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ADVANCED CONCEPTS OF APPROXIMATE REASONING

FINAL TECHNICAL REPORT
Executive Summary

Enrique H. Ruspini
Artificial Intelligence Center
SRI International

1 Introduction

This final report consists primarily of a collection of papers that have been published. pre-
sented, or await publication in various forums presenting the results of research, sponsored by
the U.S. Army Research Office. on an artificial intelligence discipline known as “Approximate
Reasoning.”

This collection includes both detailed technical presentations of approximate reasoning
issues [1,6], various rummaries of those presentations [4.5,8], and an encompassing overview
of their significance [2] in the context of a unified formal framework. developed as part of the
reported research.

For this reason. we have chosen a format based on inclusion of all papers relevant to our
research, preceded by this executive summary. which is also intended to guide the interested
reader to the diverse works that make the bulk of the report.

The research program on advanced concepts of approximate reasoning had the goal of
establishing firm formal foundations that explain the different technologies proposed to solve
the problems associated with the processing of imprecise and uncertain information. permit
a comparison of their advantages and disadvantages. and. specially. allow the determination
of their applicability to specific problems.

The research results reported herein clarify fundamental aspects of information process-
ing under conditions of imprecision and uncertainty, These results represent particularly
important steps toward the development of systems for analogical reasoning, i.e., automated
devices that exploit similarities between scenarios to “extrapolate” from known examples
into unknown situations.

Because of their fundamental nature. these results are applicable to a wide variety of
problems of Army interest including intelligence analysis. autonomous device planning and
control, vulnerability analysis. human factors engineering. material analysis, fault diagnosis.
reliability analysis, system design. and mission plauning and counterplauning.

On the basis of the nature of the results obtained during this research and current prac-
tical experience with the applicability of various approximate reasoning techniques. it is




possible to identify the following applications as being particularly amenable to treatment
in the near future:

1. Control of unstable systems. such as helicopters. land vehicles, or weapon platforms.
by means of possibilistic control techniques

2. Control of navigation, targe: tracking. and obstacle avoidance by autonomous mobile
agents

3. Elimination of involuntary platform/hand movement in object-tracking tasks.
4. Development of vulnerability measures and related assessments of structural viabiliiy.
5. Development of approximate models of complex systems.

6. Coordination of real time intelligent agents on the basis of considerations about their
usefulness, associated risks. and probability of success.

2 Approximate Reasoning

Approzimate Reasoning is the collective name given to a variety of automated methods and
techniques for the analysis of imprecise and uncertain information.

The first task in our investigation was to clarify the nature of the approximate reasoning
problem: a poorly understood question that was felt to be the basic cause of the controversy
that characterized the state of the art. Prior characterizations of approximate reasoning
technology broadly interpreted the epithet “approximate” as an indication of either the poor
quality of the underlving kuowledge or that of the proposed techniques. considered to be
heuristical imitations of the sounder methods of classical logic.

Our approach to the characterization of the approximate-reasoning problem was based
on continuation of previous work of the principal investigator (“The Logical Foundations of
Evidential Reasoning.” SRI Al(' Technical Note No. 408. 1487). which relied on the logical
uotion of “possible world.” The result of these investigations was the development of a
unified framework for the approximate reasoning problem that is briefly summarized in a
paper presented at the Fourth International Symposium on Knowledge aud its Engineering [7]
and that is considerably expanded in a related assessment of the state of the art aud its
progress [2].

Informally speaking. possible worlds are the conceivable situai.ons. scenarios. states. or
behaviors of a real-world system. i.c.. the conceivable solntions of a typical situation- or
state-assessment problem. In those problems. we are typically required to state whether the
system in question (e.g.. “the weather at Menlo Park™) is (or was. or will be) in such a
state that certain statements (called hypotheses) about it are true (e.g., *... will be rainy on
November 15").

To answer such questions in the contest of a typical reasoning problem. we usually make
various observations of our systen (e.g.. temperat ures. pressures) that. when combined with
existing background knowledge (e.g.. meteorology). eliminate certain conceivable possibilities
from consideration. The remaining states. called in our model the evidential sef because of

[
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its obvious relationship with observed evidence, are then exanined to determine whether all
its possible states are such that a hypothesis of interest is true in all of them or it is false in
all of them.

If that is indeed the case, as illustrated in Figure 1. then the problen) is a conventional
reasoning problem capable of being. at least conceptually. solved by classical logical tech-
niques (i.e., the evidence implies the hypothesis.).

In an approximate reasoning problen, hiowever, the situation resembles that illustrated
in Figure 2, where, in some of the possibilities that are consistent with the evidence are such
that the hypothesis is true. while on others it is false. Being faced with such an inability to
solve the problem of finding whether a hypothesis is true or false, all approximate reasoning
methods, in one way or another, modify the problem to be solved concentrating instead in
describing the evidential set in terms of its relationship with the hypothesis of interest.

Probabilistic reasoning mcthods. illustrated in Figure 3. for example. seek to determine
the proportion of evidential possibilities where a hypothesis is true (i.e.. the conditional
probability of truth). This proportion is usually estimated with the aid of statistical tables
that summarize experience under similar circumstances.

Possibilistic reasoning methods. on the other hand. rely on measures of resemblance and
similarity to determine. as illustrated in Figure 4. to what extent evidential possibilities
resemble, or are close to. the set of possibilities where the hypothesis is true. The similarity
measure that makes such a characterization possible is intended to be a measure of the
extent by which facts that are true in one situation or scenario are true in another. For
example, assessments of the stability of a weapor platform under some assumptions will
remain approximately valid for similar platforms,

Figure 1: The conventional reasoning problen.

3 Possibilistic Reasoning

Having in the past successfully utilized possible-world models to describe the conceptual
bases of probabilistic reasoning and its gencralizations. notably the Dempster-Shafer calculus
of evidence, our attention during the reported research was primarily focused upon the formal
characterization of possibilistic (i.e., “fuzzy logic™) methods according to the similarity-based
model that is briefly described above.

The major result of this rescarch was a semantic model that was summarized in a number
of publications and presentations [1.7.8.9.10]) and that is discussed in detail in a technical
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Figure 2: The approximate reasoning problem.

Figure 30 The probabilistic reasoning approach.
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Figure 4: The possibilistic reasoning approach.




note [1], soon to be published in the Intcrnational Journal of Approrimate Reusoning.
The major characteristics of this model are:

e its ability to describe possibilistic techniques as the result of imposing metric structures
upon a set of possible worlds rather than as the consequence of defining certain set
measures (i.e.. probabilities) on that set,

o its characterization of the metric properties of similarity or resemblance functions using
operators previously considered only in the context of multivalued logics and the theory
of probabilistic metric spaces (i.e.. friangular norms),

o its description of metric relations between pairs of possible states or scenarios usiug
well-known topological concepts (i.e.. the Hausdorff distance). and the identification of
relationships between such notions and the notions of unconditioned and conditional
possibility distributions.

o the validation of the gcneralized modus ponens—the major inferential procedure of
fuzzy logic—as a generalization of its classical counterpart,

e its ability to provide cogent descriptions of approximate relations between system vari-
ables.

Ongoing research. to be reported in the immediate future, is currently concerned with
the following issues:

o Derivation of similarity measures froin possibility: measures. The semantic mode] de-
scribed above has clearly extablished that possibilistic logic procedures rely on notious
of similarity between plausible states of the world rather than on measures of the
relative likelihood of such possibilities. While this model was developed primarily to
improve understanding of fundamental conceptual matters. the relations that were un-
covered during such development bave significant implications of a practical nature. Of
particular importance is the potential ability to derive similarity measures - -the bases
for such analogical processes as case-based reasoning—from possibility distributions
the formal expression of important qualitative physical laws. We have developed initial
formulations for the derivation of such similarity measures on the basis of a formal re-
sult of L. Valverde on the representation of similarity measures.

o The role of the notion of ncgation in possibilistic logic. Conventional modal logics are
concerned with the qualification of the truth of propositions by describing such truth
as being either necessaryv (i.e.. the unavoidable consequence of basic assumptions and
the rules of logic). or contingent (i.c.. the consequence of assumptions applicable to the
particular situation under cousideration). These considerations are the bases for the
concepts of possibility and necessity. which related by a straightforward duality relation
(based on the notion of negation) stating that something is possible if its negation is
not necessary.

N1
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Our model of the semantics of fuzzy logic. while introducing graded (i.e.. relative)
notions of possibility and necessity hased on measures of similarity, did not relate such
notions using the concept of negation. ldentification of such a relatiouship. however.
is of significant conceptual and practical importance as knowledge of what is possible
under certain circumstances may yield important information as to what is necessary
in other cases.

Study of duality relations between pairs of subsets of possible worlds have led to the
definition of new concepts of negation that are closely associated with the relations
that exist between linguistic qualifiers that are antonyms of each other (e.g.. [rich,
poor] rather than [rich. not-rich}).

The study of the roles of systen variables and concepts of independence in possibilis-
tic logic. We have studied the relations between similarity functions defined from the
joint viewpoint of several variables (e.g.. as when objects are differentiated using mul-
tiple attributes such as color. volume. shape) and marginal similarities that take only
into account certain subsets of variables (e.g., measures of resemblance based solely
on color). We have derived initial formuiations for the derivation of joint similarity
measures from their marginals and viceversa.

Furthermore. study of the relationships that hold between similarity measures defined
from diverse viewpoints have led to the definition of possibilistic measures ~f inde-
pendence (or interaction) between variables. The results. which will be reporw . in a
technical note that is currently under preparation, are of major practical importance
to simplify complex processes of possibilistic inference (i.e.. providing a possibilistic
counterpart to the probabilistic methods of network decomposition). We are currently
investigating representation formulas to derive marginal similarity functions without
having to resort to transitive extension (i.e.. chaining) of certain nontransitive rela-
tions. Availability of such formulas will greatly improve the efficiency of inferential
processes.

We are also investigating the conceptual relati as between the important decision-
theoretic notions of ulility. cost. desvability, and preference. ‘The central idea. based
on concepts proposed by Rescher (N. Rescher. “Semantic foundations for the Logic
of Preference.” in N. Rescher. editor. The Logic of Decision and Action, Pittsburgh.
1967), is that such notions may be logically formalized by measures that quantify
our preference to be in certain states of the world rather than others. Preliminary
results indicate that a utility-based model will provide an even broader formal basis

for possibilistic Jogic. while relating such preference measures with the metric structures
of our basic model.

We have developed a possibilistic formulation for the control of the navigation and for
obstacle avoidance by autonomous vehicles that is being currently tested in the context
provided by the SRI Autonomous Mobile Agent Platforn.

6




4 Probabilistic Reasoning

We have also continued to investigate various issues of probabilistic reasoning. focusing upon
questions of validity and generality of the Dempster-Shafer calculus of evidence.

We have given special attention to the discussion of recent concerns. raised within the
technical community. about the conceptual soundness of this approach. Our contribution
to this exchange. intended primarily to clarify various confusions and misconceptions. was
summarized in a paper presented at the Third International Conference on the Management
of Imprecision and Uncertainty by Expert Systems([5], which is expanded upon in an un-
published manuscript [6). currently under submission that is enclosed as part of this final
report,

We have also continued our previous research on generalized probabilistic methods em-
phasizing the study of issues related to the treatient of conditional and dependent evidence.
We have determined that . for reasonable definitions of conditional evidence distributions in
the context of the DS calculus of evidence, these distributions are such that their combina-
tion with unconditioned evidence usually results (even for simple examples) in probability
bounds that cannot be expressed within the Dempster-Shafer framework.

In connection, with these investigations we have derived a preliminary formulation of the
problem of combination of conditional and unconditioned distributions as a linear program.
In general. however. the solutions of such a problem will not obey the axioms of the calculus
of evidence. Currently. we are focusing owr attention upon three major questions:

s the determination of cases where the result of evidential conditioning is a belief func-
tion.

o the approximation of results not satislying cvidential axioms by beliel functions that

de.

¢ the development of a niore general evidential calculus based on the notion of lower and
upper probabilities.

-1
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Abstract

This note presents a personal view of the state of the art in the representation
and manipulation of imprecise and uncertain information by automated processing
systems. To contrast their objectives and characteristics with the sound deductive
procedures of classical logic, methodologies developed for that purpose are usually
described as relying on Approximate Reasoning.

Using a unified descriptive framework, we will argue that, far from being mere
approximations of logically correct procedures, approximate reasoning methods are
also sound techniques that describe the properties of a set of conceivable states of a
real-world system. This framework, which is based on the logical notion of possible
worlds, permits the description of the various approximate reasoning methods and
techniques and simplifies their comparison. More importantly, our descriptive model
facilitates the understanding of the fundamental conceptual characteristics of the
major methodologies.

We examine first the development of approximate reasoning methods from early
advances to the present state of the art, commenting also on the technical motivation
for the introduction of certain controversial approaches.

Our unifying semantic model is then introduced to explain the formal concepts and
structures of the major approximate reasoning methodologies: classical probability
calculus, the Dempster-Shafer calculus of evidence, and fuzzy (possibilistic) logic.
In particular, we discuss the basic conceptual differences between probabilistic and
possibilistic approaches.

Finally, we take a critical look at the controversy about the need and utility for
diverse methodologies, and assess requirements for future research and development.
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1 Introduction

This note presents a personal view of the state of the art in approximate reasoning,
the name used to describe several methodologies for the development of intelligent
systems capable of manipulating imprecise and uncertain information.

Approximate reasoning techniques loosely based on the calculus of probability
appeared almost simultaneously with the development of expert systems relying on
classical (i.e., two-valued) logic techniques. Soon after these systems were introduced,
other approaches to the treatment of uncertainty and imprecision were also proposed,
both to generalize more or less conventional probabilistic schemes and to capture other
aspects of imperfect knowledge, claimed to have a nonprobabilistic nature.

The short technological history of approximate reasoning methods may be de-
scribed as being, from that moment, one of extreme controversy that has lasted to
this day. Most of the proponents of classical probabilistic treatments, often described,
although vaguely and somewhat misleadingly, as Bayesians,! have doubted the ne-
cessity for the introduction of other conceptual structures and have often sought to
explain those frameworks in terms of probabilistic notions. Proponents of alternative
approaches, on the other hand. have defended their techniques on the strength of
two main arguments: the practical problems associated with the parameter-intensive
procedures of conventional probability, often demanding knowledge of a large number
of probability values; and. the nonprobabilistic nature of the uncertainties associated
with the use of vague concepts.

Much of this disagreement has been clearly caused by misunderstandings about
the fundamental philosophical characteristics of each approach. Lacking a suitable
basis to interpret certain concepts, particularly those related to the “degrees of truth”
of multivalued logics, it has been impossible, until recently, to provide an adequate
framework to discuss fundamental issues in a rational manner.

This position paper on the past evolution of the field, its present state of the art,
and desiderata for future evolution is the result of recent research by the author in
basic semantic issues that are germane to the foundation. of approximate reasoning.
The presentation is based on the use of a central unifying framework: a formal model
of the approximate reasoning problem that explains the similarities and differences
between major methodologies. Using this “possible-worlds™ model, we will also be
able to compare the rationale of nonmonotonic logic approaches with that of approx-

1The qualifier Bayesian is used in the context of statistics to describe proponents of a statistical
methodology and in the context of the philosophy of probability to denote various subjective vicws
of probability. In Artificial Intelligence, the term has been loosely applied both to those investigating
approaches based on the probability calculus and, more narrowly, to those espousing the decision-
theoretic methods of subjective probability.




imate reasoning procedures. Although our model is a rigorous formalism, aescribed
in detail elsewhere [32,33] in connection with the logical foundations of the Dempster-
Shafer calculus of evidence and fuzzy logic, our discussion will be kept as informal as
possible to facilitate understanding our philosophical and technical position.

We will contend that regarding probabilistic and possibilistic approaches as com-
peting alternatives is incorrect and confuses the need to describe different aspects of
reality with the adequacy or ability of probability as a measure of likelihood. We will
also take a critical look at the major claims supporting a narrow view of probability,
based on a subjectivist interpretation that regards all forms of rational decision-
making as necessarily demanding optimization of expected-utility functionals, and
we dispute claims that only such approaches are endowed with either a suitable or a
proven decision-theoretical apparatus.

On the basis of our theoretical arguments, and of recent success in the appli-
cation of various techniques to practical problems, we will also argue that future
accomplishment in the field lies in the rational development of tools leading to mul-
tiple complementary views of the implications of evidence rather than on arbitrary
circumscription to a limited class of techniques and procedures.

2 The Development of Approximate Reasoning

Intelligent systems relying on approximate reasoning techniques [8,39] apoeared in the
1970s, approximately at the same time as other systems seeking to emulate the exper-
tise of specialists in diverse fields of endeavor. Problems related to the development
of the expert systems based on classical deductive procedures, however, were primar-
ily related to the need to organize knowledge and its processing in such a manner
as to assure an efficient derivation of the truth value of hypotheses (i.e., either true
or false). Systems such as MYCIN or PROSPECTOR— reasoning about medical
and geological systems, where knowledge is limited and where observations may be
difficult or impossible to make—were forced to deal, in addition, with issues that, to
this day, have almost completely consumed the attention of approximate reasoning
researchers.

These issues may be generally described as related to the extension of the basic
derivation rule of classical logic, the modus ponens, which states that from the va-
lidity of an antecedent proposition p and that of the implication p — ¢, it is possible
to derive the validity of the consequent proposition g. Although a conventional ex-
pert system, using classical rules of derivation. could be assumed to have sufficient
information to derive the validity of a hypothesis of interest, whenever knowledge
was scarce or uncertain it was necessary to resort to other schemes that qualified
in one way or another the meaning of the truth of propositions. Still imitating the

o
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network-oriented techniques of truth-value propagaticn of two-valued logic, the ap-
proximate reasoning schemes developed in early systems sought to propagate numeric
truth values that were loosely related to probabilistic interpretations of uncertainty.

The concept of probability provides a most important tool to describe the state of
systems that are known under less than desirable informational circumstances. Aris-
ing clearly from the need to make decisions despite undesirable knowledge handicaps,
the notion of probability, seriously studied from the seventeenth century, has always
played a major role in humau judgment {16).

The appeal of probability as an instrument to assess system behavior is due to the
empirically observed property that is expressed by the long-run stability of occurrence
of certain events. Whether such a pattern of occurrence has been objectively quanti-
fied through experimentation or historical observation (objective interpretation), or
is subjectively expressed by the willingness to gamble with certain stakes (subjec-
tive interpretation), it is clear that it provides a rational basis to formulate rational
expectations about system state. Why wouid anybody, if such predictable stability
of occurrence could not be assured, be willing to consciously bet on .sme outcomes
rather than others if the real world defies any attempts to descriptive charac .za-
tion?

Curiously enough, although probabilistic interpretations were always implicitly or
explicitly intended by the developers of early approxi:nate reasoning systems, and
while the underlying calculi reflect such explanations, it seems also clear that the
machinery of these devices was primarily oriented toward the emulation of the propa-
gation schemes of classical logic with truth flowing from node to node through edges
corresponding to implication rules. Approximate truth, measured by numbers asso-
ciated with objective likelihood or expert confidence, also flowed from evidence to
hypothesis in a scheme that generalized the true-false dichotomy of multivalued logic.

Regardless of the clearly intended probabilistic interpretations of those numbers,
misgivings about their meaning and utility were sufficient to plant the seeds of the
ensuing controversy. Concerns about the inability of probability to capture notions of
evidential confirmation led the developers of MYCIN[39], for example, to introduce
modified concepts (“certainty factors”) as an alternative to direct use of conditional
probabilities. In spite of subsequent studies showing that such certainty factors were
related to probability values[18], it is clear that these worries were well founded,
having been already eloquently expressed in the works of philosophers of science [34].

Although such concerns are indeed important and, despite some claims to the

of those seeking to develop expert systems with approximate reasoning capabilities.
Beyond certain troublesome issues that were apparent when formulating the proba-
bilistic calculi used by PROSPECTOR, arising froi inconsistencies between “expert




estimates” of probability values and the laws of probability, it was also clear to those
engaged in the development of new expert systems that a typical application required
estimation of a very large number of individual probability values (14}, which were
neither available or derivable from existing data.

In addition, other researchers, acquainted with the concepts and methods of mul-
tivalued logic [31,13], advanced the notion that some of the “degrees of truth” being
propagated could be interpreted in a nonprobabilistic fashion. The theory of fuzzy
sets, introduced by Zadeh in 1965 [45], had been for some time the focus of attention
of these researchers and soon became a major source of techniques for the treatment
of uncertainty by use of nonprobabilistic schemes.

The variety of approximate reasoning methods arising from this diversity—expressed
as a preference toward either a variedly interpreted, more or less strict application
of classical probability schemes; as approaches seeking the expression of ignorance
about probability values, such as the Dempster-Shafer calculus of evidence; and as
nonprobabilistic schemes like fuzzy logic— have led to a controversy that has endured
to this day.

It has not been possible, until recently, to discuss these approaches with the help
of a unifying framework that facilitates the interpretation of relevant concepts and the
comparison of alternative methodologies. This unifying framework is based on a view
of approximate reasoning problems as those wherein the truth-value of a hypothesis
cannot be deduced from available information.? In other words, several scenarios, all
consistent with evidence, may be conceived. In some of those stuations the hypothesis
is true, while in others it is false.

The logical notion that we will use to characterize such conceivable states of affairs,
situations, or scenarios, is the concept of “ possible world” utilized by Carnap [4]
in his logical treatment of the concept of probability, which was alsc employed by
Nilsson [26] to derive a logic-based methodology for probabilistic reasoning.

3 Possible-World Models

A possible world may be briefly described as a function that assigns one and only one
of the truth values true or false to every proposition (i.e., declarative statement)
about the system that is being reasoned about. If we seek to describe and stui v
the weather in Menlo Park, for example, the atmospheric conditions at several points
in time are described by assigning specific values to meteorological variables such as
temperature, humidity, and rainfall, or, equivalently, by assigning a truth vaiue to

2Sometimes this characterization is extended to include those cases where that derivation is very
difficult.




propositions such as
The temperature at 3PM was 75°F.

Since the value of system variables is unique (e.g., the temperature cannot be both
75°F and 85°F at the same time), it is clear that each possible world (i.e., an assign-
ment of truth values) must satisfy certain consistency conditions that fellow from the
axioms of classical logic.

In approximate reasoning problems, however, we can usually do more to restrict
the extent of the set of possible worlds that may conceivably describe the state of
the system. Typically, the information or knowledge about the state of the system
and its applicable rules of behavior, in spite of its defficiencies, is a major source of
constraints that further limit the extent of the situations that must be considered.
The subset of possible worlds that is logically consistent with this evidence is called
the evidential set, and, in one form or another, is the concern of every approximate
reasoning approach. In any approximate reasoning problem, by definition, some of
these evidential worlds are such that a hypothesis is true in some of them and false
on others, as depicted in Figure 1.

Worlds consistent with the evidence |

N\\\\\\\\\\W

§ Worlids loglcally inconsistent with the evidence §

HYPOTHESIS TRUE HYPOTHESIS FALSE

-} -

Figure 1: The approximate reasoning problem

The view of approximate teasouing problems that is afforded by this possibie-
world perspective also simplifies the understanding of the objective of approximate
reasoning approaches. Lacking, by the nature of the problem, the ability to determine
if the evidence implies whether we are in a situation where a hypothesis is true or in
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one where it is false, every approximate reasoning methodology seeks answers to a
different problem: that of describing certain properties of the evidential set.

4 The Semantics of Approximate Reasoning

Our view of approximate reasoning methods as techniques to describe the evidential
subset® e of possible worlds that are consistent with available information now allows
a more detailed look into their philosophical bases.

Probabilistic methods, regardless of their subjective or objective semantics, seek
to estimate measures of the subsets of the evidential set where a hypothesis & is true
and where it is false, i.e., the values

plhAe) and pu(-hAe),

or oivher related quantities, such as likelihood ratios or conditional measures with
respect to the evidential set €. The measure u is, however, an aggregate measure of
set extension based on the additive law

u(p)+ulg) =plpAg)+pupVva),

stating that its value over a set may be derived from knowledge of its value over a
partition of nonintersecting subsets. Regardless of the mechanism used to derive the
we.ghts associated with individual members of the subsets, it shouid be clear that
interactions and associations between possible worlds (e.g., distances} do not play
any role in such quantities. Simply stated, all that matter are the weights of each
individual point (more generally, each atomic subset) that are then added to gauge
the extent of the subset.

Possibilistic methods, on the other hand, are based on notions of proximity and
resemblance between pairs of possible worlds. This association or similarity is also a
measure, albeit not one that may be expressed in terms of individual weights. Ex-
ploiting the idea that, in many systems, statements that are true in certain situations
remain approximately true in similar instances (e.g., clothing that is appropriate when
the temperature is 75°F will work nearly as weli at 78°F), the purpose of possibilistic
techniques is to describe the evidential set in terms of the similarity of :ts component
possible worlds to other possible worlds used as refereace landmarks.

