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ABSTRACT

A two-scale analysis of the forced Rayleigh-Plesset equation of cavitation bubble

dynamics is performed. The problem of cavitation inception as it relates to bubble dynam-

ics involves vaporous cavitation nucleus growth as it is influenced by the pressure

distribution on a submerged body. This brings into prominence two widely varying time

scales. The "laboratory time" is characterized by the bubble's travel over the body, while

the "bubble time" is characterized by the very high natural frequency oscillations of the

individual bubble. The laboratory time is expected to be much longer than the bubble time;

thus they can be related by a very small parameter, e.

Using these two time scales, a perturbation expansion is performed on the forced

Rayleigh-Plesset equation and its initial conditions up to the third order in e. The resulting

zero and first-order equations are solved, subject to these solutions being independent of the

laboratory time. In this case the integrability condition for each step is thereby identically

satisfied.

The zero-order equation is an autonomous nonlinear second-order differential equa-

tion. An approximate closed-form, small oscillation solution is found and a numerical

solution is found for oscillations of all amplitudes. Both forms of the solution are found to

be periodic and a function of bubble time only.

The first-order equation is a nonhomogeneous linear second-order differential

equation with periodic coefficients. Its homogeneous form is of the class of Hill's equa-

tions, and can be treated using Floquet theory. The complementary solution in normal or

Floquet form is found numerically. Variation of parameters is used to find the particular

integral. Again, the constants for the first-order solution are independent of the laboratory

time and only the bubble time appears explicitly in the complementary function.The labora-

tory time enters the solution via the particular integral because the forcing function depends

on the laboraory time.



The dynamic stability of these solutions was investigated. It was found that the

present solutions are unstable and they are not suitable for inception calculations. Further

study of the method of solution determined that a more general solution than the present one

might be found which will still satisfy the integrability conditions at each step. Some basic

zero-order equations have been formulated which may permit such a numerical solution to

be found. No algorithm for the solution of these equations has been developed.

This report is a revision of the first author's thesis in Aerospace Engineering, which

was submitted in partial fulfillment of the requirements for the degree of Master of Science,

December 1990.
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CHAPTER 1

INTRODUCTION

1.1 BackgQund

In a flow about a submerged body, the fluid is known to contain very small nuclei

containing air and water vapor. These nuclei translate downstream at some velocity close

to that of the free stream. Some of these will come in contact with the body and enter its

boundary layer. Submerged bodies, such as circular cylinders, hydrofoils or hemispherical

headforms, have pressure distributions that vary along their arc lengths. At some point on

the body the local static pressure of the liquid will equal that of the liquid vapor pressure

after which there will be a region in which the static pressure is less than vapor pressure. It

is in this region that the nuclei can experience vaporous bubble growth. Therefore the

critical point at which the static pressure equals the vapor pressure separates two possible

regions of bubble behavior along the body.

If the nucleus enters the boundary layer of the body upstream of this critical point, it

will travel along the body and act as a flaccid bubble. In this upstream region the bubble

will grow, mainly due to internal gas pressure changes caused by the changing liquid static

pressure, until it sees a local static equal to vapor pressure. After this point on the body the

local static pressure is less than the vapor pressure within the bubble and the conditions are

favorable for vaporous bubble growth. If the nucleus either enters the boundary layer of

the body in this region or is conveyed from the flaccid bubble region into the favorable

region, it will grow vaporously to a maximum radius and then collapse as the local static

pressure rises.

If there is no separation on the body the bubble will continue to collapse rapidly and

violently. For sufficiently low Reynolds numbers, however, some bodies will have lani-

nar separation regions. If the separation bubble is short, it seems possible that collapse

may not occur, and the bubble will come to rest within the laminar separation bubble where
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it can grow by gas diffusion [1], [13]. This diffusive growth continues until the bubble

diameter reaches the height of the separation zone. Then the bubble interacts with the free

shear layer and is translated downstream. If the flow reattaches, the turbulent shear in this

region breaks the bubble into froth, creating a narrow ring of visible cavitation. The point

at which this cavitation becomes visible is called cavitation inception. This type is known

as bubble-ring cavitation, which is a form of attached cavitation controlled primarily by

laminar boundary layer separation.

