-

MASSACHUSETTS

LABORATC RY FOR @ i
'COMPUTEI SCIENCE = [

INSTITUTE OF
TECHNOLOGY

AD-A232 P TRMIT/LCS/TR-496

All IN-DEPTH ANALYSIS
OF CONCURRENT B-TREE
ALGORT "HMS

Paul Wang

February 1991

545 TECHNO .0GY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

.. .
. R .
H A'.A -
G ®
-~ L1 S v
4 T

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1o RESTRICTIVE MARKINGS

1a. REPORT SECURITY CLASSIFICATION

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release; distribution
is unlimiced.

2b. DECLASSIFICAT: N/DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPQRT NUMBER(S)
MIT/LCS/TR 496

S MONITORING ORGANIZATION REPORT NUMBER(S)
N00O14-89-J-1988)

OFFICE SYMBOL
(If applicable)

6a. NAME OF PERFORMING ORGANIZATION 6b 7a. NAME OF MONITORING ORGANIZATION

MIT Qffice of Naval Researchs/Dept. Of Navy

sha L

Lab for Computer Science

6¢. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
545 Technology Square Information Systems Program
Cambridge, A 02139 Arlington, VA 22217
8a. NAME OF FUNDING / SPONSORING 85 CrriCs 3¥ivsCL | 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATICN (If applicable)
DARPA/DCD
8c. ADORESS (City, State, and 2IP Code) 10. SOURCE OF FUNDING NUMBERS
. . PROGRAM PROJECT TASK WORK UNIT
1400 Wilson Blvd,, ELEMENT NO. [NO NO ACCESSION NO.

Arlingzon, VA 22217

11, TITLE (Inciude Security Classification)
An In-Depth Analvsis of Concurrent B-Tree Algorithms

12, PERSONAL AUTHOR(S)
Paul Wang

13a. TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year, Month, Day)]S PAGE COUNT
Techniczal FROM __TO Februarv, 1991 131
‘6. SUPPLEMENTARY NOTATION
17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROLP SUB-GRCUP B-Trees, Parallel algorithms, Dictionaries, Databases,

Multi-version memory, Replication, Cache coherency,

Software cache management
19 ABSTRACT (Continue on reverse if necessary and identify by block number)

cture designed to efficiently support dictionary operations for
In order to increase throughput. many algorithms have been

rrent operations on B-trees. Replicating objects in memory
iy for large distributed

The B-tree is a data stru
a variety of appiications.
proposed to maintain concu ;
large roie in concurrent B-lree performance, especia

can play a A : e dists ‘
Because most replication schemes are coherent, reaacss generally

and parallel systems.
cannot operate concurrently with a writer.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT
(2 uncLassiseouNumiTEs [Same As ReT

{7 oTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION
Unclassified

22a NAME OF RESPONSIBLE INDIVIDUAL
Car. . Yiccleora

22b. TELEPHONE (Inc/ude Area Code) | 22¢. OFFICE SYMBOL

(617) 253-3894 !

DD FOOM 1473, 54 MAK

83 APR edition may be used until exhausted

SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolfete

QUS._ Govd"nﬂ-“ Printing Office: 1988507047
Unclassified

R

19.

This thesis presents two new concurrent B-tree algorithms. The first is an link al-
gorithm that uses coherent replication: it is based on the Lehman-Yao algorithm which
performs better than any other proposed concurrent B-tree algorithni. The second is a
similar algorithm that uses multi-version memory, a new semantics for replicated mem-
ory. Multi-version memory weakens the semantics of coberent replication by allowing
readers to read “old versions” of data. As a result, readers can perform in parallel with
a writer. Also. implementations of multi-version memory require less communication
and synchronization. Simulation experiments comparing a variety of concurrent B-tree
algorithms show that the first algorithm bas better performance than previously pro-
posed algorithms and that the second algorithm has significantly better performance and
scaling properties than any algorithm using coherent replicated memory.

Accesston For

-— —— 4
NTIS GRA%I &
DTIC TAB 0
Unannounced O

Justification ____

By
| Distribution/

Avallability Coégs

WAVaii and/or
Dist Spacial

|
|

An In-Depth Analysis

of Concurrent B-tree Algorithms
by
Paul Wang
January 1991

(© Massachusetts Institute of Technology 1991

This research was supported in part by the National Science Foundation under Grant
CCR 8716854, by the Defense Advanced Research Projects Agency (DARPA) under Con-
tract N00014-89-J-19Y88. and by an equipment grant from Digital Equipment Corporation.

The author was supported by a National Science Foundation Gradu=te Fellowship.

Massachusetts Institute of Technology

T ubiy atory for Camnnier Srience
Lo atory tor Comr .

Cambridge, Massachusetts 02139

An In-Depth Analysis of Concurrent B-tree Algorithms

by
Paul Wang

Abstract

The B-tree is a data structure designed to efficiently support dictionary operations for
a variety of applications. In order to increase throughput. many algorithms have been
proposed to maintain concurrent operations on B-trees. Replicating objects in memory
can play a large role in concurrent B-tree performance. especially for large distributed
and parallel systems. Because most replication schemes are coherent, readers generally
cannot operate concurrently with a writer.

This thesis presents two new concurrent B-tree algorithms. The first is an link al-
gorithm that uses coherent replication; it is based on the Lehman-Yao algorithm which
performs better than any other proposed soncurrent B-tree algorithm. The second is a
similar algorithm that uses multi-version memory. a new semantics for replicated mem-
ory. Multi-version memory weakens the semantics of coherent replication by allowing
readers to read “old versions” of data. As a result, readers can perform in parallel with
a writer. Also, implementations of multi-version memory require less cornmunication
and synchronization. Simulaticn experiments comparing a variety of concurrent B-tree
algorithms show that the first algorithm has better performance than previously pro-
posed algorithms and that the second algorithm has significantly better performance and
scaling properties than any algorithm using coherent replicated memory.

Keywords: B-Trees, Parallel algorithms, Dictionaries, Databases, Multi-version mem-
ory. Replication, Cache coherency, Software cache management

This report is a minor revision of a Master’s thesis of the same title submitted to the De-
partment of Elcctrical Engineering and Computer Science on January 10, 1991, in partial
fulfillment of the requiteiients for ihe degree of Master of Scicuce in Electrical Lngincer-
ing and Computer Science. The thesis was supervised by Professor William E. Weihl.

Acknowledgments

First. I thank Professor William Weihl. my thesis supervisor and academic advisor. His
insights. comments. aud suggestions to this thesis were crucial and greatly appreciated.

I also thank Wilson Hsieh for his ruthless proof-reading and debugging skills. Qin
Huang and Brad Spiers waded through portions of my thesis and debugged some of my
code. Sanjay Ghemawat repaid an old debt with interest.

I cannot forget to include the members of the programming methodology group.
They have made my work environment exciting and unpredictable. 1 especially thank
Kathy Yelick. Earl Waldin, Steve Markowitz, Eric Brewer. and Chris Dellarocas. At
some time during the last two years, they were unlucky en:. _h to share an office with
me. Also. Carl Waldspurger was always around to initiate serious discussions and not
so serious flamefests. Sanjay and Wilson installed addictive computer games on my
machine whenever | needed to concentrate. Adrian Colbrook racked up some unbelievable
Battlezone scores. Bob Gruber's speculations about Twin Peaks seemed totally off-base,
but turned out to be true. Anthony Joseph ran large batch jobs that competed with my
simulations. 1 never got around to reading Qin’s thesis (or Sanjay’s, for the matter).

I would like to thank my roommates Kenneth I’ nndorf and Craig Thompson. Moving
next to a video rental store was a mistake. So was getting cable TV. Special uppreciation
goes to Steve Derezinski for helping me get the biggest hangover in my entire life. I also
thank Ronald Carino, Jennifer Harris, Jim Koonmen, Deborah Nungester, Arun Ram,
and Tim Shippert. among others. Sweet *54!

Finally. T would like to thank my family, especially my parents. Without their love
and support. I would never have been able to finish this thesis.

(&3]

Contents

Introduction
1.1 Dictionaries L e e
1.2 Pseudocode
1.3 Overview
The Concurrent B-Tree
2.1 B-Tree Data Structureso
2.1.1 B-Tree Nodes
2.1.2 B-Tree Anchor
2.2 Concurrent B-Tree Algorithms
2.2.1 Data Contention
2.2.2 Resource Contention
2.2.3 Dictionary Operation Structures
224 Issues
2.3 Related Work
The Coherent Shared Memory Algorithm
3.1 The B-Link Tree e
3.1.1 B-Link Tree Nodes
3.1.2 B-Link Tree Anchor
3.2 Miscellaneous Functions Lo L
3.3 The Lookup Operation
3.4 The Insert Operation L.
3.4.1 Descent Phase L
3.4.2 Decisive Operation
3.4.3 Restructuring Phase 00000
3.5 The Delete Operation
3.5.1 Decisive Operation
3.5.2 Restructuring Phase L.
3.6 Coordinating Background Processes
3.6.1 Examples ~fthe Problem.
3.6.2 Solution

-1

11
13
14

o

15

17
18
18
20
21
22
24
26
28
33

o

CONTENTS

3.7 Parent Pointers e 72
3.8 Summary 73
The Multi-Version Memory Algorithm 77
4.1 Multi-Version Memory Schemes oL 80
4.1.1 Specification L 80
4.1.2 Implementations 82
4.1.3 Multi-Version Memory and Existing Architectures 84

4.2 A General Transformation 86
4.2.1 Assumptions. 86
4.2.2 Transformation 90
1.2.3 Proof of Correctness 91

4.3 The Mulu-Version Memory Algorithm 98
4.3.1 Valid Assumptions 98
4.3.2 The New Algorithm L 100

4.4 SUMINATY o e 102
Performance Measurements 103
5.1 B-Tree Algorithms 104
5.2 The Implementation and the Simulator 105
5.2.1 Replication and Data Contention 105
522 Otherlssnes 107

5.3 Simulation Results 107
5.3.1 Operation Mixes, 108
5.3.2 Large Network Latency 117
5.3.3 Replication Factor Lo 118

9.4 SUMMATY . . v v v v v e e e e e e e e e e 121
Conclusions 123
6.1 Contributionso 123
6.2 Future Work L 124
6.2.1 Multi-Version Memory L oL 124
6.2.2 Concurrent B-Trees L. 125

List of Figures

—
—

[SI S]
[L B e R

I SR)

8™
(o

o]
—

w w o
da o Lo

w
Qe

3.6

3.7

3.3

3.9

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.1%
3.19
3.20
3.21
3.22
3.23
3.24
3.25

Example pseudocode program. oo 15
B-tree nodes with integer kevs.o 21
CCG for various lock protocols. 23
Leaf split example. 28
Sample Lehman-Yao B-link tree before inserting 10. 30
Sample Lehman-Yao B-link tree in the middle of split. 30
Sample Lehman-Yao B-link tree after inserting 10. 30
Example half_merge strategies. L. 37
Correct merge StTaiCgV. .« « v v v v v v 39
new_nede(l) procedure. Lo 41
new.ly_tree() procedure. L o 43
lylookup(k) procedure. T ..o 44
lookup_descent(k) procedure. L. 45
ly_insert(k.d) procedure. Lo 46
update_descent{k. stack) procedure. 47
split_leaf(leaf, k,d, stack) procedure. 48
divide_leafleaf) procedure.o 49
complete_split(s, p. stack,l) procedure. 50
find_parent(s. stack,l) procedure. oL L 51
start_node(s, stack,l) procedure. 52
split_interior(node, s, p, stack) procedure. 53
dwvide_interior(node) procedure. L oL 53
make_roof(l) procedure. Lo 54
update_rool(l) procedure. 56
ly-delete(k) procedure. 57
merge_leaf(leaf. stack) procedure. Lo 58
join_leaves(left_leaf. right_leaf) procedure. 59
complete_merge(s, p. stack,l) procedure. L., 60
Problem with the stack. L. 62
two_node_cmerge(node. s, p. stack) procedure. 64
Implementation choice for two_node_cmerge. 65
Changing separator values. L. 66

10

W ow o e
ISEVEEEY
e

(=]

o -1

o o
[V]
—

SN
o

[sae

v O v O

v v Qv Qv

(S]

g,n (w1

o 1S

LIST OF FIGURES

merge_interior(left_node. righi_node) procedure. 67
Jowmnanterior(lefi_node. right_node) procedure. N
Svnchronization example. L L 69
start_waiters(s.l) procedure. 71
Functions that divide and join wait Iists. 72
Parent pointers. 74
find_r procedure. 88
Transformed find.z procedure. o0 o000 a0
Transformed lookup_descent procedure. 101
Throughput vs. B-tree workers. 1005 lookup~. 109
Throughput vs. B-tree workers. 35% lookups. 10% tnserts, and 5% deletes. 110
Throughput vs. B-tree workers. 4 5 5 lookups. 30% inserts. and 25% deletes. 110
Throughput vs. B-tree workers. 5% lookups. 50% inserts. and 15% delctes. 111
Throughput vs. B-tree workers for maximum fanout of 6. 113
Throughput vs. B-tree workers for maximum fanout of 14. 113
Throughput vs. B-tree workers. Incrementing localized kevs. 114
Throughput vs. B-tree workers. Decrementing localized keys. 115
Throughput vs. B-tree Workers. Priority queue implementation. 117
Throughput vs. B-tree workers. Slow network. 118
Throughput vs. replication factor. 20 B-tree workers. 119
2 Throughput vs. replication factor. 100 B-tree workers. 120

Chapter 1
Introduction

The tield of computer science, much like the field of mathematics. uses the notion of
sets as a fundamental tool. The complexiwy of many algorithms depends on the efficient
immplementation of sets. A large ciass of applications. such as large-scale database systems
and svmbol tables for compilers. require sets that only need to support the insert. lookup
and delete operations. These sets are called dictionaries, ar-! the above operations are
called dictionary operations.

Many data structures have been designed to support dictionary operations. These in-
clude hash tables (invented. according to Knuth [(Knu73], by H. P. Luhn (1933)). balanced
binary trees [AVL62. Bay72. ST83], and B-trees [BM72]. B-trees are especially useful for
applications that use very large dictionaries that are stored in magnetic disks or other
direct-access secondary storage devices. The B-tree's structure allows it to minimize the
number of disk 1/0 operations needed to complete an individual dictionary operation.

A recent trend 1 large-scale computation systems has been a growth in processing
power. both within an individual processor, and with the number of processors within a
given machine. This growth has led to a greater concern for throughput of data struc-
tures. In recent vears, many papers (e.g., (BS77, ElI80. KL80, LY81, MR85, Sag86])
have proposed algorithms for maintaining efficient concurrent operations on B-trees. Un-
fortunately. as Johnson and Shasha [JS90] point out, very few studies have thoroughly
analyzed the performance of these algorithms. Even less clear are the algorithms’ scaling
properties. In most analvses. data contention has been the main (and sometimes only)
concern; such analvses ignore other important issues in large-scale parallel computation.

For example. as parallel and distributed svstems become larger and more powerful,
their communication networks will become more complicated. Large network latency can

adversely affect performance. Most B-tree analyses ignore network latency.

11

12 CHAPTER 1. INTRODUCTION

Another important and often ignored issue is resource contention. For example, everv
dictionary operation accesses the B-tree's anchor and root. If the system components
that store these structures cannot manage the number of requests to ac 2ss them. then
resource contention could become the limiting factor in performance.

Caching and other replication schemes can iimprove the perfdrmanhe of B-tree algo-
rithms. Caching allows local access to data. thus avoiding network latency. Caching
also reduces the dependence of performance on one reso: ce in the svstem. thus lowering
resource contention.

Most caching strategies require expensive communication and synchronization so that
reads and writes can appear atomic. We refer to such cache strategies as colrerent shared
memory. In order to improve the scaling properties of coherent shared memory. it be-
ccmes necessaryv {o limit the amount of communication and svnchronization.

One way to build scilable replicated memory schemes 1s to loosen the semantics
of coherent shared memory. Yor example. by allowing processes reading data to be
assigned an old version of the data, it is possible both to reduce communication and to
svnchronization needed to implement the replicated memory. and allow readers to access
data concurrently with a writer. This weaker semantics exp ses the memory replication
to the user. and is not as generally useful as the semantics provided by coherent shared
memory. However. it turns out that such a scheme is not only adequate for some B-tree
algorithms. but it also greatly improves performance and scaling properties.

The goal of this thesis is to analyze various concurrent B-tree algorithms with the

above issues in mind. Specifically. the contributions of this thesis are as follows:

e We present a new concurrent B-tree algoritiia based on Lehman and Yao's algo:
rithm {LY81] as modified by Sagiv [Sag86]. The Lehman-Yao algorithm is a link
algorithm, in which each node in the tree contains a pointer to its right neighbor.
Because these links allow processes to correct “mistakes” caused by process over-
taking, the algorithm does not require lock coupling to ensure concurrency control.
The algorithm also uses a two-phase restructuring phase for insert operations, so
that background processes can perform most of the restructuring needed to balance
the trec. Sagiv showed that insert and lookup operations need only lock one node
at a time. Our algorithm extends the two-phase approach to the restructuring
phase for delete operations. so that we can view both tnserts and deletes symmet-
rically. We bese our two-phase delete rcestructuring phase on ideas by Lanin and

Shasha [LS86!. but with modifications for correctness and efficiency.

1.1

1.1

DICTIONARIES 13

e We propose a new semantics for replicated memory, called multi-version mem-

ory [WWY0]. This semantics allows a reader to read old versions of replicated
data. While less generally useful than coherent shared memory, implementations of
multi-version memory produce more concurrency and provide better scaling proper-
ties than coherent shared memory. We show how a variety of concurrent dictionary
algorithms. including our proposed algorithm above, can use multi-version memory
to improve performance. We then present a multi-version memory algorithm based

on our algorithm above.

We compare our two algorithms with algorithms already proposed by others [MR85.
BS77.. lu our experiments. we measure the performance of various concurrent
B-tree algorithms using random operation and key selections, as well as simula-
tions with localized key selections and fixed operation patterns. Using a message-
driven simulator for large-scale message-passing architectures, we model resource
contention. network latency, and replication, as well as data contention. We find
that the performnance of the multi-version memory algorithm is significantly bet-
ter than the other algorithms. Our measurements also indicate that multi-version
memory 1s much more efficient and scalable than coherent shared memory. since it

requires less communication and synchronization.

In the next section. we formally define the dictionary abstraction. In Section 1.2,
we describe the pseudocode used in the thesis to describe algorithms. In Section 1.3, we

present an overview of the entire thesis.

Dictionaries

A dictionary 1s a dynamic set (i.e., its elements may change over time) that supports

the operations insert, delete. and lookup. Let Data denote the set of “data values” that

can be stored and maintained by the dictionary. Let Aeys denote the fully ordered set

of values under which the above data values can be “keyed.” A dictionary’s elements

are tuples of the form < k.d >, where & € Aeys and d € Data. No two clements of a

dictionary have the same key.

We define the specifications for the three dictionary operations as follows:

o lookup takes as arguments a dictionary D and a key value k. lookup returns the

data value d. if < k.d >= D. Otherwise, it returns nal.

\

14

CHAPTER 1. INTRODUCTION

insert takes as arguments a dictionary D, a key value k, and a data value d. insert
first checks if for all < &'.d" >& D. k # k'. 1f that is true, then insert augments
the dictionary D with tle element < k.d >, otherwise it does nothing.

delete takes as arguments a dictionary D and a key value k. delete removes any
element < . d > D from D.

We refer to insert and delete as update operations. since they might modify the state of

the dictionary.

In specifving the operations. we view each as an atomic action: the implementation

must guarantee that the apparent behavior is as if the operations execute atomically in an

order consistent with their real-time order. This property is called linearizability [HW90].

1.2 Pseudocode

In this thesis. we describe algorithms using a pseudocode whose syntax is like C, Algol,

or Pascal. The conventions for the pseudocode, based on the conventions for pseudocode
used by Cormen. et al. [CLR90]. are the following:

The loop constructs while and for, and the conditional constructs if, then. and

else have the same interpretation as in Pascal.

fork < op > forks a new process. which independently performs < op > in parallel

with other processes.
Assignments are of the form a := b. where a is assigned the value of b.

Array elements are accessed by specifying the array name followed by the index in
square brackets. For example, A[t] denotes the i’th element of the array A. We
denote the largest and smallest indices of an array A by A.high and A.low. Unless

specified otherwise. we assume the low bound of array indices i1s .

Compound data will be organized into records, which are comprised of fields. We

1)

access a particular field by specifying the record name, followed by a “.”, followed
by the field namc. For example rec.foo refers to the foo field of record rec. We can
concatenate accesses to record fields and array elements; unless otherwise specified,

these accesses should be parsed from left to right.

r-- | |/ }?]'!Ppt /| /—

1.3. OVERVIEW 15

proc insertion_sort(A)
% A 1s an array of inlegers

1 for j = Alow + ! to Ahigh do
2 key = Al
% tnsert A[j] wnto the sorted sequence from A[A.ou] to Afj — 1]
3 1=) ~ 1
4 while 1 > Alow — 1 && Afi] > key do
5 Al + 1] = A[i]
t 1 =1 -1
¥ end
& Alt + 1] = key
9 end

10 end insertion_sort

Figure 1.1: Example pseudocode program.

o A variable representing a record or array is treated as a pointer to data representing

the record or array.

e \ariables are local to the given procedure. We will not use global variables without

explicit indication. and we will denote them by names with all capital letters.

o Sometimes variables will refer to nothing (e.g., unassigned variables, uninitialized

pointers). In this case. we give them the special value of nil.

o Parameters are passed to a procedure by value (i.e. the called procedure receives
its own copy of the parameters). When arrays and records are passed. pointers to

the data are passed.

e The symbol “%” indicates that the remainder of the line i1s a comment.

Figure 1.1 is an example program, a simple insertion sort, written in our pseudocode.

1.3 Overview

We organize the thesis as follows.

Chapter 2 presents the B-tree data structure and gives a general overview of the

algorithms developed for maintaining concurrent operations on B-trees.
Chapter 3 presents a new concurrent B-tree algorithm based on the Lehman-Yao

concurrent B-tree algorithm [LY81] as modified by Sagiv [Sag86]. This algorithm presents

16 CHAPTER 1. INTRODUCTION

a new implementation of the delete operation similar to that of Lanin and Shasha’s [LS86],
but with modifications for correctness and efficiency.

Chapter 4 introduces multi-version memory and shows how the algorithm presented
in Chapter 3 can incorporate this novel replication abstraction to produce a more efficient
algorithm..

Chapter 5 describes simulation experiments designed to cotnpare the two new al-
gorithms with existing concurrent B-tree algorithms. It discusses how the simulations
address issues in analvzing large-scale parallel applications such as data and resource
contention. replication. and network latency. It then presents the results of the experi-
ments.

Chapter 6 presents a summary and conclusions. It also describes some directions for

future work.

Chapter 2

The Concurrent B-Tree

The B-tree. originally proposed by Baver and McCreight [BM72], is a data structure
designed to support dictionary operations. A variant of 2-3 trees (invented in 1970 by
J. E. Hopcroft). the B-tree is well suited for applications where the dynamic set man-
aged by the dictionary is extremely large: such applications must keep the dictionary in
secondary storage devices such as magnetic disks. Because acresses to secondary storage
are much slower than accesses to real memory, an important { tor for performance is the
number of 1/0 operations. Unlike a 2-3 tree. where each non-leaf nodes may only have
two or three children, a B-tree node’s “maximum fanout” (maximum number of children)
can be large. This minimizes the height of the B-tree. In applications that store dictio-
naries on magnetic disks, it is common for each node in the tree to occupy one page of
virtual memory. Therefore, reducing the height of the tree also reduces the number of
I/0 operations needed to perform dictionary operations. Comer [Com79] presents a full
review of B-trees.

Bayer and McCreight [BM72] designed the original B-tree algorithms for sequential
applications. where only one process accesses and manipulates the B-tree. The primary
concern of such algorithms is minimizing latency. However, in recent years, with the
growth of processing power and parallel computing, maximizing throughput has become
an important concern.

With the B-tree, it is possible to improve throughput by allowing independent pro-
cesses to perform concurrent operations. Many proposed algorithms do just that ([BS77,
EllI80, KL80, LY81, MR85. Sag86], among others). This chapter presents an overview of
these algorithms.

Section 2.1 presents the data structures and abstractions that make up the concurrent

B-tree. Section 2.2 describes the existing concurrent B-tree algorithms and discusses the

17

18 CHAPTER 2. THE CONCURRENT B-TREE

main characteristics that distinguish the algorithms. Section 2.3 discusses other work
related to concurrent dictionaries, including data structures other than the B-tree that

efficiently support parallel operations.

2.1 B-Tree Data Structures

A B-tree consists of a set of nodes. Nodes mayv either be leaves, which store the actual
dictionary elements and have no children. or non-leaves, which have children and don’t
store any dictionary elements. Such an arrangement. where only leaves store data. does
not correspond to the original design of the B-tree, but a variant commonly referred to
as the B+-tree [Com79]. Wedekind [Wed74] pointed out that such a variant is more
appropriate for database applicaiions than the original B-tree. This thesis only examine
algorithms that maintain B+-trees, and will use the term “B-tree” to mean “B+-tree.”

The B-tree anchor is a special data structure that contains a pointer to the root of the
tree. It might also contain other information, such as the height of the tree, or pointers

to other nodes in the tree.

2.1.1 B-Tree Nodes

We define the abstract state of the two types of B-tree nodes as follows:

¢ A non-leaf node n with j children consists of a sequence (sq, p1, $1, P2, S2-+ - -, D5y 85),
where each p; is a downlink, and each s; is a separator. A downlink is a pointer
to a child of n, and a separator is a value in the domain Aeys used to guide
dictionary operations around the tree. The separator values are in ascending order
(1e.,, V(1 <7< 5), 81 < 59).

o A leaf node n that stores j elements consists of the following:

— A sequence (ky,dy, ky,dy, ..., kj,d;), where each tuple < k;,d; > represents
an element stored in the leaf. The key values are in ascending order (i.e.,
V(2 <i<j), ko1 < k).

- Two key values kpin and k.. For all dictionary elements < k.d > stored in
the leaf, ki < b < ks

We sometimes compare individual elements in the above sequences “directionally.”

For example, if an element a occurs before clement b in a sequence (e.g., s occurs before

2.1. B-TREE DATA STRUCTURES 19

s1 in the sequence of a non-leaf node), then we sometimes state that “a is to the left of
b.” Symmetrically. if a occurs after b, then we sometimes state “a is to the right of b.”

Some algorithms require the abstract state of nodes to contain more information, such
as links to neighbors. We present and define such additions with the presentations of the
individual algorithms.

Downlinks connect nodes in a B-tree. If a non-leaf node n stores a downlink in
its sequence to node m. we say “n is the parent of m.” We cannot arbitrarily assign
downlinks. There are a set of restrictions that make the B-tree data structure “legal.”

Before defining these restrictions, we must first define the following procedures:

¢ lcft_sep takes as an argument node n. If n is a non-leaf. it returns the leftmost
{smaliest) separator value stored in n’s sequence. If n is a leaf. it returns n’s ky,;,

value.

o right_sep takes a node n. If n is a non-leaf. it returns the rightmost (largest)

separator value stored in n’s sequence. If n is a leaf, it returns n's k.., value.

o coverset takes a node n, and returns the set of keys {k | lefi_sep(n) < k <

right_sep(n)}.

o height takes a node n, and returns the minimum path length from n to a leaf in
the tree. (If n is a leaf, height(n) = 0.)

