
UNLIMITED

RSRE
MEMORANDUM No. 4430

3OO"O"L't L RAGAR

WHICH THEOREM PROVER?
ASURVEY OF FOUR THEOREM PROVERS)

Aluicr, A Srnith

POCURMENT EXECUTIVE,
MINISTRY OF DEFENCE,

RSRE MAILVERN9
A1 WR CS.

ElLECT~
FE 2 5 9404 :

CONDONS OF RELEASE

0068006 BR-1 15807

DRIC U

COPYRIGHT (c)
1988
CONTROLLER
HMSO LONDON

Reports quoted are not necessarily available to members of the public or to commercial
oganisations.

ROYAL SIGNALS AND RADAR ESTABLISHMENT

Memorandum 4430

Title: WHICH Theorem Prover?

(A Survey of Four Theorem Provers)

Author: A. Smith

Date: October 1990

ABSTRACT

When using Formal Methods to produce verified software, mathematical theorems arise
which need to be proved. This memorandum contains the experiences gained in using
four theorem provers to prove such theorems. From this experience, a number of
recommendations are made on what constitutes a good theorem prover.

Copyright

Controller HMSO London
1990

THIS PAGE IS LEFT BLANK INENTIONALLY

1 Introduction

When using Formal Methods to produce verified software, mathematical
theorems arise which need to be proved. There are two types of theorems which
occur: shallow theorems which mainly arise during program analysis or refinement;
and deeper theorems which mainly arise when reasoning about a specification. The
former tend to be tedious symbol manipulations, whereas the latter can be more
involved. This paper compares the proof of a relatively deep theorem, the condense
theorem, using the theorem provers: Edinburgh IPE [1, 2, 3], m-NEVER [4] (from the
m-EVES verification system), HOL [5, 6] and the B tool [7]. The main purpose of this
paper is to report on the experiences gained in using a number of theorem provers,
and from this to make recommendations on what constitutes a good theorem prover.
For example, what is a good proof style or user interface?

In addition, the paper shows the results of using m-NEVER with MALPAS[8, 9].
MALPAS is a tool for the analysis of programs, and consists of a suite of analysers,
two of which are the semantic analyser and the compliance analyser. The semantic
analyser identifies each path through a program and outputs, for each path, a
predicate-action pair. The predicate describes the input values to the program that
cause it to execute that path, and the fully automatic algebraic simplifier is used to
simplify this predicate. The action is a relationship between the input and output
values of the program if this particular path is taken. The compliance analyser
checks to see whether a program meets its specification. It produces a predicate
which describes those input values for which it does not, and the algebraic simplifier
is used to simplify this predicate. Thus the predicate FALSE means that a program
meets its specification. The predicates that MALPAS presents to the user can
sometimes be further simplified, sometimes to FALSE. Thus a program could meet its
specification, but the user could be excused for thinking it did not. Thus it is
important to simplify the predicates as far as possible. This was the reason the
m-NEVER/MALPAS work was carried out, and is an example of shallow theorem
proving. A characteristic of these verification conditions, is thir dependence on
integer arithmetic, a result of their production from actual software. m-NEVER
contains a lot of integer simplification routines, and is particularly suitable for this
work. Without these integer simplification routines, the other three theorem provers
were not suitable for the MALPAS work.

The structure of the paper is as follows. Section 2 contains an overview of the
condense theorem to enable the reader to obtain some intuition into the theorem,
followed by a rigorous but informal pen and paper proof. Section 3 describes the
proof of the condense theorem using IPE, containing an overview of IPE, how the
theorem was tailored to suit WiE, and the experiences and characteristics of the
proof. Sections 4, 5 and 6 are the corresponding sections for m-NEVER, HOL and B. ,
Section 7 contains the results of the m-NEVER/MALPAS work. Section 8 compares
the four theorem provers, and section 9 contains the conclusions of the whole paper.
Appendices A - D show the theory that was added to each of the theorem provers for D
the condense proof, and appendix E describes the m-NEVER commands used in this_--
paper.

I Avallablllty Oodeg

WE.LD YpTell md/oz

10"l- SPeOCI,

Throughout the paper, the syntax of each theorem prover has not been adhered to,
although some of the original syntax has been preserved where necessary. This is to
make it easier for the reader to understand, rather than being confused by irrelevant
syntax which can be obtained from the user manuals. For example, a common form
for the predicates involved has been used.

2 The condense theorem

2.1 Overview

The condense theorem was required for the proof of separability given in [10, 11]. A
shared computer system is separable, if the behaviour perceived by each user of the
system, is indistinguishable from that which could be provided by an unshared
machine dedicated to his private use. The theorem concerns lists, and what follows
is an overview of the theorem. The theorem holds for any type of list, but to gain an
understanding of the theorem, consider lists of natural numbers, for example
I = [4,3,3,3,7,7,3,9,9]. The condense of I is the new list [4,3,7,3,9], in which any

sublist consisting of a repeated element, such as [3,3,3], has been reduced to just that
element. Other examples are

I = [8,8,7,8,8,8,8,2,2,2] con(l) = [8,7,8,2]

1 = [5] con(l) = [5]

1 = [6,6,6] con(l) = [6]

where the function con finds the condense of 1. A list can also be partially condensed.
For example if I= [2,2,2,5,5] then a partial condensation is the list [2,2,5,5], that is, the
sublist [2,2,2] has been reduced to the sublist [2,2]. Another partial condensation of I is
[2,2,2,5]. The function pc gives all the partial condensations of a list, which of

course will include the list itself, and the fully condensed list con(l). For example, with
1 = [2,2,2,5,5] as above, then

pc(l) = {[2,2,S,5], [2,2,2,5], [2,2,5,5], [2,5,5], [2,2,5], [2,5]}

The condense theorem is

Vl Vm (m e pc(l) 40 con m = con 1)

2. This says that the condense of a partial condensation is equal to the condense of the
_ ... original list. This may seem intuitively obvious, .but to prove it formally, axioms

capturing the meaning of con and pc have to be written, and then every step of the
" proof carried out.

2.2 Informal Proof

First the functions con and pc must be axiomatised. con is easy:

con [x] = [x] (1)

x = head(l) = con(x1) = confl) (2)

x * head(l) =, con(x:) = x:con(l) (3)

where head(l) is the first element of a list, for example head [62,3,3] = 6. Also x:l is the
list formed by adding the element x to the front of the list 1, for
example 3:[1,1,2] = [3,1,12]. Axioms 1 - 3 are a recursive definition of con. Axiom 1
is the base case, and says that condensing a singleton list leaves it unchanged.
Axioms 2 and 3 together form the step case. Axiom 2 says that if the first two
elements of a list are identical, then this list can be condensed by throwing away the
first element and condensing the rest. Axiom 3 says that if the first two elements are
different, then the first element must be kept and the rest condensed. It is instructive
to use these axioms to actually condense a list. What follows is the computation of
con[2,2,2,5,1,1].

con [2,22,,1,1]
= con[2,2,5,1,1] by 2
= con[2,5,1,1] by 2
= 2:con[5,1,1] by 3
= 2.5:con[1,1] by 3
= 2.5:con[1] by 2
= 2.5:[1] by 1
= [2,5,1] by definition of ":"

The axiomatisation of pc is in the same style but is a little more tricky.

pc [xI = {[x]} (4)

x = head(l) =0 pc(x:l) = x:.pc(l) u pc(l) (5)

x # head(l) #* pc(x:l) = x:.pc(l) (6)

where "::" is distributed ":". This means that x::S , where S is a set of lists, is the new
set of lists formed by adding x to the front of every list in S, for example
5::{[1,1], [7]) = {[5,1,1], [5,7]). Axiom 4 is the base case, and says that there is only

one partial condensation of a singleton list; namely itself. Axioms 5 and 6 together
form the step case. Axiom 5 says that if the first two elements of a list are identical,
then this list can be partially condensed by keeping the first element, or by throwing
it away, and then partially condensing the rest. Axiom 6 says that if the first two
elements are different then the first element must be kept and the rest partially
condensed.

