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ABSTRACT

2-D Fourier transforming acoustooptic signal processors, for simultaneous direction
finding (DF) and spectrum analysis of radar signals over a wide instantaneous bandwidth,
are shown to be useful for Radar Electronic Support Measures (ESM) applications. A
comprehensive treatment on the analysis and design of two general 2-D acoustooptic
architectures is provided. In one architecture, a linear antenna array is employed, and in
the other a novel circular antenna array with a Butler matrix beamformer is used.
Emphasis is placed on the DF characteristics of both architectures. The effects of scaling
factor, acoustic transducer height, Gaussian laser illumination profile , RF input noise,
amplitude and phase tracking errors on the DOA pattern produced by each architecture are
addressed. Design criteria and comparison between the two architectures are also provided.

RESUME

Les processeurs de signaux acoustooptiques opdrant une transform6e te Fourier
bi-dimensionelle, pour l'analyze simultande de l'angle d'arrivde et du spectre des signaux
radars sur une bande instantande large sont ddmontrds utiles pour des applications de
mesures de soutien 6lectroniques radar. Un traitement d6taill de l'analyze et de la
conception de deux architectures accoustooptiques bi-dimensionelles gdn6rales est pourvu.
Dans une des architectures, un 6talage lindaire est employ6 et dans l'autre un nouvee
6talage circulaire d'antennes avec un formeur de faisceau i matrice Butler est utils6.
L'emphase est placed sur les caractdristiques de la mesure de l'angle d'arrivee des deux
architectures. Les effets du facteur de ddmultiplication, de la hauteur du transducteur
acoustique, du profile d'illumination gaussien du laser, du bruit d'entr6e i frequence
radiodlectrique, et des erreurs de piste de l'amplitude et de la phase sur la courbe de l'angle
d'arriv6 produite par chaque architecture sont adresses. Les criteres de conception et une
comparaison entre entre les deux architectures sont 6galement pourvus.
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EXECUTIVE SUMMARY

The increasing density and complexity of radar signals jeopardizes the capability of
present day radar Electronic Support Measures (ESM) systems in sorting out specific
emitters only on the basis of conventional signal parameters such as the radio frequency
(RF), pulse repetition frequency (PRF) , pulse width (PW), amplitude ,etc.. Therefore, the
separation of radar emitters on the basis of their bearing or direction of arrival (DOA) is of
increasing importance. Moreover, there is increasing interest in higher bearing precision
from radar ESM receivers to supplement radars and to place greater reliance on the use of
passive sensors than active sensors. One of the promising receiver technologies which can
provide simultaneously the frequency and bearing of radar signals over a wide
instantaneous bandwidth is acoustooptics.

Optical signal processing is a fast-growing technology which is capable of handling
large amounts of information in parallel and in two-dimensions. With the advent of new
components such as Bragg cells and photodetector arrays, acoustooptic technology has
rapidly emerged as a major optical processing technique for wide-band reception and
analysis of radar signals. The most basiL and best known 1-D acoustooptic receiver is the
spectrum analyzer. This 1-D configuration can be extended to a 2-D one by the use of an
antenna array and a multi--channel Bragg cell, in which the frequency spectrum of a
received signal is provided in one dimension while its bearing is in the orthogonal one. This
is indeed a very powerful signal sorting technique especially in a dense signal environment
where the incoming signals may overlap. Accurate bearing and fine frequency
measurements are obtained in this 2-D configuration, by combining the inherent high
angular accuracy of an interferometer with the frequency spectral analysis capability of an
acoustooptic spectrum analyzer.

There are two general 2-D acoustooptic architectures which have been analyzed in
this report: one using a linear antenna array, and the other using a novel circular antenna
array with a Butler matrix beamformer. Emphasis has been placed on the DF
characteristics of both architectures. The effects of scaling factor, acoustic transducer
height, laser illumination profile, RF input noise, amplitude and phase tracking errors on
the DOA pattern produced by each of the 2-D acoustooptic architecture have been
addressed. Design criteria and example for each architecture and a comparison between the
two architectures have also been provided.

A typical example is presented to illustrate some optimization techniques on the
design of a 2-D acoustooptic signal processor using a linear antenna array. It is shown that
an aperiodic array configuration with a minimum of four to five channels is useful for
broad-band receiver designs where it is required to cover an instantaneous angular
field--of-view of one quadrant and with an angular accuracy of about one degree. This is
based on factors such as complexity, cost, required main lobe beamwidth , sidelobe levels
and antenna size constraint. However, the peak sidelobe-to-main-lobe level is usually
high, -2 to -3 dB. In addition, the shift in the DOA pattern and DOA accuracy are scaled
by a scaling factor.
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The other approach in designing a 2-D acoustooptic signal processor is based on the
circular antenna array with a Butler beamforming matrix. Some preliminary beamforming
is carried out by the Butler matrix to couple the output from a circular antenna array to a
multi-channel Bragg cell of a periodic arrangement. A typical example using a 32-element
circular antenna array and a Butler matrix with 9 output ports has been given and a
bearing accuracy of 1.5 degrees can be achieved. Some attractive features which can be
identified when compared to the linear antenna array configuration are:

(i) A full 360-degree instantaneous field-of-view can be achieved using
only one 2-D acoustooptic signal processor.

(ii) The shift and the shape of the DOA pattern are independent of input
frequency, and as a result both the accuracy and resolution of this
processor are also independent of frequency. Moreover the bearing
accuracy is relatively insensitive to small elevation angle variations.

(iii) Due to periodic arrangement, the peak sidelobe-to-main-lobe level of
the DOA pattern can be effectively reduced by the use of amplitude
weighting.

In addition, the inter-transducer spacings can be reduced considerably and thus the
through-put loss is less when the multi--channel Bragg cell is illuminated fully.

Despite the advantages associated with the circular antenna array configuration ,the
aperiodic linear array configuration does offer some good features. For the same number of
channels, an aperiodic arrangement can provide a longer baseline and all those attractive
features associated with it, such as better bearing accuracy. There may be lower
cross-talks among those channels further apart. In addition the microwave front-end will
be less complicated and much smaller in size which will result in a lower cost. However
when the elevation angle is not zero ,the bearing accuracy will deteriorate due to "Coning"
angle problems.

The ultimate choice depends on the system requirement. The circular array
configuration can provide a system which is more compact if the full 360-degree
instantaneous field-of-view is required. The bearing accuracy is moderate, on the order of
1 degree with a 9--channel system. For angular accuracy of better than 1 degree, the linear
array configuration is a better choice if the errors associated with the "Coning" angle can
be solved by either measuring the elevation angle using another system or by operating the
system for very low elevation coverage.
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1.0 INTRODUCTION

The increasing density and complexity of radar signals jeopardizes the capability of
present day radar Electronic Support Measures (ESM) systems in sorting out specific
emitters only on the basis of conv ,ntional signal parameters such as the radio frequency
(RF), pulse repetition frequency (PRF) , pulse width (PW), amplitude ,etc.[1]. Therefore,
the separation of radar emitters on the basis of their bearing or direction of arrival (DOA)
is of increasing importance. Moreover, there is increasing interest in higI er bearing
precision from radar ESM receivers to supplement radars and to place greater reliance on
the use of passive sensors than active sensors [1]. As a result, it is highly desirable to
develop a wide band radar ESM receiver where the incoming signals can be sorted out
instantaneously and accurately in terms of frequency and direction of arrival under signal
overlapping conditions.

Optical signal processing is a fast-growing technology which is capable of handling
large amounts of information in parallel and in two dimensions. Operations such as Fourier
transformation, correlation or convolution are performed at a rate limited only by the
characteristics of the input and output devices. With the advent of components such as
Bragg cells and photodetector arrays, acoustooptic technology has rapidly emerged as a
major optical signal processing technique. Many architectural optical signal processors have
been developed 2] and the Fourier transforming configuration is the most significant and
best known.

One of the key applications of the Fourier transformation configuration is in the
development of rad;.r ESM receivers. The most basic and best known one-dimensional
(1-D) acoustoopti Fourier transforming configuration is the spectrum analyzer[3-4]. This
1-D configuration can be extended to a two-dimensional (2-D) one, in which the
frequency spectrum of a received signal is provided in one dimension and its DOA is in the
orthogonal dimension. Thus the requirement of measuring simultaneously the DOA and
frequency spectrum of a received signal can be accomplished with a 2-D Fourier
transforming configuration employing a multi-channel Bragg cell [5-8 ]. A block diagram
of one of these 2-D acoustooptic receiver architectures is shown in Fig.1, where a linear
antenna array is used to intercept incoming radar signals[8]. A signal received by each
antenna element is down-converted to an intermediate frequency (IF) signal. The IF
signals are then applied to a multi-channel Bragg cell where the relative acoustic
transducer spacings are the same as those of the antenna array. Through the process of
acoustooptic diffraction, the acoustic signals are coherently processed in parallel to produce
optically a 2-D Fourier transform of the signals in the Fourier plane. The intensity
distribution of this Fourier transform gives the power spectrum of the signal on one axis
and its DOA or bearing on the other. This is indeed a very powerful signal sorting
technique in which the incoming signals are spatially separated in frequency and DOA.
Accurate DOA and fine frequency measurements are obtained in this configuration, by
combining the inherent high angular accuracy of an interferometer with the frequency
spectral analysis capability of an acoustooptic spectrum analyzer. The instantaneous
angular field-of-view of this architecture when using a linear antenna array is restricted to
less than 180 degrees. Thus in order to achieve a complete angular coverage of 360 degrees
a number of processors are needed. A different, novel approach for covering an
instantaneous 360-degree field-of-view consists of a circular antenna array with a Butler
matrix beamformer [9]. The acoustic transducer array on the multi-channel Bragg cell in
such an architecture is of a periodic arrangement.
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In this report, a general formulation on the Fourier transforming configuration is
presented. This formulation is then extended from a 1-D acoustooptic spectrum analyzer
to a 2-D configuration for simultaneous spectrum analysis and direction-of-arrival
determination. Two specific 2-D architectures are described and analyzed: a linear antenna
array configuration and a novel circular antenna array with a Butler matrix beamformer
configuration.

Emphasis is placed on the direction-finding characteristics of the two architectures.
The effects of scaling factor, acoustic transducer height, Gaussian illumination profile,
amplitude and phase tracking errors and RF input noise on the DOA pattern produced by
each architecture are examined. Design criteria and example on each architecture are given.
Finally the two architectures are compared.

2.0 FOURIER TRANSFORMING CONFIGURATION

A Fourier transforming configuration is shown in Fig. 2, where a Bragg cell in the
object plane is illuminated with a monochromatic, collimated light wave. The incident
light wave impinging on the object plane is given by

E(x,y,z,t) = Eo(xo,yo) cos(2rvt - kz + 00)

- Re{ Eo(xo,yo) exp[-j(27vt - kz + (1)

where v is the optical frequency with phase constant k,
00 is some initial phase of the wave at t = z = 0, and

Eo(xo,yo) is the amplitude distribution, which is normally Gaussian, of the

incident collimated optical wave.

Assuming the Fourier transform lens is ideal and using phasor quantities, the
amplitude distribution in the back focal or Fourier plane is related to the object plane by
the Fourier transform [10].

CDU xYc) f E°(x°'Y°) 2-rxxlU (xy 1 t j ,F T(xo,yo,t) exp[-j 27yy)] 0dxdy°

K I ff Eo(xo,yo) T(xo,y,t) exp[-j2r (uxo +vy o )] dxo dyo

(2)

where a constant phase factor has been dropped,

-3-
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K 1 (3)

is a constant,

x
u = (4)

and v = -- (5)

are expressed in normalized coordinates, F is the focal length of the lens, A is the optical
wavelength and T(xo,Y,t) is the complex transmission function of the Bragg cell which is

now examined further in detail.

3.0 USE OF BRAGG CELLS AS SPATIAL LIGHT MODULATORS

An acoustooptic cell operating in the Bragg region is of particular interest as a
spatial light modulator in an optical signal processor because only one strong diffraction
order is generated[11-14].

Let the input signal to the modulator be expressed by a sinusoidal waveform
Vin(t) = A(t) cos(2,r ft + (6)

where A(t) is the amplitude function, fs is the carrier frequency and 0o is the initial phase

of the signal. Let us assume that the acoustic beam profile is uniform in the yo direction.