We now present the restrictions on B-tree nodes that define legal states for sequential

B-tree algorithms:

e Everv node in the tree has exactly one parent (i.e., exactly one other node must
have a downlink that points to the node), except the root node, which has no

parent.

e If 2 downlink in n points to the node m, then in the sequence that makes up n’s
abstract state, the separators to the immediate left and immediate right of the

downlink are equal to left_sep(m) and right_sep(m).
o All paths from the root to a leaf node have the same length.

e The coversets of all nodes in any level in the tree form a partition of the keyspace.

\

20

CHAPTER 2. THE CONCURRENT B-TREE

There exists two constants { and u, { < u, such that all nodes, except the root,
must have at most u and at least [dictionary elements or downlinks (depending on
whether the node is a leaf or not). The root must contain at Jeast 2 and at most u

downlinks. For most algorithms, { is either 1 or w/2.

Most. but not all. concurrent B-tree algorithms follow the first two restrictions. Some,

such as the Lehman-Yao algorithm [LY81]}, have much looser constraints.

We represent a B-tree node n in our pseudocode as a record with the following fields:

n.size stores the number of dictionary elements or downlinks in n.
n.level contains height(n).

If n is a non-leaf with j children. then n.p is an array of downlinks to n’s children,
and n.s is an array of separators. For 0 < a < j. n.sja] = s,, and for 1 < b < 5,
n.p[bl = p,. where s, and p, arc separators and downlinks in the sequence of n’s

abstract state. Note that the minimum index for the array n.s must be 0.

If n is a leaf storing j dictionary elements, then n.k is an array of key values and
n.d is an array of data values. For 1 <1 < j, n.k[1] = ki and n.d[i] = d;, where k;

and d; are keys and data values in the sequence in n’s abstract state.

If n is a leaf, then n.righi_sep stores right_sep(n). n does not store left_sep(n); its
left neighbor stores the value in its right_sep field. If n has no left neighbor. we

assume left_sep(n) is the minimum possible key value.

n may contain other fields as well, depending on the B-tree algorithm. For example,

some algorithms require n to have a field n.rightlink, which points to n’s right neighbor.

Figure 2.1 illustrates the pseudocode representation of B-tree nodes. However, we

keep most figures in the thesis simple by drawing a non-leaf node by its abstract state (a

sequence of separators and downlinks); we draw a leaf as a sequence of key values, and

a right separator value. In order not to clutter figures, we ignore data values.

2.1.2 B-Tree Anchor

The B-tree anchor is a pointer to the root of the tree. We represent the anchor in our

pseudocode as a record a with at least two fields:

® a.root_pointer is a pointer to the root of the tree.

2.2. CONCURRENT B-TREE ALGORITHMS 21

n.size:7 n.level:1

LT T=]a] ns

non-leaf
node n L LN N np
m.size:5 m.level:0
leaf node m Luleufslofnk

L-lef~T%]s]nd

m.right_sep:18

Figure 2.1: B-tree nodes with integer keys.
e a.root_level stores the height of the node that a.root_pointer is pointing to.

For some algorithms, the anchor need not point to the actual root of the tree, but
to a node “close” enough to the root to avoid performance degradation. The anchor
may store other relevant information as well. For example, some algorithms require the
anchor to store an array of pointers that point to the leftmost node of each level in the
B-tree.

2.2 Concurrent B-Tree Algorithms

The number of proposed concurrent B-tree algorithms prevents a separate discussion
about each algorithm. Instead, this section presents the common issues the algorithms
must address. as well the basic distinctions among the algorithms.

All the algorithms share the fundamental problem of contention. There are two

forms of contention. The first is data confention, which forces independent operations to

| S
o

CHAPTER 2. THE CONCURRENT B-TREE

synchronize to prevent them from adversely interfering with each other. The second is
resource contention. Performance will degrade significantly if too many processes use a
single resource in the system (e.g.. a memory module in a shared-memory architecture,
Or a processor in a message-passing machinej. Sections 2.2.1 and 2.2.2 discuss the two
forms of contention and explain how all the concurrent B-tree algorithms deal with them.

The various algorithms also implement dictionary operations using the same general
structure [SG8R]. For example. all operations begin with a descent from the root of the
tree to the proper leaf. They then perform a decisive operation (also referred to as a
decisive step), such as looking up a key in a leaf node, or adding or deleting a dictionary
element to or from a leaf. All updatec operations require a restructuring phase to ensure
that the tree remains balanced. Section 2.2.3 presents these similarities in detail.

The actual differences among the algorithms lie in the choices made in four orthogonal
1ssnes For some of these issues, such as conservative vs. optimistic descent, the optimal
choice is clear. Others require more analysis. Section 2.2.4 presents and discusses each

of these issues.

2.2.1 Data Contention

Unless properly synchronized, independent processes accessing a B-tree may adversely
interfere with each other. For example, consider two processes, where one is reading
data from a B-tree node. and the other is updating the state of the same node. In the
middle of its update, the writer may put the abstract (or concrete) state of the node into
an improper state, which the reader may read. Preventing this requires synchronization

that may cause processes to block one another, thus causing data contention.

Concurrency Control

Algorithms must maintain concurrency control to prevent adverse interference like the
above example. A common approach is to associate a read/write lock with each node
in the tree. Independent operations miay concurrently acquire the same lock in read
mode. However, a process can acquire a lock in write mode only if no other process has
acquired the lock in either read or write mode. Figure 2.2(a) shows the compatibility and
convertibility graph (CCG) [BST77] for read/write locks. A CCG is a directed graph whose
nodes are labeled with lock modes and whose edges represent the legal relations between
two modes of locks. A solid edge between two nodes denotes the compatibility of two

lock modes (i.e.. it is possible for two independent processes to concurrently acquire the

2.2, CONCURRENT B-TREE ALGORITHMS 23

SoORN©

(a) read/write locks

, int.

’
’

(b) read/intention/write locis

Figure 2.2- CCG for various lock protocols.

lock with the modes specified by the nodes). A broken edge from one node to a second
indicates that it is legal for a lock of the first type to be directly converted to the second
type without releasing the lock. For read/write locks. only readlocks can be acquired

concurrently.

We assume a convention where operations to read and write data are distinct from
operations for synchronization. The association between the data and the lock that
“protects” the data is merely a program convention. To read data, one must first acquire
a readlock on the lock associated with the data, read the data, then release the lock.
The case of writing to data is analogous. We sometimes refer to acquiring the lock
corresponding to a data structure in read (or write) mode as “readlocking (or writelocking

the data structure.”

Note that we can maintain concurrency control by having only one read/write lock
for the entire tree. However, this severely limits the amount of concurrency within the
B-tree.

24 CHAPTER 2. THE CONCURRENT B-TREE

Earlier algorithms [BS77. ElI80, KW82] proposed alternative multi-lock strategies,
which included various kinds of “intention to write” locks. Such locks could be held
concurrently with readlocks but not with writelocks, or other “intention to write” locks. ?
Figure 2.2(b) shows the CCG of one such multi-lock scheme [BS77]. These strategies
turned out to be less effective than more recent algorithms using ordinary read/write

locks [LSS87]. Thus. this thesis ignores such lock strategies.

Data Contention and the Root Bottleneck

Maintaining concurrency control causes data contention. Writers block incoming readers
and writers from accessing the same B-tree node; readers block incoming writers. Such
contention degrades performance. especially when it occurs in the higher nodes in the
tree. A process that updates the root or the anchor is especially painful. since every
B-tree operation must access both of them. We call this problem the root bottleneck.
The approaches used by concurrent B-tree algorithms to reduce data contention.
especially the root bottleneck, are the main differences among individual algorithms.
Algorithms try to minimize both the time needed to hold writelocks and the number of

writelocks a single process may concurrently hold.

2.2.2 Resource Contention

Even if there is no data contention, performance may still degrade as the number of
concurrent operations in the B-tree increases. This is due to resource contention.

Consider an example wherc the system stores onlv one copy of every B-tree node in
memory, concurrent processes only read data from the tree, and all processes try to read
the same node in the tree. In a shared-memory architecture, all the processes will try to
access the same data, which will be located in a single memory module in the machine. In
a message-passing architecture, the processor in which the B-tree node resides will receive
messages from every process requesting access to the node. In both cases, performance
will degrade if the single piece of hardware that mainiains the copy of the node cannot
handle the number of requests.

Resource contention in a B-tree can be a serious problem, especially for the anchor
and the root. Every B-tree operation must visit both. If the svstem’s memory only
stores one copy of each node, resource contention will likely be the limiting factor in

performance.

"Korth [Kor83} introduced similar lock modes, specifically for use in database management.

2.2. CONCURRENT B-TREE ALGORITHMS 25
Coherent Shared Memory

A solution to the resource contention problem is replication. Allowing multiple copies of
the same object spreads the work load among many components in the system. Repli-
cation can also improve locality. If a copy of an object is kept local to a process that
accesses the object. then the process can avoid network delays involved in accessing re-
mote data. One form of replication is hardware caching. In an application such as a
concurrent B-tree. caching and other forms of replication are likely to play important
roles in improving performance.

Replication schemes that maintain multiple copies of objects generally require cache
coherence protocols so that individual read and write operations appear atomic.” Coher-
ence ensures that the existence of replicated data objects in memory is transparent to the
user. We denote the class of memories that use such protocols as coherent shared memory
schemes. Archibald and Baer [ABS6] present an analysis of many proposed coherency

algorithme.

Multi-Version Memory

(oherent shared memory allows for better performance by reducing resource contention
and improving locality. It also gives the user the appearance that read and write oper-
ations are atomic. despite multiple copies of the object. However. the synchronization
between readers and writers and the amount of communication between replicated copies
grow with both the number of readers and writers, and with the number of copies. By
weakening the semantics of coherent shared memory. we can improve the performance
of some concurrent B-tree algorithms while still ensuring correctness. We call this new
“weakened” memory scheme multi-version memory.

A multi-version memory weakens the semantics of a coherent shared memory by al-
lowing a process to read an “old version” of data. (For example, if we use hardware
caches. the process might simply use the version in its cache, even if updates by indepen-
dent processes have not been recorded.) Therefore, individual read and write operations
no longer appear atomic. While Lhis semantics is not as generally useful as a roherent
shared memory’s semantics. many applications can use multi-version memory to improve

performance.

“Suchi memory schemes have used many subtly different correctness criteria, including sequential
constsiency [LamT9) and linearizabilaty [HWOO0]. This thesis will use linearizability as its definition of
correctness

26 CHAPTER 2. THE CONCURRENT B-TREE

Multi-version memory achieves better performance than coherent shared memory
schemes because of the following important characteristics of its iimplementations (pre-

sented in Chapter 4;:

e Theyv allow processes reading data to run concurrently with a process writing to

the same data.

e They eliminate “cache misses” resulting from invalidation caused by writes by other

processes.

o Theyv eliminate the need {or processes to wait for messages that update or invalidate

replicated copies.

The first characteristic reduces data contention. since in a multi-version memory.,
writers do not block readers. The other two characteristics reduce the amount of svn-
chronization and communication needed to maintain the replicated copies, thus reducing
the effects of resource contention. Chapter 4 presents multi-version memory in detail.
and explains how some concurrent B-tree algorithms can use it to significantly improve

performance.

2.2.3 Dictionary Operation Structures

The implementations for the three dictionary operations in all concurrent B-tree al-
gorithms follow a similar structure. This section presents the three basic phases that
concurrent B-tree operations use. Note that in the following discussion, we do not take
into account concurrency control: we intend for this section to provide a rough framework

common to all concurrent B-tree algorithms.

Descent Phase

B-tree operations start with the descent phasc. Given an operation with key £k as an
argument, the descent starts at the anchor of the B-tree and continues until the leaf
node . where k = corerset(l). is reached. The steps of the descent phase are roughly the

following:

e Access the anchor to determine the root of the B-trec. The root will be the first

node visited.

2.2, CONCURRENT B-TREE ALGORITHMS 27

o At each non-leaf node n visited, find the node m in the level below n such that
k € coversel(m). For most algorithms, this requires finding the appropnate child of

1. using the separator values stored in n. This child will be the next node visited.

e When the visited node is [, the descent phase completes.

Decisive Operation

B-tree operations perform a decisive operation after the descent phase. Lookups check
if anyv dictionary elements stored in [contain key k: inserfs insert a data element into
the leaf: deletes delete data elements from the leaf. This thesis will sometimes refer to

decisive operations as decisive steps.

Restructuring Phase

Update operations (insert and delete) have one more phase. The restructuring phase
performs the necessary changes within the B-tree to ensure that the tree stays balanced.

We will describe the restructuring phase of the insert operation more closely. (The
corresponding phase of the delete operatipn is symmetric, with the concept of “node
splitting” replaced with “node merging.”) lnserting a dictionary element into the B-tree
may cause a leaf to become “full,” i.e., the number of elements stored in the leaf exceeds
its upper bound. When this happens. the leaf must be split in two, with the dictionary
elements stored in the original leaf divided up among the two leaves. Figure 2.3 shows
how a leaf that is full can be split. We assume that when a leaf is split, the right leaf is
a newly created leaf, and the left leaf is the original leaf with its state updated. When
such a split occurs, we insert a new downlink and a new separator value into the parent
of the original child. This may cause the number of the parent’s children to exceed the
upper bound, thus forcing the parent to split, and so on. It is possible for this splitting
to propagate all the way up to the root of the tree, which causes a new root to be created
and the anchor’s root pointer to be updated.

Some algorithms require the restructuring phase to be completed before the update
operation returns. Other algorithms augment the B-tree nodes with additional fields,
so that the update can return immediately after the decisive operation, and background
processes can complete the restructuring phase. Some algorithms “piggvback” the re-
structuring phase onto the descent phase. The next section will discuss each approach

1n detail.

28 CHAPTER 2. THE CONCURRENT B-TREE

Y night_sep:30 feaf node
[g |11 {15]18]19]23} Fomeealn
(@) Y is full

X 2l fusly 1ol {7

nght_sep:13

(b) Y is split and 10 is inserted

Figure 2.3: Leaf split example.

2.2.4 Issues

The differences between individual concurrent B-tree algorithms lie in the decisions they
make in four mostly orthogonal issues. The lock-coupling vs. link issuc concerns the
method that an algorithm uses to control the process overtaking problem. Bottom-up
vs. top-down updating determines the order in which the restructuring phase of update
operations changes the states of nodes. Conservative vs. optimistic descent determines
the mode in which the descent phase of update operations acquires its locks. Finally,
merge-at-half vs. merge-at-empty determines when nodes in the B-tree are merged or

deleted.

Lock-Coupling vs. Link

Associating read/write locks with B-tree nodes, and accessing the nodes only after acquir-
ing the appropriate lock with the proper mode does not completely solve the concurrency
control problem. There are situations, which we refer to as process overtaking, where up-

date operations can still adversely affect other concurrent operations.

2.2. CONCURRENT B-TREE ALGORITHMS 29

For example, recall Figure 2.3. Suppose process A, while performing a lookup(19)
operation. readlocks node X in Figure 2.3(a) during its descent phase. It concludes that
A''s child Y 1s the next node to visit. It releases the readlock on node X. Before A
acquires a readlock on Y, process B, which inserts key 10, “overtakes” process A, and
completes its operation. Since Y will overflow if key 10 is inserted, B’s restructuring
phase will split ¥ (into Y and Z), as shown in Figure 2.3(b). When process A eventually
readlocks leaf }', all pertinent information in Y has already been moved to Z, so A

accesses the wrong node.

To prevent process overtaking. most B-tree algorithms have their operations use lock
coupling to block independent operations “above them” from accessing nodes within
a sub-tree. During the descent, an operation traverses the tree by first obtaining the
appropriate lock on the appropriate child before releasing the lock on the parent. In
some cases. descents do not release the lock on the parent until much later. We discuss

this in our presentation of the bottom-up vs. top-down issue.

Lehman and Yao [LY81] suggest another approach. They propose adding rightlinks
to all nodes. ‘I'hese links are pointers to a node’s immediate right neighbor. They
effectively eliminate the need for lock-coupling. It is possit. for a descent to reach a
“wrong node.” However, as long as the “wrong node” is to the left of the “correct node,”
the links provide a way for the operation to redirect itself. In the above example with
Figure 2.3(b), if process A readlocks Y and discovers that process B has already moved
the relevant contents of Y to Z. it will follow the rightlink from ¥ to Z.

As pointed out by Sagiv [Sag86]. rightlinks allow insert and lookup operations to lock
only one node at a time. Lanin and Shasha {1 586] developed similar schemes for deletes
that lock only one or two nodes concurrently. (Unfortunately, their schemes introduced

some errors, which we explain and correct in Chapter 3.)

Rightlinks also allow much of the restructuring phase in update operations to be done
by background processes. During an insert operation, if a leaf is split, a downlink to the
new leaf must be added to the parent. However, with the presence of rightlinks, the insert
operation may return after the leaf is split, and a background process may complete the

downlink insertion for the parent node.

Consider the following example. In Figure 2.4, we see a sample tree before the inser-
tion of key 10. The insertion will cause the leaf node Y to be split. Figure 2.5 shows
the result of the insertion and split. Figure 2.6 shows the insertion into parent X of a
downlink pointing to Z (as well as the new separator between Y and Z). However, in a

tree with rightlinks, the transformation from Figure 2.4 to Figure 2.6 need not be atomic.

30

CHAPTER 2. THE CONCURRENT B-TREE

[\

some leaf node

right_sep:30

™ s o JisTis]e]23)

| &

some leaf node [~

I some leaf nodc

Iligure 2.4: Sample Lehman-Yao B-link tree before inserting 10.

Y
some leaf node r—‘

right_sep:15

Z right_sep:30

{ 8]10f1]us]

nme|

—

some leaf node

—

+ some leaf node

Figure 2.5: Sample Lehman-Yao B-link tree in the middle of split.

X'L/I,Lﬂrwl\i

’Iime non-leaf node]

/

\

Y right_sep:15 Z right_sep:30
leaf nod i leaf node i
some node H ' TS ETHET 3119 12 some node (someleafnode

Figure 2.6: Sample Lehman-Yao B-link tree after inserting 10.

2.2. CONCURRENT B-TREE ALGORITHMS 31

The tree in Figure 2.5 can adequately support dictionary operations. Any operation that
needs to access leaf Z can still do so by visiting Y and chasing its rightlink to Z. We
refer to the transformation from Figure 2.4 to Figure 2.5 as a half_split and the trans-
formation from Figure 2.5 to Figure 2.6 as a complete_split. A background process can
do the complete_split transformation, so the insert operation can complete right after
the lallspiii. A delete operation’s restructuring phase is suniiar to that of inscrticnz.
In Chapter 3. we discuss in more detail the background transformations for both update
operations.

Rightlinks eliminate the need for lock-coupling, thus reducing the number of locks
that need to be held concurrently. They also allow much of the restructuring phase to
be performed in the background. which increases concurrency and throughput. However,

traversing rightlinks may also increase latency.

Conservative vs. Optimistic Descent

In the descent phase of lookup operations, it 1s obvious that acquiring readlocks on nodes
visited is the correct procedure, since lookups do not affect the state of the B-tree. For
update operations. however, the choice of what type of lock to acquire is not as clear.
In a conservative descent strategy, an update operation writelocks every node it visits
during its descent phase, because the restructuring phase may later alter the state of the
node.

Bayer and Schkolnick [BS77] originally proposed the idea of optimistic descent strate-
gies. These protocols optimistically assume that only leaf nodes need to be restructured
during the restructuring phase. Therefore, an update operation’s descent uses readlocks
instead of writelocks, except at the leaf level. If the update requires modifications above
the leaf level, the optimistic descent gives up, and the update retries with a conservative
descent.

In general, optimistic descent strategies perform much better than conservative strate-
gies, since they virtually eliminate the need for writelocks in the upper levels of the tree
(where contention is highest) [LSS87, JS90]. In most B-tree implementations, the prob-
ability of an update operation causing modifications above the leaf level is slight. Lanin
et al. [LSS87) predict a probability of (0.69s)~! for B-trec applications with only inserts
and lookups, where s denotes the maximum number of dictionary elements a leaf may
hold.

Rightlink algorithms always use an optimistic strategy, and their descents never fail.

Since background processes run the restructuring phases and acquire their own locks,

R

32 CHAPTER 2. THE CONCURRENT B-TREE

there is no need to acquire writelocks during the descent. -

Lanin. et al. [LSS87] suggest a simple improvement to the optimistic descent strategy,
called the quick-split. Parents of leaves, as well as the leaves, require writelocks during
the optimistic descent. while the rest still only require readlocks. This change allows the
optimistic descent to handle any restructuring in the bottom two levels of the tree, thus
further reducing the chances of retrying the update with a conservative descent. With
a random distribution of operations, the additional writelocks do not significantly affect
concurrency within the B-tree; they occur at the low levels in the tree, where contention
is usually slight. Simulations of quick-splitting show an improvement in throughput by

as much as 20% over that of ordinary optimistic strategies [LSS87].

Bottom-Up vs. Top-Down Updating

To handle restructuring above the leaf level. Baver and Schkolnick [BS77) describe a
bottom-up strategy for lock-coupling algorithms, where changes start at the leaf level.
and then propagate up the tree. The consequence of such a strategy is that a conser-
vative descent must hold writelocks on all nodes visited until it reaches a descendant
that is “safe.” We define a safe node as a node where the update operation’s resulting
restructuring phase could not possibly cause it to be split or merged.

Mond and Raz [MR85] propose an alternative top-down strategy for lock-coupling
protocols that performs the restructuring phase with conservative descents. Before it
releases the writelock of a parent, the Mond-Raz strategy writelocks the appropriate child.
If required. the Mond-Raz pessimistic descent splits or merges the child and updates the
parent’s state accordingly. Only after it updates the state of the parent, or if the child did
not need updating in the first place, is the parent’s writelock released. The Mond-Raz
approach “piggvbacks” the restructuring phase onto conservative descents. The main
advantage to this approach is that it can release a writelock to a node immediately after
performing some transformation on one of its children. In contrast, a pessimistic descent
with bottom-up restructuring may acquire writelocks for an arbitrary amount of time
(until it reach a “safe” descendant).

The Bottom-up vs. Top-down issue is relevant only to lock-coupling strategies. It is
not an issue for link algorithms. which use optimistic descents and perform restructuring
in the background.

For lock-coupling strategies. it is unclear which of the two strategies is more efficient.
Bottom-up lock-coupling strategies have the disadvantage of holding writelocks during
the descent phase until they reach safe descendants. They also hold more writelocks

2.3. RELATED WORK 33

concurrently. Top-down strategies have longer latencies, since they must check all nodes
visited to see if they need restructuring. They may also perform unnecessary work, since
all unsafe nodes are restructured regardiess of whether or not the update actually forces

the nodes to be restructured.

Merge-at-Half vs. Merge-at-Empty

Delete operations may reduce the contents of some B-tree nodes to the point where they
have to be merged with their siblings in order to maintain balance on the tree. Many
B-tree algorithms do not restructure nodes due to underflow conditions until the nodes
become empty. We refer to this strategy as merge-at-empty. Others use merge-at-half
protocols that restructure when nodes are half full. Merge-at-half preserves efficient space
utilization and keeps the height of the B-tree at O(lgn), where n is the number of dictio-
nary elements stored in the tree. Merge-at-empty strategies reduce the probability that
nodes need to be merged, thus reducing the amount of work performed by restructuring
phases of delete operations. This lowers data contention with other concurrent processes.

Johnson and Shasha [JS89] discovered that for most concurrent B-tree applications,
merge-at-empty produces significantly lower restructuring rates, and only a slightly lower
space utilization. than merge-at-half. They concluded that merge-at-empty is a better

strategy.

2.3 Related Work

Recent work related to this thesis fall in two basic categories: the analysis of concurrent
B-tree algorithms, and the development of new efficient concurrent dictionary algorithms
and data structures.

As pointed out by Johnson and Shasha [J590], there has not been enough work study-
ing the performance of concurrent B-tree algorithms. Bayer and Schkolnick [BS77] and
Ellis [ElI80] determine the maximum number of concurrent operations their algorithms
can support, but do not predict performance. Analysis by Jipping [JFS85, JFSW90] is
very dependent on bus-based architectures, which do not scale well. Lanin, et al. [LSS87]
do not allow delete operations in their simulations. Lanin and Shasha [LS86] allow deletes.
but do not take into account resource contention, network latency, or replication.

Johnson and Shasha [JS90] propose a framework for an analytical model to investigate
all concurrent B-tree algorithms in a uniform fashion. However, their model also does

not take into account network latency or replication. Furthermore, their model assumes

34 CHAPTER 2. THE CONCURRENT B-TREE

the B-tree to be an open system. where the throughput of B-tree operations is equal to
the arrival rate of operations at each level in the tree. In applications with high data
and resource contention. this assumption may not be valid. For example, Lanin and
Shasha {LSS87] explain how high contention may cause a “bursty flow” effect, where
large numbers of operations are concentrated at various levels in the tree.

There has been snm.c recent work on developing alternative data structures that sup-
port efficient concurrent dictionary operations. Dally [DS85] develops a “rootless” data
structure, called the Balanced Cube. A collection of nodes connected by a binary n-
cube communica.ion network. the Balanced Cube avoids bottlenecks with its ability to
start dictionary operations at any arbitrary node in the Cube. However, the Cube’s
performance is very architecture-specific. especially with communication networks. Also.
finding eflicient methods for dynamically adjusting the Cube’s size is a difficult problem.

Herlihy [Her90] proposes a method for transforming sequential data structures to
wait-free structures using the atomic operation Compare&Swap. (Wait-free structures
are structures whose operations are guaranteed to complete in a finite number of steps.)
He uses this technique to build wait-free concurrent B-trees [Her89]. This work is very
recent. and the efficiency and feasibility of such structures in applications is unclear.

Shasha and Goodman [SG88] present a framework for developing and verifying con-
current algorithms for many sequential data structures. Examples include B-trees, hash
structures, unordered lists. and other sequential data structures that can support dictio-

nary operations.

Chapter 3

The Coherent Shared Memory
Algorithm

In this chapter. we present a new concurrent B-tree algorithm for systems that use co-
herent shared memory schemes. Because this algorithm uses the link method as opposed
to the lock-coupling method, it locks only one node at a time for inserts and lookups,
and at most two nodes concurrently for deletes. Furthermore ne algorithm allows most
of the restructuring phase for an update operation to be performed after the operation
returns. Because of these characteristics, this algorithm’s performance should be better
than that of any proposed concurrent B-tree algorithm.

Most concurrent B-tree algorithms use lock-coupling to enforce concurrency con-
trol. While this technique guarantees correctness, it also sacrifices potential concurrency.
Lock-coupling causes entire sub-trees to be excluded from other concurrent processes.
Periodically, such algorithms require update operations to perform conservative descents,
which exclusively lock the root of the tree. This blocks all incoming dictionary opera-
tions. Lanin and Shasha [LS86) point out that for this reason, such B-tree algorithms do
not have good scaling properties.

In 1981, Lehman and Yao [LY81] introduced an augmented version of the concurrent
B-tree, called the B-link tree. Such a structure is simply a B-tree with every node
augmented by a pointer to its right neighbor. We call these pointers rightlinks. Nodes
that have no right neighbors have their rightlinks set to nzl.