Again it is instructive to use these axioms to compute all the partial condensations

of a list. What follows is a computation of pc[6,6,1,1,1].

pc[l] = {[1]} by 4

pc[l,1] = 1::pc[1] Upc[]] by 5

= {,1[1,1}1 IUu

pc[1,1,1] = 1::pc[1,1] u pc,1] by 5
= {[1,1,1], [1,1]} U {[1,1], [1])
= {[1,1,1], [1,1], [1]}

pc[6,1,1,1] = 6::pc[1,1,1] by 6
= {[6,1,1,1], [6,1,1], [6,11}

pc(6,6,1,1,1] = 6::pc[6,1,1,1] u pc[6,1,1,1] by 5
j [6,6,1,1,1], [6,6,1,1], [6,6,1]) uo {[6,1,1,11, [6,1,1], [6,1])

= {[6,6,1,1,1], [6,6,1,1], [6,6,1], [6,1,1,1], [6,1,1], [6,1])

With axioms 1 - 6, an informal proof of the condense theorem can now be carried
out. The six axioms lend themselves to proof by induction on lists. To prove the
theorem, the lemma

Vl Vm (m e pc(l) 4 head m = head 1)

must be proved. That is, the first element of any partial condensation is the same as
the first element of the original list. The proof below is by induction on 1.

BASE CASE (= [x]) Prove Vm (m e pc[x] 4 head m = head [x])

Letm be any list such that m e pc[x]. By axiom 4, pc[x] = {[x]} and som e {[x]}. If m
is in a set with only one element in it, then m must be equal to that element.
Thus m = [x] and so head m = head [x].

STEP CASE From the induction hypothesis Vm (m e pc(l) 4 head m = head 1), prove
Vm (m e pc(x:) 4 head m = head(x:l))

Let m be any list such that m e pc(x:l). Looking at axioms 5 and 6, pc(x:l) depends on
whether or not x is equal to the head of 1. So there are two cases to consider.

Case 1 x = head 1. From axiom 5, pc(x:l) = x:.pc(l) u pc(l) and
so m e x::pc(l) u pc(l). Thus m e x::pc(l) or m e pc(l) and so there are two further
cases to consider.

Cae 1.1 m e x::pc(l). By the definition of "::", m = x:n for some n e pc(l).
Thus

head m = head(x:n) since m = x:n
= x by definitions of head and :"
= head(x:l) by definitions of head and ":"

Case 1.2 m e pc(l).

head m = head I by the induction hypothesis as m e pc(l)
= x by case hypothesis (x = head !)
= head(x:l) by definitions of head and ":"

Case 2 x * head 1. From axiom 6, pc(x:l) = x::pc(l) and so m 6 x::pc(l). The argument
is then identical to case 1.1 above.

Q.E.D

The proof of the theorem Vl Vm (m e pc(l) 4 con m = con 1) is also by induction on 1,

and follows a similar pattern to the proof of the lemma.

BASE CASE(I = [x]) Prove Vm (m e pc[x] 4 con m = con [x])

Let m be any list such that m e pc[x]. By axiom 4, pc[x] = {[x]} and so m e {[x]}.
Thus m = [x] and so con m = con [x].

STEP CASE From the induction hypothesis Vm (m e pc(l) =4 con m = con 1), prove
Vm (m e pc(x:l) # con m = con(x:l))

Let m be any list such that m E pc(x:l). Looking at axioms 5 and 6, pc(x:l) depends on
whether or not x is equal to the head of 1. So there are two cases to consider.

Case 1 x = head 1. From axiom 5, pc(x:l) = x:.pc(l) u pc(l) and
so m e x::pc(l) u pc(l). Thus n e x::pc(l) or m e pc(l) and so there are two further
cases to consider.

Case 1.1 m e x::pc(l). By the definition of "::", m = x:n for some n e pc(l).
As n e pc(l) then by the lemma head n = head 1. But as x = head I by case
hypothesis, then x = head n. Thus

con m = con(x:n) since n = x:n
= con n by axiom 2 since x = head n
= con I by the induction hypothesis as n e pc(l)
= con(x:l) by axiom 2, since x = head I by case hypothesis

Case 1.2 m e pc(l).

con m = con I by the induction hypothesis as m e pc(l)
= con(x:l) by axiom 2, since x = head I by case hypothesis

Case 2 x * head 1. From axiom 6, pc(x:l) = x::pc(l) and so m 6 x::pc(l). By the
definition of "::" then m = x:n for some n e pc(l). As n e pc(l) then by the lemma
head n = head 1. But as x * head I by case hypothesis then x * head n. Thus

con m = con(x:n) since m = x:n
= x:con(n) by axiom 3 since x * head n
= x:con(l) since con n = con 1 by the induction hypothesis as n e pc(l)
= con(x:l) by axiom 3, since x * head I by case hypothesis

Q.E.D

3 The proof of the theorem with IPE

3.1 Overview of IPE

The version of IPE used was 6.1. The underlying logic of IPE is intuitionistic
first order logic. This is basically the same as classical first order logic, but with the
law of the excluded middle, namely A v-A (something is either true or false), missing.
The logic is implemented using a Gentzen style sequent calculus, so any proof using
IPE is by subgoaling. This means that the theorem to be proved, called the goal, is
broken up into a number of smaller subgoals, where a goal or subgoal is a list of
hypotheses together with a conclusion. The goal or subgoal is true if the conclusion
is a consequence of the hypotheses. So a proof in IPE is carried out in a backward, or
top down style. In fact a proof tree is constructed, with a subgoal at each node. There
is an automove mode, in which the user automatically gets taken to the next
unproven subgoal.

Theories can be built up, and some are built into the system, including
"Classical", "Equality", "List" and "Set" which are used in the proof of the condense
theorem. As its name suggests, the level of interaction by the user is very high, with
the user having to do most the steps in a proof. The subgoaling steps involving the
underlying logic of PE are carried out by placing the cursor on the subgoal, and then
"clicking" the middle button of the mouse. A new part of the tree representing the
new subgoals is then automatically constructed. IPE has an autoprove mode which will
attempt to do a few subgoaling steps on its own. PE also supports the use of
unconditional rewrite rules. All functions and variables used in IPE are untyped.

3.2 The formalisation of the theorem in IPE

The built-in theories "List", "Set", "Classical" and "Equality" were used. The
theory of lists, "List", was built up from the empty list [], and so the built-in list
induction used [as its base case. But recall that axioms 1 - 6 from section 2.2 start
from the singleton list [x] as the base case. So the theorem became
VIVm(l [] A m E pc(l) = conm= conl) and the lemma

became VI Vm (l * [] A m r pc(l) =* head m = head 1).

The theories "List" and "Set" were quite small and extra axioms had to be added.
For example, set union, u, was declared in the theory "Set", but the
axiom I e (S u T) = (I e S) v (I e T) was not present and so had to be added. It could
not be proved from the other axioms of the theory "Set", because the theory did not
contain any axioms for u at all. Appendix A shows all the functions, axioms and
rewrite rules that had to be added. From the informal proof, it can be seen that every
so often, the proof splits into cases, for example on whether x = head 1 or x * head 1.
This meant that that the axiom A v--A was required, which is part of the theory
"Classical". Finally the theory "Equality" was required to deduce that if el = e2,
where el and e2 are expressions, and P(el) holds, where P is some predicate,
then P(e2) holds. For example, if pc(x:l) = x:.pc(l) and m e pc(x:l) then m e x::pc(l).

3.3 Experiences and characteristics of the proof in IPE

As explained above, the predicate 1 [] had to be added to the theorem and the
lemma. From appendix A it can be seen that this predicate also had to be added to
the axioms for con and pc in the step case. Consider the new step case axioms for con

1 [x = head I =* con(x:l) = con(l)
l* U A x * head 1 #* con(x:l) = x:con(l)

where I and x are generic variables, and can thus be used with any particular values
of 1 and x. When proving the theorem, the expression con(x:n) appeared,
where n e pc(l). But in order to use the above two axioms, to write con(x:n) as one
of con(n) or x:con(n), the fact n * [] had to be known. Thus it soon became apparant
that an extra lemma had to be proved, namely V1 Vm (1 * [] A m 6 pc(l) =0 m * [1).

