
Alpha-e.g., in managing processor cycles, communication resources, secondary storage
access, and synchronization primitives (i.e., locks and semaphores). User-specified
time-value functions and run-time statistics maintained by the system for each thread
(e.g., accumulated execution time) serve as the fundamental inputs to the time-driven
resource management policy modules in Alpha.

The time-driven resource management policies in Alpha all follow a common set of gen-
eral guidelines. The time-value functions for all contending threads are evaluated collec-
tively, and then the threads are scheduled so as to maximize the total value accrued by
the system for the entire foreseeable future. The urgency of the computations requesting
system resources is considered first-when there are sufficient resources to do so, the
resource requests are serviced in an order that ensures that all of the computations' time
constraints are met. If there are not enough resources available to satisfy the time con-
straints of all contending activities, a "best effort" is made to handle the overload condi-
tion gracefully (as defined by an application-specified policy). For example, an overload
policy might indicate that the system should shed load on the basis of activity impor-
tance, or that it should retard all response time performance proportionally to activity
importance. In the current implementation of Alpha, the former approach is taen-i.e.,
contending requests are selectively denied, on the basis of the urgency and importance of
the computations responsible for the resource requests.

4.1.3.1 A Best-Effort Scheduling Policy
While many different types of scheduling algorithms may be (and have been) inserted

into the framework provided by the scheduling subsystem, the algorithm that has
received the greatest amount of use and attention to date is known as the best effort
scheduling algorithms. This algorithm is a product of the Archons project's long-standing
research efforts in real-time scheduling and represents the first practical application of
our research work in this area. The best-effort policy takes application-specified informa-
tion concerning the timeliness constraints of applications (i.e., the threads' attribute infor-

Functional Description

Alpha Release I Programunag Model 4-57

mation) and attempts to meet all the application's time constraints, adapting to unexpect-
ed events. When the demands for processor cycles exceed the available supply (i.e., not
all time constraints can be met), the best-effort policy discards requests (i.e., omits
ready threads from the scheduling list) in such a fashion as to maximize the value to the
system of the threads that are being scheduled for execution.

The best-effort policy includes one particular overload handling sub-policy. Examples
of other overload sub-policies include: discarding the least important threads from the set
of ready threads; discarding threads to maximize the total number of threads whose time
constraints are met; not discarding any threads, but instead having all threads miss their
deadlines by some average amount of time (i.e., distributing the overload evenly across
all ready threads); or not discarding threads, but having the ready threads miss their
deadlines by an amount inversely proportional to their value to the system.

Other, more typical, scheduling algorithms do not attempt to deal with overload condi-
tions properly (in fact, some policies exhibit particularly bad performance in overload cas-
es). In recognition of the system's robustness requirements, the best-effort policy was
designed to handle overload conditions gracefully, attempting at all times to maximize the
global value (as defined by the application) of the execution of computations to the sys-
tem.

The best-effort algorithm in Alpha was designed from an aperiodic point of view, in that
no special case treatment is given to events chat occur cyclically. Typically, schedulers
use the cyclic nature of some applications to obtain analytical leverage in making
specious claims of "guarantees," and aperiodic events are force-fit into the periodic
mold. Alpha makes use of a more general solution where time constraints are considered
in a uniform manner, and no special significance is given to an event that may happen to
recur in a more or less regular time pattern. Each iteration of a cyclic event is treated as
an independent instance of a time constraint applied to a section of code. This allows
periodic and aperiodic activities to be handled in an integrated, uniform manner and yields
a highly adaptive scheduling subsystem. With the best-effort scheduler, the application
does not necessarily fail when an assumption concerning the periodicity of events is vio-
lated, nor is a reevaluation of all of an application's timeliness constraints required when
a change is made in one section of code.

It should be noted here that the best-effort scheduler implemented in Alpha can be
made to behave like a range of different schedulers, depending on the amount and type of
information given to it by the application programs. For example, with the thread's criti-
cal time parameter alone, the best-effort scheduler can behave like a deadline or a rate
monotonic scheduler. When given the expected execution time parameter alone, the
best-effort scheduler behaves like a shortest-processing-time-first scheduler. With noth-
ing but the thread's importance parameter, the best effort scheduler degenerates to a pri-
oriry scheduler. Finally, without any of the thread's scheduling attributes at all, the best-
effort scheduler runs threads like a round-robin scheduler.

The best-effort scheduler allows Alpha to be employed in conventional static applica-
tions where rate-mc,,,,tonic or rate-group scheduling are traditionally applied and where
guaranteed behavior is required. However, Alpha's best-effort scheduler has significant-
ly greater capabilities for more general real-time command and control applications than
other typical real-time schedulers.

Fuctionai Description

A- 58 Alpha Release I Programmmng Model

4.1.3.2 Implications of Time- Value Functions

With the full information provided by the applications programs with time-value func-
tions, the best-effort scheduler can manage applications processor cycles much more
effectively than other scheduling algorithms. Time-value functions effectively distinguish
between the urgency and importance of a computation, whereas these attributes are most
commonly encoded into a simple, small-integer priority code in existing systems. Also,
the association of time value functions with threads allows a direct expression of an
applicatoti program's time constraints, with no translation or transformation required
between the specification of an application computation's timeliness requirements and
the computation's physical implementation. Time-value functions are a versatile repre-
sentation that can uniformly (i.e., without special cases or exceptions to the model)
express many different types of timeliness constraints, including: hard time constraints
(i.e., deadlines), soft time constraints, hard or soft execution-time windows, and delayed
execution. Because time-value functions can be specified dynamically and time con-
straint parameters may be run-time variables, a time constraint applied to particular sec-
tion of code can, over time, exhibit a varying degree of "hardness" (i.e., the value of con-
tinued execuuon following the computation's critical time may change) and a dynamic
maximum value (i.e., the global value to the system of completing the computation may
change with respect to time).

Furthermore, in Alpha there is no premature binding of timeliness attributes that would
restrict the ability of the system to carry out certain policies or its ability to adapt to
events that might occur between the time that the binding is done and when the system
makes resource management decisions. For example, the timeliness attributes are main-
tained with threads in an unencoded form and are not compressed into a form such as pni-
Ofiues. This means that there is no loss of information due to transformations of timeli-
ness attributes by the system. Furthermore, because the timeliness attributes of
threads can be dynamically modified throughout the course of a computation, Alpha can
be more adaptive than systems which only support statically defined time constraints for
computations.

4.2 Exception Handling
The overall system requirements of Alpha place certain essential requirements on its

exception handling. Some of these exception handling requirements are common to all
operating systems, some result from the underlying distributed system architecture, and
yet others arise directly from the system facilities provided by Alpha. As a result, Alpha
fields a wide range of different types of exceptions, all handled uniformly by a single, sim-
ple, exception handling facility.

The exception handling mechanisms in Alpha must meet certain constraints: they must
fit well into the overall programming model (i.e., they should allow exceptional behavior
to be handled without introducing new programming abstractions or severe aberrations in
the e.isting abstractions), and their actions should be compatible with the system's
time-driven management of system resources.

The operating system's client must be provided with mechanisms that allow the cre-
ation of applications that behave dependably, in the face of the entre range of exception
conditions that may be encountered in the course of execution. In par :. lar, the client
must be able to specify the exact recovery actions to be taken should an L,^ception occur

Functional Description

Alpha Release I Pro gramnung Model A-59

while executing at a particular point in an object. To permit this, Alpha supports a mecha-
nism that allows the client to associate application-specific recovery code blocks with
individual regions of code within object operations, known as exception blocks (i.e., a
form of "recovery blocks" [Anderson 811). The client defines both the scope of an excep-
tion block and the exception handling code that is to be invoked should an exception occur
when a thread is executing within the specified exception block. Without mechanisms
that provide the client ,/ith the ability to define the location of exception blocks and appli-
cation-specific excepticn handling code, the system is only able to perform crude, brute-
force types of recovery activities (e.g., define exception blocks on operation or subroutine
boundaries and in case of an exception, restore the object to a fixed, or otherwise known,
state). Not only are Alpha's exception blocks more sophisticated, they are also more
powerful since recovery may involve more than simply altering data values-in a real-
time system, recovery may also involve changes that must be made to the external
world. Of course, only the application programmer knows what these recovery actions
should be, and it would be difficult for the programmers to inform the system about these
actions if exception blocks were not provided.

In addition, the Alpha exception handling mechanisms must be asynchronous in their
behavior. It is not acceptable in the Alpha real-time environment to wait until a thread
makes a system call in order to notify it of an exception-in general, the longer a thread
executes after an exception occurs, the more resources are wasted and the greater the
effort needed to recover from the exception. For this reason, the exception mechanisms
in Alpha must allow a thread to be notified of an exception immediately upon the detec-
tion of the exception at the thread's node, regardless of whether the thread is currently
executing or if it is blocked at the time.

Furthermore, the system must have a means of ensuring that the consistency of sys-
tem resources is maintained in spite of the exception behavior of threads. In the course
of a thread's execution, it may acquire system resources (e.g., memory and synchroniza-
tion tokens). Should an exception occur while a thread is in possession of system
resources, the thread's normal flow of execution will be interrupted and both objects and
the system may be permitted to remain in an inconsistent state. Regardless of the type
of exception which occurs, the system should not be left in an inconsistent state, other-
wise system resources could be lost (i.e., the system would be "'leaky"). Thus, the sys-
tem must keep track of the system resources acquired by a thread in order to be able to
restore them to a consistent state in the event of an exception.

4.2.1 Mechanisms
In support of the robustness requirements of Alpha (as defined in [Northcutt 88a]),

there are features of the operation invocation facility that are explicitly intended to sup-
port exception handling. In addition, the kernel provides an exception handling mecha-
nism that provides the client with a block-structured programming construct for dealing
with the various types of exceptions that might be encountered by an Alpha application.
This exception handling mechanism augments the exception handling features provided
by the operation invocation facility and deals uniformly with all forms of machine-, sys-
tem-, and user-defined exceptions. The block-structured exception handling mechanism
encompas;res the time constraint block construct supported by the Alpha kernel, and pro-
vides a unified means of handling expired hard time constraints, aborted atomic transac-

Functional Descripuon

A.60 Alpha Release 1 Programnmng Model

tions, orphaned thread sections, user-defined exceptions, and various machine excep-
tions (e.g., divide by zero, invalid memory reference, and access protection violations).

4.2.1.1 Operation Invocation
The Alpha kernel's operation invocation facility has, as a part of its basic definition, fea-

tures that contribute to the system's reliability requirements and simplify the task of
exception handling for the client, In particular, the semantics of operation invocation in
Alpha guarantee that an invocation will behave much as a simple (local) procedure call,
with a success or failure indication for each invocation.

An operation invocation can fail for a number of reasons-e.g., the node on which the
target object exists fails, the communications link to the target object's node fails', the
target object specification is incorrect (i.e., due to an invalid capability, inability to locate
the given object, etc.), or the invocation parameters are incorrect (i.e., wrong number of
parameters, parameters are of the wrong type, capabilities to be passed are invalid,
etc.). Should any of these exceptions occur in the course of an operation invocation, the
kernel returns an exception indication, along with a syndrome indication that specifies
which of the exceptions occurred. The exception syndrome provided to the programmer
indicates all of the (potentially independent) exceptions that occurred during the invoca-
tion.

The operation invocation facility's exception indication allows the client to determine
the appropriate course of action to pursue when an operation invocation fails; the system
provides a basic mechanism, while the specific policy is determined by the client on a per-
invocation basis. , As a result of a failed invocation, an application could chose to: retry
the same invocation a number of times, invoice an operation on an alternate object, report
the invocation's failure to another object, perform a recovery/compensation action, return
a client-level failure irdication to its invoker, ignore the exception and continue execution,
and so forth.

The invocation facility's exception syndrome conveys to the user information concerning
the specific cause(s) of an exception. In general, it is poor practice for an operating sys-
tem to provide information to its clients that cannot be meaningfully interpreted or used at
the client-level. Despite the fact that the information returned on invocation failures con-
cerning the failure of system nodes or communications links may not be useful to most
application programs (in that there is little that application code can do about such sys-
tem-level failures), this information can be used by system-level resource management
objects to perform such tasks as dynamic reconfiguration, performance monitoring, or fault
location, and is therefore returned in operation invocation failure notifications.

Figure 12 provides an example of the occurrence of a thread break, which creates an
orphan thread section. Initially the thread is intact (Figure 12a), however, following the
failure of node, a thread break occurs (Figure 12b). After the orphaned thread section
has been deleted and eliminated, the new head of the trimmed thread can continue execu-
tion (Figure 12c).

Depending on the exact timing of communications link failures, the system may not be able to determine
-hether the invocation succeeded. It is considered to be an exception in Alpha when the system is not cer-
tain that an invocation has completed successfully, and this condinon is indicated in the system's response to
the operation invocation.

Functional Description

Alpha Release I Programming Model .A-61

Obec; l~d Object2 Object3 Object4

noe nodej oe
nodee

a)

NODE FAILURE

Object,1 ha Object2 Object3 Object4

AV

Orphan

nod;i nodej nodek

b)

NODE FAILURE

Object, h~a Object2 Object3 Object4

node1 node-, node/.

C)

Figure 12: Example or Thread Maintenance

Functional Description

A-62 Alpha Release I Programmng Model

4.2.1.2 Exception Blocks

Alpha's kernel provides mechanisms which support the' handling of machine-, system-,
and user-defined exceptions through a programming structure known as an exception
block. The exception block is a basic, uniform construct for handling such exceptions as
aborted transactions, unsatisfied time constraints, and thread breaks. In addition the
exception block facility is well integrated with the system's mechanisms for expressing
and enforcing application-level time constraints.

An exception block is defined to be a region of code (as indicated by a begin/end pair of
system calls) within an object operation, with an associated unit of exception handling
code. The exception block is, in effect, a declaration on the part of the programmer that
specifies the exception handling code to be executed should an exception occur while a
thread is executing the block of code. This exception handling facility provides the pro-
grammer with a means of coping with the asynchronous exceptions that commonly occur
within distributed real-time command and control systems. When such exceptions occur,
the system forcibly diverts the execution of the affected thread to a well-known location
(i.e., the user-defined exception handling code), with a predictable execution context
(i.e., the variables, both global and local, within the lexical scope of the exception block).
By allowing the client to provide application-specific exception handlers, it is possible for
the system to perform specialized recovery/compensation actions on exceptions. This
allows application objects to be restored to a consistent state in a much more efficient
manner than can be accomplished by the brute-force techniques that must be used by the
system in the absence of application-specific information.

The asynchronous diversion of a thread's flow of control can leave an object in an incon-
sistent state. The exception handling code that is associated with each exception block
can be used to restore the consistency of the object's state, compensate for the effects of
the aborted thread, or salvage usable results from the partially completed computation.
When an exception occurs in Alpha, the objects affected are cleaned-up (i.e., made con-
sistent) by executing each of the nested exception handling code blocks from the head of
the thread, back toward the thread's root until the exception has been completely pro-
cessed. This allows a thread to be cleaned up from within (i.e., by the thread itself, exe-
cuting with its proper attrioutes). Furthermore, this activity can span multiple objects and
nodes as the thread executes nested exception handling code blocks.

Exception blocks can be employed in a nested fashion. Therefore the occurrence of a
single exception may require several levels of exception handling to be performed. For
example, a thread may be executing within a series of nested exception blocks when the
thread breaks, causing the orphaned head section(s) of the thread to be aborte& In this
case, that curtails executing the exception handling code for the exception blocks that
exist (on the nodes that are still running) between the current head of the thread, and the
point in th- body of the thread where the exception occurred (i.e., at the ONFAILURE
clause of invocation immedialely preceding the thread break point). Conceptually, all of
the orphaned thread fragments are cleaned up concurrently following an exception-i.e.,
all of the exception handling code blocks are executed concurrently with respect to each
other. Furthermore, the system guarantees that all orphaned thread fragments are elimi-
nated.

Functional Description

Alpha Release 1 Programming Model A.63

Whenever possible, the orphan's exception code blocks are executed, before the new
head of the thread proceeds with its execution. During exception handling, the system
adjusts the attributes of the thread sections in such a manner as to ensure that each
exception code block is executed with attributes appropriate for the thread section at that
point. Among other things, this ensures that the proper scheduling parameters are used
while cleaning-up a thread following an exception. Furthermore, if an exception occurs
while a thread is blocked (e.g., as a result of a thread break or atomic transaction abort),
the thread head is vectored to its proper exception handling code block and made ready to
execute (an error indication is returned if the thread is blocked waiting on an operation
invocation). In addition, the kernel maintains a record of the thread's local state when an
exception block is entered, and uses that record to restore the state when an exception
occurs. In this way, the thread's execution state while within the exception handling
code can be made to include all of the local and global variables that are at, or outside,
the scoping level of the exception block.