For weak interactions, the normalized transmission function of the Bragg cell with only the
higher first-order (up shift +1 ) component generated is approximately modeled by [15]

T(xoyo,t ) = rect(---x-- ) rect(--O) f 1 + jKB A(t-- )

x X °

exp [-ar (--Dx + ] exp[-j2zs(t - ] }

(7)

where

1, Ix 1/2
rect(x) = 1 0,otherwise ( (8)
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There are two terms in the transmission function; one is the zeroth order with a
value of unity and the other term contains the signal information. This is given for the case
where the dfacted order has the same polarization as the undiffracted (zeroth) order. If
the acoustic wave is a shear wave, then a change in polarization by 90 degrees will also
occur [16]. The acoustic signal is attenuated as it propagates across the aperture in the x
direction with velocity vs . The acoustic loss coefficient in Np/sec is denoted by a and is a
function of frequency; r is the acoustic transit time across the aperture D ,A(t - xo /v s ) is

the complex amplitude function of the input signal, KB is a constant which is proportional

to the square root of the acoustooptic diffraction efficiency of the Bragg cell, KB also takes
into account the conversion efficiency of the piezoelectric transducer, and a constant phase
term has been dropped.

For small input Bragg and diffraction angles, the amplitude distribution of the
signal waveform is approximately given by substituting Eq.(7) into Eq.(2). Hence

M

U(u,v,t) = B ff g(t - -v) w(xoyo)

. exp[-j2r(ux o + vyo) ] dx o dy. (9)

x x x
where g(t v = A(t - )exp[-j2rf(t- - (10)

s v0 )
is the signal function . Again a constant phase term has been dropped.

w(x0,y0 ) = K rect(--ny) rect(--2.) exp[- (2Tx-,r5)2 - (2Ty_,r-)2

exp [-ar (-1y + 1 (I)

is the amplitude weighting function. The incident light wave is assumed of Gaussian

profile, with Tx and Ty specifying the Gaussian profile in the x° and yo dimensions

respectively. K is the peak amplitude of the incident light wave.

Equation (9) simply states that the diffracted instantaneous amplitude distribution
in the Fourier plane is the single-sided Fourier transform of the weighted input signal. A
unique feature of this configuration is that the Fourier transform is computed over a sliding
window of the input signal. At different time intervals, the Fourier transform of a different
portion of the weighted signal is performed. When the acoustic diffraction effect in the y
direction is neglected, the acoustooptic Fourier transformation is completely characterized
by Eq.(9). In the case of a continuous wave (CW) signal of unity amplitude and for a
rectangular weighting function, the amplitude distribution in the Fourier plane can be
expressed in closed forms

-6-



KKB )s
U(u,v) A FTDH exp(-j2,fst) exp 0 sinc( vH ) sinc[D(uA-

(12)

where

sinc(x) - sin(xx)/(x), (13)

and A is the acoustic wavelength. The amplitude distribution, parallel to the normalized u
axis, is the single-sided Fourier transform of the truncated input signal .The distance from
axis origin (u = 0) to the centroid of the distribution is linearly proportional to the
acoustic frequency.

The analysis presented so far is for the case where the acoustic wave in the y
direction is assumed to be uniform in amplitude and plane in its phase front. The Bragg
cell in this case is modeled by an ideal traveling wave modulator. This is only true when a
self-collimating acoustic beam is generated inside the Bragg cell crystal. It is also
approximately true when the height (RH) of the acoustic transducer is many orders larger
than the acoustic wavelength in whic the diffraction effect can be neglected. However in
the latter case, there is usually a conflicting requirement in which H must be kept small.
This is due to the fact that the diffraction efficiency [12,14) of a Bragg cell is directly
proportional to the ratio of L/H ,where L is the width of the transducer. For broadband
operation, L must be kept small to give an appreciable spread in the acoustic angular
spectrum to satisfy the momentum conservation criterion. In order to maintain a large
diffi iction efficiency which is directly proportional to L/H, H must also be kept to a small
value. Moreover, as will be discussed in Section 6, the height H must be kept small in a
multi-channel Bragg cell configuration to preserve the diffraction pattern for DOA
determination. Under these various circumstances and also depending on the
characteristics of the Bragg cell crystal [17-20], the acoustic diffraction effect on the
characteristics of the diffraction pattern can be appreciable and must be considered.

The acoustic diffraction effect on the output of a spectrum analyzer has been
investigated by Vander Lugt [17] and other nonlinear effects have also been reported by
others 118-20]. In order to keep the system analysis simple, the ideal traveling wave
modulator model is used in this report. This simplified model is very useful for general
system analysis such as in the development of processing architectures. The acoustic
diffraction effect on the 2-D acoustooptic signal processors will be addressed in another
report [21].

4.0 2-D ACOUSTOOPTIC FOURIER TRANSFORMING PROCESSORS

The basic 2-D acoustooptic configuration was first proposed by Lambert et al [5] to
process radar echo signals received by the elements of a large phased array. The array
structure considered was periodic with spacings less than half of the radar signal carrier
wavelength. It was used for radar applications where the signal was known and the
bandwidth of operation was narrow.

-7-



In Radar ESM receiver applications [1] the requirements are quite different, and a.
different set of design criteria has to be used. The key differences are that the frequency
range of coverage is much broader and the number of parallel channels used must, for
economic reasons, be kept small.

We now analyze two architectures: one using a linear antenna array and the other
employing a circular antenna array with a Butler matrix beamformer. A mathematical
expression is derived on the optical distribution as a function of the DOA and frequency of
the received signal for these two processing architectures.

4.1 Processor Architecture Employing A Linear Antenna Array

In this section, a processor architecture employing a multi-channel Bragg cell fed
with signals derived from a linear antenna array as shown in Fig. 3 is analyzed. The
wavefront of the signal is assumed to be received in the azimuthal plane with the elevation
angle equals to zero. If the elevation angle is not zero, the antenna element far-field
pattern as a function of elevation angle has to be taken into account. In addition, a
"Coning" angle error is also introduced [22-23].

For a CW or pulse-modulated carrier signal received from an emitter at an
azimuthal angle 0 ,the relative signal strength at the nth antenna is

Vn(t) = an(fR,O) A(t- r) cos[2 rfR(t - rn) + 0-] (14)

dn  dn

where r'= -c sin(P)= d n sin(O), n = 1,2,3,...N (15)n c

and an(fR,0) is the normalized antenna element far-field pattern, fR is the RF frequency,

AR is the RF signal wavelength, ° is the initial phase of the signal, A(t - r') is the signal

amplitude function, dn is the distance measured from the array center to the nth antenna

element. This distance is positive when located to the right of the array center and
negative when on the left.

If the maximum delay r' is much less than the duration of the signal, we cann
neglect the envelope delay, and the nth heterodyned IF signal is

VIFn (t) = A(t) cos[2r (fit - n) + 0.) an(fR,0) (16)

dn
where n = r'fR = in(O) (17)

is the phase delay of channel n and fi is the down-converted frequency and a unity gain is

assumed for the RF to IF conversion.
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The IF signal derived from each antenna element of frequency is fed into a
multi-channel Bragg cell as shown in Fig. 4. In this architecture, the relative acoustic
channel separation spacings are required to be the same as those of the microwave antenna
spacings. This requirement is discussed further in Section 5.

In this report, the ideal traveling wave modulator model is used and thus the
acoustic beam can simply be represented by rectangular functions. Moreover, the
cross-talks among the channels are assumed to be negligible. For N identical channels, the
complex transmission function of the multi-channel Bragg cell is obtained by substituting
Eq. (16) into Eq.(7). Hence

N x y -H
T(xo,y,t) E S rect(--) rect( ' H

n=1
[ x[ 1 + jK B A(t - so)ep[a -c+--]a~RO

exp{-j[2rf i(t -V 1 - 21fin + 0o] }1 (18)

The multi--channel Bragg cell is used in the same Fourier transforming
configuration as described in Section 2. A collimated laser source is used to illuminate the
multi-channel Bragg cell at the Bragg input angle. A 2-D Fourier transform is carried out
by using a spherical Fourier transform lens with a focal length F. The amplitude
distribution in the Fourier plane is obtained by substituting Eq.(18) into Eq.(2). Making
use of the shifting property of the Fourier transform pair in the yo dimension and after
some grouping of terms, the diffracted order which contains the signal information becomes

U(u,v,t) = K2 f(v) fJ g(t - --- ) w(xo,yo) exp[-j2r(uxo+ vyo)] dx, dyo

(19)

NKB

where K 2 exp(-j~o) (20)
2 F

and
N

f(v) = I ann(fR,0) exp[-j2, (vi n - On) ]  (21)
n=1

is the normalized complex DOA pattern of the optical array, In is the distance measured

from the center of the acoustic transducer array to the nth transducer element , an is the
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normalized amplitude weighting of the diffracted light beam appearing in the nth channel,
and

rext Yo x yoW(X0 y.) = K rect( rect( ) exp[-(2Tx-- - (2Ty- -N)1
N N

exp [-aT (-r- - + 1 (22)

is the window weighting function for Gaussian interaction profile. Tx and Ty specify the
Gaussian profile in the xo and y0 dimensions respectively. 21 N is the length of the acoustic

transducer array. The optical distribution, characterizing the frequency and DOA
information along the u and v coordinates respectively, has thus been derived.

4.2 Processor Architecture Using A Circular Antenna Array
And A Butler Matrix

The linear antenna array coupled to a multi-channel Bragg cell, has a limited
instantaneous angular field-of-view. It is usually less than 180 degrees in azimuth and
typically a 90 degree field-of-view is obtained. In order to increase the instantaneous
field-of-view to 360 degrees, another novel architecture using a circular antenna array is
needed. In this architecture a Butler matrix beamformer is used to couple the outputs from
the circular antenna array to a multi-channel Bragg cell. A typical implementation of the
antenna structure with a Butler matrix is shown in Fig.5 [241. The Butler matrix is
essentially a phase shifting network containing 180-degree hybrids, 90-degree hybrids and
phase shifters. It is a passive device having N inputs and N outputs where N is usually a
power of 2. All inputs are isolated from one another and a signal applied at the output port
will result in equal amplitudes at all antenna elements but with the relative phase of each
antenna varying linearly across the array [25]. Specifically, if N is even and the nth input
port is energized n = 0, *1, *2, ..., *(N-2)/2, * N/2, the difference in phase between
adjacent ports is 2rn/N and the total phase variation around a circular array connected to
the Butler matrix would be 2rn, which is the nth mode. Not all the output ports are used
in this application and the purpose is not to form a narrow beam in the azimuth plane, but
to get omnidirectional coverage. Power applied to output port n of the feed network
generates modes at the antenna array with an exp(jn0) phase progression, where 0 is the
bearing angle and n is the mode number related to each output port. For N antenna
elements the following modes are possible: n = 0, * 1, * 2, * 3, ... , * (N/2 -1), * N/2. In
the far field of the array the pattern is omnidirectional in azimuth for all modes. The ideal
phase variation versus bearing angle is shown in Fig. 6 for modes n = +1, +2 and - 2. In
general, the ideal phase variation versus bearing angle 0 for mode n equals n 0.

If a signal source is located at an azimuthal angle 0, and from reciprocity, the
received phase at the n = +1, +2 and -2 output ports of the feed network will have the
same relationship as the far field phase in the transmit mode. A phase comparison of the
n= +2 and n = +1 output ports is a direct measurement of the bearing angle. Note that
the measured phase equals the bearing angle independent of frequency.

-12-
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Following a similar down-conversion process as in the linear antenna array
architecture, the signals from the output ports of the Butler matrix are first
down-converted to a lower intermediate frequency and then applied to the transducers of a
multi-channel Bragg cell. Since the phase variation from port n equals n 0, a periodic
multi-channel Bragg cell structure is needed. The nth heterodyned IF signal is

VIF,n(t) = A(t) cos[2y (fit - fin) + 0o] an(fR) (23)

where an(fR) is now the normalized gain of the circular antenna array with the Butler

matrix beamformer. It is assumed to be ideal and independent of azimuth, and

fin = n (0 - 00s) (24)

With the bearing offset (0os) adjusted to zero, an ideal phase relationship is obtained from
output port n. In this case when a signal is received at 0 = 0, all the phase angles (fi) are
zero. If the bearing offset is not zero, then a fixed linear phase shift (noos) will be
introduced across the array. This will only shift the diffracted optical beam and thus will
result in an offset in the measured bearing.

A typical architecture, using a 32-elcmeiit circular array and a Butler matrix with 9
output ports of n = 0 , *1 ,* 2, * 3, + 4, is shown in Fig. 7.

A similar analysis as given in Section 4.1 can be caried out for this architecture.
The diffracted order which contains the signal information is again given by the genera.
expressions in Eqs.(19) to (22).