With the autoprove mode switched off, the user had to do all the steps in the
proof. When the autoprove mode was switched on, the only steps IPE seemed to do
for itself were inferences from its basic logic (intuitionistic first order logic as
described in section 3. 1). That is, it would do some subgoaling steps involving A and V
for example, automatically, but would not use any of the axioms from "List", "Set",
"Classical", "Equality", or any of the added axioms (appendix A). Autoprove
actually proved to be a hindrance at times, because for example, it took the lemmas
and theorem beyond the point where list induction was appropriate. Thus
backtracking was required.

4 The proof of the theorem with m-NEVER

4.1 Overview of m-NEVER

m-EVES is a program verification system, which allows the user to input a
program and its specification, and then generates the theorem that must be proved if
the program is to meet its specification. m-NEVER is the associated theorem prover
which allows the user to try and prove this theorem. m-EVES version 4 was used for
the condense theorem. m-NEVER also produces a theorem each time the user
defines a recursive function. Proof of this theorem ensures that the function will
always terminate when used. Also, each time the user inputs an axiom (this is a keyword
in m-EVES, and includes statements that are unprovable truths and statements that
can be proved from other axioms), m-EVES prompts the user to start the proof of that
axiom, although the proof need not be carried out, or can be deferred. "

m-NEVER has a mixture of basic and powerful commands, with the powerful
commands doing a lot of basic commands in one go. These more powerful
commands mean that m-NEVER has a lot of automatic capability. Appendix E
gives a description of the m-NEVER commands used in this report.

m-NEVER's proof style is such that, at any time, the user has just one expression,
initially the theorem to be proved, which must be simplified to the expression TRUE. No
matter what commands the user invokes, there is always just one expression. All
functions and variables used in m-NEVER must have a type.

4.2 The formalisation of the theorem in m-NEVER

The theorem was proved in m-NEVER without using any built-in theories. This
was because although there was a built-in theory of lists, it used the empty list [], and it
was decided that the problem this caused in IPE (having to prove an extra lemma)
should not be repeated in m-NEVER. Thus a new type representing non-empty lists
was declared, together with the functions that act on this type and the relevant
axioms that these functions obey. Also there was no built-in theory of sets, and so
some set theory had to be added. Appendix B shows the functions and axioms that
were added.

From this appendix it can be seen that the functions con and pc were given a
function body, instead of giving their meaning in axioms, as in IPE. This was so that
the built-in induction of m-NEVER could be used to prove the lemma and the
theorem (Appendix E gives an example of a proof by induction with m-NEVER). As
a consequence the tail of a list had to be introduced into the function body (the tail of a
list gives back the old list with everything but its head element, for
example tail[1,3,2] = [3,2]). This was because the formal parameter of a function
definition (the I in the expression con(l) = if...endif for example) must be a simple
variable. Thus x:l is not allowed, as this is a constructed term. Thus in IPE, con(x:l) was
defined in terms of con(l), but in m-NEVER, con(l) was defined in terms of con(rail(l)).

There are three types of axioms in m-NEVER, facts, forward rules and
rewrite rules, and each type was used for the condense proof, as can be seen from
appendix B. If E is the expression being simplified, then both facts and forward rules
are brought in by forming the new expression F =0 E, where F is the fact or forward
rule. The difference is that forward rules can brought in automatically by m-NEVER
during some of its more powerful commands. When the user defines a forward rule,
he also defines an associated trigger expression. When m-NEVER spots an instance
of the trigger expression, in the expression being simplified, it automatically brings
in the forward rule.

For example, suppose the expression being simplified is length(l) > 5, and there is
the fact length(l) k 9. Using the command reduce on the expression length(l) k 5 will
produce no change. On the other hand the forward rule length(l) > 9, with
trigger expression length(l), then reduce will see the trigger expression in the
expression being simplified, bring in the forward rule to produce the expression
length(l) a 9 =4 length(l) > 5, and then simplify it to TRUE.

Like forward rules, rewrite rules also enhance m-NEVER's automatic capability,
and are again used automatically during some of the more powerful commands.
Rewrite rules are used from left to right; when m-NEVER sees an instance of the
left hand side of the rule in the expression being simplified, it replaces it by the
corresponding instance of the right hand side. Rewrite rules can also contain a guard,
which must be sa:.!,fied before the. rule can be used.

4.3 Experiences and characteristics of the proof in m.NEVER

Whenever a recursive function is declared using a function body, m-NEVER
produces a proof obligation. Proof of this will ensure that the function will terminate
whenever it is used. Thus m-NEVER produced a proof obligation for both con and pc,
and both of these proof obligations were in fact identical. The proof obligation was
simplified to TRUE using the first two facts in appendix B.

As already mentioned, the user is always working with just one expression. Even
when a proof by induction is requested by the user, m-NEVER will produce just one
new expression containing both the base and step case. Working with just one
expression meant that, at times, the intellectual grasp of the theorem was lost. This
was because it was difficult to see what part of the expression was concerned with
what. Also m-NEVER sometimes presents the user with all or just part of the
expression in the conditional form ifthen..else.endif, with subexpressions of this
conditional form also sometimes in conditional form. This mixture of forms, and the
fact that the user starts off by writing the original expression as a first order
predicate, and so is a bit surprised at the form changing, makes such an exprtssion
confusing. Also m-NEVER uses a prefix form for its predicates which makes them
hard to read. For example the predicate (P A Q) =* (R v S) is presented as:

IMPLIES(AND(P,Q), OR(R,S))

Had it been possible to split the expression up, it would have been easier to see
what each part was concerned with. It seemed to be a case of spotting
subexpressions that had something in common with a function or axiom, and then
using the function or axiom, hoping it would lead to a simpler expression after
simplification. Having said this, due to the more automatic nature of m-NEVER, the
last command used in the proof of the theorem (namely simplify), simplified an
expression occupying about two thirds of a screen, to the expression TRUE.

During the proofs, an m-NEVER command could make the expression very large,
sometimes several screenfulls; in such cases an intellectual grasp of the proof had
definitely been lost, and it was necessary to backtrack. It was much easier to keep
the expression to a reasonable size by removing as many of the quantifiers from the
expression as possible. This could be done by using the command prenex, followed by
open (see appendix E).

One of the conditions for m-NEVER to carry out a proof by induction, is that the
expression must have had all its outermost universal quantifiers removed. Thus the
lemma was proved by starting with the expression m E pc(l) =4 head m = head 1, that is
without the Vl Vm on the front. Alternatively, starting from the expression
with V! Vm on the front, the open command could have been used. Appendix E shows
an example of proof by induction using m-NEVER. The command induct on pc(l) meant
that the expression m e pc(tail(l)) * head(m) = head(tail(l)) became the induction
hypothesis, since pc(l) is defined in terms of pc(tail(l)). Once the lemma had been
proved, it could still be used for any I and m, since they were general variables.
Unfortunately, doing a similar thing for the theorem meant that the
expression m e pc(tail(l)) = con m = con(tail(l)) became the induction hypothesis,
and this is not a strong enough induction hypothesis to prove the theorem. It is not
strong enough because it has to be used for a list other than m. The
hypothesis Vm (m e pc(tail(l)) = con m = con(tail(l))) is what is needed, which is the
hypothesis used for all the other theorem provers. Given that the theorem is of the
form VI Vm P(l,m), then the induction hypothesis Vm P(l,m) is the correct hypothesis.
When proving the lemma, a weaker induction hypothesis, that is something of the
form P(lm), is sufficient.

To solve this problem the function pred (see appendix B) was introduced, which in
effect, bracketed the required hypothesis. The theorem could then be proved by
starting with the expression pred(l). As this expression does not have any universal
quantifiers at the front, m-NEVER will allow induction. The command induct on pc(l) (or
induct on con(l)) then produces the expression

[-(A v B) =0 pred(l)] A
[(A A pred(tail(l))) # pred(l)] A
[(B A pred(tail(l))) =# pred(l)] A

where

10

A is the expression length(l) * A head(l) = head(tail(l)) and
B is the expression length(l) * I A head(l) * head(tail(l))

The actual definition of pred(l) can then be invoked. This technique of hiding the
universal quantifier thus produces the required induction hypothesis. This seems to
be an area where m-NEVER could be improved, by allowing induction on an
expression containing outermost universal quantifiers. While writing this paper, it
has been learnt that there is some current work going on which is addressing this
problem.