In addition to any application-specific exception handling code that is specified with an
exception block, the system performs its own, system-defined, exception handling. The
system's exception handling code performs only the simple clean-up operations neces-
sary to -nsure that the system's resources are maintained in a consistent state. This
ensures that, even if the application programmer does not provide any exception handling
code, the system will remain consistent (i.e., it will not "leak" resources, nor will the
system fail due to inconsistent internal data structures). To have each object behave in a
fashion that guarantees the minimally acceptable degree of system consistency in the
face of the various types of failures that may occur, an exception block is automatically
placed around each operation within all objects in the system. Thus, regardless of the
code contained within an operation, the exception handling facility can provide sufficient
internal system consistency.

The robustness of Alpha is enhanced by optimizing the system design and implementa-
tion for the exceptional cases, instead of the expected ones. Examples of the application
of this prinviple can be found in the system's exception handling mechanisms, communica-
tions protucols, md operation invocation facility. The Alpha exception handling mecha-
nism provides a unified mechanism for the management of exceptions associated with
time constraints, atomic transactions and machine exceptions. For this mechanism, the
normal condition is that the transaction commits, the time constraint is satisfied, or no
machine exception occurs; the exception case is that the transaction aborts, the time con-
straint is not satisfied, or a macLne exception occurs. Performance is optimized for the
exception case by trapping into the kernel on every exception block entry, in order to
deposit the state information needed in case an exception occurs while executing within
the block.

Another example is found in the remote operation invocation protocol, which is used to
monitor and repair threads as they extend across nodes. The normal case for this proto-
col is that the thread is intact; the exception case is when a node or the communications
network fails and the thread is broken. This mechanism's performance is optimized for
the exception case (at the expense of the normal case) by the periodic exchange of keep-
alive messages among the nodes that a thread spans, rather than using only end-to-end
time-outs on the remote invocations.

Functional Description

A-64 Alpha Release I Programming Model

Finally, the kernel does not make use of hints in any form. In particular, the internal
global identifiers used to access programming entities (e.g., threads and objects) in
Alpha do not include an explicit reference to the physical location of the entity. If hints
were used, the expected case for this function would be that the hint is correct, while the
exception case would be that the hint is wrong. In Alpha, however, the exception case's
performance is optimized by performing a multicast-like message transmission on each
remote invoke, which will be received by the addressed entity regardless of its physical
location (which may change over time). This is done instead of using a hint indicating the
entity's likely physical location to perform a point-to-point remote procedure call, which
also includes a special sub-protocol that is performed to locate the target entity when the
hint is wrong. While hints might speed references in a static system, when dynamic
reconfiguration of the system is underway, the use of hints incurs a higher than normal
cost when the system can least afford it-i.e., in an exception condition.

4.2.2 Example Usage
The exception block facility in Alpha is analogous to the UNIX signal handling facility.

This exception handling facility represents the operating system's contribution to meet-
ing basic reliability requirements, and is not intended to preempt or subsume language-
specific exception handling constructs. The following provides an example of the use of
the operating system's native exception handling facilities, and does not reflect any
attempt to integrate these mechanisms with a particular programming language.

The exception block construct provides the programmer with a wide range of exception
handling policy options. On exception, the exception handling code can attempt to restore
an application object to a consistent state, it can perform compensating actions in order to
account for the effects of partially completed operations, or it could make effective use of
the (partial) results generated up to the point in time when the exception occurred.

Figure 13 provides an illustration of nested exception blocks that perform compensating
actions to recover from exceptions in a more efficient manner than is possible using more
brute-force techniques (such as the gross restoration of the object's complete global
state). The object in the example maintains a collection of data records in two different
lists, one unsorted and the other sorted. This example deals with an operation on the
object that moves a given data record from the unsorted list to the sorted one.

The body of the example operation is encapsulated within an exception block in order to
ensure that the consistency of the object is maintained in the face of thread failures. For
this object, consistency is defined as the state where both of the list data structures are
consistent and each data record in the object exists in exactly one list. The exception
handling code ensures that, should an exception occur where the object remains intact
(e.g., a thread break, transaction abort, or missed time constraint), the object will be
restored to a consistent state. This compensating action takes advantage of the pro-
grammer's knowledge of the semantics of the operation being performed to restore the
object's consistency at a much lower cost than that which would be imposed by the sys-
tem (e.g., saving the state of the object in each consistent state, and then restoring the
state on exceptions).

Functional Descripton

.Alpha Release I Programmring Model 46

i'* Object Type Specification
OBJECT ObjeciNane()[

/* the object's global data declarations '
linkliststr listi , tist2;

/* the object's local proceduresI
Iistelemptr Pred(Iist, elementptr)

listelemptr InsertPoint(Iist, elementptr)

Iistelemptr EridPTr(Iist)

/' one of the object's operations
OPERATION Change(IN listelem elemn)

" This operation moves the element given as a parameter from list 1 (where
" it is assumed to be) to list2.

listelemptr eptr;

/* check if the given element is in list I
if (InLst(Iistl, elem) != TRUE) (

/' return an error signal/
RETURN FAILURE(NOTINLISTI);

EXCEPTIONBLOCK
/* remove the element from list 1 and put it in list2 '
eptr = Pred(Iistl, &elem);
eptr->riext =elem.next;
eptr - Insertfoint(IiWt, &elem);
elem.next = eptT:
eptr = Pred(Iist2, eptr);
eptr->next -&elem;

ON..EXCEPTION
P, check if the element being moved is in one of the lists '
If !((InList(istl, elemptr) .. TRUE) 11 (InList(IiWt, elemptr) a-TRUE))

/ it is not. so put it at the end of list I1
elempt->next a NIL;
eptr a Endft(Iistl);
eptr->next a elemptr;,

/* end of the 'Change' operation

/* more of the object's operations '

*end of the obiect'

Figure 13: Exception Handling Example-Compensation

Functional Description

A-66 Alpha Release I Programung Model

Figure 14 provides an illustration of how the Alpha exception handling mechanism can
be used in conjunction with the timeliness mechanisms to create operations that are limit-
ed in the maximum amount of time they can take to complete. In this example, a
database search is performed to obtain a record that has a key that closely matches one
given as an invocation parameter. The operation returns either a record with an exact
key match, or the closest match found in the given amount of elapsed real-time. Note
that in this example, a programmer is able to trade-off accuracy for time in the process of
performing a complex, potentially time consuming operation. This strategy may be useful
in such time-limited operations as: matching incoming plots to tracks within a track
database; determining the next move to make in a chess game; and finding the closest
match in a collection of patterns.

In Figure 15, the exception handling mechanism makes ie of the partial results
obtained prior to an exception caused by an expired time conmaint. This example shows
an operation that computes a number based on the combination of a collection of coeffi-
cients. This operation is limited in the amount of time it can take to complete, and if the
complete set of coefficients is not made available in the specified amount of time, defaults
are substituted for the missing values and the result is generated with a degree of accura-
cy that depends on the number of coefficients that were computed before time ran out.
Note that in this example results are returned with an indication of the degree of confi-
dence associated with the result values. This is an example of the type of operation that
might be used in an application that performs computations on "fuzzy" (i.e., inaccurate or
incomplete) data in order to achieve the best results possible within a given time limit.

Functional Description

,n. .m,.mnmmm iShmw ISI nlI

.Alpha Release I Pro gramInung Model 4.67

/* Object Type Specification '
OBJECT ObjectNameo()

1. the object's global data declarations '
elemstr database[DB_ SIZE];

/* the object's operations

OPERATION TimedMatch(IN keystr key, IN float time, OUT elemstr elem)

" This operation returns the record with the closest match to the given key that
"can be found in the given amount of time.

int depth;,
f loat duff, mindiff;
elemstr eptr, besteptr;

/I' initialize the local variables .
depth - 0;
diff - 0;
mindiff = MAXFVAL;
besteptr - &nullelem;

/* set the time limit for the search7
TIMECONSTAINTBOLOCK(time, EXP_RT(time), STD DEV(time), STEP)

I. try to find a good match in the database .
do(

eptr - Search(key, depth++);
diff - KEY DIFF(eptr->key, key);
if (duff <mindiff) besteptr - eptr;

while (duff >KEY-THRESH);

ON-EXCEPTION
/ ise the best match found so far7
eptr = bestptr;

Preturn the best match obtained by this search7
elem - *eptr;

/* end of the T7medMatch' operation ~

I. more of the object's operationsI

Pend of the object7

Figure 14: Exception Handling Example-Time-Limited Operations

Functional Description

A.-68 Alpha Release 1 Programming Model

/" Object Type Specification "1
OBJECT ObjectName (

/" the object's global data declarations /
float defcoeffl .

/* the object's operations "

OPERATION BigCompute(IN seedstr seed, OUT float answer, OUT float acc)
/-

* This operation computes a value based on the combination of a set of coefficients
* that are computed each time the operation is invoked. The amount of time that this
* operation can take is fixed, and default values are used for those not computed.

int index:
float coefffMAXSIZE];

/0 set the time limit for the computation .1
TIMECONSTAINTBLOCK(TIME-LIMIT, EXPRT, STDDEV, STEP)

/" compute the necessary coefficients "/
for (index a 0; index -c MAXSIZE; index++) {

coeff[index] GenerateCoefficient(index, coeff, seed);

/P indicate the degree of accuracy acheived *1
acc- 1.0;

ONEXCEP1ON
/" compute the degree of accuracy 7
acc a (index / MAX_SIZE);

/* use the default values for the rest of the coefficients "
for (index c MAXSIZE; index++)

coefftindex] a defcoeff[index];

/P compute the result using the coefficients °/
answer - GenerateResult(coeff);

P end of the 'BigCompute' operation 7

/" more of the object's operations 7

/ end of the object "1

Figure 15: Exception Handling Example-Using Partial Results

Functional Description

Alpha Release I Programming Model A.69

4.3 Robustness
For the purposes of this work, a commonly used distributed system failure model was

adopted [Anderson 81]: both hardware and software component failures are considered
here, in both the system and application domains, including both transient and hard and
clean failures.

The robustness techniques employed in Alpha are supported primarily by kernel mecha-
nisms that provide a client interface at which failures in the underlying system are
abstracted into a set of well-defined, predictable behaviors. In particular, the following
robustness issues are addressed:

- consistent behavior of actions-provided by mechanisms that independently
support the attributes associated with atomic transactions (i.e., atomicity, per-
manence, and serializability). These attributes are provided in the form of indi-
vidual mechanisms in order to provide a range of levels of service at a range of
costs, allowing applications to pay only for the amount and type of reliability
needed.

- availability of services-provided by mechanisms that allow objects to be
replicated and manage the different types of interactions defined on those repli-
cas.

- graceful degradation-provided by mechanisms that use an ordering function
(currently based on the timeliness constraints and relative importance) associ-
ated with all requests for services, in order to sacrifice lower-valued requests in
favor of higher-valued ones when resource allocation conflicts arise.

- fault containment-provided by mechanisms that place each object in a sepa-
rate (hardware-enforced) address space, and by separating software compo-
nents into private system-enforced protection domains, with all interactions
restricted to those explicitly allowed by the capability mechanism. This sup-
ports a form of defensive protection, where errors are prevented from propagat-
ing among objects.

While the Alpha kernel provides a set of mechanisms to support these objectives, its
robustness mechanisms are not intended to form a complete facility. The kernel is intend-
ed as a framework within which policy issues relating to these robustness techniques can
be explored. The mechanisms provided in Alpha for atomic transactions and replication
are initial versions of the more complete mechanisms being developed in on-going
research by the Archons project to develop system-level policies which use these mecha-
nisms.

The Alpha operating system's concern for reliability is manifest at all levels within the
system-from the basic assumptions, to the programming abstractions, and all the way
down through the system's design and implementation. The variety of object-orientation
in Alpha was chosen in the belief that it would be well-suited to the type of robustness
techniques that have been developed by the Archons project for real-time command and
control applications [Clark 88b, Sha 851. The Alpha object model provides a disciplined
control structure for interactions among software components (as compared to the less
structured process and message-based system model) and restricts access to encapsu-
lated data items. Among other things, this serves to simplify the task of tracking the

Functional Descripton

A-70 Alpha Release 1 Programming Model

operations performed on objects that is required in the implementation of atomic transac-
tions. The fact that the object model centralizes all accesses to encapsulated data
reduces the complexity involved in structuring operations so as to maximize the concur-
rency that can be obtained from objects (both within and outside of atomic transactions).

Operation invocation is controlled by the kernel through the use of capabilities. In this
way, the ability of objects to invoke operations on other objects can be restricted to only
that set of destination objects explicitly permitted. Capabilities can be given to objects
when they are created, or they can be passed as parameters of operation invocations. In
the kernel, the capability mechanism provides basic, defensive protection at a low cost in
terms of performance.

Also in support of fault-containment, Alpha places objects and threads in separate,
hardware protected address spaces, and the Alpha communications subsystem provides
for the time-driven detection and elimination of orphaned threads (due to communication
path or node failures).

Robustness in Alpha is enhanced by mechanisms in support of atomic transactions and
object replication. Atomic transactions provide for the correctness of actions and the con-
sistency of data in the face of node or link failures. Replication of objects provides the
physical redundancy necessary to support the availability and performance requirements
of Alpha.

4.3.1 Atomic Transactions

Atomic transactions have been shown to be very useful in the construction of reliable
applications such as database systems [Eswaren 76, Lampson. 81]. Some early reports
proposed the use of transactions within distributed operating systems [Lampson 81,
Jenben 84], and in recent times the belief that atomic transactions may prove useful with-
in distributed operating systems has become more widely accepted. A number of efforts
are currently underway to explore the inclusion of atomic transactions as an operating
system service or as a language primitive [Popek 81, Liskov 84, McKendry 84, Almes
851.

Because the primary goal of the Alpha kernel is to support research into the develop-
ment of distributed operating systems for real-time supervisory control, certain robust-
ness constraints are implied-i.e., the kernel itself must function reliably in the face of
system component failures, and the kernel must provide the application with mechanisms
that will allow the application to function with similar robustness. While other research
efforts have explored the notion of atomic transactions, few have attempted to include
atomic transaction support within an operating system kernel. Typically these efforts
provide atomic transaction facilities on top of existing operating systems. Atomic trans-
action support was one of the major factors that influenced the design of the Alpha ker-
nel-in fact, it is one of the primary reasons that the object model was chosen as the fun-
damental programming paradigm.

By integrating the notion of atomic transactions into the design of the kernel, it is antici-
pated that the resulting performance of atomic transactions at the application-program-
ming level should be sufficiently high to allow meaningful experimentation to be per-
formed. Previous attempts at constructing atomic transactions on top of existing operat-
ing systems indicate that such an approach can degrade system performance to the point

Functional Descriptton

Alpha Release I Programning Model A-71

of making it difficult to implement meaningful applications. Furthermore, the inclusion of
atomic transaction mechanisms within the kernel provides robustness support, similar to
that provided to the application, for use within the system itself. The same benefits that
atomic transactions bring to the construction of application programs is useful in the con-
struction of system software.

The mechanisms currently provided by the Alpha kernel in support of atomic transac-
tions are meant to be representative of the more comprehensive set of mechanisms being
developed as a part of a doctoral research project currently in progress[Clark 88b].

4.3.1.1 Concepts

The notion of an atomic transaction, as commonly defined, encompasses a number of dif-
ferent concepts that provide a means of achieving a type of system behavior that is useful
in constructing reliable systems. In the context of Alpha, classical atomic transactions
may be viewed as a discipline applied to the use of mechanisms and a set of programming
conventions that together result in making objects appear to behave in a well-defined
manner despite the failure of system components. By enforcing this desired behavior on
objects, it has been shown that reliable distributed applications may be constructed
[Popek 81, McKendry 84, Almes 85]. In the Alpha kernel, the commonly accepted defini-
tions of what constitutes well-behaved objects and what types of system failures will be
considered ar adopted as requirements for this work [Moss 85]. The intent of the Alpha
kernel is to support these definitions as baseline requirements and also to provide a vehi-
cle for the refinement of these definitions.

An atomic transaction is traditionally defined as a computation (possibly a part of a
broader computation) that performs actions on objects, the effects of which appear to be
done atomically with respect to failures and other transactions, and all transactions
appear to execute ind endently of all others [Lampson 81]. In a simplified view, actions
are typically characte:,1 ed as reads and writes on data that are represented by objects.
The major concepts that constitute the classical notion of atomic transactions may be
summarized as follows:

" Atomicity: This is the property of the all-or-nothing behavior of transac-
tions-i.e., either all of the individual actions comprising a transaction are suc-
cessfully performed, or none of them is performed. The effect of atomicity is that
(from an external view) the state of the system transitions from one consistent
state to another. In this case, consistency is defined as some predicate on the
data items, known as an invariant. While the database itself may be in an
inconsistent state at some point in time, the property of atomnicity ensures that
this state is not externally visible. Atomicity therefore provides the guarantee
that, despite failures of system components, no data object can be observed in a
state that does not satisfy the system's invariant conditions.

