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ABSTRACT

A two-scale analysis of the forced Rayleigh-Plesset equation of cavitation bubble
dynamics is performed. The problem of cavitation inception as it relates to bubble dynam-
ics involves vaporous cavitation nucleus growth as it is influenced by the pressure
distribution on a submerged body. This brings into prominence two widely varying time
scales. The "laboratory time" is characterized by the bubble's travel over the body, while
the "bubble time" is characterized by the very high natural frequency oscillations of the
individual bubble. The laboratory time is expected to be much longer than the bubble time;
thus they can be related by a very small parameter, €.

Using these two time scales, a perturbation expansion is performed on the forced
Rayleigh-Plesset equation and its initial conditions up to the third order in €. The resulting
zero and first-order equations are solved, subject to these solutions being independent of the
laboratory time. In this case the integrability condition for each step is thereby identically
satisfied.

The zero-order equation is an autonomous nonlinear second-order differential equa-
tion. An approximate closed-form, small oscillation solution is found and a numerical
solution is found for oscillations of all amplitudes. Both forms of the solution are found to
be periodic and a function of bubble time only.

The first-order equation is a nonhomogeneous linear second-order differential
equation with periodic coefficients. Its homogeneous form is of the class of Hill's equa-
tions, and can be treated using Floquet theory. The complementary solution in normal or
Floquet form is found numerically. Variation of parameters is used to find the particular
integral. Again, the constants for the first-order solution are independent of the laboratory
time and only the bubble time appears explicitly in the complementary function.The labora-
tory time enters the solution via the particular integral because the forcing function depends
on the laboratory time.




The dynamic stability of these solutions was investigated. It was found that the
present solutions are unstable and they are not suitable for inception calculations. Further
study of the method of solution determined that a more general solution than the present one
might be found which will still satisfy the integrability conditions at each step. Some basic
zero-order equations have been formulated which may permit such a numerical solution to
be found. No algorithm for the solution of these equations has been developed.

This report is a revision of the first author's thesis in Aerospace Engineering, which
was submitted in partial fulfillment of the requirements for the degree of Master of Science,
December 1990.
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CHAPTER 1
INTRODUCTION

1.1 Background

In a flow about a submerged body, the fluid is known to contain very small nuclei
containing air and water vapor. These nuclei translate downstream at some velocity close
to that of the free stream. Some of these will come in contact with the body and enter its
boundary layer. Submerged bodies, such as circular cylinders, hydrofoils or hemispherical
headforms, have pressure distributions that vary along their arc lengths. At some point on
the body the local static pressure of the liquid will equal that of the liquid vapor pressure
after which there will be a region in which the static pressure is less than vapor pressure. It
is in this region that the nuclei can experience vaporous bubble growth. Therefore the
critical point at which the static pressure equals the vapor pressure separates two possible
regions of bubble behavior along the body.

If the nucleus enters the boundary layer of the body upstream of this critical point, it
will travel along the body and act as a flaccid bubble. In this upstream region the bubble
will grow, mainly due to internal gas pressure changes caused by the changing liquid static
pressure, until it sees a local static equal to vapor pressure. After this point on the body the
local static pressure is less than the vapor pressure within the bubble and the conditions are
favorable for vaporous bubble growth. If the nucleus either enters the boundary layer of
the body in this region or is conveyed from the flaccid bubble region into the favorable
region, it will grow vaporously to a maximum radius and then collapse as the local static
pressure rises.

If there is no separation on the body the bubble will continue to collapse rapidly and
violently. For sufficiently low Reynolds numbers, however, some bodies will have lami-
nar separation regions. If the separation bubble is short, it seems possible that collapse

may not occur, and the bubble will come to rest within the laminar separation bubble where
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it can grow by gas diffusion [1], [13]. This diffusive growth continues until the bubble
diameter reaches the height of the separation zone. Then the bubble interacts with the free
shear layer and is translated downstream. If the flow reattaches, the turbulent shear in this
region breaks the bubble into froth, creating a narrow ring of visible cavitation. The point
at which this cavitation becomes visible is called cavitation inception. This type is known
as bubble-ring cavitation, which is a form of attached cavitation controlled primarily by
laminar boundary layer separation.

The governing equation which describes isothermal cavitation vapor bubble growth
or collapse is the Rayleigh-Plesset equation [16]. It describes the growth of a spherical
bubble in the region of a body where the local static pressure is less than the liquid vapor
pressure. It also applies at least in the initial stages of collapse when the static pressure rises
down stream of the minimum pressure point on the body. An examination of this equation
may provide direct insight into the hydrodynamically forced growth of the nuclei leading
to cavitation inception. From this knowledge it is hoped that a relationship between the
parameters of the flow and submerged body with respect to critical flow conditions for

cavitation onset might be found.

1.2 Previous Investigations

The governing Rayleigh-Plesset equation? describing isothermal vaporous growth
and collapse of a spherical bubble of radius, R, as a function of time, t, in a perfect fluid, is
written as

Rd2_R 3(dR Y 1

a2 T2la) “r RO (1.1)

Equation (1.1) assumes that the static pressure is responsible for driving the bubble

growth, and is contained in the time dependent forcing pressure , F(t).

1See Appendix D for more dedails.




3
that the forcing function pulse acting on a nucleus is characterized by two widely varying
time scales. One dimensionless scale, called "laboratory time," t,, is governed by the time
it takes for the growing nucleus to move through the low pressure region in the boundary
layer which promotes vaporous growth. The other dimensionless time scale, called
"bubble time," 1, is associated with the very high natural frequency of the very small
nuclei and depends on the period of natural vibration of the a typical microbubble. This
guarantees a very rapid response of the bubble to external pressure changes. For every
period of "slow" laboratory time there are many periods of the "fast" bubble time. There-
fore, the two time scales can be related by a very small parameter, €, which is simply the
ratio of tgto T.

Using this idea, Baker expanded the forced Rayleigh-Plesset equation and its
initial conditions in orders of the small parameter €. He then found an approximate
solution to the zero-order equation in terms of elliptic integrals and functions. Althoughl
this analysis was quite complex and involved some approximations, it compared well
with a strict numerical solution of the zero-order equation. Also, it set up a basis for
the analysis of the first-order equation of the expansion which can be combined with
the zero-order findings to approximate better the total solution.

1.3 Objective of this Investieati

The main objective of this investigation is to find a solution of the forced Rayleigh-
Plesset equation (1.1). In general this can be solved numerically using standard computer
algorithms which do not consider the aforementioned time scales. Use of this type of
numerical approach makes it extremely difficult to isolate any critical flow parameters or
conditions between them which can lead to cavitation inception.

This investigation extends Baker's method of solution [2]. It involves a two-scale

perturbation expansion based on the small parameter €, which relates the two time scales
present in the problem, t, and t. Application of this two-scale procedure produces a series
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of linear or nonlinear partial differential equations for the various powers in €. This type of
mathematical technique is well known [11] and it is hoped that it will work well with the
very nonlinear equation (1.1).

The first part of the present investigation considers the forcing function. This comes
from the pressure distribution across a particular body. Baker used a hemispherical head-
form so that the pressure distribution may be correlated with much experimental data. This
analysis will attempt to use a circular cylinder as the governing body, in part to see if the
analysis is valid for different cases. Supercritical flow over a circular cylinder exhibits a
pressure distribution showing a laminar bubble just upstream of the turbulent separation
[3], [4]. Thus, experimental pressure data for a circular cylinder will be used to derive a
forcing function for the problem.

Next, the two-scale dynamical equations will be derived. Although Baker's solu-
tion of the zero-order equation gave some new approximations for the time of growth in
terms of the radius, it can not be inverted explicitly to give the radius as a function of time.
An inversion is needed in order to obtain the first-order solution. Thus, in the present
analysis, we will rely on numerical methods, supplementing them with small oscillation
analysis which leads to periodic solutions requiring no inversion. Baker also assumed that
the zero-order solution was independent of the laboratory time, t,. This investigation will
also attempt to verify this fact or at least to see what further research is needed if conditions
can be found which show that other zero-order solutions may be possible.

Lastly, the first-order equation is analyzed for the case of periodic zero-order
solutions and a numerical first-order solution is obtained using the Floquet theory. First the
complementary function is found and its dynamic and numerical stability is examined. Then
the Particular integral is found using variation of parameters. The entire process is trans-

lated into Fortran and a numerical example of the complete solution is given.




CHAPTER 2
BACKGROUND AND FORMULATION

2.1 Development of the Time Scales

As mentioned from the outset, this problem involves two time scales. The first of these is
associated with the time it takes for the growing nucleus to move through the low pressure
region on the submerged body, and the second is associated with the very high frequency
response time of the nucleus to external pressure changes.

It is desirable to have the two time scales in dimensionless form. By first defining a

characteristic ;aboratory time, D/V, one can define the dimensionless laboratory time as

tV,
=T 2.1)

where t is real time, D is the characteristic diameter or other length of the body and V) is the

free stream velocity. Now we define a characteristic time, - / P Rg/26 , involving only

the physical properties of the bubble and liquid. This characteristic time enables one to

define a dimensionless bubble time as

t=ta |25 . 2.2)
PRy

where p is the liquid density and ¢ is the liquid surface tension. Introduction of a small
parameter € as the ratio of the characteristic bubble time to the characteristic laboratory time

N \_,M/pké 23)
“ DV, °~ D 20

It should also be noted that such a definition also gives the ratio € in terms of the nondi-

yields:

€ =

mensional terms defined above, i.c.,

e=t /1. (2.4)
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A relative comparison of the "slow" laboratory time scale and the "fast" bubble time

scale shows that the ratio, 7/t; , can have a magnitude of about 10° or less. This says that T
is of very short duration compared to the time scale t,, hence there are many periods of 1
for one period of t,. It follows from equation (2.3) that € should be a small number, often
of the order of 10 . These are the same two time scales used by Baker [2] in his work.

As he states, the fast bubble time characterizes the high frequerncy oscillations of the
individual bubbles, whereas the slow laboratory time characterizes the forcing function

across the governing body.

2.2 The Forcing Function

In a discussion of the translation of a bubble over a submerged body, what must be
brought to light is the driving force which creates the environment for subsequent vaporous
bubble growth and the start of collapse. Discussion has been made of the fact that for va-
porous growth to occur there must be a region on the body where the static pressure of the
flow is less than the vapor pressure of the liquid. This region starts on the body at a critical
point where the static pressure equals that of the vapor pressure of the liquid. Downstream

of this critical point in the growth region, the pressure is characterized by

Pv > P 2 Pmin » (2.5)
where p, is the vapor pressure of the liquid and py,;, is the minimum static pressure on the
body.

Defining a pressure coefficient as a function of arc length along the body and the
cavitation number respectively as

Po
1 0 Vg (2.6)
2




Po - Pv

K =-0_2¥
1 <2 ° 2.7)
2P Vo

one can write the relationship in equation (2.5) as

K> -5 2 -(G)min - (2.8)
Here, p, is the free stream static pressure. Equation (2.8) suggests that, depending on the
value of K, the negative of the pressure coefficient can be used to measure the pressure
force on the bubble that causes vaporous growth. If G, = - K, the pressure force would be
zero. Thus a positive forcing function which acts on a typical bubble can be defined as the

negative difference in these two quantities or

F(er) = -Cy(s) - K = -[Cy(s) + K] . 2.9)

It should be noted in this particular case that the region of vaporous growth and
collapse extends along the arc of the body only as far as the separation point of the
laminar region. Once the bubble enters the separation region, it is assumed that the
process of vaporous growth ends and any growth that continues is due to gas diffusicn
from the liquid into the bubble. Figure 2.1 shows a schematic of the pressure
distribution across a hemispherical headform borrowed from Baker [2]. It gives an
example of the different states a bubble might see if it traveled across the entire body
including the flaccid region, the dividing point where C(s) = - K, the vaporous
growth region and the laminar separation point.

The forcing function is written as F = F(ty) = F(et) due to the fact that it acts
over the low pressure or vaporous growth region of the body which is characterized by
the laboratory time scale. As an aside, intuition says that the forcing function depends
on a parameter that contains €, and it is shown later that this is the case. Since the
pressure coefficient is given as a function of arc length on the body, one must convert
from the arc length to the laboratory time.
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Along a Hemispherical Headform, after Baker [2].




First, a dimensionless arc length is defined as

_28
=D (2.10)

where S is the dimensional arc length of the body. Assuming the boundary layer to be a
vortex sheet, one can approximate its overall translational velocity as being one half of the
local flow speed at the edge of the boundary layer, or

V,
vs) = N1 - G (2.11)
which then equals the convective speed of a typical bubble in the boundary layer. In terms
of the body length this convective speed is

_dS _ dSds
VO = F =G a - (2.12)

Substituting the derivative of S from (2.10) and v(s) from equation (2.11) into equation
(2.12) and solving for ds/dt one has

Vv
%§=59\/__1 - G, - (2.13)

Recalling equation (2.2) which relates the bubble time with real time, one can differentiate

that equation to get

dt= o[22 a. (2.14)
PRy

Substituting equation (2.4) for € and (2.13) into equation (2.14) and integrating over s, one
finds that an equation relating the dimensionless arc length to the laboratory time is

(2.15)

]
cer= |—9% . _
= et = , 1= 1,2,....n.
. Jw-0ﬂ>' !
$ )

In this case the suffix i corresponds to each pressure coefficient vs. its arc length datum
point, s;. This is the same transformation used by Baker [2].
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What is now needed is the pressure coefficient data that are appropriate to any
particular problem. The data must be either given as a function of arc length along the body
or be readily convertible to such. We shall ask that the particular body from which the data
are taken contain the necessary laminar separation region although its presence or absence
will not preclude vaporous bubble growth. Baker used experimental C, values given for a
hemispherical headform. He determined that for cavitation numbers ranging from K = 0.6
to K = 0.7, the laminar separation points corresponded to positions of s = 0.813 and
s = 0.731, respectively. He obtained very good results using these data.

In order to check the range of flow parameters, such as the cavitation number, this
analysis will attempt to use data from a body containing a lower (C,)min, and thus be
compatible with higher values of K. A circular cylinder was chosen because even at critical
Reynolds numbers it exhibits laminar separation, and there exist some inception data [3] for
this body although the inception is usually defined by the first appearance of cavitation
bubbles within vortex cores in the separated shear layer . Reference [3] reports observa-
tions of cavitation in the laminar bubble. The pressure distribution used in this analysis
comes from an NACA Technical Note by Gowen and Perkins [4]. Their graphical data
showed a Cylmi, of about - 2.6 for critical Reynolds numbers and at very low Mach
numbers. The tabulated values used are given in appendix B, table B.1, and the smoothed
data as a function of arc length interpolated from the table are shown in figure 2.2.
Although the original values were simply read off of a graph, the fact that they exhibit the
proper trend is more important than their accuracy since this analysis is somewhat
qualitative.

The location of the laminar separation point is needed for the circular cylinder if one is to
know when the analysis is no longer valid. Applying Thwaites' method and using a
computer code given by Moran 5], we verified that in water at a free stream velocity of
Vo=40ft/s,a cncular cylinder exhibits laminar separation. Using this code, and
comparing its results with the best estimates from Schlichting [6] and Goldstein [7], we
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Pressure distribution on a circular cylinder.
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Figure 2.2 Experimental and Smooth Pressure Coefficient Data Versus Dimensionless Arc
Length on a Circular Cylinder at Supercritical Reynolds Numbers
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found separation to occur at approximately 110 degrees from the forward stagnation point
or at a dimensionless arc length of s = 1.919. Knowing this, one finds a range of cavitation
numbers that will allow favorable bubble growth and collapse to be from K =2.1to
K=24

A Fortran code to determine the forcing function as a function of the laboratory time
was developed and is contained in the complete code given in appendix A. It begins by
curve fitting the given C, vs s data using a cubic interpolation scheme, in order to produce
evenly spaced values so that the integral in equation (2.15) can be evaluated using Simp-
son's rule. This calculation correlates the arc length (radians) with the dimensionless
laboratory time. Care must be used when evaluating the integral at the stagnation point
because of the square root singularity involved. A parabolic approximation is used over the
first three points, including the singularity, to take care of this problem. The corresponding
value of the forcing function is found by applying the chosen cavitation number to equation
(2.9) for the interpolated C; values. This step yields the forcing function as a function of
laboratory tirpe.

To give us a feel for a likely laboratory-time durations , figure 2.3 shows the
pressure coefficient as a function of tg as calculated from equation (2.15). Figure 2.4isa
schematic diagram of a typical forcing function showing its vaporous growth and collapse
regions. The beginning of the positive growth region is located at the intersection of the
horizontal line at Cp = - K and and it is taken to be the origin of forcing function coordi-
nates. Since this is the critical point where vaporous growth begins and the start of the
region over which this investigation takes place, this is the point defined to be where the
two time scales are equal to zero. It is convenient then to shift the coordinate axes to this
point and have it be the origin. Depending on the value of K chosen, this shift will occur
along a vector as shown in figure 2.4. The computer code developed also finds this new
origin and so it automatically shifts the time axis so that it begins at zero. Figure 2.5 below




Pressure coefficient, Cp(ts).

Pressure distribution on circular cylinder.
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Figure 2.4 Schematic Diagram of a Typical Forcing Function Showing
Regions of Vaporous Growth and Collapse.




Forcing function, F(ty) = - (Cp+ K).
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shows the shifted forcing function for a circular cylinder at valuesof K=2.1and K =24
as a function of the actual time. The actual time can be divided by the ratio of D/V, in order
to get F in terms of the laboratory time, which is then used as an input to the bubble-

dynamric analysis.

2.3 Flaccid Bubble Analysis

As described by Baker [2], the bubble grows as a flaccid balloon before it reaches
the point where Cp = -K. It experiences successive states of isothermal equilibrium as its
size changes from the time it reaches a point near the stagnation point on a submerged
body, and it travels within the boundary layer before it reaches the region favorable to
vaporous growth. The bubble experiences no vaporous growth during this first phase of its
motion on the body. As sketched here, suchbubbles originate from free-stream micro-
bubbles of some radius r at the free-stream static pressure py,.
The term, 20/r, gives the pressure jump across the bubble
surface. The internal pressure is the sum of vapour and air
pressures as shown.