5 The proof of the theorem with HOL

5.1 Overview of HOL

The version of HOL used was 1.11. The HOL theorem prover is an
implementation of Higher Order Logic. Theorems can be proved using the HOL
theorem prover in either a forward or backward (subgoaling) style. Inference rules
which take theorems as arguments and give new theorems as results, are used for
forward proof, while tactics are used for backwards proof. A tactic takes a goal
(which at the start will be the theorem to be proved) and returns a number of smaller
subgoals. Tactics are then applied to these subgoals and so on. The condense
theorem was proved in the backward style. The user interacts with HOL via the
functional programming language ML. Tactics can be composed together using tacticals
to produce new tactics with more power. HOL comes with a lot of built-in inference
rules, tactics and tacticals, but new ones can be written by the user in ML. HOL also
comes with a number of built-in theories, including lists and sets which are used in
the proof of the condense theorem. New theories can be added by the user. Both the
HOL logic and ML are typed.

5.2 The formalisation of the theorem in HOL

HOL has comprehensive built-in theories of lists and sets which contained
everything required for the condense proof, apart from axioms for the functions con, pc
and "::". Also HOL has a built-in list induction tactic. Unfortunately all the built-in
theories and the list induction tactic use the empty list []. Recall that from the IPE
proof, this meant that an extra lemma had to be proved. In this case it was less work
to use the built-in theories and list induction tactic (as very little had to be added),
and prove the extra lemma, rather than build up new theories, and write a new list
induction tactic to save proving the extra lemma. Appendix C shows how only
axioms defining the functions con, pc and "::" had to be added.

5.3 Experiences and characteristics of the proof in HOL

As mentioned above, working with the empty list meant that an extra lemma had
to be proved; namely V1 Vm (1 * [] A m E pc(l) 4 m * [I). The first lemma, namely
Vl Vm (l*I [] A m E pc(l) = head m = head l) was proved in HOL by using a tactic,
HOL coming back with subgoals, and the user then applying new tactics to these
subgoals, and so on. Because the proof of both lemmas and the theorem were known
to be similar, a compound tactic was formed from the individual tactics of the
interactive proof just performed. The individual tactics were composed together
using tacticals. By making this tactic slightly more complicated than was required
to prove the first lemma, it was found that it would prove both lemmas. This tactic
is shown in appendix C. It was then used on the theorem, with HOL returning three
subgoals, which were then proved using other tactics together with the two lemmas.
So not only did this tactic prove both lemmas, but it also went a long way to proving
the theorem.

6 The proof of the theorem with B

6.1 Overview of B

The B tool is a general tool for rewriting expressions using rules contained within
rule files. Thus it has a number of applications, one of which is theorem proving.
Another application might be to have a rule file containing rules which convert a
program written in a high level language to machine code and thus simulate a
compiler. This report is only concerned with the B tool in its theorem proving
capacity. B also uses a subgoaling style but only has a handful of built-in tactics.
Others are added by the user as rules. All functions and variables input by the user
are untyped.

6.2 The formalisation of the theorem in B

As mentioned above, very little is built in to B, with the user adding rules as
required. For example, both rewrite rules and new user defined tactics are input as
rules. Appendix D shows the rules that were added for the condense proof. Rules are
collected together in theories as shown. For example, consider the theory con. This
contains the three rules, the first of which is con [x] = [x]. This will be used by B as a
rewrite rule, that is from left to right, replacing any instance of con [x] that it finds in
the conclusion of the goal, with [x]. Another example is the theory equaliy2 which
contains the rule x = y 4 z:x = z.y. This is an example of a user defined tactic. When
B sees an instance of z:x = z:y in the conclusion of a goal, it will replace the
conclusion with x = y.

So rewrite rules have the form C = D, and new tactics have the form C * D. With
new tactics, the LHS (the C) can also be a conjunction of two or more expressions. For
example, consider the theory listinduct from appendix D, which contains a rule of the
form (base case) A (step case) # VIP. This rule is a tactic to carry out list induction,
and from a goal with conclusion VI P, produces two subgoals, namely the base case
and the step case. Rewrite rules and tactics are used by B in the following way. The
user defines a tactic, composed of theories and tacticals, for example

pry; listinduct; (con; pc; cases; hd; undisch; distcons; equality2)-

which appears in the theory prove in appendix D. The tacticals ";" and "-" are similar to
THEN and REPEAT in HOL. B moves through the tactic from left to right, looking
in the named theories for rewrite rules or new tactics, and then applying them as
described above.

Rules of the form C =0 D, are also used in a forward direction, that is from left to
right, and B does this by using a forward tactic, an example of which is

(results; con; pc; singleset; equalityl)-

which again appears in the theory prove in appendix D. It is used in the following way.
First the built-in tactic DED is used to convert a subgoal of the form H I El # E2 to a
new subgoal of the form IH, El] I. E2. B then automatically moves through the
forward tactic from left to right, trying to match El to the antecedent (the C) of a rule of
the form C * D. If successful D is then added to the hypotheses. B then carries on
looking through the forward tactic trying to match either El or D to the antecedent of a
rule. The forward tactic has similarities with the tactic IMPRESTAC in HOL.

Thus the tactic acts on the conclusion of a goal, while the forward tactic acts on
the hypotheses of the goal. The name "forward tactic" is consistent with the idea of
going forwards in the proof, from the hypotheses, while the tactic is concerned with
backwards proof, splitting a goal into a number of subgoals. The tactic and forward
tactic shown above, from the theory prove, were used to prove both the lemma and
theorem.

Both the lemma and the theorem were proved in B's interactive mode, which meant
that B would give the user the option of refusing a rule it had found applicable. It
also meant that the user could use built-in tactics, such as DED, during B's traversal of
the tactic. The theory pry contains the line results+g. This meant that after B had
proved the lemma, it was added to the theory results, which was empty during the proof
of the lemma, so that it could be used during the proof of the theorem.

B will only match rules to expressions if the rules contain single letters as the
generic parameters. These single letters (either lower or upper case) are known in B
as jokers. Also expressions of the form [I:= E]P in the theory lisdnduct mean replace
all free occurrences of I in P with the expression E. A condition that must be satisfied
for B to perform this substitution is that I must be a variable (basically a string of at
least two characters), or that the expression vrb(..., 1, ...) appears in the hypotheses of
the goal at the time B tries to perform the substitution. For this reason the
expression vrb(l, m) appears in the lemma and theorem to be proved, so that by the
time B tries to perform the substitutions as described above, vrb(l, m) will appear in the
hypotheses.

Rules can also have guards. See for example the two rules in the theory cases. Both
have a guard of the form inhyp(E), where E is an expression. B will only use the rule
if it is matched to the conclusion of the current subgoal, and E appears in the
hypotheses of that subgoal (hence the name inhyp).

6.3 Experiences and characteristics of the proof in B

As mentioned above, the proofs were carried out in B's interactive mode. This
meant that the built-in tactics, fer example DED, could be used when required.
While B goes through the tactic, the user can invoke a built-in tactic and B will then
carry on with the tactic and so on. Given time, the proof could have been made
automatic, by, amongst other things, putting all the required built-in tactics in the
right places in the tactic. Also, futher use of guards (inhyp etc) and splitting up the
theories may be required. The use, for example, of inhyp in this situation is useful to
automatically refuse the use of a rule that was found to be applicable, since it might
be known that use of that rule at that time was not wanted. Also splitting up the
theories into smaller theories is useful to remove rules from consideration at a
certain point in the tactic.

Rules are just typed in, that is the functions that appear in the rules do not have
to be declared first. This meant that appendix D was just typed straight in, without
having to declare any of the functions used first.