" Permanence: This is a property of objects that ensures the continued exis-
tence of the (externally observable) effects of successfully completed transac-
tions, even in the face of system component failures. Once a transaction reach-
es a successful completion and the effects of its actions are made visible to oth-
ers, failures in system components will not result in the state of data objects
reverting to some preVious state.

Functional De: 4lptlon

A-72 Alpha Release 1 Programming Model

Serializability: This property of transactions deals with the relative ordering of
actions among separate transactions. The individual actions comprising concur-
rently executing atomic transactions are executed by the system's processors in
some partial order known as a schedule. A serial schedule is one where all of
the actions of a particular transaction are executed either before or after all of
the actions of any other transaction. A schedule is defined to be serializable if
its effects are the same as if a serial schedule had been executed. Thus, serial-
izability is the property of atomic transactions that provides the appearance of a
non-interleaved execution of individual transactions.

4.3.1.2 Approach

Because of the real-time nature of the intended application domain for Alpha, the avail-
ability of system resources and services is of equal, if not greater, importance to provid-
ing for consistent restart after an arbitrary period of unavailability. In a real-time com-
mand and control system the quality of information tends to degrade over time. Of
course, data stored on a failed node is typically unavailable while the node is down, and
in fact when the node recovers, the stored information may be invalid, even if it is consis-
tent according to some invariant. Thus, the definition of consistency in a real-time sys-
tem must include a specification of time in addition to the normal system invariants. In
these respects, Alpha differs from many other database-oriented applications that use
atomic transactions (e.g., banking systems or airline reservation systems). This is why
an atomic transaction faciiity plays a necessary, but not sufficient, part in meeting the
system's robustness goals- -because atomic transactions provide some, but not all, of
the properties of good beha, ior that are needed in constructing reliable applications.

The atomic transaction mechanisms provided by the Alpha kernel are meant to be gen-
eral mechanisms for use by the authors of both system and application code. The kernel
does not enforce any policy on the use of these mechanisms, nor does the kernel automat-
ically apply atomic transactions to client-defined code-the client chooses when and
where atomic transactions are to be used.

The atomic transactions supported by mechanisms in the Alpha kernel may be nested.
This allows atomic transactions to be placed completely within other atomic transac-
tions. This is done to provide a finer level of granularity than can be achieved by placing
all actions within one large, top-level atomic transaction. Nested transactions also pro-
vide a form of modularity in which an object may use atomic transactions to achieve its
given level of robustness, and this use of atomic transactions is not visible to invoking
objects. In a nested atomic transaction, if a lower-level atomic transaction fails it is
reported back to the level that initiated the transaction, where it is decided by the client's
code whether the transaction should be retried or whether this level should abort to the
next level up.

In adciuon to providing the basic functionality of atc."nic transactions as described in the
previous subsection, the Alpha kernel provides mechanisms to allow further research in
the area of modular, high-concurrency transactions (based on related research [Alhin
83, Sha 85)). One particular area cf atomic transaction research that the Alpha kernel is
meant to support is the exploration of the notion of compound transactions [Sha 851. A
compound transaction is a form of atomic transaction that is designed to provide higher

Funcuonal Description

Alpha Release I Programming Model A -7_

concurrency than a normal atomic transaction and minimize the problem of cascading
aborts This implies that the atomic transaction mechanisms provided by the Alpha ker-
nel should permit the relaxation of serializability constraints and should permit the use of
compensating actions as opposed to returning to previous versions in reaction to aborts.
To reduce life-cycle costs, the atomic transactions supported by Alpha should also exhib-
it a high degree of modularity (i.e., clients should not be greatly inconvenienced when
new operations or objects are to be added). Furthermore, since Alpha's application
domain is real-time process control systems, the atomic transaction mechanisms provid-
ed by the kernel should bound the amount of time required for transactions to terminate
(i.e., either commit or abort).

4.3.1.3 Mechanisms

The common definition of atomic transactions represents a single data point in a multidi-
mensional decision space. The kernel of Alpha provides mechanisms that support a
range of definitions of atomic transactions by providing some degree of movement along
all of the dimensions of this decision space. The atomic transaction mechanisms provided
by Alpha are not completely orthogonal and ,ome points in this space are not meaningful,
however these mechanisms represent policy decisions that do not restrict the exploration
of the atomic transaction design space. The kernel does not force the client to use a par-
ticular form of transaction, but rather allows the client to choose when, where, and what
type 3f atomic transaction to use, based on the functional requirements and their associ-
ated cost.

In the context of Alpha, atomic transactions can be thought of as forming (potentially
nested) brackets around portions of threads. Each thread in the system may be execut-
ing within a nested atomic transaction or outside of any atomic transaction at any point in
time. The kernel provides mechanisms that may be used by threads to define when a
thread is to enter an atomic transaction and when the thread is to exit the atomic transac-
tion (either by committing or aborting it).

In Alpha, the definition of atomic transactions is decomposed into three separate
attributes each of which is supported by one or more mechanisms. These attributes are:

" Permanence - which dictates whether the secondary storage image of an
object is maintained in volatile storage, where it does not persist across failures
of the node that contains the object's primary memory image, or whether the
secondary storage image is kept in non-volatile secondary storage, from whence
it can be regenerated following the failure of its node.

" Failure Atomicity - which ensures that changes to the secondary storage
image of objects are made atomically with respect to system failures. It
requires that object updates be done in such a way as to allow the objects to be
reconstituted in a consistent state after node failures. This attribute provides
the all-or-nothing property of atomic transactions by governing the way in which
the secondary storage image of an object is modified by atomic updates. This is
the functionality typically implemented using stable storage mechanisms
[Lampson 81].

• Serializability - which provides the appearance (to external observers) that
all transactions execute in a non-overlapping serial order. It is not necessary

Fuctional Description

4-74 Alpha Release I Programming Model

that the actions of threads be actually serialized, but their effects need to be
equivalent. This attribute involves the control of the visibility, both inside and
outside of atomic transactions, of changes made to objects by threads. The
attribute of serializability ensures that changes made to an object by a thread
are not made visible to other threads until the transaction commits (in which
case the changes are made visible to all threads) or aborts (in which case the
changes are undone before being made visible).

The mechanisms in the Alpha kernel that support atomic transactions fall into three cat-
egories. Some mechanisms are provided solely for the support of atomic transactions,
.thers are variations of (or extensions to) existing mechanisms, and yet others are gen-
eral purpose mechanisms that are useful in implementing atomic transactions. In explicit
support of atomic transactions is a kernel-provided transaction management object that
has defined on it operations to begin, commit, and abort atomic transactions. A thread
invokes the BEGIN-TRANSACTION operation on the transaction management object when
it wishes to initiate an atomic transaction, either a top-level transaction or a nested
transaction. Threads invoke the END-TRANSACTION operation on the transaction man-
agement object when they wish to commit the current level of atomic transaction. The
ABORTTRANSACTION operation is invoked on the transaction management object when
a thread wishes to abort the atomic transaction that it is currently executing. A restric-
tion (that can be enforced at compile-time) on the use of atomic transactions in Alpha is
that the operation invocations to begin, end, or abort a specific transaction must exist
within the same operation in an object.

The general purpose mechanisms that are also used to support atomic transactions
include the different object attributes (i.e., transient/permanent, atomic/non-atomic
update), the thread concurrency control mechanisms, and the invocation mechanism. The
permanent and atomically-updated object attributes are used to provide transaction per-
manence and failure atomicity, and the concurrency control mechanisms are used to pro-
vide transaction serializability. The invocation mechanism is used to perform the COM-
MIT operation on all of the instances of the transaction manager involved with a particular
atomic transaction.

Each object in Alpha has defined on it a set of standard operations for pre-committing,
committing, and aborting atomic transactions. A client may provide specialized COMMIT
and ABORT operations or, if these operations are not specified by the client, the kernel-
provided set of default operations is used. By providing custom COMMIT and ABORT
operations, the client can define special functions (such as compensating actions) that
make use of less expensive mechanisms or provide more appropriate behavior that reflect
the semantics of the operations being performed in order to maximize performance. In
cases where compensation can be done, it is possible to make use of this feature of
Alpha to implement compound (or other non-serializable) transactions [Sha 85]. The
default operation for transaction pre-commit prepares to write the committed state of the
object to secondary storage by invoking a PREPARE,_UPDATE operation on the object.
The default COMMIT operation releases all of the locks and semaphores associated with
the transaction being committed, and invokes a COMPLETE UPDATE operation on the
object. The default ABORT operation restores the pre-transaction state of all of the

Functional Descrzption

4lpha Release I Programnrung Model A-75

locked data items from their logs, releases all of the locks and semaphores associated
with the transaction, and invokes a CANCEL_UPDATE operation on the object.

4.3.1.4 Usage
Typically, atomic transactions have the attribute of permanence, in the sense that fail-

ures can occur and the changes made to objects by committed atomic transactions remain
in effect across failures of system components. This represents an extreme case that
provides a high degree of robustness at a commensurately high cost in terms of perfor-
mance. In Alpha, atomic transactions may have differing degrees of permanence associ-
ated with them, thereby providing less than total permanence at less than the worst-
case cost. This means that a transaction may commit, but some types of failures will
result in the effects of committed atomic transactions being lost.

The attribute of' failure atomicity is supported by the object update mechanism and the
invocation mechanism. By defining an object to be atomically updateable, the object
takes on the attribute of changing states atomically with respect to failures. This function
ensures that the secondary storage image of objects is always consistent, and is a neces-
sary part of the failure atomicity attribute. In addition to providing atomically updateable
objects, the kernel must be able to ensure that all or none of the actions contained within
an atomic transaction commit. This atomicity function is supported by the Alpha's invo-
cation mechanism. When a thread executing in a transaction breaks, in addition to the
normal thread repair that is done as a part of all invocations, a function known as visit
notification is also performed by the invocation mechanism on behalf of the thread that
has been broken. Visit notification requires that the kernel track all of the objects visited
by the thread while in a transaction, and signal these objects (along with the transaction
management object) when the transaction commits or aborts.

Synchronization atomicity is attained by Alpha's concurrency control mechanisms. In
the absence of some form of concurrency control there are no constraints on the visibility
of changes to objects, and hence all changes made to an object are instantaneously visi-
ble to any thread executing in that object. The concurrency control mechanisms provided
by Alpha allow threads to control the visibility of changes made to objects. For example,
by inhibiting thread access to particular data, a thread may restrict visibility of changes it
makes to the data until an atomic transaction commits. In many cases, by taking the
semantics of an object's operations into account, a high degree of concurrency can be
obtained by threads within objects. Furthermore, the client is free to use the visibility
controls in such a way as to maximize use of the concurrency available in the implementa-
tion of objects.

The attribute of serializability is provided by enforcing a discipline on concurrent
actions, through the careful use of concurrency control mechanisms. The locking mecha-
nism is the primary means by which the serializability attribute is provided in Alpha. By
applying a two-phase discipline to the use of locks, serializability of atomic transactions
may be achieved. Two-phase locking is only one means by which the goal of serializabili-
ty may be achieved. Once again, by considering the operations performed by an object, it
is possible to achieve the desired effects of serializability at a lower cost in terms of per-
formance.

Functional Descripion

A- 76 Alpha Release I Programmng Model

4.3.1.5 Issues

Operations may be invoked on objects concurrently by threads (some of which may be
executing transactions, while others may not). This results in the possibility that
threads executing transactions will operate on data that has not been committed (i.e.,
transferred to the object's secondary storage image). In order to provide the attribute of
serializability, despite the fact that changes may be made to objects by threads that are
not executing transactions, a;' data items locked by an atomic transaction must be writ-
ten to the object's secondary storage image. This is true regardless of whether the data
is modified by this transaction or not (i.e., even data that is locked in read-mode must be
committed). (Note that this requirement can be eliminated if transactions are used with-
in the object. Then all threads will be executing transactions, whether or not they were
executing one when the object was invoked.)

A major concern with the use of atomic transactions is the potential restriction that
they place on the degree of concurrency that can be obtained from object implementa-
tions. Because distributed computer systems provide the opportunity to exploit the con-
currency available in applications, any restriction on concurrency is undesirable. One of
the major goals of Alpha is to permit the exploration of highly concurrent forms of atomic
transactions. It has been shown that to increase the concurrency available with atomic
transactions, semantic information about the actions being performed must be provided
[Garcia 83]. This semantic information is difficult to automatically derive from programs
(however the object model does contribute in this regard).

Some work has been done in the area of loosening the constraints of serializability. In
-particular, a form of atomic transaction has- been proposed that offers a high degree of
modularity and concurrency and promises to be practical in providing failure management
and recovery within a real-time operating system [Sha 85]. The atomic transaction
mechanisms in Alpha provide the means for the validation of these claims. Also, the
decomposition of atomic transaction mechanisms allows the relaxation of some atomic
transaction constraints. For example, the relaxation of the constraint of serializability
can be accomplished by unlocking data items prior to committing the transactions in
which they were locked. Additionally, to further exploit the potential concurrency m an
application, compensating actions can be used in place of the traditional roll-back type of
abort operations in objects.

In order to place upper bounds on the amount of time it takes for atomic transactions to
commit or abort, the invocation mechanism in Alpha includes a means of autonomously
detecting node failures and eliminating orphans. This is done by having each node keep
track of the state of other nodes visited by the transaction, and if one of these nodes is
found to have failed, the operations on the node involved in that invocation chain are ter-
minated. This bounding of commit time is accomplished at the cost of increased communi-
cation overhead [McKendry 85].

4.3.2 Object Replication
In order to meet its goal of availability of services, the Alpha kernel provides support

for the replication of objects. This support does not, in itself, constitute a complete data
replication facility. The kernel provides a framework for experimentation in the area of
replicated object m-nagement. The approach to object replication taken in Alpha is one

Functional Description

Alpha Release 1 Programnung Model 4-77

based on the use of multiple instances of a particular type of object, all of which share a
common logical identifier, and consequently appear as replicas of a single object. The
general issue of object placement is considered a higher-level issue in Alpha, and there-
fore the question of how the replicas are to be dstributed among physical nodes is
addressed at a leel above the kernel.

As with atomic transactions, the area of object replication is currently being explored as
a part of an ongoing thesis project. The mechanisms currently provided by the kernel are
meant to be representative of a much more comprehensive set of mechanisms to be
developed as a result of this work.

The Alpha kernel is designed to be a framework to support a wide range of replication
schemes, including inclusive and exclusive forms of replication. In the inclusive form of
replication the replicas of an object function together as a single object. Therefore, an
operation invoked on an inclusively replicated object has equivalent results to performing
the operation on all of the existing replicas. The intent of this form of replication is to
increase the availability of an object through a redundancy technique similar to an avail-
able copies replication scheme [Goodman 83].

To reduce the cost associated with such a replicated invocation, a quorum method may
be used [Herlihy 861. By associating a quorum with each operation defined on an object,
fewer than the currently existing set of replicas can be involved in a particular operation.
This mechanism can be used by the client to create objects with different degrees of avail-
ability, response time, and consistency.

A number of issues related to inclusive replication have been deferred in an effort to
reduce the scope of this effort. For example, the timestamp or version number mecha-
nisms needed to implement a proper quorum-based replication scheme have not been
provided. Nor has the issue of the regeneration of failed replicas been addressed. These
issues are being dealt with in a related thesis project.

For the exclusive form of replication, the kernel also provides a number of replicated
instances of an object type. In this case, however, an invoked operation need only be per-
formed on any one of the replicas for the operation to be considered complete. This
approach provides a form of replication in which any one of a pool of undifferentiated
object replicas is chosen, based on a global policy designed to meet certain goals. Exam-
ples of replica selection policies are "select the first replica that responds", "select the
replica that exists at the least loaded node", and "select a replica near the invoking
object." The policy that selects the first replica that responds provides the potential for a
higher degree of both availability and performance than is achievable with non-replicated
objects. However, this is accomplished at the cost of not maintaining the consistency of
data across the individual replicas.

4.3.2.1 Concepts

Replication provides a means to increase the availability of critical data and services.
This increased availability can be used to allow data and services to survive node and
communication failures. In addition, even when there are no failures, the time required to
gain access to data or receive service can be reduced in certain situations by the pres-
ence of data and service replicas. In the latter case, a larger pool of servers should
reduce the likelihood that all of them are busy when a service or datum is needed; further-

Functional Description

,.78 Alpha Release I Programming Model

more, it may be possible to access a service locally incurring less expense than required
for accessing it remotely.