The flaccid bubble kinematics relates the bubble's radi-
al motion to its movement along the dimensionless arc length,
s, of the headform. Depending on the size of the submerged A Free-Stream Nucleus.
body, this length is the dimensional arc length of the head-
form, S, divided by some characteristic body length, D. The rate of change of pressure
experienced by the bubble is therefore,

d dC, ds
-2 @16

This form is sought because the experimental pressure distribution is given in terms of s.
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The kinematics of the previous section, as embodied in equation (2.13), provides
an expression for ds/dt. Substituting equation (2.13) into equation (2.16), one gets the rate

of change of pressure experienced by a nucleus as it travels across a body to be

%=%\“-Cp %- (2.17)
This is all the kinematics that are needed. Next we use Boyle's law for an isothermal flaccid
bubble and the force (pressure) balance across the bubble wall. Then we combine these
three results to achieve expressions for the bubble's flaccid growth characteristics.
The bubble contains both air and water vapor. Therefore inside the bubble the total

pressure is

Pi = Pa ¥+ Pv - (2.18)
Only the air obeys Boyle's law, which requires that
3 3
P.R°(M) = py Ry (2.19)
where p, ) = partial pressure of air inside the free stream nucleusatR = Ry. A dimen-

sionless bubble radius is now defined using the free stream nucleus radius, Ry, such that
r(t) = R(/Ry . (2.20)
It is noted that Pag is a constant, and in the free stream whenr = 1,p, = Pay Now if p(t)
is the static pressure outside the bubble and & is the surface tension, on the bubble wall the
pressure forces are in balance and
20
Pi =R * PO - (2.21)

So for a bubble in the free stream, as in the illustrative sketch above,

Pag + Pv = % + Po » (2.22)

and for a bubble inside the boundary layer
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20
Pa+ Pv = R@®) + p(s) . (2.23)
Solving (2.22) and (2.23) for p, and p, respectively and substituting them into Boyle's

law, equation (2.19), one finds the result,
20 3 20
[f{(’{)’ + p(s) - pv]R(t) =[§; + Po - pv]R?,. (2.24)

By supstitutinig (2.6) and (2.7) for the various pressure differences into (2.24) and using

the nondimensional bubble radius, one finds that

20 1 2 20 .1 <2
[ﬁo—r@ + SpVo(Cp + K)]r:‘(t) "R, T 5P VoK . (2.25)

Multiplying through by Ry/2 ¢ and defining a radial Weber number as

PRy V)
o

(2.26)

W, =

one obtains a cubic equation for the dimensionless flaccid bubble radius in the form
iV [0 + KB + 2 - [t + Txkw] =0. 2.27)

This equation can be solved exactly and its derivative taken to obtain expressions for the
flaccid bubble radius and growth rate as functions of real time, t. Because of the fact that
the Rayleigh-Plesset equation governs the growth of the bubble after the point of vaporous
growth, this expression and its derivative can be used to form initial conditions at the

critical point where vaporous growth begins.
In the special case when Cp = (), equation (2.27) can be factored as follows:

[K:v’(ru” 1) +r+ l](r-l)=0.

The only root of physical interest is r = 1, as should be the case for a nucleus in the free
stream. Another special case occurs when G, = -K. Then the cubic term is lost. and we

find that the two remaining roots are



19

r==% 1+

The positive root is a useful physical quantity in the dynamical solution of Chapter 3. We
note here that it pertains to those values of Cp and K which mark the origin of coordinates
in figures 2.4 and 2.5. That is, for any value of K < -Cplnip, vaporous growth first
becomes possible; and from equation (2.20), it gives the ratio of microbubble size at that

initial condition to a typical free-stream nucleus size.

23.1 FE lation of the Fl
The cubic flaccid bubble equation can be solved exactly. Because of the fact that
the non-dimensional bubble radius is very close to unity, one can easily find a solution

using a simple perturbation of the form

r=1-x, (2.28)
where 0 < x << 1. Substituting this into (2.27) and neglecting terms of order x3 and

higher, one sees that a quadratic equation for x remains and it is

1
(BA + 1)X2 - (3A + 2)X + ZCPW, =0, (2.29)
where A = %(Cp + K) W, . The two roots of x are found to be

-

13A + 2 (BA +1)
b 4 =§%3—A—:_i%[l + —\/I-pr,m J (2.30)

The proper root must be decided upon for this particular case. Consider the case in which

G, ~ - K then A » 0. Due to the conditions imposed upon x by equation (2.28), the

negative root must be chosen to satisfy 0 < x << 1. The value of x is therefore

fim x=l-'\[l + LKW,
2.31)

For ease of writing a new variable is introduced, namely:




20

1
q =KW, 2.32)
In the limit as C, = - K, equation (2.31) givesx = 0 corresponding to a nucleus of r = 1

as it is in the free stream. The same result is found if one applies this condition to the cubic
flaccid bubble equation. Setting Cp = - K =0in equation (2.27), we find

r2 -1=0 . (233)

which has arootatr = 1. For C, =- K # 0 and neglecting the cubic term as before, the

equation for r is written as

r-1-q=0. (2.34)
Equation (2.34) yields the same result as one gets by substituting (2.31) into (2.28),

nameley:
r=+1 +q . (2.35)
Substitution of (2.30) into (2.28), with the expression for A in mind, yields
1(3A +2 - 3A + 1
(t) = l--2_§3—A_+_-l% [I:I:V 1 -prr-(gm—i)% ] . (2.36)

This then is the flaccid bubble radius as a function of actual time, in terms of the flow
parameters C,, K, and W,. It is valid only in the region from the stagnation point up to the
initial point of vaporous growth. This is similar to the form derived by Baker [2], and as
was shown by him, shows very good agreement with experimental results of nucleus

measurements in this region.

2.3.2 Calculation of the Initial Radius. r(0)

For the vaporous growth phase the initial point at which the dimensionless labora-
tory time and the dimensionless bubble time are measured is the point on the body where
G, = - K. Since vaporous growth is preceded by the flaccid bubble region, the initial
conditions for vaporous growth from the flaccid bubble equations should be evaluated at
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the point on the body surface where this C;, value is found. Recalling that equation (2.35)

was derived at the point where C, = - K and if t =t at this point, it can be written as

(ty) = NT + q . (2.37)
This then is the initial bubble radius att =tyand t; = T = 0, corresponding to the point
on the body where C, = - K. Using this result one can define the dimensionless parame-

ter for any real time as

u(t) = ———m R (2.38)
which is called the normalized bubble radius. Initially whent = t,,

u(ty) = 1. (2.39)
This normalized bubble radius can be applied to all further equations involving t and its
derivatives. Since its initial value is unity, it makes the scaling of the solutions much easier
to handle. Therefore the normalized bubble radius will be employed in those results which

form the basic ingredients for subsequent analyses of bubble dynamics.

2.3.3 Formulation of the Flaccid Bubble Growth Rate, 7 (1)
Another important characteristic of the flaccid bubble problem is the bubble growth

rate. The flaccid bubble growth rate is defined as the first derivative of the flaccid bubble
radius with respect to real time, t. This rate is found by differentiating the cubic flaccid
bubble equation. Thus from (2.27)

3 2 W [Cp(®) + K] r(t) i r2(t) W,—‘% + 2(—1; =0. (2.40)

Substituting for-F(t:2 from (2.17) and solving for %, one finds the flaccid bubble growth
rate to be

dc
Lew, 2T - G0 ( 753) (2.41)

1+ 3rOW,[Cy(1) +K]

1oy
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This rate is a function of the flaccid bubble radius, the flow parameters - C,, K, W, th ‘
free stream velocity, vy, and also some body parameters. Particular to the body is the char- !
acteristic diameter, D, and its pressure coefficient curve. This curve leads to the forcing
function on to a given body that ultimately stimulates the bubble nucleus vaporous growth.
This again is similar to the result achieved by Baker [2] and as he shows, it relates well to
experimental results.

To normalize this result with the same parameter used in the flaccid bubble

radius result, equation (2.38) and its derivative is applied to (2.41) resulting in

( dC
Law, 2 VT + 90 - ) § 752) (2.42)
1 + JuOWNT+q[Cp +K]

du _
d

This is the normalized flaccid bubble growth rate. Its initial value whent = 0 will be

discussed in a later section.

2.3.4 Calculation of the Initial Flaccid Bubble Growth Rate. r(0)
The initial growth rate begins whent =tgand t; = t = 0, and at the point on the

body where C, = - K. Using this relationship and substituting (2.37) into (2.41), one
gets an expression for the initial bubble growth rate with respect to real time which is

dr

dt|, -0 (2.43)

_1 Yo dC,
-8(1+Q)er 1 + K(— ds)cp=-l(.

It is desired to analyze the growth rate in terms of the dimensionless slow
laboratory time, t,. To express the initial growth rate in terms of this time scale , the

dcﬁvaﬁvé of the relationship
L=pt> (2.44)

is substituted into (2.43), resulting in

el 1 JT5FK -d_cl)
dtll'-o 8(1+Q)Wx 1 + K( ds CPS-K. (2.45)
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Relative to this time scale the initial bubble growth rate loses its explicit relationship to the
characteristic body diameter and free stream velocity, although the square of the free stream
velocity is contained in the Weber number.

Writing the initial bubble radius with respect to slow time in normalized form, one
needs the derivative with respect to slow time of equation (2.38). Applying this to the

result in equation (2.45), one sees that it becomes

du

daC,
at, -0 —W V(I +q)(1 + K)( )C ok (2.46)

This is the normalized initial bubble growth rate with respect to the slow laboratory
time. One gets the same result from evaluating equation (2.42) att; = 0 and converting it
to the slow time scale via equation (2.44).

So far the two initial conditions and the forcing function have been found for the
Rayleigh-Plesset equation in terms of the two dimensionless time scales involved in the

perturbation expansion for the point when G, = - K. These can now be used to help solve
the expanded equations which will be derived from perturbation theory.

The pulse-forced Rayleigh-Plesset equation (1.1) written in terms of the dimension-
less radius, r, with respect to real time, t, is

dzr d’f -+ F@® , (2.47)

where F(t) is some forcing function characteristic of the governing body and the flow
pmpcrﬁcé‘ . As noted in section 1.2 above, this is the governing equation for vaporous
growth and collapse of a spherical isothermal cavitation bubble. It is a second order
ordinary differential equation requiring the two initial conditions given above in equations

1 See Appendix D for the derivation of this dimensionless form of equation (1.1).




24

(2.37) and (2.45). To derive an appropriate solution to this equation we shall expand it in
ascending powers of the small perturbation parameter &.

The method of multiple scales is used because of the two widely varying time scales
present in the problem. In the two-scale form [11], the small parameter € allows the effect
of the fast bubble time to be pulled into the slower laboratory time in a uniform fashion.
The slow laboratory time scale, tg, is the characteristic time for the bubble to pass along the
low pressure region in the boundary layer of a particular body. This time scale character-
izes the forcing function since it depends on the body. The fast bubble time scale, T, is the
characteristic time of the free stream nucleus oscillation period. This scale is very fast
compared to the slow time scale, so the two are related according to,

ts = €T . (2.48)
From these two time scales and the small perturbation parameter, the dynamical equation
can be expanded to order €3.

We shall write the first and second derivative expansions in terms of the two time
scales, because it is assumed that

r = r(t,%,€). (2.49)

Taking the derivative of r with respect to real time, using the chain rule and (2.48), one has

dr _or 19dr (2.50
t =9, Teot’ )
and differentiating again, one gets
@ _Pr 2 1 @.51)
g adt, 0t g2 912

Next we applying the above first and second derivative expansions to a general
perturbation expansion of r of the form
r=ry+nel +1,62 + 1383 + ..., (2.52)

which leads one to the completely expanded final forms. They are, up to order €3,
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dr _ l‘a_r_o aro a_l'_l arl alz— ar2 ar3

d_t'—eat*'[?t;"' It +£3t;+ o +€2E+ 3% (2.53)
and

dr _ 1 (0% 19 921, d%ry 9%r, d2r,

a2 —ez[ath +€[atf MR T I P R TR

(2.54)

02y d2r, d2r,
+ g|— + + .
a2 adt g

Determination of each term of equation (2.47) can be based on the general
expansion for r and its derivatives (2.53) and (2.54). As was shown previously in section
2.2, the forcing function F(gt) is involved only in the first order of €. This fact leads to the
first order equation being the only nonautonomous expansion equation.

The two initial conditions, r(ty) and dr(ty)/dt, must also be expanded by this
method. This is accomplished by equating the flaccid bubble initial radius of (2.37) and the
flaccid bubble initial growth rate of (2.45) to (2.52) and (2.53) respectively, and equating
like powers of €.

To unify the non-dimensional radius we introduce from equation (2.38), the

substitution of

r=uvl+q , (2.55)
where ¢ = KW, /4, as before. This comes from the flaccid bubble radius and allows one
to write the normalized isothermal Rayleigh-Plesset equation with initial conditions
consistent with those used by Baker [2]. Once solved for their respective u;'s, the resulting
set of differential equations and initial conditions can, using (2.55), be substituted into
(2.52) in order to achieve a final perturbation solution for the non-dimensional bubble
radius as a function of real time. The normalized differential equations and initial conditions
up to order €3 are displayed below.
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€0 Order Equation:
2
AL 2(9_‘&)2 I S (2.56)
%312 7 2{ o7 ug(l +q)32  up(l + q)3/2
with initial conditions,
1(0,0) = 1
(2.57)
0.0 _
ot
¢! Order Eguation:
342
azul 3 auo lll a2u0 1 u,
o T ugot at)+ EX A
1 0 1 ug (1 +q)372| ug
dlug 3 1 dugduy, F(e, tg)
_ 3199 &l 5
Z[azd Y209t o | Ty + 92 (2.58)
with initial conditions,
u,(0,0) = 0
du,(0,0) a110(0 0 1

dC . (2.59)
o o, = gWVT +q(O+K) ( —2)
P

ds jc = -k
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€2 Order Equation:
2
8202 3 allo al12 ll2 azuo 1 3uv
—= ===+ = + -1
o012 Ug o1 (at uo| 912 ug(l + q)3/2 u(z)

a2u, ! d2u, 3 dug (duy 3 dug (du, 02ug
25tas * Zuwota, * uo ot (ot ug At (az) atg2

2 6u;
o 31[(%Y| udhy (a )z S1l 60
2 ug| dtg up 912 2 Yo u 1+ q)3/2 “0

with initial conditions,

70 =

uy(0,0) = 0 2.61)
9uy(0,0)  9u;(0,0)
ot T dg

e r Equation
2
LA 1%(@2)&3 g T e |
912 ~ up 9t (9t )  Ug| 912 w2 (1 + q)3/2 v -

32u2 u; o2, 3 dug (du, 3 dug (du, uy d%u;
azats HEE™ dtdtg Yot g | T up org (31:) Ug 9T0tg

dtg2 * Ug atf Up Jtg | Ot u a2 Up d12

2 3 2

3 du, (du, 2upy; 0% % 10uy
+___.__)+4f > - 1f-— = + 1} 262

up dt (dt ug (1 + q)3/2 ul up(1 + @32 ol

3 du, (du, d2u, u, d%u, 3 dug (du, u; d%u,  u, %y,
R e
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with initial conditions

u3(0,0) = 0
(2.63)

all3(0,0) allz(0,0) _
at dg

0
2.5 Estimates of Flow and Perturbation Parameter Ranges

In the previous sections many parameters have been defined. It is of prime concern
in this investigation to achieve results which are directly related to the characteristics of the
fluid flow and the governing body. As will be shown later all flow characteristics are
combined into one parameter, a so called vortex point affix defined in the bubble radius
versus radial velocity phase plane of the zero-order solution. This parameter, called u,, is
used throughout the analysis. The objective of this section is to determine ranges of the
parameters that define the flow from typical values of obsevable flow quantities.

There are three basic dimensionless parameters that define the flow. These are the

radial Weber number, W, , the cavitation number, K, and the air content parameter, y. The

radial Weber number, as defined in equation (2.26), is based on the initial radius of the
bubble nucleus in the free stream. For water, experiments have shown that typical nucleus

radii vary in size over the range

5< Ry<150 pm, (2.64)
and the smaller the nucleii the greater their numbers. Along with the density and the surface

tension for water at 70° F, the Weber number also contains the free stream velocity, V.

Typical velocities obtainable in water tunnels vary in the range

0< Vp<80 fis. (2.65)

From these ranges, we find the range estimate for the radial Weber number for water to be

0 <W,<1215 . (2.66)
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The cavitation number, as defined in equation (2.7), depends on the difference in
free stream static pressuce and vapor pressure as well as the speed of the flow. Previously,
in his forced bubble growth analysis, Baker [2] used a small range of cavitation number
values typical of a hemispherical headform. But since cavitation numbers can reach as high
as 2 or 3 for certain conditions, for this estimate we use an expanded range that could

include a variety of models. This range varies from

0.1< K<30. (2.67)
The Weber and cavitation numbers are both contained in the parameter q, as defined
in equation (2.32). Using the ranges for these in equations (2.66) and (2.67), we find the

range of q to be approximately

0< q<911. (2.68)
The air content parameter depends on the size of the initial nucleus radius and the

partial pressure of the gas at the liquid-gas interface, p,. This partial pressure is found

using Henry's Law where

Pa = Bo . (2.69)
Henry's Law constant, B, is in general a function of pressure and temperature. But for
pressures well above atmospheric it is nearly independent of pressure, but it still

depends on the temperature. At a temperature of 70° F, Henry's Law constant is

= psia
B =09 tpm - (2.70)

where “ppm” refers to molal parts per million. The amount of any dissolved gas, @, in

water tunnel tests typically varies within the range

3<a<15 ppm . 2.71)
The air content parameter is defined as the ratio of the saturation air pressure to

the pressure due to surface tension, namely:
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PaRo _ BaRg
Y=55 = 35 - (2.72)

Substituting the range of variables from (2.64), (2.70) and (2.71) into (2.72), one finds the

range for the dimensionless air content parameter to be approximately

1< y<105 . (2.73)
The relationship between the slow laboratory time, tg, and the fast bubble time, t, is given
by the small perturbation parameter, €. It can be expressed as

Ro o2

e=p W, (2.74)
which directly combines the key flow parameters in the Weber number and the characteristic
body diameter, D, into the single parameter, €. Figure 2.6 below, shows the dimensionless
relationships between the perturbation parameter, €, the body, the nucleus sizes and the

measurable flow, and fluid properties in accordance with equation (2.74).
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The ratio of "bubble time" to "laboratory time" equals €.
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CHAPTER 3
THE ZERO-ORDER SOLUTION
3.1 The First Integral
From the previous development the zero-order form of the Rayleigh-Plesset
differential equation in terms of the normalized dimensionless bubble radius uy(7) is

azl]o 3 auo _ Y 1
uow + 2(?)2 = ug(l + q)5/2 - uo(l . q)3/2 (3.1)

with the initial conditions

U (0) = 1 (3.2)

duy
FIl t=0 =0. (3.3)

It is assumed at this point that the zero-order equation is independent of the slow laboratory

time, t,, and therefore can be written as an ordinary differential equation in terms of the fast

bubble time, T. The reasons for this independence are addressed in section 3.5 below.
An important fact about this zero-order equation is that it is autonomous and

therefore its first integral is easily found. By letting

dug
Ve (3.4)

one can write (3.1) as two coupled first order equations, namely equation (3.4) and

3
dllo - llo(l + q)5/2 a+ q)3/2 :

In anticipation of the discussion in section 3.5 we integrate both sides of equation (3.5)

partially with respect to 1 in order to obtain a first integral, one finds it to be

ug 1 3.6
upv? = —Tz‘)s—nlﬂ(“o) - '('r:q_)sl_z + [A(t') ¥ 1+ Q)s/z] - 20
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where the quantity [A (tg) + ] is the constant of integration which must satisfy

(1+q)*?
the initial condition of equation (3.2). To also satisfy the condition in (3.3) at t, =1 =0,

however, A(0) must equal zero, which leaves

3.9 _ 1 2y 2
uv? = a +q)312[(1 T n(u) - up + 1] : (3.7)

Further arguments that A = constant = 0 and that the zero-order equation can be indepen-
dent of t; will be shown in section 3.5.