The governing equation which describes isothermal cavitation vapor bubble growth

or collapse is the Rayleigh-Plesset equation [16]. It describes the growth of a spherical

bubble in the region of a body where the local static pressure is less than the liquid vapor

pressure. It also applies at least in the initial stages of collapse when the static pressure rises

down stream of the minimum pressure point on the body. An examination of this equation

may provide direct insight into the hydrodynamically forced growth of the nuclei leading

to cavitation inception. From this knowledge it is hoped that a relationship between the

parameters of the flow and submerged body with respect to critical flow conditions for

cavitation onset might be found.

1.2 Previous Investigations

The governing Rayleigh-Plesset equation' describing isothermal vaporous growth

and collapse of a spherical bubble of radius, R, as a function of time, t, in a perfect fluid, is

written as

R d2R (dRYt (.1)
dt2  2 dt j R3  R+~)

Equation (1.1) assumes that the static pressure is responsible for driving the bubble

growth, and is contained in the time dependent forcing pressure, F(t).

1See Appendix D for more dedails.
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that the forcing function pulse acting on a nucleus is characterized by two widely varying

time scales. One dimensionless scale, called "laboratory time," t5 , is governed by the time

it takes for the growing nucleus to move through the low pressure region in the boundary

layer which promotes vaporous growth. The other dimensionless time scale, called

"bubble time," r, is associated with the very high natural frequency of the very small

nuclei and depends on the period of natural vibration of the a typical microbubble. This

guarantees a very rapid response of the bubble to external pressure changes. For every

period of "slow" laboratory time there are many periods of the "fast" bubble time. There-

fore, the two time scales can be related by a very small parameter, e, which is simply the

ratio of ts to r.

Using this idea, Baker expanded the forced Rayleigh-Plesset equation and its

initial conditions in orders of the small parameter E. He then found an approximate

solution to the zero-order equation in terms of elliptic integrals and functions. Although

this analysis was quite complex and involved some approximations, it compared well

with a strict numerical solution of the zero-order equation. Also, it set up a basis for

the analysis of the first-order equation of the expansion which can be combined with

the zero-order findings to approximate better the total solution.

1.3 Objective of this Investigation

The main objective of this investigation is to find a solution of the forced Rayleigh-

Plesset equation (1.1). In general this can be solved numerically using standard computer

algorithms which do not consider the aforementioned time scales. Use of this type of

numerical approach makes it extremely difficult to isolate any critical flow parameters or

conditions between them which can lead to cavitation inception.

This investigation extends Bakers method of solution [2]. It involves a two-scale

perturbation expansion based on the small parameter e, which relates the two time scales

present in the problem, t. and r. Application of this two-scale procedure produces a series
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of linear or nonlinear partial differential equations for the various powers in E. This type of

mathematical technique is well known [11] and it is hoped that it will work well with the

very nonlinear equation (1.1).

The first part of the present investigation considers the forcing function. This comes

from the pressure distribution across a particular body. Baker used a hemispherical head-

form so that the pressure distribution may be correlated with much experimental data. This

analysis will attempt to use a circular cylinder as the governing body, in part to see if the

analysis is valid for different cases. Supercritical flow over a circular cylinder exhibits a

pressure distribution showing a laminar bubble just upstream of the turbulent separation

[3], [4]. Thus, experimental pressure data for a circular cylinder will be used to derive a

forcing function for the problem.

Next, the two-scale dynamical equations will be derived. Although Baker's solu-

tion of the zero-order equation gave some new approximations for the time of growth in

terms of the radius, it can not be inverted explicitly to give the radius as a function of time.

An inversion is needed in order to obtain the first-order solution. Thus, in the present

analysis, we will rely on numerical methods, supplementing them with small oscillation

analysis which leads to periodic solutions requiring no inversion. Baker also assumed that

the zero-order solution was independent of the laboratory time, t. This investigation will

also attempt to verify this fact or at least to see what further research is needed if conditions

can be found which show that other zero-order solutions may be possible.