The replication factor, that is, the number of replicas, for a given service or piece of
data-along with the policies employed to manage the replicas-determines the robust-
ness of the service or datum. Potentially, each additional replica can represent one more
node or communication link failure that can be survived by the replicated service or data.
A large replication factor can increase survivability, but this may be accomplished by trad-
ing away performance. This, along with a number of other relevant issues are discussed
in the following sections.

4.3.2.2 Approach
In Alpha, all data and services are embodied by objects and therefore, their availability

can be increased by replicating the object instances that encapsulate the desired services
and data. In fact, the real requirement-and the requirement that Alpha fulfills-is that
the desired services or data behave as if they were replicated. In the discussion that fol-
lows, a replicated object in Alpha should be thought of as a collection of objects that func-
tion as a single conceptual object. Often, these objects will be copies of one another.

As with all of the requirements that Alpha wishes to satisfy, requirements related to
the availability of critical services and data are gathered from the application being sup-
ported. Therefore, an application's designers and implementers must determine the
degree of availability required for a given service or datum. For example, an application
for an N node system may require that a specific database must be available anytime the
system is in operation. If that system can function with a minimum of M nodes, then a
replication factor of N-M may be chosen to guarantee that, with reasonable replica place-
ment, the database will be available on at least one node for every possible set of M or
more surviving nodes. Based on such considerations, application designers and imple-
menters determine which objects-representing critical services and data-must be repli-
cated and, for each of these objects, what the replication factor should be to meet the
application's availability requirements.

As with transactions, Alpha's kernel does not provide a complete object replication
facility. Rather, it provides a set of mechanisms that have been designed to support a
range of replicated object management policies. The policy may be provided by higher
levels of the operating system or by the application directly. In either case, the mecha-
nisms provided by the kernel are intended to provide necessary functions in an efficient
manner. They provide the policy definer with necessary tools, while employing a unified
approach to solve low-level problems in a manner that is compatible with other kernel
mechanisms. They allow the policy definer to specify important behaviors that tailor the
facility to the specific needs of the application. By using well-designed mechanisms,
there is no need to worry about different high-level policies have disastrous conflicts at
lower levels.

4.3.2.3 Mechanisms

The current object replication mechanisms are an initial attempt to provide an appropri-
ate set of building blocks for replication. On-going work in the area of replication will
allow later refinement of these n"o.ntmnisms. The mechanisms presented are sufficient to

Functional Description

Alpha Release I Prograrrmung Model A-79

satisfy the requirements of a straightforward object replication facility (in fact, that facility
has been implemented) and are capable of satisfying the more ambitious requirements of
other replication facilities that will be investigated in the future.

The mechanisms provided, in whole or in part, to support object replication are:
" replicated object creation - the ObjectManager provides an operation that

will create a specified number of copies of a designated object type, all with the
same initial state; the replicas are each placed on nodes according to a higher
level placement policy;

" identifier generation - this is a general mechanism that has a specific applica-
tion in support of replication: reserving a portion of the identifier name space for
replicated object identifiers; therefore, an object can be recognized as replicated
merely by looking at its identifier, replicated object identifiers also indicate the
replication policies that arm to be used for managing the object(s);

" object/identifier binding - once again, the binding of an identifier with a specif-
ic object is a general mechanism with a wide range of applications (such as well-
known identifiers and the corresponding capabilities); this mechanism may be
used to allow a replica to assume a second identifier (the identifier of the repli-
cated object);

" replica selection on invocation - the operation invocation mechanism notes
that an invocation is being done on a replicated object and follows the specified
replica selection policy for that replicated object;

" invocation completion handling - at the completion of each operation per-
formed on a replica, the invocation completion policy specified for that replicated
object's replication scheme will be executed;

" invocation failure handling - if an operation invocation fails due to the loss of
one or more replicas, the replication scheme's invocation failure policy - whrich
possibly replaces failed replicas - will be executed and the invocation will
optionally be re-initiated;

* object checkpoint mechanism - this mechanism can copy the modifications
made to an object since the previous checkpoint operation to other designated
replicas; this involves copying both data encapsulated by the object and
semaphore and capability list modifications;

* lost replica detection - this mechanism detects the fact that a replica has
been lost; once detected, the object replication policy's replica replacement poli-
cy will be executed.

4.3.2.4 Usage

The object replication mechanisms are intended to be able to provide a range of different
object replication facilities when combined as prescribed by corresponding replication poli-
cies. This section will first describe the use of these mechanisms in the initial, fairly
straightforward, replication facility provided on Alpha and will conclude with a few gener-
al observations about the use of object replication under Alpha.

Under the initial replication scheme, any object can be replicated without the addition of
special user code in the object to support replication. Instead, all of the support is provid-

Functional Description

A-80 Alpha Release I Programm~ng Model

ed by the operation invocation mechanism, the identifier generation mechanism, and the
ObjectMaager. The replication scheme employs a number of replicas, one of which is
designated as the master copy, while the others are designated as backup copies.

Each replicated object has a unique identifier, like every other object in the system.
When the ObjectManager creates a replicated object, it actually creates a specified num-
ber of replicas, each of which has a unique identifier. In addition, the identifier generation
mechanism issues another identifier that acts as the unique identifier for the replicated
object. The replica on the same node as the ObjectManager is designated to be the mas-
ter copy, and all of the other copies are designated as backup copies. The identifier for
the replicated object is associated with the master copy by means of the object/identifier
binding mechanism. As a result, all invocations on the replicated object (which, of
course, use the replicated object identifier) are actually performed on the master copy.
Then, the changes made by each operation execution are propagated to the backup copies
by means of the checkpoint mechanism. This mechanism is employed at the completion
of each operation on the master copy as part of the invocation completion policy for the
replication scheme.

Should the master copy ever fail, the invocation failure handling mechanism executes
the replication schemc's invocation failure policy. In this case, a simple procedure is
employed to locate and promote one of the backup copies to be the new master. This pro-
motion occurs by using the object/identifier binding mechanism to associate the unique
replicated object identifier with the selected backup copy. Optionally, an additional back-
up copy can be created to replace the one that was just promoted to master copy.

Furthermore, threads are placed in the backup copies when they are created by the
ObjectManager (on the master copy's node) in order to detect their failure. Should a
backup copy ever disappear, the thread that was placed in it will break, and the thread
will be trimmed-allowing the thread to execute code in the ObjectManager again. This
code replaces the backup copy, if possible. Consequently, the ObjectManager makes
sure that there are always backup copies available in case the master copy should fail.

Many other replication facilities can be built with the mechanisms presented in the pre-
vious section. For example, the unique name assigned to the replicated object could be
used by several copies simultaneously. Or, it could be used by all of them at once, in
which case the replica selection mechanism could be used to determine the subset that
should perform any given operation invocation. Such an approach could be used to imple-
ment quorum-based replication schemes. Replication facilities that require greater con-
currency may not use the checkpoint mechanism as often as the scheme outlined above.
In fact, if the replicas did not need to cooperate or maintain some form of mutual consis-
tency (say if they provided access to a service or a large, read-only database) then all of
the replicas could share the same replicated object identifier and the replica selection
mechanism could just pick the least busy replica whenever an invocation was performed.
Checkpoints would never be needed, and so would not limit the available concurrency for
the object.

The following section nentions some of the issues that must be addressed when
designing and implementing replicated object facilities.

Functwial Description

Alpha Release I Programming Model A-81

Finally, notice that the use of certain object replication facilities in concert with transac-
tions can potentially provide a powerful, high performance building block. Transactions
can be used in accessing the data within a replica to guarantee a consistent view of data
between separate threads. However, there is no need to have a secondary storage
image of the replica in some form of stable storage, as would normally be required. If the
replica is lost, there are other replicas to replace it, and they have the necessary state
available to them (without needing to access stable storage). The trade-off that must be
evaluated is: whether the coordination required among replicas is less expensive than the
overhead imposed by storing all secondary storage images in stable storage. If so, then
it is probably desirable to use replication as described above. In fact, if it has already
been determined that the object should be replicated for purposes of increased availabili-
ty, then it would seem very likely that this approach would have merit.

4.3.2.5 Issues

There are a number of issues that involve replication. The following discussion deals
with some of the most critical issues addressed to date.

First of all, there is the basic question of what to replicate. Once again, Alpha clearly
should replicate objects because that is where all of the data are encapsulated. But
should object replicas be created and then have every operation invocation be executed
on each of the replicas (possibly in parallel)? For the initial replication policy, we do not
believe that it should. This is because the real issue being addressed is the replication of
state, and state can be copied without having to re-execute operations on each object
replica.

Using tlheads to execute an operation in parallel on each of the object replicas is a poor
solution for a number of reasons:

" Alpha's scheduling policy is quite complex, and it may be impossible to guaran-
tee that the same operations could be scheduled to execute on each object repli-
ca; these replicas are probably located on different nodes with different instanta-
neous workloads (remember, too, that the scheduling parameters for computa-
tions can vary as a function of time, further complicating matters);

" even if the same operations could be scheduled, they would have to execute in
the same order; for example, if on one replica a given thread acquired a
semaphore before some other threads, it must acquire the same semaphore in
all of the replicas or there will be a danger of inconsistency and even deadlock;

* if the threads do not complete the operation on their replicas at approximately
the same time, progress may be halted until the slowest thread finally com-
pletes the operation; and

" to actually execute the operation requires the use of the AP (Application Proces-
sors), thereby causing APs across the system to perform duplicate work;
instead, a single AP could perform the work and then a number of CPs
(Communication Coprocessors) and SSPs (Secondary Storage Coprocessors)
could propagate the necessary state to other copies without further intervention
by any APs.

Functional Description

A-82 Alpha Release I Programmng Model

Also, some other semantic and performance issues arise when executing an operation
on multiple replicas, rather than one. For example, imagine that an operation is invoked
on a replicated object and that the replicated object invokes another object while in the
process of executing the operation. If the new object is also replicated, then even more
threads have to be created (or forked) to handle the new invocation, at an even greater
cost in terms of cycles consumed to carry out the operation. Of course, the situation can
continue, with replicated object invoking operation on replicated object, with an exponen-
tial explosion of threads to perform the operation invocations.

On the other hand, if a replicated object invokes an operation on a non-replicated
object, what is the proper behavior? It would seem that the operation on the non-repli-
cated object should only be performed once, but it will be performed once for each replica
if no special precautions ae taken. Furthermore, the necessary precautions would seem
to require a good deal of coordination among the replicas or a great amount of semantic
awareness on the part of the non-replicated object. Both of these alternatives are dis-
couraging.

The preceding discussion clearly argues for the approach taken initially: replicate the
desired state and propagate state changes. The semantics are natural, performance is
superior to the alternatives just mentioned, and the necessary functions to provide avail-
ability are supplied.

A second issue that arose from the consideration of replication was the object program-
rer's point of view. Should the programmer have to write an object differently if it is to
be replicated than if it will not be? The initial replication scheme allows any object to be
replicated. No special objects must be written, thereby simplifying matters for the pro-
grammer and providing the greatest amount of flexibility for the application.

Since the solution employed in the first replication facility is general purpose (i.e.. it can
be used on any object) it has not been tailored for any specific object. If the programmer
were aware of replication, then object-specific optimizations could be performed that take
advantage of the semantics of the replicated object. The degree to which such optirruza-
tions can be exploited remains to be seen.

In Alpha's first replication scheme, all of the replicas are the same (at least at the com-
pletion of each checkpoint execution). This is not true for all replication schemes. For
example, in quorum replication schemes, a group (a quorum) of replicas must jointly coop-
erate to provide any service. Among them they have all of the information required,
although no two may be identical. The object programmer may have to dictate the man-
ner of coordination among the replicas under such a scheme. To minimize the program-
mer ,nvolvement as much as possible, an appropriate framework must be present that
facilitates the development of object definitions for quorum schemes, and supports their
execution. The mechanisms in place are intended to provide this framework for further
work in this area. Additionally, software libraries may be developed for programmers to
use when defining object types.

Initially, the policies that define the replicated object facility have been provided by the
system, not the application programmer. The application programmer must be permitted
to select the replication facility to be used for each replicated object created, but has not
been permitted to provide the definition for that facility at run-time. This is similar to the

Functional Description

Alpha Release I Programmung Model A-83

approach taken by Alpha with respect to scheduling policies: there are a number of poli-
cies available that are intended to span the needs of the application, and the application
is able to select the policy that best suits its needs. Of course, as any genuinely new
needs are demonstrated by Alpha applications, the available set of replication policies
can be expanded accordingly.

The placement of replicas should be mentioned. Since replicas are often employed so
that data and services will survive node and communication failures, it will often be the
case that placing multiple replicas of a given object on a single node makes no sense. If
the node were to fail, multiple replicas would be lost. So having more than one replica
there did not make the data and services more survivable. Even when replicas are pre-
sent only to provide duplicate, independent services, it may not make sense to place two
of them on a single node (because, unless the node has multiple application processors,
the opportunities to achieve actual concurrency will be limited). However, depending on
the concurrency restrictions imposed by an object, multiple copies (even on a single
node) may improve responsiveness.

In general, the replication factor or the size of a quorum impacts performance. The num-
ber of copies that must be involved to carry out an operation will impose a cost in terms
of resources. Different replication schemes may spread the resource cost among applica-
tion processors, communication processors, scheduling processors, and storage manage-
ment processors differently, but in every case, a price will be paid for each copy that must
be accessed. This should not be distressing since it is simply the price that must be paid
for increased availability. Of course, because the cost imposed by different schemes will
vary, care should be taken to minimize the price that is paid for critical applications.
Alpha'- ability to support a number of replication schemes (simultaneously, if necessary)
facilitates the development of appropriate schemes.

The initial replication scheme provided by Alpha restricts concurrency since each repli-
cated object can only allow one thread at a time to modify its data. All other threads that
wish to modify the object's encapsulated state are blocked until the checkpoint operation
that is initiated at the conclusion of the writing thread's operation completes. The effect
of this restriction is that all of the replicas have operations serialized on them, and so, in
some sense, represent consistent snapshots of the replicated object's state. Notice that
this restriction is not as great as it might seem since threads often have a significant
amount of state stored on their respective stacks. The stack data reflects thread-specific
data, while the data encapsulated by the object represents global data shared by all of
the threads in the object.

There is other global object state that is shared by all of the threads in an object, and so
must be replicated. Specifically, the capabilities held by the object and the state of its
semaphores constitute global object state that must be replicated. The checkpoint mech-
anism currently implemented copies all of the required object state to all of the specified
replicas reliably. Any other replication schemes adopted in the future will also have to be
concerned with all of the state of an object.

Replicated objects are provided to ensure that the replicated data and services survive
node and communication failures. Notice that this is a statement about objects and
object state. Following a node failure, any threads that passed through or were execut-
ing in any replicas on the failed node are broken and must be trimmed. Hence, they will

Functional Description

A-84 Alpha Release ! Programming Model

resume execution either in some object other than the replica in which they had been, or
they will resume execution in the invocation mechanism and will execute the replication
scheme's invocation failure handling policy. In any case, the thread sections that resided
at least partially within the replicas will be lost. Another approach to replication might
investigate support for stable threads as well. (Stable threads would be threads that
survive node failures intact. That is the sections of the threads that would otherwise be
lost would be reconstituted elsewhere without loss of any state.) This would presum-
ably involve replicating a thread's state (including all of its stack) and frequently noting
its current position in an object. Consequently, it would be quite expensive and might not
perform very well.

One factor that must be emphasized in future replication policies is time. As with a
number of other areas (e.g., scheduling, transactions, and communications), Alpha can
draw on a large body of existing research and technology to identify promising ideas and
approaches. However, the project's view of tm constraints affects all aspects of Alpha,
and replication will be no different. Highly concurrent schemes may be generally desir-
able, but scheduling multiple threads to carry out an invocation on a repicated object, or
providing services according to the general notion of best-effort decision-making embod-
ied by Alpha will present some difficulties and will supply significant constraints on which
schemes are appropriate.

Finally, one more potential direction for further work can be mentioned. Currently, the
application programmer must determine the replication factor and the replication scheme
for each replicated object created. Some interesting work may be done to allow the oper-
ating system to determine the appropriate replication factor and replication scheme for an
oblect based on a specification of object reliability and responsiveness that is more mean-
ingful to the application programmer.

Functional Description

Alpha Release I Programung ilodel 4-'5

5 Comparisons with Other Models
In order to illustrate some of the more significant aspects of the Alpha programming

model, this chapter compares selected features of Alpha with other, more common pro-
gramun g techniques. In addition, key differences between traditional programming mod-
els and that supported by the Alpha operating system are highlighted.

5.1 Conventional Approaches
The following subsections attempt to illuminate some of ,he sa'ent features of the

Alpha programming mrodel by way of comparisons with more familiar concepts. The goal
here, while attempting zo be fair and accurate, is to emphasize the major differences tl'-:
exist between the various programming models. Towards that end, some liberty is taken
in defining the representative behavior of the models.