5.0 SCALING FACTOR (S.F.)

The main lobe of the DOA pattern is obtained by setting the exponent of Eq.(21) to
zero and thus

v = #n/in , for n = 1,2,...N (25)

For the linear antenna array configuration, the main lobe location is related to the
DOA (0) of the received signal by substituting P from Eq.(17) to yield

dnv= dn sin(O) (26)

and making use of Eq.(5)

Ad n
y tn F sin(O) (27)
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where the ratio of the antenna element spacing to the acoustic transducer spacing (dn/ln)

is chosen to be a constant in this architecture . As a result, the optical array pattern
froduced will be a close replica of the antenna array pattern. The location of the main lobe

I), is proportional to sin(6). Let us define the ratio of the antenna array length in
wavelengths to the optical array length in wavelengths by a scaling factor (S.F.). That is

S.F. = (dn/AR)/(In/A) (28)

Making use of Eq.(27), the scaling factor can also be related to the main lobe
location and the DOA (0) of the signal by

S.F = y / [F sin(0)] (29)

The optical frequency of the diffracted beam is actually doppler shifted by an
amount equal to the acoustic signal frequency. However in most practical cases, the
doppler shifts introduced are very small in comparison to the optical carrier frequency and
thus the scaling factor can be assumed to be directly proportional to the input RF signal
frequency only. The scaling factor is normally much less than unity and therefore the
deflection angle (0) of the main lobe is given by

= tan'1(y /F) - y I/F , for y/F << 1 (30)

and making use of Eq.(28), yields

= S.F. sin(0) (31)

S.F. 0 ,for 0<<i (32)

For the circular antenna array configuration, the effective normalized antenna array
length is N and thus the scaling factor is

S.F. = NA/(NI) = A/I (33)

which is independent of the input signal frequency and I is the smallest transducer
element-to-element spacing. Substituting v from Eq.(5) and 0 n from Eq.(24) into Eq.(25),

and making use of Eq.(33), the scaling factor can also be expressed by

S.F = y/ (F 0) (34)

Substituting Eq.(34) into Eq.(30), the optical deflection angle (0) of the main lobe is

0 S.F. 0 (35)

Equations (31) and Eq.(35) simply state that the optical array steering angle is
scaled down from the microwave antenna array steering angle by the scaling factor (S.F.).Once the location of the main lobe is determined in the Fourier plane, the DOA of the
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emitter for the linear antenna array configuration is given by

0 = sin' (- ) , (36)

and for the circular antenna configuration, by

0 = -(37)

6.0 EFFECT OF TRANSDUCER HEIGHT ON DOA PATTERN

For a continuous wave or pulse-modulated CW filling up the multi-channel Bragg
cell aperture, and with a rectangular window weighting

Xo Yo
w(xoyo) = rect(----) rect(---), (38)

the instantaneous diffracted light distribution as given in Eq.(19) can be simplified to

K BDH 1
U(u,v,t) = K exp[-j2rfi(t+ 0 )] sinc[D(u-

AF

N
sinc(vH) n an(fR,0) exp[-j2,r (vln- 9n]

n--i

(39)

The DOA information is completely contained in the optical array pattern term. Its
shape must be preserved in order to determine the peak main lobe location. This is critical
in the case of an aperiodic array configuration with a few elements, in which the sidelobe
levels are usually only a few dB below the main lobe. The main lobe can be detected only if
the weighting function [sinc(vH)] is kept relatively constant and varies smoothly over all
values of v of interest. In order to satisfy this condition, H must be kept small.

An example is used to illustrate the requirement of H for the linear antenna array
processor configuration. For a certain scan angular range aO, the corresponding range of v
is given by Eq.(26). If the sinc (vH) function is required to vary by less than 10% from its
maximum value of unity within the scan angle (0) of *90 degrees, the corresponding v is

dn
v ,-- n sin(0), 0= 900 (40)

ARfn
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Substituting the range of v into sinc(vH), the following condition must be met

dnH

sinc(vH) = d n H 0.9 (41)

nR

Hence H < n R (42)
4dn

In practical systems, the amplitude window weighting function is given by Eq. (22).
The function is assumed to be of truncated Gaussian distributions in both the x and y
dimensions. The general effect of the truncated Gaussian laser profile and acoustic
attenuation on both the instantan/ous and tim.-ntegrated waveform distributions from an
acoustooptic spectrum analyzer are well known [41,26]. The general effect of the weighting
function is to broaden the main lobe of the sinc function while the sidelobe levels are
suppressed. As a result, the condition stated by Eq.(42) can be relaxed somewhat due to
this broadening effect.

7.0 GAUSSIAN LASER ILLUMINATION PROFILE

Laser beam profile of Gaussian distribution is important in optical signal processing
because the intensity profile of most gas lasers such as HeNe is characterized by the
Gaussian distribution [27]. In addition, the intensity profile of the lowest order beam from
a double heterostructure solid state laser is also of Gaussian shape. The Gaussian profile
can be modified (expanded or reduced) easily in one or two dimensions by using a
beam-expander such as an anamorphic prism beam-expander [28-29]. In this section, the
effect of the Gaussian illumination profile on the DOA pattern is investigated.

When a multi-channel Bragg cell is illuminated "fully" in the yo dimension with a

Gaussian laser beam, the amplitude weighting function as given by Eq.(22) is modified to
give

W(xoyo) = W(xo) W(Yo)

x xt 'Y

ex P- x7 rect( - ) exp[(2Txy/DN exp [-a- (-) + -T )

fj Fr T f T / 7 V exp[- (2Ty )21

- fP i~Tr T rect(-) exp [ 0
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The total intensity of the incident laser beam has been normalized to a maximum
value of unity when the acoustic loss factor is zero. In this normalized form the total
intensity will remain constant independent of the values of the Gaussian profile
parameters. We first calculate the amplitude distribution in the Fourier plane in the case
where the amplitude weighting function is of a rectangular distribution. The Gaussian and
acoustic exponential functions are then accounted for by convolving the amplitude
distribution with the Fourier transform of Eq.(43). The Fourier transform of the
normalized weighting function can be separated into two independent functions of u or v
only. That is

W(uv) = W(u) W(v) (44)

M

where W(u) = fw(xo) exp(-j2rUxo) dxo (45)

and W(v) = fw(yo) exp(-j2rvy) dy.
.M

eN
-- f 7 eN/TY exp[-(T-V-T- ] (46)

is again of Gaussian distribution. The amplitude distribution in the Fourier plane is
obtained by convolving Eq. (44) with Eq.(39) to yield

U(u,v,t) = [ B exp[-j2Tfi(t+ o)] sinc[D(u----) sinc(vH)

N
* sifin)]]

n=1 , afR0) exp[-j2 T (Vtn- n)

*[W(u) 4fT t i/YexF r N )i](47)

where * denotes convolution. We are mainly interested in determining the effect of the
Gaussian input laser profile w(yo) on the DOA pattern and thus from the above equation,

only the W(v) component is of interest. It is expected that if the acoustic beam width,
including the acoustic spreading in the y dimension, is much smaller than the Gaussian
illumination beam width, the Gaussian weighting on each acoustic beam can be assumed to
be approximately uniform. In this case, the convolution given in Eq. (47) in the v
dimension can be simplified by performing it in the (x0 ,Yo) domain. This is done by just
multiplying the amplitude of each acoustic channel by the Gaussian weighting w(yo)
located at the channel center. In other words, each acoustic beam can be approximated by
a self-collimating beam with height H and illuminated with uniform intensity.
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7.1 DOA Main Lobe Intensity Versus Gaussian Profile Parameter Ty

The input Gaussian illumination profile has been chosen to be located symmetrically
with respect to the acoustic array center. This is due to the reason that a displaced
Gaussian function can be expressed in terms of a product of a centrally located Gaussian
fanction of the same distribution and an exponential function as given in Eq.(43). The
exponential function has the undesirable effect of increasing the sidelobe levels in the
Fourier plane [26].

The intensity distribution of the DOA pattern as a function of the input Gaussian
illumination profile parameter Ty is investigated in Sections 11.2 and 12.0. For a fixed
total laser power interacting with the acoustic beams, it can be shown that the intensity of
the main lobe of the DOA pattern will reach a maximum when all the channels are of equal
amplitude. For Gaussian illumination profile, the total interacting optical power and its
resultant output intensity of the DOA pattern are only a function of the Gaussian profile
parameter Ty. A maximum in the total optical power interacting with the acoustic beams
usually may not result in a maximum main lobe intensity on the DOA pattern.

For the linear antenna array configuration, the DOA pattern is a function of the
specific channel locations and is illustrated later in Section 11.2 by using an optimum
4--element array. For the circular antenna array configuration it is a function of whether
the array is odd or even and whether the array is filled or not. The effect of the Gaussian
illumination profile parameter Ty on the DOA pattern is analyzed further in Section 12.

8.0 ERROR TOLERANCE ANALYSIS

An incoming electromagnetic wave front is sampled spatially by the antenna array.
The signal received by each antenna element is then separately down-converted and
amplified by various active and passive components. It is then finally converted into a
traveling acoustic wave by the piezoelectric transducer. The resulting acoustic columns
interact with the collimated laser beam, producing the desired diffracted wavefront.

A large number of occurrences can cause the actual optical array pattern to be far
from the ideal predicted by the assumed deterministic models. Since most components are
amplitude and phase sensitive to variations in frequency, then the signal passing through
each channel experiences phase and amplitude errors. Phase errors are also introduced by
errors in the placement of antenna elements and acoustic transducers. Mutual coupling can
also be a major phenomenon affecting both amplitude and phase in both arrays. In
addition, the optical system also introduces aberrations which affect both the phase and
amplitude of the optical wavefront.

Irrespective of which phenomenon is responsible for an error, the only effect it may
have is on the amplitudes and the phases of the signals. Hence any error source may be
typified by error 6an and 6 n to the amplitude and phase of the nth channel, respectively.

8.1 Optical Array Pattern

Introducing the amplitude and phase errors into Eq. (21), the normalized optical
array pattern can be written as
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N
f(v) EN- nl(an+ 6an) exp(jbon) exp[-j2,r (vt n- an)],  (48)

n=1

where the dependent variables have been dropped for clarity. The expected value of the
intensity pattern is

N N
iE~v)1f*( N2  I i E (an+ 6an) (am+ 6am)E~~vf*v)--N2 n=1 m--1

•exp[j(bo n- bom)]exp{-j2f[V(tn-tm)-(fin-flm)]}I

(49)

where * denotes complex conjugate.

In the following analysis, the means of the amplitude and the phase errors are
assumed to be zero. All errors are independent of each other and the nth amplitude error is
independent of the nth amplitude.

Following a similar analysis as given by Steinberg [30], the expected intensity
pattern for the array can be shown to be

E[f(v)f*(v)] = exp(j6) 2 f0(V) (v)+- 1- exp(jO6)2 ] an
N n=1n

N
+ E n fa2 (50)

Nn=1 an

If the amplitudes are of equal weighting of value a and variance a2 , thena'

E[f(v)f*(v)- =exp(jb6o) I (v) f(v) + a[[ 1 exp(j6) + N

(51)

where f%(v) is the designed patte:n with no errors.

If the phase error has a normal power spectral distribution function with variance

a2, then

-exp(jbO) 2 E[exp(jbo)1 I2
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-Ifep(jb#) exp[-601/(2o,)] dbO 12

= exp( - 2 ) (52)

All the directional properties are in the first term of Eq. (51) and are unchanged
from the intensity pattern of the error-free array. The remainder is an angle-independent
contribution to the expected pattern, and its magnitude is inversely proportional to the
number of channels. The dominant effect is a reduction in gain and a change in the main
lobe to sidelobe ratios.

8.2 RMS Beam-Pointing Error

The amplitude errors alone produce no pointing errors. Hence only the effect of
phase errors is analyzed.