The basic difference between probabilistic and possibilistic methods, therefore,
goes beyond the use of different formulas to derive truth values. The methodologies
are based on different conceptual approaches to the description of the evidential set;

3For simplicity, we refer loosely to sets and propositions are if they were the same objects.
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\L.y stress, in probabilistic reasoning, relative measures of set size. such as the ratio of
L.eviously observed true and false cases, while, in possibilistic reasoning, they stress
binary measures of similarity that describe how far is any conceivable scenario from
certain significant situations.

In both approaches, however, the objective is the description of properties of the
evidential set rather than of any of its particular members. By contrast, certain
nonmotonic logic techniques such as circumcription [24] rely on methods to choose
least-exceptional worlds in the evidential set by extension of the “close-world as-
sumption” [30], i.e., the only propositions or predicates that are true are those that
are known to be true. These techniques may be considered general procedures to
represent states of evidential knowledge by choice of prototypical situations. New
evidence, however, may force retraction of some of the assumptions leading to the
selection of other evidential worlds as prototypes. Another class of nonmonotonic
reasoning techniques, while generally fitting the description given above, relies on
prespecified “default” rules[29] to control the choice of prototypical worlds. Since
these rules are usually formulated on the basis of plausibility notions rooted on sta-
tistical information (as in the famous example of Tweety and the flying ability of
most live birds) it is not surprising that the derivation techniques and rules of these
preferential logics—a name indicating their definition of a preferred order for models
of a situation—resemble those of probabilistic reasoning. In fact, recent developments
strongly point to the existence of a common unifying interpretation for both [28,15].

4.1 Probabilistic Reasoning

There can be little argument from any quarter that frequencies of occurrence of events
satisfy the famous additive law that is ayiomatized in the definition of set measure [17].
If propositions that describe event occurrence can only be assigned one and only one
of the classical probability values, then it is obvious that whenever such repetitive
occurrences are counted, then the sum of positive and negative occurrences must add
up to the total number of relevant cases. As far as this objectivist interpretation
of probability is concerned, therefcre, there is little doubt that classical formalisms
provide a suitable conceptual tool to capture the behavior of systems that expresses
itself, as experimentally observed, in the form of stable frequency values.

Probabilities. viewed from the perspective of our possible-worlds model, may be
considered as the basis of methods providing answers to a question that is velated to
but different from the undecidable issue of the validity of a hypothesis. Unable to
state, because of lack of information, that h is either true or false, we describe instead
the behavior of the system in the long run, by calculating the frequency of occurrence
under similar circumstances.
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Probabilistic reasoning schemes may be generally described as concerned with the
computation of the joint probability distribution of several system variables, based
on knowledge of the values of related marginal and conditional probability distribu-
tions. Whenever the required values are available it is possible, conc ;ptually at least,
to derive the required joint distributions. In fact, it may be fairly stated that, once
it was understood that such derivation should be the goal of probabilistic reasoning
systems, the attention of proponents of that methodological perspective has been al-
most completely directed toward the development of methods to simplify the required
knowledge organization and manipulation [27).

Substantial concerns arise, however. regarding what must be done when the needed
probability values are not known. In applied science, when unknown systems and phe-
nomena are investigated, experiments are designed and performed to determine the
basic laws of system behavior, which are typically expressed through quantitative
re;ationships. If, based on such knowledge, rational courses of action are chosen, the
careful scientist is then able to explain and justify his decisions on the basis of a strong
epistemological apparatuvs supported both by empirical observation and by rational
deduction. This scheme, which proceeds from information acquisition to decision
making, embodies the experimental method of modern science. From such a per-
spective, probabilistic laws describe certain aspects of system behavior described by
parameters that are estimated using the same methods that are universally accepted
and employed in applied science.

Another view of probability, however. regards probability values as expressions of
the degree of belief of rational decision makers regarding the validity of hypotheses.
This degree of belief is quantified by the amount of money that a rational gambler
is willing to bet in a gamble where the payoff, if the unknown truth value turns out
to be true, is §1. The probabilistic behavior of these degrees of belief is justified
by a number of axiomatic systems [6,35] providing formal support not only to this
subjectivist interpretation of probability but also to a decision-making methodology
based on the maximization of expected utility. Related axiomatic formulations have
been also developed to suppot the contention that the only correct procedure for
updating such beliefs is the Bayes-Laplace rule [5]:

Prob(pl¢) Prob(q)

Prob(qlp) = Prob(p)

A number of researchers have questioned, in the past, the purportedly rational
nature of these axiomatic systems. Their misgivings, which we share, arise both from
questions about the rationality of some specific axioms, as noted by Suppes(42], and
from observation of the behavior of rational decision-makers(including developers of
the axiomatic formalisms) that contradicts the sure-thing principle, as observed by
by Allais[1] and Ellsberg[11]. Kyburg [21] has also raised substantial concerns about
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the epistemological status and soundness of the subjectivist approach. The axiomatic
system of Cox has also been criticized for its assumption that beliefs are measured by a
single number [10] and, again, for the less-than-natural character of some axioms [38].

Proponents of this stringent orthodoxy have often argued that behavior departing
from their theoretical requirements, however prevalent, is actually irrational. Such a
claim, however, suffers from a fundamental methodological flaw. Rationality should
be defined in terms of basic requirements that demand proper consideration of two
fundamental factors: observed empirical evidence and the laws of logic. By requiring
compliance with certain basic tenets of rational behavior, such as the famous avoid-
ance of “dutch books,” subjectivist schemes certainly attempt to meet one of these
requirements, albeit in a limited fashion, as pointed out hy Kyburg[21]. By defining
rational behavior as that which results from utilization of the proponent’s favorite
scheme, the characterization of rationality is subjected to a curious argument that
inverts the identity of what is rational with what must be done to ensure rational
behavior. This inversion effectively ensures that the expected utility approach would
always be considered to be rational: in fact, if any other behavior is observed, it
would be, by definition, irrational.

This inversion of premises and conclusions is also apparent in other arguments,
based on pragmatic necessity considerations, for the superiority of the subjectivist
approach. If decisions, even those to obtain more information, must be made, then
the elements required to make the decision (i.e.. utility functions and degrees of
belief) must be assessed. Conversely. any decision implies that such values have been,
whether knowingly or not, chosen in some form or fashion. As a result of this close
relation between the assessment of situations and the selection of suitable courses of
action, guaranteed by the fact that values of expected utilities (i.e., numbers) may
always be totally ordered. it is claimed that the subjectivist approach is the only
one among approximate reasoning methods that has a rational decision-theoretic
apparatus.

As appealing as such claims may be to some decision-makers, we must note again
a curious exchange of roles in the scientific discovery process: decisions no longer
follow from empirical observation and rational cogitation: rather, parameters that
describe knowledge follow from a practical need to choose suitable actions. However
pressing may be the need to derive decisions it should be clear that, in the absence of
information, it is usually impossible to determine what is the best course of action.
Any randomizing device would, under such circumstances, provide a total ordering of
possible choices but there is very little to assure us that any behavior based on such
arbitrary basis ought to be called rational.

The ultimate goal of an intelligent system is to take actions based on knowledge
about the actual rather than the believed behavior of a real world system. It is




difficult to see why, as noted by Kyburg [22]. the latter should be given much attention
outside psychological research. If applied science is, as generally admitted, a rational
enterprise that seeks to uncover the secrets of the universe and to provide guidelines
to take actions based on such knowledge, then it is clearly desirable that intelligent
agents, in their quest for similar objectives, follow as closely as possible the essential
procedures of the scientific method. The ability to produce decisions regardless of
the extent and pertinence of available knowledge should be regarded as a handicap
rather than as an advantage of a procedure: a fact readily noticed by those engaged in
the solution of important real life problems [12]. As we pointed out before, whenever
such knowledge is acquired, it is typically reported using a format that emphasizes
the quality of the observational method and the strength of the arguments leading
from empirical data to the author’s conclusions rather than on the basis of personal
confidence expressed by willingness to take gambling risks.

I have made a rather long exposition about the dichotomy between subjectivist
and objectivist approaches to probability primarily because I believe this to be a
major cause of a controversy that, beyond considerations that are solely germane to
probabilistic reasoning, extends to the need for techniques that are not directly based
on subjectivist orthodoxy. 1 have also been motivated by the desire to clearly expose
a personal position that is shared by many in the approximate reasoning community
but that is also often misleadingly described as being antiprobabilistic.

Far from being antagonistic to one approach for the simple sake of promoting oth-
ers, my eclectic view is the direct result of practical experience with the development
of models of complex systems, and of close familiarity with the application of math-
ematics to technological problems. Probability is indeed a powerful tool to describe
chance-related aspects of the behavior of real-world systems. Recent contributions of
probabilists and decision scientists, within and without the context of Al, such as the
development of network-oriented procedures for probabilistic reasoning [27]. are most
important additions to our methodological arsenal.

There are, however, limitations on the capabilities of any tool, whether for system
analysis or for any other purpose. As is true of any tool, including all methodolo-
gies described in this note, the applicability of probability is limited by its inability
to perform functions that lie outside its scope, and by practical constraints on our
ability to use it in specific situations. In spite of its unquestionable utility, other ap-
proaches also play a significant role in the description of the possible state of affairs.
These techniques must not be considered to be competitors of probability but, rather,
complementary techniques to enhance the understanding of the real world.
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4.2 Generalized Probabilistic Reasoning

Those who worry about the potential lack of applicability of techniques based on con-
ventional probability formalisms do not question the conceptual validity of probability
as the appropriate tool to measure the frequency of occurrence of diverse events under
various conditions or, in some cases, the strength of belief of decision-makers. Con-
cerns about the problems caused by ignorance of probability values, however, have
been expressed continuously since the nineteenth century by such prominent logi-
cians as George Boole [3], and have led to the development of approaches to represent
probabilistic ignorance by using subsets of possible probability values.

If, for example, the probability of validity of a proposition p is unknown, an
interval probability method will represent such ignorance by assigning the interval
[0,1] as the value of the missing probability. If it is known, on the other hand, that
an event has better than even chanres of occurring, such knowledge will be represented
by the [0.5,1] interval. More generally, probabilistic knowledge may be represented
as a set of possible probability values in a hyperdimensional cube, as in the convex
probabilities approach of Kyburg[20].

The corresponding probabilistic calculi are straightforward conceptual extensions
of the classic, number based calculus. Such extensions produce, for example, inter-
vals of expected utility values on tae basis of knowledge expressed as set of possible
probability values. These intervals may be used, in many instances, to rank decisions
in the same way that such choices are ordered with number-based schemes. When
this ordering is not possible (e.g.. overlapping intervals show that under certain sce-
na. . A is preferrable to B. while. in other situations, B is to be preferred), the lack
of a clear choice does not imply that the decision-theoretic apparatus is defective.
Rather, the methodology is rich enough to tell us precisely how far empirical knowl-
edge, comrhined with the laws of rational thought, can take us. If. beyond that point,
it is imperative to do something—a rather unfortunate set of events—any selection
scheme, from that point on, will be as rational as any other (i.e., very little).

Although the manipulation of intervals and sets of possible probability values al-
leviates some conceptual worries, it hardly helps in terms of the ability to perform
the required computations. The situation, unfortunately, is made worse by the need
to represent and manipulate probability bounds for subsets without the simplifying
help that additivity provides for actual probability values. This unfortunate state
of affairs is the primary reason for the popularity that an approach—capable of be-
ing interpreted in terms of interval probabilities— enjoys today as one of the major
methodologies of approximate reasoning. This approach is the Dempster-Shafer cal-
culus of evidence.

Originally developed by Dempster [7] in the context of statistical studies, the ap-
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proach was further developed by Shafer([36] as a non-Bayesian alternative to the
representation and manipulation of degrees of belief. Recently [32], application of
possible-world semantic models to the interpretation of its major structures has shown
that the approach is fully consistent with the classical calculus of probability, includ-
ing the Bayes-Laplace formula. Smets[40] has also recently reviewed the structures
of the calculus of evidence proposing, in addition, unconventional extensions based
on a nonprobabilistic concept of belief.

The calculus of evidence may be readily understood using our basic model if it is
recalled that, whenever assessing the validity of a hypothesis on the basis of emprical
knowledge, there are three possible logical outcomes of any reasoning process: the
hypothesis may be proved to be true, the hypothesis may be proved to be false, or
the information may be insufficient to make either of those conclusions.

If the notation Kp is used to denote the set of situations, i.e., possible worlds,
where p can be proved true, if K-p correspondingly denotes those cases where it
can be proved false, and if Ip denotes the set of situations where the truth value of
p cannot be established without ambiguity, then it is obvious that any probability
function Prob(-) will satisfy the equation

Proeb(Kp) + Prob(K-p) + Prob(Ip) = 1.

Furthermore, since the probability of Ip may be positive, it will be true, in general,
that

Prob(Kp) 4+ Prob(K-p) < 1.

The calculus of evidence is based on the representation of the probabilistic in-
formation conveyed by evidence by means of belief functions. These functions may
be readily interpreted in terms of the above probabilities of provability through the
equation

Bel(p) = Prob(Kp).

More importantly. these belief functions are usually expressible in a compact form by
means of basic probability assignments or mass functions. These functions m, which
are also defined over propositions, are related to belief functions by the equation

Bel(p) = )_ m(q).
9=>p

The ability to represent and manipulate probability intervals by means of mass func-
tions is the major reason for the appeal of the Dempster-Shafer methodology.

Altkough, in a typical decision problem. we are interested in the truth of p rather
than its provability, lack of adequate information precludes determination of the prob-
ability of such truth. In general, however, it may be said that

Bel(p) < Prob(p) <1 - Bel(-p).

12




Caat et

Furthermore, these bounds cannot be improved.

This interpretation of the Dempster-Shafer calculus as concerned with probabili-
ties of provability, as called by Pearl [27], was first formalized by the author using a
possible-worlds model based on the use of a modal logic called epistemic logic. The
formal system, which is equivalent to the modal system S5 [19] used by Moore [25] in
his pioneer work on the application of modal logic concepts to artificial intelligence
problems, is enhanced by consideration of probability distributions over the set of
possible worlds. In particular, the unary operator K represents the knowledge of a
rational agent to prove that a proposition may be known or proved to be true.

The probability of the set of all possible worlds where a proposition p is the most
specific proposition that is known to be true, called the epistemic set, corresponds to
the values of the mass function. In any possible world. this most specific knowledge is
the conjunction of all propositions that are known to be true in that possible world.

The semantic mode] of the Dempster-Shafer theory also validates the so-called
Dempster’s rule of combination, which permits the combination of belief and mass
functions corresponding to evidential observations made under certain conditions of
independence. When such conditions are not valid, use of this formula leads, of
course, to erroneous results. often, although incorrectly, considered to be an essen-
tial handicap of the evidential reasoning approach, rather than a consequence of its
misapplication.

From our perspective the only substantial example of such misapplication is that
which results from improper use of the Dempster’s rule of conditioning, i.e., a par-
ticular use of the rule of combination that is valid only under special circumstances,
as a substitute for Bayes' rule. Certain methodological limitations of the calculus of
evidence, notably the lack of methods to handle with sufficient generality the coun-
terparts of conventional conditional probabilities. are more worrisome, in our opinion.
than any distress arising from its misuse or its supposed lack of a decision-making
apparatus.

4.3 Possibilistic Reasoning

Our basic semantic model also provides straightforward interpretations [33] for the
major concepts and structures of possibility theory [46,9]): an approach to approxi-
mate reasoning derived from multivalued logics [31] and the theory of fuzzy sets [45).
The major formal tool that enhances our understanding of such structures is not a
probabilistic measure of set size but, rather, a binary measure ot proximity or dis-
tance, called a similarity relation.

Similarity considerations play a major role in human cognitive processes [44]. In-
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formally, all such analogical processes are based on the notion that the validity of
some propositions in a given situation extends also to other situations where the
same basic conditions are prevalent.

In our model of possibilistic structures, the similarity between states of affairs is
expressed by a function that assigns a number between 0 and 1 to every pair of possible
worlds. The value of that function S(w, w’) for a pair of possible worlds quantifies the
extent of resemblance between pairs of situations or scenarios, as evaluated from the
viewpoint of the particular problem being considered. In a decision-making problem,
for example, the decision maker may define such measures to describe the extent by
which the consequences of certain decisions resemble desirable goals or objectives.

The highest similarity value, 1, indicates that, from the perspective of the system
being studied, both situations are indistinguishable. The lowest value, 0, indicates
that knowlege of what is true in one possible world does not help to derive what is
true in the other.

Similarity scales are the measureimnent sticks used to describe the extent by which
certain results may be extrapolated from one possible world to another. Unlike proba-
bility functions, which correspond to either measurable properties of physical systems
or states of belief of rational agents, the similarity relations simply provide a mecha-
nism to describe resemblance between states of affairs.

Similarity relations may also be regarded as generalizations of the modal-logic
notion of accessibility or conceivability [19] by introduction of multiple binary relations
R, between possible worlds (one for each value of a between 0 and 1), defined by

R.(w,w') if and only if S(w,w') > a.

These relations also justify the use of a possibilistic terminology that regards proposi-
tions as being possible to some degree, thereby generalizing the classical definition of
the moda] operator for possible truth in a manner similar to that used by Lewis [23]
in his treatment of counterfactual statements.

Certain requirements must be imposed to assure that similarity functions truly
represent notions of resemblance between possible situations. Similarities between
identical scenarios, for example, should have a value of 1, the highest possible value.
Furthermore, if two different possible worlds are to be distinguished by means of
similarity values, then it also makes sense to require that their similarity be strictly
less than 1. It is likewise natural to require that the similarity between two particular
scenarios be a symmetric function, i.e., w resembles w’ as much as w’ resembles w.

Beyond these properties of reflexivity and symmetry, it is also necessary to require
that similarities satisfy a generalized form of transivity. If, given three possible worlds
w, w' and w”, the worlds w and w’ are highly similar while w’ and w" are also highly
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similar, it will be unreasonable to say that w and w" may be highly dissimilar. The
value of S(w,w") must, therefore, be bounded by below by a function of S(w.w’) and
S(w',w"), as expressed by the condition

S(w,w") > S(w,w') ® S(w',w"),

which uses the binary operation ® to denote the required function.

If certain reasonable requirements are imposed upon the function @&, it is easy
to see that this function has the properties of triangular norms, which are usually
introduced in multivalued logics [43] to relate the truth value of a conjunction p A ¢
to the degrees of truth of p and g. These functions are motivated, in our model, by
considerations that are related solely to metric concepts of proximity and resemblance.
Important examples of triangular norms are given by the functions

a ®b = min(a,b), a®b=max(a+b~1.0), and a&b=ab,

called the Zadeh, Lukasicwicz, and product triangular norms, respectively.

Similarity functions are trivially related by the relation
6=1-S5,

to functions é that have the properties of a distance or metric function. In the
particular case where & is the triangular norm of Lukasiewicz, then § is an ordinary
metric or distance, which obeys the well-known triangular inequality

S(w,w") < §(w,w') + 6(w',w").

If ® is the Zadeh triangular norm. on the other hand, the transitivity property is
equivalent to the stronger ultrametric inequality

é(w,w") < max (é(w,w'), (v, w")).

The structures introduced by similarity relations may be readily applied to gen-
eralize the subset inclusion relations that are the fundamental basis of deductive
reasoning. These inclusion relations are typically expressed by conditional proposi-
tions of the form “ If ¢, then p.” stating that any state of affairs where ¢ is true is such
that p is also true. These conditional propositions, which permit the derivation of
true propositions from knowledge of the truth of others by means of the rule of modus
ponens, may be also stated using similarity structures by saying that any ¢-world has
a p-world (1.e., itselt) that is as similar as possible to it.

The ability to characterize proximit, between possible worlds using a continuous
scale of similarity provides for a more general characterization of the inclusion rela-
tions that hold between subsets of possible worlds (i.e., propositions). If the subset
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of g-worlds is not included in that of p-worlds, we may, however, use the similarity
structure to quantify the amount of stretching required to reach a p-world from any
g-world. The degree of implication function defined by the expression

I(p|q) = inf sup S(w,w’),
w'~g whp

which is related to the well-known Hausdorff distance, provides such quantification
as the size of the topological neighborhood of p that encloses ¢, as shown in Figure 2.

Figure 2: Degree of implication

The ability to express relationships between neighborhoods of different sets of
possible worlds or, equivalently, between propositions permits the generalization of
the modus ponens by use of the transitive property of the degree of implication
function:

Iplr) 21(plg)&X(g|r),

illustrated in Figure 3.

Figure 3: The generalized modus ponens.

The generalized modus ponens rule of Zadeh [46] is expressed by means of pos-
sibility distributions, which are themselves defined in terms of similarities between
evidential worlds and those satisfying a given proposition p(33]. From the viewpoint
of our similarity-based model, the generalized modus ponens may be thought of as
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a sound rule of logical extrapolation that exploits similarities between conceivable
scenarios or situations. The fundamental topological structures that permit this type
of reasoning are clearly different in character and nature than the measures of set
extension that are the conceptual basis of probabilistic reasoning.

In closing, it is important to mention that posibilistic reasoning based on fuzzy
logic has led recently to the implementation of a large number of successful commercial
products [41]. These systems, which have primarily exploited the applicability of the
technology to a variety of control devices, provide a clear indication of the usefulness
of these ideas, which now also rest on clearly understandable theoretical foundations.

5 Looking ahead

The ability to explain the role and utility of the major approximate reasoning ap-
proaches by use of a unifying framework provides the rational basis to resolve most
of the issues about relative importance and necessity. Rather than supporting any
partisan contention about the superiority of one methodology over the others, this
framework shows instead that a variety of tools are needed to produce effective de-
scriptions of evidence and its implications.

Each methodology may play a significant role in every potential application of
approximate reasoning techniques: a role that complements rather than substitutes
forf other procedures. In the absence of compelling theoretical arguments for rejecting
any approximate reasoning position and in the presence of substantial solid evidence
of their usefulness and applicability. it is irrational to maintain positions that are
needlesly divisive and polemic.

Recent investigations showing that there exist substantial functional rather than
conceptual similarities between the network-oriented methods of conventional prob-
abilistic schemes and the calculus of evidence [37], and indicating that fuzzy-set con-
cepts and multivalued logic may be successfully blended to represent vague knowledge
about probabilities [2]. clearly point the way toward a more productive research col-
laboration between approximate reasoning specialists.

This collaboration should stress application of all valid concepts to the solution of
practical problems rather than further continuation of the controversy about techno-
logical superiority or necessity. In particular, the example set by Japanese researchers
in the development of a large number of commercial products of evident applicability
illuminates the path that must be followed. The future lies in the solution of practi-
cal problems, both because of the dircct importance of those problems, and because
conceptual developments and clarifications usually follow, as is the case of the work
discussed in this note, from the experiences gained producing such solutions. Having
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established needed conceptual bases to clarify controversial issues, we hope it is clear
that this is the time to apply ideas rather than to continue to argue about them.
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Abstract

This note presents a formal semantic character: :ation of the major concepts and constructs of
fuzzy logic in terms of notions of distance, closeness, and similarity between pairs of possible worlds.
The formalism is a direct extension (by recognition of multiple degrees of accessibility, conceivability,
or reachability) of the major modal logic concepts of possible and necessary truth.

Given a function that maps pairs of possible worlds into a number between 0 and 1, generalizing
the conventional concept of an equivalence relation, the major constructs of fuzzy logic (i.e., condi-
tioned and unconditional possibility distributions) are defined in terms of this generalized similarity
relation using familiar concepts from the mathematical theory of metric spaces. This interpretation
is different in nature and character from the typical, chance-oriented, meanings associated with prob-
abilistic concepts, which are grounded on the mathematical notion of set measure. The similarity
structure defines a topological notion of continuity in the space of possible worlds (and in that of its
subsets, i.e., propositions) that allows a form of logical “extrapolation” between possible worlds.

This logical extrapolation operation corresponds to the major deductive rule of fuzzy logic
—the compositional rule of inference or generalized modus ponens of Zadeh—an inferential opera-
tion that generalizes its classical counterpart by virtue of its ability to be utilized when propositions
representing available evidence only match approximately the antecedents of conditional proposi-
tions. The relations between the similarity-based interpretation of the role of conditional possibility
distributions and the approximate inferential procedures of Baldwin are also discussed.

A straightforward extension of the theory to the case where the similarity scale is symbolic
rather than numeric is described. The problem of generating similarity functions from a given set of
possibility distributions, with the latter interpreted as defining a number of (graded) discernibility
relations and the former as the result of combining them into a joint measure of distinguishability
between possible worlds, is briefly discussed.
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1 INTRODUCTION

This note presents a semantic characterization of the major concepts and constructs of fuzzy logic
in terms of notions of similarity, closeness, and proximity between possible states of a system that
is being reasoned about. Informally, a “possible state” (to be formalized later using the notion of
“possible world”) is an assignment of a well-defined truth-value (i.e., either true or false) to all
relevant declarative knowledge statements about that system.