For comparison with the features of Alpha, the traditional process/message-based
approach is examined, as is the client/server model of process interaction.

5.1.1 Process/Message Appoach
In most systems, application functions are decompo:ed into some form of software

module for reasons of intellectual manageability, reusability. relocatability, and concurren-
cy. In most modern operating systems the software modules that are combined to make
up computations are known as processes. While the exact definition of a process varies
from system to system, most conform to the original notions described in [Hansen 70]
and [Dennis 66]. In addition, the notion of message passing is frequently coupled with
processes to create what is known as process/message-based system. In such sys-
tems, the computations that comprise an appl.cation are mapped onto collections of pro-
cesses that interact via the exchange of messages. The exact semantics of message
passing facilities vary even more widely thar. those of processes, but, again, mos: con-
form to a common set of basic principles-a ur tt of data is 7assed from one process to
another via the explicit execution of send and receive commands. An example of a repre-
sentative process/message system is shown in Figure 16.

The traditional notion of a process is equivalent to an Alpha object and a "captive"
thread (i.e., a thread that remains within a single obiect throughout its existence).
Threads and objects in Alpha represent the cleaving of Lracdtional processes into a locus
of execution control, and the code and data that make up the process. From an implemen-
tation standpoint, a snapshot of a single thread executing within an object is indistin-
guishable from a snapshot of an executing process (i.e., in both cases there is a point of
control executing within a module containing both code and daa).

A process, by definition, performs a single activity, and additional processes are creat-
ed (and their execution started) in order to achieve c'ncurrency. In Alpha, concurrency of
execution is achieved by having multiple threads execute concurrently. In comparison to
typical processes, theads are "light-weight" entites-i.e., have minimal state associat-
ed with them and cam be created and deleted quickly. Processes are typically "hea'-
weight" programming structures, and are therefore favor large-grained concurrent struc-
tures. In order to support finer-grained concurrency, some form of process substructure
(e.g., light-weight r)rocesses) is frequently introduced in process/message systems.

Functional :')escription

A-6 Alpha Release I Programming Model

Commonly, this involves the creation of units of execution that execute concurrently with-
in a common process's address space. Equally commonly, such .,ibstructure is imple-
mented above the system interface. The consequent loss of correspondence between
user and system abstractions can result in increased programming effort and sub-optimal
system resource management (this point will be elaborated upon in the folloving sec-
tion). Furthermore, the unconstrained s,.4ring of information within a process sacrifices
both modularity and fault containment--e.g., sub-processes must be co-located on the
node with the process within which they are executing, and failures (like stack over-
flows) in one sub-process can affect other sub-processes. With the Alpha programming
model, a high degree of concurrency can be achieved without compromising the modularity
provided by the encapsulation of data within objects. This is because a potentialy unlim-
ited number of threads can execute within a single object, and the information encapsulat-
ed by an object cannot be accessed via any other object (i.e., there is no sharing of memo-
ry among objects).

Furthermore, concurrency in Alpha is achieved without the use of asynchronous commu-
nicaons---each concurrent activity is carried out by a separate thread, and threads do
not perform fork and join operations; instead new threads are created and destroyed.
This allows the more familiar, procedure-call-like form of communications to be used
without the penalties typically associated with synchronous communications facilities.

In general, processes do not have well-defined interfaces-the enry points into a pro-
cess (as defined by message receive commands) can exist at arbitrary places within the
code of a process. Conversely, an object in Alpha has a rigid, well-defined interface, as
specified by the operations defined on the object. This difference results in modularity
benefits similar to those obtained by co-locating synchronization constructs in a monitor-
like structure as opposed to having semaphore operations dispersed among the process-
es in an application. Objects also provide a formalized, system-defined and recognized
interface that permits the separation of an object's specification from its implementation.
In order to achieve similar benefits, some systems implement object-like structures on
top of a native process/message system interface (e.g., Matchmaker [Jones 84]).

It is also frequently the case with process/message systems that the distinction
between local and remote processes is made explicit to the programmer. This means
that the client must manage the mapping of logical identifiers to physical locations. In
Alpha, the effects of physical distribution are made totally transparent to the programmer
and the programmer is not burdened with the (recurring) cost of dealing with physical
communications.

5.1.2 Client/Server Approach
A popular convention for structuring the use of processes and messages is known as

the client/server programming model. In this approach, applications consist of processes
which provide a given service (i.e., servers), and processes which use the provided ser-
vices (i.e., clients). Client processes send messages to server processes in order to
obtain a service, and server processes return a message when the service has been pro-
vided. Any particular process can be a client, a server, or both a client and a server.

In Alpha, the analog to the sending of messages to a server process is the invocation of
an operation on an object. The major differences between the Alpha programming model

Functional Description

Alpha Release I Programnung dodel 4-

and a typical cijent/server model implementation are: server processes do not present
well-defined interfaces to clients, server processes limit the ability to exploit an applica-
tion's potential for concurrency, and the client/server model does not maintain correspon-
dence between the programmer's logical view of computations and the system's imple-
mentation. The f'irst two of these differences stem from issues similar to those discussed
for process/message systems. The fact that the client/server model introduces a disconti-
nuity between the application programmer's and the system's representation of computa-
tions is responsible for a highly significant deficiency in the model.

In general software engineering practice, applications are decomposed into program-
ming modules (e.g., processes or objects), which are interconnected via a system's inter-
module communications facility (e.g., messages or operation invocations). Each of the
concurrent activities that make up an application can be thought of as independent compu-
tations, consisting of a sequence of interconnected activities. In a client/server system,
each "step" of a computation is initiated by sending a message to a server, and results
in the execution of a server process, the completion of which is indicated by a message
sent from the server back to the cient. An application's logical computations are not visi-
ble at the system level, but rather, the system is only aware of a collection of (seemingly
unrelated) processes. In effect, the application programmer's view of the individual com-
putations, which defines the interrelationships between client and server processes, is
not available to the system.

In contrast to the client/server approach, applications for Alpha are decomposed into
objects, and each computation is implemented by a thread that moves among objects via
operation invocations. The thread and object programming model supported by Alpha
permits implementation structures quite similar to the client/server model. For example,
objects can be used to implement both clients and servers, and threads executing within
client objects perform invocations on the operations offered by server objects to obtain
the desired services. While these two approaches have many features in common, the
most significant difference is that the Alpha programming model provides a direct corre-
spondence between the abstraction and implementation of computations. Threads are
not bound to a specific object, but move among objects (and across nodes) in order to per-
form the various steps of a computation. Threads provide the system with an entity that
performs a separate activity, corresponding directly to the application programmer's logi-
cal notion of a computation. Therefore, the system can associate requests for system
resources with a computation that has application-level constraints and attributes asso-
ciated with it, permitting the system to more effectively perform its resource management
functions. Whereas the execution of a thread is performing a single application-level
computation, a process in the client/server model executes on behalf of many such logical
computations. Furthermore, a thread carries its application-provided attribute informa-
tion along with it as it executes within different objects, thereby providing the continuity
for a logical computation that is missing in process-based client/server implementations.

The system-level visibility of logical computations provided by the Alpha programming
model has a number of benefits over common client/server models, including the fact that
the attributes of a computation (e.g., importance and urgency) are not lost as each step is
executed. This is not the case with the client/server model, where a step of a computa-
tion is performed at the priority of the server, not the priority of the client (represeraing

Futctional Description

A.88 Alpha Release I Programming Model

the previous stage of the logical computation). Also, with Alpha, the system's resources
are managed, according to a specific policy, on the basis of application-specified, per-
computation attributes that reflect the needs of the application, and are expressed in
terms of application-level abstractions (i.e., the programmer need not transform the appli-
cation's requirements into some arbitrary form, unrelated to the application's needs in
order to cause the system to behave in the desired fashion). This approach allows the
application-defined requirements to dominate the effects of the communication and
scheduling subsystems (along with their interactions) on the system's behavior. In addi-
Lon, Alpha threads do not require interaction with the scheduling subsystem or a com-
plete context swap for each step of a computation. The following section provides an
extended example of this point. Finally, while it may be possible to emulate or approxi-
mate various features of the Alpha programming model with other programming models,
Alpha represents a more-or-less ideal manifestation of the principles essential to pro-
vide effective system support for real-time applications.

5.2 An Example and Issues/Implications
To illustrate some of the significant differences between Alpha and traditional

client/server-based systems, consider a simplified application consisting of three sepa-
rate computations, each of which has a portion in common with the others (i.e., they make
use of some common service, or they perform the same sequence of instructions). Figure
16 illustrates a stylized client/server implementation of this example application, where
processes 1, 2, and 3 obtain the service provided by process 4 through the exchange of
messages. Figure 17 provides an illustration of the same application implemented in
Alpha, where threads A, B, and C begin execution in objects i, j, and k (respectively), and
obtain the service provided by object x by invoking operations on it.

A number of significant differences exist between these two approaches. For example,
in the process/message case there is a mismatch between the programmer's logical con-
cept of three application computations being carried out by four interacting processes in
the implementation. This discontinuity requires that the programmer transform the appli-
cation's conceptual design into a differently structured realization. (While the transfor-
mation is not significant in this example, it can be quite significant for less trivial applica-
tions).

Furthermore, the discontinuity between the application programmer's and the system's
views of computations interferes with the system's ability to perform global time-driven
resource management. To illustrate this point, note that in Figure 16, each computation
is being performed by the cooperative interaction among a pair of (as far as the system is
concerned) independent processes, and, as is typical for such systems, each process is
scheduled based on its own, static priority. In this case, the system manages resources
based only on the requests it receives from individual processes, and not based on the
characteristics or requirements of the logical computations. This results in the server
process executing at its given priority level, regardless of on whose behalf it is function-
ing. So the portion of the first computation being provided by process 4 is executed at too
low a level of prioriis, while part of the third computation runs at a higher priority level
than it should.

Functional Description

A4lphza Release 1 .Programmnung Model A8

Process Priority

Client Process 11High
F:2 Medium

(1 ~'~\~end - Process~
A

/ Send

..............- . .

.ReReceiv

Receive ProSend

Client Process3

Receive Sn

Figure 16: Typical Process/Message Interactions

Functional Description

.41-90 Alpha Release I Programnwg Model

In Alpha, each thread represents an individual computation and moves among nodes
freely, carrying with it the attributes assigned to the computation by the application pro-
grammer. This approach maps the logical computation directly onto its system manifesta-
tion and allows the system to receive resource requests from the computations them-
selves and not some unrelated artifact. The result of this is that each of the threads in
Figure 17 execute in their proper order (based on their application-specified urgency and
importance attributes), regardless of the object they happen to be executing in at any giv-
en time. In fact, the server's function is performed, not only with the attributes of the
individual computation requesting the service, but actually by the computation itself.

An additional benefit of the Alpha thread/object abstractions is that they admit of an
implementation that does not involve unnecessary scheduler interactions on each
instance of inter-module (i.e., inter-object) communication. In typical process/message-
based systems, communication and scheduling activities are intertwined in an undesir-
able fashion-to accomplish the next (logical) phase of a computation requires a schedul-
ing activity. This is an a-Tifact of the process/message approach, because communication
itself does not require a scheduling event. When the system's scheduler has determined
that a computation should receive processor cycles, the computation should retain the
processor until a legitimate scheduling event occurs, and not relinquish the processor
whenever it wishes to execute another part of the computation. This problem is intrinsic
to these styles of programming-in the Alpha version of tne example, there is a single
schedulable entity for each computation (i.e., a thread for each computation), while in the
process/message example there are multiple schedulable entities involved (i.e., a pair of
processes for each computation).

If a computation is thought of as a locus of control that makes use of the operations pro-
vided by various objects in performing its function, then each invocation of an operation on
an object can be thought of as indicating the next step of the computation. Given such a
view, there is no logical reason why a computation should be required to interact with a
system's scheduling facility before taking each step. Once the scheduling facility has
bound a computation to a processor, it should only be unbound when a scheduling event
occurs, and the movement of a thread from one step to another does not constitute an
interesting scheduling event. Clearly, if the scheduling facility must be involved in each
processing step, unnecessary system overhead is incurred and it becomes more difficult
to ensure that timeliness guarantees associated with the client-level computation can be
met. With an object- and thread-based approach, a thread moves among its steps with-
out involving the scheduler, until a scheduling event occurs (e.g., a time quantum is
exhausted, a higher priority thread is available, or an operation was invoked that blocks
the thread). It should be noted that, should a thread cross a node boundary as a result of
an invocation, a scheduling decision must be made because the thread must contend for
the processor with the other threads at the destination node.

While the emphasis in this example was on the management of processor cycles (i.e.,
scheduling), the Alpha programming abstractions allow for similar time-driven manage-
ment of any I/O, communication, or memory resources required by computations. In most
process/message-based systems the management of these resources interact in an arbi-
trary (and largely uncontrollable) fashion. Alpha threads provide a unifying means of
managing system resources in a consistent fashion both within and among the system's
nodes.

Functional Description

,Alpha Release I Pro grapnmung Model .A-91

Thread Urgency!
Threa___Object Importance

ThradA ObjA1 A High

InoeB Medium

C Low

Reply

Thread, Object. Objectx

- Invoke

;0 Reply

t ______I

Th read
Objectk

* Invoke

Reply

Figure 17: Typical Thread/Object Interactions

Functiouzi Description

A-92 Alpha Release I Programming Model

In some message-based systems, the priority of a message can be used to resolve con-
flicts for communication resources. To resolve contention- for all types of resources, com-
putations would have to retain their priority across all of their steps. To dr, this would
require that server processes astiume the priority of each message they receive. Further-
more, the server processes must be preemptable so that when a message with higher pn-
ority than the current one arrives, the server must suspend its current work to allow new
work to begin on behaf of the newly received message. It is (at best) a difficult proposi-
tion to so intertwine the scheduling and communication facilities of a system. Thus the
thread/object approach taken in Alpha seems a much more promising approach to effec-
tively resolving the contention for resources introduced by distributed real-time tasks.

Functional Description

.Alpha Release I Programming Model 4-93

6 Acknowledgments
Many people contributed to this effort, and many others continue to contribute as the

Archons project enters its next phase.

Doug Jensen is the founder of the Archons project. He obtained the support for the pro-
ject over its 10-ycar existence, and provided most of the fundamental philosophy and con-
cepts for Alpha. Doug continues to provide support and guidance for this research effort
as Release 2 of the Alpha operating system is being developed at Kendall Square
Research Corporation (KSR).

In his brief visit with the Archons project, Martin McKendry initiated the implementa-
tion effort that has become Alpha and provided many of the initial implementation con-
cepts.

Sam Shipman worked on various subsystems and support tools, and contributed to
refining and completing the system design and implementation. David Maynard also
worked on various aspects of the system's design and implementation, and acted as the
project liaison with General Dynamics during our joint C2 demonstration effort. David is
now working on a thesis in the area of real-time scheduling for decentralized computers
with multiprocessor nodes. Huay-Yong Wang worked on the scheduling subsystem and
the design and implementation of various other system functions.

While this report describes the programming model for Release 1.0 of Alpha (being
implemented at CMU), it is not totally a historical document, but rather, reflects the cur-
rent thinking on Alpha, which has been significantly influenced by the efforts of the Alpha
team at KSR. The KSR team includes Ed Burke, Jim Hanko, Franklin Reynolds, and Jack
Test. All of these people have contributed in one way or another to the work described
here, and are busily working to supersede the current version of Alpha with a much
enhanced, production quality, Alpha operating system.

Other project members that contributed to this effort are Jeff Trul, Chuck Kollar, Bruce
Taylor, Don Lindsay, and Dan Reiner. Thanks are due to Tom Lawrence and Dick Met-
zger, the Archons project's prime sponsors at the Rome Air Development Center. Addi-
tionally, we would like to thank Russell Kegley and Calvin Head of the Fort Worth Divi-
sion of General Dynamics Corporation for their assistance in our joint C2 application
development effort.

Functional Description

A-94 Alpha Release I Programoung Model

References

[Ada 83] United States Department of Defense.
Reference Manual for the Ada Programming Language.
ANSI/MIL-STD- 1815A- 1983.
Springer-Verlag, New York, 1983.

(Allchin 83] Allchin, J. E.
Support for Objects and Actions in Clouds.
School of Information and Computer Science, Project Report, Georgia

Institute of Technology, May, 1983.

[Almes 85] Almes, G. T., Black, A. P., Lazowska, E. D. and Noe, J. D.
The Eden System: A Technical Review.
IEEE Transactions on Software Engineering SE-11(1):43-58, January,

1985.

[Anderson 81] Anderson, T. and Lee, P. A.
Fault Tolerance: Principles and Practice.
Prentice-Hall, Englewood Cliffs, New Jersey, 1981.