Lastly, the first-order equation is analyzed for the case of periodic zero-order

solutions and a numerical first-order solution is obtained using the Floquet theory. First the

complementary function is found and its dynamic and numerical stability is examined. Then

the Particular integral is found using variation of parameters. The entire process is trans-

lated into Fortran and a numerical example of the complete solution is given.
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CHAPTER 2

BACKGROUND AND FORMULATION

2.1 Development of the Time Scales

As mentioned from the outset, this problem involves two time scales. The first of these is

associated with the time it takes for the growing nucleus to move through the low pressure

region on the submerged body, and the second is associated with the very high frequency

response time of the nucleus to external pressure changes.

It is desirable to have the two time scales in dimensionless form. By first defining a

characteristic laboratory time, D/V 0, one can define the dimensionless laboratory time as

tv0
ts= t ' (2.1)

where t is real time, D is the characteristic diameter or other length of the body and V0 is the

free stream velocity. Now we define a characteristic time, , Iinvolving only

the physical properties of the bubble and liquid. This characteristic time enables one to

define a dimensionless bubble time as

'T = t F (2.2)

where p is the liquid density and a is the liquid surface tension. Introduction of a small

parameter e as the ratio of the characteristic bubble time to the characteristic laboratory time

yields:

_______ pR0 (2.3)

D/V0 D 2

It should also be noted that such a definition also gives the ratio e in terms of the nondi-

mensional terms defined above, i.e.,

e= ts/. (2.4)
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A relative comparison of the "slow" laboratory time scale and the "fast" bubble time

scale shows that the ratio, r/t, , can have a magnitude of about 103 or less. This says that r

is of very short duration compared to the time scale t, hence there are many periods oft

for one period of t. It follows from equation (2.3) that e should be a small number, often

of the order of 10-3 . These are the same two time scales used by Baker [21 in his work.

As he states, the fast bubble time characterizes the high frequency oscillations of the

individual bubbles, whereas the slow laboratory time characterizes the forcing function

across the governing body.

2.2 The Forcing Function

In a discussion of the translation of a bubble over a submerged body, what must be

brought to light is the driving force which creates the environment for subsequent vaporous

bubble growth and the start of collapse. Discussion has been made of the fact that for va-

porous growth to occur there must be a region on the body where the static pressure of the

flow is less than the vapor pressure of the liquid. This region starts on the body at a critical

point where the static pressure equals that of the vapor pressure of the liquid. Downstream

of this critical point in the growth region, the pressure is characterized by

P > P > Pmmn , (2.5)

where p, is the vapor pressure of the liquid and p. is the minimum static pressure on the

body.

Defining a pressure coefficient as a function of arc length along the body and the

cavitation number respectively as

Cp(s) = 1 (2.6)a n
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K =P- V (2.7)1 2
2 p V;

one can write the relationship in equation (2.5) as

K ,-.2p(S) >-(Cp)min (2.8)

Here, P0 is the free stream static pressure. Equation (2.8) suggests that, depending on the

value of K, the negative of the pressure coefficient can be used to measure the pressure

force on the bubble that causes vaporous growth. If C, = - K, the pressure force would be

zero. Thus a positive forcing function which acts on a typical bubble can be defined as the

negative difference in these two quantities or

F(er) = - Cp(s) - K = - [C.p(s) + K] (2.9)

It should be noted in this particular case that the region of vaporous growth and

collapse extends along the arc of the body only as far as the separation point of the

laminar region. Once the bubble enters the separation region, it is assumed that the

process of vaporous growth ends and any growth that continues is due to gas diffusien

from the liquid into the bubble. Figure 2.1 shows a schematic of the pressure

distribution across a hemispherical headform borrowed from Baker [2]. It gives an

example of the different states a bubble might see if it traveled across the entire body

including the flaccid region, the dividing point where Cp(s) = - K, the vaporous

growth region and the laminar separation point.