The primary goal that guided the research leading to the results presented in this work has been
one of conceptual clarification. A great deal of energy has been directed in past few years to debating
the methodological necessity and relative merits of various appraximate reasoning methodologies. As
a result of these exchanges, the need to consider certain nonclassical approaches, has been questioned
on a variety of bases.

Recognizing the need for the development of sound semantic formalisms that shed light on the
nature of different approaches, the author has pursued, in the past few years, a line of theoretical
research seeking to describe various approximate reasoning methodologies using a common frame-
work. These investigations have recently shown the close connection between the Dempster-Shafer
calculus of evidence [35] and epistemic logics. This relationship was elucidated by straightforward
application of conventional probabilistic concepts to models of knowledge-states that distinguish
between the truth of a proposition and knowledge (by rational agents) of that truth. Central to
this development is the notion of “possible world” used by Carnap [6] to develop logical bases for
probability theory.

The same central notion of possible state of affairs is also the conceptual basis of the results
presented in this note, which is aimed at establishing the semantic bases of possibilistic logic with
emphasis on the study of its possible relations and differences, if any, with probabilistic reasoning.

The results of this investigation clearly show that possibilistic logic can be interpreted in terms
of nonprobabilistic concepts that are related to the notions of continuity and proximity. The major
functional structures of fuzzy logic, i.e., poesibility and necessity distributions,! may be defined in
terms of the more primitive notion of similarity between possible states of a system using constructs
that are the direct extension of well-known concepts in the theory of metric spaces. The topological
metric structure that is so defined may be used to derive a sound inferential rule that is a form
of logical “extrapolation.” This rule is also shown to be the compositional rule of inference or
generalized modus ponens proposed by Zadeh [53]. Conversely, possibility distributions—expressing
resemblance from some specific regard—may be used to derive the actual similarity functions—
discerning between possible worlds from the joint viewpoint of several respects.

The constructs that are used to derive the interpretation presented in this note are formally,
structurally, and conceptually different from those that explain probabilistic reasoning, in either
its objective or subjective interpretations, irrespective of methodological reliance on interval-based
approaches to represent ignorance. The latter class of methods—measuring the relative proportion

1]t is important to remark that the scope of this work is limited to the most fundamental concepts and constructs
of fuzzy logic without examining related notions such as, for example, generalized quantifiers.




of (either observed or believed) occurrence of some event—are based on the mathematical notion of
set measure, while the former-—seeking to establish similarities between situations that may be used
for analogical reasoning——are related to the theory of distances and metric spaces.

This presentation of the relationships between similarity-based concepts and possibilistic notions,
while grounded on a formal treatment that is based on rigorous logical and mathematical formalisms,
will be kept at a level that is as informal as possible. The purpose of this presentation style is
to facilitate comprehension of major ideas without the clutter that would need to be otherwise
introduced to keep matters strictly precise. For this reason, we will refrain from formal introduction
of structures and axiom schemata, that, although correct and proper, may encumber understanding
of the basic concepts.

Before we proceed to the detailed consideration of semantic models, I must briefly remark on
the epistemological implication of these developments. The present interpretation is not claimed
to be the only one that may be advanced to define the notion of poesibility in terms of simpler
concepts, nor do I claim that it may not be sometimes possible, even desirable, to model possibilistic
structures from other bases. My intent is not to prove the conceptual superiority of one approach
over another or to argue about the relative utility of different technologies. Rather, I hope that these
results have contributed to establish the basic conceptual differences to the treatment of imprecise
and uncertain information that are inherent in probabilistic and possibilistic methods; the former
oriented toward quantifying believed or measured frequency of occurrence, and the latter seeking to
determine propositions—implied by the evidence—that are similar, in some sense, to a hypothesis
of interest. In other words, beyond accidental domain-specific relations, both types of methods are
needed to analyze and clarify the significance of imprecise and uncertain information.
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2 APPROXIMATE REASONING AND POSSIBLE WORLDS

Our point of departure is the model-theoretic formalisms of modal logics. Let us assume that
declarative statements about the state, situation, or behavior of a real-world system under study
are symbolically represented by the letters of some alphabet

o= {p,q,r,..-},

which are combined in the customary way using the logical operators -,V,A,— and «~ (to be
interpreted with their usual meanings) to derive a language Z(i.e., a collection of sentences).
Furthermore, we augment this language by use of two unary operators N and II, called the ne-
cessity and poesibility operators, respectively, having usage governed by the rule

If ¢ is a sentence, then N¢ and II¢ are also sentences,
introducing the ability to represent different modalities for the truth of propositions.
A model for this propositional system is a structure consisting of three components:

1. A nonempty set of possible worlds & introduced to represent states, situations, or behaviors
of the system being modeled by our sentences. In what follows we will refer to this set as the
universe of discourse, or universe, for short.

We will also need to consider a nonempty subset & of the universe &, which is introduced
to model] the set of conceivable worlds that are consistent with observed evidence. This set
(possibly equal to the whole universe &) will be called the evidential set. Throughout this
note, we will assume that evidence about the world is always given by means of conventional
propositions that allow to determine, without ambiguity, whether a possible world either is or
is not a member of the evidential set.?

2. A function (called a valuation) that assigns one and only one of the truth values true or false
to every possible world w in the universe I/ and every sentence ¢ in the language. Assignment
of the truth-value true to a pair (w, ¢) will be denoted wi ¢ (i.e., ¢ is true in the world w).

In what follows, we will use the same symbols to describe subsets of possible worlds and the
propositions that are true only in worlds that are members of such subsets. For example, the
symbol & will be used to denote both the evidential set and the proposition that asserts the
validity of the corresponding evidential observations. Using this notation, for example, we
will write wi & to indicate that the world w is compatible (i.e., logically consistent) with the
evidence &.

Furthermore, we will use the symbol %, introduced above as a set of well-formed sentences,
to denote aiso the power sei of the universe &. Rigorously, subsels of & strictly correspond
to the classes of equivalence of the sentence set & that are obtained by equating logically
equivalent sentences. In the same simplifying vein, we will drop also the customary distinction

2For the sake of simplicity, fuzzy evidential facts such as “Tom is rich,” usually considered in fuzzy logic, will not
be treated in this note. The meaning of such assertions will be discussed in a forthcoming paper.




between sentences—the linguistic expressions of something that may be true or false—and
propositions—the actual things being asserted.

3. A binary relation R, between possible worlds, called the accessibility, conceivability, or reach-
ability relation, ir:troduced to model the semantic of the modal operators N and II.

It is not necessary to review here the well-known axioms(21] that restrict the assignment of
truth values to well-formed sentences according to the rules or propositional logic. To facilitate
comprehension of our formalism, we need to recall solely the rules that constrain assignment of
truth values to sentences formed by prefixing other valid expressions with the modal operators, i.e.,

1. The sentence ¢ i3 necessarily true in the possible world w (i.e., w N¢) if and only if it is true
in every world w' that is related to the world w by the relation R.

2. The sentence ¢ is possibly true in the possible world w (i.e., wiII¢) if and only if it is true
in some world w' that is related to the world w by the relation R.

If, for example, the n stion R relates worlds that share the same (possibly empty) subset of true
sentences of the prespecified set of expressions

F = {¢h¢2v“'}1

i.e., R(w,w') if and only if any sentence ¢ in F is either true in both w and w' or it is false in both
w and w', then the resulting system has an “epistemic” interpretation that regards related possible
worlds as “being possible for all we know” (i.e., observed evidence, corresponding to a subset of
5 is the same for both worlds). In this case, the necessity operator N corresponds the epistemic
operator K of epistemic logics, with the corresponding system having the properties of the modal
system S5, which was used—in the context of probability theory—as the semantic basis for the
Dempster-Shafer calculus of evidence [35].

If, on the other hand, the original interpretation of logical necessity—corresponding to a relation
R that is equal to W x U, i.e., that relates every pair of possible worlds—is given to the operator N,
then a proposition is necessarily true if and only if it is true in every possible world.

If the relation R is chosen as
R=¥¢¥ x¥,

then this interpretation may be used to characterize approximate reasoning problems as those where
a hypothesis of interest is neither necessarily true nor necessarily false in worids in the evidential
set &, reflecting the inability of conventional deductive techniques to unambiguously determine the
truth-value of the hypothesis.3

In those problems, in spite of this fundamental impoesibility, we may resort to approximate rea-
soning methods to describe various properties of the evidential set &. For example, the probabilistic
structures utilized by various probabilistic reasoning approaches typically characterize relations of
the form

WIHAE ) p(-IINE),

between the “measures” of the subsets of the evidential set & where a hypothesis H is true or false,
respectively.

3The notion of approximate reasoning problem is often extended to encompass situations where deductive tech-
niques cannot always be used because of practical limitations on computational resources.




L

Our aim will be to study how other structures, defining a metric or distance in the universe U,
may be used to describe the nature of the evidential set. To do so, we will assign a different meaning
to the accessibility relation, giving it an interpretation that regards related worlds as “similar” or
“close” in some sense. We will require, however, a scheme that is richer than that provided by a
single relation so that we can extend modal notions and derive semantics bases for fuzzy logic, which
relies on concepts of degrees of matching or closeness expressed by real numbers between 0 and 1.

In what follows we will use the symbols => and <> to denote strong implication and equivalence,
respectively. A proposition ¢ strongly implies p (denoted ¢ = p) if and only if p is true in any world
where ¢ is. Similarly, p is logically equivalent to ¢ (denoted p <» ¢) if and only if p and ¢ are true in
the same subset of worlds of i.

Following traditional terminology, we will say also that a proposition p is satisfiable if there exists
a possible world p such that w - p.



3 EXTENDED MODALITIES

We turn first our attention to the problem of generalizing modal logic formalisms to explain the
structures and functions of fuzzy logic.

A number of authors have studied various relations between fuzzy and modal logics. Lakoff [24],
Murai et al.[28], and Schocht [36] have proposed graded generalizations of basic modal constructs.
Dubois and Prade [13,14] have also explored analogies between these nonstandard logics. In a recent
paper (12}, they have developed, in addition, a modal basis for possibility theory by means of the
introduction of fuzzy structures into modal frameworks with the goal of deriving proof mechanisms
that may be used in possibilistic reasoning.

The goal for the model presented in this note is somewhat different from the objectives guiding
those efforts. We will seek explanations for possibilistic constructs on the basis of previously existing
notions rather than generalizations of modal frameworks by means of fuzzy constructs. The model
presented here is not based on the use of graded notions of possibility and necessity as primitive
—and, by implication, easy to understand—structures. The foundation for this model is provided
by a generalization of the accessibility relation, which is given a simple interpretation as a measure
of resemblance and proximity between possible worlds.

We will extend the notion of accessibility relation to encompass a family of nonempty binary
relations R, that are indexed by a numerical parameter a between 0 and 1. These relations, which

are nested, i.e,,
Ra C Rs, whenever < a,

are introduced to represent different degrees of similarity, using a scheme that is akin to that used
by Lewis in his study of counterfactuals[25]. The family of accessibility relations introduced here
differs from that proposed by Lewis, however, in its use of numerical indexes* and in the nature
of the overall modeling goals that, in Lewis’ formalism, are intended to represent changes of scale
induced by consideration of different restrictive statements.

3.1 Similarity Relations

To facilitate the definition of a family of accessibility relations we introduce a similarity function
S:UxU—[0,1],

assigning to each pair of possible worlds (w, w’) a unique degree of similarity between 0 (correspond-
ing to maximum dissimilarity) to 1 (corresponding to maximum similarity).

With the help of this function, we will then say that w and w' are related to the degree a,
denoted R,(w,v’), if and only if S(w,w') > a. In this way, the relations R, have the required
nesting property with Ry corresponding to the whole Cartesian product & x U (or, every possible
world is at least similar in a degree zero to every other possible world).

4We will later see that similarities may be measured using more general, nonnumeric, scales. For simplicity reasons,
we will avoid at this point the introduction of more general schemes that unnecessarily complicate the exposition.




Some properties are required to assure that the function S has the required semantics of a
metric relationship capturing the intuitive notion of similarity or “proximity.” It is first necessary
to demand that the degree of similarity between any world and itself be as high as possible, i.e.,

S(w,w)=1, foralwini.

This property assures that every one of the accessibility relations R, will be reflexive and, following
the nomenclature introduced by Zadeh for fuzzy relations [52], we will also say that the similarity
relation is reflexive.

Next, we will call for the function S to be symmetric, i.e.,
S(w,w') = S(v',w), for any worlds w and w' in U.

This is a very natural requirement of any relation intended to represent a relation of resemblance
between objects.

Finally, and most importantly, we will impose a form of transitivity requirement upon the simi-
larity function S that turns it into a generalized equivalence relation. The purpose of this restriction
is to assure that S has a reasonable behavior as a metric in the universe of possible worlds. It would
certainly be surprising if, for some similarity S, we were to be told that w and w' are very similar
and that v’ and w” are also very similar, but that w does not resemble w” at all. Clearly, there
should be a lower bound on the possible values of S(w, w") that may be expressed as a function of
the values of S(w,w') and S(w’,w"”). We will express such a constraint using a numeric operation,
denoted @, that takes as arguments two real numbers between 0 and 1 and that returns another

number in the same range, i.e.,
@®: [0,1] x [0,1] = [0,1],

in the form of the inequality
S(w,w") > S(w,v')® S(v',w"),

assumed valid for any worlds w, w’ and w" in the universe//. Recurring again to a modal terminology,
the above transitivity coustraint, which will be called ®-transitivity, may be rewritten in relational

form as
Rﬂ@ﬁgRGORﬁ) forall0<e,f<1,

making obvious its generalication of the conventional definition of transitivity for ordinary binary

relations, i.e.,
RC RoR.

Since the role of @, through recursive application, is that of providing a lower bound for the
similarity between the two end members wy and wy, of a chain of possible worlds [w;,wg, . .,w,.] ,
it is obvious that the operation ® should be commutative and associative. Furthermore, it should
also be nondecreasing in each argument, as it is reasonable to ask that the desired lower bound be
a monotonic function of its arguments. Finally, it is also desirable to ask that

a®l=1®a=a,

i.e., that the values of the similarities of two indistinguishable objects to a third should be the same.
These requirements are equivalent to demanding that the operation ® be a triangular norm(37),
orT-norm, for short.




Triangular norms, originally introduced in the theory of probabilistic metric spaces to treat
certain statistical problems, play a distinguished role in [0, 1}-muitivalued logics [1,11,17,31] as the
result of imposing reasonable requirements upon operations that produce the truth value of the
conjunction of two expressions as a function of the truth values of the conjuncts. Furthermore,
generalized similarity relations (called B-R relations by Zadeh [54]) also have an important function,
to be examined further later in this note, in the generalization of the inferential rule of modus
ponens[43,10). Our axiomatic derivation for the requirement that ® be a T-norm is based, however,
solely on metric considerations, applied here to a space of possible worlds, but is valid in general
metric spaces.

From the axioms of triangular norms, it is easy to see that
a®f < min(a, §),

showing that the minimum function, itself a T-norm, is the largest element in this class of operations.
Its minimal element, on the other hand, is the noncontinuous function @ defined by

a, =1,
a®f={ B8, fa=1,
0, otherwise.

Every symmetric and reflexive relation is ®@-transitive for this triangular norm, which is, therefore,
of little practical utility.

In what follows, we will also impose a most reasonable additional assumption of continuity of
@® with respect to its arguments (i.e., why should there be a jump in the value of a lower bound
provided by @ when the values of its arguments are slightly changed?). The class of continuous
T-norms does not have a minimal element, although under certain additional assumptions (requiring
T-norms to be also J-copulas(37]), the inequality

max(a+-1,0)<a®p

also holds true, showing that certain important continuous T-norms lie between that of the R;-logic
of Lukasiewicz [17] and that of the original fuzzy logic proposed by Zadeh [53].

Continuous triangular norms pley a significant part in the theories of pattern recognition and
automatic classification. The author [33] proposed the use of generalized similarity relations based
on the T-norm of Lukasiewicz to generalize existing classification techniques—based on the mapping
of a similarity function into a conventional equivalence relation—to the fuzzy domain—by mapping
these T-norms (called likeness relations by Ruspini) into generalized fuzzy partitions. Bezdek and
Harris [3] independently studied axiomatic approaches to cluster analysis based on the use of several
continuous T-norms.

The author has also studied [34] the possible relation between the muitivalued logic and similarity
related aspects of T-norms, and suggested that the degrees of similarity between two objects A and
B may be regarded as the “degree of truth” of the vague proposition

“A is similar to B.”

Having argued that S should have the structure of a generalized equivalence relation, we will
assume, mainly for reasons of simplicity, that the function S is the dual of a “true” distance, i.e.,
that

S(w,w’)=1ifandonly if w=w'.




This restriction, which is not substantial, 1s introduced primarily to assure that different possible
worlds may be distinguished by means of the function S. Otherwise, the equivalence relation that
relates two worlds w and v’ if and only if S(w,w') = 1 may be used to partition our universe / into
“indistinguishable” nonintersecting classes—indicating that our metric cannot discriminate between
significant differences in system state.

Before closing our presentation of generalised similarity relations, it is important to remark upon
the close relation between the notion of similarity and that of distance. If a function é is defined in
terms of a similarity function S by the simple relation

é=1-8,

then it is easy to see that the function & has the properties of a metric or distance. This is evident
if the operation @ corresponds to the T-norm of Lukasiewicz, since the transitivity condition is
equivalent to the well-known triangular inequality, i.e.,

§(w,v") < §(w,v') + §(w',v").
If other T-norms are used, even stronger inequalities hold, with the so-called “ultrametric inequality”
§{w, w") < max (§(w, '), §(v',w"))

being valid for the T-norm of Zadeh. In this case, each of the relations in the family R, (known in
fuzzy set theory as the a-cut® of the similarity S) is a conventional equivalence relation. This fact
was exploited, prior to the introduction of fuszy set theory and fuzzy cluster analysis, by a variety
of clustering proce:lures of the “single-link” type [22,40].

32 Possible and Necessary Similarity

Our semantic formalization needs require the introduction of constructs to indicate the extent by
which a concept exemplifies, illustrates, or is an adequate model of another concept. Our interpre-
tations shall, therefore, be oriented toward characterization of the degree by which a concept can
be said to be a good example of another concept with the purpose of defining vague concepts by
means of measures of proximity between defined and defining concepts. In our treatment, each of
the multiple “definiens” will be a conventional proposition corresponding to a subset of possible
worlds. It is conceivable, however, that new vague concepts mxght also be described by indicating
their metric relations to other vague concepts.

The required constructs are based on the idea that whenever p and ¢ are propositions such that
p = g, then any p-world is an “example” of a g-world. This basic notion will be generalized by the
introduction of modal structures that define to what degree possible worlds that satisfy a certain
proposition ¢ fit a vague concept. Some of those possible worlds are “paradigmatic” of the vague
concept, i.e., they fit it to a degree equal to 1 in the same sense that we may say, for example, in an
absolute (i.e., nongraded) sense that somebody whose height is 7 ft is definitely “tall.” If we use a
notion of graded fitness, however, certain worlds will fit the concept to a degree, i.c., they resemble
(or are similar) to some paradigmatic example of the vague concept.

The conventional interpretation of possibility needs to be modified, therefore, to capture the idea
that a particular possible world is similar in some degree to another world that satisfies a “reference”
proposition.

5The a-cut of a fuzzy set u: U ~ [0,1] is the conventional set of all points w such that u(w) > o. A similar
concept is defined for relations as subsets of a product space U x V.




More generally, however, we will be interested in relations of similarity between pairs of subsets of
possible worlds rather than between pairs of possible worlds. This requirement complicates matters
considerably since we will be forced to consider both the “validity” of a proposition p in some world
where another proposition g is true, as well as its applicability in every world where g is true. In
the former case, we will care about the existence of g-worlds that are similar to some degree to some
p-world, while in the latter we will be concerned with the size of the minimum neighborhood of p
(as a subset of the universe &) that fully encloses the subset g.

This dual concern for what may possibly apply and what must necessarily hold—an essential
aspect of modal logic—is typical of situations where relationships between ensembles of objects are
described in terms of relations between their members. In the probability calculus, for example,
knowledge of probabilities over certain families of subsets provides “sharp” upper and lower bounds
(called inner and upper probabilities, respectively) for the probabilities of other subsets—an impor-
tant fact in the extension of set measures to larger domains [19]. The role and properties of these
bounds in the Dempster-Shafer calculus of evidence is well-known, having been described in the
original paper of Dempster [8], related to concepts of modal logic by Ruspini [35], and being also the
subjects of considerable formal study [7] as mathematical structures.

Analogies between the role of probabilistic bounds (i.e., bounds for probability values) and pos-
sibility /necessity distributions—shown below to have play a similar part with respect to metric
structures—have been the source of much of the confusion about the need for possibilistic schemes.
Each upper/lower-bound pair, however, leads to a substantially description of the nature of a subset
of possible worlds, being, in either case, measures that arise naturally when pointwise properties are
extended to set partitions. General properties of these measures have been studied by Dubois and
Prade [11] in the context of approximate reasoning and in other regards by Pavlak [30).

Our generalizations of the notions of possibility and necessity are related to the so-called de re [21]
interpretation of the statement “If g, then p is possible” as the modal propositional relation

g =Ip.

We will say that the proposition g implies, or is a necessary model of, the proposition p to the
degree o if and only for every g-world w there exists a p-world w’ that is at least a-similar to it,
(i.e., S(w,w") > a), or equivalently, whenever

g=I,p.

Similarly, we will say that the proposition ¢ is consistent with, or is a possible model of, the
proposition p to the degree o © if and only there exist a g-world w and a p-world w' that are at least
a-similar, or equivalently, whenever

—1(p = -l'Iaq) .

The similarity function that we have introduced in the universe i provides us with a simple
mechanism to quantify both the extent of “inclusion” and that of the “intersection” between pairs
of subsets of possible worlds.”

6Note that our characterizations of both possibility and necessity distributions are based in the modal possibility
operators Il,.

7For reasons that by now should be evident, we will not need to introduce a concept of “unconditioned poasibility”
although it would be easy to do 8o using ¢ = U. Being concemned with the power of certain propositions to exemplify
other conditions, we will not have much occassion to deal with the strength of tautologies in that regard.
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3.3 Possibilistic Implication and Consistence

The notion of subset inclusion and its related concept of set identity are of central importance in
deductive logic, since subsets of possible worlds are formally equivalent to propositions with subset
inclusion and identity corresponding to logical implication and equivalence, respectively. These
propositional relationships are the basis of derivation rules such as the modus ponens. The notion
of intersection plays a similar role in modal analyses because of its ability to express the potential
validity of a statement.

Classical accounts, however, recognize only two “degrees” of inclusion corresponding to the cases
when either a set g is a subset of another set p or it is not, with a similar dichotomy applying to
degrees of intersection. Our generalisation exploits the metric structures defined between sets of pos-
sible worlds by introducing measures that describe a subset as enclosed in a neighborhood (of some
gize) of another set while intersecting another of its neighborhoods (of “smaller” size).® The problem
of measuring the “size” of those neighborhoods is the subject of our immediate considerations.

33.1 Degree of Implication

Our definition of partial implication between propositions was based on conditions that determine
whether, given two propositions p and g, one of them implies the other to the some value a. In
particular, since every world w is always similar in a degree that is at least equal to zero to any
other world w', it is always true that any proposition g implies any other proposition p to the degree
zero. It is often the case, however, that the degree of implication between p and g is at least equal
to some certain positive value a.

If we want to generalize procedures based on inclusion relationships, such as the modus ponens,
in an efficient fashion, we will need measure the “optimal” (or maximum) value of the parameter
such that ¢ implies p to the degree a. This value is a measure of the degree by which the set of all
p-worlds must be “stretched” to encompass the set of all g-worlds. The least upper bound of the
values of the similarities between any g-world «/ and some p-world w (depending, in general, from
w') is given by the degree of implication function:

Definition: The degree of implication of p by ¢ is the value
I(plq) = inf sup S(w,v’).
w'te wkp
Defined in this way, the degree of implication X(p|g) is a measure of the “minimal amount” of
stretching required to reach a p-world from any g-world, in the sense that if 8 <I(p|g), then
q= pr.

Furthermore, o is the largest real value for which the above statement may be made.

As the following theorem makes clearer, this function provides the bases for the generalization
of the modus ponens. This truth-derivation procedure may be thought of as an expression of the
nesting relationships that hold between the sizes of neighborhoods of such subseis.

81t is important to recall that, due to our reliance on similarity rather than on the dual notion of dissimilarity or
distance, high values of & correspond to low values of “stretching” or to smaller set neighborhoods.
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Theorem: The degree of implication function,
L xZ~[0,1],
has the following properties:
(i) If p=>r, then I(p|q) <I(r|q)
(i) If g = r, then I(p|q) 2 I(p|r)
(iii) I(plq) 2 X(p| r)@X(r |q)

where p,q and r are any satisfiable propositions.