The built-in tactic HYP was found to be useful during the proofs. This tactic
treats the hypotheses as just another theory. On a number of occasions, a goal of the
form [C, C =0 D] I D had to be discharged. Using HYP, the hypotheses of the goal,
namely [C, C = D] are treated as another theory. Thus B noticed that D was the
conclusion of the goal, and that C = D was in the hypotheses, and produced the new
subgoal [C, C =4 D] I C which is immediate since the conclusion C appears as one of
the hypotheses. Thus the hypothesis C = D was used as a tactic.

Goals of the form [C, C =* D] I D also appearid when performing the condense
proof with HOL, and it is interesting to see how they were discharged in HOL. In
fact RESTAC was used, which uses the hypotheses C and C z* D to deduce the new
hypothesis D, thus generating the new subgoal [C, C = D D] F D. This goal is
immediate, since the conclusion D appears as one of the hypotheses.

The second rule in the theory distcons is

(P 4 Q)

((3n.P) *0 Q)

which, during the proof is used to replace a goal with conclusion (3n.P) 4 Q with a new
goal having conclusion P =4 Q. This is only valid, providing the existentially
quantified variable n does not appear free anywhere else in the goal (apart from in P).
That is, it must not appear in the conclusion, and it must not appear in the
hypotheses. So the above rule should have a guard to ensure this, but it was not clear
how to write this in B, and so it was left out. When the rule was used, a manual
check was performed by the user, to ensure that n did not appear free elsewhere in the
goal. B does have a built-in guard "' which is used in the form variableformula to
ensure that the variable does not appear free in the formula. But it is not clear how to
use this to ensure that a variable does not appear free anywhere in the goal. There is
also a way of prompting the user for a new name for n when the rule is used, but this is
open to error if the user gives a new name that appears free elsewhere. All this does
seem an area where B could be improved, by supplying some simple built-in tactics
to deal with goals containing 3. After all, 3 is a built-in symbol, just like V, and there is
a b-'ilt-in tactic to deal with V, namely GEN. GEN strips off a V and ensures that the
universally quantified variable is not free elsewhere, and if it is, renames it.

7 Using m-NEVER to further simplify MALPAS predicates

There are some predicates that MALPAS can not simplify any further. What
follows is a selection of some of these predicates, and the results of using the
interactive theorem prover m-NEVER to simplify these predicates further. The
predicates were simply hand typed into m-NEVER. The particular versions used
were MALPAS version 4.3 and m-EVES version 4.

a) The predicate below is the result of compliance analysis of a program which
takes three integers a, b and c and decides whether a triangle can be formed with
sides a, b and c, and, if so, the type of triangle (right-angled, isoceles etc).

(c>O A a=b A a*a=b*b+c*c A a=c) v
(c>O A a=b A a*a>b*b+c*c A a=c)

Using m-NEVER with the command simplify, simplified the above expression to FALSE.

b) The following propositional formulae

p A -q A (p = q)

and (p Aq) V (P A -q) V (qA -,p) V (-Ip A-"q)

where p and q are boolean variables, can be simplified using m-NEVER with the
command simplify to FALSE and TRUE respectively.

c) The expression x2 = 0 A x * 0 can be simplified to FALSE using m-NEVER with the
command simplify.

d) The predicate below is the result of compliance analysis of a program concerning
eight bit addition with protected overflow.

(x>-129 A y>-129 A x+ y < -127 A y PLUS x -127 A x<O A

y<O AyPLUSx<O) v (x=O Ay=-128) v (x=-128 A y=O)

where the function PLUS was defined in MALPAS using the rewrite rules

aPLUSb >a+ b f -128:< a + b A a + b: <127 (rule 1)
a PLUS b > a + b -256 if a+b>127 (rule 2)
aPLUSb >a + b + 256 if a + b < -128 (rule 3)

with x, y, a and b all declared as integers. MALPAS cannot simplify the expression
any further, because it cannot make further use of the rewrite rules to eliminate the
two occurrences of PLUS left in the expression. This is because it cannot prove any of
the three guards of the rewrite rules. Unfortunately using m-NEVER with the
command reduce (the most powerful command) the rules were not used either,
because it too could not prove any of the guards. But notice however, that in the first
disjunct of the expression there is the predicate x + y < -127, which means that for this
disjunct either x + y = -128 (and so rule 1 applies) or x + y < -128 (and so rule 3
applies). Using the command split x + y = -128 (which performs a case analysis;
x + y = -128 is either true or false) on the expression followed by reduce gave

x + y = -128 A x > -129 A y > -129 (expression 1)

The split meant that reduce could then prove the guards of rules I and 3, and so use the
rules. This is a good example of being able to give the simplifying process a little
"push" when required (in this case with the split).

e) Consider the same expression as in d, but with the function PLUS given a body in
m-NEVER, that is

if-128 <a+b A a+b<127 then a+b
elseif a + b > 127 then a + b -256
else a + b + 256
end if

rather than using rewrite rules to define it. When reduce was applied to the expression,
the two occurences of PLUS were replaced automatically by the above body,
instantiated accordingly, and then the whole expression was simplified. This
resulted in the expression

x > -129 A y > -129 A x + y < -127 A (expression 2)
(x>O v y2!0 v x+y>!-128)

When using reduce any functions such as PLUS are invoked automatically and
replaced by their corresponding body, instantiated accordingly. reduce then simplifies
the resulting expression. Thus it is sometimes better to translate rewrite rules in
MALPAS which are used to give meaning to functions, to function bodies in
m-NEVER since reduce will then invoke the functions automatically.

17

Of course expression 2 is logically equivalent to expression 1 and can be simplified
to it using the command disjunctive (which puts an expression into disjunctive normal
form) to conjoin x + y < -127 with x + y > -128, followed by split x + y = -128,
followed by simplify. The split is needed to help the subsequent simplify command to
simplify the conjoin x + y < -127 A x + y 2 -128 to x + y = -128. This seems to be an
area where m-NEVER could be improved so that it could simplify such expressions
automatically. Of interest, in this particular example, is that expression 2 can be
simplified to expression I by leaving out the first step mentioned above (disjunctive).

f) Suppose the following two rewrite rules are entered into MALPAS:

(lAm) An -> IA(m An) (rule 4)
last(l A [a]) -> a (rule 5)

where 1, m and n are lists, [a] is the singleton list containing the element a, A appends
two lists, and last gives the final element of a list. MALPAS cannot simplify the
expression

last(l A (m A [a])) = a (expression 3)

because it cannot apply either of the above rewrite rules. However if the two rules
are translated into rewrite rules in m-NEVER, the command use can make available the
underlying equation of the rule as an assumption of the current expression being
simplified. It constructs an implication consisting of the underlying equation and the
current expression (see below for example). This underlying equation can be used in
both directions, that is, from left to right and from right to left, unlike the original
rewrite rule which can only be used from left to right.

For example, when simplifying expression 3, the command

use rule 4 1 = 1, m = m, n = [a] gives the new expression

(l A m) A [a] = I A (m A [a]) * last(l A (m A [a])) = a

Next, equality substitute 1 A (m A [a]) gives the expression

(lAm) A [a] = IA(mA [a]) * last((lAm)A[a]) = a

Next, use rule 5 1 = l Am, a = a gives the expression

(I Am) A [a] = l(m A [a]) A lat((l Am) A [a]) = a z* last((l Am) A [a]) = a

.__ __ _ __ 'a

Finally simplify yields the expression TRUE since the expression last((l Am) A [a]) = a is
common to both sides of the implication. Interestingly, in this particular case,
expression 3 can be simplified to TRUE using the command use rule 4 followed by
use rule 5 followed by simplify. Here the commands use rule 4 and use rule 5 make
available the underlying equations as assumptions, but this time with the variables
universally quantified, as no instantiations were supplied. The command simplify finds
the particular instantiations required and performs the equality substitution
automatically.

8 Comparisons between the four theorem provers

IPE, HOL and B use a subgoaling style of proof, whereas m-NEVER works with
just one expression all the time. The idea of subgoaling seemed to be much more
natural than to try to simplify one expression. With m-NEVER it was difficult to see
what each part of the expression was concerned with. This was especially true if the
expression grew quite large, or if part or all of the expression was presented to the
user in the conditional if then_elseendif form. This meant that an intellectual grasp
of the proof was sometimes lost. Also controlling the size of the expression was at
times a problem. Sometimes the expression grew very large and so backtracking was
required.