The forcing function is written as F = F(t.) = F(eC) due to the fact that it acts

over the low pressure or vaporous growth region of the body which is characterized by

the laboratory time scale. As an aside, intuition says that the forcing function depends

on a parameter that contains e, and it is shown later that this is the case. Since the

pressure coefficient is given as a function of arc length on the body, one must convert

from the arc length to the laboratory time.
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1.0

FLACCID BUBBLE
REGION DYNAMICS

S 0.5

SEPARATION POINT
Ln 0.0

INITIAL CONDITIONS TURBULENT
ARE APPLIED REATIACHMENT

-0.5 HERE AT C#=-K=-0.60IOLPE
LC20LIAPSEREGION
EXTENT OF THE
LAMINAR BUBBLE

REGION OF VAPOROUS GROWTH

0.0 0.2 0.4 0.6 0.8 1.0 1.2

DIMENSIONLESS ARC LENGTH, s

Figure 2.1 Schematic Diagram of the States as Seen by a Bubble Traveling

Along a Hemispherical Headform, after Baker [2].
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First, a dimensionless arc length is defined as

2S
= (2.10)

where S is the dimensional arc length of the body. Assuming the boundary layer to be a

vortex sheet, one can approximate its overall translational velocity as being one half of the

local flow speed at the edge of the boundary layer, or

v(s) = 2°J1 - CP(s) , (2.11)

which then equals the convective speed of a typical bubble in the boundary layer. In terms

of the body length this convective speed is

dS dS ds
V(S) = Ei- ds dt (2.12)

Substituting the derivative of S from (2.10) and v(s) from equation (2.11) into equation

(2.12) and solving for ds/dt one has

ds Vo___ _____
d-= - - Ce(s) (2.13)

Recalling equation (2.2) which relates the bubble time with real time, one can differentiate

that equation to get

d= - 2 dt . (2.14)

Substituting equation (2.4) for e and (2.13) into equation (2.14) and integrating over s, one

finds that an equation relating the dimensionless arc length to the laboratory time is

Si f / (2.15)ts =f vf dC i = 1, 2, .... n. (.5

f=1 - Cp()

In this case the suffix i consponds to each pressure coefficient vs. its arc length datum

point, si. This is the same umfonmation used by Baker [2].
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What is now needed is the pressure coefficient data that are appropriate to any

particular problem. The data must be either given as a function of arc length along the body

or be readily convertible to such. We shall ask that the particular body from which the data

are taken contain the necessary laminar separation region although its presence or absence

will not preclude vaporous bubble growth. Baker used experimental C, values given for a

hemispherical headform. He determined that for cavitation numbers ranging from K = 0.6

to K = 0.7, the laminar separation points corresponded to positions of s = 0.813 and

s = 0.73 1, respectively. He obtained very good results using these data.

In order to check the range of flow parameters, such as the cavitation number, this

analysis will attempt to use data from a body containing a lower (Cp)min , and thus be

compatible with higher values of K. A circular cylinder was chosen because even at critical

Reynolds numbers it exhibits laminar separation, and there exist some inception data [31 for

this body although the inception is usually defined by the first appearance of cavitation

bubbles within vortex cores in the separated shear layer. Reference [3] reports observa-

tions of cavitation in the laminar bubble. The pressure distribution used in this analysis

comes from an NACA Technical Note by Gowen and Perkins [4]. Their graphical data

showed a Clmjn of about - 2.6 for critical Reynolds numbers and at very low Mach

numbers. The tabulated values used are given in appendix B, table B.1, and the smoothed

data as a function of arc length interpolated from the table are shown in figure 2.2.

Although the original values were simply read off of a graph, the fact that they exhibit the

proper trend is more important than their accuracy since this analysis is somewhat

qualitative.