The use of rightlinks has two very important results. The first is that it allows
concurrent B-link tree algorithms to do away with lock-coupling entirely. As long as
descents stray only towards the left of the proper path, the rightlinks allows the descents

to correct themselves.

36 CHAPTER 3. THE COHERENT SHARED MEMORY ALGORITHM

The second result is that it allows much of the restructuring phase of update operations
to be run in the background. Recall the example from Figures 2.4, 2.5, and 2.6. Splitting
a node during an insert operation can be a two-phase procedure. First, a half-split
transformation splits a node (Figure 2.5). Then, a complete_split phase updates the
parent of the split node after the insert operation returns (Figure 2.6).

The first result increases concurrency by allowing process overtaking, thus reducing
the synchronization between independent processes. The second result not only pushes
restructuring into the background, but also guarantees that optimistic descents in the
Lehman-Yao algorithm are always successful; there is no need to acquire writelocks during
descents. since restructuring phases acquire their own locks. This eliminates the need for
writelocks on the anchor, the root, or other high-level B-tree nodes during the descent.

Sagiv [Sag86) showed how to implement the Lehman-Yao algorithm such that lookup
and insert operations lock only one node at a time. This further increases concurrency,
by minimizing the number of locks that need to be held. Also. Sagiv augmented the
B-link tree to improve performance, e.g., Sagiv adds to the anchor a set of pointers to
the leftmost node in each tree level.

Unfortunately, Lehman and Yao did not provide for a restructuring phase for delete
operations; they did not merge under-utilized nodes. Thus their B-link tree data structure
would not shrink, even if an application deleted all the dictionary elements in the tree.
They proposed that the tree be rebalanced off-line.

Both Salzberg [Sal85] and Sagiv [Sag86) proposed independent background processes,
which operate in paralle] with processes performing dictionary operations. These pro-
cesses visit nodes in the tree and perform merge operations on under-utilized nodes. Such
solutions, while correct, are not very elegant. It is unclear how the number of processes
invoked or the frequency of their invocations affect performance. Also unclear is how
different operation patterns can affect the performance of these processes.

Sagiv suggested an alternative approach where the above background processes are
created only when leaves become under-utilized. These processes would be removed once
the required restructuring is completed. Unfortunately, Sagiv’s processes did not merge
nodes in a uniform fashion; items were sometimes moved to the right, sometimes to the
left. This meant that Sagiv’s dictionary operations could “become lost,” and descent
phases would have to backtrack, or even start over.

Lanin and Shasha [LS86] proposed a restructuring phase for deletes that was anal-
ogous to Lehman and Yao's two-phase split procedure for inserts. First, a half-merge

transformation merges two nodes. Later. in a background process, a complete.merge

X) 15
Y right_sep:1 Z right_sep:15
some leaf node §—9» E iy nmmm some leaf node
(a) Sample tree.
X{]/J/l[HNERE
rghsep:1s| 4
some leaf node 8 011]5 some leaf node

some leaf node

(b) Incorrect strategy.

A Z2NABNERNE

(c) Inefficient strategy.

Figure 3.1: Example half_merge strategies.

37

38 CHAPTER 3. THE COHERENT SHARED MEMORY ALGORITHM

transformation removes from the parent of the merged nodes the downlink pointing to
the deleted node.

When a node becomes under-utilized, Lanin and Shasha proposed that it be merged
with its right neighbor. since rightlinks make the neighbor easy to find. Using the left
neighbor would mean either maintaining “leftlinks,” or extending the algorithm to search
for left neighbors. Given the decision to merge an under-utilized node with its right
neighbor. the question remains of exactly how this should be done. Figure 3.1. which
shows two possible half-merge implementations, illustrates the difficulty in producing
correct and efficient half_merge and complete_merge operations. Nodes that are X’ed
out are "marked” as deleted. In Figure 3.1(a). we show a simple tree. where we would
like to merge leaves Y and Z. In (b). we move all the contents in Z to Y. and update
Y's rightlink to Z's right neighbor. This solution is incorrect. since at the end of the
half-merge operation. there is no way for processes that access Z to be directed to the
proper node Y. In (c). we move all the contents in } to Z. and update the rightlink of
17s left neighbor to point to Z. This solution 1s correct. but difficult to implement, since
it requires finding and updating Y's left neighbor.

Lanin and Shasha proposed a solution for both the incorrectness problem in (b) and
the implementation problem in (c). Consider the examplein Figure 3.2. In (a). we present
an B-link tree structure. In (b), we show Lanin and Shasha’s half-merge operation that
merges leaves Y and Z. The operation moves data from Z to Y. sets Y”'s rightlink to Z’s
right neighbor, and marks Z as deleted. It sets the rightlink of Z to point left towards
Y, the node to which Z’s former contents have been moved. Thus any process that
accesses Z after it has been marked as deleted can redirect itself to ¥ via Z's rightlink.
This elegant solution writelocks only two nodes concurrently, and need not search for left
neighbors.

The complete_merge operation in this example is straightforward. It locks the parent
and removes the downlink that points to the deleted node, as well as the separator to
the downlink’s immediate left. We see the result of a complete_merge in Figure 3.2(c).

Unfortunately the complete algorithm provided by Lanin and Shasha contains a minor
error. In addition. other areas in the algorithm can be optimized. In this chapter, we
present a complete B-link tree algorithm based on the ideas of Lanin and Shasha, but

with the following modifications:

e We present a more efficient approach to maintaining the root pointer in the B-link

tree’s anchor.

39

SAENDNENE

Y| cppisepa| Z right_sep:15

some leaf pode f——» E some leaf pode

(a) Sample tree.

NEAENONIONE

a8

nghl se? 15

leaf some leaf node
some feaf node 8 |10 11 15 "

(b) Half _merge transformation.

XL 1 D

night_sep:15

some leaf node mum some Jeaf node

(c) Complete_merge transformation

Figure 3.2: Correct merge strategy.

-

40 CHAPTER 3. THE COHERENT SHARED MEMORY ALGORITHM

e We propose that left separators of nodes be stored directly in the node. Lanin and
Shasha’s algerithm requires processes to estimate left separator values based on the
states of previously visited nodes. Besides requiring extra overhead, this estimation
may sometimes cause restructuring phases of inserts and deletes to do unnecessary

work.

e We discuss an alternative approach to the complete_merge operation if the two
nodes merged by the half_merge have different parents. (The example in Figure 3.2
displayed the more common case where the t\.o merged nodes have the same par-
ent.) Our approach should achieve better performance and use less memory than

the one suggested by Lanin and Shasha.

e We explain and correct a problem with Lanin and Shasha’s algorithm. The so-
lution recuires additional synchronization needed to coordinate independent com-

plete_split and complete_merge operations.

e We discuss the possibility of maintaining “parent pointers” in each node. We

present the advantages of such an approach.

We organize the chapter as follows. Section 3.1 describes the data structures used to
implement a B-link tree. The remaining sections present our entire algorithm. Section 3.2
defines a number of procedures used by our algorithm. Sections 3.3, 3.4, and 3.5 present
the lookup. insert, and delete operations respectively. Section 3.6 describes the additional
svnchronization needed to coordinate independent complete_split and complete_merge
operations. Section 3.7 presents the idea and the advantages of maintaining parent

pointers at each nod.. Finally, Section 3.8 summarizes the chapter.

3.1 The B-Link Tree

We construct the data structures for the B-link tree by augmenting the data structures for
the B-tree. This section presents the extra fields that need to be added to our pseudocode

representations of the B-tree data structures.

3.1.1 B-Link Tree Nodes

Each B-link tree node n has the following fields in addition to the ones presented in

Section 2.1.1:

3.1. THE B-LINK TREE 41

proc new_node (1)

9% builds new (empty) biree node of level |
% allocate memory for new node

1 node := allocate memory
% nutiahze flelds

2 node.level = |

3 node.size = {

4 if | = 0 then

%% MAX_KEY is global variable denoling largest possible key
node.right sep := MAX_KEY
for 1 = 1 to MAX_FANOUT do

node k[i] := nil

node.dfi] := nil

o

-1 ™

&
G end
10 else
%% MIN_KEY 1s global variable denoting smallest key
11 node.s{0] := MIN_KEY
Y for i = 1 to MAX_FANOUT do
13 node.sfi] := nil
14 node.pfi] := nil
15 end
16 node.split_waiters := mnil
17 node.merge_waiters := mnil
18 end
19 node.rightlink := nil
20 node.marked? := false
21 node.left_most? := false
22 return node

23 end new_node

Figure 3.3: new.node(l) procedure.

n.rightlink is a pointer to n’s right neighbor. If n has no such neighbor, n.rightlink

1s set to nil.

n.marked? is a boolean flag that marks deleted nodes. It is initially set to faise.

n.left_ most? is a boolean flag that denotes whether or not n is the leftmost node

in its level.

If n is a non-leaf, then n.split_waiters and n.merge_waiters are linked lists that are

initially set to nil. We fully explain these fields in Section 3.6.

The restrictions on the B-link tree nodes in our algorithm are not as stringent as
in other B-tree algorithins. Our algorithm does not require that every non-root node

in the tree have one parent; some nodes can temporarily have no parents. Also, if a

42 CHAPTER 3. THE COHERENT SHARED MEMORY ALGORITHM

downlink in a non-leaf node points to node n, then the separators stored to the immediate
left and right of the downlink are not necessarily equal to left_sep(n) and right_sep(n),
respectively. Our algorithm allows left_sep(n) and right_sep(n) to be less than or equal to
the two separators stored to the downlink’s immediate left and right. We discuss these
points in more detail during the presentation of the algorithm. A

Figure 3.3 presents the pseudocode procedure for creating and initializing new B-link
tree nodes. We use the global variable MAAX_FANOUT to denote the maximum fanout
of the tree. We assume the value assigned to MAX_FANOUT to be an even integer.

3.1.2 B-Link Tree Anchor

The anchor of a B-link tree is somewhat different from an ordinary B-tree’s. A B-link

tree anchor a contains the following fields:

o a.leftmost_nodes is an array of pointers. The pointer a.leftmost-nodes|i] points to
the leftmost node in the tree’s ’th level. If the tree’s height is less than z, then the

pointer is set to nil.

e a.rootlevel stores the height of the tree’s “root.”

We do not need the field a.root_pointer (described in Section 2.1.2), since the root
of the tree is just a.leftimost_nodes{a.root level |. Also, a.rootlevel does not necessarily
contain the height of the actual root of the tree. As long as a.rootlevel is less than or
equal to the actual height of the tree, the algorithm will work properly. The algorithm
does makes an effort, for performance’s sake, to keep a.root.level at, or close to, the
actual height of the tree.

Figure 3.4 presents the pseudocode procedures for creating and initializing new B-link
trees. In this chapter, we assume that the anchor of a B-link tree is denoted by the global
variable ANCHOR.

3.2 Miscellaneous Functions

Several functions on B-link tree nodes are used in the rest of the chapter:

o covers? takes a node n and a key k, and returns true iff & € coverset(n) and

n.marked? = false.

3.2. MISCELLANEOUS FUNCTIONS 43

proc new_ly_tree ()
% returns an anchor 1o an empty B—link Trec.
% build root
1 new_root := new_node(0)
% build anchor
anchor := new_anchor()
anchor.leftmost_nodes[0] := new_root
return anchor
end new_ly_tree

(LI L)

proc new_anchor ()
% builds and returns a new blree anchor
% allocate memory

1 anchor := allocate memory
% anitighze flelds
2 anchor.root level := 0
% MAX_HEIGHT is global variable denoting mazimum height of trec.
3 for i = 0 to MAX_HEIGHT do
4 anchor.leftmost nodes(i] := nil
5 end
6 return anchor

-1

end new_anchor
Figure 3.4: new._ly_tree() procedure.

e successor takes a non-leaf node n and a key k. If £ > right_sep(n) or n.marked =
true, then successor returns n.rightlink. Otherwise, it finds the largest separator
s stored in n such that s < k, and returns the downlink stored to s’s immediate
right. If left_sep(n) > k, then successor{n, k) is undefined.

e reaches? takes a node n and a key k, and returns true iff the leaf [that covers k is
reachable from n. We formally define “reachable™ as follows. Define the function

successor', where ¢ > 0, as follows:

n 1 =0,

successor'(n, k) = :
(%) {successadsuccessor"l(n,k),k) otherwise.

k is reachable from n, iff for some finite integer j, successor’(n,k) = l. For our
algorithm, it turns out that left_sep(n) < k iff reaches?(n,k) = true. (The proof
for this has been sketched out, but due to space and time constraints of the thesis,
it is not included.) For the rest of the thesis. we will use the above definition
of “reachable” (as opposed to “graph reachable” which only checks if nodes are

connected via a finite number of edges.)

e 1

i

OO Y 1D U LN

o

CHAPTER 3. THE COHERENT SHARED MEMORY ALGORITHM

proc ly.lookup (k)
% readlock leaf that covers k
node := lookup_descent(k)
% if k 1s stored in node, return dala. else return nil
1 := find_key(node, k)
if i = nil then
readunlock(node)
return nil
end
answer := i.th_data(node, 1)
readunlock(node)
return answer
end lyJookup

Figure 3.5: ly_lookup(k) procedure.

is_leaf? takes a node and returns true iff the node is a leaf.

full? takes a node n, and returns true iff the number of dictionary elements or

downlinks in n is equal to MAX_FANOUT.

almost_empty? takes a node n. If n is a leaf, it returns true iff n is not the rightmost
leaf and has only one dictionary element stored in it. If n is a non-leaf, it returns

true iff n only has one downlink.

find_key takes a leaf node [and a key k. 1t is defined only if £ € coverset(l). If k is
the 2’th smallest key stored in {, find-key returns the index z. Otherwise, it returns

nil.

i_th_data takes a leaf node [and index ¢ and returns the data associated with the

¢’th smallest key stored in .

find_child takes a non-leaf node n, a separator value s, and a downlink to a child
node p. If p is the i’th leftmost downlink stored in n and s is the separator stored

to p’s immediate left, then find-child returns :. Otherwise, it returns nil.

find_sep takes a non-leaf node n and a separator value s. It returns the integer ¢ iff

s is the 7’th leftmost separator stored in n, else it returns =.7.

insert_key takes a leaf node [, a key k, and a data value d. It is defined only if { is

not frll. insert_key inserts the dictionary element < k,d > into L.

3.3. THE LOOKUP OPERATION 45

proc lookup_descent(k)
% get root of tree

1 readlock(ANCHOR)
2 level := ANCHOR.root level
3 node := ANCHOR leftmost.nodes{level]
4 readunlock(anchor)

% descend down tree to leaf level
5 readlock(node)
6 while ! isleaf?(node) do

% find next node to wvisit

7 next := successor(node, k)
8 readunlock(node)
g node := next
10 readlock(node)
11 end

% move along leaf level to proper leaf, using readlocks
12 while ! covers?(node, k) do
13 next := node.rightlink
14 readunlock(node)
15 node := next
16 readlock(node)
17 end
18 return node

19 end lookup.descent
Figure 3.6: lookup-descent(k) procedure.

o inseri_child takes a non-leaf node n, a separator value s, and a downlink to a child
node p. It is defined only if n is not full and inserts p into n. insert.child inserts s

immediately to the left of p.

o delete_key takes a leaf node [and an index ¢, and removes the dictionary element
with the 7’th smallest key from /.

o delete_child takes a non-leaf node n and an index ¢, and removes the :’th leftmost
downlink from n as well as the separator to the immediate left of the downlink.

3.3 The Lookup Operation

In this section, we present the lookup operation, shown in Figure 3.5. ly_lookup(k) takes as
an argument a key k. If the tree contains a dictionary element with key k, then ly_lookup
returns the element’s data value. Otherwise, it returns nel. ly_-lookup first performs the
descent phase by calling the procedure lookup_descent (line 1 in Figure 3.5).

46 CHAPTER 3. THE COHERENT SHARED MEMORY ALGORITHM

proc lyinsert (k, d)
% wrilelock and return leaf that covers k, using a stack to keep
% track of path taken

1 stack := new_stack()
2 node := update.descent(k. stack)
St if k 1s stored in nodc. return nil
3 if find_kev(node, k) '= nil then
4 writeunlock(node)
5 return nil
6 end
% if node 1s mot full then wnsert data into nodr
T if ! full?(node) then
8 insert_kev(node, k, d)
9 writeunlock(node)
10 return nil
11 end
% if node 1s full, then split i
12 return split_leaf(node. k. d, stack)

13 end ly.insert
Figure 3.7: ly-insert(k,d) procedure.

The procedure lookup_descent(k), shown in Figure 3.6, takes as an argument a key
k, and readlocks and returns the leaf node that covers k. It first readlocks the anchor
and finds the root of the tree (lines 1-4 in Figure 3.6). It then performs two while
loops to reach the leaf that covers k. The first while loop (lines 5-11) uses readlocks
and the successor function to descend down the tree from the root to the leaf level.
The second while loop (lines 12-17) uses readlocks and the covers? procedure to travel
through rightlinks until it finds the leaf that covers k. Note that these loops hold only
one readlock at a time. Finally, lookup_descent returns the node that covers k (already
readlocked) (line 18).

After calling lookup_descent, ly-lookup performs its decisive operation (lines 2-9 in
Figure 3.5). lookup_descent has already readlocked the leaf that covers k. If k is not
stored in the leaf, then ly_lookup unlocks the leaf and returns nil. Otherwise, ly_lookup

unlocks the leaf and returns the data associated with k.

3.4 The Insert Operation

In this section. we present the insert operation, shown in Figure 3.7. ly-insert(k, d) takes
as arguments k and d, where < k,d > is the dictionary element to be inserted. Since

inserts arc more complicated than lookups, we divide our discussion among the three

3.4. THE INSERT OPERATION 47

proc update_descent(k, stack)
% get Toot of tree

1 readlock(ANCHOR)
2 level := ANCHOR.root level
3 node := ANCHOR.leftmost nodes{level]
| readuniock{ ANCHOR)

% descend to leaf level, using stack to keep track of path
5 readlock(node)
6 while ! isleaf?(node) do

% find next node to wvisit

T next := successor{node, k)
8 readunlock(node)
9 if next and node are connected via a downlink then
10 push(stack. node)
11 end
12 node := next
13 readlock(node)
14 end

% move along leaf level to proper leaf, using writelocks
15 readunlock(node)
16 writelock(node)
17 while ! covers?(node. k) do
18 next := node.rightlink
19 writeunlock(node)
20 node := next
21 writelock(node}
22 end
23 return node

24 end update_descent
Figure 3.8: update_-descent(k, stack) procedure.

phases of the operation.

3.4.1 Descent Phase

ly_insert(k,d) first calls update_descent to perform its descent phase (lines 1-2 in Fig-
ure 3.7). update_descent(k, stack), shown in Figure 3.8, takes as arguments a key & and
a stack stack. It writelocks and returns the leaf that covers k, and uses stack to record
the path taken during the descent phase. update_descent first readlocks the anchor and
finds the root of the tree (line 1-4 in Figure 3.8). It then uses two while loops to reach
the leaf that covers k. The first while loop (lines 5-14) descends from the root of the
tree to the leaf level using readlocks and the successor function. Whenever a downlink
is traversed, update_descent pushes the node last visited in the previous level onto the

stack. The sccond while loop (lines 15-22) uses writelocks and the covers? function to

438 CHAPTER 3. THE COHERENT SHARED MEMORY ALGORITHM

proc splitdeaf (leaf, k, d, stack))
% build new split leaf and divide contents of leaf.
1 new_leaf := divide_leaf(leaf)
% 1nsert data element into proper leaf
if covers?(leafl. k) then
insert_key(leaf, k, d)

insert_key(new_leaf. k. d)

S U B L N
@
i
»
4]

end

% unlock leaf

new._sep = right_sep(leaf)

writeunlock(leaf)

fork complete_split(new_sep, new_leaf, stack, 1)
end split_leaf

DO o -

Figure 3.9: split_leaf{leaf. k. d. stack) procedure.

traverse rightlinks in the leaf level until it reaches the leaf that covers £.1
update_descent returns this leaf (already writelocked) (line 23). Note that this proce-

dure locks only one node at a time.

3.4.2 Decisive Operation

After calling update_descent, ly_insert performs its decisive operation (lines 3-12 in Fig-
ure 3.7). It first checks if the leaf that covers k stores a dictionary element with key k.
If such an element already exists, then ly_insert unlocks the leaf and returns (lines 3-6).
Otherwise. it must insert the element < k,d > into the dictionary. If the number of
dictionary elements stored in the leaf is not equal to the upper limit specified by the
global variable MAX_FANOUT, then ly_insert inserts < k,d > into the leaf, unlocks
the leaf, and returns (lines 7-11). If the number of elements stored in the leaf is equal
to MAX_FANOUT, then the leaf must be split to make room for the new dictionary
element. ly.insert accomplishes this by calling the procedure split_leaf (line 12).

split_leaf(leaf, k,d, stack), shown in Figure 3.9, takes as arguments a leaf leaf, key k,
data value d. and stack stack. It performs a half_split on leaf, inserts element < k,d >
in the appropriate leaf, and then forks an independent process to do a complete_split
operation.

split_leaf calls divide_leaf to split leaf in two (line 1 in Figure 3.9). divide_leaf(leaf),

!Alternatively, ly-insert could use readlocks until the node that covers s is reached, in which a
writelock is then acquired. (After the writelock, ly-insert would have to check if the node still covered

5)

3.4. THE INSERT OPERATION 49

proc divideleaf (leaf)
% build new leaf
1 new_leaf := new_node(0)
9% fill new.leaf with right half of leaf
leaf.size := MAX_FANOUT/2

o

3 new_leaf.size := MAX_FANQUT/2
% copy half of array contents to new_leaf
4 for i = 1 to MAX_FANOUT/2 do
5 new_leaf k{i] := leafk{i + (MAX_FANOUT/2)]
6 new_leaf.di] := leaf.di + (MAX_FANOUT/2)]
v end
% wupdate right_sep values
& new leafright sep := leaf.rightsep
4 leaf.right sep := leaf k[leaf.size]
Y% update rightlinks
10 new _leaf.rightlink := leaf.rightlink
11 leaf.rightlink = new_leaf
12 return new_leaf

13 end divideleaf

Figure 3.10: divide_leaflleaf) procedure.

shown in Figure 3.10, takes leaf leaf as an argument, and returns a newly created leaf.
divide_leaf partitions the old contents of leaf between leaf and the new leaf. It transfers
the right half of the dictionary elements in leaf to the new leaf (lines 2-7 in Figure 3.10).
It then updates the right_sep fields of both leaves (lines 8-9). It finally sets leaf.rightlink to
point to the new leaf, and the new leaf’s rightlink to point to the old value of leaf.rightlink
(line 10-11). divide-leaf returns a pointer to the new leaf (line 12).

After calling divide.leaf, split_leaf inserts the new dictionary element < £,d > into
either leaf or its new neighbor, depending on which one covers k (lines 2-6 in Figure 3.9).
split_leaf finally unlocks leaf (lines 7-8), and forks a background complete_split operation,
passing as arguments a pointer to the new leaf and the new separator between leaf and

the new leaf (line 9).

3.4.3 Restructuring Phase

The restructuring phase for an insert operation begins when split_leaf forks off an in-
dependent process to perform a complete_split. complete_split(s, p, stack.l), shown in
Figure 3.11. takes as arguments a separator value s, downlink p, a stack of node pointers
stack. and a tree level . It assumes the node pointers in stack point to nodes ordered in

consecutive increasing tree level, starting at level [.

30 CHAPTER 3. THE COHERENT SHARED MEMORY ALGORITHM

proc completesplit (s, p, stack, 1) .
% find and writelock the node tn the ['th level which covers k
1 node := find.parent(s, stack, I)
% if s is already stored 1n node, that means we have o wail

2 if find_sep(node, s) != nil then
3 push(stack, node)
4 insert <s, p, stack> into node.split_waiters
5 writeunlock(node)
6 return
7 end

S check if any waiting operations can be enabled
8 start.waiters(s, 1)

% if node ts nol full, insert s and p inio node
9 if ! full?(node) then
10 insert_child(node, s. p)

G check if node could be a new root. If il is, update the anchor

11 if new_root?(nodej then
12 fork update_root(node.level)
13 end
14 writeunlock(node)
15 return
16 end

% else splii_interior the node
17 split_interior(node, s, p, stack)

18 end completesplit
Figure 3.11: complete_split(s, p, stack,) procedure.

complete_split performs the following three tasks. First, it finds the level | node that
covers s. Second, it performs the complete_split operation by inserting s and p into the
node. If this insertion causes the node to overflow, then the node must be split. To
propagate this split, it then invokes a complete_split on the next higher level in the tree.
Finally, if the above tasks create a new root in the tice, complete_split updates the anchor

to point to the new root.

Finding the Parent Node

To find the level I node that covers s, complete_split calls the procedure find_parent
(line 1 in Figure 3.11). Figure 3.12 presents pseudocode for find_parent(s, stack,l). The
procedure takes as arguments a separator value s, a stack of node pointers stack, and a
tree level [. It writelocks and returns a level / node that covers s.

find_parent first calls the procedure start_nodes, which writelocks and returns a level
[node n such that lefi_sep(n) < s (line 1 in Figure 3.12). The while loop in find_parent
(lines 2-7) uses writelocks and the function covers? to traverse rightlinks to reach the

3.4. THE INSERT OPERATION 81

proc find_parent (s, stack, I)
% get initial node 1 level 1 and writelock it
node := start.node(s, stack, 1}
% move along rightlinks until node covering s 1s reached
while ! covers?(node, s) do
next := node.rightlink
writeunlock(node)
node .= next
writelock(node)

b

-1 O W b LN

end
return node
end find_parent

© o

Figure 3.12: find_purent(s, stack,!) procedure.

node that covers s.? This final node is writelocked and returned by find_parent.

The procedure start_node(s. stack, 1), shown in Figure 3.13, takes the same arguments
as find_parent. It writelocks and returns a level [node n such that left_sep(n) < s. The
node must reach s; otherwise, there will be no way for find_parent to find the level [
node that covers s. If the stack is not empty, start_node pops the topmost node from the
stack and writelocks it. If this node reaches s, stari-node returns the node (lines 1-8 in
Figure 3.13). We discuss why the node popped from the stack must be checked to see if
it reaches s when we present the delete operation.

If the stack is empty (which means either the tree has grown since the descent phase,
or a new root needs to be created), or if the node popped from the stack does not reach
s, start_node will readlock the anchor and find the leftmost node in level I (lines 9-15).3
If such a node exists, it is writelocked and returned. Otherwise start_node creates a new
root by calling the procedure make_root, and returns this new root. The pseudocode for

make_root is found in Figure 3.16 and will be discussed later.

Complete Splitting the Node

After complete_split(s, p. stack,l) calls find_parent to writelock and return the level [node
that covers s (line 1 of Figure 3.11), some steps are taken to coordinate the complete_split
with other independent complete_split and complete_merge operations (lines 2-8). For

2Alternatively, find_parent could use readlocks until the node that covers s is reached, in which a
writelock is then acquired. (After the writelock, find_parent would have to check if the node still covered
s.)

3 Alternatively. instead of using the leftmost node in I, we can perform a descent from the root using
the argument s to find a level / node that reaches s.