[Baskett 771 Baskett, F., Howard, J. H. and Montague, J. T.
Task Communications in DEMOS.
Operating Systems Review 11(5):23-32, November, 1977.

[Bayer 79] Bayer, R., Graham, R. M. and Seegmueller, G. (editors).
Lecture Notes in Computer Science, Volume 60: Operating Systems: An

Advanced Course.
Springer-Verlag, Berlin, West Germany, 1979.

[Berstis 80] Berstis, V.
Security and Protection of Data in the IBM System/38.
In Proceedings of the Seventh Symposium on Comp,cr Ii,:nr,

pages 245-252, IEEE, May, 1980.

[Boebert 78] Boebert, W. E.
Concepts and Facilities of the HXDP Executive.
Technical Report 78SRC2 1, Honeywell Systems & Research Center,

March, 1978.

[Campbell 74] Campbell, R. H. and Habermann, A. N.
Lecture Notes in Computer Science. Volume No. 16. Springer-Verlag,

Berlin, 1974.

[Clark 88a] Clark, R. K., Kegley, R. B., Keleher, P. J., Maynard, D. P., Northcutt. J.
D., Shipman, S. E. and Zimmerman, B. A.

An Example Real- Time Command and Control Application.
Archons Project Technical Report #88032, Department of Computer Sci-

ence, Carnegie-Mellon University. March, 1988.

Functional Description

.4,'pna Reiease Pro rammng tfodel

[Clark 88b] Clark, R. K.
Operating System Kernel Support for Real-Time Atomic Transacnons
Ph.D Thesis, Department of Computer Science, Carnegie-Mellon Uni-

versitv
In progress.

[Cox 86] Cox, B. J.
Object-Oriented Programming.
Addison-Wesley, Reading, Massachusetts, 1986.

[Dennis 66] Dennis, J B. and Van Horn, E. C.
Programming Semantics for Microprogrammed Computation.
Communications of the ACM 9(3). 143-155, March, 1966.

[Eswaren 76] Eswaren, K. P., Gray, J. N., Lone, R. A. and Traiger, I. L.
The Notions of Consistency aid Predicate Locks in a Database System.
Communications of the ACM 19(11):624-633, November, 1976.

[Fabry 74] Fabry, R. S.
Capability-Based Addressing.
Communications of the ACM 17(7):403-412, July, 1974.

[Garcia 83] Garcia-Molina, H.
Using Semantic Knowledge for Transaction Processing in a Distributed

Database.
ACM Transactions on Database Systems 8(2), June. 1983.

[Goldberg 83] Goldberg, A. and Robson, D.
Smalltalk-80: The Language and its Implementation.
Addison-Wesley, Reading, Massachusetts, 1983.

[Habermann 76] Habermann, A. N., Flon, L. and Coopnder, L.
Modularization and Hierarchy in a Family of Operating Systems.
Communications of the ACM 19(5):266-272, May, 1976.

[Hansen 70] Brinch Hansen, P.
The Nucleus of a Multiprogramming System.
Communications of the ACM 13(4):238-250, April, 1970.

[Hoare 74] Hoare, C. A. R.
Monitors: An Operating System Structuring Concept.
Communications of the ACM 17(10):549-557, October, 1974.

[Jensen 76a] Jensen, E. D. and Anderson, G. A.
Feasibility Demonstration of Distributed Processing for Small Ships

Command and Control Systems.
Final Report N00123-74-C-0891, Honeywell Systems & Research

Center, August, i976.

Functional Descriprion

A-96 Alpha Release I Programmung Model

[Jensen 7 6 o] Jensen, E. D.
The Implications of Physical Dispersal on Operating Systems.
Workshop on Distributed Processing, Brown University, Providence,

Rhode Island, August, 19"76.

[Jones 8,1] Jones, M. B., Rashid, R. F and 'Thompson, M. R.
Matchmaker. An Interface Specification Language for Distributed Pro-

cessing.
Technical Report CMU-CS-84-l61, Department of Computer Science,

Carnegie-Mellon University, 1984.

[Jones 79] Jones, A., Chansler, R., Durham, I., Schwans, K. and Vegdahl, S.
StarOS, a Multiprocessor Operating System for the Support of Task

Forces.
In Proceedings, Seventh Symposium on Operating System Principles,

pages 117-127. ACM, December, 1979.
[Kahn 81] Kahn, K. C., Corwin, W. M., Dennis, T. D., Hooge, H. D., Hubka. D. E.

and Hutchins, L. A.
iMAX: A Multiprocessing Operating System for an Object-Based

Computer.
In Proceedings, Eighth Symposium on Operating System Principles,

pages 127-136, ACM, December, 1981.

[Lampson 69) Lampson, B. W.
Dynamic Protection Structures.
In Proceedings of the Fall Joint Computer Conference, pages 27-38,

IFIPS, 1969.

[Lampson 76] Lampson, B. W. and Sturgis, H. E.
Reflections on an Operating System Design.
Communications of the ACM 19(5):251-256, May, 1976.

[Lampson 81] Lampson, B. W., Paul, M. and Siegert, H. J. (editors).
Lecture Notes in Computer Science. Volume 105: Distributed Sys-

teins-Architecture and Implementation.
Spnnger-Verlag, Berlin, 1981.

[Levin 77] Levin, R.
Program Structures for Exceptional Condition Handling.
Ph.D. Thesis, Department of Computer Science, Carnegie-Mellon Uni-

versity, June, 1977.

[Levy 84] Levy, H. M.
Capability-Based Computer Systems.
Digital Press, Bedford, Massachusetts, 1984.

[Liskov 84] Liskov, B. H.
Overview of the Argus Language and System.
Programming Methodology Group Memo 40, MIT Laboratory for Com-

puter Science, February, 1984.

Functional Description

Alopha Retease .' 1,oVanMRR Model

[Liskov 851 Liskov, B H., Herlihy, M. P. and Gilbert, L.
Limitanons of Synchronous Communication with Statc Process Struc-

ture in Languages for Distributed Computing.
Technical Report CMU-CS-85-168, Department of Computer Science.

Carneg-e-Mellon University, October, 1985.

[Lister 771 Lister, A.
The Problem of Nested Monitor Calls.
ACM Operating System Review 11 (2):5-7, July, 1977.

,Maynard 88] Maynard, D P.
Multiprocessor Scheduling for Real-Time Applications.
Ph.D. Thesis Pro~rosa, Department of Electrical and Computer Eng,.-

neenng, Carnegie-Mellon University.
In Progress.

[McKendry 84a] McKend.ry, M. S.
The Clouds Project: Reliable Operating Systems for Multicomputers
Project Report, Georgia Institute of Technology, 1984.

[McKendry 84b] McKendry, M. S.
Ordering Actions for Visibility.
Project Report, Georgia Institute of Technology, '984.

[McKendry 85] McKendry, M. S. and Herlihy, M. P.
Time-Driven Orphan Elimination.
Technical Report CMU-CS-85-138, Department of Computer Science.

Carnegie-Mellon University, 1985.

[Moss 851 Moss, J. E. B.
Nested Transactions: An Approach to Reliable Distributed Computing.
The MIT Press, Cambridge, Massachusetts, 1985.

[Nelson 81] Nelson, B. J.
Remote Procedure Call.
Ph.D. Thesis. Department of Computer Science, Carnegie-Mellon Uni-

versity, May, 1981.

[Northcutt 88a] Northcutt, J. D.
The Alpha Operating System: Requirements and Rationale.
Archons Project Technical Report #88011, Department of Computer Sci-

ence, Carnegie-Mellon University, January, 1988.

[Northcutt 88b] Northcutt, J. D.
The Alpha Distributed Computer System Testbed.
Archons Project Technical Report #88033, Department of Computer Sci-

ence, Carnegie-Mellon University, March, 1988.

Functmonal Descrtror,

Alpha Release I Programiung Model

[Northcutt 88c] Northcutt, J. D., Clark, R. K., Shipman, S. E. and Lindsay, D. C.
The Alpha Operating System: SystemlSubsystem Specification.
Archons Project Technical Report #88051, Department of Computer

Science, Carnegie-Mellon University, May, 1988.

[Northcutt 88d] Northcutt, J. D.
The Alpha Operating Sjystem: Kernel Interface.
Archons Project Technical Report #88061, Department of Computer

Science, Carnegie-Mellon University, June, 1988.

[Randell 783 Randell, B., Lee, P. A. and Treleaven, P. C.
Reliability Issues in Computing System Design.
Computing Surveys 10(2): 123-165, June, 1978.

[Rashid 811 Rashid, R, F. and Robertson, G. G.
Accent: A Communications Oriented Network Operating System Ker-

nel.
Technical Report CMU-CS-81-123, Department of Computer Sci-

ence, Carnegie-Mellon University, April, 1981.

[Sha 85] Sha, L.
Modular Concurrency Control and Failure Recovery--Consistency,

Correctness and Optimality.
Ph.D. Thesis, Department of Elecxical Engineering, Carnegie-Mellon

University, 1985.

[Shantz 85] Shantz, R., Schroder, M., Barrow, M., Bono, G., Dean, M., Gurwitz,
R., Lebowitz, K. and Sands, R.

CRONUS, A Distributed Operating System: Interim Techn.cal Report
No. 5.

Technical Report 5991, Bolt, Beranek and Newman, June, 1985.

[Shipman 881 Shipman, S. E.
The Alpha Operating System: Programming Language Support.
Archons Project Technical Report #88042, Department of Computer

Science, Carnegie-Mellon University, April, 1988.

[Sollins 81] Sollins, K. R.
The TFTP Protocol (Revision 2).
RFP-783, Network Working Group, MIT, June, 1981.

[Wilkes 791 Wilkes, M. V. and Needham R. M.
The Cambridge CAP Computer and its Operating System.
North Holland, New York, 1979.

[Wulf 811 Wulf, W. A., Levin, R. and Harbison, S. P.
Hydra/C.mmp: An Experimental Computer System.
McGraw/Hill, New York, 1981.

Functional Description

Alpha Release I Programrung Model .- 99

THIS PAGE I.TENTIONALLY LEFT BLANKN

Funcuonal Description

.4-100 Alpha Release I PrograftwumgMode)

THIS pAGE ~TNTTONALLY LEFT BLANK

Functional Desciption~

Alpha Release 1 Programming Model A- 01

THIS PAGE INTENTIONALLY LEFT BLANK

Funcuo Descriptio,

A-102 Alpha Release 1 Pro grammn; Model

THIS PAGE INTENTrIONALLY LEFT BLANK

Fasnctiona Description

Alpha Release I Program'ing Model
A-103

THIS PAGE INTENTIONALLY LEFT BLANK

Functiona Descripion

A-1 04 Alpha Release 1 Programming Model

THIS PAGE INTENTIONALLY LEFT BLANK

Funcional Description

Alpha Relcase I Pro graming A odel A-OS

THIS PAGE INTENTIONALLY LEFT BLANK

Functonal Description

A-I106 Alpha Release I Programming Mode!

THIS PAGE IN=IONALLY LEFT BLANK

Functional Descritin

Alpha Release I Programmring.Model
A.0

THIS PAGE INTENIONALLY LEFT BLAK

Fau~cuzonal Description

A.108 Alpha Release I Programtung Model

THIS PAGE IN NTI0NALLY LEFT BLANK

Functional Description

.4!pha Release I Programminmg .iodet -0

TUIS pAGE LIENTONALLY LZIFT BLA

Functional Desc ripaoi

A.110 Alpha Release 1 Progranmsung Model

THIS PAGE INTENTIONALLY LEFT BLANK

Functional Description

Alpha Re~ease I Pro graimng Model 211

THIS PACE IN;TENIONALLY LEF:A BLANK

Functionai Descripftioi

A-112 Alpha Release 1 Programming Model

THIS PAGE I~'N. IONALLY LEF BL.NY

Functional Descnption

Alpha Releas I Program rug ModelA13

TIHIS pAGE I 1ENIONALLY LEFT BLAK

Fwntionai Dtscnipfon

A- 114 Alpha Release)I Pro grampying Model

THIS PAGE INTNTIONALLY LEFT BLA"NK

Futi ii~maI Description

Alpha Release I Pro gramng.WA~ odel .1

TH:IS pAE ijjn*=101ALLY LEFT BLANK

fiocnonal DescntpwI

Alpha Release 2 Design Summary

Table of Contents

1 Introduction B-1
2 Motivations and Goals . . B-2

2.1 Release- I ... B-2
2.2 Release-2 ... B-2
2.3 Discussion ... B-3
2.4 M ission .. B-4

3 Design Changes B-5
3.1 O bjects .. B-5
3.2 Threads .. B-6
3.3 Invocations .. B-7
3.4 Capabilities ... B-8
3.5 Sem aphores ... B-9
3.6 Locks... B-9
3.7 Exceptions ... B-10
3.8 Scheduling .. B-10
3.9 M em ory M anagem ent ... B- 10
3.10 Input/O utput .. B-11
3.11 Secondary Storage .. B- 12
3.12 Com m unications B-12
3.13 Transactions .. B- 13
3.14 Replication B-13
3.15 Environm ents .. B- 14
3.16 Program m ing ... B -15

4 Conclusions B-16
References 17

Fwnctional Descriptwn

Alpha Release 2 Design Summary B-i

Introduction
Alpha is a research-driven operating system primarily oriented toward the support of

real-time command and control (C2) applications that span a network of computing
nodes. In contrast to traditional distributed operating systems where each node is an
autonomous entity, in Alpha each node acts as part of a whole. Alpha, therefore, is
decentralized: it provides reliable coordinated resource management transparently across
physically dispersed nodes in a local area network creating a unified computing system.
In addition, Alpha is real-time: it provides sophisticated and extensible support for aperi-
odic, deadline constrained, scheduling of distributed programs.

The Alpha effort began at CMU in 1980 with the first of three connected research con-
tracts from RADC. The first contract from 1980-83, saw the basic development of the
theory behind Alpha and an initial prototype of the system. The second contract from
1983-85 constituted the design phase of a usable Alpha system. Actual development of
this system (k -own hereafter as Release- 1) was undertaken during the third contract
from 1985-88. In addition to the development of Release-I, during the last year of the
1985-88 contract, a subcontract was extended to Concurrent for the design of a Release-
2 Alpha that would improve upon the Release- I design being implemented at CMU.

The purpose of this report is to describe major differences between the Alpha Release-
2 and Release-1 designs and the motivations behind those differences. In so doing, this
report will attempt to highlight significant ideas and themes in the thinking process
behind the Alpha Release-2 design. This report is a companion to the Release-2 Kernel
Interface Specification which should be referred to for detailed interface specifications.

This report is divided into five sections. The first is this introduction. The second is a
discussion of the characteristics, motivations, and goals of Release-1 and Release-2.
The third provides a detailed discussion of the design changes made in Release-2. The
fourth draws a few conclusions about the Release-2 design effort. The fifth lists refer-
ences used in this report.

Functional Descripton

B.2 Alpha Release 2 Design Summary

2 Motivations and Goals
The changes from Release-I introduced in the Release-2 design fall into two main cate-

gories: those changes made in order to correct perceived problems in the Release-I
design, and those changes made in order to extend Alpha functionality into new areas. In
the following discussion the basic characteristics of Release-1 and Release-2 will be
summarized and the basic motivations and goals of the Release-2 design will be
addressed.

2.1 Release-1
As mentioned in the Introduction, the initial conceptual development of Alpha and the

Release-1 design was undertaken at CMU. The basic philosophy behind this work is doc-
umented in [Northcutt 87].

In brief, Release-1 of Alpha is a university developed prototype system that: (1) runs
on a local area network of custom-designed nodes, each consisting of up to four modified
Suno1.0 processor cards, each dedicated to a special function, (2) provides a system for
the validation of basic Alpha operating system concepts including reliability and schedul-
ing mechanisms, (3) provides a testbed for running experimental embedded real-time
command and control applications, and (4) provides a platform for continuing research
into real-time decentralized operating systems.

Release-1 is a tightly focused system. Its primary application environment is for single
mission, custom-written, pre-defimed, embedded, command and control applications.
Within this arena, Release-1 provides real-time capabilities that convincingly demon-
strate the utility of Alpha technology. Release-1 is, however, a limited lifetime vehicle,
since the underlying hardware base cannot be duplicated and the research staff, being
mostly composed of graduate students, is temporary.

In addition, Release-I is a research vehicle and is not oriented around the demands of
the production or commercial environment. The software and hardware of the system has
not been engineered with the goal of robustness and maintainability, for example.
Together, these constraints limit tremendously the usefulness of Release- I even if a
reproducible hardware platform was available.