The assumed statistics are

E(6bn) = E( 6bm) = 0, all n,m (53)

E(bonb6 m) = 0, n j m, (54)

and
2.= E(2) << 1 (55)

Let 6 n - b6 m = 6bnm , In -em = Inm and fn - fm =/fnm ' the intensity pattern as

given by Eq.(48) can be rewritten as

N N
f(v)f*(v) 2 E E anamexp[-j(2rvlnm- 6onm- 2rnm)] (56)

N2 n=1 m=l

The pointing direction is found by setting the derivative of the above equation with
respect to the variable v to zero. Assuming the pointing error is small and follow a similar
analysis as given by Steinberg [30], the normalized optical RMS beam-pointing error as
derived in Appendix A is

N N N N N
= [n an]2 na=  2 2 am E a 2apnP

v 1 n]ln= n1 nnlp npnp

N N N 11/2 N N
+ S a 2  Z Slamap I I r E ana 2

n=1 n M~ lm p m pJ n=1 m=1 anam nm jnln m=1 p-1 n=1 ~

(57)
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where v = v - v0  (58)

and v. is the normalized position of the steered diffracted optical beam with no pointing

errors. Equation(57) is a general solution which takes into account the element weighting
as well as the arbitrary locations of the elements. If the element locations are measured
from the array center and the number of elements is greater than three, the last two terms
in the numerator are negligible. The beam-pointing error is then approximated by

~ n~i~n] 2 2~I t2]
n---1=

1

N N
rE E ana t2

n=1 M=1 n m nm

N n 1a2 2)1/2

n_ =

r N N N 2 1
271 E an Ea e2- E a In

Ln=l n=1 n n n=1

The beam-pointing error is directly proportional to the RMS phase error and
inversely proportional to the array length (2eN). It is also a function of the specific spatial
distribution of the weighted channels. For N large, it can be shown that it is approximately
inversely proportional to the square root of N[30]. If the amplitudes are of even symmetry
about the center while the element positions are of odd symmetry, Eq.(59) can be
simplified further to

2rtN1/ 20 1 n=

a = (60)

N2r E at 2

n1n n

The pointing error as given by Eqs.(57-59) can also be expressed in radians by
making use of Eq.(5). Hence

0yl/F= a v IA (61)

The pointing error, of the diffracted optical beam steered to vo, has been expressed

in terms of the normalized variable v in the Fourier plane. The pointing error expressed
directly in terms of the DOA (0) of the received signal is also of interest.
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For the circular antenna array configuration, substituting vo from Eq.(a5) into

Eq.(a6) in Appendix A and making use of Eq.(24) with 0os = 0, we have

V =V-V
1 0

= n/en - (n-m)Oo/(tn - tm)

= n0/t n - (n-m)0o/[(n-m)e]

= (0- 0 )/1 (62)

where 00 is the DOA of the received signal with no pointing errors. As can be seen from the

above equation, (0 - 00) and (v - vo) are linearly related by the smallest transducer

inter-element spacing A.

For the linear antenna array configuration, the relationship between the two
variables is more complex. Following a similar procedure and by making use of Eq.(17), we
have

V =V-V

d
n sin(O) - sin(Oo)[(dn/R - dm/AR)/( 1n - Am)]

d

Rn

Expressing in terms of (0 - 0o) and (v - vo)

0 - 00 = sin [(v - VO)ARIn /d n + sin(Oo)) - 00 (64)

Taking a partial derivative with respect to (v - vo)

(0 - 00) R n/dn (65)
'(v - vo) /1 -[(v - vo) A Rn/dn + sin(00 )]2

As a result, for small deviations (0 - 00 << 1) around the incoming bearing (0o), the

above relationship can be simplified further

A( -0 0 ) go A Ren/dn A(v-v (66)cos( 0O) 0
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for Isin()I >> I (v-v)ARln/d n  ,

where the measured bearing error (0-8.) due to phase errors is now inversely proportional

to the cosine of the incoming bearing (0.), and

A( - 0 ) Z ARnI/dn A(V-Vo) (67)

for Isin(0)I << 1

A relationship between the deviation in the normalized DOA pattern coordinate (V-Vo)

and the deviation of the measured bearing (0-0.) for the two configurations have been

established by Eq.(62) and Eqs.(66) and (67). By substituting (v-vo) back into Eq.(all),

the pointing error can then be expressed directly in terms of (0-0.) and only a

multiplication factor is needed.

9.0 EFFECT OF NOISE ON DETECTED DOA PATTERN

The RF signal to the 2-D acoustooptic signal processor is first amplified and then
down-converted to an intermediate frequency (IF), fs" The IF signal is applied to the

transducer of a Bragg cell where it is converted to an acoustic signal. The acoustic signals
in the various channels of the multi--channel Bragg cell are coherently illuminated with a
laser beam. Through the process of acoustooptic interaction, a portion of the incident laser
beam is diffracted by the signals. The Fourier transform is computed over a sliding window
of the weighted input signal. The transformed signal appears as a light intensity
distribution in the Fourier plane of the Fourier transform lens. This light intensity
distribution, which is the magnitude squared of the 2-D Fourier transform of the signals in
the multi-channel Bragg cell, is detected by a time-integrating 2-D photodetector array.
At different instances in time, the Fourier transform of a different portion of the weighted
signal is performed giving rise to the instantaneous DOA pattern along the y axis and its

instantaneous frequency spectrum along the x axis. As the signal passes through the Bragg

cell aperture, the instantaneous power spectra and the DOA patterns generated, are
continuously integrated by the photodetector array. The time-integrated charge packets at
discrete photodetector elements are then multiplexed to produce a sampled data waveform
of the 2-D image.

So far, the optical diffraction pattern appearing on the Fourier plane has been
analyzed with the effect of input noise neglected. The optical diffraction pattern is detected
and converted back to electronic signal distribution by the use of a photodetector array.
The input noise contribution of the 2-D acoustooptic signal processor is usually dominated
by the RF front-end pre-amplifier noise since subsequent stages in the receiver are
preceded by sufficient gain in order to overcome additional noise. As a result, the input
noise can be assumed to be white Gaussian with spectral density 1/2. After detection by
the photodetector array, there is additional noise introduced by the photo detection process
such as shot noise generated by the signal and detector dark current, thermal noise and
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other detector noise sources 33]. The resultant signal-to-noise ratio of the sampled signal
is also affected by the type of input signal, the integration time of the photodetector array
and the pixel size.

The purpose of this 2-D processor is to provide power spectral density estimates
and DOA information of radar signals. The use of a time-integrated photodetector array
for detection reduces the amount of data generated from such a processor. Silicon CCD
(charge coupled device) scanned solid-state 2-D photodetector arrays that are available
commercially for TV applications feature integration times on the order of milliseconds
[31-32]. However the use of such photodetector arrays does not provide accurate TOA
time of arrival) information on the radar signal, and other means such as using an

additional acoustooptic spectrum analyzer with fast read-out times on the order of a
microsecond must be considered. Photodetector array technologies having fast read-out
times have been developed[33-36]. Another advantage of using an integrating
photodetector array with long integration time is the increased sensitivity which may be
achieved through the non-coherent integration produced by the time-integrating array
[37-38].

For a CW signal, the TOA parameter is not relevant. A general statistical analysis
on the noncoherent processing gain of an acoustooptic spectrum analyzer for various types
of noise statistics as a function of the integration period, has been given for the case of a
CW signal [37]. In addition, the degradation in signal sensitivity due to noise arising from
the photo detection process, and the trade-off between noncoherent processing gain versus
dynamic range have also been investigated [37].

The effect of input noise on a single--channel acoustooptic spectrum analyzer for a
CW input signal is now analyzed. Next the analysis is extended to a multi-channel 2-D
acoustooptic signal processor. The effect due to shot noise and detector noise is considered
later.

9.1 Single-channel Bragg Cell Configuration

The output statistics for signal plus noise input on a single-channel acoustooptic
spectrum analyzer using an integrating photodetector array have been derived [37-38].
Following a similar approach as given by Kelman et al[37] the effect of input Gaussian
noise plus CW signal is analyzed in this section. The main difference from Kelman et al is
that all the functions used in this analysis are two-dimensional in terms of the spatial
coordinates (x,y) which represent the physical nature of an optical signal processor. In
addition, the amplitude distribution in the Fourier plane is a single-sided Fourier
transform of the input signal as given by Eq.(11), instead of a two-sided Fourier
transform. There are also minor differences in the derived results which will be pointed out
in the analysis.

The 2-D photodetector array is arranged in rows and columns and their numbers
are designated by (ij) respectively. The photodetector array is oriented with the row along
the spatial frequency axis (xI) and the column along the DOA axis (yI). The spatial

weighting function of each photodetector element is assumed to be identical and
characterized by H(xI,yi). The analysis is simplified by expressing the output from the 2-D

photodetector array as a continuous distribution along the DOA axis. This is the same as
assuming that the photodetector element row-to-row center spacing was infinitely small in
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the y dimension and of rectangular spatial weighting. If the actual sampled spatial
distribution from the 2-D photodetector array is needed, another integration along the
DOA axis can be performed after.

For a single-channel acoustooptic spectrum analyzer, there is no useful information
along the DOA axis and a linear photodetector array is used. In practice, the spreading of
the signal distribution along the DOA axis is confined to the linear photodetector array by
the use of a cylindrical lens. This is equivalent to performing an integration from minus
infinity to plus infinity on the continuous output distribution of the 2-D photodetector
array along the DOA axis. If a relative measurement is taken such as the signal-to-noise
ratio, it can be carried out either on the continuous distribution or after performing the
integration.

For an input acoustic CW signal of amplitude A and frequency f s the mean

amplitude distribution in the column is computed by integrating the light intensity in both
time and space. The light intensity is obtained by taking the square of the absolute value
of the amplitude distribution given in Eq.(9). The mean output amplitude from
photodetector column j is given by

Ap5 .(y) = f H(xI y)I f U [x- (X .- X S),y It] dt dx,
to

(68)

Let G(x,,yl) be the magnitude squared of the Fourier transformed window function.

OD

x x y 2
G(xIyd = J) 0,y0) exp[-j2rx(- xo + --I yo)] dxo dyo

(69)

and

fI I /

,M(xl,y) =f G(x+ x l,y) H(x',y) dx' (70)

be the correlation between the functions G and H. Following a similar analysis as given by
Kelman et al, the mean output amplitude distribution of Eq.(68) can be shown to be

s(yl= (AK) 2 /4 T oM(x0- xis, y) (71)
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where the spatial frequency point (x ) are related to the input frequency by the use of

Eq.(4) and Eq.(12) and thus x j and xs correspond to frequencies

x
fSi=-- vs (72)

and

f= "- - v (73)

respectively, T is the integration period and

K3 = KB/(AF) (74)

There is one minor difference between the result given in Eq.(70) and that given by
Kelman et al; ,M(x,,y ) is now defined as the correlation instead of convolution between

the functions G and H. The end result is the same if the spatial weighting function of the
photodetector element is symmetrical. However it is the view of the present author that
correlation between the two functions is mathematically more correct.

The mean output noise power n from photodetector column j is[37]

2 M O

A n (y)= 2 T f G(x,yl) dx f H(x, yl) dx (75)

-w -

The variance for noise only input for column j after the bias due to noise is
subtracted is [37]

2 0

72(y) = 773 iT , 2 (xy, dx
[71= 2 f J i I'

2

= K T Bq , 2(0,yl) 
(76)

0)

where B,7 = [ f , 2(x,y,) dxj / M 2(0,y,) (77)
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is the noise equivalent bandwidth

For an input sinusoidal signal plus noise, if the integration period T is much larger
than the acoustic transit time (T) across the Bragg cell aperture D, then the variance at the

output of column j is approximately given by [37]

01~~ 2 o0'2(y) 1 +(AK )2q7K2T V~2(Xx~s yl/[j (y)

(78)

Substituting a 2 (y ) from Eq (76) into the second term of Eq.(78)

2

+Y (Y) 1i+ (AK2) 2 (K 2 T M 2(X -x, [ ) 4 K!TB '2(0y)11

2 (y 1 1+ 2 SNR cM2(X-X S, y )/ 2i

(79)

where

SNR= [(AK)2/2] /n['7K2 B'/] = [A'/2] / [7Bn] (80)

is the input signal-to-noise ratio. The signal power is the total input signal power
appearing in the Fourier plane and the noise is measured in the noise equivalent bandwidth
B n. There are two terms in Eq.(79) for the variance of the output. The first term is due to

noise-noise mixing and the second term is due to signal mixing with noise. The second
term has been expressed slightly different from Kelman et al [37]. It is now more general
and takes into account that the signal can be located anywhere on the photodetector array.
When the signal centroid is located off from the center of column j under consideration , a
corresponding drop in the output signal-to-noise ratio will occur. Taking the ratio of the
square of Eq.(71) to Eq.(76), the output signal-to-noise ratio is

SNR= 2s(y0= ,y) / gT(y x)

= [ [(AK )2T/412 " (xj- xIS, y)] /[['7K/2)T B'7 Y 2(0,y)]

= TB,/ [SNR, M(xj- XS, yI)/ (0,y,)] 2 (81)
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The output signal-to-noise ratio is directly proportional to the square of the effective

input signal-to-noise ratio and the time-bandwidth product TB q. The effective input

signal-to-noise ratio is always less than or equal to the input signal-to-noise ratio given
by Eq.(80) for a CW signal. An alternative definition of the output signal-to-noise ratio
can be expressed as

SNR 0 = A

= [(AK )2/4 T ,M(x j-Xs, y,)] /[02(y,)[1 + 2 SNR , 2 (x j- xs, y,)/ , 2(0,y,)]]

TB n SNRi2 , 2(x j- x s, y,)/ M2(O,y)
= (82)

1 + 2 SNR e' 2(x -Xs, y)/ '2(0,y)
1N ij is 1 1)

Again, there are two normalized terms appearing in the denominator of Eq.(80): the
first one is due to noise-noise mixing and the second due to signal mixing with noise. The

factor o' 2(x - x . y )/ o 2'(0,y) is always less or equal to unity for an input CW signal.
As a result, the second term is dominant only for large input signal-to-noise ratios.