52 CHAPTER 3. THE COHERENT SHARED MEMORY ALGORITHM

proc start_node (s. stack, 1)
% if stack isn’t empty, pop the parent

1 if ! emptystack?(stack) then
2 node := pop(stack)
3 writelock({node
4 if reaches?(node, s) then
5) return node
6 end
7 writeunlock(node)
8 end
% lookup ANCHOR. if node 1s there, return it
g readlock(ANCHOR)
10 node := ANCHOR.leftmost_nodes[l]
11 readunlock(ANCHOR)
12 if node '= nil then
13 writelock(node)
14 return node
15 end
% else butld new root and return il
i6 node := makeroot(l)
17 writelock(node)
18 return node

19 end start.node
Figure 3.13: start_node(s, stack,) procedure.

now, we will ignore these steps. We discuss them in detail in Section 3.6. If the node
returned by find_parent is not full, complete_split inserts the new separator and downlink
(lines 9-10). It then checks if the insertion requires an update to the root_level field of
the tree’s anchor (lines 11-13). We discuss how the anchor field is updated below.

If the node returned by find_parent is full, then complete_split cannot insert the
separator and downlink into the node until it has been split, so complete_split calls
split_interior (line 17 of Figure 3.11). Figures 3.14 and 3.15 present split_interior and
its accompanying procedure divide.interior. These procedures perform half_split opera-
tions on non-leaf nodes, and are analogous to the procedures spiit_leaf and divide_leaf.
Note that line 9 in divide_interior calls a procedure divide_waiters to manipulate the
linked lists node.split_waiters and node.merge_waiters. This procedure will be presented
in Section 3.6, which discusses the purpose of these lists. For now, we will ignore them.

Creating a New Root

There are two important issues in the creation of a new root. The first is synchronization:

two independent processes should not both create new roots at the same time. The second

3.4.

r

S NN S N S

o T~

10
11

-1 O B LN —

on

10
11
12
13

THE INSERT OPERATION

proc splitianterior (node, s. p, stack)

% build new node

new_node := dividelinterior(node)

% insert data into proper leaf

if covers?(node, s) then
insert.child{node, s, p)

else
insert_child(new_nodc. s, p)
end
9% wunlock nodc
new_sep := right_sep(node)

| = node.level + |

writeunlock(node)

Y% complete_split

complete_split(new sep. new_node. stack. 1)

end sphitanterior

Figure 3.14: split_interior{node, s, p, stack) procedure.

proc divide_interior(node)

% create new node

new_node := new._node(node.level)

% copy half of array contents to new leaf

new.nodesize := MAX_FANOUT/2

node.size := MAX_FANOUT/2

new_node.s[0] = node.s[]MAX_FANOUT/2]

for i = 1 to MAX_FANOUT/2 do
new._nodesfi] := nodes{i + (MAX_FANOUT/2)]
new_node.pfi] := nodep{i + (MAX_-FANOUT/2)]

end

% divide waiters lists

divide_waiters(node, new_node)

% set righthinks

new_node.rightlink := node.rightlink

node.rightlink := new_node

return new._node

end divideinterior

Figure 3.15: divide_interior{node) procedure.

53

54 CHAPTER 3. THE COHERENT SHARED MEMORY ALGORITHM

proc make.root (1)
S writelock anchor
1 writelockl ANCHOR)

5 check of node 1s already ther

u if ANCHOR lefumostnodes[l] '= nil then
3 root = ANCHOR.leftmost_nodes|l]
4 writeunlock(ANCHOR)
] return(root
6 end
Yo build mew_roo!
n new_roo! := new_node(l)
8 new_root.sive = 1
4 new_root.s[l] := MAX_KEY
1 new_root.pointer{1l := ANCHOR leftmost nodes”! - 1]
11 new_root left_most” := true
% place new rtool in anchor
12 ANCHOR lefumost nodes[l! = new_root
13 writeunlockl ANCHOR
14 return new_root

15 end makeroor

Figure 3.16: make_rool(l) procedure.

is maintaining the rootlevel field in the B-link tree's anchor.

The procedure make_root(l). shown in Figure 3.16. solves the first problem. It takes as
an argument an integer {, and returns the leftmost B-tree node in level I, creating a new
root 11 level [if necessary. make_root writelocks the anchor and checks for the existence of
nodes at level [before creating a new root. This protocol prevents independent processes

from concurrently creating new roots, since writelocking the anchor sequentializes them.

Maintaining the root_level field in the anchor is a separate problem. While the cor-
rectness of the our algorithm is ensured as long as there exists a leftmost node in the level
specified by the anchor’s root_level field, the algorithm's efficiency depends on how close
root_level is to the actual height of the tree. Updating root level during the make_root
procedure would be correct but ineflicient. since the new roct only has one downlink, so
all descents would chase one extra pointer until a completc_split operation on the new
root added a second downlink. Instead, we update the anchor’s root-level during the

complete_split procedure.

Recali Figure 3.11. which presents the complete_split procedure. Right after inserting
a separator and a downlink into the node (line 10 in Figure 3.11). complete.split checks
if the node is a new root that just received a second downlink. It does this by calling

the procedure new_root? (line 11). which returns true iff the node is the only node in its

3.4. THE INSERT OPERATION 35

level (i.e.. a leftmost node with no right neighbor) and has two downlinks. If rew.root?
returns true. then we may have to update the anchor’s root_level field.

Implementing the update is tricky. in that we must prevent root_level from being set
to an “outdated value.” For example, it is possible for independent processes to add (or
delete) further levels to the tree between the time complete_split releases the lock on the
root and the time the anchor’s root_level field is updated. Suppose these changes have
caused roof_level to be modified to a more recent value. Then the update corresponding
to our complete_split procedure might cause rool_level to point to a level further away
from the actual root.

Sagiv [Sag86] suggests that a process maintain a writelock on the root until it up-
dates the anchor’s root.level field. Therefore, the tree cannot grow or shrink in height
until the update has completed. While correct. this solution requires holding writelocks
concurrently on both the root and the anchor, the two data structures most commonly
accessed in the tree.

Lanin and Shasha propose a separate continuously running background process called
the critic. which periodically checks the tree for the best root.level value. This reduces
data contention by allowing the writelock on the root to be released as soon as possible.
However, it also forces the maintenance of an independent process, even though it rarely
performs useful work. (In most B-tree applications, the probability that an update op-
eration will change the height of the tree is slight. For example, Lanin, et al. [LSS87]
predict the probability of an insert causing the root to split in applications using only
inserts and lookups to be (0.69 x MAX_FANOUT)~!, where [is the height of the tree.)

Rather than maintaining a continuously running process, we suggest invoking such a
critic whenever needed. and removing it when it has finished its task. In Figure 3.11,
during the complete_split procedure, if the new-root? procedure in line 11 discovers that
the anchor’s root_level field requires updating, complete_split will fork off an independent
update_root process, unlock the node, and return (lines 12-16).*

update_root(l), presented in Figure 3.17, writelocks the anchor (line 1 in Figure 3.17)
and checks if the new “root level candidate” [is a better root level than the current
ANCHOR.root level. If ANCHOR.leftmost_nodes({] = nil. then update_root does noth-
ing and returns. since the level I does not yet contain any nodes (lines 2-5). If | =
ANCHOR.root_level, then the procedure also does nothing (lines 6-9). Otherwise it must
check if I is indeed a better value for ANCHOR . .root level 1f1 > ANCHOR.root level, then

4 Alternatively. complete_split need not fork ofl an independent process; it could just run update-root
directly.

56 CHAPTER 3. THE COHERENT SHARED MEMORY ALGORITHM

proc update.root (1)

1 writelock(ANCHOR)
% check if | has a leftmost node
2 if ANCHOR .leftmost nodes(l] = nil then
3 writeunlock(ANCHOR}
4 return
5 end
% if | = rootlevel then do nothing
6 if | = ANCHOR.rootJevel then
7 writeunlock(ANCHOR)
] return
9 end
% readlock node to visit
10 if | > ANCHOR.rootlevel then
11 candidate := ANCHOR leftmostnodes|l]
12 else
13 candidate := ANCHOR.leftmostnodes{l+1]
14 end
15 readlock(candidate)
9 check if root_level can be updated
16 if (I > ANCHOR.rootlevel && (! oldroot?(candidate))) ||
17 (I < ANCHOR.rootlevel &4& oldroot?(candidate)} then
18 readunlock(candidate)
19 ANCHOR . rootleve] := |
20 writeunlock(ANCHOR)
21 return
22 end
23 readunlock(candidate)
24 writeunlock(ANCHOR)
25 return

26 end update.root

Figure 3.17: update_root(l) procedure.

the update can occur if the leftmost node in level | is not useless. By “useless,” we mean
the node is the only node in its level and has only one child. If { < ANCHOR.root level,
then the update can occur if the parent of the leftmost node in level I (i.e., the leftmost
node in level | + 1) is useless. We complete this check by first readlocking the node in
question (lines 10-15), then using the procedure old.-root? (which checks if a node is
uscless) to determine if the anchor’s root.level field should be updated (lines 16-26).
We invoke vpdate_root whenever a complete_split operation detects that the root level
might have increased. As we shall sec, we also invoke it during delete operations, when a
delete detects that the root level might have decreased. Unlike Lanin and Shasha’s critic,
it is not a continuously running process. but one created on demand. Such a method

avoids needless work that a constantly running process might perform while waiting for

3.5. THE DELETE OPERATION &7
proc ly_delete (k)
% writelock and return leaf that covers k
1 stack := new_stack()
2 node := update_descent(k. stack)
% tf k 1s not stored in node, return nil
3 index := find key(node, k)
4 if index = nil then
5 writeunlock(node)
6 retura nil
T end
% unless nodec needs to be merged, delete
8 if ! almost.empty?{node) then
9 delete_key(node. index)
10 writeunlock{node)
11 return nil
12 end
% else merge node
13 return merge leaf(node, stack)

14 end Ilv_delete
Figure 3.18: ly_-delete(k) procedure.

the tree to grow or shrink.

3.5 The Delete Operation

In this section, we present a delete operation that uses a merge-at-empty strategy. As
stated in Section 2.2.4, merge-at-empty is suitable for most B-tree applications [JS89)].
Figure 3.18 presents the procedure ly_delete(k). The procedure takes as an argument
k. the key value of the dictionary element we are deleting. The descent phase of the
delete operation is identical to the descent phase of the insert operation; ly_delete calls
update_descent. Therefore in this section, we present only the decisive operation and

restructuring phase of deletes.

3.5.1 Decisive Operation

ly-delete writelocks the leaf that covers k by calling update_descent (lines 1-2 in Fig-
ure 3.18). It then performs its decisive operation (lines 3-14). First, it checks if any dic-
tionarv element stored in the leaf has the key value k. If there are none, ly_delete returns
(lines 3-7). If there exists such an element, ly_delete uses the procedure almost_empty?

to check if the leaf is either the rightmost leaf or has more than one data element. If so,

58 CHAPTER 3. THE COHERENT SHARED MEMORY ALGORITHM

proc mergeleaf (leaf, stack)
% lock right sibling
1 right_neighbor := leaf.rightlink
writelock(right_neighbor)
% join the leaves, mark right neighbor as deleted

3 old_separator := joinleaves(leaf, right_neighbor)
% unlock leaves
4 writeunlock(right_neighbor)
5 writeunlock(leaf)
9 Beqin Restructuring Phase by forking complete_merge
6 fork complete_merge(old_separator, right_neighbor, stack, 1)

7 end merge.leaf

Figure 3.19: merge_leaf{leaf, stack) procedure.

the data element is simply deleted and ly_dclete returns (lines 8-12). Otherwise, the leaf
has to be merged with its right neighbor, since removing its only data element would
leave it empty. To perform the merge. ly_delete calls the procedure merge_leaf.

Note that we have decided not to merge the rightmost leaf, even if it becomes empty.
(Recall that almost_empty? returns false if the node has no right neighbor.) Trying to
merge it with its left neighbor would be inconvenient and would require extra locks to
be held. Not deleting it may cause under-utilization of the B-link tree data structure.
However, such under-utilization will probably be slight, especially for applications where

the B-tree is growing over time.

Half_Merging Leaves

merge_leaf{ leaf, stack). shown in Figure 3.19, takes as arguments a leaf node leaf and a
stack stack. It assumes leaf has already been writelocked, and performs a half-merge
operation on leaf and its right neighbor after deleting from leaf all of its contents. It
first writelocks the right neighbor (lines 1-2 of Figure 3.19). It then calls the procedure
join_leaves (line 3).

Jjoin_leaves(left_lecf, right_leaf), shown in Figure 3.20, takes as arguments two neighbor
leaves. It first saves the old separator value between the two leaves (line 1 in Figure 3.20).
It then moves the right separator and dictionary elements of the right leaf into the left
leaf (lines 2-7). Note that join_leaves “overwrites” the left leaf’s former contents. It then
sets the rightlink of the left leaf to the rightlink of the right leaf and the rightlink of the
right leaf to the left leaf (lines 8-9). Finally, join-leaves marks the right leaf as deleted,
and returns the old separator value between the two leaves (lines 10-11).

After calling join_leaves. merge_leaf unlocks the two leaves (lines 4-5 in Figure 3.19)

3.5. THE DELETE OPERATION 59

proc joinleaves (left leaf, right.leaf)

1 old separator := left_leaf.rightsep
% transfer items from right leaf to left leaf
2 left Jeaf.right_sep := right_leaf.righisep
3 left leaf.size := rightleaf.size
4 for i = 1 to rightleafsize do
5 left leaf k[i] := rightleaf.k]i]
6 left leaf.d[i] := rightJeaf.d[i]
T end
% set rightlinks
] left_leaf.rightlink := rightleaf rightlink
9 right Jeaf.rightlink := leaf
% mark right_leaf as deleted
10 right_leaf.marked? := true
11 return old_separator

12 end joinleaves
Figure 3.20: join_leaves(left_leaf, right_leaf) procedure.

and forks a complete_merge operation.

Marking Nodes

When a node n is deleted, we set n.marked? to true, and n.rightlink to point to the node
that received n's former contents. This protocol allows ongoing concurrent operations
that access a marked node to redirect themselves via rightlinks to the proper node.

Whenever an operation in our algorithm accesses & node, it automatically traverses
the node’s rightlink if the node has been marked as deleted. This is because:

o The successor function return the node’s rightlink if the node is marked.

e The covers? function return false if the node is marked.

Having the successor function check for marked nodes ensures that descents from the
root to the leaf level in all dictionary operations traverse through rightlinks (e.g., lines 5-
14 of procedure update_descent in Figure 3.8). The covers? check ensures that rightlinks
are traversed through marked nodes during the descent phase of dictionary operations
where processes “sweep right” along the leaf level (e.g., lines 15-22 of update_descent
in Figure 3.8). and during the restructuring phase when processes search for a non-leaf
node in a given level that covers a separator value (lines 2-7 of procedure find_parent in

Figure 3.12).

60 CHAPTER 3. THE COHERENT SHARED MEMORY ALGORITHM

proc complete_merge (s, p, stack, 1)
% find and writelock the node in the U'th level which is covers s
1 node := findparent(s, stack, 1)
% check if we have to lock right neighbor

2 if s = rightsep(node) then
3 return two_node_cmerge(node, s, p, stack)
4 end
% elsc check if s and p are in node. if not, we have to wai
5 index := find_child(node. s. p)
6 if index = nil then
7 push(stack. node)
8 insert <s, p, stack> into node.merge_waiters
9 writeunlock(node)
10 return
11 end
9% check if any wailing operations can be enabled
12 start_waiters(s. 1)
% delete s and p from stack
13 delete_child(node. index)
% check if node s an old poinier
14 if old-root?(node) then
15 fork update.root(nodelevel — 1)
16 end
17 writeunlock(node)

18 end complete_merge

Figure 3.21: complete_merge(s, p, stack,l) procedure.

3.5.2 Restructuring Phase

The restructuring phase of a delete operation begins when the merge_leaf procedure forks
off a complete_merge. Figure 3.21 presents the procedure complete_merge(s, p, stack,).
complete_merge takes as arguments a separator value s, a downlink to a child p, a stack

stack, and a tree level [.

complete_merge performs the following tasks. First, it finds the level | node that
covers s. Second. it removes s and p from the node. If s is a separator between two
level [nodes (thus p is stored in the right neighbor of the node that covers s), then
complete_merge must treat this case differently from the common case where s is not a
separator between nodes. Also. if the level | node that covers s has only one downlink,
then complete_merge must merge the node and its right neighbor before deleting s and
p. Afterwards. to propagate this merge, it invokes a complete_merge on the next higher

level in the tree.

3.5. THE DELETE OPERATION 61
Finding the Parent Node

Like the procedure complete_split, complete_merge uses the procedure find_parent (shown
in Figure 3.12) to find the node in level | that covers s. Recall that the argument stack
is a stack of node pointers pushed during an update operation’s descent from the root to
the leaf level. stack records the last node traversed at each level by the descent.

Earlier in Section 3.4.3. we claimed that the node popped from stack might not reach
s. While correct for the original Lehman-Yao algorithm and other modified algorithms
that do not include a two-phase merge operation {Sag86, LSS87], the assumption that
the node must reach s is not true with two-phase merges.

We present the following scenario as an example. Consider the B-link structure in
Figure 3.22(a) with a MAA_FANQUT value of 6. Suppose a delete operation that deletes
kev 1 causes the leaves Y and Z to half-merge, so the tree now looks like (b). Next. a
series of inserts and deletes cause the keys stored in leaf ¥ to be altered to (c). We
assume the complete_merge operation (which we have not vet presented) forked by (b)’s
half-merge has not vet been performed. Suppose the next operation inserts 20 into the
tree. This operation will cause leaf Y to split, resulting in the structure in (d). The
nodes pushed onto the stack by the above insert are marked with a checkmark. The
insert then forks a complete_split operation to insert separator 0 and downlink Y’ into
W, the level 1 node that covers 0. The left separator of X, the node popped from the
stack. is greater than 0, so .X' does not reach 0.

Lanin and Shasha recognized this problem in their algorithm. However, because their
B-link tree nodes did not locally store their own left separator values, the check of whether
the node popped from the stack reaches s is not so straightforward; they proposed that
estimations of a node’s left separator value be pushed onto the stack along with the node
itself during the descent phase of update operations. This estimation is an upper bound of
the actual left separator value and can be obtained from the states of previously visited
nodes in the descent. Since the estimations are guaranteed to be an upper bound of
the actual left separator value, their algorithm is correct. However, this puts additional
overhead on update operations; the descent phase must compute the estimations as well
as push and pop twice as many elements onto and off of the stack. This may be expensive
in message-passing architectures. Also, it is possible for the restructuring phase to think
the node popped from the stack does not reach s when it actually does. As a result,
needless work may be performed.

Our algorithm avoids the problems of Lanin and Shasha's approach. However, it does

this by storing and maintaining left separator values on every internal B-link tree node.

62 CHAPTER 3. THE COHERENT SHARED MEMORY ALGORITHM

Z
Y night_sep:2 Z right_sep:30 Y right_sep:30
Bl g DD O00D e nnEoonD)N /

(a) Sample tree. (b) half_merge Y and Z

30 -

o) -+

0F -»> 2 2 orF =~

Z kY _se
Y right _sep:30 Y right_sep:0 Y’ right_sep:30 ‘
{2[1]ofs 19@\‘ 4 211] o) [s]] 2o 2| ™
(c) inserts ang eieies (d) Y is split

Figure 3.22: Problem with the stack.

Therefore, we can view the differences between our approach and Lanin and Shasha’s as
a trade-off issue. Qur algorithm optimizes the descent phase and the amount of work
required to find parents in the restructuring phases of update operations at the expense of
using extra memory and overhead required to maintain left separator values. The amount
of memory and overhead required in maintaining left separator values is minimal; the
extra work only occurs when restructuring above the leaf level takes place. In contrast,

the overhead required in Lanin and Shasha's method occurs in every update operation.

3.5. THE DELETE OPERATION 63
Complete_Merging the Parent

After complete_merge(s, p. stack,l) calls find_parent to writelock the level ! node that
covers s (line 1 in Figure 3.21). it checks for the special case where the right neighbor
of the node that covers s stores the downlink p (lines 2-4). For example, the half_-merge
performed in Figure 3.22(b) would have forked a complete_merge where®§ = 2 and p = Z.
W covers s. and p is stored in X. If such a case is detected, complete_split calls the
procedure two.node_cmerge. We present this procedure below.

complete_merge then checks if s and p are already stored in the node (line 5). It then
performs some svnchronization operations (lines 6-12). We ignore them for now, and
discuss them in Section 3.6. In that section, we also discuss the case where s and p are
not both already stored in the node. The procedure then deletes s and p from the node
(line 13). Since both s and p are stored in the node (checked in line 5), s is stored to
p’s left (also checked in line 5). and s can’t be the leftmost separator of the node (or
else the node won’t cover s). we can safely conclude that the node has more than one
child. Thus. we need not merge it. We then call the the procedure old_root? to check if
the deletion causes the node to be the only node in its level (i.e., a leftmost node with
no right neighbor) and to have only one child (line 14-16). If that is the case, then it
is possible that the anchor’s root_level field needs to be updated. Therefore, we fork an

update_root operation.

Complete_Merge with Two Nodes

two_node_cmerge(node, s, p, stack), shown in Figure 3.23, takes as arguments a node node
that has already been writelocked, a separator s, a downlink p and a stack stack. It
assumes s = right_sep(node) and stack is a stack of pointers to nodes whose tree levels
occur in consecutive increasing order starting at node.level 4 1.

two-node_cmerge first writelocks node’s right neighbor (line 1-2 in Figure 3.23). It
then checks if the neighbor’s leftmost downlink points to the same node as p (line 3).
We already know s is the left separator of the neighbor, because it is the right separator
of node. We then perform some synchronization operations (lines 4-10) that will be
explained in Section 3.6.

To delete both s from node and p from node’s right sibling, we must make a decision
in our algorithm. Suppose that given node Y and its right neighbor Z. as shown in
Figure 3.24. we must perform a two_node_cmerge(Y, s, p, stack). We can either (a) move
pl from Y to Z, then delete s and p from Z, or (b) move p from Z to Y, then delete

64 CHAPTER 3. THE COHERENT SHARED MEMORY ALGORITHM

proc twonode_cmerge (node, s, p, stack)
right_neighbor := node.rightlink

[y

2 writelock(right_neighbor)
Y%check pointer equality. If not equal, then wait
3 if p != rightneighbor.p(l] || right.neighbor.size = (then
4 push(stack, node)
5 insert <s, p, stack> into node.merge waiters
6 writeunlock(right neighbor)
7 writeunlock(node)
8 return
9 end
% check if any waiting operations can be enabled
10 start_waiters(s, node.level)
% if size of node is 1. them we have to half merge
11 if almost_empty?(node) then
12 return merge_interior(node, right neighbor. stack)
13 end
% else we have 1o shift a pointer to the right and change separator
9 wvalues between the two nodes.
14 right-neighbor.p{l] := node.p{node.size]
1D node.size := nodesize —~ 1
16 right_neighbor.s[0] := node.s[node.size]
% writeunlock the two nodes
17 news := rightsep(node)
18 level := node.level
19 writeunlock(right_neighbor)
20 writeunlock(node)
% find proper parent and change separator
21 pew.stack := stack.copy{stack)
22 complete_merge(old_s, rightneighbor, new_stack, level + 1)
23 complete_split(new_s, right-neighbor, stack, level + 1)

24 end twonode.cmerge

Figure 3.23: two_node_cmerge(node, s, p, stack) procedure.

s and p from Y. It turns out choice (b) is incorrect. If some ongoing process with key
argument k, where s < k < 52, visits parent X, it will decide Z is the next node to visit.

But Z no longer reaches k. Therefore, we must choose (a).

two_node_cmerge first checks if node has only one child (lines 11-13 in Figure 3.23). If
that is the case, then we must perform a half-merge operation on node and its neighbor.
(Shifting its only downlink to its neighbor would cause node to be empty.) . lLie procedure
merge_interior performs this operation; we discuss it below.

If node has more than one child. two_node_cmerge transfers node’s rightmost downlink
to node’s neighbor, and then deletes s and p, as shown in Figure 3.24(a). Specifically,
two_nodc.cmerge removes s and node’s rightmost downlink from node by decrementing

3.5. THE DELETE OPERATION 65

X

HVARINE|

M Enono ™= annnn
. i

pl

(a) Correct.

(b) Incorrect.
Figure 3.24: Implementation choice for two_node_cmerge.

node.size. replaces p in node’s right neighbor with the node’s former rightmost downlink,
and updates the left separator of node’s neighbor (lines 14-16).

The approach we present for this special case of complete_merge is similar to the
approach taken by Lanin and Shasha [LS86]. They propose first merging the two nodes.
Then they remove the downlink and separator from the resulting node. If the node is
over-utilized, they split the node in two. The advantage of our approach is that we do not
merge any nodes, and we shift only one downlink from the left to the right node. Thus
we hold writelocks for a much shorter length of tiine (merging two nodes requires much
more work than swinging a downlink); we also do not needlessly delete nodes (which
saves memory).

two_node_cmerge has now completed the deletion of s and p. However, the deletion
decreased the separator between node and node’s right neighbor. In Figure 3.24(a), the
separator has changed from s to s1. Note that because sl < s, the tree can still support

dictionary operations. Any dictionary operation that traverses the wrong node as the

66 CHAPTER 3. THE COHERENT SHARED MEMORY ALGORITHM

X

RN

T —GLT T
R’

(a) start tree

H2EINE

Y Z
semns EIFEEIINE

Vo

(b) intermediate tree (c) final tree

Figure 3.25: Changing separator values.

result of the discrepancy between sl (the actual separator between the two nodes) and
s (the stored separator in the parent) can redirect itself to the proper node by using
rightlinks. However. to maintain efficiency, s must be updated to sl in X. To do this,
two-node_cmerge(node. s, p. stack) performs two operations. The first is a complete_merge
to remove the separator s and the downlink to node’s right neighbor from the parent
(line 21-22 of Figure 3.23). The second is a complete_split to insert the separator s1 and
a downlink to node's right neighbor to the parent (line 23).> Note that in line 21, the
procedure stack_copy creates a new stack whose contents are the same pointers as stack’s.
We need a separate copy since both operations will use stack’s pointers.

The correctness of the above two operations should be obvious. Figure 3.25(a) shows
a parent X with downlinks to ¥ and Z after two_node_cmerge changes the separator
value between Y and Z from s to sl (where s1 < s). Part (b) shows the state of the
parent A" after the completion of the complete_merge. This tree structure can still support

dictionary operations. The final state of X after performing the complete_split is shown

5 A more efficient implementation would be to define a procedure that performed the tasks of the above
two operations, l.e., remove s and the downlink to s's right and re-insert the downlink with separator
sl. In the common case where s and s1 are both covered by the parent, such a procedure would avoid
re-writelocking the parent when the downlink is re-inserted.

3.5. THE DELETE OPERATION 67
proc mergednterior(left_node, right_node, stack)

1 old_separator := join-nterior(left_node, right_node)
9 check 1f leftnode 1s now a old root

2 if oldroot?(left_node) then

3 fork update_root(left node.level — 1)

4 end
% unlock nodes

) I := left_node.level + 1

6 writeunlock(right_node)

i

writeunlock(left_node}
Y complete_merge
complete_merge(old_seperator, right_node. stack, 1)

end merge_interior

elie 4

Figure 3.26: merge_interior{left_node. right_node) procedure.

in part (c). The result 1s that X updates its separator s to sl.