2.2 Release-2
The Alpha Release-2 research effort is aimed at building upon the experience of

Release-I in order to design and build a second generation system that extends Alpha
functionality into new areas. The basic goal of Release-2 is to propel Alpha out of the uni-
versity research environment into general real-time DoD and commercial R&D environ-
ments. In particular, where the Release- 1 design was aimed primarily at static embedded
real-time application environments, the Release-2 design is aimed at: (1) providing the
ability for Alpha to function as a stand-alone system capable of peer-level communica-
tions with foreign systems, (2) providing the necessary mechanisms and environment to
support independent application development, execution, and debugging, (3) increasing
the range of problems that Alpha can support to include high data bandwidth, database,
and i/o-intensive applications, (4) extending the flexibility of Alpha to support application
environments that require multiple languages, secondary storage systems, and paging

Functional Description

Alpha Release 2 Design Summary B-3

strategies, and (5) enhancing the portability of the operating system by creating a hard-
ware independent interface that encapsulates hardware-platform-specific functions.

In addition, where the Release-1 design was fixed to a custom-designed testbed sys-
tem of very limited computing power, Alpha Release-2 is intended to be a portable sys-
tem capable of executing on a broad range of target hardware. The combination of a more
flexible software capability with a much more powerful hardware platform, will enable
Alpha Release-2 to be a reliable production platform for the most demanding real-time
applications. The Alpha Release 2 research plan for this effort is described in [Jensen 881.

2.3 Discussion
There were a number of reasons for wanting to change the specification of Alpha

between Release-i and Release-2. Release-1 was essentially a compiled application,
all object types were predefined and compiled into the kernel. The resultant system was
essentially static-only the number of objects and how they were interconnected was
dynamic and determined at runtime. In this sense, Release-1 provided a stand-alone,
single-mission, embedded application environment. For Release-2, the goal was to build
a much more malleable and dynamic environment. At the highest level, this means the
ability to define new object types at runtime. Moreover, the goal was to have a system
that could support multiple applications and serve as a program development and debug-
ging platform in addition to an execution platform. These goals have additional conse-
quences such as the ability to support a command-level interpreter interface.

In addition to the goal of having a dynamic system, other shortcomings of the Release.-
1 model were also addressed. In particular, it was decided that Release-2 should be able
to support more traditional forms of real-time processing such as synchronous data acqui-
sition and signal processing without compromising basic C2 functionality. This requires,
among other things, that Alpha be more concerned about servicing a broad range of data
acquisition devices for applications requiring a multifaceted interface to the real-world.
The ability to service interrupts in a very fast manner, therefore, was a major concern.
The ability to process large amounts of data such as that often required in signal process-
ing applications, was also deemed a requirement for Release-2. The Release-I model,
provided no way to pass large amounts of data between objects efficiently, so this had to
be corrected in Release-2.

Release-2 is meant to broaden Alpha from a dedicated C2 embedded system into a
more general purpose real-tirme system. The reasons for this were several. First, from a
commercial standpoint, the broader the range of applications a system can support the
better. From a practical survivability point of view, the same rational holds. From a
research viewpoint, Alpha has the basic structure to provide superb real-time perfor-
mance, and this should encompass all forms of real-time. We believe that C2 real-time
applications are compatible with lower level synchronous real-time systems, and we
aspire to prove that expectation with Release-2. This will allow the building of real-time
system with both synchronous and asynchronous components.

Another goal of this effort was to make Release-2 Alpha into a truly stand-alone sys-
tem capable of existing as an equal in a network of other systems. This means that
Alpha should not be dependent upon foreign systems acting as development/downloading
environments. Alpha should be able to boot itself, develop applications, execute them,

Functional Description

B-4 Alpha Release 2 Design Summary

and communicate with external systems for services they might be able to provide. This
means that Alpha will need to support a flexible and extensible i/o system and provide
support for industry standard network protocols such as TCP/IP. Another goal of
Release-2 was to provide interoperability with foreign systems such as UNIX and
CRONUS.

In order for Alpha to viable in the commercial world it should be portable. The Release-
1 version is essentially wedded to the custom designed nodes at CMU. At Concurrent,
we want to build Release-2 so that it can be easily ported to different hardware plat-
forms. Moreover, we expect most of these platforms to be multiprocessors, so Release-
2 must include support for high levels of real concurrency. Support for multiprocessors is
very important, because another goal of Release-2 is to make supercomputer perfor-
mance available to Alpha applications. We want Alpha to be usable across a broad
range of price/performance options. If a certain real-time applications requires vast com-
puting resources or just a moderate uniprocessor performance, we want Alpha to be able
to address the need. It should even be possible, for example, for applications of widely
varying compute requirements to share the same machine.

Another real-world goal of Release-2, was to make the power of Alpha accessible to a
variety of languages. Release-i required the use of a special dialect of C to build applica-
tions. This would require all applications to be essentially written from scratch. In
Release-2, we wanted to leverage existing codes already written and existing program-
mer expertise. To do so, requires support for traditional programming languages such as
C, Fortran, Ada, and perhaps Lisp. The Alpha system interface, therefore, must be lan-
guage independent with special language-dependent runtime libraries. Moreover, we
would like for Alpha to be able to support mixed-language applications where various
modules or objects within an application may be written in different languages to leverage
that languages particular features.

2.4 Mission
Despite all of the new goals stated above, the basic mission behind the Release-2

design remained the functional evolution of Release-1. Whenever a new feature was dis-
cussed relative to inclusion in the Release-2 design, its compatibility with the basic
Alpha research goal of realizing an effective decentralized real-time object-oriented oper-
ating system was considered tantamount.

Functional Description

Alpha Release 2 Design Swmary B.F

3 Design Changes
Each of the requirements identified in Section 2 has a differing impact on the Release-1

design. Some involve changing basic concepts while others require minor adjustments of
existing concepts. Discussions in the remainder of this paper focus on significant changes
made to the various abstractions and concepts in Release-i Alpha. Features that do not
change may not be mentioned at all or only briefly touched upon in the following discus-
sion.

3.1 Objects
The basic notion of objects has not changed between Release-1 and Release-2, namely

that objects adhere to the common definition of simple abstract data types. In both Alpha
designs, an object is an entity defined by the data that it encapsulates and a set of opera-
tions which are provided to manipulate that data. An object, furthermore, can only be
accessed via the operations it exports as a part of its interface. There are, however, four
main areas where the notion of object has bcen modified in Release-2: schema G,'Jcts,
data locking, permanence, and inherited operations.

Release-1 did not have the facilities necessary to dynamically create new types of
objects. All object types had to be known at system generation time. While this is suit-
able for single mission embedded systems, Release-2 is intended to provide support for
a wider variety of probiems including multiple mission installations and other dynamic
environments. To this end, Release-2 introduces schema objects, which are used to
define new types of objects. Schema objects can be dynamically created and destroyed.
Alpha's client and system objects are instances of a object types defined by a schema.

In Release-1, operation inheritance was accomplished by looking up the desired opera-
tion first in the invoked object list and second in the standard list of operations adminis-
tered by the kernel. A client object could override a standard operation, therefore, by sim-
ply defining an operation of the same name. The problem with this approach, however, is
that once a standard operation is overridden then the services of the kernel provided
operation cannot be accessed. In other words, the client object gives up forever the ker-
nel functionality it has overridden. From a Release-2 perspective, it seems that a client
object might want to create wrappers consisting of preambles and trailers of customized
code around a kernel provided service. With this ability, for example, a client object could
define its own version of migrate while still having access to the kernel version of
migrate. There is no way to accomplish this in the Release-1 design.

With Release-2 we alter the facility described in Release-1 as object inheritance to an
operation name translation service. Each standard operation now have two names. The
first name is considered soft and is identical to the name used in Release-i--this name
can be redefined by client objects. The second name is considered hard and is reserved
by the kernel and cannot be redefined by the client. For example, the soft name of the
migrate standard operation is MIGRATE, while the hard name is KERNELMIGRATE.

If the soft name of a standard operation has not been redefined by the client then any
invocations using that name are translated by the kernel into invocations on the hard
name. The hard name is always available for use since it cannot be redefined. The kernel
always invokes objects using soft names. This allows the client to create a wrapper by

Functional Descripton

B-6 Alph a ReLeare 2 Design Swnmary

redefining the soft name of a standard operation and within the redefined operation invok-
ing the hard name of the kernel service.

In Release-1, the locking of data in a client object was accomplished by the creation of
a lock-type kernel object and by associating that object with the desired region of client
object data. The locking and unlocking of the data region was then accomplished by invo-
cations on the associated lock object. From a Release-2 perspective, this mechanism is
both cumbersome and inefficient. Since the lock object can only be used by a thread in the
client object to which the data region is bound, and since the lock capability serves only
as a name within this context, it seems natural to directly associate the data with the
client object rather than with a separate kernel lock object. Using this approach, locking
and unlocking operations are performed on the client object itself and the data region is
represented by its base address and size. In Release-2, therefore, the locking of data is
accomplished by the addition of three operations (LOCK, CONDITIONAL-LOCK, and
UNLOCK) to the set of standard object operations. This mechanism has several advan-
tages: first, the creation/deletion phases required with the lock object approach is elimi-
nated, and second, the lock/unlock operations can be streamlined since they become oper-
ations on the client object itself. An additional benefit of this approach is the reduction in
the number of objects administered by the system, since locks no longer require that sep-
arate objects be created/deleted for them.

In the area of permanence, in Release-1 the standard UPDATE operation was used to
checkpoint the entire data state of an object. There appear to be a number of problems
with this operation, the major one being how to synchronize different concurrent thread
activity in order to obtain a meaningful consistent object state without resorting to trans-
actions. In Release-2, the use of locks to synchronize threads with data seems like the
right place to utilize the update operation. So update has been modified to take a data
range as an argument and it is that range which is written to stable storage. Conespon-
ding to update, a RESTORE operation has been added to the standard operations to
restore a given data region from a previous update. In addition, the PRE-COMMIT, COM-
MIT, and ABORT operations no longer indirectly invoke the update operation with a set of
sub-flag options. The update operation is simplified (it doesn't encapsulate a set of dif-
ferent type updates) and the pre-commit, commit, and abort operations are self contained
operations in the new Release-2 design.

3.2 Threads
As with objects, the thread abstraction remains basically unchanged between Release-

1 and Release-2. Threads are the agents of processing activity in Alpha and are sched-
uled by the kernel according to attributes of the computation they are carrying out.
Threads can be created and destroyed dynamically under program control and carry with
them various attributes such as saved register contents, scheduling information, and pro-
tected invocation information. The initial object in which a thread begins execution is
known as the root of a thread. The thread enters and exits other objects via invocations
in a nested fashion, independent of the physical node boundaries in the system.

Functionl Description

Alpha Release 2 Design Swnmary B-7

One area of major concern in the Release-2 design that relates to threads, however, is
the need to be able to pass large amounts of clata efficiently between objects in an appli-
cation. Since the thread is the agent of object invocation it provides a natural place to
address this issue. In addition to the passing of large data regions, however, it is also
desirable to be able to pass pointers into that region in the invocation. In order to
address this need, the notion of a thread heap has been added in Release-2. The thread
heap is a region of memory that belongs to a thread and as such follows the thread as it
traverses objects. The thread heap is manifest in the same region of virtual address
space regardless of the object into which the thread is currently mapped. In other words,
when a thread is dispatched into an object, all the object's address space is mapped and
the thread heap is also mapped. Since the thread heap is always mapped at the same vir-
tual address, pointers referring to data in the heap, whether passed explicitly as invoca-
tion arguments or imbedded in the heap data itself, remain viable across object invoca-
tions. Different threads within the same object see the same object address space
except for the thread heap area where each thread sees its own private heap. Since the
thread heap comprises an independent region of memory it can be very large, sparsely
populated if desired, and grown dynamically. The heap concept appears to be a very use-
ful concept in the Release-2 design, and should add considerably to the functionality of
the resulting system.

3.3 Invocations
The operation invocation mechanism remains essentially the same between Release-I

and Release-2. Operation invocation is the primary means by which all objects interact,
and is the global, uniform interface to all client-defined objects, system services, and
physical devices in the system. Invocations on objects in Alpha are made independent of
the physical location of the source and destination objects and may be nested and recur-
sive.

In the Release-2 design effort, two main goals were associated with the invocation
mechanism: efficiency and transparency. Efficiency is essential because operation invoca-
tion is the only mechanism for inter-object communication in Alpha and the success of the
object model depends upon the speed of the communication interface. Transparency is
important because operation invocation provides network transparency and it seems nat-
ural that it should also provide (insofar as possible) program transparency: namely that
invocations look as much like local subroutine calls as possible. In order to accomplish
this, operation invocation is realized via a remote procedure call interface that is very
similar to a local procedure call interface.

The main problem perceived in the Release-I invocation mechanism was a restriction
on the size of the invocation argument frame. For Release-2 it was felt that argument
frames should be allowed to be a large as needed, provided the cost in invocation time
could be kept to a minimum. Rather than associating the invocation parameters with a
single page of virtual memory, invocation parameters are associated with entire extents.
No additional kernel mechanisms were necessary to support variable length invocation
parameter blocks since variable length extents already exist to support the object heap.

Thread and object self-referencing capabilities (i.e., SELF capabil,,,, are another
change to the invocation mechanism. The capability for the current object and the current

Fuwctioni Descnption

8_8 Alpha Release 2 Design S,,ma y

thread were always available to the kernel at the point of the invocation, but in Release-
1 they were not exported as part of the invocation interface. When an object was invoked
the kernel had to know which object was the target of the invocation and which thread
was performing the invocation. However, the only way the client had of ascertaining the
identity of the current object and thread was by some application specific convention uti-
lizing well-known capabilities or capabilities passed via invocation.

Release-2 does not support well-known capabilities. Instead, the first two capability
parameters of each input invocation block are the current object and thread. These are
rranwent capabilities and are explained in Section 3.4. Restrictions can be applied to
these SELF capabilities just like any other capability.

3.4 Capabilities

The capability abstraction remains largely unchanged between Release-I and Release-
2. In particular, all objects in Alpha are represented by capabilities which provide the
only means for one object to invoke operations on another object. The set of capabilities
available to an object, therefore, defines the range of services that threads executing
within the object can utilize. Since capabilities are created aud administered by the
Alpha kernel, they cannot be forged by any user application, and provide a high degree of
access protection.

While the basic concept remains the same, the semantics of capabilities has changed in
Release-2 primarily to address the Release-2 goal of supporting an interactive and high-
ly dynamic environment and its attendant garbage collection problem. In Release-1, this
was not a major problem because the system was essentially single-mission which ran
until the system was rebooted. In Release-2, however, the situation is quite different.
One major consequence of this, is that the proliferation of capabilities needs to be tightly
controlled. Since all resources in Alpha are addressed oy capabilities, the key to deleting
them is governed by capabilities. In general, it is not safe to delete any object unless all
capabilities to that object are gone (e.g. when the object can no longer be referenced).
Sometimes, objects will be cleanly deleted by an application through an explicit delete
call. But not all applications are that neat. So the system must keep track of capabilities
and be prepared to delete objects automatically when appropriate. In order to make this
problem manageable, however, it is important that capabilities exist to objects only when
they are really needed.

In Release-2, the design of capabilities and how they are passed is very much related
to this garbage collection problem. In particular, capabilities are conveyed to objects via
threads either as parameters in invocations or replies from invocations. When a thread
arrives in an object with a capability, the capability is usable only by that thread. Other
threads in the object cannot use it, either as a target of an invocation or as a parameter.
Such capabilities are known as transient. When a thread returns from an invocation, all
of its transient capabilities disappear. In this way, a natural garbage collection activity
takes place, the returning thread "collects" the capabilities it arrived with.

If an object wishes to retain a capability delivered by a thread or to make that capability
usable to other threads, it must make a permanent copy of the capability. Thit, u, accom-
plished by making an invocation of the SAVECAPA operation on the object, with the tran-
sient capability as an argument, requesting the manufacture of a duplicate car1,;lity that

FWscuun,. Lh ILptiOf

Alpha Release 2 Design Summary 8.9

will be permanent. A new capability is returned which may be retained by the object after
the thread leaves and which may be used by other threads within the object. In this way,
the programmer must explicitly duplicate capabilities in order to retain them in an object,
independent of the threads that delivered them.

In this Release-2 scheme, capabilities are still duplicated implicitly by the kernel when
passed in an invocation or in a reply from an invocation. This implicit duplication, howev-
er, is an exact duplicate of the passed capability (except for restrictions applied in the
invocation) and in no way effects the thread-dependence of the passed capability. In oth-
er words, the mechanism still supports the natural usage of a capability by the thread
that delivered it, namely the thread may use it as the target of another invocation or as an
argument thereto without any special treatment. It is only when some change must be
made to the capability that an explicit action must be performed.