If 2 SNR i M2 (x j-x s, yI)/ M7' 2(0,yI) >> 1, then

A 2(yl)/'7a(y) TB SNRi/2 (83)

where it is noted that the signal-to-noise ratio is independent of the signal distribution
and linearly proportional to the input signal-to-noise ratio. This is to be expected because
now the noise is directly proportional to the signal due to the dominant product term of
signal mixing with noise.

If 2 SNR i M 2(X j-xis, yI)/ cM2(0,yI) << 1, then

A2(yl)/02/(yl) z TB,/ [SNR i M(x xs, y )/ M(O,y 2  (84)

As expected, the output signal-to-noise ratio is the same as for the case given by Eq.(81)
because the noise contribution due to the presence of the signal is negligible. It is directly
proportional to the product of the square of the effective input signal-to-noise ratio and
TB .

When the noise-noise term is comparable with the term of signal mixing with noise,
the output signal-to-noise ratio is given by Eq.(82). The output signal-to-noise ratio
after being normalized by the time-bandwidth product is plotted in Fig.8 as a function of
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SNR 0 /(TBJ

(0B)

-2 t

SNR~ (dB)

FIGURE 8: NORMALIZED OUTPUT SIGNAL-TO-NOISE
RATIO VERSUS INPUT SIGNAL-TO-NOISE RATIO

(a) (x.-_ x 1)I loy = 1.0

(b)........(- x I, y)/ Ml'(olyl ) = 0.5

(C) (x - x, 1)I yd/d(0,yi ) = 0.25

(d)-----(x i- xs y)/ c. 2(0,yl ) = 0.125
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the input signal-to-noise ratio and the ratio of ,2((x - x5 , y)/ oV2(0,y ). Both the

input and output signal-to-noise ratios are expressed in terms of their decibel equivalents.
When the signal centroid is located at the center of the photodetector array column, the
normalized output signal-to-noise ratio is - 4.77 dB for an input signal-to-noise ratio of 0
dB. For large input signal-to-noise ratios, it increases linearly with the input
signal-to-noise ratio as given by Eq.(83) and independent of the ratio of

oY(x .- xi, Y )/ dV2 (0,yI). For low input signal-to-noise ratio, it is directly proportional

to the square of the effective input signal-to-noise ratio.

The processing gain may be defined as the ratio of the input signal-to-noise ratio
without integration to the input signal-to-noise ratio with integration in order to achieve
the same detection probability. From Eq.(81) and Eq.(82) for low input signal-to-noise

ratio, the peak processing gain is found to be proportional to JT-n.

9.2 Multi-channel Bragg Cell Configuration

The effect of input Gaussian noise has been analyzed for a sinusoidal input signal on
a single channel acoustooptic spectrum analyzer. This analysis is now extended to a
multi-channel configuration. The noise statistics in each channel are assumed to be the
same but uncorrelated from channel to channel, and the window weighting function is
assumed to be the same for each channel.

The mean amplitude distribution in column j for an input sinusoidal signal alone is
given by Eq.(71) for a single-channel configuration. For a N-channel configuration, it is
modified by the array factor as

AsN (Y ) = I N f(y) 21 (AK )2/4 T M(x j- xs, y), (85)

where f(y ) is the normalized array factor given by Eq.(21). The maximum amplitude is N2

times that of a single-channel one and the distribution along the column is now a function
of the array factor. The mean output noise power 1 is

CD 00

N
S 2  G(xy) dxI f H(x, y) dxA NY)= E K 3/2 T x ~ 1Yn=- 31 1

(86)

where the above equation shows that the output mean for the N-channel configuration for
noise input alone is the sum of the individual mean values. This is due to the fact that the
noise in each channel is uncorrelated.

For noise only input, the variance after the bias due to noise is subtracted can be
shown to be
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2
2 2 TB M(,)(87)

n=0 q -- 1 T B

For an input sinusoidal signal plus noise, the analysis as given by Kelmar. et al[37]
for a single-channel configuration can be extended to a N-channel one. The variance at the
output of column j is obtained as

01 2N2 1  +1 N f~)2 (AK )2 E nK 2T o7M2(Xxis Y)
° n-I lj is

/[4a2N(y1 )] (88)

If the signal and noise amplitudes are identical from channel to channel, then

'+nN(y,) N (y) ( 1 +2 SNRi,N M '(x j- xs, Y1)/ "'(0,y)]

(89)

where

SNR 0 =[[N If(y)IA]2/2] / NqB,] = N If(y1)12 SNR (90)

is the effective input signal-to-noise ratio appearing in the Fourier plane of a N-channel
configuration and SNR i is the input signal-to-noise ratio for a single-channel
configuration given by Eq.(80). The peak input signal-to-noise ratio is N times that of the
single-channel configuration. The output signal-to-noise ratio is

SNR = ()/020 , sN(Yi )N(Y

= [{[I Nf()1 2AK ]2T/4}2 M, (x - x5 , y )]/[[ K/2]2T B &y2(O,y)]

=TBn/ [SNRi, N M (xlj- X s, Y IlV W(0,yI)] 2 (91)

An alternative definition for the output signal-to-noise ratio is
SNR ° ='U # a

0  s,N(Yl)/ s+7,N(Y,)
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=[I Nf(y,)I2AK'2 /4 T oM(xj- xIS, y,)] 2 / N2o2(y')
- [1 + 2 SNR N c 2(X j-- is y)/ 7,' 2(0,y)]]

TB SNRil 2 ,M 2(X-s, yX)/  2(O,y)
=lj (92)

1 + 2 SNR ,N M2(x 1j-_ Xs ,yI M(0y1

If 2 SNRiN o 2(X Ij- xS, yi)/ ,M2(0,y) << 1, then

A2(y ) / ,2 s+(y TB, 7 [SNRN ,'(x 1-X yl) /x 2

(93)

If 2 SNRiN , 2(x- xis, yI)/ cM'2(0,y) >> 1, then

2(y ) / C s (y) z TB SNRN/2 (94)

By comparing the output signal-to-noise ratios given by Eqs.(91 to 94) for a
N-channel configuration to those given by Eqs.(81 to 84) for a single-channel
configuration, the only difference is the effective input signal-to-noise ratio. For the
N-channel configuration it is modified by N times the square of the normalized array
factor. As a result for low effective input signal-to-noise ratios, the maximum output
signal-to-noise ratio is improved by a factor of N2. For comparison, we define another
processing gain as the ratio of the input signal-to-noise ratio for a single-channel Bragg
cell configuration to the input signal-to-noise ratio for a N-channel one in order to
achieve the same detection probability. From Eq.(81) and Eq.(91) for low input
signal-to-noise ratios, the peak processing gain is found to be proportional to N.

The analysis has been carried out for the case where the input noise is dominated by
the receiver noise with an input CW signal. However the output sampled data value also
includes an additive detection noise contribution [371. Detection noise has both thermal and
shot components. Shot noise depends on the average optical power and is therefore signal
dependent. Thermal noise, due to random agitation of electrons and reset charge
uncertainty, is independent of the optical signal. The relative importance of thermal versus
shot noise depends on the number of photo electrons. It has been shown that shot noise
effects are negligible for devices with more than several hundred rms thermal noise
electrons. As shown by Kelman et al[37], if the receiver noise is set to about the same level
as the thermal noise, and for time-bandwidth products not extremely large, the effect of
shot noise can be neglected. At low input signal levels, the shot noise generated is
negligible in comparison with both the thermal and receiver noise. At high input signal
level, the shot noise increases linearly with the input signal level, however the noise
generated by the signal and input noise as given by Eq.(88) will dominate. As a result, shot
noise effect can be neglected.
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The distribution of the combined noise is approximately Gaussian for large
time-bandwidth product with large output signal amplitude [37-381. In addition the
output DOA pattern is usually digitized for further analysis and processing and thus
quantization error will also be introduced. The different sources of error can be added on
the basis of their RMS values. To perform the most accurate estimate of peak location, it is
best to maximize the signal energy collected and at the same time minimize the noise[39].
For the 2-D acoustooptic signal processor, the sampled DOA pattern can be further
processed to obtain sub-pixel resolution through digital interpolation[40]. The ultimate
optimum peak locator or estimator[39,41] to be used will be in general a function of the
input signal, the interpolation technique used and the pixel size.

10.0 COMPARISON BETWEEN MICROWAVE AND OPTICAL ARRAY PATTERNS

The DOA pattern of the optical configuration can also be split into a product of two
functions: the element pattern and the array pattern.

The element pattern is determined by the interacting profile of the acoustic column
and the laser beam. The effect of the element pattern on the DOA pattern has been
presented in Section 6.0. The DOA pattern distribution of the optical array factor is a
continuous function of the spatial coordinate with no bounds on the range of y. In other

words, there are no "invisible" regions as in the case of a microwave antenna array pattern.
For the linear antenna array configuration, the microwave antenna array factor pattern is a
function of sin(e) which is periodic and within the range of * 1. For the circular antenna
array configuration, it is periodic and within the range of 0 = * 180 degrees.

The shape of the optical array DOA pattern is unchanged by the phase tilt
introduced when the signal arrives off boresight. Only the center or beam axis is altered.
However, for the linear antenna array configuration, the radiation pattern of the microwave
antenna array is distorted due to the trigonometric transformation relating the variables y

and 0.

11.0 DESIGN CRITERIA USING A LINEAR ANTENNA ARRAY

11.1 Linear Periodic Array Versus Aperiodic Array

The condition to avoid grating lobes under all conditions of beam-steering for a
linear periodic array is [30]

d < AR/ 2  (95)

where d is the element spacing and AR is the wavelength of the received signal.

Two important implications follow, the first pertaining to cost and the second to
mutual coupling. The cost of a linear array with its separate RF channels is approximately
proportional to the length 21 N. The resolving power of the array or its beamwidth is

always proportional to the length 2 tN. The angular resolution is just a function of the
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length of the array and not the number or distribution of elements. The effect of mutual
coupling on closely spaced elements is another factor. The effect of mutual coupling among
antenna elements can be reduced by overspacing the elements in the array, a process
known as thinning. This process will introduce grating lobes unless the array is made
nonperiodic. The problem of a thin array is the reduction of the designer's control of the
radiation pattern in the sidelobe region. This arises because of its reduced number of
elements, which offers the designer fewer degrees of design freedom than a filled array.
There exists no single theory which governs the design of an aperiodic array [30]. With the
exception of a random array, aperiodic arrays are designed ad hoc. Various design
techniques for the aperiodic arrays have appeared in the literature to reduce the large
sidelobes [42],[43], but the success has been quite limited.

Equal gain channels are highly practical in terms of design, manufacture and
optimum use of components. For broadband receiver designs, the physical size of the
antenna may be a constraint in which the antenna diameter may not satisfy the
requirement given by Eq. (95). In order to keep the number of channels to a reasonable
number while still having some control over the main lobe width and sidelobe levels, four
to five antenna elements with unequal spacings seem to be the optimum number.

11.2 Design Example

An example is given on the synthesis of an array using four nonuniformly spaced
elements of equal weighting.

Consider a design where it is desirable to cover the frequency range of 6.0 to 12.5
GHz. The bearing accuracy is to be in the order of 1 degree for the worst case of 30 degrees
RMS phase and 3 dB power imbalances. The total instantaneous angular field-of-view is
chosen as * 45 degrees in order to provide a system to cover one quadrant in azimuth.

The main design criteria used are:

(i) To minimize the main lobe width while the peak sidelobe-to--main-lobe
ratio is kept to a reasonable minimum.

(ii) To optimize the channel spacings so that the ratio of the peak
sidelobe-to-main-lobe level is least sensitive to perturbations of channel
locations.

The beam pointing error is inversely proportional to the length of the baseline as
given by Eq. (59) while the angular resolution is directly proportional to it. It is also well
known that the peak sidelobe-to-main-lobe ratio is less susceptible to channel spacing
variations for a longer baseline. On the other hand, the difficulty in controlling the peak
sidelobe-to-main-lobe ratio for a given number of channels is directly proportional to the
length of the baseline. As a result, a compromise has to be made.

In order to realize the array, antenna elements and acoustic columns are chosen to
be separated as far apart from each other as possible for ease of fabrication and reduction cf
mutual coupling effects.