Half_ Merging Interic: Nodes

complete_merge calls the procedure merge_interior(lefi_node. right_node), shown in Fig-
ure 3.26. to half-merge interior nodes. It takes as arguments two interior neighbors. It
deletes the separator between the two nodes as well as the leftmost downlink in right_node,
and then merges the nodes. It assumes the two nodes to be merged are already write-
locked. mergec_interior first calls the procedure join_interior to merge the contents of the
two nodes (line 1 in Figure 3.26).

join_interior{left_node, right_node), shown in Figure 3.27, merges neighbors left_node
and right_node and returns the old separator value between them. It first saves the
old separator (line 1 in Figure 3.27). Then it moves all the data from right_node to
left_node. except for the leftmost downlink and separator (lines 2-7), which are discarded.
join_interior then calls join.waiters which updates the merge.waiters and split-waiters
fields (line 8). We explain this operation in Section 3.6. After setting the rightlinks
properly (lines 9-10) and marking the right node as deleted (line 11), the old separator
value is returned (line 12).

After calling join.interior. merge_interior checks if the merge has caused the tree
to shrink levels (lines 2-4). This may happen if lefi_node and right_node were leftmost
and rightmost nodes in their tree level. respectively. and each of them had only one
downlink. If this is the case. merge_interior forks off the procedure update_root. Finally,

merge_interior releases its two locks. and invokes complete_merge.

68 CHAPTER 3. THE COHERENT SHARED MEMORY ALGORITHM

proc join.nterior(left node, right_node)

% move data from right_node to left_node

old_separator := right_node.s[0]

left.node.size := right_node.size

left_nodes(1] := right_node.sl]

for 1 = 2 to rightamodesize do
left_node.s{i] := right_node.si]
lefinode.p[i] := rightnode.p|i

bl B L I I A

end
% concalenate watler lists

> join_waiters{left_node, right node)

S set righthnks

9 left_node.rightlink := right_node.rightlink
10 rightnode.nightlink = leftnode
Y mark might_neighbor as deleted
11 right_node marked? := true
12 return old.separator
13 end joininterior

Figure 3.27: join_interior{left-node, right_nodc) procedure.

3.6 Coordinating Background Processes

Our discussion of the operations assumed that background complete_splits and com-
plete_merges can execute independently without synchronization. Sagiv [Sag86] points
out that the original Lehman-Yao algorithm can perform independent complete_split op-
erations without extra synchronization. However, the original Lehman-Yao algorithm
did not provide for two-phase merges.

The problem is that with two-phase merges, complete_merge and complete_split op-
erations must synchronize with each other if their separator arguments are equal. A
complete_merge that deletes separator s and downlink p from a node must wait for the
complete_split that originally inserted separator s and downlink p. Complete_splits must

make sure the separator they are inserting does not already exist in the node.

3.6.1 Examples of the Problem

Consider the following example. where node X has a child Y. which is half_split into
Y and Z. by an insert. The separator between Y and Z is s. The half_split forks an
independent process to perform a complete_split that will add to parent X the separator
s and a downlink to Z. Later, a delete half-merges Y and Z, and marks Z as deleted.

The half_merge forks an independent process to perform a complete_merge operation that

3.6. COORDINATING BACKGROUND PROCESSES 69

Z

YD%EJ—&J.H.U-» YT 112
vy vy

(@) YissplittoY and Z (b) Y and Z are merged

(c) YissplittoY and Z° (d) inefficient structure

Figure 3.28: Svnchronization example.

will remove the separator s and downlink to Z from X. If the complete_merge operation
1s performed before the complete_split adds s and Z to X, there is a problem since
the downlink and separator that the complete_merge tries to delete have not yet been
inserted. An similar example is where a complete_split tries to insert a separator and
downlink into a node. when the same separator value already exists. (This could happen

if a completc_merge operation that will remove the separator value has not yet executed.)

A more complex example is shown in Figure 3.28. In (a), node Y has just been split
into Y and Z. Later in (b), separator s and Z’s leftmost downlink are removed, and Y
and Z are merged. Even later in (c), a dcwnlink is inserted in Y, causing it to be split
into ¥ and Z'. with separator s between Y and Z’. The order in which we perform the

three background operations forked by the above is important.

If the complete_split that inserts s and Z' occurs first. followed by the complete_merge
that removes s and Z. we may have a problem. If the complete_merge operation does not
check downlinks along with separator values. we may inadvertently delete Z' from the
trec. Later. the complete_split that inserts s and Z may reach " and insert s and Z into

XL resulting in the structure shown in (d). While this tree can still support dictionary

70 CHAPTER 3. THE COHERENT SHARED MEMORY ALGORITHM

operations. it is obviously not the most efficient structure.

3.6.2 Solution -

The obvious solution to the example shown in Figure 3.28 is to check both downlinks and
separators already stored in the node before updating the node. This is done in line 2 in
the complete_split proced ire (Figure 3.11), lines 2 and 5 in complete_merge (Figure 3.21),
and line 3 in two.node_cmerge (Figure 3.23). The checks in complete_split check if a
separator value already exists in the node. If this is the case, then the complete_split
cannot continue. The checks in the complete_merge procedures check if the separator to
be deleted exists in the node. and whether the downlink to the separator’s right matches
the downlink to be deleted. If the check fails. then the complete_merge cannot continue.
Notice that we have not solved the problem entirely. A complete_merge or complete_split
operation that cannot continue must somehow restart at a later time.

One simple solution is to “spin” if separator and downlink checks are not satisfied.
This would mean releasing all writelocks and recursively calling the same complete_split
or complete_merge procedure with the same arguments if the checks fail. Lanin and
Shasha [LS86] provide such a solution for their algorithm. Unfortunately, this is not
correct. This solution solves the problem posed by the first example above; the com-
plete.merge procedure will spin until the complete_split operation inserts the separator
and downlink it wants to delete. However, spinning will not solve the problem in the
example shown in Figure 3.28. If the first complete_split inserts into X the separator s
and the downlink to Z’ to its immediate right, the complete_merge that tries to delete
s and Z will spin. because Z # Z’. Since separator value s already appears in X, the
second complete_split that tries to insert s and Z will also spin. These two procedures
will spin as long as the separator s and downlink Z’ stay in X. It is possible that these
two values will never be deleted from X. Thus the two procedures could spin forever.®

Instead of spinwaiting, we provide two lists in every non-leaf n: n.split_waiters and
n.merge_waiters. When a complete_split or complete_merge fails its downlink or sepa-
rator check. it first inserts into the appropriate list (n.split_waiters for complete_splits
and n.merge.waiters for complete.merges) enough information to restart itself, and then

releases its writelocks and terminates. The restart information consists of the separa-

6Cases where the “spinwait” solution fails happen very rarely. Such a scenario requires a large number
of updates occurring in a short period of time causing nodes to be split, merged, and split again along
the same scparator value. For many applications, it may be adequate to iinplement the spinwait solution
and treat occurrences of the above casc as an error.

3.6. COORDINATING BACKGROUND PROCESSES 71

proc start_waiters (s, 1)
% check if any waiting operations can be restarted

1 for each triple «<sl, p, stack> in node.split_waiters do
2 if s = sl then

] fork complete_split(sl, p. stack, })

4 remove <sl, p, stack> from node.split_waiters
5 end

6 end

T for each triple <sl, p. stack> in node.merge.waiters do
& if s = sl then

9 fork complete_merge(sl, p, stack, 1)
10 remove <sl. p. stack> from node.merge_waiters
11 end

2 end
13 end start_waiters

Figure 3.29: start.waiters(s, () procedure.

tor, downlink. and stack arguments of the complete_merge or complete_split. The list
insertions occur in lines 2-7 of the pseudocode for complete_split (Figure 3.11), lines 5-11
for complete_merge (Figure 3.21), and lines 3-9 for two-node_cmerge (Figure 3.23). For
most applications. we expect the lengths of these lists to be small; insertions into these
lists require scenarios where large number of localized updates occur in a short period of
time, causing nodes to split. merge, and split again along the same separator value. The
probability of such occurrences is small.

All incoming complete_splits and complete_merges must check the lists to find any
“waiting” operations that thev can enable. Thev do this by calling the procedure
start_waiters, right after they make their downlink and separator checks. Figure 3.29
presents the pseudocode for start.waiters. This procedure forks off a complete_.merge and
complete_split invocation for each element stored in the two lists whose separator value
1s equal to the argument s.

Using the lists in the manner described above does not quite solve the problem of il-
lustrated by the example shown in Figure 3.28. Instead of “spinning forever” (as in Lanin
and Shasha’s algorithm), the two lists will contain elements that will never be removed.
While the algorithm is correct. the extra elements introduce unnecessary overhead. A
simple way to avoid this problem is to remove pairs elements in the lists that can “cancel
each other™ (i.e.. an element on each of the lists whose values are identical) every time
an element is inserted into one of the lists.

Note that half-merge and half_split operations must properly divide and merge these

lists. divide_interior does this by calling the function divide_waiters(node. new_node)

72 CHAPTER 3. THE COHERENT SHARED MEMORY ALGORITHM

proc divide_waiters (node, new._node)

1 for each <s, p, stack> In node.split_waiters do

2 if s > node.s[node.size] then

3 transfer <s, p. stack> from node.split_waiters onto
4 new_node.split.waiters

b end

6 end

7 for each <s. p, stack> in node.merge_waiters do

8 if s > nodes|nodesize] then

9 transfer <s, p. stack> from node.merge_waiters onto
10 new_node.merge_waiters

11 end

12 end

13 end divide_waiters

proc join.waiters(left_node, right.node)
append rightnode.split_waiters onto left_node.spht_waiters
append right node.merge_waiters onto left_node.merge_waiters
end join_waiters

[

Figure 3.30: Functions that divide and join wait lists.

(line 9 of Figure 3.13); join_interior calls the function join_waiters(lefi_-node. right_node)
(line 8 in Figure 3.27). Figure 3.30 displays both functions.

3.7 Parent Pointers

In this section. we present the concept of parent pointers, an idea proposed by Eric
Brewer. Each node is augmented with a pointer to its parent. or at least to a node to the
left of its parent. The addition of such pointers may significantly reduce the overhead
resulting from update operations.

Whenever an insert or delete operation performs its descent phase, a stack must
be maintained to record the last node visited at each level of the tree. For message-
passing architectures. stack operations may be quite expensive. The algorithm presented
by Lanin and Shasha requires even more overhead because estimations of left separator
values are pushed onto the stack as well. The stack is used only if the update operation
requires restructuring above the leaf level. (l.e., it is rarely used.)

If each node in the B-link tree maintains a pointer to its parent. then this generally
unnecessary overhead can be avoided. Rather than popping nodes from the stack (and in

the case of Lanin and Shasha’s algorithm, popping estimations of left separator values),

3.8. SUMMARY 73

the restructuring phase of update operations will follow parent pointers.

Unfortunately. the addition of such pointers requires extra maintenance. For example,
every time nodes are split or merged, parent pointers of the affected children must be
updated as well. However, this can be done in a lazy fashion by background processes in
an approach similar to the two-phase approach for merges and splits. We can view the
lazy update to parent pointers as a “third phase.”

Consider the simple example in Figure 3.31. In part (a), we see an example tree
with parent pointers. Node X has become full and needs to be split. A half_split occurs
in (b). Note that the parent pointers of the children of both X and Y point to X.
This is acceptable since Y can be reached from X through a rightlink. In (c), the
corresponding complete_split updates the parent of X. Finally in (d), the parent pointers
of the children of X and Y are lazily updated. The operations in (c) and (d) can be
performed concurrently. Merges can be handled in a similar approach.

The strategy in the example in Figure 3.31 guarantees an invariant in the B-link tree
structure. in which the actual parent of a node n can be reached through zero or more
rightlinks from the node pointed to by n's parent pointer. With minor modifications, we
can easily build a variation of the algorithm presented in this chapter that uses parent

pointers and maintains this invariant.” We reserve this work for future studies.

3.8 Summary

In this chapter, we presented a concurrent B-link tree algorithm based on the Lehman-Yao
algorithm [LY81] with modifications by Sagiv [Sag86,. The algorithm has the following

important properties:
e The descent phase of every dictionary operation locks only one node at a time.

® Process overtaking can cause descents to stray to the left of the proper path, but

rightlinks allow for redirection to the proper nodes.

o The restructuring phases for inserts and deletes use a two-phase strategy that
allows much of the restructuring to be completed in the background. The insert
restructuring phase locks one node at a time; the delete restructuring phase (based

on ideas by Lanin and Shasha [LS86]) locks at most two nodes concurrently.

“Without the invariant, parent pointers might direct restructuring phases to nodes that cannot reach
the actual parent. In such cases. we can use a strategy that either accesses the leftmost node in the level
or performs a descent from the root to find a node that can reach the parent.

74 CHAPTER 3. THE COHERENT SHARED MEMORY ALGORITHM

some node some node H some node | ¥

some pode

(a) Initial Tree >

Lsome nodi]"l some nwe node
(b) Half split

(c) Complete_split [-_ l ! l !__,
Y

some node some node Hme nodH some nodLI' >
(d) Final tree

Figure 3.31: Parent pointers.

3.8. SUMMARY 75

o The anchor’s root.level field is maintained by a critic process that is created on
demand and removed when its tasks are completed.

We finally show how B-link tree nodes can be augmented with parent pointers to
remove the overhead required in maintaining stacks during the descent phase of update
operations. '

76

CHAPTER 3. THE COHERENT SHARED MEMORY ALGORITHM

Chapter 4

The Multi-Version Meniory
Algorithm

This chapter describes another new concurrent B-tree algorithm. The algorithm is de-
signed to work well in large-scale parallel or distributed systems in which the number
of processors sharing the tree is large, or the communication delay between processors
(or between processors and global memory in a shared memory architecture) is large
compared to the speed of local computation.

In an application that uses a concurrent B-tree, replication schemes such as caching
are likely to be important tools for achieving high performance. For example, every
dictionary operation visits the root of the tree. The probability that an operation will
update the root is small. If no replication is used. resource contention for the system
component that stores the root will likely become the limiting factor in performance.
Replication improves performance in part by allowing processes to access data in local
memory, thus avoiding the delay involved in accessing a remote memory, and in part by
replicating data so that many processes can read it in parallel.

Most replication schemes guarantee the memory to be coherent, which constrains the
states of the replicated copies so that read and write operations appear to be atomic.
These constraints require significant synchronization between readers and writers, and
also require communication to update or invalidate copies after a processor has written
to memory. We call all such replication schemes coherent shared memory. Archibald and
Baer [AB86] present an analysis of a number of such schemes.

The basis of the B-tree algorithm we describe in this chapter is an abstraction that is
similar to coherent shared memory, but provides a weaker semantics; we call this abstrac-

tion multi-version memory [WW90]. Multi-version memory uses replication, providing

7

78 CHAPTER 4. THE MULTI-VERSION MEMORY ALGORITHM

the advantages described above, but weakens the semantics of coherent shared memory
by allowing a process reading data to be given an old version of the data. For example,
if we are using hardware caches. a process may simply use its local cache’s copy, even if
the copy has not yet recorded recent updates by other processes. While this semantics is
not as generally useful as that provided by coherent shared memory, it turns out to be
adequate for the B-tree algorithm presented in this chapter.

The advantage of the weaker semantics provided by multi-version memory is that it
can be implemented more efliciently than coherent shared memory. The implementations

of multi-version memory that we describe below have several important characteristics:

e They allow processes reading data to run in parallel with a process writing the
data.

e They eliminate “cache misses” resulting from invalidation caused by writes by other

processes.

e They eliminate the need for processes to wait for messages that update or invalidate

replicated copies.

The net result of these characteristics should be higher throughput and lower latency of
B-tree operations. For example, by allowing processes reading data to run in parallel with
a process writing the data, we eliminate the need for a descending process to block while
an update propagates up the tree. By allowing a process to use an old version of a B-tree
node in a replicated copy even after another process has updated the node, we avoid the
need to wait for communication required to bring the copy up to date. As presented in
Chapter 5, our experiments show that the performance improvement obtained by using
multi-version memory for non-leaf nodes is substantial in a large-scale system with many
processors, or in which communication is expensive.

If replication is provided by hardware caches, implementing multi-version memory
may require managing these caches in software. Others have proposed software cache
management as a way of tailoring the cache management algorithm to the needs of “he
application [BMW85, SS88, CSB86, BCZ90!: however, they all provide coherent shared
memory (defined by either linearizability [HW90] or sequential consistency {Lam79}), and
optimize the implementation to take advantages of characteristics of the application. The
programmer still sees reads and writes as atomic operations.

Multi-version memory goes one step further; in addition to tailoring the cache man-

agement algorithm to the needs of the application, we also tailor the semantics of

79

the memory. This suggests that it could be fruitful to view cache management as an
application-level replication problem, where the user can specify as part of the applica-
tion both the semantics of the shared data and the algorithm used to manage caches.
Such an approach fits naturally into an object-oriented programming style based on in-
venting application-specific abstract data types, such as that advocated by Liskov and
Guttag [LG86]. A multi-version memory object is simply an instance of an abstract data
type, whose specification gives a different semantics to read and write operations than
does the specification of coherent shared memory. Also, the user can encapsulate com-
plex cache management algorithms in the implementations of the abstract data types,
and can change the management scheme depending on the access patterns of the appli-
cation. Cheriton {Che86] has made a similar suggestion, and has given examples of how
weak notions of consistency can be useful in distributed systems. Here, we apply the

general idea to parallel data structures.

We base the general mechanics of our new B-tree algorithm on the mechanics of
the coherent shared memory algorithm presented in the previous chapter. There have
not been many studies investigating the performance of concurrent B-tree algorithms
(e.g.. [BST7, MR85, KW82]); however, the studies that have been done (based on both
simulations and analytical models) show that the Lehman-Yao algorithm, on which the
algorithm in Chapter 3 is based, should perform better than any other algorithm designed
to date [JS90. LSS87].

Instead of describing a single algorithm, we present our algorithm as a transformation
of any B-tree algorithm that uses coherent shared memory for all nodes and that satisfies
some additional assumptions. This allows our technique to be applied to different link
method algorithms. For example, recall the discussion in the previous chapter about
how Lehman-Yao based B-link tree algorithms can implement restructuring phases for
deletes. Sagiv [Sag86] proposes one method, Lanin and Shasha {LS86] propose another,

and we describe a third. Our transformation can be applied to any of these algorithms.

We structure the remainder of this chapter as follows. First, in Section 4.1, we give
a specification of multi-version memory, and discuss how it can be implemented. Then
in Section 4.2. we describe our transformation. In Section 4.3. we describe how the
transformation can be applied to the coherent shared memory algorithm presented in the

previous chapter. We conclude in Section 4.4 with a summary of the chapter.

80 CHAPTER 4. THE MULTI-VERSION MEMORY ALGORITHM
4.1 Multi-Version Memory Schemes

In this section. we present multi-version memory replication schemes. We begin by
describing the operations provided by a multi-version memory object as seen by a client
of the abstraction. Then we present an implementation of multi-version memory that is
architecture-independent. We conclude with a discussion of how multi-version memory

can be implemented on existing architectures.

4.1.1 Specification

In a multi-version memory. the abstract state of an object consists of a sequence of
versions. plus an exclusive lock used to synchronize writers. The first version in the
sequence 1s the initial version. and the last version is the current version. Writers update
the object by extending the sequence of versions with new versions (thus changing the
current version). and readers read the object by choosing and reading some version. The
specification allows the reader to read any version, not just the current version (which
is what coherent shared memory would require). As discussed in the next section, this
nondeterminism allows us to implement a multi-version memory so that readers can run
in parallel with writers. Performance of applications that can use multi-version memory
will probably be better if readers obtain and read recent versions, but the specification
of a multi-version memory requires that the application be prepared for its readers to
obtain an arbitrary version.

As discussed in Chapter 2. a coherent shared memory provides operations to read
and write memory. as well as additional operations for synchronization (e.g., operations
on exclusive locks or read/write locks). Such synchronization operations are applied to
lock objects that are typically separate from shared data; the association between a lock
and the data it protects is typically just a program convention. An object should be
read only when its associated lock object is locked for reading, and written only when its
associated lock object is locked for writing.

A multi-version memory also provides operations that read and write memory, as
well as synchronization operations. However, the synchronization operations are more
closely coupled with the read and write operations than in a conventional shared memory.
A multi-version memory provides seven operations: read. write, readpin, readcurrent,
readunpin. writepin and writeunpin. (We use the term “pin” for reasons that should
become clear below: “pinning” is to a multi-version memory what “locking™ is to a

coherent shared memory.) In specifying the operations. we view each as an atomic action:

4.1. MULTI-VERSION MEMORY SCHEMES 81

the implementation must guarantee that the apparent behavior is as if the operations
execute atomically in an order consistent with their real-time order. This property is
called linearizability [HW90).

A process reads an object by issuing a readpin or readcurrent operation, then issuing
some read operations, and finally issuing a readunpin operation. The readpin operation
has the effect of selecting an arbitrary version of the object; the readcurrent operation
alwavs selects the current version. The readunpin operation simply informs the system
that the process is done with the version of the object selected by the previous readpin
or ~eadcurrent operation; it is needed for performance, but has no observable effect on
the state of the object. A rcad operation uses the version selected by the immediately
preceding readpin or readcurrent operation. A process can issue a read only if the process
has a version selected: a read is illegal if no version has been selected since the latest

readunpin.

A proccss writes an object by first issuing a writepin operation, then issuing some read
and write operations. and finally issuing a writeunpin operation. The writepin operation
has the effect of first obtaining an exclusive lock on the object (blocking if some other
process holds the lock), and then copying the current version of the object into a private
version local to the process. This copy is then treated as the process’s selected version
during its subsequent read and write operations. The writeunpin operation updates the
object by appending .he process’s private version to the object’s sequence of versions
(thus creating a new current version), and then releasing the lock. A process can issue a

write operation only if it has the object pinned for writing.

The exclusive lock acquired bv the writepin operation has the effect of sequencing
writers so that each write sees the effects of all previous writes. However, the lock has
no effect on a reader. As discussed in the next section, we can implement a multi-version
memory so that a reader can read an object while a writer has it pinned for writing.
Readers and writers still need some low-level synchronization, but the delays involved
can he made quite short. In addition. the delays incurred by a reader do not depend on

how long a writer keeps an object pinned for writing.

As with ordinary shared memory. multi-version memory sequences the operations of
writers. Thus, as long as each writepin block preserves consistency (each “block™ consist-
ing of the read and write operations between a writepin and the subsequent wrifeunpin)
and the initial version is consistent, every version of the object is consistent. This means

that a reader sees a consistent state of an object each time it reads the object. However,

82 CHAPTER 4. THE MULTI-VERSION MEMORY ALGORITHM

a reader can see an old version. and the specification allows it to be arbitrarily old.!

4.1.2 Implementations

A variety of MIMD architectures can implement multi-version memory, including shared
memory stvle machines and message-passing multiprocessors, as well as distributed sys-
tems. We describe one such implementation and some variations below in a way that is
reasonably independent ~f the particular architecture. We first explain how to represent
a multi-version memory object. and then we describe the implementation of each of the
operations.

Our implementation represents each multi-version memory object by a (single) base
copy that contains the current version of the object. a mutex to serialize write operations.
and some replicated copies. For example, if the multi-version memory 1s implemented
directly in the hardware caches of a shared memory architecture, the base copy resides
in shared memory while the replicated copies refer to the cached copies of the object.
Each replicated copy contains a flag that indicates whether the copy is pinned. The
implementation can discard an unpinned copy to free up space * - some other use, or
replace 1t with a more current copy to improve the application’s performance: however,
it cannot discard or replace a pinned copy. We assume that each of the processes, at a
given time. will use either zero or one replicated copies of the object. We also assume
that copving the contents « ~ the base copyv to or from a replicated copy 1s an atomic
action.

An operation that reads or writes the object issued by a process uses a replicated
copy “assigned” to the process. If the multi-version memory is implemented within
hardware caches. the assigned copy may refer to the process’s cached copy. On the other
hand. a distributed system implementing multi-version memory in software may have a
fixed number of replicated copies of an object, so the system may randomly assign an
unpinned rcplicated copy to the process. A process reading data must first issue a readpin
or readcurrent on the data; a process writing data must issue a writepin on the data.

implementation then ensures that a process will always be assigned a replicated copy
' hen it 1ssues a read or write operation.

A readpin operation first assigns an unpinned replicated copy to the process. This

"We could add additional constraints to the specification. For example, we might require read_pin
to choose a version that is no older than any other version already used by the process. Alternatively,
we could require 1t to choose one of the k most recent versions. The B-tree algorithm presented in this
chapter does not need such constraints. so we will not discuss them further.

'—

4.1. MULTI-VERSION MEMORY SCHEMES 83

may require creating a new replicated copy and copying the base copy’s contents into the
new copy (e.g.. a multi-version memory is implemented in a hardware cache, and a process
does not have the shared object in its cache), or it may require blocking the process until
an unpinned copy becomes available (e.g., a multi-version memory is implemented in a
distributed system with a fixed number of replicated copies for each object, and all the
copies are pinned). It then marks the replicated copy as pinned. The readpin performs
the copy assignment and marking in one atomic step. A readcurrent operation is similar,

except that it ensures that the process’s replicated copy is current (i.e.. is equal to the

base copy) by copying the base copy into the process’s new copy, if necessary. (We discuss
below how to ensure that a replicated copy is current.}) A readunpin operation simply
marks the process’s copyv as unpinned.

A writepin operation first acquires the mutex in the representation of the object. By
using the same protocol as for readpins, an unpinned replicated copy of the object is
assigned to the jprocess. It ensures that the replicated copy is current. and then marks
the copv as pinned. Like the recdpin operation. a writepin performs the copy assignment
and marking in one atomic step.

There are several ways to ensure that a writer is assigned a current replicated copy
during a writepin operation. (The implementation for the readcurrent operation can use
similar techniques.) The simplest is just to copy the base copy into the writer s replicated
copy as part of the writepin operation. However, if the writer’s copy is already current,
this approach incurs avoidable overhead. Another approach keeps version numbers with
each copy: the version number is incremented at each writeunpin operation, and can be
used to tell if a replicated copy 1s obsolete. However. this takes extra space. and there is
no theoretical bound on the number of bits needed for the version number. In addition,
the writepin operation still needs to retrieve the version number of the base copy, which
could involve a significant communication cost. A third way is for all write operations
to “invalidate” all replicated copies of the object. (For such schemes, we associate with
each replicated copy a valid flag.) That way, if a readcurrent or writepin is assigned a
replicated copy marked invalid. it knows it has to copy the contents of the base copy.

In one atomic step. a writeunpin operation copies the process’s replicated copy back

into the base copy.® niarks the replicated copy as unpinned, and releases the mutex. (The

copy needs to be done only if the process has modified the replicated copy since its last
issued writepin operation. 1

“Alternatively. an “ownersing caciv-coherence protocol can avoid copying back to the base copy

right away

84 CHAPTER 4. THE MULTI-VERSION MEMORY ALGORITHM

Altheough the specification of multi-version memory allows the version selected by a
readpin to be arbitrarily old, the performance of many applications using multi-version
memory will likely be better if selected versions are as close to the current one as possible.
Thus it is desirable to have writeunpin operations propagate to all replicated copies the
changes made to the base copy. Notice that a writeunpin does not have to wait for this
propagation to finish in order to release the writer's mutex and complete. Instead, the
svstemn can create a “background process” after the writeunpin finishes to broadcast the
base copy changes to all the replicated copies.