The location of the laminar separation point is needed for the circular cylinder if one is to

know when the analysis is no longer valid. Applying Thwaites' method and using a

computer code given by Moran [5], we verified that in water at a free stream velocity of

Vo w 40 ft/s, a circular cylinder exhibits laminar separation. Using this code, and

comparing its results with the best estimates from Schlichting [6] and Goldstein [7], we
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Pressure distribution on a circular cylinder.

0 •

Supercritical Reynolds numbers.
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Figure 2.2 Experimental and Smooth Pressure Coefficient Data Versus Dimensionless Arc

Length on a Circular Cylinder at Supercritical Reynolds Numbers
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found separation to occur at approximately 110 degrees from the forward stagnation point

or at a dimensionless arc length of s = 1.919. Knowing this, one finds a range of cavitation

numbers that will allow favorable bubble growth and collapse to be from K = 2.1 to

K = 2.4.

A Fortran code to determine the forcing function as a function of the laboratory time

was developed and is contained in the complete code given in appendix A. It begins by

curve fitting the given Cp vs s data using a cubic interpolation scheme, in order to produce

evenly spaced values so that the integral in equation (2.15) can be evaluated using Simp-

son's rule. This calculation correlates the arc length (radians) with the dimensionless

laboratory time. Care must be used when evaluating the integral at the stagnation point

because of the square root singularity involved. A parabolic approximation is used over the

first three points, including the singularity, to take care of this problem. The corresponding

value of the forcing function is found by applying the chosen cavitation number to equation

(2.9) for the interpolated Cp values. This step yields the forcing function as a function of

laboratory time.

To give us a feel for a likely laboratory-time durations , figure 2.3 shows the

pressure coefficient as a function of ts as calculated from equation (2.15). Figure 2.4 is a

schematic diagram of a typical forcing function showing its vaporous growth and collapse

regions. The beginning of the positive growth region is located at the intersection of the

horizontal line at Cp = - K and and it is taken to be the origin of forcing function coordi-

nates. Since this is the critical point where vaporous growth begins and the start of the

region over which this investigation takes place, this is the point defined to be where the

two time scales are equal to zero. It is convenient then to shift the coordinate axes to this

point and have it be the origin. Depending on the value of K chosen, this shift will occur

along a vector as shown in figure 2.4. The computer code developed also finds this new

origin and so it automatically shifts the time axis so that it begins at zero. Figure 2.5 below
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Function of the Labortatory Tune.
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Forcing function for two cavitation numbers.
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Actual Time for Cavitation Numbers, K= 2.1 and K = 2.4.
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shows the shifted forcing function for a circular cylinder at values of K = 2.1 and K = 2.4

as a function of the actual time. The actual time can be divided by the ratio of D/V0 in order

to get F in terms of the laboratory time, which is then used as an input to the bubble-

dynaric analysis.

2.3 Flaccid Bubble Analysis

As described by Baker [2], the bubble grows as a flaccid balloon before it reaches

the point where Cp = -K. It experiences successive states of isothermal equilibrium as its

size changes from the time it reaches a point near the stagnation point on a submerged

body, and it travels within the boundary layer before it reaches the region favorable to

vaporous growth. The bubble experiences no vaporous growth during this first phase of its

motion on the body. As sketched here, suchbubbles originate from free-stream micro-

bubbles of some radius r at the free-stream static pressure Po. 2a

The term, 2a/r, gives the pressure jump across the bubble r O

surface. The internal pressure is the sum of vapour and air

pressures as shown. a

The flaccid bubble kinematics relates the bubble's radi-

al motion to its movement along the dimensionless arc length,

s, of the headform. Depending on the size of the submerged A Free-Stream Nucleus.

body, this length is the dimensional arc length of the head-

form, S, divided by some characteristic body length, D. The rate of change of pressure

experienced by the bubble is therefore,

d_ = d_ ds
dt - ds dt (2.16)

This form is sought because the experimental pressure distribution is given in terms of s.
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The kinematics of the previous section, as embodied in equation (2.13), provides

an expression for ds/dt. Substituting equation (2.13) into equation (2.16), one gets the rate

of change of pressure experienced by a nucleus as it travels across a body to be

dd t = YV0 I
dt D -CP ds (2.17)

This is all the kinematics that are needed. Next we use Boyle's law for an isothermal flaccid

bubble and the force (pressure) balance across the bubble wall. Then we combine these

three results to achieve expressions for the bubble's flaccid growth characteristics.