Giving the specified system phase and amplitude errors and the required pointing
error, the total baseline length can be determined from Eqs.(57) and (66). Let's consider a
baseline length of about 10.5 wavelengths at 12.5 GHz, there are up to 15 sidelobes on
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either side of the main lobe within the scanning angular range of *45 degrees. Since there
are only two degrees of freedom corresponding to the inner two element locations, at least
two sidelobes out of the possible 15 can be optimized. However, no matter which
algorithmic design is used, it is going to have little control of the radiation pattern in this
case.

On the other hand, since there are only four channels, the optimum locations of the
inner two channels can be determined by using a computer. This is done by moving the two
inner channels, one at a time, in discrete steps within the baseline and recording the
main-lobe-to-peak sidelobe ratio within the scanning angular range of * 45 degrees. A
two-dimensional grid table, showing the peak sidelobe-to-main-lobe ratio as a function of
the two inner channel spacings, is used to determine the optimum channel spacings. By the
conservation of radiation energy, keeping the peak sidelobes to a minimum value has more
or less the same effect of trying to equalize the sidelobe levels. It is found that there are
various regions of minima of different sizes. The purpose is to identify some of the largest
regions of about the same length and width so that the two-dimensional table can be
reduced to a number of smaller and more manageable elements. Once an optimum 2-D
table is identified, the locations of the two end elements can then be perturbed to form
another 2-D table. It is to be noted that the resultant DOA pattern is a vector sum of the
four vectors rotating at different rates as the scanning angle is varied. For small
perturbations, that is for small grid size steps, the peak sidelobe-to-main-lobe level is
expected to vary smoothly from grid point to grid point even though the location where the
peak sidelobe occurs may be changed. As a result, once an optimum region is identified and
with slight perturbations, the optimum region should only be slightly perturbed as well.
This characteristic will be illustrated in this design example.

An optimum 2-D table is shown in Table I for this specific example of a 10.5
wavelength baseline at 12.5 GHz. The initial optimum element spacings are found to be at
0.0 3.7 6.25 and 10.5 wavelengths. Next the two inner element locations are fixed with the
outer two elements perturbed and the resultant 2-D grid table is shown in Table II. As
expected, the minimum peak sidelobe-to-main-lobe level is already at around its
minimum for small perturbations around the optimum element locations. In order to get an
idea on what will happen to the original peak sidelobe-to-main-lobe distribution as the
two end locations are changed, two other grid points around the optimum will be chosen.
In addition, we want to emphasize that only t.Le outer two element positions are perturbed,
and as a result, the coordinates for the inner element locations will be kept unchanged. As
the outer two element locations are changed, so will the total baseline length. From Table
II, another grid point at d, = -0.0625 and d4 = 10.5625 wavelengths is selected. This
corresponds to a longer baseline length of 10.625 wavelengths and another grid table is
shown in Table III by perturbing element locations d2 and d3. By comparing Table III to
Table I, a similar optimum region is obtained. It has confirmed the notion that for small
perturbations around the optimum locations, the optimum region should only be slightly
perturbed. Another grid point at d, = 0.0625 and d4 = 10.375 with a total baseline length
of 10.3125 wavelengths is chosen and another grid table is shown in Table IV. As expected,
a similar optimum table is obtained. The above two cases have confirmed that the
optimum element locations as calculated in Table I are still the optimum locations. By
using finer grid sizes to locate the centroid of the minimum region and rounding the
element locations to two decimal points, the optimum element locations are found to be at
-5.25 -1.54, 0.98 and 5.25 and the peak sidelobe-to-main-lobe ratio is 0.69. An optimum
region has been found where the peak sidelobe to main lobe ratio is least sensitive to
element location perturbations and thus to phase errors as well.
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TABLE I

OPTIMUM TABLE SHOWING THE PEAK SIDELOBE-TO-MAIN-LOBE
VALUES FOR AN ARRAY OF 10.5 WAVELENGTHS LONG

(dl=0 R and d4 = 10.5AR )

d2 (A R)

d3 (A R) 3.8875 3.8250 3.7625 3.7000 3.6375 3.5750 3.5125

6.4375 .94 .92 .87 .80 .80 .82 .83

6.3750 .87 .86 .82 .76 .76 .89 .93

6.3125 .85 .79 .75 .70 .77 .93 1.00

6.2500 .86 .81 .74 .68 .79 .86 .96

6.1875 .86 .81 .75 .71 .85 .94 .97

6.1250 .86 .82 .82 .75 .84 .95 1.00

6.0625 .84 .92 .95 .90 .76 .89 .96
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TABLE II

OPTIMUM TABLE SHOWING THE PEAK SIDELOBE-TO-MAIN-LOBE
VALUES FOR AN ARRAY OF 10.5 WAVELENGTHS LONG

(d2 = 3.7 AR and d3 = 6 .2 5 AR)

di (A R)

d4 (AR) 0.1875 0.1250 0.0625 0.0000 -0.0625 -0.1250 -0.1875

10.6875 .96 .95 .91 .85 .77 .70 .74

10.6250 .98 .95 .89 .81 .71 .72 .76

10.5625 .97 .92 .85 .75 .70 .74 .77

10.5000 .95 .88 .78 .68 .71 .75 .80

10.4375 .89 .81 .70 .69 .75 .81 .85

10.3750 .82 .72 .69 .75 .81 .86 .90

10.3125 .73 .70 .75 .81 .87 .91 .94
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TABLE III

OPTIMUM TABLE SHOWING THE PEAK SIDELOBE-TO-MAIN-LOBE
VALUES FOR AN ARRAY OF 10.625 WAVELENGTHS LONG

(d, = -0.0625 AR and d4 = 10.5625AR )

d2 (AR)

d3 (AR) 3.8875 3.8250 3.7625 3.7000 3.6375 3.5750 3.5125

6.4375 .93 .92 .88 .81 .78 .80 .82

6.3750 .85 .85 .82 .77 .74 .87 .95

6.3125 .87 .81 .75 .70 .70 .88 .98

6.2500 .88 .82 .76 .70 .77 .86 .91

6.1875 .88 .83 .77 .71 .81 .92 .97

6.1250 .86 .82 .86 .81 .79 .91 .99

6.0625 .84 .90 .97 .94 .83 .84 .93
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TABLE IV

OPTIMUM TABLE SHOWING THE PEAK SIDELOBE-TO-MAIN-LOBE
VALUES FOR AN ARRAY OF 10.3125 WAVELENGTHS LONG

di = 0.0625 A R and d4 = 10.3750 A R

d2 (A R)

d3 (A R) 3.8875 3.8250 3.7625 3.7000 3.6375 3.5750 3.5125

6.4375 .98 .95 .89 .81 .83 .84 .86

6.3750 .93 .91 .87 .80 .79 .81 .82

6.3125 .86 .85 .81 .75 .75 .77 .80

6.2500 .86 .80 .74 .69 .71 .76 .81

6.1875 .87 .81 .75 .69 .81 .88 .89

6.1250 .87 .82 .76 .70 .85 .95 .98

6.0625 .86 .84 .87 .80 .82 .94 .99
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The normalized optical intensity patterns of the array are plotted in Fig.9 for both a
signal arriving on boresight with no errors and for one with 30 degrees RMS phase error
and 3 dB power error. Since the patterns are symmetrical, only one side is shown. It is to
be noted that there is a distinction between the antenna radiation pattern and the DOA
pattern as described in Section 10 and care should be taken in the design of the optimum
array. If a photodetector array is used to spatially sample the DOA pattern for the angular
field--of-view of *45 degrees, it must have a minimum length of equivalent to 2 times
sin(450 ) = 1.4142 in the y coordinate. If a signal is received at 45 degrees off boresight,

the DOA pattern will be shifted by 0.7071 units in terms of y2 Now the sidelobes located

within y= 1.4142 will be shifted to the visible region and detected by the photodetector

array as shown in Fig.9. This is different from the radiation pattern of the corresponding
antenna array where for the same field-of-view of *45 degrees, only the pattern extending
from * 90 degrees are of interest or when expressed in terms of sin(O), which is within the
range of *1. In other words, in the design of an array which can span the *45 degrees
field-of-view, the sidelobes located beyond the * 1 and out to * 1.4142 have to be
considered when determining the potential peak side-lobe-to-main-lobe ratio for the
scanning angular range of 1 45 degrees.

The interaction profile between the acoustic column and laser is assumed to be of
uniform width (IN/ 3 0 ). From Eqs.(57) and (66), the RMS pointing errors for a 30 degrees
RMS phase error are 1.30 degrees and 0.63 degrees at 6.0 and 12.5 GHz respectively. The
worst case peak sidelobe-to-main-lobe ratio is 0.69. The 3 dB beamwidths of the array
factor are 8.0 degrees and 3.8 dc-rees at 6 and 12.5 GHz respectively. The ratio of the total
3-dB beamwidth power to total power is 0.056. A photodetector array is usually used for
detection and interpolation is employed to obtain about 1 degree angular resolution.

An experiment i 2-D acoustooptic receiver based on the above design concept has
been completed. This experimental receiver has been evaluated extensively using simulated
and radiated signals[44]. Some experimental measurements on the amplitude and phase
tracking characteristics of a multi-channel an isotropic Bragg cell on lithium niobate has
also been reported [451.

Now the effect of the input Gaussian illumination profile parameter Ty on the DOA
pattern is analyzed. As mentioned in Section 7.1, that a maximum in the total optical
power interacting with the acoustic beams usually may not result in a maximum main lobe
intensity on the DOA pattern. This effect is illustrated in this section by using the
optimum designed 4-channel spacings. In this case, the optimum relative acoustic array
spacings are as follows:

11 = -14
12 = -0.2933 14 (96)
13 = 0.1867 t4
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In this case, a laser with a total power of unity is used to illuminate the 4-channel
Bragg cell fully. The illumination profile is of Gaussian distribution characterized by the
parameter Ty. Using Eq.(47), the normalized total power interacting with the four acoustic
beams is plotted in Fig. 10, curve (a), as a function of the Gaussian profile Ty. For Ty
close to zero, the Gaussian beam is very large in comparison with the acoustic array and
thus a very small portion of the input laser power is utilized in the interaction. As the
Gaussian beamwidth is decreased, more and more of the input laser power is utilized, and
depending on the acoustic channel locations, a number of maxima may occur. For this
specific 4-element array, the first maximum occurs at around Ty = 2.14. The resultant
relative maximum intensity of the main lobe level of the DOA pattern is also plotted in
Fig. 10, curve b, as a function of Ty. However, by comparing the two plots, the maximum
main lobe intensity occurs at Ty = 0.8, and the two curves are different in shape. We are
only interested in small Ty because the main lobe width of the DOA pattern increases with
Ty and thus will result in a reduction of the angular resolution of the processor. At Ty =

0.8, where the maximum main lobe intensity occurs, we have the following relative
amplitude distribution in the four acoustic channels,

a, = a4 = 0.092
a2 = 0.165 (97)
a3 = 0.170

The relative maximum intensity of the main lobe is

(a1 + a2 + a3 + a4) 2 = 0.27 (98)

while the maximum total laser power interacting with the four acoustic beams is

a2 + a2 + a2 + a = 0.073 (99)
1 2 3 4

out of a total maximum of unity.

For comparison, a rectangular laser profile with a width of (2 14 + H) in the y
dimension, and having the same total power is used. The transformation of the Gaussian
beam into a rectangular beam could be performed using a holographic filter [46]. If we
assume that the transformation were 100% efficient, and the acoustic beams were
self-collimating, the maximum total laser power interacting with the acoustic beams would
have a value of 0.0232 x 4 = 0.093. The relative maximum intensity of the main lobe
would have a value of 0.37 which is 1.38 times that of the case where the optimum
Gaussian illumination of Ty = 0.8 is used.

The DOA patterns for the two cases, rectangular weighting and optimum Gaussian
weighting, are plotted in Fig. 11 for a signal arriving on boresight. The maximum values of
the two cases have been normalized to a value of unity. As expected, the Gaussian
weighting has the effect of broadening the main lobe and suppressing the sidelobe levels.
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12.0 DESIGN CRITERIA USING A CIRCULAR
ANTENNA ARRAY WITH A BUTLER MATRIX

A feasible architecture, using a 32--element circular antenna array and a Butler
matrix with 9 output ports of n = 0 , *1 ,* 2, * 3, * 4, is shown in Fig. 7. The ideal DOA
patterns for both a rectangular and Gaussian illumination weightings are shown in Fig.12.
As can be seen from the plot, Gaussian amplitude weighting has a strong effect in
suppressing the sidelobe level for a periodic array configuration. It is to be noted that the
shape of the ideal DOA pattern is independent of signal frequency . If the incoming signal
is received off boresight, the DOA pattern will be shifted in position and the location of the
peak pattern will give a direct measure of bearing, independent of frequency. In addition,
the bearing accuracy is shown to be relatively insensitive to small elevation angle
variations [47]. The 32-element array with a Butler matrix has been employed by Anaren
Inc. in their Radar ESM systems for years [47]. However, the phase offset relationship as
given by Eq.(24) is not yet fully satisfied and the output ports of n = * 3 are not available.