There are several ways to propagate changes to replicated copies. One way is to
invalidate the replicated copies. In a multi-version memory implemented on hardware
caches, we can simply remove the cached objects from the processes’ caches. However.
we can onlyv remove unpinned cached copies. (Otherwise a process performing a read
operation might not have an assigned copy anymore. If the base copy were then used to
create a new copy. the process might read two different versions of the object between
a single readpin operation and the subsequent readunpin operation.) We can satisfv
this constraint by associating an additional valid flag with each cached copy indicating
whether the copy is “current” or “obsolete,” and invalidating a pinned cached copy by
marking it as obsolete. A readunpin cperation can then check whether the process’s
cached copy is obsolete, and if so. remove it from the cache.

Alternativelyv, invalidation could simply mark all replicated copies as obsolete, regard-
less of whether the copy is pinned. A copyv marked obsolete can be brought up to date at
some convenient time, but the processes using the copy need not be delayed while this
happens.

Instead of invalidating. we can also directlv update an obsolete replicated copy with
the base copy. As with invalidations, an important constraint is that a replicated copy
can be updated only if it is not pinned. We satisfy this constraint by queueing update
requests for pinned copies, so that the next readunpin or readpin can update the replicated
copy with the new value. (In fact. we only need to queue the latest update request for
each copy.) Alternatively, an update request for a pinned copyv could mark the copy as

obsolete; the next readunpin could then copy the base copy into the replicated copy.

4.1.3 Multi-Version Memory and Existing Architectures

The implementations of a multi-version memory object described above have several key

characteristics:

4.1. MULTI-VERSION MEMORY SCHEMES 85

e By using an old version. a process reading the object can proceed while another

process is writing to the object.

e By allowing lazy propagation of an update from the base copy to replicated copies,
we spread over time the invalidation load for a heavily shared object; this should
result in a more even load on the network, and help avoid the kinds of saturation
problems discussed by Pfister and Norton [PN85].

e The only constraint on when to update a replicated copy is that the copy cannot be
pinned during the update. In particular, there are no requirements that a replicated
copy be updated by a certain time.® Thus. one possible implementation allows
readers to avoid waiting whenever possible. For example, if a readpin operation
finds the process’s replicated copy marked obsolete, it might make sense to use the

old copy if there would be a long delay in getting the base copy.

For applications that can use a multi-version memory, the above three characteristics
can significantly improve performance by Increasing concurrency and throughput, and
decreasing latency.

Our description of the implementations above can be applied to both shared-memory
and message-passing architectures. On a shared-memory architecture, we might imple-
ment multi-version memory in hardware caches and create replicated copies dvnamically
when needed. On a message-passing architecture, such as the J-machine [DCF*89), we
might instead maintain in software a fixed number of copies on different processors. which
serve to spread out the load and reduce contention. (Dally’s “distributed objects” [DC88]
or Chien’s “concurrent aggregates” [CD90, Chi90] might be useful substrates for imple-
menting a multi-version memory on a message-passing machine.)

The software management approach can be implemented on existing architectures.
However. updating the replicated copies in software involves substantial overhead. Thus
supporting multi-version memory in the hardware level seems like an attractive alter-
native. Hardware support for fast block copy would be useful. Hardware caches also
provide fast associative lookup.

Using hardware caches has two further potential advantages. First, the dynamic

replication may adapt better to changes in load. since the number of copies that exists

JAfck. et al describe a “lazy” cache algorithm that ensures sequential consistency [ABM89]; it imposes
relatively weak constraints on propagation of updates from one cache to another, but still requires a
processor (o wait at certain times until updates have been propagated to other caches (or the input queues
at other caches) Multi-version memory imposes essentially no constraints; perhaps its implementation
should be called a “lazier” cache algorithm.

86 CHAPTER 4. THE MULTI-VERSION MEMORY ALGORITHM

depends on how many processes are actively using the object. Second, the use of local
cache memories may allow faster access, since in a software-based multi-version memory
implementation on a message-passing machine, a process desiring access to an object
must send a message to a processor holding a copy of the object.

~ However, the shared-memory approach also incurs some overhead in creating and
deleting copies dvnamically. Furthermore, we know of no architectures that allow an
object to be “pinned” in a cache. Supporting this raises the obvious problem of what
to do when the cache is full with pinned objects and something needs to be removed to
make room for another object; since in the B-tree algorithm described below, a process
never pins more than a small constant number of objects (at most two) at a time. one
reasonable choice might be to treat it as an error.

There are other potential probloms with supporting multi-version memory in hard
ware. A hardware cache typically imposes a fixed size on cached objects. Forcing the
programmer to break a large object into several small ones will not work, since there is
no way to guarantee that the versions of the different small objects read by a process are
consistent. Supporting variable-sized objects in hardware caches is difficult. A reasonable
compromise might be the approach taken in the VMP system [CSB86], which uses a large
cache page size. This might be adequate for many applications. (VMP handles cache
coherence in software. which at least gives the potential of implementing multi-version
memory to take advantage of the fast block copy and associative access provided by the

hardware. but it is not clear whether there is any way to cope with “pinning” objects.)

4.2 A General Transformation

In this section. we describe a general transformation for a wide class of dictionary algo-
rithms. The transforination takes a dictionary implementation that works with coherent
shared memory, and produces an implementation that uses multi-version memory for
some of the nodes in the representation of the dictionary. We begin by describing our
assumptions about the algorithm that uses coherent shared memory. Next, we describe

the transformation. We conclude with a proof of correctuess.

4.2.1 Assumptions

We model the data structure veed 16 represent a dictionary as an acvelic labeled graph

(where the labels are assigned to nodes). We distinguish sorme nodes in the graph as leaf

4.2. A GENERAL TRANSFORMATION 87

nodes: a node created as a leaf cannot be changed to a non-leaf, or vice-versa.

One node is distinguished as the anchor node; the identity of the anchor node never
changes. An edge directed out of a leaf node must be incident upon another leaf node;
we do not allow edges from leaf nodes to non-leaf nodes. The label on a node represents
the state of the node, including information about the keys stored .t the node, the range
of keys associated with each edge leaving the node, and whether each edge leaving the
node points to a leaf node. We assume that all data is stored at the leaves, as in a B+-
tree [Com79]: non-leaf nodes contain redundant index information to help operations find
appropriate leaves.

We assume that several functions are used to implement the three dictionary opera-
tions. The functions and the assumptions we make about their behavior are specified as

follows:

e The function covers takes a node n and a key k. If n is a leaf, then covers returns
true ff n 1s responsible for storing information that can be used to determine
whether £ is in the dictionary. The subsets of the key space covered by the different
leaves form a partition of the key space. We do not make any assumptions about

the behavior of covers if n is not a leaf.

e The function successor takes a node n and a key k. If the label for n specifies
that the range of keys associated with an edge leaving n includes £, then successor
returns the node rn. the node pointed to by the above edge. We do not make any

assumptions about the behavior of successor if no edge described above exists.

o The function reaches takes a node n and a key k, and returns true iff n’s label indi-
cates that the leaf that covers k is reachable from n. We formally define reachable

as follows. Let the function successor®, where 1 > 0, be defined as follows:

=0,
successor'{n. k) = { " '

successor(successor*~!(n. k), k) otherwise.

Then. k is reachable from n. if for some finite integer j. successor?(n. k) is the leaf

that covers k. We assume that any key is reachable from the anchor.

e The function s_in takes a kev and a leaf node that covers the kev. and returns true

il the node’s label indicates that the leaf stores the kev,

e The Minction s leaf takes a node n and returns true iff 1 is a leaf.

88 CHAPTER 4. THE MULTI-VERSION MEMORY ALGORITHM
proc findx (k)
1 n := anchor
2 readlock (n)
3 while ! iseaf (n) do
4 next.n := successor (n, k)
) readunlock (n)
6 n = nextn
T readlock (n)
8 end
9 readunlock (n)
10 xlock (mj
11 while ! covers (n, k) do
12 next.n := successor (n. k)
13 xunlock (n)
14 n := nextn
15 xlock (n)
16 end
17 return (n)

18 end findx
Figure 4.1: find_z procedure.

e The function leaf-edge takes two nodes n and m. It assume -ere is an edge from

n to m. It returns true iff n’s label indicates that m 1s a leal.

We divide our assumptions about the coherent shared memory algorithm into two

parts: assumptions about its form, and assumptions about its behavior.

Assumptions about Form

We restrict our attention to implementations of a dictionary in which the operations are
implemented as follows. Each operation starts by calling a find_z operation, which locks
and returns a leaf node that covers the specified key. There are two find_z operations:
find_read and find_write. Lookup calls find-read, which locks the returned leaf in read
mode; insert and delete call find_write, which locks the returned leaf in write mode.
Figure 4.1 presents the implementation of the find_z operations.

Find_read’s implementation replaces zlock(n) and zunlock(n) in find_z’s implemen-
tation with readlock(n) and readunlock(n). respectively: find-write replaces zlock{n) and
runlock(n) with writelock(n) and writcunlock(n), respectively.

After calling the find_r operation. the implementation of a dictionary operation ex-
ecutes its decisive step. which atomically either reads or updates the leaf | returned by

find_z. In its decisive step. a lookup operation uses the is_in function to determine the

4.2. A GENERAL TRANSFORMATION 89

result to be returned to its caller; an insert or delete operation changes I’s label to reflect
the addition or removal of the specified key, and may also modify the state of the graph
in other ways (e.g.. by adding or removing nodes and changing edges).

After executing its decisive step, a lookup operation returns its result. The other
operations may perform more work before returning. We model this by allowing an
insert or delete operation to perform a sequence of atomic updates, each involving one
or more nodes. However, we view the insert or delete operation as completed as soon as
it releases the writelock to the leaf returned by its find_write. Furthermore, subsequent
atomic steps modify only non-leaf nodes. (The atomic updates performed after the
operation’s completion can be viewed as being performed by a “background process.”)

We assume the dictionary uses read/write locks to ensure atomicity of the steps in the
implementations of the operations. The find_z operation. as shown above. uses readlocks
on non-leaf nodes. zlocks on leaf nodes. and locks only one node at a time. After executing
find_read. a lookup operation has a readlock on the returned leaf; it holds this lock until
the result of the operation has been determined. Similarly, after executing find_write, an
update operation has a write lock on the returned leaf; it holds this lock until it updates
the leaf. after which it may acquire other writelocks on both leaves and internal nodes
{e.g.. for propagating splits and merges through the graph). We assume that whenever

a process acquires more than one lock. it acquires and releases them in a nested fashion.

Assumptions about Behavior

The most basic assumption we make about the behavior of the coherent shared memory
algorithm is that it is correct, in the sense that the dictionary operations are linearizable.
We also make two additional assumptions about the find.z operations. First, we assume
that a find_r operation for key k, when started at a node that reaches k, will only visit
nodes that reach k. Second, we assume that a find_z operation for key k, if run with all

other processes halted. will lock and return the leaf that covers k.

We do not assume that the coherent shared memory algorithm guarantees that all
operations will terminate. since algorithms like the one presented in the previous chapter
cannot make such a guarantee. However. we will assume that it is non-blocking, in the
sense that as long as at least one operation is running, some operation will finish. Fur-
thermore. we assume that . finite number of tnsert or delete operations performing their
sequences of background atomic updates with all other processes blocked wili eventually

all complete.

90 CHAPYER 4. THE MULTI-VERSION MEMORY ALGORITHM

proc findx (k)

1 n = anchor

2 readpin (n)

3 while ! isdeaf (n) do

4 if ! reaches (n. k) then
5 readunpin (n)

6 readcurrent (n)

T end

8 next.n := successor (n, k)
9 if leaf_edge (n, nextx) then
10 readunpin (n)

11 n = next.n

12 xlock (n)

13 else

14 readunpin (n)

15 n = next.n

15 if n has already been visited then
16 readcurrent (n)
17 else

15 readpin (nj

19 end

20 end

21 end

22 while ! covers (1, k) do

23 next_n := successor (n, k)
24 xunlock (n)

25 n := next.mn

26 xlock (n)

27 end

28 return (n)

29 end findx

Figure 4.2: Transformed find_r procedure.

4.2.2 Transformation

Given a dictionary implementation that satisfies the assumptions described above, we
modify it to use multi-version memory for the non-leaf nodes, including the anchor.
The transformation requires two steps. First, we replace all occurrences of lock or unlock
operations on non-leaf nodes with the corresponding pin or unpin operations. Second, we
modifyv the coherent shared memory find.z implementation to incorporate multi-version

memory nodes.

Figure 4.2 presents the implementation of the transformed find_r operations. Since
the find_zr operation can read an old version of a non-leaf node, it is possible for it to

access a version of a node that does not reach the kev it is trving to find. To handle

4.2. A GENERAL TRANSFORMATION 91

this, we modify the find_r operation for key k as follows: if it encounters a non-leaf
node that does not reach k., it does a readcurrent operation on the node (lines 4-6 in
Figure 4.2). In Section 4.2.3. we show that the version selected by readcurrent always
reaches k. For coherent shared memory algorithms that allow their find_z operation to
visit “deleted” nodes, it is possible for the transformed find_z procedure to traverse cycles
in the graph. Therefore. we issue a readcurrent to any node already visited (lines 15-17).

In Section 4.2.3. we show that this procedure will avoid cycles.

4.2.3 Proof of Correctness

In this section. we prove that the transformed algorithm is correct. We begin with some
definitions. Then we show that given a coherent shared memory dictionary algorithm that
satisfies the assumptions presented above, the multi-version memory algorithm resulting
from the above iransformation is linearizable. We conclude by proving that the multi-
version memory is non-blocking. in the sense that as long as at least one operation is

running. some operation will finish.

Definitions

A computation of the multi-version memory algorithm can be represented by a sequence

of steps, where each step is either:

e An invocation of a dictionary operation.

A return from a dictionary operatiown.

e A read step for a node 1.

A readcurrent step for a node n.

A fail step.

An update step involving a set of non-leaf nodes A".

o A leaf step involving a set of leaves L.

Each step beloags to a particular instance of some dictionary operation. A read step
corresponds to the entire sequence of read operations between a readpin operation and
the next readunpin operation. A readcurrent step consists of the entire sequence of read

operations between a readcurrent operation and the next readunpin operation. A fail

92 CHAPTER 4. THE MULTI-VERSION MEMORY ALGORITHM

step occurs if a find_z operation attempts to execute sucéessor(n,k) where n does not
reach k. (We will show that this never happens.) An update step corresponds to the
entire sequence of read and write operations in a nested collection of writepin blocks.
(Recall that a writepin block consisting of the reads and writes between a writepin and
the subsequent writeunpin.) A leaf step corresponds to the entire sequence of read and
write operations 1 a nested collection of readlock and writelock blocks.

A computation of the coherent shared memoryv algorithm can be represented by a
sequence of the same kinds of steps, except that readcurrent steps will not appear, and
the correspondence with the operations is based on lock and unlock operations instead
of pin and unpin.

We say a leaf step belonging to a particular dictionary operation instance is a decisive
step if it is the last leaf step belonging to the same dictionarv operation instance. The
decisive step is the one that either changes the abstract state of the structure (the set of
dictionary values stored in the leaves) or determines the value to be returned by a lookup
operation. We define an effective step to be an update or decisive leaf step. Also. we
define an interface step to be an invocation of or return from a dictionary operation.

For the purpose of the proof, assume that when a fail step occurs in a find_z operation,
the operation halts. This means that a dictionary operation whose find_z fails will not

execute any decisive or update steps.

Linearizability

We show that the transformed algorithm guarantees linearizability by reduction to the
coherent shared memory algorithm. Since, by assumption, the coherent shared mem-
ory algorithm guarantees linearizability of the dictionary operations, it follows from the

lemma below that the transformed algorithm also guarantees linearizability.

Lemma 4 2.1 If M is a computation of the multi-version memory algorithm, then there
exists a computation S of the coherent shared memory algorithm with the same sequence

of effective and interface steps.

Proof: We prove the claim by induction on the number of effective and interface
steps in M. If the number is zero, the claim is immediate. Otherwise, let © be the last
effective or interface step in M, and let M’ be the prefix of M that ends just before
7. By the induction hypothesis, there exists a computation S’ of the coherent shared
memory algorithm with the same sequence of effective and interface steps as M'. We

obtain S from & as follows. If 7 is an update step or an interface step, S is just S'x.

4.2. A GENERAL TRANSFORMATION 93

Otherwise. 7 is a decisive leaf step for some key k. Let F be the sequence of steps
executed by the find_z operation with argument k& when started in the state after §’,
with all the other processes halted. (The find_z operation is find_read if the 7 belongs to
a lookup operation, and is find_write otherwise.) Then S is 8’ Fr.

It is clear that S as constructed above has the same sequence of effective and interface
steps as M. We must show that it is a computation of the coherent shared memory
algorithm. The only difficult case is when = is a decisive leaf step; we must show that
the find_r operation in S arrives at the same leaf as the corresponding leaf in M. For
this, we use our assumptions about the behavior of find.z operations in the coherent
shared memory algorithm. In particular. the state of the leaves after &' is the same
as after M’ (by the induction hypothesis since M’ and &' have the same sequence of
effective steps). When the multi-version memory algorithm executes 7. it has the leaf
that covers k locked. Thus. after M’ (and hence also after S'). the leaf that covers k 1s
same as the leaf read or written by #. By assumption then the find_r operation in the
coherent shared memory algorithm, if run with all other processes halted starting in the
state after S’. will lock and return the leaf that reaches k. Executing = after S'F will

then give the same result as executing = after M. B

Liveness Properties

In this section. we prove that the transformed multi-version memory algorithm is non-
blocking. in the sense that if any operations are running at any point in time, some
operation will eventually complete.* First. we show that the multi-version memory algo-
rithm does not allow find_r operations to fail (which, as mentioned earlier, would cause
operations to halt). Second, we show that if the coherent shared memory dictionary is
always acyclic and at least one operation is running, then some operation will complete

in finite time.

Lemma 4.2.2 A find_r operation for key k in the multi-version memory algorithm does
not fail.

Proof: Let k be the key in question for the find_z operation, and let M be a compu-

tation of the multi-version memory algorithm. We need to show that the version used by

“We do not allow a process to halt while in the middle of an operation. In particular. if a process has a
node pinned in write mode and halts, then other processes that attempt to write_pin the node will block
forever. Thus. this is a weaker notion of “non-blocking” than used, for example, by Herlihy [Her90}.

94 CHAPTER 4. THE MULTI-VERSION MEMORY ALGORITHM

the successor operations in M always reach k. We do this as follows. A find_z operation
for key k executes a series of read and readcurrent steps R;. If the version used in a read
step does not reach k, a readcurrent step is executed. For the purposes of the proof, we
consider such a read step and the subsequent readcurrent step as “sub-steps” of a single

step. We prove inductively that the version used by each step reaches k.

The basic step involves the first read step in the find_z operation, which reads the
anchor node. This is trivial. since by assumptions made in Section 4.2.1 and Lemma 4.2.1,
the anchor reaches any kev.

For the inductive step, assume that R; reads a version A of node n; that reaches k,
and that the find_z operation next reads node 1, (found to be the appropriate successor
of n; in step R;). If R;4) reads a version of n,,; that reaches k. we are done. If not, the
find_r operation then executes a readcurrent substep R, for n,.;. To show that the
find_r operation does not fail. it suffices to show that the version B of n;;; read by R,
reaches &. By Lemma 4.2.1, there exists a computation S of the coherent shared memory
algorithm with the same sequence of effective and interface steps as M. We show that
S can be augmented with a find.r operation for k that reads version A of n; and then
version B of n;4,. Recall that we assumed that the coherent sh. 1 memory algerithm
has the property that a find.z operation for k, if started at a node that reaches k, will

only visit nodes that reach k. It then {ollows that B reaches k.

We augment § with a find_z operation for k that starts at node n;, and reads n;
immediately after the update step U4 that writes version A. We denote this read step
as Ra4. Since the multi-version memory algorithm and the coherent shared memory
algorithm use the same method for choosing successive nodes to visit in a find-z operation,
this find_r will read n,y; next. We simply delay this read step until immediately after
either the update step Upg that writes version B, or the read step R4, whichever comes

later.

We must show that the read step for n;y, inserted into S reads version B. This is
trivial if the read step for ny; is inserted into S immediately after Ug. Otherwise, either
Up comes before Uy, or Ug = Uy. If Ug = Uy, then R4 immediately follows Ug, and
the read step for n,,, immediately follows H4. so the read step for n,;| reads version B
of n,y,. Otherwise, Up comes before /4. In this case. it suffices to show that no other
update step for n;yy occurs between Upg and U4. But in M, R}, occurs after R,; since
a read step in the multi-version memory algorithm can only read a version written hy
a prior update step, 1, occurs after Us. Hence. R[,, occurs after [4. Since R, reads

the current version of n,.. there is no update step for ni;; between Ug and R.,. Since

4.2. A GENERAL TRANSFORMATION 95

R, occurs after {'4. there is no update step for n;y; between Ug and U,.
Therefore. the read step for n;y, inserted into S reads version B. By the assumptions

made about the coherent shared memory algorithm, version B of n,,; must reach k. &

To show that the transformed multi-version memory algorithm is non-blocking, we
need to introduce two concepts: version graphs and computation states.

Recall that the dictionary implementation is a labeled graph. The version graph
of the dictionary implementation is a directed graph that contains a separate node for
each version of each node in the dictionary. An edge exists in the version graph from a
version V" of a dictionary node m to all versions of the dictionary node n if V contains a
pointer to 1. Note that by removing from the version graph all but the current version
of each dictionary node. and all edge= except those whose source and destination nodes
are cutrent versions. we are left with the dictionary implementation.

The computation state of a dictionary :mplementation describes not only the state of
the data structures used to represent the dictionary, but also the state of the processes
that are performing dictionary operations. To define the notion of a process state, we can
think of each process as performing a sequence of computation steps, which we defined
above. For example, a process performing a lookup operation must perform a finite
number of read steps, followed by a leaf step. The state of a process must describe not
only the sequence of computation steps the process has already performed, but also the
compuiation steps that the process will perform in the future. We represent a process’s
state by a single “program counter.” By convention, we set the value of a program
counter to the computation step that the process will perform next. The computation
state of a dictionary implementation consists of a version graph used to represent the
state of the data structures and a list of program connters used to represent the state of

the processes performing operations.

Lemma 4.2.3 The multi-version memory algorithm is non-blocking. (L., if at least

one incomplete operation is running, eventually some opeation will complete.)

Proof: Consider the computation state of the dictionary implementation. For now,
assume that the sequence of nodes visited by the read steps in a find_r operation does
not traverse any cvcles in a version graph that does not change over time. Given this, we
can show that if at least one incomplete operation is running. eventually some operation
will complete.

We divide the computation state of our multi-version dictionary implementation into

four cases:

96 CHAPTER 4. THE MULTI-VERSION MEMORY ALGORITHM

1. The value of all the program counters in the computation state are set to read

steps.

O]

At least one program counter is set to a leaf step.

3. At least une program counter is set to an update step, at least one program counter

1s set to a read step, and no program counter is set to a leaf step.

4. At least one program counter is set to an update step and no program counter is

set to a read or leaf step.

Case (1) is straightforward. Since the graph has finitely many nodes. does not change
over time (since no program counters are set to decisive leaf or update steps). and we as-
sume find_z operations do not traverse cvcles, then eventually one operation will perform
a leaf step. Data contention amorg read steps is not an issue since they all involve only
readpin and readcurrent operations. Once an operation reaches a leaf, the computation
state has become that of case (2).

For case (2). at least one process, which we call . has its program counter set to a leaf
step. This means that @ has completed its read steps and will next perform a leaf step.
Let £ be the set of leaves affected by a’s leaf step. According to our assumptions, the
edges connecting leaf nodes in the coherent shared memory algorithm’s implementation
cannot form a cycle. By Lemma 4.2.1, the edges ~onnecting leaf nodes in the version
graph of our multi-version memory algorith.m cannot form cycles either. Therefore, we
can order the leaves in our version graph by using a topological sort (where the first
node in the sort containing no edges leaving it). We prove by induction on the order in
which the leaves in £ appear in the topological sort ihat eventually some operation will
perform a decisive leaf step and complete. Tor the basic siep. assume £ consists only of
the first leaf in the topological sort. If we assume that read/write locks are non-blocking
(and this is a reasonable assumption since the coherent shared memory algorithm is non-
blocking). then eventually some operation will perform a leef step affecting the first, leaf
in the topological sort. By Lemma 4.2.2 and the structure of the find_r operation, this
leaf step must also be decisive since the first leaf in the topological sort does not have
any edges leaving it. For the inductive step, assume that £ contains [;, the 7'th leaf in
the topological sori. and no other leaf in £ appears before !; in the sort. Eventualiy some
process will perform a leaf step that affects the j'th leaf in the sort, where ; < ¢. Either
the step is decisive and a dictionary operation completes, or the proc-ss finishes the step

and is now ready to perform another /eaf step. For the second case, the set of leaves that

4.2. A GENERAL TRANSFORMATION 97

the new step accesses includes a leaf that is at most the (7 — 1)'th leaf in the topological
sort. This 1s because non-decisive leaf steps (which c~cur in the find_r operation) use
the function successor to determine the leaf node affected by the next leaf operation.
Since j — 1 < 7, by induction, we conclude that eventually. somc operation will perform

its decisive leaf step and complete.

Case (3) is similar to case (1). except that some program counters have been set to
update steps. We will prove by contradiction that after a bounded number of steps. the
computation state will become that of either case (1) or {2). Assume that a computation
state from case (3) will never become that of either case (1) or (2). Let P denote the
set of processes that the updatc program counters represent (i.e.. P represents the set of
processes that will perform update steps). The only computation steps that can affect
the state of the version graph are decisive leaf and update steps. The only way a decisive
leaf operation can be performed is if the computation state becomes that of case (2).
Also. the only wayv new processes can be added to P is if a process not in P performs
its decistve leaf step which means the computation state must become that of case (2).
Therefore. the only steps that can alter the state of the version graph are update steps.
and no new processes will perform update steps. Furthermore, the number of processes

in P cannot dwindle to zero. or else the computation state will become that of case (1).

This 1s where the contradiction appears. Since processes in P perform update steps,
they only issue writepins. Processes not in P perform read steps; they only issue readpins
and readcurrents. Thus there is no data contention between processes in P and not in P.
Also. processes not in P will not alter the state of the data structures representing the
dictionary. Therefore. the processes in P would behave the same regardless of whether the
processes not in P are running or blocked. In fact, if we assume that the processes not in P
are blocked. then the behavior of the processes in P is identical to the behavior of the same
processes running on the coherent shared memory algorithm; the only difference between
update steps in the multi-version memory and coherent shared memory algorithms is that
the multi-version memory algorithm uses writepins instead of writelocks. Since we assume
in the coherent shared memory algorithm that a finite number of processes performing
update steps with other processes blocked will eventually all complete. we can also assumc
that eventually the number of processes in P will dwindle to zero. Therefore, we have a
contradiction. We conclude that the computation state must eventually become that of

either case (1) or (2).

Case (4) is similar to case (3). Either some new operations on the dictionary are

invoked and the computation state becomes that of case (1). or by using arguments

98 CHAPTER 4. THE MULTI-VERSION MEMORY ALGORITHM

similar to case (3), eventually all processes nerforming update steps will complete (which
means that there are no more active processes performing dictionary operations).