The left hand side of this first integral is proportional to the kinetic energy of the
cavitation bubble motion, whereas the right hand side is proportional to the potential
energy, - V, of the bubble. Thus equation (3.7) can be plotted in a potential energy versus
ug plot and in a phase plane of {i; versus u, as shown in Figure 3.1 and the nature of its

phase-plane trajectories analyzed.

3.2 Phase-Plane Analysis

Had the quantity A not been zero in equation (3.6), suggesting a step-forced zeroth
order equation, the plot of the potential function and its corresponding phase plane trajecto-
ries would lead to the well-known solution of the autonomous equation arrived at by Baker
[2] and others before him. The phase plane then includes both vortex and saddle points,
and a separatrix which separates closed periodic trajectories from ones that grow without
bound.

Under the assumption that A is equal to zero, equation (3.7) can be plotted in the
phase plane and its trajectories analyzed. Figure 3.1 shows schematically the results of this
analysis for a typical value of the dissolved air content parameter, Y = 1.4, after Baker [2].
The saddle point vanishes and all trajectories originate from the pointatug = 1,v=0. In
figure (3.1) the expression (1 + Q) is simply an approximate form of the exact expression
for V1 +q used in this analysis. Baker assumed that q was a small number less than one
which is not necessarily the case in this investigation. Despite this difference, figure 3.1




34

DIMENS IONLESS INITIAL RADIUS, r(0) =1+Q (Q< 1)
NORMALIZED INITIAL CONDITION, u(0) =1

0.050 [~
X7l
§ -
s 0 =
& S ul PHASE-PLANE
2 - Ly AND POTENTIAL
= -0.05 L ENERGY FOR  =1.4
5 [ !
o n v
i Py
-0.05 [~ N
- [ :
- P! 1
E 1 1 LH[ (AR | | l 1 |
00508 0.8 Lo | 1.2 1.4 L6
NORMALIZED BUBBLE RADIUS, u =15
bl | ;
| |
0.3 T _
- Iy I W=T+q
[ I |
= 0.2 Q=030 '! 1
= | | p !
Ol o | =
g ~ 0.1F Q=0.25 3! 1
S -
[-=] = :
S o or
N = [ Q=0.0
8 b
€ & -0.1fvorTEX 1S LOCATED
Z LAT THE NORMALIZED Q =0.05
0.2 EINITIAL CONDITION
|
_0.3 [ 1 1 ] ] l 1 l S |

Figure 3.1  Schematic Diagram of the Phase Plane and Level Lines of Potential
Energy Plot for the Zero-Order Analysis, after Baker [1].
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shows the same qualitative phase plane relationships as found here. It is seen that the
location of the minimum potential energy point for a given value of q corresponds to the
vortex point in the phase plane about which the trajectories are focused. These vortex
points move from left to right as the value of q decreases to zero. Free nscillations of the
bubble will then have amplitudes determined by distance of the minimum energy level
below zero because the system being conservative, the initial energy is the total available
and it is set by the initial conditions to be at zero. The trajectories on the right represent
oscillations of expansion with significant vaporous growth accompanied by a reduction in
the partial air pressure in the bubble. Those on the left are compressive oscillations in
which the air contained in the bubble supplies the restoring pressure as before and the mass
of vapor in the bubble is reduced.

The dotted curve in the upper potential energy plot corresponds to the case where
the trajectory and the vortex are isolated at the origin in the phase plane. The motion in this
critical case is null except in the possible event of a momentary random disturbance which
would excite free oscillations of the bubble. Trajectories for this case would be centered
about the vortex point at ug(0) = 1, v(0) = 0. The oscillation amplitude would depend on
the intensity of the momentary pulse. It would supply an initial increment of energy to the
bubble causing the initial energy level in figure 3.1 to move from zero, as required by the
present initial conditions, to some higher energy level. These trajectories are not shown in
figure 3.1 because a random disturbance for that particular case is not contemplated. We
require the initial conditions, uy(0) = 1, v(0) = 0, to be satisfied strictly. Nevertheless the
natural frequency of these vibrations is of interest and these are discussed for small
oscillations in the section 3.41 below.

The importance of this critical case is that it separates the bubble motion into the
distinct types, oscillations of compression and expansion. Trajectories to the right of the
critical point represent larger amplitude oscillations involving vaporous growth and a small

amount of air induced motion. Since this investigation considers primarily the vaporous
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growth region, the trajectories to the right of the critical point will be emphasized, although
as will be found later there can be some flow conditions under which those on the left can
play a role.

The location of the vortex points corresponding to the minimum of the potential

energy curves is found by setting the first derivative of equation (3.7) equal to zero and

solving for uy, resulting in the affix of the vortex point being defined analytically by

w=Vrig- (3.8)

Then for any air content, at the critical point where u, = 1, acritical value of q can be

defined as

Qoriv =7 - 1. (3.9)
If gy = O, theny = 1 which sets a minimum value for the dissolved air content parame-

ter for positive q values. Since q depends on the cavitation number and the Weber number,
a limiting value of @ = 0 corresponds to K = 0 or vy = 0. This result is equivalent to that

achieved by Baker [2], except in this case the value of q is not necessarily less than one.
Therefore, the denominator of equation (3.8) cannot be approximated using the binomial

expansion as stated before.

3.2.1 Measurable Flow Parameters and the Value of u,

The analytic expression for the vortex point affix, u,, in equation (3.8) contains all
three of the dimensionless flow parameters described in section 2.5, namely: ¥, Wy, and
K, but it does not include the body size, D, because it applies only to the bubble. By using
uy and the small perturbation parameter, € which does not include the air content parameter,
v, or the cavitation number, K, but all flow variables and headform sizes can be contained
in € and u,. Therefore it is useful to complement the relationships of figure 2.6 with
another illustration that includes the remaining physical variables. We shall consider cases
of u, 2 1 only.

m
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The range of cavitation numbers is constrained by likely values of Cylm;p for
various submerged bodies. Thus if a particular vortex point is desired, various
combinations of flow variables and headform sizes can be used to arrive at this number.
Using the critical values of q and the air content parameter arrived at above, along with the

ranges of values for the Weber Number and cavitation number from section 2.5, one sees

that values of u, vary in the range from

1€u,510. (3.10)
A relationship for these parameters is shown in figure 3.2. The plot parameter, z, in the

figure is used to relate the two scales and is given by

1 2

. c————

zZ = Ny ‘\,-7- . (3.11)

To use the graph, a cavitation number is chosen and traced horizontally to the appropriate
Weber number. This point corresponds to a certain value of z directly below it. Finding the
vertical intersection of this value of z with the chosen air content, ¥, one can then move
horizontally to the scale on the right in order to find the affix of the vortex point . Finally,
since the radial Weber number is known one only needs to know the ratio Ry/D from
figure 2.6 in order to find the proper value of € for the hydrodynamic configuration. And
since u, is now known, values of up,, and A follow from figures 3.3 and 3.4 below.

3.3 The Period of the Zero-Order Solution

The phase plane analysis shows that the first integral yields closed trajecto-
ries. Therefore both the zero-order radius and growth rate are periodic with respect to 7.
By separating the differential dt from ug and its differential in equation (3.7), one has

Up

fog = avam \/ = a . ©.12)
0 .

20 1n(g) - {2 + 1
1
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Because the solution is periodic this integral can be evaluated over half a period, say T/2,

and its evaluation takes the form,

3
Yo
- (a+o 2 ; T A )
2u, In(ug) - up + 1

b

1
where the upper limit on the right hand integral, u_(u,), is the maximum normalized radius

the oscillating bubble will reach.

The bubble grows from it's normalized value of unity to this maximum value and

then returns to unity. The maximum u,, occurs at exactly half the period of oscillation and
corresponds to half way around a trajectory in the phase plane plane. The value of u;, as a

function of u, is obtained from solving equation (3.7) for u, > 1 under the condition that

v = 0, thus
2 2
2u;ln(uy) ~u, +1=0. (3.14)

We see by inspection when uy = up, = 1 for any u, , that equation (3.14) is
satisfied. On the other hand if u, = 1 then up, = 1 is the physically acceptable root of
equation (3.14). Therefore at the initial point where uy(0) = 1 there will be no bubble
motion if u, = 1, as discused in section 3.2 above. Although a closed form of the required
solution for u_(u,) is unobtainable, equation (3.14) can easily be solved for its inverse,
uy(up,). But here we have used the numerical methods of regula falsi or bisection in order
to get the desired results. Figure 3.3 shows ug, as a function of u, and includes a nonlinear
least squares curve fit over the range of u, values. The curve fit matches the calculated data
very well but it was not used in the numerical calculations in order to secure the greatest
accuracy in subsequent numerical work in which values of u, must be prescribed.

Defining the integral of equation (3.13) in terms of a prescribed u,, from
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equation (3.14) and excluding the constant term in front of the integral, we write the

half-period integral as

Um

§3
I(u,) = dac . 3.15
) V2u‘2, In(f) - €2 + 1 ¢ ( )

1
Since the half-period integral is now known, we can write the oscillation period of the

solution ug(u,,T) to be

T(w,) = 2(1 +@**1w,) . (3.16)
The period is a function of both u, and the flow parameters contained in the quantity q.
By using this period the non-dimensional bubble time, 1, can also be normalized.
This is done by defining the normalized dimensionless bubble time, x, as

X = 3.17)

o B

When t = 0, x = 0 and after one period whent = T, x = 1. This also allows the value

of u, tooccuratx = 1/2.

3.4 Zero-Order Equation Solution
From the first integral of equation, (3.7) and the normalized bubble time from

equation (3.17), the exact first integral of the zero-order equation now looks like

2l In(ug) - v + 1
dug T R 0 (3.18)

dx ~ (1 +q)3l4 ug

If one separates variables in equation (3.18) the problem of finding the inverse solution,
x(uy,ug), is reduced to the quadrature,




up
3
fdg = % . g a (3.19)
0 2u;In() - §2 + 1
1
where the period parameter, A, is a constant for a given value of u, and is related to the
period by
T(u,)
A'(uv) Y7 S 2I(uv) . 3.20
(1 +qy" (3.20)

These results make the zero-order solution a one-parameter family, ug(x,u,), which is

convenient for further analysis. It is noted that the other major components involved in this
equation also have been derived with this dependent parameter, such as ug,(u,) and A(u,).
Figure 3.4 shows a graph of the period parameter over the range of u, along with a least
squares curve fit of the function. Next we shall adopt the notation of equation (3.20) and

use it in equation (3.18) in order that it will have the same notation as equation (3.19) :

2u21nu - u2 + 1
duo v (0) 0

x - )"(uv)

(3.18 a)

3
U

Equations (3.4) and (3.18a) have been used in order to calculate a number of phase
plane trajectories for the range, 0.50 < uy < 1.50, enabling us to see how the trajectories
change as the value of uy passes through unity. These trajectories are shown in figure 3.5
below.

A solution to equation (3.19) would yield x = x(uy). By approximating the logarithmic air
content parameter with a cubic polynomial, Baker 2] found an approximate solution for
x(ug) in terms of elliptic integrals and functions. Of more general use is the inverse of this
function, or uy = ug(x). We shall proceed numerically because Baker's solution holds for

a rather small range of u, and it can not be inverted.

3.4.1 Zero-Order Small Oscillation Study
From the phase plane plot of iy vs ug it is seen that for a given value of u, that the
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curves are closed and nearly elliptical, especially for small values of u, near 1.0. Conse-
quently, an ad hoc small-oscillation form or the zero-order solution was sought for the case

when

u, =1+3, (3.21)
. . du,
where 8 << 1. For this case an approximate form of AE
the first integral was sought using the equation for an

ellipse. To most closely approximate the form of the

first integral the ellipse was chosen to be centered at c,

one -half the distance between the two points, 1 and

u,,, on the uy axis. The length of the vertical.axis is

determined by the requirement that the period of
oscillation must also agree with the correct result. The

use of these conditions leads to an equation for an ellipse of the form

«2
L T (3.22)
el
where
1
a=30y-1, (3.23)
b = (lg)max - (3.24)
and
c= %(um+ 1) . (3.25)

The coefficients a, b and c are all functions of u, since u,, = u,,(u,) and b comes from the
first integral equation which is also a function of u,. The quantity b equals the maximum

value of 1, which must be arrived at numerically. But as will be shown below, the
approximate solution can be written independently of the parameter b.
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d
Solving equation (3.22) for iy = -ﬁ’- and separating the solution into two integrals,
we find
. 3
b Id§ _ dn (3.26)
a2 9 1 - n2
1
where
Ug - €
=" a . (3.27)

Integrating this equation over the limits and solving for ug, one gets a solution of the form,

up(t) = ¢ - acos(g’t) . (3.28)

This is an oscillatory function of bubble time with a period determined by one circuit

around a phase plane trajectory as defined by the u,, value. Evidently u0 will have its

maximum value when

u(TR)=c+a. (3.29)

'l‘hiswilloertainlybeuucifg'tmt, andsince T = %,wchavc

2
T (3.30)

®|o

When this result is used in equation (3.28) and the normalized bubble time from
equation (3.17) is applied, the small oscillation approximate solution becomes

ug(uy,X) = € - acos(2mx) . (3.31)
Equations (3.23) and (3.25) show that ¢ and a depend on up,(u,), and so equation (3.31)
depends on u, , as well as the normalized bubble time, x. As with the exact solution, the

approximate solution has no explicit dependence on the parameter b. Equation (3.31) is
designed to have the correct nonlinear amplitude and period as determined by u,, however.
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Moreover, when x = 0 equation (3.31) yields uy(u,,0) = 1. Differentiating (3.31) with

d
respect to x and evaluating it at x = O one has a%‘(gl 0 = 0. Thus equation (3.31)
XxX=

satisfies the initial conditions.

Next we need to find the variation of u,, with u,, when 8 =.u, - 1 << 1 from

equation (3.21). Knowing that u,, also doesn't vary greatly from unity for small

oscillations, we can be approximate it by

Up =1+ yq, (3.32)
where y,, << 1, but yp, is slightly larger than . First one substitutes equation (3.32) into
equation (3.14) and expands the logarithmic term to O(yz‘) in order to obtain a quadratic
equation in yp,.which can be solved for yp,(u,). Then equation (3.21) can replace u, in

this solution in order to expand it to O(82). Thus one gets the rather accurate expansion,

U, = 1+28+ %82 . (3.33)
Substituting this result into ¢ and a for u,, in order to get a small oscillation

expansion for ug(x; u,) we see that it looks like

u =1+ 98, + g)(l - COS2xX) . (3.34)
It is seen that as & — 0, both ug, and u,, - 1 which agrees with the initial condition.

In order to get an independent evaluation we now find a limiting small-oscillation
form of the period parameter, A, as given in detail in Appendix C. Here we only outline
the analysis. To this end we may generalize equation (3.32) by writing uy =1+ { so that
when { =y, ug = up, but generally 0 S { < yp, because 1 < ug < uy, . Then the dummy
of integration in equation (3.15) is replaced by ug and the denominator inside the radical of
equation (3.15) can be expanded to O({3) and expressed in factored form using the three
roots of the approximating cubic at the three { values of 0, < yp,, < by. The period integral
then becomes
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i) = . (335)
§“v§()'m -8)(bg-0)

0
Additional expansions of the integrand, as explained in Appendix C, and term-by-term

integrations of the result give the respective components of I in terms of yp,, . The sum of

these components gives the rough estimate,

S E e ly 41,2
1=t 3m* 4V (3.36)

Because of equation (3.35), equation (3.36) contains the limiting value, by=3 as y,— 0
and u,— 1. Equation (3.36) shows thatasu,— 1,1= % , exactly. But since by and yp,

depend on uy, = 1 + 3, one can replace the estimate of (3.36) as an expansion of the half-
period integral in powers of 8 by consistent use of expansions of the formulas of appendix
C for yp, and by. But we prefer to use the expansion of equation (3.33). This expansion
can be used to expand the quantities y,, and by, keeping terms up to order 82, in order to
obtain a small oscillation form of the half-period integral, replacing equation (3.36).
Multiplying the result by a factor of 2, the small oscillation form of the period parameter is

A =1t\/§(l + 358 + 72%52) . (3.37)

As 8 - 0, the value of A —» ~V2 which sets the value of A for u, = 1. As explained in
section 3.2, this value of 1 is the period parameter for free oscillations which are expanding
in one part of the cycle and are compressive during the other part. It is also noted in ap-

pendix C that equation (3.35) is a complete elliptic integral of the third kind, from which the

limiting value of % has been found in order to check the limit from equation (3.36).

These small oscillation results are useful for similar studies of the first-order equation. A

comparison the small oscillation results with numerical calculations shows that the small
oscillation equations are very accurately valid for the range of uy, from unity up to 1.03.
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3.4.2 Numerical Solution
Since there is no closed form solution for uy(x), an integral such as the one in

equation (3.19) is generally evaluated numerically. For this task we have used Simpson's
rule for incremental steps of u,. The integrand on the right side of equation (3.19) contains

integrable singularities at uy = 1 and up,, and their presence must be accounted for in the

numerical work.

This integrand from the right side of equation (3.19), labeled F, is

3
Up (3.38)
2u3 In(ug) - u% + 1 '

The denominator of F has roots, as seen from equation (3.14), atug = 1anduy = u,.
By using a small perturbation analysis about these points approximate formulas can be
derived to avoid discontinuities.