Proof: The first two properties are an immediate consequence of the definition of degree of impli-
cation. To prove the third, observe that by definition of similarity

S(w,v') > S(w,w")® S(v",w')

for any worlds w, w’, and w”.

Taking the supremum on both sides of this inequality with respect to all worlds w I~ p, it follows,
because @ is continuous, that

sup S(w,v') > [sup S(w,v")] ® S(v",v').
whkp whkp

Since this expression is true, in particular, for all worlds w” I r, it is true that
sup S(w,vw') > [ inf sup S(w,v")] ®S(¥,v')
whp w'bkr whp

= I(p|r)®S(w,v'),

where 1b is any world such that @ I r.
From this inequality, it follows, since @ is continuous, that

sup S(w,u') > I(p|r)® [sup S(u,v')].

wkp ke
Taking now the infimum on both sides of this expression over all worlds v’ such that v’ I ¢, it is
easy to see, using again the continuity of ®, that

inf sup S(w,w') 2 I(p|r)@® [ inf sup S(®,v')],
v'rg wkp wikg Wby

proving the @®-transitivity of I. |

Note, that since I(g|g) = 1 for any proposition ¢, the following statement is also true:
Corollary. If p and ¢ are propositions in &, then

I(plq) = sup [IpIr)@I(r|g)].
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Notice also that if I(p|¢) = 1, then

sup S(w,v') =1, foralluw'tgq.

whkp
Under minimal assumptions (assuring that the supremum operation is actually a maximization),
this relation is equivalent to stating that ¢ strongly implies p, or that any g-world is also a p-world.

The nonsymmetric function I measures the extent by which every world w' in a certain class
resembles some world w (dependent of w') in a reference class, possibly explicating the nature of
the nonsymmetric assessments [45] found in psychological experimentation when subjects are asked
to evaluate the degree by which an object “resembles” another. The results obtained in those
experiments suggest that human beings, when assessing similarity between objects, use one of them
(or a class of similar objects) as a reference landmark to describe the other. Such assymmetries might
be explained by noticing that, in general, I(p|q) # I(¢|p), indicating that the stronger stimulus
might generally be used to construct a reference claas, which is then used to describe other stimuli.

The degree of implication of one proposition by another can be readily used to generate a measure
of similarity between propositions that generalizes our original measure of similarity between possible
worlds: R

S(p,q) = min [I(p{q), I¢|p)],
quantifying the degree by which the propositions p and ¢ are equivalent.

It may be readily proved [44], from its definition and from the transitivity property of I that Sis
a reflexive, symmetric, and @-transitive function between subsets of possible worlds. This similarity
function is the dual of the well-known Hausdorff distance, defined between subsets of a metric as a
function of the distance between pairs of their members [9), which is given by the expression

8(A, B) = max [( sup inf &(z,y)), (sup inf 6(:,11))] .
2EA y€EB £€B yEA

The result expressed by the transitive property of the degree of implication may be stated using
modal notation in the form

¢g=>I,r and r=>Ilsq implythat ¢=>Il,epsp,

as the simplest form of the generalized modus ponens rule of Zadeh.

The relationship between this rule and the classical modus ponens is easier to perceive if it is
remembered that classical conditional propositions of the form “If g, then p,” simply state that the
set of g-worlds is a subset of the set of p-worlds. Such relationships of inclusion may also be described
in metric terms by saying that every g-world has a p-world (i.e., itself) that is as similar as possible
toit.

Logic structures, however, only allow us to say that either g implies p or that ¢ implies its negation
—p, or that neither of those statemeants is true. By contrast, similarity relations allow measurement
of the amount by which a set must be “stretched” (as illustrated in Figure 1) to enclose another
set. Using such metrice, we may describe the generalized modus ponens as a relation between the
stretching required to reach p from any point of the set r, the stretching required to reach r from
any point of the set ¢, and the stretching required to reach p from any point of the set g¢.

In Section 5 we will derive alternative expressions for the generalized modus ponens that allow
to propagate both measures characterizing degree of implication and degree of consistence; a dual

13




Figure 1: The Generalized Modus Ponens.

concept that ;lays, with respect to the notion of possibility, the function that is fulfilled by the
degree of implication function with respect to necessity. In those derivations, by introduction of
sharper bounds for certain conditional concepts, we will also be able to improve the quality of the
bounds provided by generalized modus ponens rules while being closer in spirit to its usual fuzzy-logic
formulation.

3.3.2 Degree of Consistence

A notion that is dual to that of degree of implication is given by a function that measures the point-
wise proximity between pairs of possible worlds from an “optimistic” point of view characterizing
the degree by which statements that are true in some worlds may apply on others. By contrast, the
degree of implication measures the exient by which statements that are true in p-worlds must hold
in g-worlds.

Definition: The degree of consistence of p and ¢ is the value

C(plq) = sup sup S(w,w').
w'kg whp
An immediate consequence of this definition that C(- | ) is a symmetric fizuction that is increas-
ingly monotonic in both arguments (with respect to the = ). Ii is also easy to see that the values
of the degree of consistence function are never smaller than the corresponding values of the degree
of consistence function,

I(rlg) < C(rl9),

as the amount of stretching required to reach p from some “convenient” g-world is smaller (i.e.,
higher values of S) than that required to reach p from any ¢-world. In general, however, the degree
of consistence function is not transitive, preventing the statement of a “compatibility” counterpart of
the generalized modus ponens rule. Its relationship with the degree of implication function expressed
by the expression
C(p|q) = sup I(p|w') =sup I(g|w)
w'kq whkp

will permit us, nonetheless, to derive a useful bound-propagation expression.
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4 POSSIBILITY AND NECESSITY DISTRIBUTIONS

This section presents interpretations of the major constructs of fuzzy iogic —possibility and necessity
distributions—in terms of similarity-based structures. Possibility and necessity distributions are
functions that measure the proximity of either all or some of the worlds in the evidential set to
worlds in other sets that are employed as reference landmarks.

The role played by possibility and necessity distributions is similar to that performed by lower
and upper bounds of probability distributions (or by the belief and plausibility functions of the
Dempster-Shafer calculus of evidence) with respect to probability distributions. The essential differ-
ence between these bounds and those provided by possibility /necessity pairs lies in the fundamentally
dissimilar character of what is being bound—metric structures relating pairs of worlds in one case;
measures of set size, on the other. Furthermore, in the model of possibilistic structures that is
presented in this note necessity (possibility) distributions are any lower (upper) bounds of certain
metric functions rather than its “best” or “sharpest” bounds. The operations of fuzzy logic allow
computation of bounds for some of these measures as a function of bounds of other measures.

4.1 Inverse of a Triangular Norm

When working in ordinary metric spaces, it is often convenient to express the conventional statement
of the triangular inequality, i.e.,

§(w,v') < §(w,w") + 6(v",v'),

in the equivalent form
6("’9 w,) 2 |6(w)w") = 6(w'1 w") ' ’

which utilizes a form of inverse (i.e., the substraction operator ) of the function used to express
the original inequality (i.e., the addition operator +). This notion of inverse may be directly gener-
alized [37] to provide us with the tools required to define possibility and necessity functions and to
derive useful forms of the generalized modus ponens involving either type of these constructs.
Definition: If ® is a triangular norm, its pseudoinverse @ is the function defined over pairs of
numbers in the unit interval of the real line, by the expression

a@b=sup{c: b®c<a}.

From this definition it is clear that a@b is nondecreasing in ¢ and nonincreasing in b. Furthermore,
a@0=1and a@1 = a for any a in [0,1]. Other important properties of the pseudoinverse function
are given in the works of Schweizer and Sklar [37], Trillas and Valverde [43), and Valverde [44).

Examples of the pseudoinverses of important triangular norms are given in Table 1 together with
the corresponding conorms.
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Table 1: Triangular Norms, Conorms, and Pseudoinverses

Name T-Norm a®b | Conorm a®b | Pseudoinverse aQ b
Lukasiewicz | max(a+5—1,0) | min(a+b,1) min(l +a-b,1)
Product ab a+b-—ab ofb, ifb >a.
1,  otherwise
Zadeh min (a, b) max (a, b) a, ifb>a
1, otherwise

42 Unconditioned Necessity Distributions

We introduce first a family of functions that bound by below the value of the similarity between
any evidential world in & to some world where another proposition p is true. These unconditioned
necessity distributions are lower bounds for values of the degree of implication I(p| &), which
measures the extent by which statements that are true in a reference set (i.e., the subset of p-worlds)
must hold in the evidential set.

As observed before, whenever I(p} &) = 1, it is true, under minimal assumptions, that the
evidential subset & is a subset of the set of all p-worlds, or that p necessarily holds in &. If, on
the other hand, I(p| &) = a < 1, then p must be stretched a certain amount—with smaller o
corresponding to larger stretching—in order for one of its neighborhoods to encompass .

Definition: If & is an evidential set, then a a function Nec(-) defined over propositions in the
language 2 is called an unconditioned necessity distribution for & if

Nec(p) <I(p| ¥).

4.3 Unconditioned Possibility Distributions

The dual counterpart of the unconditioned necessity distribution is provided by upper bounds of
the degree of consistence C(p|&). Whenever C(p| &) = 1, it is easy to see that, under minimal
assumptions, there exists a p-world w that is in the evidential set & or, equivalently, that p (for all
we know) is possibly true. If, on the other hand, C(p| &) = a < 1, then there exists a neighborhood
(of “size” @) of some p-world that intersects the evidential set.

Definition: If & is an evidential set, then a function Poss(-) defined over propositions in the
language & is called an unconditioned possibility distribution for & if

Poes(p) > C(p| ¥).

Since the value Poss(p) of any possibility function Poss(-) is an upper bound of the value
C(p| &) of the degree of consistence, while the corresponding value Nec(p) of any necessity function
Nec(-) is a lower bound of I(p | ), it follows that values of a possibility function can never be smaller
than the corresponding values of any necessity function, i.e., that

Nec(p) < Poss(p) .

16




4.4 Properties of Possibility and Necessity Distributions

In this subsection we will develop similarity-based interpretations for some basic formulee of possi-
bilistic calculus. These expressions may be thought of as mechanisms that allow the extension of a
partially known possibility distribution. For example, the property that

max( Poss(p), Poss(g)) > C(pV¢|¥),

which is proved below, is the similarity interpretation of the standard rule that allows computation
of the value of the possibility value of a disjunction in fuzzy logic, i.e.,

Poss(pV ¢) = max(Poss(p), Poss(q) ) .

Theorem: If p and g are propositions, and if the quantities Poss(p), Poss(g), Nec(p), and Nec(q)
are such that

Nec(p) < I(r|¥), Nec(gq) < I(¢1®),
Poss(p) > C(pl¥), Poss(q) > C(¢]¥),

then the following statements (similarity-based interpretations of the basic laws of fuzzy logic) are
valid:

max(Nec(p), Nec(q)) < I(pV¢|¥),
max(Poss(p), Poss(g)) > C(pV¢|¥),
min(Poss(p), Poss(g)) > C(pAgl¥).

Proof: Note first that since C(:|-) is nondecreasing (with respect to the = order) in its argu-
ments, it is true that

C(p|®)

> C(pAql®),
2 C(¢l¥)

C(pAgl¥),

Poss(p) >
Poss(q) 2
whenever p A ¢ is satisfiable, from which it is easy to see that

min( Poss(p), Poss(g)) > C(pA¢| ¥).

The corresponding result is obvious when p A ¢ is nonsatisfiable.
A similar argument shows, for necessity functions, that

max(Nec(p), Nec(g)) <I(pV¢l|¥).

To prove the disjunctive law for possibilities, notice that if f is any function mapping elements
of a general domain D into real numbers, then

sup{f(d):deAUB}=max[sup{f(d):dEA},sup{f(d):deB}].
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From this equalitv, it is easy to see that if Poss(p) and Poss(g) are upper bounds of I(p| &)
and I(g| &), respec .vely, then

max( Poss(p), Poss(g) ) > C(pVq| ¥),
completing the proof of the theorem. |
Note, however, that another law commonly given as an axiom for necessity functions does not hold
valid in our interpretation. As illustrated in Figure 2, the distance from a point to the intersection

of two sets may be strictly larger than the distances to either set (i.e., the similarity will be strictly
smaller). In general, therefore, it is

min(Nec(p), Nec(q)) £1(pAq| ¥),
making invalid, under this interpretation, the conjunctive law for necessities [11]

Nec(p A ¢) = min (Nec(p), Nec(q)) .

Figure 2: Failure of Conjunctive Necessity.

We may also note in this regard that the similarity-based model that is discussed here does not
make use of the notion of negation either as a mechanism to generate dual concepts or on its own
right as an important logical concept. It is the intent of the author to study, in the immediate future,
alternative models where notions of negation and maximal dissimilarity play more substantive roles.

4.5 Conditional Possibilities and Necessities

The concepts of conditional possibility and necessity are closely related to the previously introduced
unconditioned structures. These structures may be thought of as a characterization of the proximity
of a worid w to some or ali of the worlds where a proposition p is true, given that w is similar in
the degree 1 to the evidential set & (i.e. w &). With this fact, in mind, we could have used the
somewhat baroque formulation

C(pli")=:g1;r (I(r|w) o I(¥ |w)]
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to define unconditioned possibility distributions—a rather unnecessary effort if we consider that
I(& | w) = 1 whenever w I &, showing its obvious equivalence to the simpler form used in Sec-
tion 3.3.2 above. In spite of such observation, the above identity is important in understanding
the purpose of the definitions given below. Those definitions interpret conditional possibilities and
necessities as a measure of the proximity of worlds on the evidential set & to (some or all) worlds
satisfying a (conditioned) proposition p relative to their proximity to (some or all) the worlds that
satisfy another (conditioning) proposition g.

The mechanism used to specify that relationship, which is closely related in spirit to results of
Valverde [44) on the structure of indistinguishability relations, is based on the pseudoinverse function
introduced in Section 4.1. The basic idea used by these definitions is also illustrated in Figure 3,
where, from the perspective of the evidential world w, the similarity between the p-world u and the
g-world v is estimated by means of an inequality that generalizes the “absolute value” form of the
triangular inequality, i.e.,

§(u,v) > | §(u,w) — 8(v,w)|,

to its similarity-based form

S(u,v) < min [ S(u,w) @ S(v,w), S(v,w) @ S(u,w)].

Figure 3: Similarities as Viewed from the Evidential Set.

The required interplay between similarities to conditioning and conditioned sets is captured by
the following definitions. '

Definition: Let & be an evidential set. A function Nec(:|-) mapping pairs of propositions in the
language & into [0,1] is called a conditional necessity distribution for & if

Nec(glp) < il:i;’ [T(glw) o L(p|w)],

for any propositions p and ¢ in &£.
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Definition: Let & be an evidential set. A function Poss(-|') mapping pairs of propositions in the
language & into (0,1] is called a conditional possibility distribution for & if

Poss(qlp) > :\:g [I@lv)oI(p|w)],

for any propositions p and ¢ in 2.

It is easy to see, from these definitions, that the values of a conditional necessity distribution are
never larger than the corresponding values of any conditional possibility distribution, i.e.,

Nec(glp) < Poss(q|p).

Furthermore, since I(-|-) is @-transitive, then

I(glw) 2 (¢ |p) @ I(p | w).

From this inequality and the definition of pseudoinverse of a triangular norm, it is easy to see that
any necessity function satisfies the inequality

Nec(qlp) 2 (¢ p),

i.e., the bounds for necessity functions provided by the evidential-set perspective are stronger than
those that can be obtained by direct use of the degree of implication function.?

Note also that if Nec(p) = 1, indicating that I(p| &) = 1, and if Nec(g|p) = 1, then the above
definition of conditional necessity shows that I(g| &) = 1, indicating that Nec(¢q) may be taken
to be equal to 1, thus generalizing the well-known axiom (consequential closure) of certain modal
systems (e.g., the system T, as discussed in Hughes and Creswell [21])

If Np and N(p — ¢), then Ng.

The definitions above can also be further interpreted as a way to compare the similarities between
evidential worlds and those in the conditioning and conditioned sets by noting that whenever

Kg|w) 2 1(p|w),

for every evidential world w - &, then Nec(g|p) may be chosen to be equal to 1. Similarly, if
there exists some world w - & where this inequality holds, then it is Poss(glp) = 1. In either case,
however, the maximum value for the conditional distribution (i.e., 1) is reached when the proximity
of one evidential world w—in the case of possibilities—or of every one of them—in the case of
necessities—to a world w, in the conditioned set exceeds the proximity of w to the conditioning set
p. In either case, once again recurring to an apparent notational overkill, we may state this fact by
means of the identity function 7 in the unit interval:

7 [0,1]~[0,1):a+ «,

in the form
I(gjw) 2 r(I(plw)),

9 A dual inequality for possibilities involving C(g|p) does not hold in general. It is easy to see, however, that
Ciel®)ol(pl &) is a possibility function for g given p.
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for some w I & in the case of possibilities, with the same inequality holding for every w F & in the
case of necessities. We may, however, conceive of other functions

7: [0,1] = [0,1}: &~ y(a),
with 4(a) 2 a to specify a stronger form of implication, as illustrated in Figure 4, i.e.,
I(glw) 2 v(I(p|w)).

Similarly, one may also conceive of functions ¢ with ¥(a) < a that may be used to model weaker
forms of implication.

Kaiw)

Kpiw)

Figure 4: Examples of Possible Similarity Relationships between Conditioning and Conditioned Sets.

Possibilistic calculi based on the propagation of truth-mappings of this type, first proposed by
Baldwin [2], are utilized in the RUM [4,5) and MILORD[18] expert systems. The particular case
when 4 = 7, stating that every a-cut of the conditioning proposition p is fully enclosed (in the
conventional sense) in the a-cut of the conditioned proposition ¢, has been called the truth mapping
in the fuzzy logic literature.

The primary purpose of conditional distributions, however, is to provide a quantitative measure
of the strength by which one proposition may be said to imply another with a view to extend
inferential procedures by means of structures that superimpose the topological notion of continuity
upon a logical framework concerned with propositional validity.
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5 GENERALIZED INFERENCE

The major inferential tool of fuzzy logic is the compositional rule of inference of Zadeh [53], which
generalizes the corresponding classical rule of inference by its ability to infer valid statements even
when a perfect match between facts and rule antecedent does not exist, i.e.,

P P
p — g to its “approximate” version p — q
q ¢

from

where p’ and ¢’ are similar to p and ¢, respectively. In this sense, the generalized modus ponens
operates as an “interpolation” (or, more precisely, as an “extrapolation”) procedure in possible-world
space.

Unlike the interpolation procedures of numerical analysis, however, which yield estimates of
function value, this extrapolation procedure approximates truth in the sense that it produces a
proposition that is both more general than the consequent of the inferential rule and resembles it
to some degree (which is a function of the degree by which p’ resembles p). The “extrapolated
conclusion,” however, is a correctly derived proposition, i.e., the result of a sound logical procedure
rather than of an approximate heuristic technique.

5.1 Generalized Modus Ponens

The theorems that are proven below are based on the use of a family 57 of propositions that
partitions the universe of discourse I in the sense that every possible world will satisfy at least one
proposition in 9.

Definition: If .97 is a subset of satisfiable propositions in % such that if w is a possible world in
the universe I, then there exists a proposition p in 9 such that w I p, then the family & is called
a partition of U.

These results make use of information such as the values of the unconditioned necessity (resp., possi-
bility) distributions for antecedent propositions p in the family 97 together with the values Nec(g|p)
(resp., Poss(g|p)) to “extend” the unconditioned distributions to the “consequent” proposition g.
In this sense, these findings interpret, in the same spirit used in the theorem of Section 4.4 for other
basic laws, the generalized modus ponens laws of fuzzy logic:

Nec(g) = B‘l;? [ Nec(qlp) ® Nec(p) | ,

Poss(q) = B;P [ Poss(g|p) ® Poss(p) ]
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Theorem (Generalized Modus Ponens for Necessity Functions): Let 5” be a partition of & and
let ¢ be a proposition. If Nec(p) and Nec(g|p) are real values, defined for every proposition p in
the partition 97, such that

Nec(p) < I(p|®),
Nec(qlp) < iIFlg[I(HW)@I(le)]s

then the following inequality is valid

sup [Nec(qlp) ®Nec(p)] < I(¢| ).

Proof: Note first that since @ is nonincreasing in its second argument and since

I(p| &) <I(p|w)

for every evidential world w, it is

Nec(glp) < inf [I(g|w)@I(p|w)] < inf [I(g|w)0I(p|¥&)].
wkH& wk¥

It follows then from the monotonicity and continuity of ® with respect to its arguments that

Nec(p)® Nec(glp) < I(pl8’)®w'm,_5[I(QIw)G)I(PIS’)]

inf [1(p|3)®(I(QIw)®I(pI3‘))]
inf I(q|w) '

wH¥

I(g| &)

IA

I

since
I(p|&)e(1(g|w) 01(p| ¥)) <X(g]w),
because of the definition of @ and the continuity of @.

Since the above inequality is valid for any proposition p in 97, the theorem follows. |

A dual result also holds for possibility functions.

Theorem (Generalized Modus Ponens for Possibility Functions): Let G® be a partition of &/ and
let ¢ be a proposition. If Poss(p) and Poss(g|p) are real values, defined for every proposition p in
97, such that

Poss(p) > C(p|¥),
Poss(glp) > til:l{)f [I(QI‘”)QI(le)]-

then the following inequality is valid

sup [ Posa(glp) ® Poss(r)] 2 C(a¥).

Proof: Note first that if w is an evidential world, then

Cp|¥)21(p|w).
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It follows then from the nonincreasing nature of @ with respect to its second argument that
Poss(glp). > L (1(g|w) @ L(p|w))
w
> sup [I(g|w)@C(p|¥)],
wk¥
and, therefore, that
Poss(¢|p) ® Poss (p) > sup [I(glv)eC(p|&)] ® C(p|¥).
w
Taking now, in the above expression, the supremum with respect to all propositions p in 97, it
is
sup [ Poss (¢lp) ® Poss (p) ] > sup [sup [1g]w)oCr#)] ® ctpm] BN
F F Lur¥

Note, however, that since .97 is a partition, there always exists a proposition p in 9” such that
C(p| &) =1 (ie., p “intersects” &) and, therefore,

sup | sup [I(¢|w) @C(p|¥)] ®C(p|8’)] 2 sup [I(g|w)oC(HI¥)] @ C(#|¥)
F Lur¥ wH¥
= sup I(q|w
oup 1y |w)
= C(q|¥). (2)
The thesis follows at once by combination of the inequalities (1) and (2). |

Finally, notice also that, although the theorems above have been characterized as duals, it is
not necessary that 9” be a partition for the generalized modus ponens for necessities to hold, while
the proof of its possibilistic counterpart relies on such assumption. It should be clear, however,
that richer propositional collections 9% would lead to better lower bounds for values of the degree
of implication I(g | &).

5.2 Variables

The ®-transitivity property of I is the essential fact expressing the relationships between the degrees
of implication of three propositions that were proven in the previous section. The statements of
these relations in most works devoted to fuzzy logic are made, however, using special subsets of the
universe of discourse that are described through the important notion of variable. Introduction of
this concept, which is also central to other approximate reasoning methodologies, permits us to make
a clearer distinction between similarities defined, in some absolute sense, from the joint viewpoint of
several respects and related proximity measures that compare objects (in our case, possible worlds)
from the marginal viewpoint of one or more variables.

In what follows, we will assume that only certain propositions, specifying the value of a system

variable belonging to a finite set
¥={X,Y2..},

will be used to characterize possible worlds.
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The propositions of interest are those formed by logical combination of statements of the type

“The value of the variable V is v,”

where V is in the variable set #] and where v is a specific value in the domain (V) of the variable
V.

We will also assume that, in any possible world, the value of any variable is a member of the
corresponding domain of definition of the variable. In the context of our discussion, we will not
need to make special assumptions about the scalar or numeric nature of the state variables, using
the notion in the same primitive and general sense in which it is customarily used in the predicate
calculus.

We will be specially interested in subsets, called variable-sets, of the universe i consisting of
worlds where the value of some variable V is equal to a specified value v. We will denote by [X = z]
(similarly [Y = y], etc.) the set of all possible worlds where the proposition “The value of the
variable X is z” is true. Clearly, the variable-sets in the collection

{[X=2]: zisin F(X)}

partition the universe into disjoint subsets. These collections have recently been used to charac-
terize the concept of rough sets[30], of importance in many information-system analysis problems,
including some that arise in the context of approximate reasoning. A similar notion has also been
used also to describe algorithms for the combination of probabilities and of belief functions [39).

To simplify the notation we will write
whkz, wky,...

as shorthand for wk[X = z], wk[Y =y], ..., respectively.

5.2.1 Possibilistic Structures and Laws

The usual statements of the laws of fuzzy logic are made, as mentioned before, through the use of
variables rather than by means of general symbolic expressions. It is customary, for example, to
speak of the possibility of the variable X taking the value z, to describe the value that a possibility
function for an evidential set & attains for the proposition [X = z].