There are a number of advantages of using a filled acoustic array of periodic
arrangement in this configuration. As shown in Fig 12, Gaussian amplitude weighting
profile from a laser can be effectively utilized for the reduction of sidelobe levels on the
DOA pattern. Moreover, the multi--channel Bragg cell can be illuminated efficiently
without the use of beam-splitting optics such as holographic lens elements which may
introduce additional distortion and loss [48]. As a result, the filled array configuration is
investigated in detail.

The effect of Gaussian illumination profile on maximizing the output peak DOA
pattern is investigated first. The Gaussian profile along the DOA axis is completely
characterized in Eq.(46) by the parameter Ty. To maximize the sidelobe suppression effect,
the laser profile is chosen to be centrally located with respect to the array center. The total
effective interacting laser power is that portion of the input laser power which is utilized in
the interaction with the acoustic beams. It is plotted in Fig.13 as a function of Ty for a
N-channel configuration with H/1 equals 0.2. H/1 is the ratio of the transducer height to
the transducer center-to-center separation. The smallest array is the 2-element array with
one channel fed by mode 0 and the other by either mode = 1 or -1. As the number of
channel is increased, more and more channels are added to either side of the array. The
Gaussian illumination profile is expanded to accommodate this increase in the baseline
length. For N even, a maximum is reached at some finite value of Ty. As can be seen from
the plot, for N = 2, a maximum is obtained at Ty = 0.5. For N odd, a maximum is reached
at Ty approaching infinity. The resultant relative peak main lobe intensity of the output
DOA pattern can be computed by using Eq.(47) and plotted in Fig.14. The optimum Ty
which produces a maximum output peak intensity is marked by a circle in Fig.14. Since
both H and t are the same for each configuration, the resultant peak intensity increases
with the square of (N-i) for the increase in the number of channels, while the input
illumination intensity is inversely proportional to (N-I). As a result, the net increase in
the relative peak intensity is approximately proportional to (N-I). By comparing Fig. 13
to Fig. 14, it is noted that a maximum in the total interacting power, with the exception of
N = 2, does not correspond to a maximum output peak intensity on the DOA pattern.
Near the optimum Ty region, the output intensity is shown to be relatively insensitive to
variations in Ty. Similar plots have also been obtained for different H/1 ratios and
the shape is about the same while the relative magnitude increases directly proportional to
H/e.
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In addition to the maximum output peak value of the DOA pattern, other
parameters such as the main beamwidth and sidelobe levels are also of importance. The
3-dB beamwidth as a function of Ty is plotted in Fig.15, for H/1 = 0.2. As can be seen in
the graph, the beamwidth is inversely proportional to the baseline length or to (N-1),
where N is the number of channels. The Gaussian profile is shown to have the effect of
broadening the beamwidth. It is also found that the 3-dB beamwidth is insensitive to the
ratio H/1, as long as (N-)i >> H. The peak sidelobe level within the range of * 360
degrees, which includes all the possible patterns when the signal is received over the
360-degree field-of-view, is plotted in Fig.16. The secondary peaks located at 360 degrees
on either side of main lobe have been discarded and thus are not counted as sidelobes in the
plot. In some cases, there are no sidelobes produced on the DOA pattern and the null is
taken to be the peak sidelobe level. As can be seen from the graph, the Gaussian weighting
has the effect of suppressing the sidelobe levels and this suppression effect increases with
Ty. It is also found to be insensitive to H/1, for (N-1) >> H.

Another parameter on the ratio of the total power contained in the 3-dB
beamwidth to the total power in the DOA pattern as a function of Ty, is also of interest.
This parameter gives an indication of how much of the useful diffraction power is contained
in the main lobe of the DOA pattern. This ratio is plotted in Fig.17 for H/t = 0.2.

Making use of Eqs.(60) and (62), the RMS pointing error of the received signal is
approximately given by

Cot a na 'n)1/

-) = (100)

N
2r E an12

n=1 n n

For a filled array of N elements, the total acoustic array length is (N-1)i.
Normalizing the element location by the total acoustic array length in the above equation,
we have

I n= n

o( 0 - O0) = (101)

N
2,r (N-1) E ant 2

n=l n

or = P.F u /[2,r (N-i)] (102)
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where P.F. is the proportionality factor which is determined by the specific distribution of
channel locations and weightings. For a given phase error, the pointing error is directly
proportional to the proportionality factor and inversely proportional to the baseline length
which increases by (N-1), where N is the number of channels. The P.F is plotted in Fig.18
as a function of Ty and is shown to increase with Ty. This is expected because the outer
channels become less important as the weighting on them is reduced. As given in Eq.(102),
the center channel located at the center of the array has no contribution to the P.F. In the
case of N equals 3, the P.F. is the same as for N = 2 and the Gaussian weighting is found
to have no effect on the outer two elements due to symmetry. From Fig. 18 and as pointed
out in Section 8.2 for large N, the P.F. is approximately inversely proportional to the
square root of N.

The normal processing carried out to determine DOA from such a system is by
phase comparison between the various output ports. The finest accuracy is obtained by
comparing the two channels with the largest phase difference but the result is ambiguous.
This ambiguity is resolved by using the other channel pairs and a typical bearing accuracy
of 2 degrees RMS can be achieved [471. By using Eq.(100), a RMS phase error of 71 degrees
is obtained. In the acoustooptic signal processor, all the channels are processed in parallel
and as a result an improvement is expected. If the random phase error distribution in each
output port is assumed to be the same but uncorrelated, then an improvement factor
equals to 1.37 in bearing accuracy is obtained from Fig. 18 for Ty = 0. If this error is
assumed to be much larger than the errors introduced by the rest of the system, a bearing
accuracy of 1.5 degrees can be achieved using this particular processor. Moreover, this 2-D
acoustooptic signal processor has the additional advantage of being able to process
simultaneous signals.

The ideal DOA patterns as given in Figs.12 to 18 have been plotted by assuming
there were no amplitude and phase errors. In practical system implementation, there are
matching errors as described in Section 8. Using Eqs.(50) and Eq.(52), and for N = 9, the
expected DOA patterns are given in Fig. 19 and Fig. 20 for Ty = 0 and 0.88 respectively.
Ty = 0.88 is used because it produces a maximum output intensity as shown in Fig. 14,.
They are plotted for various values of amplitude and phase errors. When Ty is not zero,
there is a weighting on each channel and the amplitude error is weighted as well. As
expected, the amplitude and phase errors raise the sidelobe levels and reduce the
magnitude of the pattern. In addition, the errors reduce the effectiveness of amplitude
weighting in suppressing the sidelobe levels.

The 2-D acoustooptic signal processor has been analyzed for a filled array
configuration in this section. If there are channels missing from a filled array configuration,
a degradation in performance is expected. The architecture as shown in Fig. 7 is used to
illustrate the degradation effect when the output ports of *3 are missing. The DOA
patterns of both configurations are plotted in Fig.21 for Ty = 0.88 and w/I = 0.2. As can
be seen from the graph, the sidelobe levels are much higher with a slight drop in the output
main lobe level.

13.0 COMPARISON BETWEEN THE TWO CONFIGURATIONS

Both the linear antenna array and circular antenna array configurations have been
analyzed in the previous sections and illustrated with design examples. In this section,
unique features associated with each configuration are outlined and compared.
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The 2-D acoustooptic signal processor using a linear antenna array was analyzed in
detail and presented in Section 11. It was shown that an aperiodic array configuration with
a minimum of four to five elements was useful for broadband receiver designs where it is
required to cover an instantaneous angular field-of-view of one quadrant and with an
angular accuracy of about one degree. This was based on factors such as complexity, cost,
required main lobe beamwidth , sidelobe levels and antenna size constraint.

The antenna elements are arranged in a linear aperiodic array configuration and the
multi-channel Bragg cell is also of the same arrangement. In using a linear antenna array,
typically the instantaneous angular field-of-view of one quadrant (90-degree sector ) can
be achieved and in order to cover the full 360-degree instantaneous field-of-view, four
identical receivers are needed.

In using a linear aperiodic array with only four to five antenna elements to cover an
octave or more in frequency, the peak sidelobe-to-main-lobe levels are usually high, -2 to
-3 dB (Fig. 9) for an angular accuracy in the order of one degree. More elements can be
used to improve the level but with an increase in cost and complexity.

Using a linear antenna array to cover a broad frequency band, the baseline length of
the antenna array when expressed in terms of the number of wavelengths changes with
frequency. As a result the bearing information obtained in the Fourier plane by measuring
the peak position of the DOA pattern has to be scaled by a scaling factor [Eq.(32) ] which
is directly proportional to the frequency of the signal. In addition, the DOA accuracy is
also scaled by the same scaling factor.

For the design example of a 4-element transducer array configuration, the
inter-transducer spacings required are much larger than the space occupied by the four
acoustic transducers. If the multi--channel Bragg cell is uniformly illuminated with a laser
beam, a great portion of the incident light will not be interacting with the acoustic beams
even though there may be an appreciable spread in the acoustic beam profile ( Fig. 11).
This will reduce the amount of light diffracted with a corresponding loss in the sensitivity
of such a receiver. A general solution is to use holographic lenses to split the input laser
beam into a number of coherent beams to illuminate the acoustic beams. However, in
additional to the complexity in generating and handling of holographic lenses, there are
also losses and distortion introduced by these components.[48]

As outlined in Section 12, another approach in designing a 2-D acoustooptic signal
processor is based on the circular antenna array with a Butler beamforming matrix. Some
preliminary beamforming is carried out by the Butler matrix to convert the outputs of a
circular array with a field-of-view of 360 degrees to a linear array output arrangement
which can be used to feed a periodic multi--channel Bragg cell. Using this circular antenna
array with a Butler matrix configuration, some attractive features can be identified when
compared to the linear antenna array configuration:

(i) A full 360-degree instantaneous field-of-view can be achieved using only
one 2-D acoustooptic signal processor.

(ii) The peak sidelobe-to-main-lobe level can be improved by the use of
amplitude weighting (Fig. 12).
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(iii) The shift in the DOA pattern as a function of input azimuthal angle is
independent of frequency [Eq.(62)] and as a result both the accuracy and
resolution of this processor are also independent of frequency.

(iv) Since the transducers of the multi-channel Bragg cell are in a periodic
arrangement, the inter-transducer spacings can be reduced considerably as
compared to the aperiodic arrangement. The acoustic columns can now be
illuminated fully without the use of a beam-shaping optics such as
holographic lenses. If we assume the ratio of the transducer width to
inter-transducer spacing is 1 to 3 and for a Gaussian illumination profile
truncated at the 1/exp(3.125) points for a 9-channel configuration, then
the maximum through-put loss is 5 dB as compared to 12 dB for the
4-element aperiodic array.

Despite the advantages associated with the circular antenna array configuration, the
aperiodic linear array configuration does offer some good features. For the same number of
channels, an aperiodic arrangement will provide a longer baselire and all those features
associated with it such as better bearing accuracy. There may be lower cross-talks among
those channels further apart. In addition the microwave front-end will be less complicated
and much smaller in size which will result in a lower cost. However when the elevation
angle is not zero ,the bearing accuracy may deteriorate due to "Coning" angle problems
[22-23].

The ultimate choice depends on the specific system requirement. The circular array
configuration can provide a system which is more compact and simpler if the full
360-degree instantaneous field-of-view is required. The bearing accuracy is moderate, on
the order of 1 degree with a 9-channel system. For angular accuracy of better than 1
degree, the linear array configuration is a better choice if the errors associated with the
"Coning" angle can be solved by either measuring the elevation angle using another system
or by operating the system for very low elevation coverage.

14.0 SUMMARY AND CONCLUSIONS

2-D acoustooptic signal processors, for simultaneous DF and spectrum analysis of
radar signals over a wide instantaneous bandwidth, have been shown to be of great
potential for Radar ESM applications.

A comprehensive treatment on the analysis and design of 2-D acoustooptic signal
processors has been provided in this report. Two general 2-D acoustooptic architectures
have been analyzed: one using a linear antenna array, and the other using a novel
architecture based on a circular antenna array with a Butler matrix beamformer.

Emphasis has been placed on the DF characteristics of both architectures. For the
linear antenna array configuration, the optical deflection angle of the DOA pattern is
directly proportional to a scaling factor and the sine of the bearing. The scaling factor is
found to be directly proportional to the input RF frequency. For the circular antenna array
configuration, the optical deflection angle is directly proportional to the bearing and a
scaling factor which is independent of frequency.
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An error tolerance analysis has also been carried out on the 2-D processors. The
dominant effect of amplitude and phase errors on the DOA pattern is a reduction in gain
and a change in the main-lobe-to--sidelobe ratios. For a given phase tracking error, the
pointing error is inversely proportional to the array length and the specific spatial
distribution of the weighted channels. For N large, it is approximately inversely
proportional to the square root of the number of channels (N). For the linear antenna array
configuration, it is also inversely proportional to the cosine of the bearing.