On the question of interaction by the user verses automation, m-NEVER, HOL
and B have a lot more automation than IPE. The size of a single subgoaling step in
HOL or B can be equivalent to many subgoaling steps in IPE. In fact with IPE every
subgoaling step represents a single basic logical step. With autoprove off, having to do
every such step in the condense proof was very tedious. With autoprove on, IPE
carried out some steps on its own, but only at the level of its underlying logic, that is
involving A and v for example. It did not do any steps involving list or set theory for
example. Also it took the user past the stage where list induction was appropriate,
and thus backtracking was required. In HOL and B, tactics, which carry out the
subgoaling steps, can be composed together with tacticals to form more powerful
tactics, thus increasing the level of automation. HOL has a lot of built-in tactics,
whereas B has only a few. New tactics are added to B in the form of rules by the user,
for example a tactic must be added to B to perform a case analysis.

In both HOL and B, the proof can be fully automated by using one big tactic, but,
using them both interactively, it was found that, for the condense proof, B needed
slightly more interaction than HOL. For example, if B finds a rule that it can use as
a rewrite rule it will ask the user to accept it or decline it, and then go on to find
another rule and ask the user again. But in HOL, the tactic REWRITETAC can use
many rewrite rules in one go. Also in HOL, completely new tactics can be written
by the user in ML, that is tactics that can not be built up from existing tactics and
tacticals. m-NEVER has a mixture of basic and more powerful commands. The final
command used during the proof of the condense theorem, namely simplify, simplified an
expression occupying about two thirds of a screen, to TRUE.

IPE has a good user interface, being able to "click" with the mouse on a goal to
produce the next subgoal. On the screen, each subgoal and the name of each
subgoaling step contains plenty of English. The proof is constructed as a tree, and
there is an automove mode which will automatically take the user to the next
unproven subgoal in the tree. B keeps track of all the subgoals, presenting the user
with the next one to be proved. HOL also keeps track of all the subgoals, and the
user can change the order in which the subgoals are to be proved.

m-NEVER uses a prefix form for its predicates, which makes them hard to read.
IPE, HOL and B use an infix form. Also, as mentioned above, m-NEVER can
sometimes present the user with an expression where all or part of it is in the
conditional if thenelse..endif form. This was found confusing because the expression
could be a mixture of forms (first order predicates together with the conditional
form). Also the user has input the original expression in the first order predicate form
and so is a bit surprised to see this new form. While writing this paper, it has been
learnt that there is some current work going on, which is addressing this problem.

Formalising the theorem in each theorem prover was interesting. For example in
IPE, HOL and B, the meaning of the functions con and pc were input as axioms,
whereas in m-NEVER the meanings were given in function bodies. If the meanings
were input into m-NEVER as axioms, the built-in induction could not be used, since
this looks for functions that have been defined recursively using a function body. As
a consequence, the tail of a list had to be introduced, since the formal parameter of a
function in m-NEVER must be a simple variable; in this case it was chosen to be I (x:l is
not allowed, as this is a constructed term). Thus in IPE, HOL and B, con(x:l) was
defined in terms of con(l), while in m-NEVER, con(l) was defined in terms
of con(tail(l)).

9. Conclusions

The proof of the condense theorem was found to be easiest with HOL. A
subgoaling approach seemed more natural than m-NEVER's approach of working with
just one expression. However, while writing this paper, it has been learnt that a new
system called EVES, with a new theorem prover called NEVER, is being
implemented, in which the user will be able to split up the expression into a number
of smaller subexpressions. Also, given an expression, the user will be able to direct a
prover command to act on just a chosen subexpression. Although IPE used a
subgoaling approach, the size of each subgoaling step was too small, with the user
having to do every step in the proof. There was not much to choose between HOL
and B. Only the bare minimum of axioms had to be added to HOL, whereas quite a
few rules had to be added to B, some to do such things as case analysis. When
proving the theorem interactively, after the axioms and rules had been added, then
slightly more interaction was necessary with B than with HOL. Admittedly an extra
lemma had to be proved with HOL, than in B, due to the use of the empty list [] in HOL.

Based on the experience gained from using the four theorem provers, the following

properties would seem to be desirable.

(a) A subgoaling approach.

(b) A high degree of automation when required. Also the ability to write completely
new proof procedures initially unknown to the system.

(c) A good user interface with menus, containing such things as the unproven
subgoals, tactics, tacticals and theorems. The ability to access items from these
menus by pointing and clicking with a mouse.

(d) Fonts, to enable the conventional mathematical symbols to appear on the screen.
For example, to enable V to appear on the screen, instead of!.

(e) The ability to insert the theorem prover into a development environment.

(f) The ability to store and replay a proof, that is, to be able to run a proof again
automatically, without any user interaction. This is useful for automatic
maintenance of a formal development when, say, the specification changes, and
proofs of theorems need to be replayed to see if they still hold.

(g) Good documentation.

What follows is an assessment of how each of the four theorem provers used in
this paper lives up to the points made above.

IPE uses a subgoaling approach, but each subgoaling step is a single basic
logical step. Apart from the autoprove mode, which is limited, there is no way of
carrying out large subgoaling steps, which would help to automate the subgoaling
process. Also there is no way of writing completely new proof procedures. IPE does
have a good user interface, with menus accessed by pointing and clicking with a
mouse. Some of the conventional mathematical symbols appear on the screen, for
example V and 3, but others do not, for example & appears instead of A. It is not known
whether IPE could fit easily into a development environment, but a proof can not be
stored and replayed. IPE comes with reasonable'documentation.

m-NEVER does not use a subgoaling approach, but instead uses a single
expression, which the user must simplify to TRUE. m-NEVER does have some very
powerful commands, which give it a high degree of automation when required,
although there is no way to write completely new proof procedures. The user
interface does not contain menus, and conventional mathematical symbols do not
appear on the screen. rn-NEVER forms part of the m-EVES verification
environment. m-NEVER is written in Lisp, and was run by the author on a SUN-3
workstation, under the UNIX operating system. The usual way to interact with
m-EVES is through the Emacs editor, although this method was not used for this
paper. By interacting through Emacs it is possible to store proof commands in a file
and replay them. m-NEVER comes with good documentation, with a clear
description of each user command.

HOL uses a subgoaling approach, and has the facility to construct large powerful
tactics, which help to automate the subgoaling process. It also has the facility to be
able to write completely new tactics, in ML. The user interface does not contain
menus, and conventional mathematical symbols do not appear on the screen. HOL is
driven from the programming language ML, and so a HOL proof is an ML program.
The integration of this into a configuration control system, say, could then follow the
standard techniques used with other compilers. HOL comes with very good
documentation, although the documentation for some of the built-in tactics and
tacticals is incomplete.

B uses a subgoaling approach, and has the facility to construct large powerful
tactics, which help to automate the subgoaling process. Completely new tactics are
written by the user in the form of rules. B has a reasonable user interface, using
menus, although items in these menus are accessed by number rather than by
pointing with a mouse. Conventional mathematical symbols do not appear on the
screen. B contains a development environment within itself (recall that B is not just
a theorem prover, but a general rewriting tool). B can be used to develop software,
with proof obligations being produced automatically along the way. It is not known
how easily B would fit into another development environment, but a proof can be
stored and replayed, by constructing a large tactic and a large forward tactic,
composed of all the necessary theory files, built-in tactics and tacticals. At the time
the B tool was used for this paper, there was no user manual, although there is a
language manual, which descibes the symbols and syntax used by B, together with
the meaning of the symbols.

No comparison of theorem provers is complete without a discussion of soundness,
that is, if a statement is proved by the program, is it in fact a theorem within the
logic? There are three main points to consider. Firstly, does the underlying logic of
the theorem prover exist, and is it sound? Secondly, is there the possibility that
contradictory axioms might be added by the user? Thirdly, is the software that
implements the theorem prover correct, that is, are we confident it will not prove a
wrong theorem? On this third point, high assurance is gained by having the structure
of the software reflect the logic, so that, if possible, the correctness depends only on
a trusted kernel of software.