This is done by first perturbing u, about the point ug(0) = 1, so we let

u =1+39, (3.39)
where 8 << 1. Substituting this into (3.38) and using a series expansion for small parame-
ters, one finds a general first order approximation for F about the point corresponding to
x = Otobe

Fl = —A— + B‘jg (340)

x=0 ‘Ig

where A and B are arbitrary constants. To determine the two constants (3.40) is evaluated
at two incremental steps in x. Letting h represent an incremental step, one finds that the

two equations are

A + Bh = V&F } (341

A + 2Bh = Y2hF,
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Here F, and F, are equation (3.38) evaluated at x equal h and 2h respectively. When these
two equations for A and B are solved, a so called "start" value for equation (3.38)

integrated over 2h is

22
3A(u,)

The constant A(u,) is needed to make the 'start’ value consistent with equation (3.19).

start = z=———~h(4F, - V2F,) . (3.42)

This is labelled a 'start’ value since it is used at the beginning of the integration when
x =0.
The other singularity occurs at the point where uo(% = u,. Applying the same

method for

U =uy -9, (3.43)
one finds that the first order approximation of equation (3.38) reduces to

Fl

= 372
X=!2'_A.J§+ BS . (3'44)
Solving for the A and B as before yields a so called "stop" value for equation (3.38) over

2h of

stop = ==>—h@2F; - F) . (3.45)

15 l( v)
Here F, and F, are equation (3.38) evaluated at x equal 5 - h and 3 - 2h, respectively.

This is labelled a "stop” value since it is used at the end of the first half period of the
solution when x =

The fact that the zero-order solution is periodic allows the "start” value to be used
over the first two steps of the integration nearest x = 0 and also over the last two steps at

the end nearest x = 1. Similarly, the "stop"” value can be used over the two steps just
preceding and just following x = % Periodicity also warrants integration only up to the

X = -;- point since the values of the solution between one-half and one will correspond to

the reverse of those between one and one-half.
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The numerical calculation of the zero-order solution involves first finding a value of
up, for a given value of u, using equation (3.14). Simpson's rule is then employed over
the range of steps between the first two and last two for 0 <x < % . The curve over this
interval is well behaved and resembles a versine curve, as exemplified in the small
oscillation analysis. Then the start and stop values are added to the result. These values
are then used in a cubic interpolation scheme to produce evenly spaced values of u, over
the whole range of x from 0 to 1. A Fortran source code for these calculations is given in
appendix A.

The numerical solution for ug and its derivative versus x for various values of u,
are shown in figure 3.6. It is seen that the curves resemble versine curves, insuring a

smooth transition to the small oscillation result. To get a better picture of the zero-order

solution's periodicity, figure 3.7 shows u, and its derivative over two periods in x for a
single value of u, = 1.05 where they have nearly trigonometric shapes. These results
pertain to the case in which u, > 1. In order to compare such solutions with solutions when
uy < 1, figure 3.8 shows calculated results for u, = 1.5, 1.0 and 0.5. These curves appear
to show a 180° phase shift as u, passes through unity. The cause of this can be seen in the
phase plane of figure 3.5 in which trajectories on the right of uy = 1 are traced in the
counter clockwise sense as x increases, starting on the upper part of a loop. Trajectories to
the left start on the lower branch of a loop and also proceed in the counter clockwise
direction with increasing x. The elongated shape of the trajectory for u, = 1.5, showing
rather modest values of i especially on its right, insures that in figure (3.8) the central part
of the solution near x = 1/2 will be relatively gently rounded compared to its behavior in the
neighborhood of uy = 1. In this latter region figure 3.5 shows larger velocities which
increase rapidly from zero near ug = 1. Therefore in figure 3.8 the solution is relatively
steep near x = 0 and 1. On the trajectory for u, = 0.5 of figure 3.5 the larger and rapidly
changing velocities are found near its left extremity. Conscquently, figure 3.8 shows sharp

minima at x = 0.5 and 1.5, but gentle rounding near its maximaatx =0andx = 1.
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Zero-order solution for several vortex point affixes, u,,.
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Figure 3.6 Numerical Zero-Order Solution as a Function of
Normalized Bubble Time for Several Values of uy.
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Normalized bubble radius, uo(x).
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with Compressive Oscillations, u, < 1.
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3.4.3 Approximate Solution Using Fourier Series

It is seen that the small oscillation approximate solution resembles the first two
terms of an even function expressed in a Fourier cosine series. This encouraged the
development of a compatible approximate solution for the zero-order solution using Fourier
series expansions.

Considering the fact that the zero-order solution is periodic and also an even
function as displayed by the numerical results, it seems fitting that the data from the

numerical solution over one period could easily be fitted to a truncated Fourier cosine series

in which the a, vary continuously with u,. Then by doing this for a large number of u,
values, curve fits for the needed a,(uy) terms can be found using a least squares method.
The array of equations for the appropriate number of Fourier cosine terms represents
essentially a closed form approximate u,, solution as a function of x for a given value of u,.
The advantages of having such a solution are found in the relative speed and ease of
computation, along with the fact that many of the complications associated with numerical
methods are avoided.

The first thing is to determine the number of terms to include in the truncated series.

Initially 100 a, coefficients were calculated by recursion [14] for a number of u, values.

The same was done for 50 a, coefficients and the results compared to the corresponding

numerical data. It was seen that a truncation to 50 coefficients loses very little accuracy
compared to the numerical results.

Adopting a 50 coefficients truncation for the Fourier series at numerous values of

u, over the range from 1 to 10, 50 separate curve fits were then applied to the a,'s over
their corresponding range of u,. This is to say that only the lower numbered terms were
used for smaller values of u,, and as u, increased so did the number of terms. It was
found that all except a, were effectively handled if they were represented by a rational
fraction ir terms of u,. A quartic polynomial seemed most appropriate for a5. Each curve
fit was determined using a least squares method. Then given a value of u, the appropriate
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number and value of a's can be determined and each multiplied by it's cosine of its
frequency and summed up over a period in x from 0 to 1, yielding a truncated series zero-
order solution.

The convenience of curve fitting does cost some accuracy. It was found that in

summing up the cosine terms the required value of uy(0,u,) = 1 was missed by various
small amounts depending on the value of u,. To insure that this initial condition is satisfied
by the approximation, the error, A(u,), between the Fourier solution and the initial
condition at x = 0 is calculated and added to the total sums for all x in [0,1].

Examples of the results obtained for several values of u, are shown and are
compared with numerical results for the same values in figure 3.9. This method yields
reasonably good approximations to the zero-order solution and retains the main features
which are dependent on u,. But when this method was used to represent ugin the first-
order analysis, the accumulated errors were excessive. Thus to retain accuracy, only

numerical methods were used in the following first-order analysis.

3.5 Time Scale Dependence
Throughout this analysis the zero-order equation has been assumed to be

independent of the laboratory time, t,. The object of this section is to investigate this
assumption by using the coupled time scale terms of the first-order equation. If there is a
possibility that there may be a dependence upon tg we must uncover it. Beginning from the
elliptical small oscillation result for uy, a generalized 2-scale analysis is applied such that
Uy = ug(t,T; u,).
3.5.1 Small Oscillations

One begins the argument by returning to equation (3.22) and differentiating the
whole equation partially with respect to t. This leaves the right side of the equality equal to
zero. Integrating this again leaves a constant of integration which is at most a function of

t,, such that
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Numerical and Fourier series approximations of u,.
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Figure 3.9 Comparison of Numerical Zero-Order Solutions with 50-Term

Truncated Fourier Series Approximations for Several uy Values.
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“2
Yo

i (3.46)
p+(“°a °)2= 1+ AG®) ,

where A(0) = 0 to hold with the initial conditions. Separating this into two integrals as in

the previous analysis and integrating, one finds the bubble time plus another constant of

integration depending on the laboratory time, such that

b .. n
21 =sin"§ + B + 5, (3.47)
where B(0) = 0 from the initial conditions and now

_ Ug - €
e o (348

Substituting for £ and solving for uy, one finds the 2-scale representation as

up(t,T; uy) = € - a\jl + A(ty) [cos(g't - B(ts))] . (3.49)

In order to suppress secular terms in the zero-order solution the coupled time scale terms

in the first-order expansion equation must be set equal to zero. To ensure this, they are set

equal to zero here and evaluated using the generalized 2-scale equation (3.49) for u,,.
The coupled time scale terms from the first-order expansion equation set to zero are

d2u, dug dug
ZUOats—a;-I- 3Ea‘t =0. (3.50)

Substituting equation (3.49) and its partial derivatives into equation (3.50), we find that
bc [dA . (b dB (b
Ny A_a;;sm(;t - B)-Z(l + A) at, cos(at - B)]
- %ab%sin(;—’t - B)cos(gt - B)

-ah(1+A)%[3sin2(-gz ] B) ] 2cos’(§1: i B)]=0. (3.51)
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Expanding the arguments using trigonometric identities and factoring out terms involving

the bubble time, T, we can write the above equation as

be dA dB . b
——-—m{[dts cosB 2(1 + A) smB]smat

-[g%‘sinB YT A)%ccsB]cosgt}
-Tsab{[dts cosZB] S 21 + A)g%sinZB sin2§‘t)

[%At;smzn S 231 + A)—cosZB]cos2b1:}

ab dB
-[7(1 N A)a:] - 0. (3.52)

The trivial solution to this equation is dA/dt, = dB/dt; = 0. If a more general
solution exists, it must exist for all time T and t;. Since the constants in front of the major
brackets are not equal to zero and the periodic terms involving the bubble time are linearly
independent functions and not all are equal to zero at the same time, the only way to satisfy
the equality is to equate each square bracketed term to zero. This leads to five independent
equations all of which are equal to zero.

The first two square bracketed expressions lead to two equations which can be
solved for the two unknowns, A and B. Looking at the first of the square bracketed
expressions, we see that it can be written as

1 dA 29_1; sinB _ 0
(1 + A)dy, =~ “dt,cosB ~ = ° (3.53)

An integration of (3.53) with respect to laboratory time yields

In(1 + A) + In(cos2B) = C , (3.54)
where C is an integrating constant. Evaluating this for the initial values of A and B, one

sees that C = 0. Solving this equation for A in terms of B, one has




A= sinZB
~ cos?B ° (3.55)

Its derivative with respect to laboratory time is then

dA _ ,dB sinB
dt; = “dt5 cos’B (3.56)

These two expressions can now be substituted into the second square bracketed expression

from equation (3.53) to obtain an equation solely in terms of B. Itis

dt; {cos3B cos?B

dB | sin2B sinB
=0. (3.57)
This equation is satisfied if either dB/dt; = 0, or the part in brackets is equal to zero.

Equating the bracketed term to zero we get

tanB = -1 , (3.58)
which leads to

B =(3+4m)} and -(1+4m)F,  1n=0,1,2,3,.. (3.59)
But these values of B violate the initial condition which requires that B(0) = 0. Therefore,

the only solution to equation (3.57) for all t; is

d8 _o
dt, — (3.60)

or, from the initial value,

B) = 0. (3.61)
Substituting this back into equation (3.55) one gets the constant value of A for all t, to be

Ay =0, (3.62)
which satisfies the initial value.
It now must be determined whether the other three expressions derived from
equation (3.52) hold for the same values of A and B. Applying the previous procedure on
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the third and fourth square bracketed expressions from (3.52), first find the expression for
Atobe

A = 1 - cos2B
- cos2B : (3.63)

Substituting this and its derivative into the fourth expression we get for B
dB 278 =
2dts sec22B = 0 . (3.64)

This equation says that since secant squared never equals zero for any B, again

dB/dt, = 0, and

B([s) =0. (3.65)

Putting this back into equation (3.63) one again gets the result

At =0 . (3.66)
It is also recognized that the fifth bracketed expression from equation (3.52) is also satisfied
for both these conditions. Applying these results to equation (3.49) one gets the same
expression derived earlier which was independent of the laboratory time, t;. Evidently in
the small oscillation case, the zero-order solution is indeed independent of the laboratory
time, t,. It now remains is to determine whether or not this is the case for the formal zero-
order equation over the full range of the parameter, u,,.
3.5.2 The Integrability Condition: Basic Structure and Most General Solution

The integrability condition is usually satisfied by substitution of an explicit zero
order solution, uy(t,ty) in order to find the dependence of ugp upon tg. In the present case
this can be done only for values of u, very near 1 where the small oscillation solution
applies. As preparation for the determination the form of ug with respect to t; for all
values of u, we now consider the properties of ug that follow from the partial differential

equation itself, namely:

32
2“031;:,”?:0?:”'

(3.50)
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If u, should happen to be independent of t; this integrability condition is certainly
satisfied. But are there also forms of uy(t,t;) depending on tg as well as T which
satisfy the integrability condition ? That is the question to be answered and some
knowledge about the basic properties of the partial differential equation and the forms
of the integrability functions that will satisfy it may be helpful.

This partial differential equation is a hyperbolic quasilinear equation in normal
form with characteristic directions on the lines = constant and t, = constant. In order

: Qg _Ow d%ug d%up
to see this we let p= 3 ' 4= a, Rlrwalt e oL, and w = 32

Then the two equations,

dp=rdt+sdg (3.67)

and

dq=sdt+ wdt, (3.68)
result directly from the chain rule applied to the formulas for p and q. The partial

differential equation can now be expressed as
3 =
s+ ™ pq=0.

Suppose next that one has a curve I' in the tt, plane

d
along which u, and its normal derivative, % , are

prescribed. This is the same as saying that ug, p and q as

well as dp and dq are known along I'. Consequently, along
I" we have three equations in three unknowns:

O+rdt+sdt=dp, (3.70)

0+sdt+wdt=dq, (3.71)

3
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These equations enable us to determine the derivatives r, s and w everywhere along I,

provided that A, the determinant of these equations, never vanishes along I'. When this

is true I' is called an ordinary curve and it is possible to find derivatives of u, of all
orders along I' and one can therefore expand u, as a Taylor series about every point on
I in order to determine the solution on a strip in the T,t; plane. The width of this strip is
determined by the radius of convergence of the series at every point along I'. Character—

istic directions at any point on I' are defined as those directions for which A vanishes. In

such a situation the derivatives of uy can not be found and the computation of the solu—

tion as described above can not be carried out. In the present case if any point on I' is

tangent to such a direction we must have

dt dt O
A=| 0 dt dt |= dtdy=0, (3.73)
0 1 0

and the solution can not be continued as indicated above. Clearly, all lines T = constant

and t, = constant must be characteristic lines as stated at the outset.
When T is an ordinary curve one can use Cramer’s rule in order to find the

value'. of 1, s, and w at any point on I'. Thus we have for the present problem the

solution,
dz dp 0
@ws=| % 41 du (3.74)
0 -E%gpq 0

On a characteristic, since A = 0, the best that we can hope for is that solution for s will

be simply indeterminate on I'. Such will be the case if we also insist that




dz dp 0

0 dq dg =dtdt —3—-pq =0 (3.75)
3 2y

0 -=—pq O
2y,

along the characteristics. This characteristic relationship provides the key for the deter—

mination of the dependence of u, upon the laboratory time t;. In order to see how, we
recall that all derivatives in the zero—order partial differential equation determining u,, are
taken with respect to 1. Therefore solution u, is reduced to a quadrature by means of
two partial integrations with respect to T and its only dependence on t; is found in the
constants of integration A(t,) and B(t;). But in terms of the integrability condition from

the'ﬁrst order perturbation equation, a partial integration over T implies that dt; = 0. But

allo allo
duyy= -é?d‘t+ -a-:dts= pdt + qdt,.

Therefore we have

qdt;= dyy — pdrt.
Therefore the characteristic relationship,
3 -

becomes

3 - =
d12uop(duo pdt) =0.
But the factor d7 2_3u; p is certainly not generally zero. Therefore the condition

(dup — pd1) =0 suggests that ug is independent of t, in general.

The fact that the integrability condition of Equation (3.50) has a rather symmetric
form and has a cross second derivative for its highest order term suggests that one might
find a general form for ug(t.t,) which is analogous to d'Alembert’s well known solution

0
for the wave equation. In order to exploit this symmetry we can let v = 3“3 as before.
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Then the integrability condition is

20v_3 9y
—— — + —— - 0 . .
v oL oy (3.76)
Evidently this equation can be rewritten as —ai In(vu3/2) = 0, from which one finds that

d
%3/2-% = f(1). A second partial integration with respect to © leads to

u'oslz = f—;-f(t)dt + i) = g(t) + h(ty.
Consequently, the integrability condition wili be satisfied by any functions g(t) and h(t,)

in an equation of the general form,

ug(tty) = [g(v) + h(t)1?5. (3.77)
That this result is the most general form of the integrability function can be verified
directly by differentiation to show that
s

i 9
2uy ?aﬁf = -56; [g(t) + h(t)] /5 and that 3% %'il = 55 (8 + h@y)] ~6/5.

As we have noted, equation (3.77) is expressed in characteristic coordinates. In
order to exhibit a form which gives the solution on an ordinary curve, I'(t,t;) as illus—
trated above, we need a transformation between the characteristic and I" coordinates,
1= ¢(ty,1;) and tg = Y(1,,t;). For example, suppose we take T = (t,+ t;)/V 2 and
t; = (1~ t,)/V 2, corresponding to T being a line at 45° with respect to the horizontal

and upon which t; = 0. Then one can write

uo(trty) = [g1(T+ ) + hy(ty— 1,)]25,

where the suffixes on g; and h,; denote that the I" coordinates have been rescaled in order

to cause ug(T;,t;) to resemble more closely the classical d'Alembert solution. This formal

resemblance must not be allowed to obscure the fact that physically, the proper coor—

dinates are T and t; and that the question of whether or not the zero—order solution

depends on tg as well as < is uppermost in our minds.
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Two successive partial integrations of Equation (3.1) with respect to T have given

the quadrature,

(4
'\/2u‘2,ln§-§2+1+a(ts)

T+ bty = (1 +qP/4 (3.78)

1
which is certainly not of the general form required by the integrability function. Equation
(3.78) can be brought into an acceptable form if a(t,) = b(ty) = 0. This choice satisfies
the initial conditions and we may then write the solution symbolically as ug(t,,t) = G(1),
where it is supposed that the integral can be evaluated and inverted (numerically if need
be.) More generally one could suppose, because of the small oscillation result discussed

above, that this inversion might have a form such as,

ug(T,ts) = A(ty) Ft + B(ty)).