In our model, we will say therefore, that a function
Poss(-): (X) — [0,1]
is a possibility function for the evidential set & and the variable X, whenever
Poss(z) > C([X =2]|¥),

for all values z in the domain 2(X). Similarly, we will say that Nec(-) is a necessity function for
X whenever

Nec(z) <I([X =2]| &),
for all values z in D(X).
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If possibility distributions are point functions defined in this way as point functions in the variable
domain @(X), then it is possible to use the disjunctive laws of fuzzy logic proved in Section 4.4 to
extend their definition over the power set of F(X), i.e.,

Nec(AUB) = max[Nec(A), Nec(B)],
Poss(AUB) = max[Poss(A), Poss(B)],

where A and B are subsets of the domain 2(X). These equations are usually given as the basic
disjunctive laws of possibility distributions.

Note that, using such extensions, both possibility and necessity functions are nondecreasing
functions (with respect to the order induced by set inclusion). The value of Nec(A) measures
the extent by which the evidence supports the statement that the variable value necessarily lies in
the subset A of its domain of definition, with a dual interpretation being applicable for possibility
distributions.

5.2.2 Marginal and Joint Possibilities

The original similarity relation introduced in Section 3.1 may be considered to be a measure of
proximity between possible worlds from the joint viewpoint of all system variables. The notion
of variable permits, however, the definition of similarities from the restricted viewpoint of some
variables or subsets of variables.

These restricted perspectives play a role with respect to the original similarity S that is analogous
to that of marginal probability distributions with respect to joint probability distributions. To derive
useful expressions that describe similarities between two values z and z' of the same variable X,
it should be noted first that the degree of implication I(-|-) is transitive. This fact permits the
application of a theorem of Valverde [44] to define a function Sx by means of the expression

Sx: F(X) x F(X)~ [0,1): (z,2) > min [I(z|2"), I(z'| 2)].

Defined in this way as a “symmetrization” of the preorder induced by the degree of implication
I(-|-), the marginal similarity Sx has the properties of a similarity function. Furthermore, the
“projection” operation entailed by the use of I(z|z’), based on the projection of every z'-world
into the set of z-worlds), may be considered to be the basic mechanism to transform the original
similarity function into one that only discern differences in the values of the variable X.

It must be noted, however, that, unless additional assumptions are made about the nature of the
original similarity S, the function Sx fails to satisfy the intuitive requirement

S(w,w') < Sx(w,v'),

whenever w  z and w' F 2’ i.e., the similarity between two objects from a restricted viewpoint is
always higher than their similarity from more general regards that encompass additional criteria of
comparison. )

Although considerable research remains to identify alternative definitions of marginal similarities
that are not hampered by this problem, a basic result of Valverde [44], presented in Section 6.2 below,
appears to provide the essential tool that must be employed in to produce the required coarser
measures. The role of additional reasonable assumptions that might be demanded from S so as to
facilitate the construction of marginal similarities with desirable characteristics is also the object of
current investigations of the author.

26



5.2.3 Conditional Distributions and Generalized Inference

The basic conditional structures of fuzzy logic are usually defined as elastic constraints that restrict
the values of a variable given those of another. By simple extension of our previous convention to
conditional structures, we will write Nec(y|z) and Poss(y|z) , as shorthand for

Nec([Y =y)|[X=2]) and Poss([Y =y]|[X =2]),

respectively.

If a classical (i.e., Boolean) inferential rule of the type
“If X = z, then Y is in R(z)”

is thought of as the definition of a relation R defined over pairs (z,y) in the Cartesian product
X x Y, then such a relation may be used to define a multivalued mapping that maps possible values
of X into possible values of Y as illustrated in Figure 5.

Projected
evidenceinY

Y

Evidence In X

X

Figure 5: Inference as a Compatibility Relation.

Such a compatibility relation perspective was an essential element of the original formulations
of both the Dempster-Shafer calculus of evidence[8] where distributions in some space (i.e., the
domain of some variable X) are mapped into distributions of another variable (i.e., the domain of
another variable Y) by direct transfer of “mass” from individual values to the union of their mapped
projections and the compositional rule of inference [51].
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Note that, whenever Poss(y|z) = 1, if the bound is actually attained, i.e, if
sup [I(y|w)oI(z|w)] =1,
wh&

then it is possible for an evidential world w in [X = 2] (i.e., I(z | w) = 1) to be such that wt y.
Pairs (z,y) such that Poss(y|z) = 1 may be considered to approximate the core'® of a generalized
inferential relation that allows to determine bounds for the similarity between evidential worlds
and those in the variable set [Y = y] on the basis of knowledge of similar bounds applicable to
the variable set [X = z]. This relation, which is the fuzzy extension of the classical compatibility
mapping R illustrated in Figure 5, may be thought as a descriptor of the behavior, for z-worlds,
of the values of the variable Y “near” R. The compatibility relation is itself approximated by (or
embedded in) the core of the conditional possibility distribution, i.e., worlds w such that w z and
w k- y, with Poss(y|z) = 1.

Since the collection of the sets [X = z] partitions the universe i into disjoint sets, then the
generalized modus ponens laws may be readily stated in terms of variable values as

Nec(y) = sgp[NGC(yl-"?)@NeC(ﬂ)],

Poss(y) = sup [Poss(ylz) ®Poss(z)],

clearly showing the basic nature of the inferential mapping as the composition of relational combi-
nation (i.e., ®- “intersection”) and projection (i.e., maximization).

5.2.4 Fuzzy Implication Rules

In this section we will examine proposed interpretations for conditional rules, usually stated in the
form
If Xis A, thenYis B,

within the context of possibilistic logic. While, in two-valued logic, any such rule simply states that
whenever a condition A is true, another condition B also holds, various interpretations have been
proposed for rules expressing other notions of conditional truth.

In the case of probabilities, for example, degrees of conditionality have been modeled either by
means of conditional probability values Prob(4 | B), which measure the likelihood of B given the
assumed truth of A, or by the alternative interpretation Prob(—A V B), used by Nilsson [29] in his
probabilistic logic, which esssentially quantifies the probability that a rule is a valid component of a
knowledge base. Either one of these interpretations is valid in particular contexts being, respectively,
the probabilistic extensions of the so called “de re,” i.e.,

p—1Ilgq,

and “de dicto”, i.e.,
II (P - Q) )

interpretations of conditionals in modal logic.

10The core of a fuzzy set u: U + [0,1] is the set of all points w such that u(w) = 1, i.e., the points that “fully”
belong to p.
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In fuzzy logic, two major interpretations have been advanced to translate conditional rules,!!
with A and B corresponding to the fuzzy sets

pa: X —[0,1], and pp: Y+~ [0,1].

The first interpretation was originally proposed by Zadeh [52], as a formal translation of the
statement

If p14 is a possibility for X, then pp is a possibility distribution for Y.

This conditional statement, which may be regarded as a constraint on the values of one variable
given those of another, states the existence of a conditional possibility function Poss(+|-) such that

#(y) 2 sup [Poss (y|z) ® pa(z)] > Poss(ylz) @ pa(z) .

Recalling now the definition and properties of the pseudoinverse, we may restate this particular
interpretation as

Poss(y|z) = pp(y) @ pa(z) 2 Iy |w) @ I(z | w),
for every world w - &.

In Zadeh’s original formulation, made within the context of a calculus based on the minimum
function as the T-norm, conditionals were, however, formally translated by means of the pseudoin-
verse of the Lukasiewicz T-norm. Certain formal problems associated with such a combination were
pointed out by Trillas and Valverde [42], who developed translations consistent with the T-norm
used as the basis for the possibilistic calculus.

Using the characterization of conditionals introduced in Section 4.5, this relation may also be
thought of as a measure of the degree by which a possibility for Y exceeds a fraction (measured
by the conditional possibility distribution) of a given possibility distribution for X. In particular,
whenever Poss(y|z) = 1, then pp(y) > pa(z), indicating the possible existence —since Poss(y|z)
is only an upper bound of I(y|w) @ I(z | w) — of an evidential world such that w -z and wk y,
with z in A and y in B.

As illustrated in Figure 6, where it has been assumed that the underlying metric (i.e., dissimilar-
ity) is proportional to the euclidean distance in the plane, the core of the corresponding conditional
possibility distribution is an (upper) approximant of a classical compatibility relation (indicated by
the shaded area in the figure) that fans outward from the Cartesian product of the cores of A and B.
If this interpretation is taken, whenever several such rules are available, then each one of these rules
will lead to a separate possibility distribution. Combination of these upper bounds by minimization
results in a sharper possibility estimate that represents the “integrated” effect of the rule set.

The second interpretation of conditional relations, leading to a wide variety of practical appli-
cations [41], was utilized by Mamdani and Assilian to develop fuzzy controllers. The basic idea
underlying this explanation follows an approach originally outlined by Zadeh [47,48,51). In this case,
a number of conditional statements of the form

If Xis Ag, then Y is By, k=1,2,...,n,

are given as a combined “disjunctive” description of the relation between X and Y, rather than
as a set of independently valid rules. The purpose of this rule set is the approximation of the

11 A rather encompassing account of potential fuzzy reasoning mechanisms can be found in a paper by Mizumoto,
Fukami, and Tanaka. [27]
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Figure 6: Rules as Possibilistic Approximants of a Compatibility Relation.

X

Figure 7: Rule-Sets as Possibilistic Approximants of a Compatibility Relation
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compatibility relation by a “fuzzy curve” generated by disjunction of all the rules in the set, as
shown in Figure 7.

Recalling the characterization of conditioning as an extension of a classical compatibility relation,
we may say that the core of the compatibility relation is approximated by above by the union

U .[core(pA,‘) x core (1g,) ]
k=1

of the Cartesian products of the cores of the fuzzy sets for Ay and By. In this case the multiple rules
are meant to approximate some region of possible (X,Y) values, and the result of application of
individual component rules must be combined using maximization to produce a conditional possibil-
ity function. We may say, therefore, that under the Zadeh-Mamdani-Assilian (ZMA) interpretation,
the function

Poss(ylz) = ip [min(m(z).ﬂs(y))] )

is a conditional possibility for Y given X.

It is important to note that the two interpretations of fuzzy rules that we have just examined
are based on different approaches to the approximation (by above) of the value

sup [I(yIW)®I($IW)]a

being, in the the case of the Zadeh-Trillas-Valverde (ZTV) method, the result of the conjunction of
multiple fuzzy relations such as that illustrated in Figure 8, while, in the case of the ZMA logic, the
construction requires disjunction of relations such as that illustrated in Figure 9.

The difference between both approaches when combining several rules is illustrated also in Fig-
ures 10 and 11, showing the contour plots for the a-cuts of the fuzzy relations that are obtained
in a simple example involving four rules. In these figures, the rectangles with a dark outline corre-
spond to the Cartesian products of the cores of the antecedents A; and Bj. Darker shades of gray
correspond to higher degrees of membership.

The reader should be cautioned, however, about the potential for invalid comparisons that may
result from hasty examination of these figures. Each formalism should be regarded as a procedure for
the approximation of a compatibility relation that is based on a different approach for the description
of relationships between variables. In the case of the ZMA interpretation, the intent is to generalize
the interpolation procedures that are normally employed in functional approximation. As such, this
approach may be said to be inspired by the methodology of classical system analysis. The ZTV
approach, by contrast, is a generalization of classical logical formulations and may be regarded,
from a relational viewpoint, as a procedure to describe a function as the locus of points that satisfies
a set of constraints rather than as a subset of “fuzzy points” of a Cartesian product.

Figures 10 and 11, while showing that the same rule sets would lead to radically different results,
should not be considered, therefore, to discredit interpolative approaches as such techniques, pro-
ceeding from a different perspective, should normally be based on rule sets that are different from
those utilized when rules are thought of as independent constraints.
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Figure 8: A Possibilistic Conditional Rule (ZTV)

Figure 9: A Component of a Disjunctive Rule Set (ZMA) .
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Figure 10: Contour Plots for a Rule Set (ZTV)

Figure 11: Contour Plots for a Rule Set (ZMA)
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6 THE NATURE OF SIMILARITY RELATIONS

In this closing section, we will examine issues that arise naturally from our previous examination of
the role of similarities as the semantic bases for possibility theory.

Our discussion focuses on two topics. We look first at the requirements that our theory imposes
upon the nature of the scales used to measure proximity or resemblance between possible worlds.
Finally, our examination of the interplay between similarities and possibilities turns to issues related
to the generation of similarity relations from such sources as domain knowledge that describes
significant relations between system variables.

6.1 On Similarity Scales

Our previous interpretation of possibilistic concepts and structures has been based on the use of
measures of proximity that quantify interobject resemblance using real numbers between 0 and 1.
Our assumptions about the use of the [0,1] interval as a similarity scale have been made primarily,
however, as a matter of convenience so as to simplify the description of our model while being
consistent with the customary definitions of possibility and necessity distributions as functions taking
values in that interval.

Close examination of the actual requirements imposed upon our similarity scales reveals, however,
that our measurement domain may be quite general so as to include symbolic structures such as

{ identical , very similar,..., completely diua'milar} .

Our model is based on the use of a partially ordered set having a maximal and a minimal element
that measure identity and complete dissimilarity, respectively. Furthermore, we have assumed the
existence of a binary operation (the triangular norm @) mapping pairs of possible worlds into real
numbers, with certain desirable order-preserving and transitive propeisies. The concept of triangular
norm, however, does not rely substantially on the use of real numbers as its range and may be readily
extended to more general partially ordered sets with maximal and minimal elements.

We have also assumed a continuity property for the triangular norm operation. This property,
however, simply requires that a notion of proximity also exist among similarity values so as to
provide a form of (order-consistent) topology in that space. While, in general, more precise scales
will result in more detailed representations of interworld similarity, it is important to stress that the
similarity-based model presented here does not rely in “denseness” assumptions such as the existence
an intermediate value c between any different values a and b in the similarity-measurement scale.

From a practical viewpoint, the major requirement is to quantify proximity in such a way as to
be able to determine that two quantities are similar tc some degree (i.e., approximate matching).
The degree of precision that such a matching entails is problem-dependent and will be typically the
result of conflicting impositions between the desire, on one hand, to keep granularity relatively high
to reduce complexity, and the need, on the other, to describe system behavior at an acceptable level
of accuracy. The work of Bonissone and Decker [4] is a significant example of the type of systematic
study that must be carried out to define similarity scales that are both useful and tractable.

34




-

6.2 The Origin of Similarity Functions

The model of fuzzy logic presented in this note is centered on the metric notion of similarity as a
primitive concept that is useful to explain the nature of poesibilistic constructs and the meaning
of possibilistic reasoning. In this formulation, similarities are defined as real functions defined over
pairs of possible worlds.

. From this perspective, similarities describe relations of resemblance between objects of high com-
plexity, which, typically, result from consideration of a large number of system variables. Reliance
on such complex structures has been the direct consequence of a research program that stressed
conceptual clarification as its primary objective. In practice, however, it will be generally difficuit
to define complex measures that quantify similarity between complex objects on the basis of a large
number of criteria.

Similarities provide the framework that is required to understand approximate relations of corele-
vance, usually stated as generalized conditional rules. The practical generation of similarity functions
typically proceeds, however, in the opposite direction, from separate statements about limited as-
pects of system behavior to general metric structures. Once such resemblance measures are defined,
they may be used to express and acquire new laws of system behavior determined, for example, from
historical experience with similar systems. Furthermore, such similarity notions may be used as the
basis for analogical reasoning systems that try to determine system state on the basis of similarity
to known cases [23].

Perhaps the simplest mechanism that may be devised to generate complex metrics from sim-
pler ones is that which starts with measures of resemblance that quantify proximity from a limited
viewpoint. These metrics are usually derived, using a variety techniques, in unsupervised pattern
classification (or clustering) problems[20]. In many important applications, hierarchical taxonomies
~a feature of many representation approaches in artificial intelligence—may be used, often in con-
nection with a variety of weighing schemes—quantifying branching importance—to generate metrics
that often satisfy the more stringent requirements of an ultrametric [22].

Classification hierarchies such as those may be thought of as sets of general rules, having a par-
ticularly useful structure, that specify interset proximity from relevant, but restricted viewpoints,
eventually providing measures of similarity between variable values (i.e., the “leaves” of the taxo-
nomical tree). More generally, however, we may expect that sets of possibilistic rules (i.e., a general
knowledge base) defining a general semantic network of corelevance relations may be available as
the source for the determination of interobject proximity. These possibilistic semantic networks
resemble conventional semantic networks in most regards, being more general in that, in addition
to specifying knowledge about system behavior in some subsets of state-space,!? they also specify
characteristics of behavior in neighborhoods of those subsets.

We may think, therefore, that the antecedents of implicational rules define general regions in state
space where existence of relevant knowledge may increase insight through application of inferential
rules. Using Zadeh’s terminology, these antecedents define “granules” that identify important regions
of state-space and indicate the level of accuracy that is required (or granularity) to perform effective
system analysis. In this case, the possibilistic granules correspond to fuzzy sets that are used to
specify both what is true in the core of the granule and, with decreasing specificity, what. is true
in a nested set (i.e., the a-cuts) of its neighborhoods. The ability to specify behavior using such
a topological structure results in inferential gains that are the direct consequence of our ability

12The expression “state-space” is loosely used here to indicate the space defined by all system variables.
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to reason by similarity; an ability that is made possible by the approximate matching property
of the generalized modus ponens. From another perspective yet, the fuzzy granules identified by
possibilistic rules may also be thought of as generalizations of the arbitrary variable sets used in
a variety of artificial intelligence efforts aimed at understanding system behavior using qualitative
descriptions of reality [16).

A number of heuristics may be easily formulated to integrate “marginal® measures of resemblance
into joint similarity relations. More generally, however, we may state the problem of similarity
construction as that of defining metric structures on the basis of knowledge of the aspects of system
behavior that are important to its understanding—i.e., the previously mentioned granules, which
define what must be distinguished. Since generally those granules are fuzzy sets, the relevance to
similarity construction of the following representation theorem, due to Valverde, may be immediately
seen:

Theorem [Valverde]: A binary function S mapping pairs of objects of a universe of discourse ¥
into [0, 1] is a similarity relation, if and only if there exists a family &’ of fuzzy subsets of & such
that

S(w,v") = 1}1’ [min (h(w) @ h(v'), h(vw') @ h(w) ) ] ,
for all w and «’ in &, where the infimum is taken over all fuzzy subsets A in the family .

Besides its obvious relevance to the generation of similarity relatione from knowledge of important
sets in the domain of discourse, Valverde’s theorem—resulting originally from studies in pattern
recognition—is also of potential significance to the solution of knowledge acquisition problems be-
cause of the important relations that exist between learning procedures and structure-discovery
techniques such as cluster analysis.
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7 CONCLUSION

This note has presented a similarity-based model that provides a clear interpretation of the major
structures and methods of possibilistic logic using metric concepts that are formally different from
the set-measure constructs of probability theory. Regardless of the potential existence, so far un-
established, of probability-based interpretations for possibilistic structures, this metric model makes
clear that there are no compelling reasons to confuse two rather different aspects of uncertainty into
a single notion simply because one’s favorite theoretical framework, in spite of its otherwise many
remarkable virtues, fails to fully capture reality.

Succintly stated, being in a situation that resembles a state of affairs S does not make S likely or
viceversa. Furthermore, our reference state may not even be possible in the current circumstances
—making it completely unlikely—but we may still find it useful as a comparison landmark.This
use of “impossible” examples as a way to illustrate system behavior is very prevalent in human
culture, being exemplified by such utterances as “he had the strength of a horse and the swiftness
of a swallow,” even if it is obvious to all that no such beasts exist other than for such metaphorical
purposes.

The insight provided by this model makes it rather obvicus that very little can be gained by
continuing to assert a potential—although never revealed—encompassing probabilistic interpretation
for possibilistic structures that, presumably, would render them unnecessary as serious objects of
scientific discourse. In addition, and quite beyond whatever understanding theory may provide, the
current success of possibilistic logic as the basis for major systems of important human value [41]
—often unmatched by other approaches—shoulc be enough to convince those having more pragmatic
perspectives as to its utility.

The task for approximate reasoning researchers is to proceed now beyond unnecessary controversy
into the study of the issues that arise from models such as the one presented in this note. Among
such questions, further studies of the relations between the notions of possibility, similarity, and
negation and of those between probability and possibility are of major importance.
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INTRODUCTION

In this brief communication, we summarize the results of recant research on the conceptual foundations of
fuzzy logic [5). This research resulted in the formulation of several semantic models that interpret the major
concepts and structures of fuzzy logic in terms of the more primitive notion of resemblance and similarity
between “possible worlds,” i.e., the possible states, situations or behaviors of a renl-world system. The metric
structures representing this notion of proximity are generalizations of the accessibility relation of modal
logics [1).

Possibilistic reasoning methods may be characterized, by means of our interpretation, as approaches to the
description of the relations of proximity that hold between possible system states that are logically consistent
with existing evidence, and other situations, which are used as reference landmarks By contrast, probabilistic
methods seek to quantify, by means of measures of set extension, the proportion of the set of possible worlds
wheic a proposition is true.

Owt discussion will focus primarily on the principal characteristics of a model, discussed in detail in a recent
technical note [2], that quantifies resemblance between possible worlds by means of a similarity function that
assighs 8 number between 0 and 1 to every pair of possible worlds. Introduction of such a function permits
to interpret the major constructs and methods of fuzzy logic: ronditional and unconditional possibility and
necessity distributions and the generalized modus ponens of Zadeh on the basis of related metric relationships
hetween subsets of possible worlds.

THE APPROXIMATE REASONING PROBLEM

Our semantic model of fuzzy logic is based on two major conceptual structures: the notion of possible
woild, which is the basis for our unified view of the approximate reasoning problem (3], and a metric structure
that quantifies similarity between pairs of possible worlds.

If a reasoning problem is thought of as being concerned with the dete  :nination of the truth-value of a set
of prapositions that describe different aspects of the behavior of n system, then a possible world is simply a
function (called a valuation) that assigns a unique truth value to every proposition in that set and that, in
addition, is consistent with the rules of propositional logic. The set of all such possible worlds is called the
universe of discourse.

In any reasoning problem, knowledge about the characteristics of the class of systems being stuclied
combined with observations about the particular system under consideration restricts the extent of possible
worlds that must be considered to a subset of the universe of discourse, called the evidential set, which wil}
be denoted £.

The purpose of the inferential procedures utilized in any reascaing problem may be characterized as that
of establishing if, for a given proposition p, either £ = por £ = ~p, i.e., whether existing evidence implies the
hypothesis or its negation. In epproximate reasoning problems, as illustrated in Figure 1, such determination

is, by “lefinition, impossible: there are some possible worlds in the the avider.tial set wher~ the hypothesis is
true and soine where it is false.
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Figure 1: The approximate reasoning problem

SIMILARITY FUNCTIONS AND GENERALIZED IMPLICATION

In the view of fuzzy logic proposed by our model the purpose of possibilistic methods is the description of
the evidential set by characterization of the resemblance relations that hold between its elements and elements
of other sets used as reference landmarks.

To represent similarity or resemblance between possible worlds we introduce a binary function § that
assigns a value between 0 and 1 to every pair of possible worlds w and w’. A value of § equal to 1 means that
w and w' are identical while a value of S equal to 0 indicates that knowledge of propositions that are true in
one possible world does not provide any indication about the nature of the propositions that are true in the
other.

In addition to the above requirement of reflexivity, i.e. S(tv,w) = 1, we will need to impose additional
axioms to assure that S captures the semantics of a similarity relation. In addition to assuming that §
is synunetric, i.e.,, S(w,w’) = S(w’,w), we will also require that S satisfies a form of transitivity that is
mctivated by noting that if w,w’ and w” are possible worlds and if w is highly similar to w’ and w' is highly
similar to w", then it would be eurprising if w and w” were highly dissimilar. This consideratson indicates
that knowledge of S{w,nw’) and S(w’, w") sheuld provide a lower bound for values of S(w,w"), as expressed
by the inequality

S(w,w") 2 S(w,w’")® S(w',w"),

where @ is a binary operator used to represent a real function that produces the required bound. If reasonable
requirements are imposed upon the function @, it is easy to show that it hes the properties of triangular norms:
a class of functions that play a major role in multivalued logics {4).

The generalized transitivity property expressed by the above inequality may be easier to understand as
a classical trisngular inequality if it is noted that the function § = 1 —~ § has the propertics of a metric.

When @ is the Lukasiewicz norm a® b = max(a + b - 1,0), then the transitivity property of S is equivalent
to the well-known triangular property of distance functions. If @ corresponds o the Zadeh trianguiar norm
a®b = min(a,b), then § may be shown to satisfy the more stringent ultrametric inequality.