The only thing left to prove is that find_r operations do not traverse cycles in a
fixed version graph. (Remember, this is the key assumption we used above for case (1).)
Recall that find_z, when accessing a node it already visited, uses readcurrent to read the
current version of the node. Let k be the key argument specified by an ongoing find_z
operation. If find_r does traverse cvcles in the version graph, then the nodes in the cycle
in the version graph must refer to current versions of the dictionary. Here we have a
contradiction. Recall from Lenuna 4.2.2 that all nodes visited by find_z operations must
reach . and that the definition of the function reaches implies that find_r will reach the
leaf that covers k after a finite number of successor calls. Therefore, the cycle must not

exist. and the proof 1s completed. W

4.3 The Multi-Version Memory Algorithm

In this section, we build a multi-version memory algorithm by applying the transforma-
tion above to the algorithm we presented in the previous chapter. We first show that
the assumptions about form and bekavior described in the previous section are valid for
the coherent shared memory algorithm presented in Chapter 3. We then present the

resulting multi-version memory algorithm.

4.3.1 Valid Assumptions

In this section, we show that the assumptions necessary for correctness in the transfor-
mation are, for the most part, valid for the algorithm presented in the previous chapter.
Discrepancies between the algorithm and the transformation assumptions can easily be
fixed. The data structure used to represent the dictionary can, in fact, be viewed as a
labeled graph, where each B-link tree node’s state is encapsulated in its label. There
1s cnly one anchor, and it never changes. All leaf nodes stay leaves; all non-leaves stay
non-leaves. All rightlinks from leaf nodes point to other leaves. (Leaves do not have
downlinks.) Data is stored only at the leaves. The functions covers?, successor, reaches?,
find_key, and is_leaf? presented in Section 3.2 perform the same tasks as the functions
covers. successor, reaches, is-in. and is_leaf presented in Section 4.2.1.

The remaining assumptions are divided into assumptions about form and assumptions

about behavior.

4.3. THE MULTI-VERSION MEMORY ALGORITHM 99

Assumptions about Form

All three of the dictionary operations implemented in our coherent shared memory al-
gorithm fit the transformation’s assumptions about form. We first examine the lookup

operation, then the update operations.

Lookups. The procedure ly_lookup, shown in Figure 3.5, calls lookup_descent. shown in
Figure 3.6. which corresponds to the find_read operation described above. After calling

lookup_descent. the procedure ly_lookup performs its decisive operation.

Updates. The procedures ly_insert and ly_delete, shown in Figures 3.7 and 2.18. call
update_descent. shown in Figure 3.3, which corresponds to the find_write operation. They
then complete their decisive operations. Except for lines 9-15 in procedure stari.nodes
shown in Figure 3.13. resulting come,'ete_split and completc_merge operations are se-
quences of background atomic steps which only use writelocks. The above mentioned
lines in stari_nodes acquire a readlock on the anchor. It 1s apparent that removing these
lines will still result in a correct B-tree algorithm. However, we show below that these
lines need not te removed wheun the transformation to a multi-version memory algorithm

1s applied.

Assumptions about Behavior

Our coherent shared memory algorithm also satisfies the transformation’s assumptions

about behavior. Specifically, the following facts are true:

o Concurrent dictionary operations in our coherent shared memory algorithm are

linearizable.

The find_r operation (descent phase) of all operations in our algorithm with the

key k as an argument will visit only nodes that reach k.

A find_zr operation for key k, if run with all other processes halted, will lock and

return the leaf that covers k.

The algorithm is non-blocking.

A finite number of inser! and delete operations each performing a sequence of

background atomic updates with all other processes halted will eventually complete.

The proofs of these facts have been sketched, but arc not included in the thesis due to

time and space constraints.

100 CHAFTER 4. THE MULTI-VERSION MEMORY ALGORITHM

4.3.2 The New Algorithm

The transformation of our coherent shared memory algorithm presented in the previ-
ous chapter to an algorithm that uses multi-version memory for its non-leaf nodes is
straightforward. We replicate the anchor and non-leaf nodes in the tree using multi-
version memory; we replicate the leaves using coherent shared memory. For most of
the pseudocode procedures presented in Chapter 3, the transformation simply requires
changing all lock and unflock commands for the anchor and non-leaf nodes to the appro-
priate multi-version memory pin and unpin commands. However, the transformations for
lookup_descent (Figures 3.6). update_descent (Figure 3.8). and start_nodes (Figure 3.13)
are more complicated. '

Figure 4.3 presents the pseudocode for the transformed lookup_descent procedure. The
changes to the original coherent shared memory procedure are exactly the ones described
above in the transformation of the find.z procedure. The check that node reaches k in
lines 7-9 of Figure 4.3 is necessary, since readpins might select an old version that does
not vet reach &. Because rightlinks for marked nodes “point left,” lookup_descent must
avoid cycles by issuing a readcurrent to the next node visited after visiting a marked
non-leaf node (lines 16-17). If the next node to visit is a cohere. shared memory leaf.
then lookup_descent issues a readlock instead of a readpin (lines 18-19). The changes for
the transformed update_descent procedure are similar to the transformed lookup_descent.

As explained above, lines 9-15 in the procedure start_nodes (Figure 3.13) are trouble-
some 1n that a readlock is acquired on the anchor. In our transformation, we assume the
atomic update steps that occur after an update operation’s decisive step only use write-
locks. There are two ways to correct this problem. The first is to remove lines 9-15 from
start_-nodes and apply the normai transformation to start_-nodes (i.e., replace the write-
lock and writeunlock operations with writepin and writeunpin operations). Although the
seven removed lines reduce the probability that the anchor is writelocked, they are not
necessary for correctness.

The second and more desirable way to solve the problem is to simply replace the
readlock and readunlock in lines 9-15 with readpin and readunpin. Because leftmost
nodes in our B-link tree are never deleted and no nodes are ever created to the left of
existing leftmost nodes. the leftmost node pointers stored in old versions of the anchor
are still valid (i.e., they still point to leftmost nodes of individual tree levels). Therefore.
replacing the readlock and readunlock in lines 9-15 with readpin and readunpin will
preserve correctness. since these lines only look up leftmost node pointers. (These lines

may read an old version of the anchor. If the version contains a leftmost node pointer for

4.3. THE MULTI-VERSION MEMORY ALGORITHM

proc lookup_descent(k)
% get root of tree

1 readpin(ANCHOR)

2 level := ANCHOR.root level

3 node := ANCHOR leftmost_nodes(level]
4 readunpin(anchor)

' descend down trec to leaf level
3 readpin{node)
. while ! is_leaf?(node) do
9 check 1f node reaches k

T if ! reaches?(node, k) then

& readunpinfnode)

4 readcurrent(node)

16 else

11 next := successor{node, k)
12 marked? := node.marked”
3 leaf? := nodelevel = 1 && downlink connects node and next
14 readunpin(node)

15 node := next

% check if cycle might be traversed

16 if marked? then

17 readcurrent{node)

15 else if leaf? then

19 readlock(node)
20 else
21 readpin(node)
22 end
20 end

24 end

% move along leaf level to proper leaf, using readlocks

25 while ! covers?(node, k) do

26 next := node.rightlink

27 readunlock(node)

28 node := next

29 readlock(node)

30 end

31 return node

32 end lookup_descent

Figure 4.3: Transformed lookup_descent procedure.

101

102 CHAPTER 4. THE MULTI-VERSION MEMORY ALGORITHM

level [, then the pointer indeed points to the leftmost node in level {. If it doesn’t contain
such a pointer, then lines 16-18 in siari_nodes will writepin the anchor and access the
pointer if it exists. or create one if it doesn’t.)

The transformations for all the other pseudocode procedures in the previous chapter
require simply replacing all lock and unlock operations on the anchor and non-leaf nodes
with the appropriate pin and unpin operations. The correctness of the new algorithm is

guaranteed by the correctness of the transformation.

4.4 Summary

In this chapter. we presented n.ulti-version memory, a replication scheme which loosens
the semantics of coherent shared memory by allowing readers to access “old versions” of an
object. As a result. multi-version memory implementations allow more concurrency and
require less commun cation and svnchronization than coherent shared memory schemes.
Although the weaker semantics is less generally useful than coherent shared memory. it is
sufficient to support a variety of B-link trec algerithms, including the algorithm presented
in the previous chapter.

We presented and proved the correctness of a transformation that takes a coher-
ent shared memory concurrent dictionary algorithm, and builds a multi-version memory
concurrent dictionary algorithm. The original algorithm must satisfy a small set of as-
sumptions. We showed that the algorithm presented in the previous chapter satisfies
these assumptions, and presented a transformed multi-version memory algorithm. The

correctness of the new algorithm is guaranteed by the correctness of the transformation.

Chapter 5

Performance Measurements

In this chapter, we present a series of experiments that we performed using a message-
driven simulator for large scale message-passing architectures. The experiments have two
purposes. The primary purpose is to examine the performance of various concurrent B-
tree algorithms. including our multi-version memory algorithm presented in the previous
chapter. The secondary purpose is to compare the performance and scaling properties of
multi-version memory with coherent shared memory.

Any performance experiment for large-scale parallel applications must address certain
kev 1ssues. Data contention is perhaps the most obvious issue to consider, especially for
concurrent B-tree algorithms. The most critical example of data contention in the B-tree
1s the root bottieneck, which occurs during any update of the tree’s anchor or root node;
the root bottleneck blocks all incoming operations. The methods used to reduce the
root bottleneck are the main differences between the algorithms. Unfortunately, much of
the work in analvzing concurrent B-tree algorithms concentrate on data contention and
ignore other important issues [BS77, EI180, LS86., LSS87].

For example, since a concurrent B-tree heavily utilizes certain key data structures
(e.g., the anchor and the root), resource contention could be a limiting factor in through-
put. Also, as concurrent and distributed systems become larger, communication networks
become more complicated. If network latency becomes excessive, B-tree algorithms must
minimize communicaticn to preserve performance. Replicating objects in memory can
reduce both resource contention and communication.

We implemented our B-tree algorithms using Andrew Chien’s Concurrent Aggregates
(CA) language [CD90, Chi90]. CA is an object-oriented language designed to support
miassively parallel programs for fine-grained message-passing architectures. CA’s aggre-

gates are especially useful for implementing data abstractions for replicated objects. We

103

104 CHAPTER 5. PERFORMANCE MEASUREMENTS

used Chien’s simulator for message-passing architectures to measure the performance of
our algorithms. This simulator provides a simple approach for modeling network latency
and resource contention.

The number of proposed concurrent B-tree algorithms precluded implementing every
algorithm: it became necessary to pick a handful of algorithms. In Section 5.1, we
present the algorithms we chose to implement along with the reasons for choosing them.
Section 5.2 describes the simulator we used to measure the performance of the algorithms.

Section 3.3 presents the simulation results.

5.1 B-Tree Algorithms

The algorithms we chose to implement needed to be representative of all proposed con-
current B-tree algorithms. We implemented the coherent shared memory algorithm pre-
sented in Chapter 3. since there is good reason to believe its performance is better than
any other coherent shared memory algorithm proposed. We also implemented the multi-
version memory algorithm presented in Chapter 4, since its performance and scaling
properties are likely to be even better than its coherent shared memory counterpart. For
the remainder of this chapter. we refer to the algorithms presented in Chapters 3 and 4
as “our coherent shared memory algorithm”™ and “our multi-version memory algorithm”
respectively. Both algorithms are link algorithms. For purposes of comparison, we also
implemented some lock coupling algorithms.

As discussed in Chapter 2, there are two types of lock coupling algorithms, top-
down and bottom-up. Top-down algorithms perform their restructuring phases during
pessimistic descents. while bottom-up algorithms perform their restructuring phases after
decisive operations. We implemented two lock coupling algorithms. The Mond-Raz
algorithm [MRS5] is a top-down algorithm; the Bayer-Schkolnick algorithm [BS77] is
bottom-up.

Since merge-at-empty strategies are more suited for database applications than merge-
at-half strategies [JS89], our implemented algorithms used a merge-at-empty strategy.
Since optimistic lock coupling strategies generally show better performance than pes-
simiistic lock coupling strategies [BS77, LS86, JS90], we implemented optimistic descents
for both lock coupling algorithms. Because of the improvements in performance measured
by Lanin and Shasha [LSS87]. both lock coupling algorithms also used quick splits, which
writelock leaves and parents of leaves during optimistic descents for update operations.

To summarize. we implemented the following four concurrent B-tree algorithms:

5.2. THE IMPLEMENTATION AND THE SIMULATOR 105

Our multi-version memory algorithm. which was presented in Chapter 4.

Our coherent shared memory algorithm, which was presented in Chapter 3.

Optimistic Mond-Raz algorithm [MR85] with coherent shared memory and quick

-splits.

Optimistic Bayver-Schkolnick algorithm [BS77] with coherent shared memory and
quick splits.

5.2 The Implementation and the Simulator

We implemented our B-tree algorithms using the Concurrent Aggregates (CA) language.
developed by Chien [CD90. Chi90]. CA is an object-oriented language designed for fine-
grained message-passing machines. CA provides many features useful for implementing
different replication schemes and modeling resource contention. A message-driven simu-
lator for message-passing architectures. designed by Chien, measures the performance of
CA programs. This section discusses how CA and the simulator model some 1ssues that
are important in concurrent B-tree performance. These issues include replication, data

contentior. resource contention, and network latency.

5.2.1 Replication and Data Contention

Since the simulator models message-passing architectures, we represent a replicated ob-
iect as a fixed number of copies maintained in separate processors, which serve to spread
load and reduce coniention. CA provides a multiple-access data abstraction tool called
aggregates that can implement replicated memory. Aggregates allow users to build a
collection of homogeneous objects whose internal communication and synchronization
are user-defined. By using aggregates, we can build elegant implementations for both
coherent shared memory and multi-version memory. Since CA provides spinlocks, we
can also implement various synchronization objects such as read/write locks and multi-
version memory pins. We discuss the CA implementations of coherent shared memory

and multi-version memory in more detail below.

Coherent Shared Memory

After experimenting with a variety of cache coherence protocols [AB86], we decided to

implement a simple directory-based invalidation scheme. This scheme was the most

106 CHAPTER 5. PERFORMANCE MEASUREMENTS

efficient to implement in CA and. after preliminary measurements. judged to provide
the best performance for the three coherent shared memory B-tree algorithms. To pro-
vide concurrency control. we implemented read/write locks using a distributed lock ap-
proach {BurS>. ST87.. Sucli locks allow more efficient implementations for readlocks
than the monitor approach [Hoa74. Bri75. Dij71]. Iluwever, the synchronizaticn neces-
sary for writelocks grows proportionally to the number of replicated copies of the object

assoclated with the lock.

Multi-Version Memory

We implemented multi-version memory using the approach described 1n Section 1.1.2.
Our implementation uses version numbers to check if replicated copies are current. It also
updates obsolete copies by directly copving the contents of the base copy onto replicated
copies. After experimenting with a variety of implementations. we found this scheme 1o

be most efficient for the CA-implemented multi-version memory B-tree algorithn.

Replication Factor

We represent the anchor and each node in the B-tree as a replicated object. Since some
nodes are more heavily utilized than others. the number of copies maintained for each
node should vary. Nodes accessed more often (nodes in the upper levels) should have
more replicated copies. We used a scheme with the following number of copies for each

structure:

e Leaves (generally the least frequently visited nodes) are unreplicated.

e The number of copies of the anchor is equal to the number of processes that access
the B-tree.

¢ The number of copies of an internal node of level I is equal to the minimum of the
number of copies of the anchor. and the number of copies of an internal node of

level { — 1 times a user-defined constant. which we call the replication factor.

It is reasonable to set the replication factor to the expected number of children for internal
nodes. since then the total number of copies for all the nodes in each level will be about
the same. Lanin and Shasha [LSS87] predict this number to be 0.69 times the maximum

fanout of the tree.

3.3. ".MULATION RESULTS 107
5.2.2 Other Issues

Other issues that need te be addressed when implementing concurrent B-tree algorithms

are resource contention and network latency. (A and Chien’s simulator can model both.

Resource Contention

We simulate resource coutention by setting objects in our CA code to process only one
message at a time. This means that a replicated object with n copies can process onlv n
requests concurrently. even if we discount data contention. When more than n requests
arcassued. the excess requests “spinwait” until a copy is freed. If the spinuine contin-
ues past a user-defined amount of time. we queue the messages to alleviate saturation

probiems described by [Andsy

Network Latency

The simulator allows the user to specify the average network latency of the modeled
architecture. It assigns to each message sent by the CA program a cost equal to this
latency. The simulator does not model network contention or “hot spots.” The default
value of this parameter 15 one simulated “time step.” A time step Is a time unit based
on the modeled architecture: the simulator assigns basic operations {such as arithmetic
operations. local memory accesses. etc.) a cost of one time step. By increasing the
simulated network latency. we can approximate the effects that large networks can have

ot concurrent B-tree algorithns.

5.3 Simulation Results

We measured the performance of the four implemented algorithms using Chien’s sim-
ulator. Since most B-tree applications are database-related, we investigated operation
patterns where the dictionary grows slowly {4 common characteristic in databases). We
used both randomly selected and fixed operation patterns as well as uniformly and non-
uniformly distributed kevs as arguments to dictionary operations.

Ve divide the experiments into three categories. The first category contains the
majority of the experiments: it investigates how different operation mixes affect the
performance of the four algorithms. The second category compares how the coherent

shared memory and multi-version memory replication schemes perform for systems with

108 CHAPTER 5. PERFORMANCE MEASUREMENTS

large network latencies. The final category investigates how different replication factors
affect tiie performance of coherent shared memory and multi-version memory.

In each of the experiments. we first constructed a B-tree with 1000 dictionary elements
and randomly selected kevs. Unless otherwise specified. the maximum fanout of the tree
was 10: the imital trees contained 4 levels. (Memory constraints in the simulator pre-
vented building larger trees.) For most experiments. the replication factor was 0.69 times
the tree’s maximum fanout. rounded to the nearest integer. Unless otherwise specitied.
we set the network latency 1o the default value: every (A message was assigned a latency
cost of one simulated time step. We theu performed 10000 dictionary operations divided
among « nuinber of B-treo workers. Facli B-tree worker 1+ a process that sequentialls
performs dictionary operations (i.e.. it waits for an operation to complete and return.
before starting the next operationi. We measured the overall throughput {measured i
dictionary operations per simulated time stepsi during the 10000 operations as a function
of the number of B-tree workers. LFachi data point shown below 1s the average throughpu:
of three separate trials. The maximum number of B-tree workers was constrained by the

memory requirements of the simulator: generally. the maximum number was 80-100.

5.3.1 Operation Mixes

In this section. we present the results of experiments that investigate how differem oper-
ation mixes affect the four concurrent B-tree algorithms. We divide the experiments as

follows:

o Lxperiments with randon: peration patierns and uniformly distributed kevs as

arcuments.

o Lxperiments with random operation patterns and non-uniformly distributed kevs

as arguments.

e Experiments with fixed operation patterns.

Random Operations and Keys

For experiments with random operations and kevs, each B-tree worker randomly selects
the tvpe of operation (insert, delete, or lookup) to run and the key value used as an
argument. Lach individual experiment fixes the probability of which operation the worker
will select (e.g.. 45% lookups. 3090 inserts. 250 deletes). We measure throughput of

dictionary operations as a function of the number of B-tree workers.

5.3. SIMULATION RESULTS 109

Throughput (ops/1000 time steps)

0 20 40 60 80 100

B-tree Workers
Figure 5.1: Throughput vs. B-tree workers. 100% lockups.

All Lookups. Figure 5.1 presents the performance of the four B-tree algorithms with
only lookup operations. For all four algorithms. throughput behaves linearly with respect
to the number of workers.

The performances of the four algorithms differ by ccnstant factors; the two lock cou-
pling algorithms perform better than our algorithms. The discrepancy is due to small
differences in the implementation of the algorithms. The simulator assigns to each mes-
sage sent by a CA program an average network latency cost. Thus CA implementations
‘hat send more messages during their descent phases will have lower throughput for a
fixed number of B-tree workers. For example, the link algorithms check if the right sep-
arator of a visited node is greater than the key argument. The implementations of both
algorithms in CA require extra messages for this check. By minimizing the number of
messages, we can expect the performance of all four algorithms to improve by constant
factors. Because the simulator is very sensitive to the number of CA messages in our
implementations, we should not compare the raw performance numbers for the four al-
gorithms. Instead, we should concentrate on the general shape of the throughput vs.
number of B-tree workers curves. which indicates the general scaling properties of each

algorithm.

Various Operation Mixes. Figure 5.2 presents the performance of the four algorithms

with a small percentage of update operations. There is an 85% chance that each op-

110 CHAPTER 5. PERFORMANCE MEASUREMENTS

Throughput (ops/1000 time steps)

0 20 40 60 80 100

B-tree Workers

Figure 5.2: Throughput vs. B-tree workers. 85% lookups, 10% inserts, and 5% deletes.

300 ‘.»
our mvin =

OUrCSm = = =+
csm-MR e
cem-BS ceves

™
3

8
H
:

Throughput (ops/1000 time steps)

O onvecloneeemmssesrccesssssons.

B-tree Workers

Figure 5.3: Throughput vs. B-tree workers. 45% lookups, 30% inserts, and 25% deletes.

5.3. SIMULATION RESULTS 111

Throughput (ops/1000 time steps)

¢ 20 40 60 80 100

B-tree Workers

Figure 5.4: Throughput vs. B-tree workers. 5% lookups. 50% inserts, and 45% deletes.

eration is a lookup, 10% chance that it is an insert, and 5% chance that it is a delete.
Figures 5.3 and 5.4 present performance measurements of experiments with even more

update operations.

For all of the algorithms, throughput decreases as the percentage of updates increases.
In all three experiments, the multi-version memory algorithm significantly outperforms
the three coherent shared memory algorithms, especially for large numbers of workers.
As discussed in Chapter 4, the multi-version memory algorithm should scale much bet-
ter than coherent shared memory algorithms. Multi-version memory readers can access
nodes concurrently with a writer. Data contention in the multi-version memory algorithm
occurs only in the leaves (which use coherent shared memory) and when background com-
plete_split and complete_merge operations update the same node, which is rare. Also, as
the number of replicated copies of the anchor and upper-level nodes grows, the synchro-
nization and communication needed between individual copies in multi-version memory
remains relatively constant; in coherent shared memory. they grow to intolerable levels.
In fact, performance starts to decrease for the coherent shared memory algorithms. The
multi-version memory algorithm’s performance does not exhibit such characteristics, but
presumably would eventually if the number of B-tree workers were increased beyond 100.

Unfortunately. constraints in the simulator restrict the experiments to model at most
80-100 workers.

112 CHAPTER 5. PERFORMANCE MEASUREMENTS

Our experiments also show that our coherent shared memory algorithm performs
significantly better than the lock coupling algorithms when the operation mix includes
updates. This agrees with results from similar experiments by others [L586, LSS87, J590]
that compare lock coupling algorithms with Lehman-Yao based coherent shared memory
algorithms. Fewer writelocks, background restructuring (which lowers latency) and the
~limination of lock coupling all contribute to the performance advantages of Lehman-Yao
based link algorithms.

Other studies {LS86, LSS87, MR85] have found the Mond-Raz algorithm to perform
much better than the Bayer-Schkolnick algorithm. Our experiments show that the per-
formance and scaling properties of the two algorithms are very similar, and in some cases.
almost indistinguishable. We explain this discrepancy in two ways.

First. unlike some of the other studies [LS86, MR83]. we use the guick split option
in both algorithms. Therefore, the chances that update operations require pessimistic
descents are very slight. Since the pessimistic descents are the only differences between
the two algorithms. we expect the differences in performance of the two algorithms to be
less than the other studies.

Second, the simulator models message-passing architectures here communication
between processors is relatively expensive; the simulator assigns a fixed cost to every
message sent by the CA program. The fastest configurable network in the simulator still
requires one simulated time step for messages to travel from sender to receiver. The top-
down restructuring techniques of the Mond-Raz algorithm require more communication
between B-tree nodes than the bottom-up Bayer-Schkolnick. Therefore, the Mond-Raz
pessimistic descents are slower than the Bayer-Schkolnick pessimistic descents, and in
some cases. cause writelocks on upper-level nodes to be held longer. Therefore, the
Mond-Raz algorithm performs poorly. This phenomenon is an example of how underlying
assumptions of the system architecture and network latency can significantly affect B-tree

performance.

Various Maximum Fanouts. Figures 5.5 and 5.6 present performance measurements
for trees with maximum fanouts of 6 and 14, respectively. The operation mix is 45%
lookups, 30% inserts, and 25% deletes. Both experiments show lower throughput than
the tree with the same instruction mix and a maximum fanout of 10 (Figure 5.3).
Having a low maximum fanout increases the number of leaves in the tree. which
increases the potential concurrency in the tree. However, it also increases latency for
descents and the amount of work for restructuring phases (which increases data con-

tention). The curves in Figures 5.5, 5.3. and 5.6 illustrate the performance trade-off. If

5.3.

SIMULATION RESULTS

Throughput (ops/1000 time steps)

0 20

40 60 80 100

B-tree Workers

Figure 5.5: Throughput vs. B-tree workers for maximum fanout of 6.

i OUr MVIN ===
z p OuUrcsm == =
SQ_),- csm-MR S
7 f csm-BS -ve--
(9] B "
E H ;
-5 :
=
= £
174 2 H
o 3 ¢
=) H 3
S’ N
S 100
Q. H
= :
=19 H
= 2
@] H
£ ';
Y .

Figure 5.6: Throughput vs.

40 60 80 100
B-tree Workers

B-tree workers for maximum fanout of 14.

113

114 CHAPTER 5. PERFORMANCE MEASUREMENTS

aol- R ; S
i ourmvm = ~——— : H
<z OUrCSn = = = £
8 csm-MR e
=z : csm-BS veeee ; : :
o 30 R | e Y P
.E H : : § (
é ; {
= —
& ——————
& | i emeTmTTTeeeaolLll
C Faladl :
- : : - :
- S,-a
a ° : e :
g 10§....... e """' i ‘.:.:.?..v-.--;
50 : T T : :
2 : R R T e viries s
;’59
) U SR
0 20 40 60 80
B-tree Workers

Figure 5.7: Throughput vs. B-tree workers. Incrementing localized keys.

the choice of maximum fanout produces either a “short, fat tree” or a “tall, thin tree,”

performance will suffer for each of the algorithms.

Localized Keys

For these experiments, we allow the B-tree workers to choose operations randomly as
before, but select the kev arguments non-uniformly. Each worker maintains a variable
whose value is a key. Approximately half the time, the workers choose the keys randomly.
For the other half, they set the key argument to the variable value and increment (or
decrement) the variable. By localizing the initial values of the variables, we can increase
contention among concurrent B-tree operations.

Figure 5.7 and 5.8 shows the performance measurements taken when the variable is
incremented and decremented, respectively. Both increased data and resource contention
caused by the highly localized key selection contribute to significantly lower throughput
than in previous experiments. Performance for all the algorithms starts to degrade much
earlier than in previous experiments. In fact, Figure 5.7 shows almost no measurable
speedup for any of the four algorithms. In both experiments, our coherent shared memory
algorithm performs significantly better than the lock coupling algorithms, and the multi-
version memory algorithm performs significantly better than any of the coherent shared

memory algorithms.

5.3. SIMULATION RESULTS 115

40 ... :

our mvm ——
OUrCEN = = = .
CSI-MR eemsemen

Throughput (ops/1000 time steps)

0 20 40 60 80
B-tree Workers

Figure 5.8: Throughput vs. B-tree workers. Decrementing localized keys.