The general form of Equation (3.77), appears to preclude this possibility, however; and
this conclusion is reinforced by the direct use of this tentative form of ug in the
integrability condition, equation (3.50).
3.5.3 A Direct Approach to the General Solution

Since the inverse form, t[uy; ug, a(ty),b(ty)], has been reduced to the quadrature
of equation (3.78), one can use the Leibnitz rule in order to test further the finding ob—
tained thus far in the hope that if there is a dependence on t, , it might at least be found
numerically. We shall start our direct approach using the closed-form result, v = dug/oT,

which we shall now write as

1+ q)3/2 v2 = [Zuilnuo - Uz +14+ a(ts)]/“::‘) . (3.79)

Therefore the mixed second derivative is found to be
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2 2
uv-uo
v »0dyy 1 1 da

- + ’
vug (1+q)32 2up | Ot (1+q)2 2ugv dig

&Y

so that the second—order term in the integrability condition is

2 2
2 (uv - “o)

0
—3y Uy 1 1 da

2 = < . 3.80
"ooray vuy (1+ g2 at T (14 qPn uly dts G50

The second term in the integrability condition, involving the product of dug/dt and

d d
dug/dtg, can be written as 3 vig which eliminates the term, —3V3uts£ , in the mixed

second order derivative of equation (3.80) from the integrability condition. Consequently

d
the integrability condition, when written as 2%3—:’; + 3v-a%: = 0, becomes

2 2
2 (uv - uO)

+ ! 1. da =0
vug (1+ q)32 dt;  (1+q)P2 ugv dtg |

This result simplifies to

dug

da
2(u-up) 3+ g, =0

The only factor depending on b(ty) results from the derivative, dug/dts. After

(3.81)

applying Leibnitz's rule [12] to equation (3.78) and rearranging the result, one finds that

dug _ b v ... a2 4
a " dig 2 q)Nd‘s 202 1ng - £2 + 1 + a(

3/2
dg , or that
3

ug
dup _db v daf df (3.82)
o iy T 2(1+qP digJBV
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Equation (3.82) can now be substituted into the integrability condition of (3.81) After

separating the terms involving the derivatives of a(t) and b(t;), Then one finds that

)
(u,—uy) Yo
N dE da db

da 2_ 2 db _
WG g [a A0 T 0ve =0 O

The integrability condition of equation (3.83) is a single condition for the two unknown
functions, a(ty) and b(t). If a and b are truly independent arbitrary functions then they
must vanish identically. Otherwise, equation (3.83) implies that a and b are
interdependent .

Suppose therefore, thgt we were to consider a = a(b). The differential dt; is then
eliminated from Equation (3.83). If in general the differentials da and db are not zero
simultaneously, equation (3.83) will be satisfied only if the coefficients of da and db
vanish. Then we would have two equations for the unknowns a(t,) and uy. If these equa-
tions were solved for values of the unknowns near their starting values, a=0and uy = 1.
Then one would evaluate Equation (3.78) from 1 to ug and so calculate the sum, tg + b(ty),
with the help of the condition t; = £1. But he could not determine t, or b without an added
constraint which does not appear to exist for this formulation. Thus we see that if a(t;) and
b(t,) are not independent functions of integration , the system of equations is not closed.
Moreover even if the system were closed, these two equations do not vanish at the initial
condition, where a(0) = v(0,0) = 0 and uy(0,0) = 1. Then the requirement that the coeffi-
cients of da and db vanish for all t, and 7 is certainly not satisfied.

Suppose next, that one considers the differential equation (3.83) and the quadrature
of Equation (3.78) as two of a governing system of equations. How might the system be
closed? One possibility may be suggested by the behavior of the zero-order radial velocity,

d
2 which from the chain rule and the condition di; = edt, is
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d‘t - 31 + E ats . °
The two partial derivatives of ug in equation (3.84) are given by the square root of

equation (3.79) and by equation (3.82), respectively. Equation (3.84) can be used to

determine the maximum and minimum values of uy. These values are given by the two

d
roots of ] = 0, namely:

dt
[2v2 Inug-uZ +1+ a3 ug
\/ o o velydb v dafd | o (389
T+ dt, ¥ I+ o i JBv3 |7
1

If the roots of (3.85) can be found starting at the initial point, the value of uy;,y,
say, permits one to assign a series of equally spaced points over the interval [1,up,,1.
Let the first new value of ug be 1+h, where h is the step size. Of course, up,, and up;,
must be found at each step because the values of a and b will change with each compu—
tational step. Therefore it is possible that the size of each step should be found from
integration of equation (3.84) and equation (3.85) should be reserved for the determi~
nation of upin and upmax. We note in equation (3.85) that a(ts) and b(ty) are the
unknowns. The same is true of equation (3.83). Equation (3.78) has a, b and 1 as
unknowns, provided that uy can be found from integrating equation (3.83). Then by
making use of tg = €1, we see that the fundamental unknowns are a, b and 7 at each step
and there are three equations. Therefore, the system is closed; but it remains to design an
algorithm for a step by step solution. All of this is conjectural. Therefore the present
study is restricted to the case in which a = b = 0 and the integrability condition is indeed
satisfied. This approach may be useful preparation for an attack on this generalized
problem, should it be necessary. The present special formulation will reveal some aspects
of the solution properties that must also be dealt with even in a generalized approach.
This will be especially true in the neighborhood of of the initial point T = tg = 0 because
a and b will be very small in this neighborhood.
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CHAPTER 4
FIRST-ORDER EQUATION ANALYSIS

4.1 Statement of Equation
The two-scale perturbation expansion in section 2.4.2 gives the i.rst-order linear pertur-
bation partial di{ferential equation for u,(t,t;) where u, is the first order normalized

dimensionless bubble radius, u,. The two dimensionless time scales are t¢, and T and the

first order equation was found to be,

2
iz_ﬂ + 2 3 auo aul a2u0 3uv
3tz ug o1 af d12 u0(1+q)3’2 ug
[0 31 dndu)  Fw
) arats 2up o1 3}: up (1+q)372 4.1)
with initial conditions of
1(0,0) =0 4.2)

and

du,(0,0)  duy(0,0)
ot T oy

1 dac;
§Wr\I(l +q)(1 + K)(- —(%’-Jcp:_x . (4.3)

In equation (4.1), F(t,) is the pressure forcing function of section 2.2 and the term
to the right of the equality in (4.3) is the flaccid bubble response, from section 2.3.4, to
F(t;) . The first-order equation depends on the zero-order equation and its derivatives as
well the affix of the vortex point, u,.

Td write this equation in terms of the normalized bubble time, x, one applies
equation (3.17) and its derivatives to equation (4.1). In section 3.5 we have taken the zero-
order solution to be independent of the slow laboratory time, t,, so that those terms
containing derivatives of ugy with respect to t, must vanish. Moreover, the mixed derivative

terms in the second-order equation of u, also vanish for the same reason. Thus, the first-
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order equation may be considered to be independent of the laboratory time, t,, and can be
written as an ordinary differential equation depending only on the bubble time, T. Applying
this and the period parameter from equation (3.20), we can write a normalized form of the

first-order equation as

2
Puy 3 dugu) wdhg 1z (PNl RFex) @9
dx2 Ug dx | dx Up dx2 u(z) u(z) - = up ’

with corresponding initial conditions of

u@ =0 4.5)
and
du;(0) , dC
l:;x = %Wr(l + q)5/4,/(1 + K) (- —(i_sn) c, = K . 4.6)

Tkis leaves a single-degree-of-freedom system governed by a linear second-order
nonhomogeneous ordinary differential equation. Due to the fact that the zero-order
equation has periodic solutions, this ordinary differential equation has time dependent
periodic coefficients that can produce parametric excitations in the system. This type of
system is discussed by Nayfeh and Mook [7] among others, and as they suggest it can be
solved using «he Floquet theory for the homogeneous solution and variation of parameters

for the particular solution [12].

4.2 Homogeneous Solution from the Floquet Method
4.2.1 Standard Form of the Equation

The linearity of equation (4.4) permits the forcing term to be set to zero, leaving a
homogeneous equation involving only derivatives with respect to the normalized bubble

time, x. The homogeneous part of Equation (4.4) can then be written as

d2 d
3 P g + R =0, 4.7

where
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3 dug
pi(x) = g dx’ (4.8)
and
2 2 (302
poo = Lo AZ[2% ) @9
Uo | dx ug | ug

For ease of writing and to avoid confusion in later analysis, the first-order subscript

is dropped for the homogeneous form of the equation. Because they depend on ug, both
coefficients, p;(x), are periodic functions in x with a normalized period of unity.

Equation (4.7) can be expressed in standard form by eliminating the first
derivative term. Using the transformation

Z

U="3n (4.10)
Yo

and its derivatives, one can write equation (4.7) in the standard form,

d2
2tz =0, @4.11)
where
a2 [5u) 4.12)
PX) = —|— - 1]. '
2up| v

The parameter p(x) is also a periodic function, dependent on the zero-order solution

and u,. Figure 4.1 shows the form of p(x) for various values of u,. It is seen that as the
value of u, increases, portions of the function p(x) become increasingly steeper and
steeper. This phenomenon causes equation (4.11) to become increasingly stiff with rising
u, values, and some care must be taken if this equation is to be evaluated numerically.
This standardized form of the first-order equation in (4.11) is among the class

known as Hill's equations, and can have stable or unstable solutions depending on the
value of u, in p(x). For the special case when p(x) has the form
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Coefficient p(x) and dp/dx for several u,, values.
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Figure 4.1 The Periodic Coefficient, p(x), and its Derivative from the Standard

Form of the First Order Equation for Several Values of u,.
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4.13)
p(x) = d* + 2e*cos(2x) ,

where d* and e* are stability parameters, equation (4.11) reduces to a form of Mathieu's
equation dealing with the problem of vibrations of an elliptic membrane. With the homoge-
neous first-order equation in this standard form its stability and its solution are well known
and are given by Abramowitz and Stegun [9] among others.
4.2.2 Small Oscillation Stability Analysis

As discussed in Nayfeh and Mook [8], the stability of equations (4.7) and (4.11) is
the same. So the stability of one will be the same as that of the other. Using the small

oscillation results from the zero-order solution for the case

=1+3%, 4.14)
where 8 << 1, a small oscillation form of the standard equation can be obtained. Sub-
stituting the small oscillation expressions for uj and 1 from equations (3.34) and (3.37) into
equation (4.11) and keeping terms to the second order in 8, one finds a small oscillation

form of the homogeneous first-order equation to be

gxz +4u2[l+8-—cos(21tx) + 52(61 cos(21|:x) + —cos(41t x))] z=0.

(4.15)
Equation (4.15) can be recognized as a Hill's equation.By letting @ = ntx and
ruling out terms containing 40; one can write this equation to the second-order in §, except

for the neglected 46 term, as

d92 +a[1+8°8 + 5(3 - af)cos2®)]z = 4.16)

This is a standard Mathieu equation with the form of the coefficients as described in
equation (4.13). The term & £cos(xx) from equation (4.15) was left out of the

expression in (4.16) in order to produce the proper form for a Mathieu equation. This
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omission seems acceptable since similar results to the present analysis were obtained while
only keeping terms up to the first order in .
Comparing the coefficient in equation (4.16) to the Mathieu form in equation

(4.13), we find that the stability parameters are

8*=4(1 + 82%1-) @.17)

and

e* = 8(11 ) 8%—5) : .18)

Therefore both 6* and e* are functions of 3.
The stability of the Mathieu equation can be visualized by plotting 8* against €*. In

the 5*,e* plane. for the present case there are two curves of neutral stability [9] given by,

= 1 o2 3 4
8* =4 - 12(5*) + 13824(8*) + ... (4.19)
and
- S a2 . 163 L4
& =4 + 59" - g1 (€M + . . (4.20)

In the region between these two curves the solution to the Mathieu equation is

unstable, while outside these curves the solution is stable. Remembering that

d=u -1, 4.21)

one can plot equations (4.17) and (4.18) as in figure 4.2 for various small values of u,.
Note that two such curves are plotted in figure 4.2 . One curve is shown as a continuous
curve with circled points showing various u, values in the interval [1,1.013). The second
curve is shown as a sequence of small black squares and this curve covers the u, interval
[1, 0.987] . Included in this figure are the neutral stability curves from equations (4.19)
and (4.20).

Asd - Oandu, » 1, the Mathieu equation in question yields neutral stability
parameters of 3*— 4 as e*— 0. Similarly, both neutral stability curves also approach a
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Figure 4.2 The Stability Region of the First-Order Differential
Equation for Small Oscillations.
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value of 6*— 4 when e*-> 0. This shows that the homogeneous part of the first-order

solution departs from a point of neutral stability at u, = 1, continuing into an unstable
region as u, increases or decreases. When u, = 1, the period parameter assumes the value
A = V2 and the Mathieu equation in (4.11) becomes the equation of a harmonic oscillator
which is indeed neutrally stable. It appears from figure 4.2 that the small oscillation

solution curves continue to stay in the unstable region for all higher values of u,, although

the small oscillation approximation will break down as the value of u, increases or

decreases too far outside of the range [0.98, 1.03].
4.2.3 Floquet Method

The homogeneous first-order equation describes the behavior of a system governed
by a linear ordinary differential equation with periodic coefficients. The functional behav-
ior of single-degree-of-freedom systems can be characterized using the Floquet theory.
This theory determines general properties of the solutions from systems governed by
equations of the form (4.7), without actually solving them. These properties can then be
used to determine numerical approximations to the solutions. These approximations have
factors that are periodic, allowing them to be used over many cycles, whereas other
numerical solution techniques tend to accumulate excessive errors when used over an
extended range. The nonperiodic factors are exponentials which also permit accurate
numerical evaluation. The following development is given by Nayfeh and Mook [8], and
applied to the equation at hand.

Since equation (4.7) is a second-order linear homogeneous equation, it has two
linearly independent solutions u,(x) and u,(x). Here the subscripts refer to the two
independent solutions to the first-order homogeneous equation and not to the first or
second-order equations of the two scale expansion. Functions such as u, and u, are
usually referred to as a fundamental set of solutions because every solution is a linear
combination of these two solutions, and because they satisfy the fundamental initial
conditions of
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n
o

01(0) = 1 ;Jl(O)
112(0) 0 l.lz(())

4.22)

"
—

Since the zero-order solution is periodic, equations (4.8) and (4.9) are also periodic

and

pix) = pi(x+T) , 4.23)
where T is the period and in the normalized sense equal to unity. It follows that if u;(x)
and u,(x) are any two solutions of equation (4.7), then u;(x + T) and u,(x + T) are also
solutions of equation (4.7). Also, if u;(x) and u,(x) are linearly independent, then
u;(x + T) and uy(x + T) must be linearly dependent on u,(x) and u,(x) because a second-
order equation has only two linearly independent solutions. Therefore, there exist two

constants for each solution that do not both vanish at the same time such that

(uyx+ D} = [A){ui(x)}, (4.24)
where 1 = 1 and 2 and the matrix [A] contains the four constants
a a
[A] = [ B, 2y ] : (4.25)

Applying the fundamental initial conditions from (4.22) and the normalized
period to equation (4.24) and its derivative, we find the constants to be
a;; = u,(1) a;, = uy(l) 426)
az; = ux(1) a3 = Uy(1)
Once u;(x) and uy(x) are known the a; ; constants can be determined.
Since equations (4.7) and (4.11) are both a form of Hill's equation and have the
same stability characteristics, the above process also holds true for a fundamental set of
solutions, z,(x) and z,(x). In the actual numerical solution process it is the fundamental set

of z; solutions which are found, and they are transformed back into the u, form using
equation (4.10). This is done for convenience, since the small oscillation and stability
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results are more easily obtained from equation (4.11), as will be shown later. However,
u, and u, will continue to be used in the development of the solution to avoid confusion.

It can also be stated that there exist fundamental sets of solutions having the
property
vi(x + T) = A'ivi(x) [} i = 1, 2; (4.27)
where A, are the eigenvalues of the matrix [A]. These eigenvalues may be complex.

Equation (4.27) represents what are called Floquet normal solutions, and are related

linearly to u;(x) by a 2 x 2 constant nonsingular matrix, [P], such that

{y;(x)} = [P] {vi(x)] . (4.28)
The substitution of equation (4.28) into equation (4.24) yields

(vix +T)) = [P]" (A] [P} (vi(®)} , (4.29)
or
{vix +T)} = [B] {vi(x)} . (4.30)
The matrices [A] and [B] are said to be similar matrices because they have the same
eigenvalues, that is
I[B] - A;[1]1 = I[A] - A4(I}I =0, i=1,2 (4.31)

The eigenvalues of matrix [A], which will also satisfy matrix [B], must now be found! . It
follows from linear algebra that a nonsingular matrix {P] can be chosen so that [B] will
have its simplest possible or Jordan canonical form. This form depends on the eigenvalues
of [A] which are found by solving

IfA] -AI11 =0, i=1,2 (4.32)

1 It is hoped there will be no confusion between A for the period parameter and A; for the
cigenvalues.
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This leads to the equation
2
Ai -2aA;+ A =0, 4.33)
where
= i@ + i) = 3
o =3 [u(1) + u()] = 5 [ay; + ay) (4.34)
and
A = u()uy1) - u(1)uy(1) = ayyay - a3y (4.35)

The quantity A represents the Wronskian determinant of u,(1) and u,(1) as defined by

u](l) il](l)

u(1) uy(1)

A= (4.36)

Since equations (4.7) and (4.11) have the same stability characteristics, the

Wronskian of equation (4.11) can be analyzed to determine its value. From equation

(4.11) for the two solutions z, and z,, it follows that

z;(1) + p(x)z;(1) = 0 } 4.37)
Z5(1) + p(x)zy(1) = 0
Subtracting z, times the first equation from z, times the second one gets

z(1) (1) - Z(1)z(1) = 0, (4.38)
which can be integrated to yield
A(x) = z)(x)Zy(x) - z)(x)zy(x) = constant . (4.39)

Converting this back to the u; solutions using equation (4.10), one finds that the expression
is still equal to a constant. Evaluating this and using the initial conditions of (4.22) one
gets

Ax) = 1, (4.40)
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which is as it should be in the case of a Hill's equation [8). This is an important result. It

can be used later to indicate roughly the error in the numerical solutions for u; and u,.

The stability parameter, o, is used to determine the value of the eigenvalues, A;, of

[A]. With A = 1, equation (4.33) yields

where the roots are related by
MAy, = 1. (4.42)

Ifa=1% | 1 |, equation (4.41) yields only one eigenvalue, namely

A=a=1%1. (4.43)
If a # 1, equation (4.41) yields two distinct eigenvalues, and [B] takes on the diagonal

form
Ay O
[m=[JlJ- 4.44)
It follows from equation (4.30) that
vix +1T) = & vi(x) , (4.45)

where nis an integerandi = 1and2. Thenasx — eo,n — e and

vmqﬁzim:i. (4.46)
When A; = 1, v; is periodic with period T. When A; = -1, v; is periodic with period
2T. Thusthecases A} = A, = %1 separate stable from unstable solutions for the
fundamental set and are called transition values.