With IPE, the underlying logic is intuitionistic first order logic. This is sound, but
other logics are built up from it, by adding axioms. So there is the chance that
inconsistencies might be added. It is not known how the software of IPE reflects the
logic.

With m-NEVER, the underlying logic is basically first order predicate calculus,
which is sound. But again inconsistent axioms can be added, because although
m-NEVER prompts the user for a proof of each statement entered, the proof can be
deferred. However, it is possible to check on the status of each statement entered by
the user, that is, whether it is proven or unproven. The originators of m-EVES
encourage the proof of all statements entered "either dircrtly or by constructing
models using the library mechanism of m-EVES" [12].

With HOL, the underlying logic is higher order logic, which is sound. Again there
is the possibility of introducing contradictory axioms, but HOL provides the ability
to use definitions. Definitions are guaranteed to be consistent, and HOL provides the
user the ability to check that a statement is actually a definition. The ML type
structure gives extra assurance of soundness. This is because objects of type "thm"
can only be constructed from other objects of this type using the basic axioms and
inference rules of the HOL logic. Thus the correctness of the software implementing
the HOL theorem prover depends only on the ML typechecker and the
implementation of the HOL logic. This is a relatively small amount of software as
compared with other theorem provers.

With B, there is very little underlying logic, but what there is has not been
written down, and so it is not known whether it is sound. There is the possibility of
the user introducing inconsistent axioms, especially as more axioms have to be
added to B, as compared with other theorem provers. B is written in PASCAL, but
the structure of the software is unknown.

Finally, the use of m-NEVER to further simplify MALPAS outputs proved
successful. The fact that m-NEVER had a level of interaction, as well as having
powerful automatic commands, was useful in giving the simplification process a
little "push" at times. Admittedly m-NEVER was only used on MALPAS outputs, that
is, already simplified expressions, rather than the original unsimplified expressions,
which would have been a lot bigger. This point is made because of the problems
encountered in controlling the size of the expression during the condense proof.
However, it would be interesting to see how m-NEVER performs with these
unsimplified expressions. Certainly m-NEVER looked like a useful theorem prover
to use in conjunction with MALPAS, as a means of introducing some capability for
interactive proof.

,ll

References

1. Ritchie B. "The Design and Implementation of an Interactive Proof Editor",
Thesis, CST-57-88 (LFCS-88-68). October 1988.

2. Ritchie B. and Taylor P. "The Interactive Proof Editor, An Experiment in Interactive
Theorem", ECS-LFCS-88-61. July 1988.

3. Taylor P. and Jones C. "The Interactive Proof Editor User Guide", LFCS-TN-1 1.
May 1988.

4. m-EVES Collected Papers (Prepared for the Sun-3 m-EVES Version 4 Distribution Tape).
Odyssey Research Associates, Inc. September 1989.

5. HOL Reference Manual (Description). SRI International, Cambridge Research Centre
(1989)

6. HOL Reference Manual (Tutorial). SRI International, Cambridge Research Centre (1989)

7. Abrial J. R. "B Reference Manual". Draft #6. BP internal document. May 1990

8. B. D. Bramson 'Tools for the Specification, Design, Analysis and Verification of
software". RSRE report number 87005 (1987)

9. MALPAS User Guide (Version 4.3). Rex, Thompson and partners. February 1990.

10. Rushby J.M. "The design and verification of secure systems",
Proc 8th ACM Symposium on Operating System Principles, Asilomar, California, USA,
December 1981. (Available as ACM Operating Systems Review, vol 15, no 5).

11. Sennett C.T. and Macdonald R. "Separability and Security Models",
RSRE report no: 87020. November 1987.

12. Pase B. and Kromodimoeljo S. Private communication. October 1990.

Acknowledgements

The author would like to thank Bill Pase and Sentot Kromodimoeljo of Odyssey
Research Associates Inc, Ib Sorenson and Dave Nielson of BP Research, and Mike
Gordon of Cambridge University for their help and comments.

Appendix A

The functions, axioms and rewrite rules added to WE for the condense proof

functions

con, pc, head, ::, _ ({_} forms the singleton set of an element)

axioms (all variables are generic, that is, can be used with any particular value)

1 = [] con(x:l) = x:[]

I [A A x = head(l) = con(x:l) = con(l)

I A x head(l) = con(x:l) = x:con(l)

1 1= pc(x:I) = {x:[]}

1 [1 A x = head(l) =* pc(x:l) = x:.pc(l) u pc(l)

I [] A x head(l) # pc(x:l) = x:.pc(l)

l e x::S 3m (l = x:m A m S)

XE {y}*X=y

le SuT =* le Svle T

rewrite rules (again, variables are generic)

head(x:l) -> x

THIS PAGE IS LEFT BLANK INTENTIONALLY

Appendix B

The functions and axioms added to m-NEVER for the condense proof

functions

head, tail, length, e, _, u, ::, e (declared with no body)

con (1) = if length(l) = 1 then 1
elseif head(l) = head(tail(l)) then con(tail())
else head(1):con(tail())
end if

pc (1) = if length(l) = 1 then {l}
elseif head(l) = head(tail(l)) then head(l)::pc(tail(l)) u pc(tail(l))
else head(l):.-pc(tail(l))
end if

pred (1) = begin Vm (m e pc(l) = con(m) = con(l)) end

axioms (all variables are generic, that is can be used with any particular value)

(a) facts

length(l) > 1
length(l) * 1 = length(tail(l)) < length(l)
Ie x::S 4 3m(l=x:mAmE S)

(b) forward rules

1 = x:m =0 length(l) * 1 (trigger expression length(l))

(c) rewrite rules

me {l} -> m=l
Ie S uT-> Ie SvIe T
head(x:l)-> x
tail(x:l) -> 1

-- -- - -

THIS PAGE IS LEFT BLANK INTNTIONALLY

Appendix C

The functions and axioms added to HOL for the condense proof

functions

con, PC,:

axioms

Vx (con [x] = [x]) A (PC [X] = [x] INSERT A Al

Vx V 1 (A x =head 1 =4 con(x:l) = con I A pc(X.1) =x.pc(l) U pc(l)) A2

VPX V1 (I [A X heIad I --* con(x:l) = x~con I A pc(x:l) = X.pc(l)) A3

VxVlVS(le x.S = 3m(=X:M AMC= S)) A4

The tactic used to prove both lemmas, and reduce the theorem to three subgoals

LIST INDUCTTAG THEN
REWRITETAC[NO:TjCONSNIL; HD] THEN
REPEAT G5ENTAG THEN
ASMCASESTAG "(1 : (*)list) =["THENL

[ASM REWRITE TAC[AJ; IN] THEN
DISCH TAG THEN
ASM-REWRITE TAC[NOTCONSNIL; HD];
ASMCASESTAG -h = HD-(l (*)list) " THENL

[IMP _RESTAGC A2 THEN
ASMRE WRITE TAC[INUNION; A41 THEN
STRIP_ TAG THENL

[REd TAG;
ASM REWRITE TAC[NOT ONSNIL; HD]];

IMP RES-TA C A3 THEN
ASM REWRITE TAC[A4] THEN
STRIP_ TAG THEN
A SM REWRITE TAC[NOT CONS NIL ; HD]]]

Note The Al - A4 in the above tactic are the axioms Al -A4. Also in axiom
Al, INSERT adds an element to a set. Thus [xl INSERT { is the singleton set
containing [xl.