Our two algorithms perform significantly better in Figure 5.8 than in Figure 5.7. This
is because when a node is split, the right half is shifted to the newly created node, and
the left half stays in the same node. Process overtaking sometimes forces our algorithms’
descents to visit nodes to the left of the proper path. Descents for our two algorithms
traverse fewer rightlinks as a result of process overtaking when workers decrement their
variables than when they increment their variables. Therefore, decrementingthe variables

results in higher throughput than incrementing the variables.

Priority Queue

The previous experiments allow the B-tree workers to choose their operations randomly.
However. in some B-tree applications, the operation pattern of processes accessing the
tree is consistent and predictable. One such application is the concurrent priority queue.

The priority queue is a dynamic set of dictionary elements that supports the oper-
ations insert and ertract_min (among others). The eztract_min operation returns and
deletes the item in the set with the smallest key value. A large variety of parallel algo-
rithms use prioritv queues, e.g.. multiprocessor scheduling and parallel best-first search
of state-space graphs [Win84, Nil80, Pea84, KRR88]. Concurrent priority queues support

concurrent. operations: some implementations allow the ertract_min operation to extract

116 CHAPTER 5. PERFORMANCE MEASUREMENTS

not just the element with the minimum key, but also an element with a “small” key.!

Implementing a priority queue in a Lehman-Yao type B-link tree is straightforward.
Since the anchor stores pointers to leftmost nodes, an ertract_min operation can trivially
find the leftmost leaf (and thus return and delete the element with the smallest key)
without a descent. For most applications using a concurrent priority queue, the processes
dccessing the queue exhibit a fairly consistent pattern. After an eztract_min. a process
performs several other operations (such as inserts) whose key arguments are localized
around the extracted key. Then it performs another eztract_min, and so on.

We implemented the eztract_min operation on both of our ulgorithms. We did not
use the two lock coupling algorithms because. unlike in our algorithms, implementing
ertract_min would have required a descent phase to reach the leftmost leaf. (Maintaining
in the anchor a pointer to the leftmost leaf is difficult to implement, especiallv *.hen the
leftmost leaf i1s deleted.) Therefore comparing the performance of our link algorithms
with the lock coupling algorithms would not be fair.

We designed our experiment as follows. After building an initial tree of 1000 keys
with a maximum fanout of 10. the B-tree workers perform 10000 total operations. Each
B-tree worker performs an ertract.min followed by five inserts. The key arguments to
the inserts are randomly chosen from a range of values localized around the extracted
key. Afterwards, another extract.min is perfornied, and the pattern repeats. We measure
throughput as a function of the number of B-tree workers.

Figure 5.9 presents the results of the experiment. Because all extract_min operations
and many localized insert operations must access the unreplicated leftmost leaf, satura-
tion problems caused by resource contention are sharper than in any previous experiment.
especially for data points with large numbers of B-tree workers. The performance of the
multi-version memory algorithm is still significantly better than the coherent shared mem-
ory algorithm, since multi-version memory allows more concurrency for insert descents

and restructuring operations.

Summary

In this section. we presented performance measurements for the four B-tree algorithms
for a variety of operation patterns and key selection schemes. We discovered that our co-
herent shared memory algorithm performed better than the two lock coupling algorithms,

and that our multi-version memory algorithm had significantly better nerformance and

"Huang [Hua90) discusses concurrent priority queues in much more detail.

5.3. SIMULATION RESULTS 117

Throughput (ops/1000 time steps)

B-tree Workers

Figure 5.9: Throughput vs. B-tree Workers. Priority queue implementation.

scaling properties than the other algorithms. Replication, resource contention, and net-
work latency had a significant effect on B-tree performance, especially for the two lock
coupling algorithms. The weaker semantics of multi-version memory allows more con-

currency and less communication and svnchronization. thus allowing higher throughput.
] A ‘ p

5.3.2 Large Network Latency

In this section, we describe the results of an experiment designed to compare the per-
formance of multi-version memory and coherent shared memory algorithms for systems
with high network latency. We compared our inulti-version memory and our coherent
shared memory algorithms as a tool for the comparison. After building an initial tree
of 1000 keys and with a maximum fanout of 10, B-tree workers perform 10000 total
operations. We used randomly selected operations and uniformly distributed keys. The
operation mix was 45% lookups, 30% inserts, and 25% deletes. We set the simulator’s
network latency to 16 simulated time steps, sixteen times that of the previous experi-
ments. Throughput was measured as a function of the number of B-tree workers. Except
for network latency. the parameters of this experiment are identical to the parameters
for the experiment whose results are presented in Figure 5.3.

Figure 5.10 presents the results of the experiment. Since network latency is much

greater than previous experiments, the throughput values are much lower than that of

118 CHAPTER 5. PERFORMANCE MEASUREMENTS

Throughput (ops/1000 tire steps)

0 20 40 60 80 100
B-tree Workers

Figure 5.10: Throughput vs. B-tree workers. Slow network.

Figure 5.3. The throughput curve for the multi-version memc - algorithm is almost
linear, and does not experience the saturation characteristics o1 previous experiments.
This suggests that for this experiment, the large network latency is the overwhelming
factor in limiting performance. However, the coherent shared memory algorithm exhibits
significant performance degradation at around 40 worker.. We can attribute this to the
expensive communication and synchronization required to implement coherent shared
memory, especially when an update has been performed. Multi-version memory, on the
other hand, does not incur these costs. The results of this experiment suggest that for
systems with large network latencies and for applications that can use its looser semantics,

multi-version memory is much more suitable than coherent shared memory.

5.3.3 Replication Factor

In this section, we describe the results of an experiment designed to compare the per-
formance of multi-version memory and coherent shared memory schemes as a function
of the number of replicated copies that have to be managed. As suggested in Chap-
ter 4, the synchronization and communication necessary for maintaining coherent shared
memory grow with the number of replicated copies. Multi-version memory requires less
synchronization and communication than coherent shared memory.

We compared our multi-version memory and coherent shared memory algorithms.

5.3. SIMULATION RESULTS 119

200+ -
H ourmvmm =~ ———

ourcsm v ==

10 fe s et e S

(V.3
(=]

Throughput (ops/1000 time steps)
8

Replication Factor

Figure 5.11: Throughput vs. replication factor. 20 B-tree workers.

After building an initial tree of 1090 keys and with a maximum fanout of 10, B-tree
workers perform 10000 total operations. We used randomly selected operations and
uniformly distributed keys. The operation mix was 45% lookups, 30% inserts, and 25%
deletes. We set the simulator’s network latency to the default value (i.e., one simulated
time step). After fixing the number of B-tree workers. we measured throughput as a

function of the replication factor.

For coherent shared memory, we expect low throughput for both very low and very
high replication factors. Low replication factors limit the amount of concurrency in the
B-tree by limiting the total number of replicated copies of nodes at each level. High
replication factors require expensive synchronization and communication to keep large
numbers of replicated copies coherent. For multi-version memories, we also expect low
throughput for very low replication factors. The effect of high replication factors on
multi-version memory is less clear. As explained in Chapter 4, multi-version memory
implementations can do away with the costs in keeping copies coherent. However, in-
creasing the number of replicated copies also slows down the rate at which newer versions
reach the replicated copies. Thus as the replication factor increases, so does the chance
that readers access old versions of B-tree nodes. This may cause more rightlinks to be

traversed. which increases latency and decreases throughput.

Figures 5.11 and 5.12 presents performance results for 20 and 100 workers, respec-

120 CHAPTER 5. PERFORMANCE MEASUREMENTS

2008 - IR R ..\\ ... SRR

150

OUr VM = —
owcam - =-

A A A A AR A A A A A s

SO R S J

Throughput (ops/10(00) time steps)

Replication Factor
Figure 5.12: Throughput vs. replication factor. 100 B-tree workers.

tivelv. For 20 workers. performance for multi-version memory is virtually constant as the
replication factor is varied, and performance for coherent shared memory decreases slowly
as the replication factor increases. This is the result of the excess synchronization and
communication needed in coherent shared memory. We do not see performance degrada-
tion for low replication factors. This is because of the small number of B-tree workers in
the experiment: the low replication factors do not affect the overall concurrency of the
experiment.

For 100 workers. low replication factors adversely affect performance for both algo-
rithms. Also, the performance of both memory schemes decreases as the replication
factor increases. It is likely that the multi-version memory algorithm’s performance de-
clines with higner replication factors because of an increase in the number of old versions
accessed by readers: however, we do not have detailed enough data to verify this hypoth-
esis. For the range of replication factors measured in this experiment, the multi-version
memory algorithm significantly outperforms its coherent shared memory counterpart.

From this experiment we conclude that maintaining large numbers of replicated copies
in both multi-version memory and coherent shared memory adversely affects performance.
but for different reasons. For coherent shared memory, too many replicated copies causes
synchronization and communication to grow beyond acceptable levels. For some multi-

version memory implementations, too many replicated copies may cause the copies to

5.4. SUMMARY 121

contain old versions. which affects performance. However, the magnitude of this effect

obviously depends on the application.

5.4 Summary

In this chapter. we discussed the performance of various concurrent B-tree algorithms.
The algorithms include our multi-version memory and coherent shared memory link al-
corithms as well as two lock coupling algorithms. We used a message-driven simulator to
model the algorithms™ performances on a large scale message-passing architecture. Our
simulations accounted for the effects of data and resource contention. replication. and
network lateucy. The results show that our multi-version memory algerithm presented
in Chapter 4 has the best performance and scaling properties. Multi-version memory
allows for hicher replication and concurrency while decreasing synchronization and com-

municatioln.

[S™]
o

CHAPTER 5.

PERFORMANCE MEASUREMENTS

Chapter 6
Conclusions

In this thesis. we investigated concurrent B-tree algorithms. We presented two new
algorithms. one of which uses a novel replication scheme called multi-version memory
to improve performance significantly. We showed in the previous chapter that our two
algorithms perform much better than other proposed concurrent B-tree algorithms and
that multi-version memory siguificantly improved the scaling properties of B-trees. In
this chapter. we summarize the contributions of the thesis and discuss directions for

future work.

6.1 Contributions

The contributions of the thesis are threefold:
¢ It presents the multi-version memory replication abstraction.

e It proposes two new concurrent B-tree algorithms, one using coherent shared mem-

ory, and the other modified to use multi-version memory.

o It compares the performance of various concurrent B-tree algorithms, including the

algorithms proposed above.

The multi-version memory abstraction offers memory replication with higher con-
currency and scaling properties than coherent shared memory. The cost of this im-
provement is a looser semantics that is less generally useful. However, as described in
Chapter 4, multi-version memory is useful for a variety of dictionary algorithms. We
can view multi-version memory as a specific example of a more general idea, soffware

cache management. In such a scheme, the user can specify with an application the

123

124 CHAPTER 6. CONCLUSIONS

semantics of hardware caches. While others have proposed managing caches in soft-
ware [BMW85, SS88, CSB86, BCZ90], they do not change the semantics of the replicated
memory. ,

Allowing the user to specify in software the semantics of hardware caches fits natu-
rally into the object-oriented programming style based on inventing application-specific
abstract data types, such as that advocated by Liskov and Guttag [LG86]. Complex cache
management algorithms can be encapsulated in the implementations of the abstract data
types, and can be changed depending on the access patterns of the application.

The two concurrent B-tree algorithms we propose are both based on the Lehman-Yao
algorithm as modified by Sagiv. and use ideas suggested by Lanin and Shasha. They
perform better than any other proposed B-tree algorithm. The multi-version memory
algorithm. in particular. exhibits much better performance and scaling properties than
coherent shared memory algorithms.

The performance measurements of Chapter 5 suggest that replication, resource con-
tention and network latency play an important role in determining performance for con-
current B-tree algorithms. In some cases, issues commonly ignored by existing work on
concurrent B-trees dramatically affect measured performance. ¥ example, Lanin and
Shasha [LS86] and Lanin, et al. [LSS87] found the optimistic Moud-Raz top-down lock
coupling algorithm [MRS85] to perform significantly better than the optimistic Bayer-
Schkolnick bottom-up lock coupling algorithm [BS77]. Taking network latency in the
underlying architecture into consideration, the performance differences between Mond-

Raz and Bayer-Schkolnick algorithms are sometimes not very significant.

6.2 Future Work

We categorize directions for future work into two general areas: the multi-version memory

abstraction and concurrent B-tree analysis.

6.2.1 Multi-Version Memory

The multi-version memory abstraction is clearly a useful replication tool for concurrent
B-trees and any dictionary data structure that satisfies the set of constraints presented
in Chapter 4. Future work should include investigating other applications that can use
multi-version memory to improve performance. For example, some iterative relaxation

algorithms [Bau78] do not require processes to obtain the most recent version of cer-

6.2. FUTURE WORK 125

tain values. Any version will guarantee correctness and termination. Another group of
applications that may benefit from multi-version memory is parallel algorithms that use
speculative concurrency [Hal88]. While up-to-date information may help such algorithms
allocate rescurces efficiently, it is not essential for correctness. If versions kept by repli-
cated copies remain relatively recent, multi-version memory may improve performance
due to its ability to reduce synchronization and communication between independent
processes.

We can also build a multi-version memory spin monitor, an idea by William Weihl
which provides the same synchronization tools as conventional monitors [Hoa74, Bri75,
Dij71]. Instead of descheduling processes that wait on a condition variable. spin monitors
allow processes to loop around the condition using readpins. Spin monitors might be
especially useful for applications where the number of waiting processes is large: they
avoid the rescheduling overhead in conventional monitors.

The experiments in the previous chapter used an implementation of multi-version
memory that propagates new versions directly from the base copy to the replicated copies.
Chapter 4 outlined a variety of implementation alternatives, such as invalidation schemes
and dynamic adjustment of the number of replicated copies. Future work should include
a study comparing the performance of different multi-version memory implementations.

The more general idea of software cache management (of which multi-version memory
is a specific example) is another important area to focus future work. As parallel and dis-
tributed systems become larger, it may become necessary for the user to specify complex
cache management algorithms. Implementing software cachc management in existing
parallel architectures will be difficult, especially for abstractions such as multi-version
memory. which require processes to pin cache entries. Existing or proposed architectures
would have to be modified to support general software cache management. Investigat-
ing the usefulness of software cache management for large parallel applications will help

decide whether modifying hardware design is either worthwhile or feasible.

6.2.2 Concurrent B-Trees

Although the simulator used for the performance measurements in Chapter 5 takes into
account many issues such as replication, resource contention, and network latency, it does
not make precise measurements. For example, it treats network latency in a very naive
fashion. (An average cost is assigned to every CA message without any regard to locality
or network contention.) Resource constraints prevented experiments for very large scale

simulations (such as thousands of B-tree workers). Implementing and measuring the

126 CHAPTER 6. CONCLUSIONS

concurrent B-tree algorithms in a more accurate and more efficient simulator should
provide better insight into the behavior of these algorithms.

For example. a parallel simulator designed by Dellarocas and Brewer [DB90] mod-
els the behavior of parallel programs for a diverse variety of architectures. It measures
network latency not by a fixed average cost, but by comprehensive models for different
network topologies. Because the simulator is not a “cycle-by-cycle” simulator, but one
that allows individual threads to run for some variable number of cycles, resource con-
straints are much less stringent than the simulator used in this thesis. Furthermore, the
user can specify efliciently “without cost” the types of performance characteristics to be
measured. Such a simulator would be very useful in generating more detailed information
about the algorithms. (Unfortunately, Dellarocas and Brewer’s simulator was completed
too late to be used in this thesis.)

The results of such simulations should help us better understand the performance
of concurrent B-trees when issues such as resource contention, replication and network
latency are factored in. This would allow us to derive an accurate, comprehensive an-
alytical model for predicting performance. Johnson and Shasha [JS90] have developed
an analytical model for concurrent B-tree algorithms that takes into account data and
resource contention. A model that includes replication and network latency would be
even more helpful.

A second area of future work for concurrent B-tree algorithms concerns parent pointers
for B-link tree nodes, an idea proposed in Section 3.7. These pointers can reduce the

overhead required for performing update operations.

Bibliography

[AB8S6]

[ABMS8Y]

[And89]

[AVL62]

[Bau78]

[Bay72]

[BCZ90)

[BM72]

[BMWSS3]

[Bri75)

J. Archibald and J.-L. Baer. Cache Coherence Protocols: Evaluation Using a
Multiprocessor Simulation Model. ACM Transactions on Computer Systems,
4(4):273-298. November 1986.

Y. Afek. G. Brown. and M. Merritt. A Lazv Cache Algorithm. In Proceedings
of the 1989 ACM Symposium on Parallel Algorithms and Architectures, pages
209-222. July 1989.

Thomas E. Anderson. The Performance Implications of Spin-Waiting Al-
ternatives for Shared-Memory Multiprocessors. Technical Report 89-04-03,
Department of Computer Science, University of Washington, April 1989.

G. M. Adel’son-Vel’skii and E. M. Landis. An Algorithm for the Organization
of Information. Soviet Mathematics Doklady, 3:1259-1263, 1962.

Gérard M. Baudet. Asynchronous Iterative Methods for Multiprocessors.
Journal of the Association for Computing Machinery, 25(2):226-244, April
1978.

R. Bayer. Symmetric Binary B-trees: Data Structure and Maintcnance Algo-
rithms. Acta Informatica, 1:290-306, 1972.

J. Bennett, J. Carter, and W. Zwaenepoel. Munin: Distributed Shared Mem-

ory Based on Type-Specific Memory Coherence. Technical Report Rice COMP
TRE89-98, Rice University, 1990.

R. Bayer and E. M. McCreight. Organization and Maintenance of Large
Ordered Indexes. Acta Informatica, 1(3):173-189, 1972.

W. C. Brantley, K. P. McAuliffe, and J. Weiss. RP3 Processor-Memory Ele-
ment. In Proceedings of the International Conference on Parallel Processing,
pages 782-789, 1985.

Per Brinch Hansen. The Programming Language Concurrent Pascal. IEEE
Transactions on Software Engineering, SE-1(2), June 1975.

127

128

[BS77)

[Bur8g]

[€D90]

[Che86)

[Chi90]

[CLR90;

[ComT9;

[CSBS6]

[DB90)

[DCsS)

[DCF*89)

(Dij71]

[DS85)

BIBLIOGRAPHY

R. Bayer and M. Schkolnick. Concurrency of Operations on B-trees. Acta
Informatica, 9:1-22, 1977.

Michael Burrows. Efficient Data Sharing. Technical Report 153, University
of Cambridge Computer Laboratory, December 1988.

A. Chien and W. Dally. Concurrent Aggregates (CA). In Proceedings of the
Second Symposium on Principles and Practice of Parallel Programming, pages
187-196. ACM, March 1990.

D. Cheriton. Problem-oriented Shared Memory: A Decentralized Approach to
Distributed System Design. In Proceedings of the €th International Conference
on Distributed Computing Systems, pages 180-197, May 1986.

A. Chien. Concurrent Aggregates: An Object-Oriented Language for Fine-
Grained Message-Passing Machines. PhD thesis, MIT, 1990.

Thomas H. Cormen. Charles E. Leiserson, and Ronald L. Rivest. Introduction
to Algorithms. The MIT Press and McGraw-Hill, 1990.

D. Comer. The Ubiquitous B-Tree. ACM Computing Surveys, 11(2):121-128,
June 1979.

D. Cheriton. G. Slavenburg. and P. Boyle. Software-Controlled Caches in the
VMP Multiprocessor. In Proceedings of the 13th International Symposium on
Computer Architecture, pages 366-374, June 1986.

Chris N. Dellarocas and Eric A. Brewer. The Parallel Architecture Simulator.
MIT PSG Design Note draft, 1990.

W. J. Dally and Andrew Chien. Object Oriented Concurrent Programming in
CST. In Proceedings of the Third Conference on Hypercube Computers, pages
434-9. Pasedena, California, 1988. SIAM.

W. J. Dally, Andrew Chien, Stuart Fiske, Waldemar Horwat, John Keen,
Michael Larivee, Rich Lethin, Peter Nuth, Scott Wills, Paul Carrick, and Greg
Fvler. The J-Machine: A Fine-Grain Concurrent Computer. In Information
Processing 89, Proceedings of the IFIP Congress, pages 1147-1153. IEEE,
August 1989.

E. W. Dijkstra. Hierarchical Ordering of Sequential Processes. Acta Infor-
matica, 1(2):115-138, 1971.

W. J. Dally and C. L. Seitz. The balanced cube: A concurrent data structure.
Technical Report 5174:TR:85, Caltech, June 1985.

BIBLIOGRAPHY 129

[EN80]

[Hal8g)

[Her89]

[Her90)]

[Hoa74]

[Hua90]

[HW90]

[JFS85)

(JFSW90]

[JS89]

[JS90]

(KLS0]

[Knu73]

[Kor83]

C. S. Ellis. Concurrent Search and Inserts in 2-3 Trees. Acta Informatica,
14(1):63-86, 1980.

R. Halstead. Jr. Parallel Computing Using Multilisp. In J. Kowalik, editor,
Parallel Computation and Computers for Artificial Intelligence, pages 21-49.
Kleuwer Academic Pub., 1988.

M. Herlihy. Concurrent B-trees without Locking. Draft, October 1989.

M. Herlihy. A Methodology for Implementing Highly Concurrent Data Struc-
tures. In Proceedings of the Second ACM SIGPLAN Symposium on Principles
and Practice of Parailel Programming, pages 197-206, March 1990.

C. A. R. Hoare. Monitors: An Operating System Structuring Concept.
CACM. 17(10):549-557, October 1974.

Qin Huang. An Evaluation of Concurrent Priority Queue Algorithms. Master’s
thesis, MIT, August 1990.

M. Herlihy and J. Wing. Linearizability: A COrrectness Condition for Con-
current Objects. ACM Transactions on Programming Languages and Systems,
12(3):463-492, 1990.

M. Jipping. R. Ford, and R. Schultz. On the Performance of Concurrent Tree
Algorithms. Technical Report 85-07, University of lowa, 1985.

M. Jipping, R. Ford. R. Schultz, and B. Wenhardt. On the performance of
concurrent tree algorithms. Submitted for publication, 1990.

T. Johnson and D. Shasha. Utilization of of B-trees with inserts, deletes, and
modifies. In ACM SIGACT/SIGMOD/SIGART Symposium on Principles of
Database Systems, pages 235-246. ACM, 1989.

T. Johnson and D. Shasha. A Framework for the Performance Analysis of
Concurrent B-tree Algorithms. In Proceedings of the 9th ACM Symposium on
Principles of Database Systems, April 1990.

H. T. Kung and P. L. Lehman. Concurrent Manipulation of Binary Search
Trees. ACM Transactions on Computer Systems, 5(3):354-382, 1980.

Donald E. Knuth. Sorting and Searching, volume 3 of The Art of Computer
Programming. Addison-Wesley, 1973.

H. F. Korth. Locking Primitives in a Database System. Journal of the ACM,
30(1):55-79, January 1983.

130

[KRRSS)

[(KW82]

[Lam79]

[LGS6)

[LS86]

[LSS8T!

[LYS1]

[MRS3]

[Nil80]

[Pea84)

[PN85)

[Sag86]

[S. 183]

[SG88]

BIBLIOGRAPHY

Vipin Kumar, K. Ramesh, and V. Nageshwara Rao. Parallel Best-First Search
of State-Space Graphs: A Summary of Results. In National Conference of
Artificial Intelligence, pages 122-127, August 1988.

Y. S. Kwong and D. Wood. A New Method for Concurrency in B-trees. IEEE
Transactions on Software Engineering, SE-8(3):211-222, May 1982.

L. Lamport. How to Make a Multiprocessor that Correctly Executes Multi-
process Programs. IEEE Transactions on Computers, C-28:690-691, 1979.

B. Liskov and J. Guttag. Abstraction and Specification in Program Develop-
ment. MIT Press. 1986.

V. Lanin and D. Shasha. A Symmetric Concurrent B-Tree Algorithm. In 1986
Proceedings Fall Joint Computer Conference, pages 380-386, November 1986.

V. Lanin, D. Shasha, and J. Schmidt. An Analyvtical Model for the Perfor-
mance of Concurrent B-tree Algorithms. NYU Ultracomputer Note 311, NYU
Ultracomputer Lab, 1987.

P. L. Lehman and S. B. Yao. Efficient Locking for Co- -irrent Operations on
B-Trees. ACM Transactions on Database Systems, 6 :650-670, December
1981.

Y. Mond and Y. Raz. Concurrency Control in B+ Trees Using Preparatory
Operations. In Proceedings of the 11th International Conference on Very Large
Data Bases, pages 331-334, August 1985.

Nils J. Nilsson. Principles of Artificiul Intelligence. Tioga Press, 1980.

Judea Pearl. Heuristics - Intelligent Search Strategies for Computer Problem
Solving. Addison-Wesley, 1984.

G. F. Pfister and V. A. Norton. “Hot Spot” Contention and Combining in
Multistage Interconnection Networks. IEEE Transactions on Computers, C-
34(10):943-948, October 1985.

Y. Sagiv. Concurrent Operations on B-Trees with Overtaking. Journal of
Computer and System Sciences, 33(2):275-296, October 1986.

B. Salzberg. Restructuring the Lehman-Yao Tree. Technical Report BS-850-
21, College of Computer Science, Northeastern University, January 1985.

D. Shasha and N. Goodman. Coucurrent Search Structure Algorithms. ACM
Transactions on Database Systems, 13(1):53-90, March 1988.

BIBLIOGRAPHY 131

[SS88]

[ST83)

[STS7)

[Wed74]

[Win84]
[(WW90]

D. Shasha and M. Snir. Efficient and Correct Execution of Parallel Programs
that Share Memory. ACM Transactions on Programming Languages and Sys-
tems, 10(2):282-312, April 1988.

Daniel D. Sleator and Robert E. Tarjan. A Data Structure for Dynamic Trees.
Journal of Computer and System Sciences, 26(3):362-391, 1983.

William E. Snaman, Jr. and David W. Thiel. The VAX/VMS Distributed
Lock Manager. Digital Technical Journal, (5):29-44, September 1987.

H. Wedekind. On the selection of access paths in a database system. In J. W.
Klimbie and K. L. Koffeman, editors, Database Munagement, pages 385-397.
North Holland Publishing Company, 1974.

Patrick H. Winston. Artificial Intelligence. Addison-Wesley, 2nd edition, 1684.

William E. Weihl and Paul Wang. Multi-Version Memory: Software Cache
Management for Concurrent B-Trees (extended abstract). In Proceedings of
the 2nd IEEE Symposium on Parallel and Distributed Processing, pages 650-
655, December 1990.

OFFICIAL DISTRIBUTION LIST

DIRECTOR 2 copies
Informadon Processing Techniques Office

Defense Advanced Research Projects Agency (DARPA)

1400 Wilson Boulevard

Arlington, VA 22209

OFFICE OF NAVAL RESEARCH 2 copies
800 North Quincy Street

Arlington, VA 22217

Atn: Dr. Gary Koop, Code 433

DIRECTOR, CODE 2627 6 copies
Naval Research Laboratory
Washington, DC 20375

DEFENSE TECHNICAL INFORMATION CENTER 12 copies
Cameron Station
Alexandria, VA 22314

NATIONAL SCIENCE FOUNDATION 2 copies
Office of Computing Activities

1800 G. Street, N.W.

Washington, DC 20550

Attn: Program Director

HEAD, CODE 38 1 copy
Research Department

Naval Weapons Center

China Lake, CA 93555