It remains to express equation (4.27) in normal Floquet form. First we multiply
the respective equations by exp[- ¥%(x + T)}, which yields

¢ Yi(x + T) vi(x+T) = ¢ X vi(x) , 4.47)
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where

e T = A (4.48)
and
%= ik . (4.49)
The term ¥; in equation (4.49) is called the characteristic exponent. The right side of

equation (4.47) is periodic with period T, and can be expressed as

e’ Yix Vi(X) = ¢1(x) ’ (4-50)

where ¢;(x + T) = ¢;(x). Hence, v;(x) can be expressed in the normal form

vix) = efi* ¢y(x) . 4.51)
For the case when A; = 1, similar reasoning yields the same result for v,(x), but
v,(x) will have the form
va(x) = ef2* [¢z(x) + i:_'r «h(x)] (4.52)

due to the double root. These give expressions for the approximate normal Floquet
solutions of equation (4.7) derived from the properties of the numerical solutions, u,(x)

and u,(x). They are made up of well defined exponential functions multiplied by periodic
functions, ¢;.
The stability of the fundamental set of solutions in Floquet form from equadons

(4.51) and {4.52) can be analyzed by calculating the value of . When lal > 1, the
absolute value of one of the A, is larger than one while that of the ~her is less than one,

according to equation (4.42). This leads to v, and ¥, having equal magnitudes but
opposite signs. Thus, one of the normal solutions is unbounded and the other is bounded
as x — oo, as evidenced by equation (4.46). When lal < 1, the roots from equation
(4.41) are complex conjugates having unit moduli. As stated before, the transition from
stability w instability occurs for [l = 1, which corresponds to the repeated roots
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Ay =24, = landA; = A, = -1sothaty; = ¥, = Oorin. The former case hasa
periodic normal solution with period T, while the latter case has a periodic normal solution
of period 2T. The locus of transition values where la| = 1isa very important outcome of
this method and can be used to determine critical flow values that will produce neutrally
stable solutions. The stability parameter, o, the eigenvalues, A;, and the characteristic
exponents, ¥;, can be determined from equation (4.11) by numerically calculating the two
linearly independent solutions, z, and z,, during the first period of oscillation. With the
help of these solutions and their first derivatives at x = T, one can calculate ¢ and A from
equations (4.34) and (4.35). Then the A's and ¥'s can be determined from equations
(4.41) and (4.49) respectively.

The solutions u, and uj can be found by taking the numerical results for z; and z,
from equation (4.11) and transforming them into u, and u, with the help of equation
(4.10). But, due to numerical instabilities in the adaptive Runge-Kutta algorithm used
here, errors will accumulate in the numerical process because the equation is stiff in cetain
limited x intervals durring the integration over a period, [0,1]. The degree of stiffness
increases as uy departs more and more from unity. This aspect of the work will be dis-
cussed further below. Over the full range of the forcing function the solutions need to be
extended over many periods in x, which will greatly reduce accuracy as the errors keep
accumulating. To overcome this error accumulation the numerical solutions can be
transformed into normal or Floquet solutions which in general have periodic factors as
noted above. This wquld require numerical solutions of u; and u, for only one period of
oscillation, thus minimizing the errors. This is also all that is required in the calculation of
the previous stability parameters and characteristic exponents.

It then remains to find the components of the Floquet solutions in equation (4.51)
in terms of the numerical y; solutions. The ¥s have already been developed. Expressions
for the periodic functions,¢;, must then be found. This is begun by relating the u;
solutions to the v; solutions using equation (4.28). To find the components of the matrix
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[P] in (4.28), the eigenvectors corresponding to the eigenvalues of matrix [A] are found,

such that
IA[T} - [A]I[P] =0, (4.53)
where, forcasesi = 1and 2
_ | Py
[P] = [Pz'.:l . (4.54)
Expanding equation (4.53) for both values of i, four equations are obtained and can be
expressed as
a;1P1; + a12P2i = AiPii } 4.55)
a2)P1; + 322P2i = APy
From this set of equations, we find the ratio
Pii _ __ 212 _ Aj - 2y,
Psi A - a;;  ay (4.56)
This leads to the modal matrix
ajy a;, Ay - az; Ay - aj,
[Pl=[k ]=[ 1 . (4.57)
1 - 851 Ay - ap, as a)

Either of these matrices can be used to transform between variables, or their average could
be used to try and minimize errors in a computer code. Only the first form is used here.
From equation (4.28) it is seen that the inverse of [P] is needed to express the

solutions in Floquet form. The inverse of [P] is

A, - a -a ay; -(Ay - azy)
-1 1 2 11 12 1 21 2 22
P = T = = y 4.58
Pl - AP[‘(M - a3y) au] AP["‘ZI Ay - agp ] @39
where
AP = alz(M - xl)=821 (2.1‘ lz) . (4.59)

For convenience, the first of these is chosen for use in the following development.
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Applying equation (4.58) to equation (4.28), one finds that the Floquet normal

solutions in terms of the numerical solutions are

_ (g - a)uy(x) - a;oux(x)
vix) = a3Chg - A7) (4.60)

= -(Ay - ay)up(x) + aj uy(x)
V2t = a,(Az - Ap) - (4.61)

Equation (4.51) can be solved for ¢;. It is found to be

¢i(x) = €M% vi(x) , (4.62)

and its first derivative is

do. . d i
% = ¢ TiX [’sz' - yivi(x)] : (4.63)

The normal Floquet solutions and their derivatives in terms of the numerical solutions from
equations (4.60) and (4.61) can then be substituted into equations (4.62) and (4.63). Both
do;

¢; and gx are periodic functions in x and we only need u; numerical solutions over the

first period to be continued indefinitely.

In summary, two linearly independent solutions to equation (4.7) can be found
numerically, by starting with initial conditions for a fundamental set and integrating over
one period of oscillation. The value of these solutions when x = T = 1 can be used to find
the characteristic parameters of the solutions, namely: the stability parameter,a , the
eigenvalues, A;, and the characteristic exponents, ;. These solutions can then be used to
determine a periodic function which, along with the characteristic exponent, can be used to
express an approximate normal Floquet form of the solutions which can be continued over
many periods. It now remains to find the particular solution to the equation, to combine it
with complementary function and to evaluate the constants of integration, A and B, in the

complementary function in terms of the initial conditions.
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4.3 The Particular Solution

To find the particular solution to the nonhomogeneous form of the first-order
equation, one can use variation or parameters [12]. Ordinarily it is impossible to find a
particular integral of a nonhomogeneous lin¢ “r differential equation by inspection. But
since a form of the homogeneous solution can be found by the Floquet theory, the general
variation of parameters method enables one to replace the constants of integration in the
complementary function with the functions a(x) and b(x). This is done by assuming a

particular solution to the first-order equation of the form

u(x) = a(x)uy(x) + b(x)uy(x) , (4.64)
where again u,(x) and u,(x) are the two fundamental solutions to the homogeneous
solution, and a(x) and b(x) are functions of x that satisfy the additional condition

da db
d—x'lll + Ex'llz =0. (465)

Differentiating equation (4.64) with respect to x two times and applying the condition in

equation (4.65) one gets

d du du,
d‘:‘p = adxl + bdx (4.66)

d2u, _ ad2“1 da du; d%u; b du,

i - Takx TP Tak (4.67)
The particular solution must satisfy the original forced first-order equation.
Substituting these results into equation (4.4) one has
d2u; - du d%u du
a[del + pi(x) -a;l + pz(x)ul] + b[ﬁx—iz + pi(x) sz + pz(x)uz]

dadu;  dbduy  AZ
tRE@ T &&= ugFEN - “.68)
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But both u, and u, are solutions of the homogeneous equation, so that the first two
terms in equation (4.68) are zero according to equation (4.7). Therefore equation (4.68)
is reduced to

dadu; dbdu, 2
dx dxl dx dx = u—o'F(esx) . (4.69)

Equations (4.65) and (4.69) yield two equations for the two unknowns, da/dx and
db/dx. They can be written as

. 0
U U2 1. - |52 (4.70)
0ot =F(e,x)|
up W Jip u
The determinant of this system is
A=y -y, . @.71)

This is the Wronskian of the homogeneous equation from (4.39) and is equal to
unity. Equation (4.70) yields two equations. Integrating them, one finds a(x) and b(x) to
be

a2 u2(5)

0

4.72)
a2 1(§)

where a(0) = b(0) = 0. Substituting these into equation (4.64) one gets the particular

solution of

u®) u(x) (4.73)
up(x) = A2 -u,mJ a®) FED d& + ua(x )J"«;@ F(e) &t | .
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When x = 0, both integrals in (4.73) vanish leaving

up(o) =0. 4.74)
Differentiating equation (4.73) to obtain the particular growth rate, we find

X X
dup _yal oo (0 oo [ B @75)
x = M| -u® 6[ 26 FEe8) dE + ux) 20®) Fel) dg | .
0
Both of these integrals also vanish when x = 0, thus
du
Tleo =0 (4.76)

Equations (4.73) and (4.75) represent the particular integral and its derivative for the
normalized first-order equation. They can be combined with the complementaty function
to obtain a complete integral of the differential equation and then the initial conditions can
be used to solve for the constants of integration, A and B.

To be able to continue the particular solution numerically over many cycles we
avail ourselves of the above normal or Fioquet solution. Using it we can transform the
particular solution into normal or Floquet form. To do this, we substitute u, , u, and their
derivatives into the particular solution. The matrix [P] from equation (4.57) is used to get
them in terms of the Floquet variables v, and v,,. According to the relationship in

equation (4.28),

uy(x) = a35[vi(x) + va(x)] 4.77)

u(x) = A, - a5;) vy(x) + (Az- a;7) vo(x) . (4.78)

Substituting these expressions back into equations (4.73) and (4.75), we find
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u,(x) = A%a;, (A - Ap) v,(x)J 2§8 F(e,€) dE - vy(x) J ‘g Fe,£) d& |, (4.79)

and its derivative

d .

T‘:‘B = 12 a7 (ll - )\2) Vl(x) J 2§§; F(89§) dé 2(X) J 122; F(e g) dé (4.80)
0 0

Equations (4.60) and (4.61) give v, and v, in terms of u, and u,. Since the integrals in

equations (4.79) and (4.80) both vanish when x = 0, initially one has

up© =0 (4.81)
dul
dx |x=0 0

Equations (4.79) through (4.81) represent the normal or Floquet form of the first-order

particular solution, its particular growth rate, and the particular initial conditions. These
can be combined with the Floquet form of the homogeneous solutions to write a complete
integral for the first-order equation in normal Floquet form. At the upper limit of the

integrals in equation (4.79) when & = x, the two exponential terms contained in the two
Floquet variables when they are multiplied together become unity since Y, and Y, have the

same magnitude but opposite signs for the case a > 1. If the corresponding ¢i(x), uo(x)
and F(x,€) are bounded in [0, x], then as x — oo, the first integral in (4.79) also approach-
es oo since Y, > 0 and the exponential part of v, dominates the solution. In the same
regard, the second integral approaches a constant because Y, < 0 and the exponential part

of v, vanishes. This means that for values of & > 1, as is the case for this analysis, the

first integral in equation (4.79) is unstable while the second integral is stable as x — oo,

Exactly how unstable the first integral will become depends upon the magnitudes of the
parameters such as Y,




4.4 First-Order Equation Solution
With the homogeneous solution and particular integral for the first-order equation

found in both numerical and normal Floquet form, they can be combined to form the com-
plete solution. One does this by multiplying the two linearly independent fundamental
functions by arbitrary constants and adding these to the particular solution. Thus, the
complete solution to the normalized first-order equation in (4.4) has the form,

u(x) = Auy(x) + Buy(x)

X X
+ 22 - up(x) J%g FEE) dE + u,(x) JE.% Ft) dg | ., (4.82)
0 0
where A and B are the arbitrary constants that must be evaluated from the initial condi-
tions. It is noted that although the variables to the left of the equality u; and u,, they form
the fundamental solution set for the first-order equation, they should not be confused with
the notation in section 2.4 above for the two scale equations of the original Rayleigh-
Plesset equation.

The initial conditions for the first-order equation were derived from the flaccid
bubble analysis as in equation (2.45) giving t"¢ initial growth velocity. From equations
(4.5) and (4.6) above we have

n0)=0

dul (483)

1 dC
oo = gWr(1 + Q3 4V(T + K) ( Ts!)c k= C
P

It was shown in the particular-solution analysis that both the particular solution
and its derivative are equal to zero when x = 0. Applying this fact and equation (4.83)
to equation (4.82) and its first derivative, one finds the equations,

Auy(0) + Buy(0) = 0, (4.84)

Auy(0) + Buy(0) = C. (4.85)
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From the initial conditions of fundamental set of equations (4.22), we find that these two

equations yield
A=0, (4.86)

Substituting (4.86) and (4.87) into equation (4.82), one finds that the complete first-order

solution looks like

up®) uy(®)
u(x) = Cuy(x) - A2 ul(X)f 2(2) F(e£) d§ - 2(x>I ‘(2) FEeE dt | . (4.38)

0 0

where C is given by equation (4.83). Differentiating equation (4.88), one also finds that
the complete first-order growth rate is

d ) . ux(€) )
d—xq = Cuy(x) - A2} uy(x) f 2(2) F(e,&) d& - u,y(x) 6,' 122) Fe8d|. (.89

0

To express the complete solution and its derivative in normal Floquet form, the u;'s

must be expressed in terms of the Floquet variables. The substitution of equations (4.77)
and (4.78) into (4.88) and (4.89) yields

u(x) = C[(A; - a;)vi(x) + Az - a51)vo(®)]

+ 324, - A2)| () J zg F(e,8) d§ - v,(x) 6[ lzg FEe8dE| . (4.90)

and its derivative is




92

S_-cC [(7*1 - 81;)vi(x) + (A, - a11)‘.’2(")]

#3210 - 1) h(x)J S Feky o - ¥ zooj N L) IR

0 0
where v;(x) = e"1* ¢,(x) and vy(x) = €¥2* f5(x) as noted previously in equation
(4.51). These are the compiete first-order solution and its derivative in terms of the normal
Floquet variables, v;.
To study the complete first-order solution it is best to use the normal or Floquet
form which can be continued from the first period for many periods in x. A computer

code was developed which uses the zero-order solution and the forcing function in terms

of the normalized bubble time x, along with values of uy, as input.

The first step needed is the numerical calculation of the homogeneous solutions,
u;(x) and uy(x), for one period as 0 < x < 1. As stated earlier, this was done by first
finding z, and z, and converting them to u;. It was noted that equation (4.11) becomes
stiff as portions of p(x) become large with increasing values of u,. For cases of large uy,
standard numerical techniques such as a Runge-Kutta method prove to be insufficient. But
according to Gear [10], the fourth-order explicit Runge-Kutta method produces convergent
and stable solutions for real values of the quantity h-p(x) between 0 and approximately
2.7. Here h is the step size in x and p(x) comes from equation (4.11). From equation

(4.12) one sees that

p(0) = 2% 2 p(x) , 4.92)
so that

hp(x) S 2hA% < 2.7 . (4.93)
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If 200 steps are taken over the range 0 < x < 1, equation (4.93) yields conservative values

of A < 16.4 which corresponds to a largest value of u, = 2.14. If 100 steps are taken a
value of A < 11.6 is obtained, corresponding to a value of u, = 1.77. Using a variable
step size fourth-order Runge-Kutta method, one sees that the number of steps taken over
the period of x for the entire range of u, fell between 100 and 200. This then tells us that
the numerical solutions obtained from this method are stable for values of u, at least up to
1.77.

By looking at the curves of p(x) in figure 4.1 for higher values of u,, for a number
of steps between 100 and 200, we see that the value of p(x) only violates the inequality in
equation (4.93) over very narrow strips near the values of x =0 and x = 1. These regions
of stiffness produce unstable solutions over very small intervals compared to the rest of the
range of x where stable solutions are found. It was felt therefore, that the errors accumu-
lated using this variable step size Runge-Kutta method might be acceptable. This is indeed
the case, which will be verified later when the Wronskian of the system is calculated for a
range of u, values. Thus, we are quite fortunate in the fact that even though there exist
regions of numerical instability over the range of x for the solutions to equation (4.11),
these regions are small and a reliable proven numerical technique can be used to find the
solutions with acceptable error.

The use of the WKB method was explored for this problem because the value of
the parameter A becomes large as u, increases. It was found that although the equation is
certainly stiff in such cases, many terms beyond the order of 1/A% must be obtained if one
is to get a sufficiently accurate asymptotic expansion.

The variable step size fourth-order Runge-Kutta method was applied once for each

solution, z, and z,, and these were then converted back to u;'s using equation (4.10).
These solutions and their derivatives, for one value of u,, are shown in figures 4.3.

Later on in the analysis the values of such solutions, along with ug(x), will need to be

given in even increments of x for numerical integration purposes. To obtain evenly
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Figure 4.3 A Fundamental Set of Solutions of the Homogeneous First-Order Equation.
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spaced values, a cubic interpolation scheme was used, which picked a target value of x
and used the surrounding four known values of the solution to interpolate the corre-
sponding value. The use of an interpolation scheme is also apt to add error to the
solution. But since the solutions are well behaved and a third-order method [15] was
used, these errors were felt to be insignificant. This same method was applied to get
evenly spaced values of ug as input to the calculation of the first order solution.

The values of the fundamental solutions and their derivatives at x = 1 are next used
to determine the constants in the matrix [A]} from equation (4.26). From these values the
Wronskian of the system can be determined using equation (4.35). This Wronskian is
used to assess the accuracy of the numerical calculations of the fundamental solutions. As
was shown for Hill's equation, the Wronskian should have a constant value of unity. By
monitoring the value of the Wronskian for given values of u,, the confidence that the
solution is sufficiently accurate is measured. Figure 4.4 shows the scatter in values of the
error (A - 1) over the range of u,. It is seen that although the variations fromA=1
increase with u,, the difference is less than 10°3, which is acceptable for this analysis.
Closer inspection of this figure shows that great accuracy is obtained for values of u, up to
around 2, which verifies the numerical stability of the u; solutions talked about earlier
using the work of Gear [10]. As the value of u, gets larger, the stiff regions of the

equation produce some error in the solutions, but not enough to discredit the present use of
the variable step size Runge-Kutta method.