The co:respondence between propositions and subsets of possible worlds simplifies the interpretation of
the classical rule of modus ponens as a rule of derivation based on the transitive property of set inclusion. If
thsee propositions p, ¢ and r are such that the set of possible worlds where p is true is a subset of the set of

possible worlds where ¢ is true, and if such set is itself a subset of the set of worlds where r is true, then the
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modus ponens simply states that the set of p-worlds is a subset of the set of r-worlds.

The conventional relation of set inclusion, based on the binary truth-value structure of classical logic,
allows only to state that a set of possible worlds is & subset of snother or that it is not. Introduction of
» metric structure in the universe of discourse, however, permits the quantification of the degree by which
a set is included into another. Every set of possible worlds, as illustrated in Figure 2, is a subset of some

Figure 2: Degree of impiication

neighborhood of any other set. The minimal amount of “stretching” that is required to include a set of possible
worlds g in & neighborhood of a set of possible worlds p, given by the expression I(pjq) = ix:_f sup S(w,w'),
w'hy whp

is called the degree of impiication.

The degree of implication function has the important transitive property expressed by I(pl¢) 2 I(p|r) ®I(r |g),

whicl is the basis of the generalized modus ponens of Zadeh. As illustrated in Figure 3, this important rule of
derivation tells us how much the sat of p-worlds should be stretched to encompass g on the basis of knowledge
of the sizes of the neighborhoods of p that includes r and of r that includes g.

Figure 3: The generalized modus ponens

A notion dual to the degree of implication is that of degree of consistence, which quantifies the amount

by which a set must be stratched to inteisect another, and that is given by the expression C(p|g) =

sap sup S{w, w').
v'tq whp

POSSIBILISTIC DISTRIBUTIONS
Although the transitive property of the degree of implication essentially provices the bases for the con-
ceptual validity of the generalized modus ponens, this rule of derivation is typically expressed by means of
necessity and possibility distributions.
An unconditioned necessity distribution given the evidence £ is any function defined over propositions
that bounds by below the degree of implication function, i.e., any function satisfying the inequality Nec(p) <

I{p|€). Correspondingly, an unconditioned possibility distribution is any upper bound for the degree of
consistence function, i.e., Poss(p) > C(p|€).

The definition of conditional possibility and necessity distributions makes use of a form of inverse of the
trinngular norm denoted @ and defined by the expression

aQb=sup{c: b®c<a}.

Using this function, it is possible to define conditional possibilistic distributions as follows:
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Definition: A function Nec(:|-) is called a conditional necessity distribution for £ if
Nec(qlp) < inf. {I(g|w) @ I(plw)].,

Deflnition: A function Poss(-|-) is called a conditional possibility distribution for £ if
Poss(gip) 2 sup [I(g]w) @1(p|w)].

GENERALIZED MODUS PONENS

The compositional rule of inference or generalized modus ponens of of Zadeh is . generalization of the
corresponding classical rule of inference that may be used even when known facts do not match the antecedent
of a conditional rule. The interpretation provided by our model explains the generalized modus ponens as
an extrapolation procedure that uses knowledge of the similarity between the evidence and a set of possible
worlds p (the antzcedent proposition), and of the proximity of p-worlds to g-worlds, to bound the similarity the
latter to the evidential set. The actual statement of the generalized modus ponens for necessity distributinns
in terms of similarity structures makes use of a family P of satisfiable propositions that partitions the un ver: :
of discourse:

Theorem (Generalized Modus Ponens for Possibility Functions): Lat P be a partition and let ¢ be a propo-
sition. If Poss(p) and Poss(g|p) are real values, defined for every proposition p in P, such that

Poss(p) > C(p|E), Poss(qlp) 2 sup [I(glw)@I(plw)],

then the following inequality is valid:

sup [Poss(qlp) ® Poss(p)] > C(q|£).
A dual result holds for necessity functions.

ACKNOWLEDGMENT
This work was supported in part by the US Air F~cce Office of Scientific Research under Contract No.
F49620-89-K-0001 and in part by the US Army Research Ofiice under Contract No. DAAL03-89-K-0156.
The views, opinions and/or conclusions contained in this note are those of ithe author and should not be
interpreted as representative of the official positions, decisions, o: policies, either express or implied, of the
Air Force Office of Scicntific Research, the Department of the Army, or the United States Government.

REFERENCES
(1) G.E. Hughes and M.J. Creswell. An Introduction to Modal Logic. New York: Methuen, 1972.

(¢ E.H. Ruspini. On the Semantics of Fuzzy Logic. Technical Note No. 475, Artificial Intelligence Center,
SRI International, Menlo Park, California, 1989.

{3] E.H. Ruspini, Approzimate Reasoning: Past, Present, Future. Information Sciences, forthcoming, 1990.

(4] E. Trillas and L. Valverde. On mode and implication in approximate reasoning. In M.M. Gupta, A. Kan-

del, W. Bandicr, J.B. Kiszka, editors, Approzymate Reasoning and Ezpert Systems, Amsterdam: North
Holland, 157-166, 1985.

(5] L.A. Zadeh. A theory of approximate reasoning. In D. Michie and L.I. Mikulich, editors, Machine Intel-
ligence 9, New York: Halstead Press, 149-194, 1979.

738




6th Workshop on Uncertainty in Artificial
Intelligence, Boston, Massachusetts - U.S.A.,
July 1990

POSSIBILITY AS SIMILARITY:
THE SEMANTICS OF FUZZY LOGIC

Enrique H. Ruspini
Artificial Intelligence Center
SRI International
Menlo Park, California, U.S.A.

Abstract

This paper addresses a number of fundamental issues on the nature of the concepts
and structures of fuzzy logic, focusing, in particular, on the conceptual and functional
differences that exist between probabilistic and possibilistic approaches.

A semantic model provides the basic framework allowing definition of possibilistic
structures and concepts by means of a function that quantifies proximity, closeness, or
resemblance between pairs of possible worlds. The resulting model is a natural exten-
sion, based on multiple conceivability relations, of the modal logic concepts of necessity
and possibility. By contrast, typical, chance-oriented, probabilistic concepts and struc-
tures rely on measures of set extension that quantify the proportion of possible-worlds
where a proposition is true.

Resemblance between possible worlds is quantified by a generalized similarity rela-
tion, i.e., a function that assigns a number between 0 and 1 to every pair of possible
worlds. Using this similarity relation, which is a form of numerical complement of a clas-
sic metric or distance, the major constructs and methods of fuzzy logic—conditional
and unconditional possibility and necessity distributions and the generalized modus
ponens of Zadeh—are defined and interpreted.
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1 Introduction

In this paper, we present a semantic model of the major concepts, structures, and methods
of fuzzy or possibilistic [16,17] logic. This model is based on a framework that combines
the notion of possible world [2] (i.e., a potential state or situation of a real-world system)
with measures of proximity or resemblance between pairs of possible worlds. The resulting
structures are substantially different in character and nature from those of probabilistic
reasoning, which are based on measures of set extension, used to quantify the proportion of
possible worlds where a given proposition is true.

The results reported in this paper are the latest in a continuing investigative effort aimed
at clarifying basic conceptual similarities and differences between a numb« of approaches
to the treatment of imprecision and uncertainty. Using also possible-world semantic models,
prior research has established that the Dempster-Shafer calculus of evidence may be inter-
preted by structures that result from the ~ombination of conventional probabilistic calculus
with epistemic logics[9]. By contrast, the formal structures discussed herein clearly show
that fuzzy logic may be understood in a straightforward fashion using conventional metric
notions in a space of possible worlds without resorting in any form to probabilistic con-
cepts. Furthermore, the actual functions that are used to combine possibilistic knowledge
are substantially different from those used in the probability calculus.

Our exposition, which will be limited to the major structures of fuzzy logic, defines
possibilistic concepts using a more primive notion that has been found to be an essential
component of important human cognitive processes[14]. The notion of similarity, in spite
of its importance in reasoning proceses, has not received substantial attention in treatments
based on the use of logical concepts.

Perhaps as a consequence of its reliance on metods for the manipulation of symbolic
strings and on a single (partial order) relation between formulas (i.e., implication) as the
basis for almost all of its techniques and procedures, there has been little attention given in
formal logic to the consideration of other formal structures that capture important features
of human knowledge such as the resemblance that exists between situations or circumstances.
Although, for example, stating that Mary is worth $1,000,000 as oppossed to saying that
she is worth $999,999 may be rather inconsequential in terms of the implication of either
statement to a decision-maker (e.g., trying to establish a credit line), there is nothing in the
basic framework of logic that makes the second statement any more different than saying
that Mary is broke (i.e., neither of the three statements is logically consistent with the other
two).

The determination and use of similarity information is, however, not only central to all
forms of analogical reasoning but it is an essential element in the derivation of physical law.
Formal studies in measurement theory [7] clearly show the role that measures based on similar
behavior play in the derivation of rational measurement schemes, while also cxplaining the
ubiquitous presence of numeric scales throughout science.

The results presented in this paper show that, when such notions of proximity are for-
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malized in the context of a possible-worlds model, the major functional structures of fuzzy
logic—possibility and necessity distributions—and its major inferential procedure—the gen-
eralized modus ponens of Zadeh—may be readily explained as a natural extension of classical
logical concepts. In particular, possibility and necessity distributions simply correspond to
best and worst scenarios in a space of possible real-world states, while the generalized modus
ponens [17] is a sound inferential procedure that may be regarded as a form of logical ex-
trapolation between neighboring situations.

The scope of this paper prevents a detailed discussion of all pertinent results and deriva-
tions. A complete account of all relevant matters regarding the similarity-based model of
fuzzy logic presented in this paper is presented in a related technical note [10], which, essen-
tially, this paper summarizes.

2 The Approximate Reasoning Problem

Our model of the approximate reasoning problem is based on the notion of “possible world.”
Informally, possible worlds are the conccivable states of affairs of a real-world system that
are consistent with the laws of logic.

Restricting ourselves, for the sake of simplicity to propositional formulations, a possible
world is a function [2] that assigns a unique conventional truth value (i.e., true or false) to
every proposition that describes some relevant aspect of the state of the system and, that,
in addition satisfies the axioms of propositional logic.

In the absence of any knowledge about the behavior of a system of interest or of any
observation about its state, it is impossible to determine which, among all conceivable sit-
uations, corresponds to the actual state of the real world. Availability of factual evidence
or determination of the laws of behavior of the system permits, however, to eliminate some
possible worlds in this universe of discourse from consideration. The remaining possible
worlds correspond to satisfiable propositions that, in addition, are logically consistent with
the evidence. This subset of conceivable situations or scenarios will be called the evidential
set, denoted &.

If the typical reasoning problem is thought of as the determination of the truth value of
a proposition h (the hypothesis), then an approximate reasoning problem may be described
as one where available evidence does not permit such evaluation without ambiguity. In other
words, as illustrated in Figure 1, there are some members of the evidential set where the
hypothesis is true and some where it is false.

Our approach to the formalization of the major concepts and structures of fuzzy logic
of fuzzy logic is based on a generalization of a central concept of semantic models of modal
logics. Modal logics [4] may be generally described as extensions of conventional two-valued
logic that permit to qualify, in various ways, the meaning of propositional truth.

In our model, we utilize modai concepts to expiain basic possibilistic structures using
the more primitive notion of similarity. This notion is introduced, however, by means of
conventional set-theoretic and logical concepts. In this regard, our approach to the study
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Figure 1: The Approximate Reasoning Problem.

of the interplay of modal and possibilistic logics is different from approaches such as that
used by Lakoff [6] who sought to genvralize modal logics using fuzzy-set concepts; or that of
Dubois and Prade (3], who investigated modal structures with a view to the development of
formal proof mechanisms in possibilistic logic.

A major concept of semantic models of modal logic systems is a binary relation R, called
the accessibility or conceivability relation. This relation is assumed to have a number of
properties intended to capture the semantics of various qualifications of propositional truth,
ranging from logical necessity through the state of knowledge of rational agents to concepts
related to the ideal behavior of ethical decision-makers.

Our aim is to characterize the extent by which statements that are true in one situation
or scenario may be said, perhaps with some suitable modification, to be true in another
state of affairs that resembles it. We are particularly interested in describing more general
(i.e., less specific) propositions that are true in one possible world as a function of the
propositions that are true in another. In order to model a continuous range of proximity
between possible worlds, we will generalize the notion of accessibility relation to a full family
of binary relations R,, indexed by a numerical parameter a taking values between 0 and 1,
along the same lines—albeit with a different purpose—utilized by Lewis in his treatment of
counterfactuals [5].

3 Similarity and Graded Possibility
We will introduce a family of accessibility relations

{Ra:a €[0,1]},




by means of a binary function S, called the similarity relation, that maps pairs of possible
worlds into numbers between 0 and 1. The multiple relations of accessibility R, are defined
in terms of this similarity function by

wR,w' if and only if S(w,w')>a a€]0,1].

The function S is intended to capture a notion of proximity, closeness, or resemblance
between possible worlds with a value of 1 corresponding to the identity of possible worlds
and a value of 0 indicating that knowledge of propositions that are true in a possible world
does not provide any indication of the propositions that are true in the other. To assure that
the function S has the semantics of a relation that quantifies resemblance between possible
states of affairs, it is necessary to require that it satisfies a number of properties.

Besides the above mentioned property that the similarity between a possible world and
itself has the highest possible value, equivalent to stating that each accessibility relation
R, is reflexive, we will also requiie that the similarity between different possible worlds be
strictly less than one. This requirement is intended to assure that the similarity relation
may distinguish between different states of the possible world.

The similarity relation will also be assumed to be symmetric, and to satisfy a relaxed
forn. of transitivity. Clearly, if the pairs of possible worlds (w,w’) and (w',w") correspond
to highly similar situaticns, it would be surprising if w and w” were highly dissimilar. It is
natural to assume, therefore, that

S(w,w") < S(w,w') ® S(w',w"),

where ® is a binary « perator used to represent the lower bound as a function of its arguments.
This requirement is equivalent to the relaxed transitivity condition

Ra@ﬁ g Ra oRﬁ 3

which replaces the usual, more stringent, definition of transitivity.

Imposition of reasonable requirements upon the function ® shows that it has the prop-
erties of a triangular norm(11). These functions, which play a significant role in multivalued
logics 12}, may be justified, therefore, purely on the basis of metric considerations. Impor-
tant examples of triangular norms are

a ®b = min(a,b), a®b=max(a+b6-1,0), and a®b=ab,

called the Zadeh, Lukasiewicz, and product triangular norms, respectively.

The generalized transitivity property that is expressed by triangular norms clarifies their
relationship to the conventional mathematical concept of metric. If S is a similarity function,
then the function 6§ = 1 — S has the properties of a distance function. When ® cor « ponds
to the Lukasiewicz norm, then the transitivity property of S corresponds to the well-known
triangular property of distance functions. If ® correponds to the Zadeh triangular norm,
then 6 may be shown to satisfy the more stringent ultrametric inequality.

4
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1 Introduction

The notion of similarity, which plays a major role
in human cognitive processes 4], may be used to
formulate a number of semantic models that ex-
plain the major concepts of fuzzy logic [5]. These
formalisms show that possibilistic reasoning is fun-
damentally different from approaches based on the
notion of probability: an additive measure of set
extent.

The idea that knowledge of propositions that
are true in certain situations may be used to derive
truth-values in similar situations has not received
much attention in conventional logical treatments.
This state of affairs may be traced to the reliance
of logical methods on symbolic procedures that
only recognize one important relationship between
formulas, i.e., the partial order defined by impli-
cation.

This paper briefly describes one model ¢" -t ex-
plains possibilistic structures: possibility and ne-
cessity distributions; and the major derivational
rule of fuzzy logic: the generalized modus ponens;
in terms of simpler concepts related to notions
of resemblance between possible worlds. In par-
ticular, the latter procedure is shown to gener-
alize its classical counterpart by allowing a form
of logical extrapolation between similar situations
and scenarios. A full discussion of this modei and
its implications is presented in a related technical
note [2).

2 The Approximate Reasoning Problem

Our mode] is based on a unified view of approx-
imate reasoning methodologies that regards these
procedures as techniques that describe certain prop-
erties of subsets of possible worlds. Informally,
possible worlds are the conceivable states (i.e., sce-
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narios, situations) of a real-world system that are
consistent with the laws of logic. Restricting our-
selves to propositional formulations, a possible world
is a function that assigns a unique truth value (i.e.,
true or false) to every proposition that describes
a relevant aspect of system of state and behav-
ior and that, in addition, satisfies the axioms of
propositional logic.

The set of ali such possible worlds is called the
universe of discourse. Knowledge about the class
of systems being studied, combined with observa-
tions about the actual system under consideration.
usually restricts the set of states that must be con-
sidered in an approximate reasoning problem to a
proper subset of this universe. This subset, de-
noted &, is called the evidential set.

In a typical approximate reasoning problem, as
illustrated in Figure 1, available evidence does not
prrmit to determine if a hypothesis of interest is
true or false. Being unable to determine such truth
value, approximate reasoning methods try to de-
scribe significant properties of the evidential set.
Possibilistic techniques describe the relations of
similarity that hold between possible worlds in the
evidential set and possible worlds in other sets,
used as reference landmarks.

3 Similarity Relations

To capture the notion of proximity or resemblance
between possible worlds, we will introduce a func-
tion S that assigns a number between 0 and 1 to
every pair of possible worlds. This function per-
mits to define a family of relations between pos-
sible worlds that generalizes the classical modal
notion of accessibility(l]. By assumption, S at-
tains a value of 1 only when its two arguments are
identical. A value of 0, by contrast, is intended to
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Figure 1: The approximate reasoning problem

model the fact that knowledge of propositions that
are true in one possible world does not provide any
indication about propositions that are true in the
other.

The simularity relation will also be assumed to
be symmetric and to satisfy a relaxed form of tran-
sitivity, intended to capture the notion that the
similarity between two possible worlds w and w"
bears some relation to the values of the similari-
ties between each of them and a third world v/,
expressed by the inequality

S(w,w") 2 S(w,w")® S(v',v"),

where @ is a binary operator defined for pairs of
numbers in [0,1). Imposition of reasonable re-
quirements upon the function ® shows that it has
the properties of a triangular norm [3].

In what follows, we will also need a form of

inverse of the triangular norm ®, denoted @, and
defined by the expression

aQb=sup{c: b@c<a}.

4 Degree of Implication and Degree of Consis-
tence

The classical rule of modus ponens may be thought
of as expressing the transitive property of subset
inclusion. Introducing a metric relation and its as-
sociated topology permits to extend this relation
by measures that quantily the size of the neigh-
borhood of a set that contains another set. We
will say thet ¢ implies 7 to the degree a if, for ev-
ery ¢-world w there exists & p-world w' such that
S(w,w') 2 a. Since it is true that S(w,w') > 0
for every pair of possible worlds, it is obvious that
any proposition implies any other proposition to
some degree.

Informally, the definition of graded implication
means that if p is stretched to the degree a, then
this stretched set will include g. The upper bound
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of the values a such that ¢ implies p to the degree
a, expressed by

I(ple) = inf sup S(w, w'),

defines a function I called the degree of implica-
tion. The degree of implication, which is related to
the notion of Hausdorff distance, has the transitive
property

I(plg) 2 1(p|r)®X(riq),

which s the basis of the generalized modus poneris
of Zadeh, illustrated in Figure 2.

Figure 2: The generalised modus ponens

A notion that is dual to that of the degree of iza-
plication is the degree of consistence, which quan-
tifies the amount by which a set must be stretched
in order to intersect another set,

C(pig) = up sup S(w,w).

Obviously,
I(plq) < C(rlq).

5 Possibility and Necessity Distributions

An unconditioned necessity distribution for & is
any function Nec(-) mapping propositions (i.e.,
subset of possible worlds) into numbers between 0
and 1, such that

Nec(p) < I(p|¥),

i.e., a lower bound of the degree of implication of p
by . Correspondingly, an unconditioned possibil-
ity distribution is an upper bound for the degree
of consistence of pand ¥, i.e.,

Pose(p) 2 C(pl¥).

Unconditioned necessity and possibility distri-
butions measure how much a set must be stretched
to enclose or intersect, respectively, the eviden-
tial set. The conditional counterparts of thee:
notions characterize the proximity relations that
exist betwesn evidential worlds and worlds satis-
fying a consequent proposition ¢ as & proportion
of the similarity that exists between those eviden-



tial worlds and worlds that satisfy the antecedent
proposition p.

A function Nec(:|-) is called a conditional ne-
cessity distribution for ¥ if

Nec(qlp) < inf [1(¢]w) @1(p|w)].

Correspondingly, a function Poss(:|-) is called a
conditional possibility distribution for & if

Poss(qlp) 2 sup [1(¢|w) @ 1(p|w)].

6 The Generalized Modus Ponens

The usual statement of the compositional rule of
inference or generalized modus ponens of of Zadeh [5)
is made in terms of a relationship between uncon-
ditioned and conditioned distributions rather than
in its simpler form, given ubove, as the transitive
property of the degree of implication.

The generalized modus ponens is a sound logi-
cal extrapolation procedure that uses information
about the metric relations that hold between dif-
ferent subsets. On the basis of information about
the similarity between evidential worlds and a set
of possible worlds (i.e., the antecedent proposi-
tion p), and of knowledge about the relative prox-
imity of p-worlds and g¢-worlds (i.e., conditional
distributions), the generalized modus ponens pro-
duces bounds for the similarity between eviden-
tial worlds and those that satisfy the consequent

proposition ¢ (i.e., unconditioned distributions for
the consequent).

The actual formal statement of the generalized
modus ponens makes use of the notion of partition
of the universe of discourse. A partition 9 simply
corresponds to an ordinary partition of of the uni-
verse of discourse into disjoint subsets, or, equiva-
lently to a collection of mutually disjoint proposi-
tions such that their disjunction is always true.

Using this concept, the generalized modus po-
nens for possibility distributions may be stated as
follows in terms of distributions defined using sim-
ilarity structures:

Theorem: Let 9 be a partition and let ¢ be 2
proposition. If Poss(p) and Poss(glp) are real
values, defined for every proposition p in &, such
that

Poss(p) > C(pl|¥),
Poss(qlp) 2 sup(I(g|w) @I(p|w)],

then the following inequality is valid
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syp [Poss(qlp) ® Poss(p)] 2 C(¢|¥).

A dual result holds for necessity distributions.

7 Conclusion

Similarity models provide useful interpretations for
the basic concepts of possibilistic logic using a more
primitive notion than that of possibility. In addi-
tion to clearly showing that fuzzy logic structures
are not related to probabilistic notions, the result-
ing framework provides a solid basis for the study
and extension of possibilistic logic in a number of
directions of considerable practical importance.
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1 Introduction

If artificially intelligent systems ace to produce ad-
equate assessruents of the state and behavior of
the real world, they must cope with information
and knowledge that is characterized by varying
degrees of uncertainty, ignorance, and correctness.
To address this need, we have developed a tech-
nology called evidential reasoning. It is formally
based upon the Dempster-Shafer theory of belief
functions; it has been implemented as a domain-
independent automated reasoning system; it has
been successfully applied to a range of real-world
problems (2]. Yet, its reliance on belief functions
has drawn criticism.

Qur choice of an approach based on the Dempater-
Shafer theory was not arbitrary. We believe that
it has important methodological advantages such
as its ability to represent ignorance in & direct
and straightforward fashion, its consistency with
classical probability theory, its compatibility with
Boolean logic, and its manageable computational
complexity. At the same time, we recognize that
other approaches may also complement and aug-
ment the assessmments provided by evidential rea-
soning.

We will examine, within the limited scope pro-
vided by the format of this paper, several criti-
cisms of belief functions that have appeared in the
literature. We plan, however, a more thorough dis-
cussion of these criticisms in a related volume to
be published in connection with this conference.

We discuss first the fundamental theoretical bases
supporting the belief-function approach and jus-
tify its use in terms of the requirements imposed
by ignorance of certain probability distributions.
We consider the nature of Dempster's rule of com-
bination and argue that negative assessments ei-
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ther misinterpret the nature of the distributions
being combined or ignore the basic independence
assumptions that assure its validity.

We answer also to critiques based on the com-
putational complexity of the belief-function ap-
proach. Such criticisms claim that the complexity
of probabilistic knowledge representations grows
exponentially with the size of the frame, thus mak-
ing the theory unsuited for automated reasoning.
Other comments addressed in our presentation cen-
ter on limitations on the representational ability
of belief functions and the lack of certain method-
ological capabilities (e.g., decision-making mecha-
nisms).

Despite the criticism that belief functions have
drawn, we believe evidential reasoning to be well-
founded and to have practical utility in 8 broad
range of applications.

2 On Theoretical Soundness

The theory of belief functions was originated by
Dempster [1] in the context of statistical research.
The use of the term “belief,” together with its
subjectivist connotations, is due to Shafer (7], who
first applied the theory to the analysis of the infor-
mation containad in imprecise and uncertain evi-
dence.