THIS PAGE IS LEFT BLANK INTrENTIONALLY

Appendix D

The rules added to B for the condense proof

THEORY con
con [x] = [x)
x head(l) 40 con(x:l) = con(l)
x *head(l) 4 con(x~l) = x:con(l)

THEORY PC
PC [x] = I{[Xfl
x =hea4(1) 4 pc(x:I) = x::-pc(I) u pc(I)
x *head(l) z* pc(x~l) = x:.pc(l)

THEORY distcons
(1 e x::S) = 3n.(l = X:n A n e S);

(P Q)
4
((3n.P) 4 Q)

THEORY hd
head(x~l) = x

THEORY cases
inhyp(m e pc(x:l)) A
(x =head(l) 40 g) A
(x *head(l) 4 g)

9

inhyp(l e S u T) A

(l e S 4g) A
(l e T 4g)

=0
g

THEORY listinduct
[1 .= [XJJP A
VL.(P 40 Vx. [I: x:llP)
4
VIP

THEORY undisch
inhyp(l e x::S) A(I e x::$ =4 g)

g

THEORY singleset
me {l} =0 m=l

THEORY equality]
S=T A me S =* me T

THEORY equality2
x = y 4 z.x = z:y

THEORY prv
(vrb(l,m) =4 VI Vm g) A
results+g

provel(vrb(l,m) = VI Vm g)

THEORY prove
provel(vrb(l,m) =O Vl Vm (m e pc(l) = head(m) = head(l)))
provel(vrb(l,m) = Vl Vm (m e pc(l) = con(m) = con(l)))

TAC
prv;listinduct;(con;pc;cases;hd;undisch;distcons;equality2)-

FTAC
(results;con;pc;singleset;equality l)-

Note

The theory prove, contains the lemma and theorem to be proved. The expression
below the keyword TAC is the tactic, and the expression below the keyword FTAC is the
forward tactic. Such a theory does not always have to be called prove, it is simply a
name chosen by the user. Also, the second rule in the theory distcons should have a
guard, which ensures that the existentially quantified variable n does not appear free
anywhere else in the goal (apart from in P). That is, it should not appear in the
hypotheses and it should not appear in the conclusion. It was not clear how to write
this guard in B (see section 6.3), and so it has been left out. However, when this rule
was used, a manual check was carried out, by the user, to ensure that n was not present
anywhere else in the goal.

i I ~ ~ ~ ~~~I

Appendix E

A description of the m-NEVER commands used in this report

equality substitute. If the expression E = F appears in the expression being simplified,
then the command equality substitute E will replace appropriate occurrences of E
with F. If no expression is supplied, then m-NEVER uses a heuristic to
automatically substitute expressions. For example

equality substitute x on x = 5 A y = 7*x gives x = 5 A y = 7*5

simplify. This performs the simplification of first order predicate expressions, with
propositional tautologies always detected. It also reasons about integers, carries out
equality substitutions automatically, and instantiates variables in quantified
expressions. Below are some examples

simplify on --ax-P(x) gives VxP(x)

simplify on (PvQ) A (-,PvR) =* (QvR) gives TRUE

simplify on X=5 Ay= 7*x gives x=5 Ay=35

simplify on Vx(x > 5) gives FALSE (where x is of type integer)

reduce. This is the most powerful of all the commands in m-NEVER. It performs
simplification, rewriting and invocation. Invocation includes the replacement of a
function for its body. For example iff and g are functions on integers, withf defined
using the rewrite rule f(x) -> x+ 1, and g defined by giving it the body begin x+2 end,
then

reduce on Vx(2*f(x) + 3*g(x) = 5*x + 8) gives TRUE

prenex. Tries to convert the expression, as close as possible, to the form Q.body,
where Q is a list of quantifiers and body is a quantifier free expression.The body is
not always quantifier free, because for example, prenex does not seem to rename bound
variables. Below are some examples:

prenex on Vx(x > 5) v Vy(y > 1) v Vz(z < 3) gives Vxy,z (x > 5 v y > v z < 3)

prenex on 3x(x = 6) v Vy(y < 1) gives 3xVy(x = 6 v y <1)

prenex on 3x(x = 6) v Vx(x < 1) produces no change

A n

open. If the expression is of the form Vv1 ,...,v,, P then the command open produces the
expression P. This command can sometimes be useful after the prenex command.
Below are some examples:

open on Vx3yVz(x>Ovy<0=4z=6) gives3yVz(x>Ovy<0=4'z=6)

open on Vx,yVz(x>Ovy<O=Oz=6) gives Vz(x>O vy<O= z=6)

split. The command split P where P is a predicate, forms a case split; one case
assuming P is true and another assuming P is false. If E is the expression being
simplified then the new expression ifP then E else E end if is formed. This is a good
example of how sometimes m-NEVER presents the user with an expression in the
conditional form if then elseendif. An example of the use of split is

splitx=7 on x>OAx< 9 gives
if x = 7 then x > 0 A x < 9 else x > 0 A x < 9 endif

use. The command use axiomname on the expression E, where axiom-name is the
name of an axiom, produces the new expression A = E, where A is the axiom with its
free variables universally quantified. The command can also be used with particular
instantiations. Also it can be used with a function to obtain its underlying axiom.
Below are some examples, using the axiom named doublel which is the rewrite
rule double(x) -> 2*x.

use doublel on y < 5 gives Vx(double(x) = 2*x) 4 y < 5

use doublel x = 9 on y < 5 gives (double(9) = 2*9) 4 y < 5

back. The command back n takes the user back n steps.

disjunctive. Converts the expression into disjunctive normal form, that is, an
expression in the form (A A B A C A ...) v (D A E A F A ...) V ..., where each
of A, B, C, D, E, F, ... is either an atomic expression, or the negation of an atomic
expression. For example

disjunctive on (A v B) 4 (C A D) gives (-nA A -,B) v (C A D)

induct. Consider the expression x > 0 =*, factorial(x) 1, where the function factorial
has been defined recursively, with precondition x ? 0, and body
if x = 0 then I else x*factorial(x-1) endif. The command induct on the original
expression will produce the new expression

[-I(x 0 A X * 0) =* (x > 0 =0 factorial(x) > 1)] A
[(x 0 A x * 0 A (X-1 > 0 =* factorial(x-1) > 1)) =* (x a 0 =* factorial(x) > 1)]

The command has noticed that the original expression x > 0 =0 factorial(x) > 1 contains
a recursive function, namely factorial, and has produced a new expression which
captures both the base case and the step case of a proof by induction. The first
conjunct is the base case, and the second conjunct is the step case. The
predicate x Z 0 A x * 0 in the step case, is the precondition together with the negation
of the test condition in the body of the function, and thus formsthe condition that the
recursive part of the body is entered. The rest of the step case is then formed by
assuming the original expression holds for x-1, and saying that it must hold with x.

The base case is formed by saying that the original expression must hold when the
recursive part of the function body is not entered. The command is a good example
of how the user always has just one expression, ie induct does not produce two
expressions. induct applies a heuristic to the expression to look for recursive
functions. However the user can tell m-NEVER to induct on a particular function.
There is also a command prove by induction which will apply a heuristic to look for
recursive functions, set up the new expression which captures a proof by induction,
and then perform some simplification. Out of interest, prove by induction on the original
expression x 0 =0 factorial(x) >_ I above returns TRUE.

____ ____ ___ ____ ____ ___ ____ ___ ___32_ _ ___ _

THIS PAGE IS LEFT BLANK INTENTIONALLY

REPORT DOCUMENTATION PAGE DRIC Reference Number (if known).......................

Overall securty clssificaton of@Iso............................ Unclassified

(fs for as possible this she should contain only unclassified Information. If It Is necessary to ene classified Information, the field concerned
muzst be narked to idicate the classification alg (R), (C) or (5).
Originaor Reference/Report No. IMonth Yeer

MEMO 4430 OCTOBER 1990
Originators Name and Location

RSRE, St Andrews Road
Malvem, Worcs WR14 3PS

Monitoring Agency Name and Location

Tile

WHICH THEOREM PROVER?
(A SURVEY OF FOUR THEOREM PROVERS)

Conference Details

Abstract

When using Formal Methods to produce verified software, mathematical theorems arise which need to
be proved. This memorandum contains the experiences gained in using four theorem provers to prove
such theorems. From this experience, a number of recommendations are made on what constitutes a
good theorem prover.

Abstract Classification (U.RC or S)
U

Descriptors

Oisluticon Staement (Enter any limitations on the strbton of the document)

UNLIM ITED
a""

THIS PAGE IS LEFT BLANK INTENTIONALLY