The stability parameter, a, can also be determined from the values of matrix [A]
using equation (4.34). The value of this parameter leads to dynamic stability assesment of
the fundamental set of solutions used in the complete first-order solution. The fundamental
set of solutions begins at a neutral stability point when u, = 1, corresponding to a value of

o = 1, as shown in figure 4.5. This figure also shows that, exept for the special value of
uy = 1, ot is greater than unity over the whole range of u, values. Thus, for 1 >u, > 1,

a > 1 and the fundamental set of solutions has one bounded and one unbounded solution
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Figure 4.5 Stability of the First-Order Fundamental Set of Solutions for a Range of u,,.
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as time increases, and excupt for, u, = 1, no values of u, do both of the the solutions
become stable. For the case of u, = 1, @ =1 and A; = A, = 1, the fundamental set reduces
to neutrally stable trigonometric solutions ofunit period and becomes unstable again with
further decreases in u,,.

The next step is to determine the Floquet variables, v;(x) and v;(x). For computa-
tional purposes, it is desired have them in the form of equation (4.51) which involves a
well defined exponential function multiplied by a periodic function. From the o value, A,
and A, can be determined from equation (4.41). From these, ¥; and ¥, can be determined
from equation (4.41) with a unit period of T = 1. The known characteristic exponents take

care of the exponential part of the Floquet variables.

Values of v; for one period in x can be found using the fundamental set of
solutions and equations (4.60) and (4.61). In the same fashion, v; can be found. Then
using equation (4.62) and its derivative with respect to x, the periodic ¢; and Epi canbe
determined. Figure 4.6 shows a plot of ¢; and t.bi for several values of u,. This then
takes care of the periodic part of the Floquet variables. There now exists a form of v;(x)
and v;(x) that can be continued over many periods in x.

It remains now to determine the integrals involving the forcing function from the
particular solution. This is simply done using Simpson's rule for evenly spaced values of
ug(x), v:(x), and F(e,x). The same process is applied to the integrals in the first derivative
equation. All these components are then combined as in equations (4.90) and (4.91). The
constant C can be determined using the forcing function and equation (4.83).

The above steps are combined into a computer program contained in appendix A.
Some of the input needed for the code is the pressure coefficient data for a circular cylinder
and a cavitation number. For this example, a value of K = 2.3 was used along with a
typical value of the free stream velocity of 40 fps. The initial nucleus radius size was taken
to be 7 microns and a characteristic length for the circular cylinder was D =2 in. Values of
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the surface tension and density of water at 70 degrees were used and a dissolved air
saturation pressure of 10 psia was also used. The computed value of u,, for these input
parameters is u, = 0.5994 and € is 1.6x10-6. But figures 4.7 and 4.8 show the complete
first-order solution and its derivative over many periods in x for a value of u, = 1.5994 .

The reason for this change is that the calculated value of u, from these input data
fell below the critical value of unity for this investigation. The calculated value of u, corre-
sponds to small scale compressive air bubble oscillations which characterize the zero-order
phase plane trajectories to the left of the uy(t) = 1 point shown in figure 3.1. As was
stated in chapter 3, the present numerical analysis deals only with vaporous growth
trajectories to the right of this point. The extension of the code to smaller values of u,
could have been made, but it was not carried out; because the dynamic stability analyses
for values of u, to the left as well as to the right of the critical point show that, aside from
the case of neutral stability at u, = 1, all first order solutions are unstable as shown in

figures 4.2 and 4.5. We concluded therefore that calculations carried out for u, = 1.5994

can give a useful illustration of the consequences of the first-order instability.

It is seen from figure 4.7 that the total u, solution grows exponentially with x. For

this case the value of a is greater than 1, thus producing exponential terms with positive
exponents that will become unbounded as x increases. Figure 4.8 shows the derivative of
this complete integral. Figures 4.9 and 4.10 show the homogeneous and particular parts of
the first-order solution. From them we see that the large magnitude of the total u, solution
comes from the homogeneous part. This is due the constant C multiplying the comple-
mentary function. C is of the order 10? for the given input values. Because this constant
term is relatively large, it dominates the smaller oscillations from the particular part of the
solution. The particular part of the solution grows at a slower rate than the homogeneous
part due to the fact that the amplitude of the forcing function contained in the particular
integrals grows rather slowly in terms of bubble time so that the modulated first order
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oscillations show a less rapid growth than does the complementary solution. But because
ofthe presence of the complementary function in the particular solution, it is also basically
unstable. It must be remembered also that since € is of the order of 106, the entire first
order solution will be of the order of 10-3 compared to the zero-order solution. But it
appears from their forms that the present zero and first order solutions can not lead to any
useful inception criteria. It is necessary, therefore, that the suggestion developed at the end
of section 3.53 above be seriously considered in a separate investigation. This is particu-
larly important because it appears that the zero-order solution will frequently dominate the
first order solution, at least in the initial phases of the forced bubble motions as examined
here. Therefore, a more general reexamination of the zero-order solution centered around
the integrability conditions is warranted.

The preceding results do not restrict the value of u,, and for that reason it has not
been possible to give a closed form perturbation solution. On the other hand whenu, =1
the solution is neutrally stable and there is a possibility that the forcing function can have
more influence on the bubble growth than was found in the preceeding example. Therefore
it is of interest to obtain a solution for this special case even though the condition u, = 1 is

too severe a restriction to make the result of practical value.

4.4.1 The Solution whenuy =1

In Section 3.4.1 we found in the limit as u, — 1, that the zero-order oscillation
parameter is A =xV2 and according to Equation (2.20) the period is T = (1+q)3/4A .
Therefore when u, = 1, 1+q =y and T = ny3/4y2. Moreover, the zero-order au-
tonomous differential equation (3.1) and its initial conditions, (3.2) and (3.3), insure that
at u, = 1 the zero-order solution is simply ug(t) = 1 for all values of the bubble time 1, as
discussed in connection with Equation (3.14). Therefore we are free to consider the first
order differential equation (4.4), for u;(t), and its initial conditions, equations (4.5) and

(4.6). The fact that u, = constant in this case causes the derivatives of ug to vanish in
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equation (4.4) and the limiting value of A together with the unit value of uy permits one to
simplify equation (4.4) to read

d2u
E@l + 4n2u; = 272F(ty). 4.92)

In equation (4.92) the forcing function argument has been transformed from real time, t, to
dimensionless laboratory time tg = tD/V,, so that now

F(ty) = 3 W [- Gyt - K] =1 W, Fy(ty)
and in accordance with the discussion of Appendix B, the term F(t,) represents a closed
form approximation to the numerical data used above. In shifted laboratory time F; is given
by equation (B.3). Moreover, the normalized bubble time, x, is now a reduced form of
equation (3.17) which becomes

1
N (4.93)

Since tg = £7, it follows that the laboratory time and the normalized bubble time are related
by

=€ x1w3/4\I§ . (4.94)
Consequently when x is the independent variable the initial condition of equation (4.83)

above becomes

3(0) = C = 1 w,ysH Vﬁ"[ %] (4.95)

Cp = 'K ’
while we have the condition u,(0) = 0 as before.
The solution of Equation (4.92), subject to the prescribed initial conditions is

well known:

u = ,ch- sin 2%ex +45W,Ei(e; &) sin 2r(x-E)dE , for x < x,, (4.96a)

and if x > x,,
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Xs
vy =< sin2mx + 2 W, jOF,(e; E)sin2m(x- £) d&

+(2.225 - K) ] sin2n(x-§)dg } (4.96b)

Xs
If we let b= ny3/4y2 we can write the approximate formula for F,(g; x) for

t, < {5 or for x < xg, as

F,(€; x) = a, - K+ a,ty(K) + a,ebx + assin[a,ebx + a,t(K)+as] ; (4.97)

and in the laminar separation zone when x > x¢ = (0.365 — t)/(eb),

Fi(g; x) =2.225 - K, (4.98)
as already indicated in equation (4.96b). The quantity ty(K) is the origin of the forcing
function and is given analytically in figure B4. The quantities ?, and x¢ denote the
separation point in shifted coordinates, T = t;—t,.

Because of the form of equation (4.97), the integral in equation (4.96a) can be
expressed as the sum, I + I+ I;,for ? S % 0rx < xg If x is greater than xg there
also will be a fourth integral, I,, given by the second integral of (4.96b). Considering
these integrals in order, one finds that
a; - K + at5(K)

I, = n (1- cos2nx), if x Sxg or

I = 21" K;WEZEQ(K) [cos2m(x-xg) - cos2mx, ], if x > xg.
a€eb

I2=—%E'_ x-ilisinan}, ifx<xg or

b
I =%%— {xscos21t(x-xs) +#[sin2u(x-x3)-sin21tx] }, if x > xg.

Using the trigonometrical addition formulz and integrating, one can write I3 as




108

) 1 . _ )
=3 {21t+ a,eb [sin(asebx +¢) + sin(2nx - 9)]
1 . .
* 2m-aged [sin(asebx +9) - sin(2rx + ¢)]} ,
where ¢ = a,t5(K) + a5 and 0 < x < x,. For the case in which x 2 x; we have,

I =121{2n—+2—4£3 [sin{a ebx + 0 - 2(x -xg)} + sin(2nx- ¢)]

+ [sin{asebx + ¢ +2m(x - x,) } -sin(21cx+¢)]}.

2n- a4Eb
Continuing with the case x > x,, we evaluate the last integral, I, in equation
(4.96b ), in order to account for the constant pressure in the separation bubble. This last

result is

Ii= -2—%?:'—1( [1- cos2x (x-x5)].

Then the complete closed-form solution to order € can be written as
u(x) = ug+ €uy = 1 + e{ o= sin2nx + EW, [+ L+ L +1,] } : (4.99)

where I; =0 if x < xg. Because of the approximations representing F,(€.x) from
Appendix B and the stability of the solution in this case, one can examine the influence
of the forcing function on the solution given in equation (4.99). As already found in the

general case, the term from the initial condition simply provides a steady oscillation of
amplitudc% at the natural frequency of the bubble.

The interesting part of the solution is found in the sum of the integrals. We shall
use the artificial example of € = 0.001, K = 2.3, y = 12.9 and b = 30.3. From these data
and with the help of equation (4.94) and figure B5 one sees that x¢ = 10. We also find that
to = 0.06 from figure B4. Then since we have v, K and u,, the Weber number can be
found from figure 3.2, and it is W, = 24. These parameters and the coefficients, al, ..., a§5,
from figure B3 are all that one needs in order to evaluate the term, §W[ I+ I+ Is+ L], in

equation (4.99). The result of this calculation is shown in figure 4.11, below. The figure
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shows that the fundamental vibration of the bubble is modulated by the forcing function as
one expects. The bubble grows and starts to collapse but when the bubble reaches the
laminar separation zone its collapse is arrested and the bubble simply vibrates in place. The
growth shown by this example is modest, compared to the initial condition which con-
tributes the term, 43.35 sin2nx. Consequently, even though this initial term provides no
growth its effect will obscure the forcing function response. It also evident that the
condition u,, = 1 is too restrictive. No inception calculations can be carried out if u, is so
constrained even if the growth were greater. As this example shows, however, the first

order solution does respond to the forcing function as expected.
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Figure 4.11 Particular First-Order Solution for u, = 1 as Calculated from
the Convolution Integrals of Equations (4.96a) and (4.96b).
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CHAPTER 5

SUMMARY AND CONCLUSIONS

This investigation has sought to solve the forced Rayleigh-Plesset equation for the
dynamics of forced vaporous growth of a cavitation bubble in an inviscid incompressible
flow about submerged bodies using a two-scale perturbation expansion. Of course, the
introduction of a viscous term into the equation could well introduce a third time scale.
Experience with straight forward numerical integrations of the forced Rayleigh-Plesset
equation with and without viscosity has shown the viscous term to have negligible effect
for relatively long pulse forcing functions of interest here. Other simplifying assumptions
were that the isothermal bubbles are spherical and that they do not interact with each other
or with the surface of the submerged body. For further simplification we suppose that the
pressure distribution on the body supplies the excitation for the bubble dynamical equation
and that the boundary layer slows the progress of the bubble along the surface in a very
rudimentary way. The bubble growth is not coupled to the shear layer. The two time scales
arise firstly, from the natural period of a microbubble itself and secondly, from the time
required for the growing vapor bubble to move through the low pressure region on the
body. The first of these dimensionless times is the fast "bubble time" and the second is the

slow "laboratory time". The ratio of slow to fast times is the perturbation parameter, €.

The first part of this investigation dealt with the forcing function that drives the
growth of the bubble. Baker [2] used pressure coefficient data from a hemispherical
headform having a short laminar bubble followed by turbulent reattachment. The present
analysis considers a new possibility for a forcing function, namely the supercritical flow
about a circular cylinder, because this flow exhibits a laminar separation bubble just

upstream of the turbulent separation point. It presents an instance of cavitation inception
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not previously studied in this context, and may help to determine if this type of analysis can
be applied to any body which has a boundary layer with a short laminar separation bubble.
Using pressure coefficient data for a circular cylinder and employing a very simple bubble
convection model , we converted these data into a forcing function dependent on the slow
laboratory time.

Next, the kinematics of a bubble as it travels through the high pressure region on
the body were considered because this region lies directly upstream of the vaporous growth
region. These results were used to derive initial conditions at the start of vaporous growth.
~ Using the two time scales of the present problem, the dynamical equations and their initial
conditions were derived to the third order of the small parameter, €. A few errors were
found and corrected in similar equations derived by Baker.

The relationships between the measurable flow, body and bubble parameters were
then considered in order to indicate their effect on the range €. It was found useful to
express these several parameters as dimensionless quantities and to relate them to practical
experimental ranges of the variables to cover likely applications of this analysis. As Baker
showed from his zero-order phase plane study, there is a single parameter, u,, the affix of
the vortex point in the zero order phase plane, that relates the bubble dynamics to key flow
parameters such as the cavitation number, Weber number and dissolved air content. This
then is the single parameter which characterizes each member of the family of solutions.

A solution of the zero-order equation was next obtained. For small values of u, in
the neighborhood of unity, the zero-order solution is nearly sinusoidal. Thus a simple
closed form approximate solution for small oscillations in u, was found using
rigonometric functions which correctly displayed the periods and amplitudes of the uj
solution. Although Baker's zero-order solution in the form, 1 = f(ug), showed good

results, it can not be inverted, The solution of the first-order equation requires the zero

order solution to hévc the form uy(t). Therefore, a numerical u, solutions were found for




112

one period in x that are accurate over the range of u, values. The solution for one period
can be reused over large ranges in x due to its periodicity.

Considerable study centered upon the first-order integrability condition and it
suggests that the zero-order solution should be independent of the slow laboratory time.
The integrability condition is a second order partial differential equation for u; consisting of
those terms having mixed partial derivatives in the first order equation that must be set
equal to zero. The above independence will be true only if the arbitrary functions of the
slow time, which result from partial integrations with respect to the fast time, are in fact
completely independent functions. This is the situation ordinarily encountered and it is a
fundamental precondition in thpresent investigation. That the zero order solution is then
independent of t; was shown explicitly for the small oscillation approximation to the zero
order solution. Next the integrability condition itself was examined from the viewpoint of
the theory of charactersitics. In addition the most general functional form of ug was found
in terms of the two time scales by direct integration. These considerations verified that the

zero order solution should not depend on independent arbitrary functions of the slow

time. The importance of this comes in the fact that all terms involving derivative of ujy with
respect to t, in the higher order equations vanish, presumably suppressing secular terms in
the solutions. It also allows both the zero and higher order order equations to be written as
ordinary differential equations instead of partial differential equations.

Finally, the first-order equation was solved. This turned out to be a nonhomo-

geneous linear second-order differential equation with periodic coefficients which are

functions u,. It was found that the homogeneous form of this equation could be
transformed into a special form of Hill's equation. For small oscillations in u,, the first
order solution can be approximated in terms of Mathieu functions. This fact was used to
investigate the departure of the solution from a neutrally stable state, involving only simple
harmonic oscillations, to unstable states as the oscillation amplitude increases with

increasing u,.
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The linearity of the first-order equation enabled the superposition of the compli-
mentary solution and the particular integral in order to arrive at the complete integral for the
first-order problem. The solution to the homogeneous form of the first-order equation can
be found using Floquet theory. This solution in normal Floquet form was found
numerically for one period in x, then extended over more periods using the periodicity of
the Floquet variables. Variation of parameters was then used to derive the particular
integral and the initial conditions were used in conjunction with the complete solution to
evaluate the constants of integration. Again it was found that these constants are
independent of laboratory time, and that only the bubble time appears explicitly in the

solution.
Normally the u, solution would be multiplied by the first-order of £ and be added to

the u, solution to obtain an approximate result to the governing Rayleigh-Plesset equation.
But in this investigation, only the nature of the complete first-order solution was obtained.
This is because the actual value of u, which is consistent with the other flow parameters for
the test case is u, = 0.5994. This value defines a zero order phase plane trajectory to the
left of u, = 1.0, denoting compressive oscillations of uy. The present study has been
limited to cases for which the zero-order trajectories lie to the right of u, = 1.0,
corresponding to oscillations of expansion which would naturally seem to lead to further
vaporous growth under the influence of a forcing functior.. The present example shows
that this may not always be true. Nevertheless a specific example for u, = 1.5994 has been
worked out in order to indicate important features of the present solution.

New things that have emerged from this work include the small oscillation theory
which showed that trigonometric functions can be used to derive approximate resuits to
both the zero and first-order solutions for values of u, close to unity. To the authors'
knowledge, this is the first application of the Floquet theory to bubble dynamics. This

approach makes it possible to investigate the dynamic stability of the solutions and we
found that aside from the small oscillation case at u, = 1, all other solutions are unstable. It
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was also useful because numerical work was only needed over the first period of the first
order complementary complementary function, u;, thereby minimizing error accumulation
since the complete solution is extended over many periods. The forcing function for the
circular cylinder was used to show one example of the solution. It is presented to demon-
strate that a numerical solution can be found using different but appropriate bodies. The
chief practical physical interpretation to be obtained from these calculations is that the lack
of stable solutions prevents their use for the inception problem.

Finally we note that our our decision to satisfy the first order integrability condition
by taking the zero order solution to be independent of the slow laboratory time, tg, has had
a profound effect on the outcome of this research. This choice was based upon the fact that
in the absence of additional conditions on the problem, constants or functions of integration
are arbitrary independent functions of the slow time. Perhaps the most important effect of
this requirement may be the dynamic instability found in the first order solution. Conse-
quently it appears that if one abandons his insistence that that the functions of integration in
the zero order solution be independent arbitrary functions of the slow time, then further
progress might be possible and a physically acceptable solution might be the outcome.
Whether or not a generalized approach to the problem as suggested in section 3.5.3 above
can succeed in changing the present unsatisfactory state of affairs remains to be

investigated.
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APPENDIX A

FORTRAN CODE LISTING

This is a listing of the computer code used to do all the calculations. This
includes calculating the forcing function, zero-order solution and first-order solution.
Since phases of the code were developed at different times throughout the analysis and
pieced together into this final code, its working order is by no means the most efficient.
The important result is that it works.