Although much skepticism has been voiced about
the naturality of belief functions and their agree-
ment with conventional probabilistic approaches,
its theoretical bases are provided by a simple con-
sideration about the role of evidence as a basic
information carrier.

In classical proba%ilistic treatments, it is as-
sumed that, under certain evidential conditions ¥,
the value Pr(p|¥) of the likelihood of & particular
statement p is known. This view of evidence, while
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adequate to represent the informational conditions
of most controlled experimental setups, fails, how-
ever, to adequately model the effects that acquir-
ing similar information has on our state of knowl-
edge when the state of the world could not be so
readily controlled.

In such circumstances, whenever the evidence ¥
is observed, three possible informational outcomes
may result from examination of further informa-
tion that later turns out to improve our state of
knowledge: either pis found to be true, ~p is found
to be true (i.e., p is false), or such information is
insufficient to determine the truth value of p. Use
of modal logic concepts, which are the bases of the
formal mode! of Ruspini [6], suggests the use of the
notation Kp, K-p, and Ip to identify these out-
comes. Since these alternatives are exclusive, it is
clear that

Pr(Kp) + Pr(K-p) + Pr(Ip) = 1.

As shown by Ruspini, the function Bel(p) = Pr(Kp),

has the properties of a belief function, as axioma-
tized by Shafer. Furthermore, since it is possible
that Pr(Ip) > 0, then,in general, it is Bel(p) +
Bel(=p) £ 1. This inequality follows naturally,
therefore, from classical probability theory, applied
here to considerations about the provability of cer-
tain propositions, as called by Peacrl (4].

Similar considerations about the informational
effect of independent bodies of evidence, which
are beyond the scope of this short summary, indi-
cate that Dempster’s combination formula is, un-
der its stated assumptions, completely consistent
with conventional probability calculus.

This interpretation quickly disposes of erroneous
arguments based on unintended interpretations of
the intervals defined by belief functions. Each such
interval represents ignorance of a single probabil-
ity value for a fixed proposition p under fixed evi-
dential conditions #. If critics choose to interpret
such intervals as the possible values that condi-
tional probalilities might attain when further ev-
idence is collected, as suggested by Pear}[3], be-
lief functions will not, indeed, behave according to
such unintended semantics.

3 On Decision Support

A criticism of a more fundamental nature, how-
ever, is often raised regarding the epistemological
need for the belief-function approach. Summa-
rized by statements such as Pearl’s[4] question:
“why we should concern ourselves with the proba-
bility that the evidence implies A, rather than the
probability that A is true, given the evidence?,”
these arguments correctly point to the basic know)-
edge requirement that most decision problems en-
tail: if a rational choice is to be made, then we
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must have a proper informational basis to do it.

This obvious consideration is twisted, however,
to argue for the necessity to estimate unknown
probability values when they are not available. We
do not think that this modified, or pregmatic ne-
cesssty, argument is either sound or compelling.
To answer Pearl’s question, we concern ourselves
with the probability of provability because that is
all that our dsta and the laws of logic can pro-
vide. We would rather measure the probabilities
of truth, and endeavor to do so whenever possible,
but we do not think, however, that probabilities
should be guessed, simply because we are com-
pelled to choose a course of action, anymore than
any other unknown physical parameter value.

In our view, the belief-function approach may
be used in a straightforward fashion to produce
intervals of possible utility values. When such in-
tervals overlap and cannot be ordered, this fact
simply reflects a basic deficiency in our knowl-
edge. We look down upon “pragmatic justifica-
tions” with the same concern that any experimen-
tal scientist shows about proposals to guess what
he has not measured: the ability to make deci-
sions in the absence of knowledge is, in our view,
a handicap rather than an advantage of a method.

4 On the Dempster Formula

The Dempster formuls is, currently, the princi-
pal evidence integration mechanism of the belief-
function approach. It was derived in the context
of a basic model of the effect of probabilistic ev-
idence that correctly interprets such evidence as
constraints on probability values rather than as
the source of the actual values, which are typically
undetermined.

The formula may be described as an expression
that yields bounds for the conditional probabil-
ity distribution Pr(-|#;, #;) on the basis of similar
bounds for the probability distributions Pr(-|¥,)
and Pr(-|#3), under certain conditions of indepen-
dence.

Criticisms about the Dempster formula may be
broadly characterized as being the consequence of
two basic misunderstandings about its validity and
generality.

First, the formula is intended to be applied only
to those situations where its underlying assump-
tions are valid. Alleged counterexamples such as

that of the “three prisoner problem,” referenced by

Pearl (4], fail to satisfy such assumptions and can-
not be correctly said to be theoretical failures. We
agree with Pear], however, in its criticism of the
use of the Dempster formula to produce a conds-
tioning formuls, leading to counterintuitive results
(the “spoiled sandwich” effect), which we consider
also to reflect failure of the basic independence as-




sumptions. We are endeavoring, however, to ex-
tend the original theory to produce expressions
to produce and utilize conditional belief informa-
tion [8).

The second type of criticisms are based on the
erroneous assumption that the two evidential bod-
ies being combined should be interpreted as bounds,
provided by two independent “experts,” which con-
strain the values of the same probability distribu-
tion. As it was pointed out before, the formula
combines two different conditional probability dis-
tributions.

$ On Generlity and Complexity

The lack of generality of the belief-function ap-
proach to represent interval constraints on a fam.
ily of probability distributions is well known. Qur
reliance on the belief-function approach, in spite
of such lack of generality, is based on two major
considerations.

First, our experience shows that, notwithstand-
ing criticisms based on unrealistic worst-case sce-
narios, the approach is computationally efficient.
In particular, we have found that representation
of belief functions in terms of basic probabilistic
assignments results in a storage and manipulation
scheme that is both economical and easy to un-
derstand. In addition, we have sucessfully imple-
rented tools, such as summarization and coarsen-
ing operators, which may be effectively utilized to
limit representational complexity.

Second, our current functional operators have
been chosen to guarantee that probabilistic infor-
mation will always be capable of being represented
within the scope of the approach, as more general
constraints do not either enter into consideration
or appear as the result of any of its functions.

Our current concerns with the manipulation of
conditional and dependent evidence show, how-
ever, that, for some important problems, the re-
sults of evidential combination fall outside the scope
of its representational capabilities. Although more
general schemes, such as interval probabilities, do
not suffer from this limitation, their inherent com-
plexity precludes their practical application.

Ongoing research indicates, on the other hand,
that the belief-function approach may be used to
approximate the results of these general evidential
combination operations This reseasch also shows
the basic errors inherent in criticisms that regard
the belief-function approach as a fully developed
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methodology incapable of sustaining further en-
hancement and modification. Having been studied
in depth for only fifteen years, its technological sta-
tus is that of a young discipline being capable of
enhancement ou its own and of combination with
other approaches to produce more general tools for
probabilistic reasoning. Far from proving that we
have reached a technological plateay, our investi-
gations indicate that much is yet to be gained from
such a development and integration process.
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Abstract

We address recent criticisms of evidential reasoning: an approach to the analysis of imprecise
and uncertain information that is based on the Dempster-Shafer calculus of evidence.

We chow that evidential reasoning can be interpreted in terms of clacsical probability
theory and that the Dempster-Shafer calculus of evidence may be considered to be a form
of generalized probabilistic reasoning based on the representation of probabilistic ignorance
by intervals of po: sible values. In particular. we emphasize that it is not necessary to resort
to nonprobabilistic or subjectivist explanations to justify the validity of the approach.

We answer to conceptual criticisms of evidential reasoning primarily on the basis of
their confusion between the current state of development of the theory — mainly theoretical
limitations in the treatment of conditional information— with its potential usefulness to treat
a wide variety of uncertainty-analysis problems. Similarly, we indicate that the supposed
lack of decision-support schemes of generalized probability approaches is not a theoretical
handicap but, rather, an indication of basic informational shortcomings that is a desirable
asset of any formal approximate reasoning approach. We also point to potential shortcomings
of the underlying representation scheme to treat general probabilistic reasoning problens.

We consider also methodological criticisms of the approach focusing primarily on the
alleged counterintuitive nature of Dempster’s combination formula showing that such results
are the result of its misapplication. We address also issues of complexity and validity of
scope of the calculus of evidence.




1 ‘Introduction

If artificially intelligent systems are to ;roduce adequate assessments of the state and behav-
ior of the real world, they must cope sith information and knowledge that is characterized
by varying degrees of uncertainty, ignorance, and correctness. To address this need, we have
developed a technology called evidential reasoning. It is formally based upon the Dempster-
Shafer theory of belief functions; it has been implemented as a domain-indenendent au-
tomated reasoning system; it has been successfully applied to a range of real-world prob-
lems{11]. Yet, its reliance on belief functions has drawn criticism.

Our choice of an approach based on the Dempster-Shafer theory was not arbitrary. We
believe that it has important methodological advantages such as its ability to represent
ignorance in a direct and straightforward fashion, its consistency with classical probabi ity
theory, its compatibility with Boolean logic, and its manageable computatioral complexity.
At the same time, we recognize that other approaches may also complement and augment
the assessments provided by evidential reasoning.

We examine several criticisms of belief functions that have appeared in the literature,
discussing first the fundamental theoretical bases supporting the belief-function approach and
justifying its use in terms of the requirements imposed by ignorance of certain probability
distributions. We consider the nature of Dempster’s rule of combination and argue that
negative assessments either misinterpret the nature of the distributions being combined or
ignore the basic independence assumptions that assure its validity. We stress also that it is
not necessary to rely on explanations that are either nonprobabilistic or subjective to justify
the validity of the Dempster-Shafer calculus of evidence.

Furthermore, we show that certain apparently counterintuitive properties of the approach
(e.g., the “spoiled sandwich™ paradox) are the natural consequence of considering families
of possible probability distributions that solve an approximate reasoning problem. In the
context of this discussion. we indicate also the inherent pitfalls of “axiomatic” approaches
that accept or reject methodologies on the basis of their compliance with allegedly intuitive
principles.

We answer also to critiques based on the computational complexity of the belief-function
approach. Such criticisms claim that the complexity of probabilistic knowledge representa-
tions grows exponentially with the size of the frame. thus waking the theory unsuited for
automated reasoning. Other comments addressed in our presentation ceuter on limitations
on the representational ability of belief functions and the lack of certain methodological
capabilities (e.g., decision-making mechanisms).

Despite the criticism that belief functions have drawn, we beiieve that evidential reasoning
is well-founded and that it may be effectively applied to the solution of a broad range of
important practical problems.

Most of our comments will be made in direct reply to a recent criticism of the belief-
function approach by Pearl[15] since we fee] that his paper encompasses most of the major
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worries and concerns with the calculus of evidence. While mcst of the discussion of this
paper consists of direct responses to issues raised by Pearl and others, our overall objective
is considerably broader. Our answers are motivated by the same remarks of DeGroot, quoted
by Pearl at the conclusion of his work, about the need to use our methodological approaches
“... with the utmost care and in accordance with the highest ethical standards.” Our ain,
like Pearl’s, is to enlighten and clarify, through careful discussion of rather snbtle and delicate
issues, rather than to engage in dogmatic defense of one approach to the detriment of another.
It is our earnest hope that this work, in conjunction with other evaluations of the belief-
function approach, will help to understand its bases, capabilities, and limitations.

2 On Theoretical Soundness

The theory of belief functions was originated by Dempster [4] in the context of statistical
research. The use of the term “belief.” together with its subjectivist connotations, is due to
Shafer [18], who first applied the theory to the analysis of imprecise and uncertain evidence.

Although much skepticism has been voiced about the naturality of belief functions and
their agreement with conventional probabilistic approaches, its theorctical bases are provided
by a simple consideration about the role of evidence as a basic information carrier.

In classical probabilistic treatnents, it is assumed that, under certain evidential con-
ditions &,! the value Pr(p|&) of the likelihood of a particular statement p is known. This
view of evidence, while adequate to represent the informational conditions of most controlled
experimental setups, fails. however. to adequately model the effects that acquiring similar
information has on our state of knowledge when the state cf the world can not be so readily
manipulated.

In such circumstances, whenever the evidence & is observed. three possible informational
outcomes may result from examination of further information that later turns out to improve
our state of knowledge: either p is found to be true. -p is found to be true (i.e., p is false),
or such information is insufficient to determine the truth value of p. Use of modal logic
concepts, which are the bases of the formal model of Ruspini[17], suggests the use of the
notation Kp, K-p, and Ip to identify these outcomes. Since these alternatives are exclusive.
it is clear that

Pr(Kp) + Pr(K-p) + Pr(Ip) = 1.
Furthermore, since the probability of Ip may be positive, it will be true, in general, that
Pr(Kp) + Pr(K-p) <1.

This model, based on a combination of classical probability methods and the modal logic
S5 [8,12], essentially provides—through the logical notion of possible world— a meaning

1Throughout this paper, the symbol & is used to denote available evidence, i.e., a collection of propo-
sitions about the real world that are known to be true either as the result of direct observation or as the
consequences of applicable background knowledge.




for the unary operator K as the representation of the state of knowledge of a statistician
that is estimating the probability of truth of diverse propositions {p, ¢, ...} under evidential
conditions ¥.

This statistician estimates those distributions by considering multiple samples of the
state or behavior of a real-world system. Using, for each sample, additional information
collected through further experimentation, the statistician may then establish or not the
validity of a proposition p. If he is rather lucky, our statistician will find himself in the ideal
situation where he can actually “know"? or “prove” that the real world is in a state s that
is described to the best level of detail that is necessary to understand its behavior (i.e., a
“possible world”). This is the state of knowledge usually attained, under perfect laboratory
conditions, when experimental samples are fully analyzed and when the outcome of such
analyses is classified in terms of a set of exhaustive and mutually exclusive alternatives.

Under less desirable epistemological circumstances, however, the statistician will only be
able to prove that a less specific proposition p is true. In the extreme case where no further
information exists, he will be forced to say that his knowledge is limited to that provided by
the evidence &, or that it is “vacuous.”

All samples so analyzed, however, can be classified as to the “most specific knowledge”
that could be determined in each case. The corresponding probability measure of the set
e(p) of samples where the proposition p was the most specific knowledge (caled an epistemic
set by Ruspini) corresponds. in Shafer’s framework. to the value m(p) of a mass function m,
ie.,

m(p) = Pr(e(p)).

Correspondingly, the probability that p was “known” to be true during statistical experi-
mentation, corresponds to the value Bel(p) of Shafer’s belief function, i.e.,

Bel (p) = Pr(K p).

The connection between the ability of our statistician to know that p was true and the
belief and mass functions that he estimates through experimentation justifies both tthe
expression epistemic probability introduced by Ruspini[17] to describe the underlying prob-
abilities defined over a particular set of situations or scenarios Kp, (called the epistemnic
universe), and their description as being “probabilities of provability” or “probabilities of
necessity” by Pearl [14], following a suggestion by Fagin and Halpern [6].

In short, all such interpretations are equivalent to the original model of Ruspini, where
a rational agent was able to prove the truth of different propositions under different infor-
mational circumstances that were found to prevail. during his statistical experiment. with

2Note that, in the context of epistemic logics such as S5. the operator K behaves as a logical necessity
operator. “Knowing” a proposition simply means that observations logically imply such proposition. or that
it is necessarily true.
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different frequencies of occurrence. Note, however, that while use of the terms “knowabil-
ity,” “provability,” and “necessity” does much to provide adequate semantics to the calculus
of evidence, its loose usage leads to unnecessary confusion. For exaniple, in his recent
criticism [15), Pearl takes some questionable semantic license with the term “necessity™ men-
tioning, for example, the probability that a decision “will have to made out of compelling
necessity.” Such “pragmatic” necessity does not have anything to do, of course, with the
“logical necessity” that underlies the Dempster-Shafer theory, i.e., the necessary truth of a
proposition given available evidence.

Since the ability to prove a proposition ¢ entails the ability to prove any proposition p
that is implied by g, it should be clear that

Bel(p) = )_ m(q).
=
i.e., the fundamental equation relating the basic structures of the calculus of evidence. It is
also true, as shown by Ruspini. that

Bel(p) < Pr(p) < | — Bel(-p).

providing bounds for the probability of p that may not be improved. This ability to manip-
ulate probability intervals by means of the compact representation schenie of mass functions
is the major reason for the appeal of the Dempster-Shafer methodology.

While the ubove discussion clarifies the nature of the statistician’s knowledge modeled
by belief and mass functious. doubts might still remain as to their utility to those that were
not involved in their statistical estimation process. Such usage is, however, that made of
any other probabilistic information. The analyst that observes & does not have the luxur)
that was available to the statistician estimating epistemic probabilities. i.e., the ability to
collect additional information that permits a more detailed characterization of the state of
the world, for the same reasons that the user of statistical tables is unable to utilize the
raw data of the estimating statistician. U'nder such circumstances, the analyst is forced to
rely on the probabilistic estimates provided by the statistician. which are believed on the
basis of the assumed regularity of the repetitive behavior of the system: the epistemological
cornerstone of probabilistic reasoning.

In other words, the “probability of provability” is the best information that is available to
the analyst; an observation that not only disposes of questions abuut its role i probabilistic
reasoning, but also of Pearl’s worries about its use in lieu of the obviously more desirable
“probability of truth” [15]:

“why we should concern ourselves with the probability that the evidence imples 4,
rather than the probability that 4 is true, given the evidence?”.

Clearly, we would prefer having the latter, but, unfortunately, we can only measure the
former.

(1]




Our interpretation of the major evidential functions and structures also quickly disposes
of erroneous arguments based on unintended interpretations of the intervals defined by be-
lief functions. Each such interval represents ignorance of a single probability value for a
proposition p under fixed evidential conditions &. If critics choose, for example, to interpret
such intervals as the possible values that conditional probabilities might attain when further
evidence is collected. as suggested by Pearl[13], belief functions will not, indeed, behave
according to such unintended semantics.

In closing this section, it is important to mention other alternative views of the structures
of the calculus of evidence such as that recently proposed by Smets [19], which are based on a
nonprobabilistic concept of belief. Although those models are interesting on the strength of
their own virtues, we still emphasize that such interpretations are not required to reconcile
the calculus of evidence with conventional probability theory.

In consideration of our ability to reconcile all structures and formulas of the calculus of
evidence, including the Dempster’s formula. with conventional probability structures, such
as inner and outer probabilities, we do not feel strongly compelled to accept alternative epis-
temic interpretations. Qur skepticism in this regard is further supported by the observation
that, often, such epistemological alternatives are the result of misundertandings about the
role of certain evidential formulas and processes (e.g., normalization). For the same reasons,
we remain unconvinced about the need to assign several alternative interpretations to the
structures of calculus of evidence or to its functions, as in the recently suggestion ~f Halpern
and Fagin [7], which is echoed by Pearl[15).

3 On Decision Support

A criticism of a more fundamental nature of the calculus of evidence is often raised regarding
the output of generalized interval-probability approaches. Since these methods often fail, due
to basic knowledge deficiencies. to rank decision choices by the value of some measure that
quantifies the desirability of each choice (e.g.. expected utility)., then it is said that they lack
a decision-theoretic apparatus.

Although these arguments correctly point to the basic knowledge requirement that most
decision problems entail--if a rational choice is to be made, then we must have a proper
informational basis to do it— this obvious consideration is twisted, however, to argue for the
necessity to estimate unknown probability and utility values when they are not available.
We do not think that this pragmatic necessity, argument is either sound or compelling.

In our view, the calculus of evidence may be used in a straightforward fashion to produce
intervals of possible utility-values. When such intervals overlap and cannot be ordered, this
fact simply reflects a basic dethciency in our knowledge. We look down upon “pragmatic
justifications™ with the same concern that any experimental scientist must show about pro-
posals io guess what he has not measured: the ability to make decisions in the absence of
knowledge is, in our view, a handicap rather than an advantage of any method.
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Far from lacking a decision-theoretic methodology, our approach provides an easily under-
standable quantification of the undesirable effects that poor information has on our decision-
making ability; ordering decisions whenever it is rationally possible but advising us that such
ranking is not possible if our knowledge is insufficient. In brief, our approach does not only
supports decision-making but. through its built-in sensitivity-analysis features. helps us to
determine what must be done to reach a happier epistemological state.

4 On Dempster’s Rule of Combination

The semantic model of the Dempster-Shafer theory also validates the so-called Dempster’s
rule of combination. which permits the combination of belief and mass functions corre-
sponding to different evidential observations. made under certain conditions of independence.
When such conditions are not valid, use of this formula leads, of course, to erroneous results,
often, although incorrectly, considered to be an essential handicap of the evidential reasoning
approach, rather than a consequence of its misapplication.

The Dempster formula is. currently. the principal evidence integration mechanism of the
belief-function approach. It was derived in the context of a basic model of the effect of prob-
abilistic evidence that correctly interprets such evidence as constraints on probability values
rather than as the source of the actual values. which are typically undetermined. it may oe
described as an expression that. under certain conditions of independence, yields bounds for
the conditional probability distribution Pr(-|¥,.&,) on the basis of similar bounds for the
probability distributions Pr(-|&,) and Pr(-|¥,).

To understand the conceptual bases for the Dempster’s formula of combination and its
consistence with conventional probability. we resort to a generalization of the logical model
used before to derive the basic relations of the calculus of evidence. Instead of considering a
single epistemic operater, corresponding to a single statistician or observer, we will consider
two such rational agents, with their knowledge modeled by means of two operators K,
and K;. Each of these rational agents will be assumed to be ignorant of the knowledge
possesed by the other. i.e.. as if they were statisticians pevforming independent experiments
under different evidential conditions &, and &,. Their common knowledge, however, will be
modeled by means of a nonindexed operator K corresponding to a third reliable agent that
aggregates the statistical knowledge gathered by the other two.

Clearly, in a given applicable situation (i.e.. the first agent observes &, and the second
agent observes &,), the integrating agent, who does not add any knowledge of his own, will
be able to prove (or to “know” the truth of) a proposition p, if the other agents provide
individual items of information that. when combined (i.c.. conjoined) imply p, as eapressed
by the basic combination axiom:

3For an example of an approach that incorporates decision-maker preferences into the framework of the
belief-function calculus, the reader is referred 1o a recent paper by Strat{21].
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Kp is true if and only if there exist sentences p; and p; such that K;p; and K;p; are
true, and such that p; A p2 = p.

Using our three operators to generate all possible (i.e., logically consistent) states of
knowledge that may be attained by each of the three agents while assessing the state of a
real system, we may say that each of them has, as was the case before, a knowledge about
the real world that may be represented by the “most specific”* propositions p;, p, and p that
each has been able to prove (with p being obviously more specific than either p; or p,). In the
terminology of Ruspini’s semantic model, each of the agents is in an epistemic state, denoted
by e(p), e1(p;) and e;(p,), respectively, each corresponding to the set of all conceivable states
of the real world (i.e., possible worlds) having such knowledge characteristics.

The following important set-equation relating all of these types of epistemic sets as subsets

of our enhanced epistemic universe, is the basis for the derivation of various evidential
combination formulas

e(p)= U (eilp) Nexp2)),

PiAp=p
of which the Dempster combination formula

m(p) =X Y m(p)map2),

PiAp2=p

where

m(p) = Pr(e(p)|&.,.&2). my(p) =Prie;(;m)|€1). map:) = Pr(ex(p:)|€.),

and where ) is a multiplicative factor, is the best known and used.

Before reviewing the actual process leading to the derivation of the Dempster’s formula.
it is important to pause and reflect upon the nature of the above set-theoreiic equation and
its usefulness to derive evidence combination formulas.

We may first note that this equation has been derived as a relation between subsets of pos-
sible “epistemological states” that is valid regardless of any assumptions about probabilistic
structures and their properties (e.g.. independence). As such, it does not only provides the
bases for the derivation of the Dempster formula but actually of a variety of forrnulas that
bound possible probability values within and without the structures of the Dempster-Shafer
theory.

Basically, this formula provides the basis to extend a probability function Pr that is
known over subsets of the form e;(p;) and e;(p;) (i.e., over two o-algebras), to the set of
unions of sets of the form e;(p;) Ne,y(p2) (i.e.. another o-algebra). If such extension can be
made uniquely—as is the casc for the Dempster formula - - the resuliing extension may be
used to generate both the conditional probability Pr(-|&,, &,) and its associated bounds Bel

4Note that such most specific knowledge always exists and is unique, but for logical equivalences. since
the conjunction of all proved theorems is itself a theorem.
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and Pl, which are fully compliant with the Shafer axioms. In other less fortunate cases (e.g.,
dependent evidence), such extension is not unique and the lower envelope of the possible
extensions. which is not a probability, will lead to bounds that do not satisfy the axioms of
the calculus of evidence.

A most important remark that must be made in this regard is that this equation is now
being used to extend the evidential calculus approach by generalization of the notion of con-
ditional probability by study of the probabilistic relations that define dependencies between
the different types of epistemic sets (i.e., e(p), ei(p1) and ez(p;)). Pearl (15}, however, be-
lieves, apparently as the result of his examination of the role of compatibility relations in the
calculus of evidence, that this approach is essentially limited in its expressive ability to set-
theoretic relations between epistemic sets, which correspond to classical logical conditional
statements (i.e., material implications).