Another area in which the semantics of capabilities has been changed between
Release-1 and Release-2 has to do with capability attributes and restrictions. The
Release-1 attribute restrictions on capabilities (such as passability or copyability) did
not appear to provide any real utility in Release-2. The aim of attribute resrction was to
provide control over the distribution of capabilities for garbage collection and so that an
object could, for example, insure that only a given foreign object could use a given capabil-
ity. The garbage collection problem was addressed in Release-2 by introducing transient
capabilities. With respect to controlling the redistribution of capabilities, there is nothing
to prevent one foreign object from acting as an agent for other third party objects, so this
mechanism provided no real protection.

Release-2 does introduce a different restriction for capabilities. A capability may be
anchored. An anchored capability is a transient capability that cannot be made perma-
nent. This feature binds the scope of a capability to a particular thread. An example of
this uac is on the thread's SELF capability. The thread SELF is an unrestricted capabili-
ty that permits, among other things, the setting of time constraints. By anchoring this
capability to a particular thread we prevent other treads from having the ability to set
time constraints on it.

3.5 Semaphores
The design of semaphores in Release-2 remains unchanged from that in Release-1.

For a me, consideration was given to making semaphores independent of the application
objects utilizing them. In this way, semaphores could be used to coordinate between dif-
ferent objects externally. The feeling was, however, that inter-object coordination can
also be accomplished in a mor direct way by explicit inter-object calls. Consideration
was also given to the use of language-based synchronization mechanisms that could
avoid system calls where possible. All of these alternatives, however, had side-effects
or problems that prevented their wholehearted acceptance.

3.6 Locks
The notion of locks has been fundamentally changed in Release-2. Data locking is no

longer accomplished by operations on lock-objects as in Release-I but is available via
standard operations on all objects. Refer to the Section 3.1 for a discussion of this
change.

Functonal Descnptwn

B-JO Alpha Release 2 Design Swmmary

3.7 Exceptions
While a thread is executing within an Alpha application, asynchronous events, or excep-

tions, may occur that prevent processing from proceeding in the normal, sequential man-
ner. For example, a deadline may expire or the thread may encounter a machine fault.
Alpha permits an application to specify an exception handler. The exception handler is
notified of exception conditions and may take actions designed to recover from the excep-
tion.

While this basic definition of exceptions in Alpha remains the same as in Release-i,
the mechanisms for handling exceptions have been substantially redefined in Release-2.
The Release-i design was based upon a special C-language abort block construct of the
form: BEGIN { ... } ON-EXCEPTION (... } END. This construct delimited a block of
code and its corresponding exception handler.

In Release-2, the desire for language independence clearly ruled out any special lan-
guage constructs. Instead, exception handlers in Release-2 are explicitly delimited by
the invocation of matching pairs of operations on a manager object: one that begins the
exception handler, and one that ends the exception handler. Moreover, the Release-2
mechanism defines how exceptions can be nested and what their behavior is across client
object invocations, two notions that were not clearly addressed in the Release-i design.
For a detailed explanation of Release-2 exception handling, refer to the Release-2 Ker-
nel Interface Specification.

3.8 Scheduling
The scheduling subsystem of Release-2 is designed to retain important features of

Release-i, while offering additional functionality and flexibility. The Release-1 schedul-
ing subsystem allowed an application to substitute its own scheduling policy module and,
therefore, select a policy appropriate for a given environment. This functionality has been
retained in Release-2. The scheduler in Release-i, however, was constrained to run on
a dedicated scheduling processor, and was capable of controlling only one application pro-
cessor. In Release-2, it is still possible to dedicate a processor to scheduling, but alter-
natively, the scheduler may be configured to run on an application processor, with that
processor multiplexing its time between running the scheduler and running client object
threads (when scheduling is not required).

Other changes made in the Release-2 scheduling subsystem have been made to sup-
port Alpha nodes which consist of a large number of application processors communicat-
ing through shared memory. The changes include a thread dispatcher that is designed to
accommodate the assignment of threads to many processors from a common ready
queue. Additional research is necessary on optimal ordering of the ready queue in a mul-
tiprocessor environment, integration of the scheduler with the kernel's synchronization
primitives and virtual memory system, and implementing multi-threaded scheduling poli-
cy modules.

3.9 Memory Management
The memory management subsystem in Release-i of Alpha was designed explicitly for

the Sun 1.5 processor board's hardware. As a result, a move to a different hardware plat-
form would require a significant redesign of the subsystem. In addition, the design did

Fuctonal Descriptwn

Alpha Release 2 Design Summary B-1 I

not support the use of virtual memory techniques to extend the physical memory of the
system. Instead, the primary goal of the design was to support the use of separate
address spaces for each object to enhance fault isolation.

The Release-2 memory management system, in contrast, has significantly broader
goals than Release-I and is concerned with portability, flexibility in terms of mecha-
nism/policy separation, and the support of very large address spaces that far exceed the
size of physical memory. Because of this, the Release-2 design is largely new. Central
to the new design are the notions of extent, pager, and memory-policy objects.

Extens are independent, contiguous areas of virtual address space with independent
protection and secondary storage attributes. Client objects consist of a set of memory
extents: the code extent, the data extent, and the heap extent Whenever the client
object containing an extent is deleted or garbage collected, the constituent memory
extents are also deleted. In a similar manner, hreads are composed of memory extents
for the stack and parameter data associated with each thread, and the thread heap.
These extents are deleted whenever the thread is deleted. Associated with each extent
object is a pager object that determines the paging policy of the extent including: prepag-
ing, updating secondary storage, and synchronization. In turn, each pager object is asso-
ciated with two secondry-storage (see Section 3.11) objects, one of which supplies the
initial page contents for the memory extent and the other provides the writable paging
store for the object

For system-node memory management, the Release-2 design divides the set of memo-
ry extents within a system between those that can be swapped out when not in use
(swappable), those whose unused pages can be removed (pageable), and those that are.
permanently in memory (locked). Extents that are locked in memory allow for more pre-
dictable execution times of the threads using them because missing page faults cannot
happen, but may reduce the system's ability to meet future memory demands. Whenever
the amount of free memory falls below a system defined low water mark, the kernel will
attempt to reclaim pages by consulting a memory-policy object To support the memory
palicy, the kernel uses the concept of working set to determine which pages are in use
and which are not. The memory policy object can use the working set information in
determining which pages to reclaim.

Among the advantages of this Release-2 design are that application specific paging
objects (called exrnal pagers) can be created to implement paging policies which are not
supported by the default paging object. For example, a special pager could be created to
support a different transaction model within an Alpha application. In addition, extent
objects are designed so that they obey the same interface as storage objects and can be
used, for example, to implement a copy-on-reference sharing of pages by using one mem-
ory extent as the initialization object of other extents. In combination, the extent, pager,
and policy objects defined in Release-2 provide a powerful and versatile memory manage-
ment capability.

3.10 Input/Output
The Release-I design for Alpha did not have any formal input/output design. This

approach was reasonable considering the research nature of the project and the primary
goal of testing the effectiveness of the basic Alpha concepts. In Release-2, however, the

Functiona Description

B-12 Alpha Release 2 Design Sunmary

need for a consistent and flexible input/output strategy was considered very important
and the resulting design is essentially all new.

The Release-2 design provides a common device interface model and support for multi-
processor concurrency, fault detection, and error recovery. In order to achieve these
goals, the I/O model is based upon object encapsulation. In particular, device drivers are
encapsulated within device objects and device interrupts am mediated by a Device-Man-
ager object.

Device objects implement device specific operations and a set of generic operations
that define a consistent interface to all device objects. For device object support, the
Release-2 kernel provides spin-lock and wired-menory services. Spin-locks provide a
busywait form of synchronization needed within interrupt handlers, and wired-memory
provides fault free device control/data storage. The Device-Manager object manages
exception processing routines, the lowest level interface between devices and the kernel.

3.11 Secondary Storage
The Release-I design of Alpha did not contain support for secondary storage. In

Release-2, the primary goal of the secondary storage system is to provide support for vir-
tual memory and object permanence. Secondary goals, such as user specifiable database
strategies, played a lessor though also important role in the design. The Release-2 sec-
ondary storage system design is based upon the notions of secondary-storage, partition,
and backing-device objects.

A secondary-storage object, which are similar in function to a file, represents a named
list of ordered, potentially discontiguous, byte segments. A partition object, which is sim-
ilar in function to a filesystem, provides heap storage out of which byte segments com-
posing secondary-storage objects may be allocated or freed. The Release-2 design
allows for different types of partition objects impemeuting a range of different heap man-
agement strategies.

Backing-device objects define a standard interface for device drivers intended to sup-
port the secondary storage system in Release-2. This interface defines the behavior
expected of devices by the secondary storage system. Any device that can be coerced
into supporting this interface can support the secondary storage system in Release-2.

By building the secondary storage system out of objects, the Release-2 design pro-
vides location independence. Moreover, there is nothing about the design that precludes
a user space implementation. Traditional secondary storage features like miroring and
striping can be implemented at the device or partition level.

3.12 Communications
The init l Release-I version of Alpha assumed the existence of dedicated application,

scheduling, and communication processors. Thus, the code for the communication sub-
system was stand-alone and executed on a dedicated processor that communicated
through a bus with the rest of the kernel. This freed the application processor from hav-
ing the load of handling communication protocols, but on the other hand it artificially limit-
ed the amount of processing available to the communication subsystem, and kept the
communication subsystem from being well integrated into the rest of the kernel. For
Release-2 of Alpha, it was decided to integrate the communication subsystem into the

Functional Description

Alpha Release 2 Design Sunmary B-13

rest of the kernel, and allow it to be multi-threaded, just as any other part of the kernel
would be. Since scheduling information is bound to threads, the scheduler can then make
decisions within the communication subsystem, which it could not do in the Release-I
design.

There are five different protocols supported in the Release-I communication subsys-
tem: Reliable-Packet, Remote-Invocation, Thread-Maintenance, Page-Transfer and Mon.
itor-Acrive-Node-Stams. For the Release-2 design, it seems reasonable from a function-
al point of view that the Reliable-Packet and Remote-Invocation protocols alone are suf-
ficient for Alpha kernel communication. Although the functions of the other three
protocols are necessary, it appears that their functions can be completely subsumed by
Remote-Invocation built on a reliable packet protocol. Having fewer protocols simplifies
the task of designing and implementing the communication subsystem and this is the
approach being followed in Release-2.

3.13 Transactions
The atomic transaction mechanisms supported in Release-2 correspond closely with

those of Release-i. Each transaction is associated with a single thread. Transactions
may be nested, but the results of a nested transaction are not committed until the top lev-
el transaction enclosing it is committed. The kernel does not enforce a serializability
attribute of transactions; an application must choose the level of serializability appropri-
ate within its context and implement it with a consistent use of the Alpha synchroniza-
tion mechanisms. Likewise, the application is free to override the standard PRE-COM-
MIT, COMMIT, and ABORT operations on objects involved in transactions to implement.commit protocols that are more efficient or -permit a higher level of concurrency (e.g. com-
pound transactions).

The support for atomic transactions within Release-2 represents a relatively simple
and flexible mechanism which provides an adequate base for application development.
However, the Release-2 design (just as Release-i) is incomplete and there are addition-
al facilities which may be added to Alpha as a result of an ongoing research effort. These
include: (1) multiple threads cooperating on a single transaction, (2) using transactions
to provide atomicity for sets of kernel oprations, (3) integraion of transactions with the
scheduling subsystem, and (4) using transactions within the kernel itself.

3.14 Replication
The replication mechanisms proposed in the Release-I design are incomplete and leave

many details unanswered. For example, ther are different methods available to accom-
plish replication including both inclusive and exclusive updating schemes. For inclusive
replication, mechanisms need to be defined for migrating master staus and for propagat-
ing updates to all members of the quorum and the entire replicated set None of these
mechanisms have been defined yet. UnfoMntly, these design decisions am complicat-
ed by a number of factors including the high-availability versus consistency goals of repli-
cation. For high-availability, invocations on replicated objects should return as soon as
possible even before all replicants have been updated. For consistency, however, invoca-
tion return should be postponed until all updates are complete. Clearly, these conflicting

Fnctional Description

B.14 Alpha Release 2 Design Summary

goals have major interactions with Alpha's real-time scheduling mechanism. Determina-
tion of an accurate time value for a replicated update, for example, is an open question.

Unfortunately, the detailing of these needed mechanisms has not been accomplished to
date, and it was concluded that Release-2 would not attempt to change the incomplete
Release-1, design. Replication is a complex area of software design and is further compli-
cated in the Alpha case by the transaction and scheduling mechanisms of the system.
Research is underway at CMU regarding these issues and it has been left to a future
release of Alpha to resolve them.

3.15 Environments
In Alpha, the term environment refers to the set of resources or world view that an

application has during its lifetime. Environments are dynamic, they can change over
time. Since capabilities provide the means for inter-object communication in Alpha, the
set of capabilities available to an application determines its environment.

In Release-i, an application could make use of certain well-known capabilities that
were compile-time generated global variables. In other words, it was possible to defme
a set of capabilities for objects that would become bound automatically at object instanti-
ation time. This mechanism is useful in static situations where the set of objects com-
posing an application are all written together and can use mutually agreed upon naming
conventions for needed environmental capabilities. It is, however, not well suited for
dynamic environments where new object types are continually being created, and where
the set of objects composing an application may change often.

In order to address the problem of dynamic environments, Release-2 of Alpha uses
threads to convey the set of capabilities composing an environment rather than having a
set of compile-time generated capabilities as exists in Release-i. It is important to rec-
ognize that no new kernel mechanism is being created herm in Release-2. Release-1
also has the capability to pass capabilities as arguments to invocations, it the conven-
tional use of this mechanism for environmental support that is new in Release-2.

In particular, Release-2 uses thread capability passing for the creation of genesis envi-
ronments, namely the environment an application gets at start-up. In Alpha, this trans-
lates to the set of capabilities given to the parent object of an application. This environ-
ment was compiled into the parent object in Release-i. In Release-2, the environment is
communicated to the parent object via the initial thread invoked on the object. In a com-
mand interpreter situation, for example, when an application is started, the interpreter
creates a thread and invokes a START operation on the application passing an environ-
mental set of capabilities as arguments in the invocation. For the purposes of program-
ming, names an attached to these capabilities by convention. For example, genesis
threads could have the convention that the first capability passed represents standard
input, the second capability represents standard output, etc. This is similar to the UNIX
notion of initial file descriptors.

In order to create a bootstrap environment, the Alpha genesis thread, create,, by the
kernel and first sent to user mode, will contain an ordered list of capabilities rept%:enting
all the services provided by the booted kernel. The argument order of these capabilities
will be part of the system definition and will not change.

Functional Description

Alpha Release 2 Design Summary B-15

3.16 Programming
Application programming in Alpha Release-i was facilitated by a special C-preproces-

sor that implemented an object-like C-language interface to the system. In Release-2,
we felt it was important not to impose any special language constraints on application
programmers. Usage of standard languages such as C, Fortran, Ada, and Lisp, therefore,
was a goal of the Release-2 design.

In order to accommodate multiple languages, the design of the Release-2 system inter-
face is described in a language independent manner. All kernel object operations are doc-
umented without reference to language dependent types (integer arguments, for example,
are detailed as being 16-bit, 32-bit, etc.). With this interface, language dependent run-
time libraries can be written for the support of applications not written in assembler.
Object oriented support will be provided by runtime libraries for calling kernel object ser-
vices, giving the most natural interface possible to different languages. This runtime
library approach does not rule out the use of preprocessors similar to that used by
Release- 1, and it does provide interface independence that allows multiple languages to
work effectively with Alpha.

Funcdonal Description

8-16 Alpha Release 2 Design Summary

4 Conclusions
The Release-2 design of Alpha provides a number of new features to the Release- 1

rn..eirch de!,ign. Alnz'st 9U anas of 'he R-leas-o dsign have been modified in some
way, but overall the effect has not been to change the initial design in major ways. The
principal goals of the CMU research effort have not been compromised, and significant
new capabilities have been added to the Alpha system.

While a number of areas of the design require further work (the replication and transac-
ton strategies in particular) much progress was made in evolving the Release-I design
in the directions outlined in Section-I of this report. Of particular significance, is the
refined object, thread, invocation, and capability models in Release-2.

Function., in

Alpha Release 2 Design Summary B-17

References

[Northcutt 87] Northcutt, J. D.
Mechanisms for Reliable Distributed Real-Time Operating Systems:

The Alpha Kernel.
Academic Press, Boston, 1987.

[Jensen 88] E. Douglas Jensen, Jack A. Test, Franklin Reynolds, Edward Burke,
Jim Hanko

Alpha: KSR Research Plan.
Presentation to RADC by Kendall Square Research Corporation,

February 22, 1988.

Fur-;-' Description