The code is written in standard FORTRAN 77, and was run on both a
MACINTOSH PC and a VAX 11-780 system. Many of the numerical subroutines have
been adapted from Numerical Recipes by Press et al. [15] which made much of the
programming casier and more efficient.

The inputs needed for the code are provided from three different files. The first
file corresponding to unit 10 contains initial values to perform the first-order integration.
These include the initial and final values of x for one period, X1 and X2, an estimated
step size to be used in the Runge-Kutta routine, H, the required accuracy used in the
integration, EPS, the minimum step size allowed, HMIN, and the number of first-order
equations to be solved, N, which is two for this problem. The code then reads the
initial values of the fundamental set of solutions into the 2 dimensional array Z0.

The next input file corresponding to unit 11 contains the basic parameters of the
flow. These include the cavitation number, XKVAL, the free stream velocity in fi/s,
VNOT, the initial free stream nucleus radius in pm, RNOT_MIC, the characteristic
body length in in., DIAM_INCH, the density of the liquid in slugs/ft3, RHO, the
surface tension of the liquid in 1b/ft, SIGMA, and the dissolved air pressure in psia,
PA_INCH. Unit 12 corresponds to the input file containing the pressure coefficient
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versus dimensionless arc length data. It is read by first inputing the total number of data
points, NUM_PTS, and then reading the table for S and CP.

These parameters are input with their given physical dimensional units. The
code automatically converts each parameter into consistent units and eventually into the
proper nondimensional form. It then converts the input into a corresponding value of
u, and forcing function, then it solves the zero-order and first-order equations. The
output of the program includes the total first-order solution into unit 40, the first-order
stability parameters into units 15 and 16, and a summary of the inputed and calculated
flow parameters into unit 45. Simple modifications can be made to the code in order to

output any of the intermediate variables.
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PRESSURE DATA TABULATION AND FORCING FUNCTION CALCULATION

B 1. Data Tabuylation

This appendix tabulates two sets of pressure coefficient, Cp, versus dimensionless arc

length, s, for a circular cylinder at supercritical Reynolds numbers. Table B.1 contains the

original data as read from a graph given by Gowen and Perkins [4]. Since these data, as

read, did not produce a smooth curve, Lagrangian interpolation was used to produce evenly

spaced points over the interesting range of s. These points were then smoothed. They are

given in in Table B.2 and they are the input Cp(s) data used in the Fortran code.

Table B.1 Qriginal Data
No. s Cp
1 0.0000 1.0000
0.0403 0.9600
3 0.0873 0.9200
4 0.3491 0.5000
5 0.6981 -0.5750
6 1.0472 -1.8313
7 1.2217 -2.2531
8 1.265¢ -2.3063
9 1.3090 -2.3813
10 1.3526 -2.4563
11 1.3963 -2.5000
12 1.4399 -2.5531
13 1.4835 -2.5688
14 1.5272 -2.5667
15 1.5708 -2.5583
16 1.6144 -2.5000
17 1.6581 -2.4406¢
18 1.7017 -2.3500
19 1.7453 -2.2750
20 1.8326 -2.2438
21 1.9200 -2.1625

Table B.2 Smoothed Data
No. s Cp
1 0.000 1.00000000
2 0.064 0.93858008
3 0.128 0.87090363
4 0.192 0.78682947
S5 0.256 0.68326172
6 0.320 0.55809864
7 0.384 0.41404022
8 0.448 0.25C18646
9 0.512 0.06653735%
10 0.57¢6 -0.13690708
1i 0.640 -0.36078890
12 0.704 ~0.60684652
13 0.768 -0.86596418
14 0.832 -1.11726326
15 0.896 -1.35007730
16 0.960 -1.56440630
17 1.024 -1.76025025
18 1.088 ~1.93760915
19 1.152 -2.09648302
20 1.216 ~2.22826666
21 1.280 ~-2.33585874
22 1.344 -2.43371901
23 1.408 -2.51203038
24 1.472 -2.55500333
25 1.536 -2.55466889
26 1.600 -2.50791555
27 1.664 -2.41927707
28 1.728 -2.32443463
29 1.792 -2.26472235
30 1.856 -2.22700000
31 1.920 -2.22500000
32 1.984 -2.22500000
33 2.048 -2.22500000
34 2.112 -2.22500000
35 2.176 -2.22500000
36 2.240 -2.22500000
37 2.304 -2.22500000
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B2.P Distributi { Forcing Funti he Cylind
As noted in Chapter 2 we have used the data as read from curves presented in

Reference 4 for low speed but supercritical Reynolds numbers as a basic set for this
investigation. In this section we discus an alternative approach to the numerical approach
employed in the Fortan program of Appendix A, which may not necessarily be as precise as
that of the code, but which can be advantageous for engineering applications. The data as
read and smoothed data are given above. Some of the points as read are plotted in figure
B.1. A curve has been fitted to these data in order to give them an approximate analytical
representation over the limited range of importance for inception in order that the analytical
approximation can be a reasonably close approximation. The region of constant pressure
indicates roughly the position of the laminar separation bubble on the cylinder which is
followed by boundary layer separation and a turbulent free shear layer bounding the wake
behind the cylinder. Figure B.1 appears to span the range of arc lengths of interest for
possible vaporous cavitation bubble growth.

The derivation of a forcing function requires that the pressure distribution be
converted from the dimensionless arc length on the body to the dimensionless laboratory
time t,, as seen by a typical bubble moving with the vortex sheet which approximates the
boundary layer in this study. We can write the laboratory time as in Equation (2.15):

)
tg= S - B.1
\Il-Cp(s) ’ (B.1)

1.15

were the lower limit denotes the first abscissa of the seventeen points in Figure B.1. The
upper limit refers to each successive point. Rather than use the curve fit for the pressure
distribution, we have used the data as shown by the points in Figure B1 and the trapezoidal
rule in order to correlate all plotted points with t;, The seventeen points are shown in the
plot of figure B2 in which t, is the abscissa. This correlation was fitted by a polynomial as
also shown in the figure. From these correlated (s,t;) points, each Cp(s) point was assigned
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Cp=-c1 -cys-c3 sin(c4s+c5), s <1.82.
Cl =190 CZ =0.27 C3 =027
C4=-643982 c5=4.75

© Data from Ref. [4]
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1.1 12 13 14 15 16 17 18 19 20 21
Arc length on circular cylinder, s radians.

Figure B1 Pressure Distribution Data and Approximating Curve Fit for
' a Circular Cylinder at Supercritical Reynolds Number.
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20
s = 1.1478 + 1.8797 1 - 0.0731t 2
18

12 F

0.0 0.1 0.2 0.3 04

Figure B2 Correlation of Arc Length to Dimensionless
Laboratory Time for a Circular Cylinder.
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a value of t; in order to construct a Cy(t;) plot as shown in figure B3 . Again, an approxi-
mating curve fit was found for these points in order to permit an analytical representation for

the forcing function,

F(ty) = W, [- Cplty) - K.

As explained in Section 2.2, when one traces the pressure distribution starting at
the stagnation point, the forcing function has its origin at the first zero of the quantity
[Co(ty) - K]. The laboratory time for this point will be called t; and it can be found from
a trial and error solution of the equation,

Fi(ty) = a; + ayty + agsin(asty + as) - K =0, (B.2)
in which the notation, F(t), indicates a radial Weber number of ;11- , or more simply,
the quantity, - G, - K. The solution of (B.2) was found for the five successive K
values of 2.1,2.2, 2.3,2.4 and 2.5, as illustrated in Figure B4. A cubic fitting curvé
for ty(K) is also shown in the figure. Then we can put tg = t,(K) +% in Equation (B.2)
in order to write the forcing function for various { as

Fi(?) = a; + a,(tg + §) + agsin(a b+ astg+ a5) - K . (B.3)

A short Fortran program was written to find the values of t; and evaluate F,(f) for
the five K values. Figure B5 shows the function F;(f) although the abscissa is labeled as
t; in order to emphasize the fact that the forcing function is measured in units of laboratory
time. Figure B.5 also shows the start of laminar separation at the junction of the curves
from equation (B.3) and the straight segments, having ordinates at 2.225 - K. At any K this
ordinate is constant because once a nucleus finds itself in the laminar separation bubble it
will grow in place by air diffusion until it becomes large enough to be swept into the
turbulent free shear layer downstream of the cylinder. This approximate laminar separation
point is defined in terms of the shifted laboratory time by

s = 0.365 - t(K). (B.4)
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Dimensionless laboratory time, t ¢ .

Figure B3 Pressure Distribution on the Cylinder in Terms of
Dimensionless Laboratory Time.
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Laboratory time , t,, at which F(ty)
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Figure B4 Abscissa of Forcing Function Origin in Laboratory Time
for a Range of Cavitation Numbers.
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Figure BS. The Bubble Forcing Function for Various Cavitation Numbers.
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A further calculation is required in order to evaluate the initia' condition 1,(0) = C in
shifted time coordinates in accordance with equation (2.46). The evaluation depends upon
the derivative de/ds at the point sq = sg[te(K)]. The calculation is facilitated by use of

the additional fitting function,
solt) = 1.478 + 1.8797t, - 0.0731¢2. (B.5)

For then at any value of K the derivative de/ds can be evaluated from the curve fit of
Figure B.1 at the correct value of s;.
In the special case when u, = 1, we have 1+ q =Y and Equation (2.46) can be

written as

1'11(0)=C=%W, ¥(1+ K) -§B] _ (B.6)
$Jcp=k

duy

ar evaluated at t, = to (or 1 = 0 in shifted coordinates.)
S

Equation (B.6) pertains to

When u, = 1 these results can be used to obtain a closed—form approximate solution for
bubble growth in this special case.

Or more generally, equations (B.3), (B.4) and (B.5) can be used to replace some
of the purely numerical parts of a code such as that discussed in Appendix A. In such a
procedure, we recall that since F; holds for a Weber number such that ( ‘%Wr )=1the

forcing function is calculated from

F(ty = %erl(ts)- (B.7)

Morover, although the present example supposes that a laminar separation bubble is
present, there appears to be no reason to restrict the preceding approach to shuch flows. The
method should apply to unseparated boundary layer flows also.
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APPENDIX C

LIMITING VALUE OF THE OSCILLATION-PERIOD PARAMETER A(u,)

A convenient starting point for the present analysis is equation (3.20) which

defines the oscillation period parameter as

T(uy)

)\,(uv) = '(1 + q_)3/4

= 2I(u), (3.20)
where the half-period integral, I(uy), is defined by equation (3.15) as

u

% S
u,) = .
20 n(@) - {2+ 1

1
We seek the limit of I(u,) as u, — 1. Consequently, as we have seen, up =1+ yp, and

(3.15)

{ = 1+ y, where u, is the amplitude of oscillation and 0 <y <y, < 1 because the
amplitudes are small when u, is in the neighborhood of unity. Therefore we can rewrite

equation (3.15) as

Y (C.1)
3
= - (1+y) dy,
@/3)u,yly*-xy+ul

0
where the denominator of the radicand has been expanded to O(y?) and factored to
3 uz', +1
account for the root at y = 0. The coefficients of the quadratic are k =5 — and

Uy

2
uv—l

M = 3——— We also know that ypy is a zero of the denominator. It is the smaller
u
\{

root of the quadratic at y,, =§ - \/ ( % )2— p. The larger root is given by
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bg = % \/ ( g )2~ . Therefore, in ascending order, the three roots are 0,< Ym< b.

Next we can put y = yp, & in order to write (C.1) as

3
. (4 ynd & 2
@/3) uZbo& (1= )1 - (¥mE/bp)]

0

Now we expand the factor,
1+ Ymr;)?’/ 2
(1= (Ym&/bo) /2

- 1 1 3,2, 1 2.,
_1+2(3+b0)ym§+ 8(1+b0+b2)ym§ +...,

° |

which enables us to decompose (C.2) into three integrals. These become

1
[=—0©b — {Il+l§(3+b_lo)y"'12+ 3§(1+bl+ ‘;)yfnls}, (C.3)
‘\/(2/3) u2by ° b
in which
1
L= —_dé_ I, = _g_E"_ and ._E__é_.
VE(-§) ‘Ji(l &) ‘Jé(l &
0

Clearly, I, =nand I, = % . The third integral, I, can be dealt with if the radicand in
its integrand is written as %— (e %)2. Then the numerator becomes
1 1 1
E-302+C-5)+,.

Therefore I can be expressed as the sum of three integrals, which upon integration give

These values of I, I and I5 can now be put into equation (C.3). The result is

T 1 1 9 2 1 2
Iz —— {1+;(3+—)ym+ 6—4-(1+Q+;5)ym} (C4)

\ / @/3)u’by % o
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Asu,—1,x =3, =0, y,— 0 and by~ 3. Therefore I » —=. From this result and

Sl

equation (3.20) it follows that

A1) = w2 = 22214415 . (C.5)
Next we repeat the analysis using a different method. Therefore we return to the

integral I and write it as

Ym

_LJ; d+y) _._1_1/;

—uv 2 J(I+Y) ‘\E(Ym‘)’)(bo‘)’) dy —uv 2 (Il+12 ), (C6)
0

where

¥m
_ (1+y) \[ y(1+y)
1= OJ Vy(ym-y)(bo—y) dy andl= J Ym~ ¥)(bo -

are complete elliptic integrals. The properties of such integrals are discussed in detail by

Byrd and Friedman!. In terms of the roots displayed by the factors in the integrands we

can write
ym(bo +1) 2 y 4,\/ bo (¥ = ¥)
k2= ,E= 2—-“"' and ¢ = sin ===
bo(ym+1) " & Vb (yp +1) =si Ym(bo—y)

For complete integrals the lower limit of integranon isy=0and ¢ -—--— butif y =yq,
¢ =0. Then we have I, = '\’ (——n{b;—-)-(F(z,k) + ((—ymT-_lo')'H(z’a k))
where F(F, k) is the complete elliptic integral of the first kind and where [T}, a2 k)

is the complete elliptic integral of the third kind. Then we take the limit as u,— 1,
Ym0,k = 0, and o — 0. Hence F(%,0) =% and [1£,0,0) = F(£,0)= %

Recalling that by= 3 in the limit, we see that

1pgul F. Byrd and Morris D. Friedman, Handbook of Elliptic Integrals for Engineers and Physicists,
Springer Verlag, Berlin, 1954. See p. 116, #255.20 and #255.11.
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2

2 N
L="F==-0-3)=-""—.
1=H24=-9=-1

From Byrd and Friedman we find that I, can be expressed in terms of elliptic

integrals of the first, second and third kinds. After some manipulation they can be

written in the form of complete integrals as

T bo+1. 1 by +1 n
12=2\](ym+1)b0 -—E(;,k)+(l+ YF(Zk) +(1- MI(5,02,k) ¢
Ym+1' "2 Ym+ 1 2
In view of the limiting values of the several parameters one finds that

12=2ﬁ(-§+i’£_i’£)=m

2 2

Then from equation (C.6) with u, = 1 we find that

1=4/ 3| -
2 43 V2’

in agreement with the value of I given above. Therefore the value of I given in equation

an n
"—+1t\EJ=_

(C.5) is confirmed.
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APPENDIX D
BACKGROUND NOTES

D 1 Basic Bubble Dynamics

The well known Rayleigh-Plesset differential equation governs the growth or
collapse of a spherical vapor bubble in a perfect fluid when the static pressure surrounding
the bubble varies with the time, t, [16]. In the present investigation we shall consider the
vaporous growth of such bubbles in a flow in which the the bubble, in moving along the
surface of a submerged body, is influenced by its pressure distribution. The bubble will
contain air and water vapor so that the dynamic force balance is

p(RI'i+§l'?~2)=pi-gR2 - p(). ®1

In this equation R(t) is the bubble radius, p is the liquid density, o is the surface tension
and p(t) i< the static pressure distribution on the body as seen by the moving bubble. The
pressure inside the bubble is p; and if the bubble is :othermal , p; = py, + p, (Ry/R)3. Here
Py is the vapor pressure and p, is the air pressure in the bubble at radius R, in the free
stream. The radius Ry is the size of a typical microscopic cavitation nucleus and p, is

related to the dissolved air content in the water. Therefore the basic equation of present

interest is

P(RR+2R?)= p, +p,(R/R)*- 20RR - p(»). ®2)
Next we shall introduce dimensionless variables. We start by letting R =R and observe
that

p(t) = po- % pvgcp and that p, = pg + %pv?, K, where G, is the pressure coefficient on

the submerged body and K is the cavitation number. Therefore we have p, - p(t) =-
3 PV3(Cy+ K). Substitution of these definitions into the differential equation leads to
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2

°% i+ =GR % - i lweo K
20/R, 2o/R0 )3 ~r eVt G K), D3)
on
where the definition of W; is W, = o/Rg the radial Weber number. We shall define the

2

air content parameter by y= 20 /Ro and also observe that the factor 20/R, has the

dimension of [Time]2. Therefore we shall define a new dimensionless timet by T =

t / (2o)/(p RZ;) . Consequently we can write the dimensionless equation of motion as

dtz 3( =3 -%+F(t), © 4)

where the forcing function is defined by

F(®) = 3 W, [- Cp® - KI. ®5)

Cavitation inception observations on circular cylinders have been reported by Ihara and
Murai [3]. Their experiments were designed to see whether or not laminar separation plays
a role in the onset of cavitation on smooth cylinders in critical and supercritical flow ranges
and on cylinders having a boundary layer trip. They observed inception resembling bubble-
ring cavitation in the reattachment region when a laminar bubble was present at Reynolds as
high as 3.27x105 on a smooth cylinder. They called this cavitation “bubble-line”cavitation.

Ordinarily, supercritial flow is encountered at Reynolds numbers of 3105 or greater. No
tunnel wall effect corrections are noted in the paper. Such effects must have been present
because the tunnel height was 5.42 cylinder diameters, and at a Reynolds number of
3.3x10° a minimum pressure coefficient of -2.9 is reported. This C, magnitude is
somewhat larger that those ordinarily observed in the absence of wall effects. This fact is of
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minor importance because these authors' measurements do establish the role of laminar
separation on smooth circular cylinders in this Reynolds number range; but it suggests to
us that we should use the pressure measurements of Gowen and Perkins [3] which appear

to be free of wall effects.