There are no "invisible" regions in the DOA array pattern as for the antenna array
pattern. In addition, for the linear antenna array configuration, the shape of the DOA
array pattern is unchanged when the signal arrives off boresight.

For a given acoustic array arrangement of a multi-channel Bragg cell, the peak
DOA pattern is a function of the Gaussian laser illumination profile parameter Ty. A
maximum output is achieved by the appropriate choice of the parameter Ty. However, the
maximum in the peak DOA pattern usually may not result in a maximum in terms of the
total optical power interacting with the acoustic beams. As a result, maximizing the total
interacting power may have no significance in terms of maximizing the output DOA
pattern.

The optical light distribution from the 2-D acoustooptic signal processor is detected
by using a time-integrating 2-D photodetector array. The effect due to the transformation
by the processor on the DOA pattern for input dominant RF noise and a CW signal has
been extended from a single-channel configuration to a N-channel one. For low input
signal-to-noise ratio, the output signal-to-noise ratio for a single-channel configuration,
is directly proportional to the product of the time-bandwidth product and the square of
the effective input signal-to-noise ratio. For the N-chanel configuration, the effective
input signal-to-noise ratio is modified by N times the square of the normalized array
factor and thus the maximum output signal-to-noise ratio is improved by a factor of N2

and the processing gain is N.

A typical example has been presented to illustrate some optimization techniques on
the design of a 2-D acoustooptic signal processor using a linear antenna array. It is shown
that an ap- iodic array configuration with a minimum of four to five elements is useful for
broadband eceiver designs where it is required to cover an instantaneous angular
field-of-view of one quadrant and with an angular accuracy of about one degree. This is
based on factors such as complexity, cost, required main lobe beamwidth , sidelobe levels
and antenn. size constraint. However, the peak sidelobe-to-main-lobe level is usually
high, -2 to -3 dB. In addition, the shift in the DO 4 pattern and DOA accuracy are scaled
by the same scaling factor.

Another approach in designing a 2-D acoustooptic signal processor is based on the
circular antenna array with a Butler beamforming matrix. Some preliminary beamforming
is carried out by the Butler matrix to couple the output from a circular array to a
multi-channel Bragg cell of a periodic arrangement. A typical example using a 32-element
circular antenna array and a Butler matrix with 9 output ports has been given and a
bearing accuracy of 1.5 degrees can be achieved. Design characteristics, such as peak
sidelobe level, relative DOA pattern intensity, proportionality factor and main beamwidth,
as a function of the Gaussian illumination parameter Ty and the number of channels have
also been investigated. Some attractive features which can be identified when compared to
the linear antenna array configuration are:
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i) A 360-degree instantaneous field-of-view can be achieved,
ii) the DOA pattern is simpler and both the accuracy and resolution are

independent of frequency and,
(iii) due to periodic arrangement, the peak sidelobe-to-main-lobe level can be

effectively reduced by the use of amplitude weighting and
(iv) the throughput loss is less when the multi-channel Bragg cell is illuminated

fully.

The ultimate choice of configuration is dependent on the specific system requirement. The
circular array configuration provides a system which is more compact if 360-degree
instantaneous field-of-view is required. The bearing accuracy is moderate on the order of 1
degree with a 9-channel system. For angular accuracy of better than 1 degree, the linear
array configuration is a better choice if the " Coning"angle problem can be eliminated.
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APPENDIX

DERIVATION OF THE RMS BEAM-POINTING ERROR
OF 2-D ACOUSTOOPTIC PROCESSORS

From Eq.(56), the intensity pattern is

1 N N
f~v~ (v N2 E= rn-i n amexp[j( 2rvtnm- b~nm- 2rfinm)]

(al)

Making use of the property of odd symmetry in

tnm - mn
bonm bomn (a2)

#nm = #mn

and with the identity

Cos (x) = exp(jx) + exp(-ix) ] /2 (a3)

Equation (al) can be rewritten as

=1 N N
f(v)f*(v) =-L 2 ana m cos(2,rvi n- bn- 2rflnm)

N n=1 m=1nm n

(a4)

Let

be the normalized position of the steered diffracted optical beam with no pointing errors
and with a change of variable

V1 V v- v0  (a6)

we have

N N
fAv)(v) - E E anam cos(2xvI t ~~

I1 N2 n=1 m=1 n mnm- om
(a7)

-69-



The pointing direction is found by setting the derivative of the above equation with
respect to the variable v to zero

1

[ ,(v )f* (v ,)] /Ov = o

N N
2. I N 2 E aram sin(2rvI nm- bnm) 'n
N2 n= m=1

(a8)

Since the phase errors are assumed to be small, the pointing error also may be
presumed to be small. With this assumption, the trigonometric term in Eq.(a8) is replaced
by its argument, leading to

N N

N- i 2 E ana m (2aVnm- bn Inm = 0 (a9)N:n=1 m=1

Therefore,

N N N N
E 2 aa rv t = E E ana Inm m  (al0)

n=l m=l n m um n=1 m=1 n m un un

and

N N
E E ana m i nmonm-

n=1 m=1
2rv = (all)

N N
E E aamt 2

n=l m=l n mn

Only the phase difference term bo nm is a random variable. The expected value is

zero because of the earlier assumption of zero mean phase errors. The second moment is

N N N N
E F anamtnmbn m  S E arap trpI rp

n=l m=l r= p=1

E(27v ) =

N N
, E ana t2

n=1 m=1 nm n

(a12)
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The expected value of the numerator term is expanded to give

N N N N
E[ E E E; lanamarapt nmr 6pnm5rp]

n=1 m=l r=l p=1

N N N NE I E E E Eanamara p (n-gm(r-I P)

n=1 m= 1 r=1 pn

(bonbor- go n gop- 6era~er + 6Om60p)A (a13)

There are four 60 product terms in Eq.(a13) and let's consider the first product
term

N N N N

E lm= r= E nma r ap (n-m)(tr-1p)b¢n 6r] (a14)

There are four product terms in the above equation and they are zero except when indices
are common. Therefore

E( 3 ¢n&or)= 0  ,fornfr (a15)

and

E(6¢nb6n) =' ,for n = r (a16)

Making use of Eqs.(al5) and (a16) ,the solution for the numerator term is

N N N
E-- E E a' a( 2 - t- _ a +1 1 aung6

nl= =--1 p =l n n n n

N2 N N 2NN
ja n ja n a 2a in P a a)t'

N N N
+ E a2  E Eamap mp (a17)
n=1 n m=l p=1
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Following a similar analysis, the last three terms in Eq.(al3) yield the same solution
as the first one and thus the expected second moment is

E(2rv )2 I27ro I
1 Nan N N N

a nalnJ n -n m am E ana pI
- n m=1 n=l p=1 n

N N N P 1 r N N2
+ FE Z ana m E aa It

n=1 n m=lp=1 Mp n=1 m=1 nm nn

(a18)

and the normalized optical RMS beam-pointing error is then given by

N N N N N
(T= ra ]2 Ea 2 2-2 E am E Y a 2 ae

v [1 n=1nn n=1 n n - 2 m=1 m n=l p=l a n p np

N N N i1/I2, rN N
+ E a 2  lamapII / [ E E anam  2

n=1 n m=1 p=l pmp P . n=1 m=1 nm I

(a19)

This is a general solution which takes into account the element weighting as well as the
arbitrary locations of the elements.

-72 -



UNCLASSIFIED -73-
SECUNITY CLASSIFICATION OF FORM

(highest Classification of Title, Abstract, Keywords)

DOCUMENT CONTROL DATA
(Security clasificetion of title, body of abstract ard iidexifte annotation must be entered when the overall document is classified)

1. ORIGINATOR (the name and address of the organization preparing the document 2. SECURITY CLASSIFICATION
Organizations for whom the document was prepared, e.g. Establishment sponsoring (overall security classification of the document
a contractor's report, or tasking agency. are entered in section 8.) including special warning terms if applicable)

NATIONAL DEFENCE
DEFENCE RESEARCH ESTABLISHMENT OTTAWA

SHIRLEY BAY, OTTAWA, ONTARIO KIA OZ4 CANADA UNCLASSIFIED

3. TITLE the complete document title as indicated on the title page. Its classification should be indicated by the appropriate
abbreviation (S.C or U) in parentheses after the title.)

2-D ACOUSTO-OPTIC SIGNAL PROCESSORS FOR SIMULTANEOUS SPECTRUM ANALYSIS AND

DIRECTION-FINDING (U)

4. AUTHORS (Last name, first name, middle initial)

JIM P. LEE

-5. DATE OF PUBLICATION (month and year of publication of ft. NO. OF PAGES (total 6b. NO. OF REFS (iota' citec in
document) containing Information. include document)

NOVEMBER 1990 Annexes, Appendices, etc.)
83 48

7. DESCRIPTIVE NOTES (the category of the document, e.g. technical report, technical note or memorandum. if appropriate, ante, the type of

report, e.g interim, progress, summary, annual or fin:. Give the inclusive dates when a specific reporting period is covered.)

DREO REPORT

S. SPONSORING ACTIVITY (the name of the department prolect office or laboratory sponsoring the research and development Include the
address.)

NATIONAL DEFENCE
DEFENCE RESEARCH ESTABLISHMENT OTTAWA
.HTRTFY RAY. OTTAWA. ONTARIO KIA OZ4 CANADA

9a PROJECT OR GRANT NO. (if appropriate, the applicable researc0 9b. CONTRACT NO. (if appropriate, the applicabe numbe under
and development project or grant number under which the document which the document was written)
was w.itien. Please specify whether project or grant)

011LB11

10a. ORIGINATOP'S DOCUMENT NUMBER (the official document lOb. OTHER DOCUMENT NOS (Any other numbers which may
number by which the document is identified by the originating be assigned this document either by the orginator o, by the
activ:*.y This numbe -r.,*, be uniQue to this document.) sponsor)

DREO REPORT 1049

1 1. DOCUMEN" AVAI.ABILITY (any limitations on further dissemination of the document, other than those imposed by security classification)

)0 Unlimited distribution
I Distribution limited to defence departments and defence contractors: further distribution only as approved

I Distribution limited to defence departments end Conadian defence contractors; further distribution only as approved

I Distribution limited to government departments and agencies; further distribution only as approved

) Distribution limited to defence departments; further distribution only as approved

) Other (please specify):

12 DOCUMENT ANNOUNCEMENT (any limitation it the bibliographic announcement oi this document This will normally correspond tc

the Document Availabilty (11). However, where further distribution (beyond the audience specified in 11) is possible, a wide!
announcemen audience may be selected.)

UNCLASSIFIED

SECURITY CLASSIFICATION OF FORM

DCD03 2/06/87



-74- UNCLASSIFIED
SECURITY CLASSIFICATION OF FORM

13. ABSTRACT ( a brief and factual summary of the document It may also appear elsewhere in the body of the document itself. It is highly
desirable that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the
security classification of the information in the paragraph (unless the document itself is unclassified) represented as (S), (C), or (U).
It is not necessary to include here abstracts in both offical languages unless the text is bilingual).

(U) 2-D Fourier transforming acoustooptic signal processors, for simultaneous
direction finding (DF) and spectrum analysis of radar signals over a wide instantaneous
bandwidth, are shown to be useful for Radar Electronic Support Measures (ESM) applicatioms
A comprehensive treatment on the analysis and design of two general 2-D acoustooptic
architectures is provided. In one architecture, a linear antenna array is employed,
and in the other a novel circular antenna array with a Butler matrix beamformer is used.
Emphasis is placed on the DF characteristics of both architectures. The effects of
scaling factor, acoustic transducer height, Gaussian laser illumination profile, RF
input noise, amplitude and phase tracking errors on the DOA pattern produced by eacn
architecture are addressed. Design criteria and comparison between the two architecture
are also provided.

14. KEYWORDS. DESCRIPTORS or IDENTIFIERS (technically meaningful terms or short phrases that characterize a document anc could be
helpful in cataloguing the document They should be selected so that no security classification is required. Identifiers, such as equipment
model designation, traoe name, military project code name. geograpr ic location may also be included. If possible keywords should be selected
from a published thesaurus. e.g. Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus-identified. If it is not possible to
select indexing terms which are Unclassified, the classification of each should be indicated as with the title.)

UNCLASSIFIED

SECURITY CLASSIFICATION OF FORM