In fact, it may be easily seen from our epistemic identity that whenever the conditional
probabilities Pr(ey(p;)|ei(p)) and Pr{e,(p)lez(p2)) are restricted to take the values 0 or
1,% then this identity may be used to map one body of evidence into another. i.e.. by means
of the compatibility relations that such probabilities define.

Since under these assumptions, however, there can be only one proposition p, for every
proposition p; such that Pr(ez(p;)|e;(p1)) = 1. and viceversa. then the compatibility relation
that is so defined may be characterized by several implications of the form

ei(m) = exp,).

and of the form
ex(q2) = ei(q)).
between knowledge states of one observer to knowledge states of the other which are useful

to “transfer mass” between propositions. This correspondence must be contrasted with that
following from the limited interpretation given by Pear]l who. from knowledge of

el(p1) = exp2).

concludes (by contraposition). correctly but narrowly. that

—ez(p2) == =ey(p) .

proceeding then to attach all material implication paradoxes (e.g., the “ravens paradox™) to
the calculus of evidence as if they were an essential methodological bane. If that were to be
the case—clearly it is not— the same concerns should be raised about the use of conditionals
in conventional probability calculus.

The second observation that may be made about the nature of evidence combination, in
general, and the role of our basic set identity to generate combination formulas. in particular.

51t may be shown from the definition of epistemic sets that. under such conditions. knowledge of
Pr(ez(p2)le1(ps)) suffices to derive Pr(e;(py)lea(p2))-
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is that while the functions to be combined are conditional probabilities over two different
evidential sets &, and &, (i.e., the evidence observed by two agents), the desired integrated
probability is a distribution over ¥; N&, (since we know that both observations are correct).
Except for unusual cases, however. computation of Pr(-|&;, ) entails a “normaiization”
operation that is fully consistent with the calculus of probability. Most of the normalization
“paradoxes” are the result of misunderstanding about what is being combined: two different
conditional probabilities rather than two different lower and upper bounds of the same
probability function.®

Focusing now on the rationale for Dempster’s formula, we should notice first that the
epistemic sets e;(p;) and e;(p,) are such that

ei(m)C¥,. exp2) C ¥,,

i.e., the possible knowledge states of each statistician include awareness of the truth of the
evidence that is observed by each. Furthermore,

i=Uelm). &= elp).
1 P2

where p)=>¥, and p,=¥,, i.e.. each statistician knows something that implies that his
evidential observation is true (otherwise he would not be “counting” that sample).”

Assume now that there exists a probability distribution Pr defined over the space of all
possible epistemic states for our observing statisticians and our “integrating” agent. Each
such epistemic state is a possible world that corresponds to a possible state of the world and
to a possible state of knowledge for each agent that, in addition. is consistent with the laws
of logic. We will assume now that. whenever p; =¥, and p,=&,. it is

Pr(e,(p1)) Pr(ex(p2)). ifpAp, #0.
0. otherwise.

Pr(e,(p;) Ney(p2)) = {

This assumption simply states that, when &, and &, are both true the probability that a
rational observer will be in a particular knowledge. or epistemic state does not provide any
information about the probability of the epistemic state of the other agent (i.e., beyond ruling
out logical impossibilities). In purely formal terms. we may say that knowledge of values of
Pr over sets of the form e,(p;) does not provide any indication, beyond exclusion of logical
impossibilities, of the values of Pr over sets of the form e;(p,) and viceveisa. The epistemic
states of our two agents may be said, therefore. to be uncorrelated in that knowledge of the
state of one of our observers (by our integrating agent) does not provide any information
about the state of the other, save for elimination of logical impossibilities.

61t is fair to say that much of the skepticism raised by the normalization used in Dempster’s formula can
be traced to the exposition given by Shafer [18]. which suggests excessive reliance on unfounded heuristics.

Recall that our observers, or rational agents. are statisticians estimating properties of certain statistical
distributions by classifying each sample using their evidence and additional sample-dependent knowledge.

10
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Noting now that

P
Pr(es(n)l¥1) = potgid . Prlea(pa)l¥a) = Tparl
Pr(e,(p1) Nez(p,))

Pr(e;(pi) Nex)|¥,. &) =

Pr(é’, N 82) ’
then, whenever p; Ap, # 0, it is

Pr(e;(p1) Nex(p:)|&,. & 2) = APr(e;(p))|&,) Pr(ey(p2)|€2) = Amy(p) ma(p2),

from which the Dempster’s furmula readily follows.

The normalization factor
3\ = Pr(&,) Pr(¥,)

Pr(#,n&;) ’

has been the object of considerable concern by both skeptics and proponents of the calculus of
evidence. The above expression. however, provides the rationale for its usage while disposing
of arguments about its alleged inconsistence with the probability calculus. In that expression,
the denominator Pr(&, N &,) appears as the consequence of the need to derive probability
distribution estimates with respect to the intersection of the two observed evidences &)
and ;. The numerator of that expression simply reflects the need to combine conditional
distributions over the same reference set (i.e.. the epistemic universe) while our probabilistic
knowledge is expressed over two of its subsets (i.e.. &, and &,).

The essence of the conditions that lend validity to the Dempster formula may be sum-
marized by saying that its usefulness is confined to the limited. but rather important cases.
where estimates of probabilistic likelihood have been formulated by two rational agents on
the bases of independent observations. while ignoring the evidence available to each other.

If our integrating agent is thought of as being concerned with estimating the probabilities
of certain events when both ¥, and &, are true. then we may say that, whenever the
conditions validating the Dempster's formula hold. knowledge of the fact that a particular
sample satisfies p;, tells himn nothing about the likelihood of p, (unless, of course, p; happens
to be logically inconsistent with p,). Furthermore, whenever our integrating agent is done
with his job, he should find out that estimating this joint distribution (i.e., over &, N &,)
could have been accomplished in an easier fashion by estimating the marginal distributions
over &, and &, and deriving the joint distribution by multiplication and normalization.

Other accounts supporting the validity of the Dempster’s formula and its consistence with
the probability calculus have heen advanced by several authors. A particularly compelling
justification has been recently given by Wilson [22].

5 On Paradoxes

Criticisms of the Dempster formula may be broadly characterized as being the consequence
of basic misunderstandings about either its meaning or its validity.
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In this section, we examine three alleged paradoxes of the theory showing that the pur-
ported inconsistencies are actually the results of conceptual misunderstandings or misrepre-
sentations of the position of those who, while generally supporting the calculus of evidence,
are concerned with its possible misapplication.

5.1 The Three Prisoner Problem

Turning our attention first io concerns about the validity of the Dempster’s formula, we may
note that, in general, such examples ignore its scope of applicability, producing counterintu-
itive results that are then used to dismiss the methodology as inadequate. Among those, the
“three prisoner” problem discussed by Diaconis and Zabell [5] has been perhaps the more
quoted and discussed.

This problem is one of a variety of examples, where the combination formula is used as a
conditioning formula by assuming that one of the mass distributions being combined simply
assigns all its mass to a proposition p in the frame of discernment. Combination of such
simple support function with another mass function associated with a belief function Bel(:)
leads to the conditioning formula

Bel(g V -p) — Bel(~
Bel(¢lp) = e(ql _r};Ll(wj( p)'

In the particular case of the three prisoners problem, concerned with the guilt or innocence
of a prisoner that has been chosen (by the Warden) as the guilty party by random draw among
three candidates A,. A; and Aj. our “logical space” or frame of discernment is simply the
Boolean algebra induced by the three noncompatible propositions

“Prisoner A; has been found guilty.”

where ¢ = 1,2,3. Since only one of the three prisoners is chosen by the Warden. we clearly
have

Pr(p)=3. i=123
(Note that Pr is actually a conventional probability distribution).

Prisoner A; now asks the Jailer to name one of the innocent prisoners other than him
arguing that such information would clearly be of little help to him as an indicator of his
potential fate. As Pearl notes. if ¢ stands for the proposition “The Jailer names A, as one
of the innocent,” then application of the conditioning rule leads to the result

Bel (p]g) = Pl(plg) = 1.

indicating that the conditional probability Pr(p|¢) must be exactly 3, instead of the “correct
solution”

0 < Pr(mlg) < 3.




while also saying, agains the correct intuition of A4; that his chances of guilt have been
increased as the result of the irrelevant information provided by the Jailer. From such
an observation, Pearl concludes that the formula is seriously flawed both because of the
counterintuitive result that it produces and for its “collapsing” of a family of solutions into
a single value.

Before proceeding to the discussion of Pearl’s concerns we may note, in passing, that this
problem has been well known as a source of paradoxes and incorrect solutions within the
scope of the conventional probability calculus [2] quite independently of any issues of validity
of its treatment using the Dempster-Shafer calculus. C'uriously enough, the explanations
given to describe the conceptual errors leading to incorrect classical treatients resemble to
some extent that shedding light on the inapplicability of the Dempster’s formula.

Returning now to the role of the Dempster’s formula in this problem, we may first observe
that, although, at first glance, the distributions representing the Jailer's and Warden's choices
seem independent, it is actually impossible for the Jailer to tell to A, that A; is one of those
to be spared if all he knew was that the Warden was choosing to be the guilty party by
random draw (i.e.. he needs to know exactly who is the one chosen for punishment). To use
the terminology of Ruspini’s model. the probability of 4, being named as one of the innocent
depends on the epistemic state of the Warden thus violating the independence assumptions
of the Dempster’s formula. If all possible combinations of truth values for the propositions
p. t = 1.2,3, and ¢ are tabulated. together with their probabilities. as done in Table 1, then
it is clear that

Priglps)=1. Pr{g)= % (1 +a).

where 0 < a < 1 represents the unknown probability that the Jailer will choose to name A,
rather than Aj; as innocent if A, is actually the one chosen by the Warden as guilty.

Possible World || Warden's Choice | Jailer Identifies || Probability
W A A, 3o
W, A, As s(1-a)
Ws A, As 3
W, 4 4 .

Table 1: Possible Worlds in the Three Prisoners Problem

But then.
Pr{qlps) # Pr(q) .
violating the assumptions. discussed above, that validate the utilization of the Dempster’s
formula (i.e. Pr(ez(p:)lei(p1)) # Pr(ex(p:)). There is not, therefore, “total mistery.” as
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Pear] says, as to the incorrect results obtained using the Dempster’s formula. Failing to be
applicable, there shouid be little wonder that it leads to apparent paradox.

Although, as clearly shown by this discussion, the incorrect treatment of the three pris-
oner problem fails to invalidate the Dempster's rule of combination, we share the concern of
Pearl and others about its wide misapplication, particularly when used undiscriminately to
generate conditional distributions. In our research, we are endeavoring to extend the original
theory to produce expressions to produce and utilize conditional belief information [16] that
incorporates known dependencies between evidential bodies. These formulas are intended to
provide better interval estimutes that the typically uninformative bounds that are supplied
by strict derivation of bounds in the absence of additional information by the expression

Bel(p A q)
pAg)+PlpA=g)

which is mentioned in Dempster’s original paper[4] and that has been the object of recent
concern by several authors [3,7].

Bel(q|p) = Bel

In closing, we feel it is important to address other concerns of Pearl, going apparently
beyond the three prisoners problem. about the counterintuitive naturc of the “collapse” that
usage of the Dempster formula often produces. which is manifesied by productio.. of a single
conditional probability distribution when conditioning multiple members of a family P of
probabilities over some specific subset ¢. Just as it is true that all members of the fa:mily of
distributions

P = {Pr,:tin|0,1]}

defined in the set X = {a.b.c} by the expression

3t fr=ua.
Pr, (r) = %(l -1y, ifr=5b.
%. far=c,

are such that Pr,({a,b}) = 1. despite their variability over other subsets. it is also true that
an extensive family of distributions may collapse into a single conditional probability without
violating any rational or probabilistic principles. Such “invariants” are, in fact, desirable as
elements that simplify the analysis of an otherwise complex probabilistic problem. For
these reasons, we do not feel that, if the Dempster’s conditioning formula is applicable, its
reduction of the variability of probability values should be a particular cause for concern as
to its validity.

5.2 The Spoiled Sandwich

While discussing the suitability of the calculus of evidence either as a “orm of generalized
probabilistic calculus, or as a new theory that intends to capture a novel notion of belief.
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Pearl [15] again faults the approach for failing to satisfv the following rationality principle
originally stated by Aleilunas [1]:

“If two diametrically opposed assumption: yield two different degrees of belief in a
proposition @, then the unconditional degree of belief merited by Q should be some-
where between the two."

As natural such a principle might look at first, the following simple and clever example of
Wilson [23] clearly shows that it is neither intuitive nor appealing pointing, however, to the
pitfalls of creating or supporting one’s favorite scheme on the strength of supposedly rational
axioms.

Let X = {a,b,¢,d} with A = {a,b} and B = {a,c}. so that B = {b,d}. Consider the
family of probability distributions in X

P={Pr:tin[0.1]}.

indexed by a parameter ¢ in [0.1). and defined by

Pr, ({d}) = %l~

Pr ({b}) = %(l—t).

Pr ({c}) = 1.
(({d}) = :,1'-

and let
Pr. = ix:f{Pr,} .
Then. clearly
Pr,(A)=jt+3(1 -1)=3.

and, therefore, it is Pr, (1) = % The couditional probabilities Pr, (A|B) and Pr, (A|B) are
given by the expressions

_ Pl’r({(‘}) - %l
Pr, (4]|B) = Pr.({e.c})  T+11

_ Prhh) _ _z0-y)
Pr (4A|B) = Pr, ({b.d}) %-}-%(]—f)

from which the lower bounds
Pr. (4|B) = ilt]f Pr,{4|B)=0.
Pr. (A|B) = inf Pr,(4|B) =
are easily derived. It is clear. however. that
1 =Pr.(4)>Pr. (4|B) = Pr.(4]B) = 0.

showing that the the sandwich prii ciple is violaied even within the confines of conventional
probability theory.




5.3 Other ways to spoil the sandwich

Although such simple examples should suffice to dispose of concerns about spoiled sand-
wiches, we feel that Pearl's discussion of the problem deserves a more detailed analysis.
mainly because of its philosophical implications to rational thinking. This is particularly
important as loose use of such terms as “assured winnings,” “support,” or “belief” in the
absence of a sound formal interpretive framework may quickly mislead those engaged in the
comparison of alternative methodologies.

In an example, called “the Peter, Paul, and Mary Sandwich pioblei,” Pearl presents a
betting situation where Mary prepares either a ham or a turkey sandwich promising to pay
Paul $1000 should he guess correctly the type of sandwich that she has prepared. Not having
a clue as to Mary's choice, Paul then flips a coin guessing *ham” if the coin turns up heads
and guessing “turkey” if it comes up tails. Paul. as Pearl notes. behaves like an “incurable
Bayesian,” reckoning that

Pr(win) = Pr(win | turkey)Pr(turkey) + Pr(win | ham) Pr{ham)

= Pr(tails | turkey) a + Pr(heads | ham) (1 —a) = 3,

regardless of the value a of the probability that Mary has actually prepared a turkey sand-
wich. Thus, in spite of not being “assured” a win. or having “supporting evidence,” Paul can
invoke the rationality (doubtful. as we already saw) of the sandwich principle and argue that
Paul does not need to engage in nnnecessary ki owledge acquisition or experimentation [15):

“If every possible outcome of an experitnent would lead you Lo choose the same action,
then you ought to choose that action without running the experiment.”

From such an observation. Pearl proceeds to fault the philosophical underpinnings of the
belief-function approach eventually going as far as to suggest that. should Bayesian ortho-
doxy be unapplicable, the Dempster's formula—which. he freely admits, does not play any
role in this example— be replaced by other formulas such as the well-known bounds recently
rediscovered by Halpern and Fagin [7].

In the light of our previous example about the rather inconvenient ability of conventional
probability families to spoil sandwiches. all of these pronouncements look increasingly sus-
picious: What, however, may we say that it is wrong? This question may be answered in
two equivalent ways.

We may say first, keeping ourselves at the informal discussion level, that, often. the
experiments may interact with probabilities in complex ways that, obviously, Pear] has not
considered. Nothing in Pearl's formalism suggests, for example, that the sandwich has
already been prepared and that it may not be artfully substituted by Mary to assure that
Paul always loses thus invalidating his hopes ol having at least a 50% chance of winning.

The second, more formal. rendering of this observation is again based on the semantic
model of Ruspini. In this, and in other similar problems. we have several agents that de-
liberate about the state of the world on the basis of their knowledge and knowledge of the
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knowledge of others. If the unary operator K represents the state of knowledge of one of
these agents, then, as observed before. our agent is usually in one of three possible epistenio-
logical states with respect to the validity of a proposition p: either he knows that P is true
(denoted Kp), or he knows that p is false (denoted K-p). or he may be ignorant of such
truth (i.e., =Kp A =K-p, denoted Ig).

In standard accounts. assuming that knowledge of the truth of does not affect like-
hilood of truth of other propositions, we are simply concerned with a single form of condi-
tional probability: that measuring the likelihood of p being true when ¢ is true. In more
complex epistemological situations, we may need to be concerned with such quantities as
Pr(Kp|Kq), Pr(Kp|g). Pr(Kp|Ig). and the like. In other words. Bel(p | ¢) measures the
support that knowledge of the truth of g provides to the truth of p. rather than the support
provided by the truth of ¢ to the truth of p.

In the Peter, Paul. and Mary sandwich problem. Pearl implicitly assumes that

Pr(ngyheads) = 0 )

Pr(Kugytails) = 0.

Pr(turkey | Iypyheads) = a.
Pr(ham | Impyheads) = 1 —a.

concluding correctly. by application of the total probability law. over the exhaustive and
exclusive set of possibilitics

{ngyheads. Knmytai]\‘. Inmy]leads} .

that Paul has at least a 50% chance of winning.

This correct use of the total probability law does not mean that. by contrast. one should
assume that the fuil extent of the conditional information provided b;" belief functions is
limited to the conditional support functions

Bel(p|g) =Pr(p|Kq). Bel(p|=g)=Pi{p|K~g).

as Pearl evidently does. In short. not knowing p is not the same as knowing —p. The example
of the Peter, Paul, and Mary sandwich shows that one needs to consider states of ignora 1ce
that, when properly accounted for. spoil even the best conceived principles of rationality.

To fully appreciate the complexity of the problem. suppose that we change Pearl’s implicit
assumptions bringing the previously absent Peter into the scene as a spy acting on behalf of
Mary In this new scenario. still consistent with Pearl’s explicit stalement of the probiem.
Peter, spying on Paul’s coin flipping experiment. alerts Mary who. being rather artful and
deft of hand, substitutes the sandwich so as to make sure that Paul always loses. In this
case,

Pr(ham | Kmytails) = 1, Pr(turkey | Kmapyheads) = 1,
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and, most importantly.

Pr((ngyheads) ] (Knmytails)) =1,

i.e., Mary is never ignorant as to what Paul will bet.

The Peter, Paul, and Mary sandwich example does not, in our view, invalidate the
applicability of the evidential approach but rather highlights the need to make necessary
discriminations between propositional truth, knowledge of that truth, and the interplay
between such conditions that are likely to be glossed over by cursory analyses based on
conventional approaches.

54 The Disagreeing Experts

Another common misunderstanding regarding the role of the Dempster's combination for-
mula is that provoked by an example of Zadeh [24] that, although originally formulated to
illustrate problems with its misapplication, is often described as an indication of theoretical
inadequacy.

Zadeh's example concerns two “experts” that assess. in a rather conflicting fashion, the
likelihood of three, non-compatible, events A. B and (" as shown in Table 2. Representation
of each of the expert’s assessment as a mass distribution followed by their combination with
the Dempster’s rule vields Pr(B) = 1. indicating that the “true™ event is B, an alternative
considered to be rather unlikely by either of the assessors.

Observer || Pr(4) | Pr(B) | Pr(C)
1 099 | 001 | o0
2 o | o001 | 0w

Table 2: Experts Disagree on the State of the World

Aithough this example is often quoted as an example of the failure of the Dempster’s rule,
it is clear that each of the rows in Table 2 defines a conventional probability distribution, thus
suggesting that the problem is likely to lie elsewhere. While one may be tempted to defend
any method of evidence combination by saying that the evidence, however peculiar, indicates
that Observer 1 is ruling out alternative C' while Observer 2 is excluding alterr.ative A, thus
leaving only B as the sole possible answer, it is clear. upon further examination, that the
rows of Table 2 cannot possibly be evaluations of the same probability distribution. If that
were the case. then at least one of the experts must be wrong. since there can only be one
correct probability distribution. contradicting the assumption that they are both reliable.
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Clearly, if the example is to make any sense —under any type of probabilistic interpretation—
each row must correspond to a different conditional probability where the conditions corre-
sponds to different observations available to each expert. A simple example, suggested by a
recent example used by Kyburg[9] to address other probabilistic reasoning issues, will help
to clarify matters.

In this example we are being asked to reason. on the basis of available evidence, about
the taste and edibility of certain berries that may be either small or large, red or blue, have
good or bad taste, or be safe or poisonous to eat. We will assume that the berries in question
are distributed according to the distribution shown in Table 3.

Berries
Color || Size | Taste/Edibility | Probability
Red | Small Good/Edible 99/199
Blue | Large Bad/Edible 99/199
Red | Large Poisonous 1/199

Table 3: The Berries Probability Distribution

If now a berry is picked up and found by an expert to be large. he will correctly conclude
from such evidence that

Pr(Good|Large) = 0. Pr(Poisonous|Large) = 0.01. Pr(Bad Taste|Large) = 0.99.
Another expert, noticing that the berry i< red. will conclude. on the other hand, that
Pr(Good|Red) = 0.99. Pr(Poisonous|Red) =0.01. Pr(Bad Taste|Large) = 0.

Clearly the evidential implicatioas of these two separate observations are identical to the
situation summarized in Table 2. Examination of Table 3. however. reveals that

Pr(Poisonvus!Red. Large) = 1.

a correct solution that must be rationally be expected from any reasoning method that
purports to be valid.

The solution to the puzzle of the disagreeiug eaperts lies on recognizing that there is,
in fact, no disparity of opinion among them. Each is providing quantitative measures of
likelihood with respect to different reference classes. The Dempster formula, as observed
by Zadeh, should never be applied to pool partial information about the same probability
distribution. Furthermore. as shown by a sensitivity analysis of the results of its application
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to the berries example. its usage in situations where there is considerable disparity between

reference classes (as suggested by the large normalization factor) should be discouraged on
the basis of practical rather than conceptual considerations.

6 On Complexity and Generality

The potential complexity of the belief-function approach to represent and manipulate interval
constraints on a family of probability distributions has been often mentioned as a handicap
of the evidential reasoning methodology. In spite of such misgivings, two major empirical
observations have indicated that the approach is applicable to a wide variety of practical
problems.

First, our experience shows that, notwithstanding criticisms based on unrealistic worst-
case scenarios, the approach is computationally efficient. In particular, we have found that
representation of belief functions in terms of basic probabilistic assignments results in a stor-
age and manipulation scheme that is both economical and easy to understand. In addition,
we have sucessfully implemented tools, such as summarization and coarsening operators,
which may be effectively utilized to limit representational complexity.

Second, our current functional operators have bheen chosen to guarantee that probabilistic
information will always be capable of being represented within the scope of the approach,
as more general constraints do not either enter into consideration or appear as the result of
any of its functions.

The lack of generality of the heliel-function approach to represent general lower-upper
probability constraints is well known [10]. Our reliance on the methodology is primarily
the result of practical considerations: while we would prefer to manipulate more general
constraints on probability values. compelling computational efficiency arguments force us to
limit the scope of the problems considered to those capable of being at least approximately
solved by a belief-function treatinent.

Being, in general. partial towards interpretations of evidential structures that are fully
compatible with probability theory. our current research is being directed toward the devel-
opment of more general, vet efficient. representation and manipulation methods.

Our current concerns with the manipulation of conditional and dependent evidence (i.e..
the evidential counterpart of conditional probabilities) show, for example, that, for some
important problems, the results of evidential combination fall outside the scope of its repre-
sentational capabilities. In our experience. these methodological limitations are more worri-
some than any of the supposedly paradoxical results arising from its misuse or its claimed
lack of a decision-making apparatus.

Preliminary results [16] indicate. on the other hand. that the belief-function approach
may be used to approximate the results of these evidential combination operations and
that extended representation mechanisms [20] may vet be developed to treat more general
evidential problems. This research also shows the basic errors inherent in criticisms that




regard the belief-function approach as a fully developed methodology incapable of sustaining
further enhancement and modification. Having been studied in depth for only fifteen years.
its technological status is that of a young discipline being both capable of enhancement on its
own and of combination with other approaches to produce more general tools for probabilistic
reasoning. Far from p. sving that we have reached a technological plateau, our investigations
indicate that much is yet to be gained from such a development and integration process.
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