The bubble contains both air and water vapor. Therefore inside the bubble the total

pressure is

Pi = Pa + Pv - (2.18)

Only the air obeys Boyle's law, which requires that

PaR 3(t) = Pao , (2.19)

where pao = partial pressure of air inside the free stream nucleus at R = Ro. A dimen-

sionless bubble radius is now defined using the free stream nucleus radius, Ro, such that

r(t) = R(t)/Ro . (2.20)

It is noted that pao is a constant, and in the free stream when r = 1, Pa = pao. Now if p(t)

is the static pressure outside the bubble and q is the surface tension, on the bubble wall the

pressure forces are in balance and

Pi ' + P(s) . (2.21)

So for a bubble in the free stream, as in the illustrative sketch above,

Pao + Pv =  Po (2.22)

and for a bubble inside the boundary layer
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Pa + Pv -= + p(s)
P+PV=R(t) (2.23)

Solving (2.22) and (2.23) for Pa and p., respectively and substituting them into Boyle's

law, equation (2.19), one finds the result,

2aY JR 3(t) =~ P2]a (2.24)R(t) +p(s) - PIIO-F P v]

By qubstitutirig (2.6) and (2.7) for the various pressure differences into (2.24) and using

the nondimensional bubble radius, one finds that

+  -
L~~)+ I P V02(C + K)]r3(t) = a+ (.5

Multiplying through by Ro/2 a and defining a radial Weber number as

p R0 V02 (2.26)
Wr - O '

one obtains a cubic equation for the dimensionless flaccid bubble radius in the form

4Wr[Cp(t) + K]r 3(t) + r2(t)- [1 + 41KWr] 0. (2.27)

This equation can be solved exactly and its derivative taken to obtain expressions for the

flaccid bubble radius and growth rate as functions of real time, t. Because of the fact that

the Rayleigh-Plesset equation governs the growth of the bubble after the point of vaporous

growth, this expression and its derivative can be used to form initial conditions at the

critical point where vaporous growth begins.

In the special case when Cp = 0, equation (2.27) can be factored as follows:

[- (r2 + r + I) + r + I](r- 1)=0.

The only root of physical interest is r = 1, as should be the case for a nucleus in the free

strean. Another special case occurs when Cp = -K. Then the cubic term is lost. and we

find that the two remaining roots are
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The positive root is a useful physical quantity in the dynamical solution of Chapter 3. We

note here that it pertains to those values of Cp and K which mark the origin of coordinates

in figures 2.4 and 2.5. That is, for any value of K - -Cplmin, vaporous growth first

becomes possible; and from equation (2.20), it gives the ratio of microbubble size at that

initial condition to a typical free-stream nucleus size.

2.3.1 Formulation of the Flaccid Bubble Radius. r(t)

The cubic flaccid bubble equation can be solved exactly. Because of the fact that

the non-dimensional bubble radius is very close to unity, one can easily find a solution

using a simple perturbation of the form

r = 1 - x, (2.28)

where 0 < x << 1. Substituting this into (2.27) and neglecting terms of order x3 and

higher, one sees that a quadratic equation for x remains and it is

(3A + 1)x2 - (3A + 2)x + jCP Wr = 0 (2.29)

where A = (Cp + K) Wr. The two roots of x are found to be

X (3A +2) [W. (3A + 1) 1230
x =2(3A + 1) 1 1 - Cp r( 3 A + 2)2 (

The proper root must be decided upon for this particular case. Consider the case in which

Cp - - K; then A - 0. Due to the conditions imposed upon x by equation (2.28), the

negative root must be chosen to satisfy 0 < x << 1. The value of x is therefore

lir x= I - 1 + 1-KWr.A-,O4 r
(2.31)

For ease of writing a new variable is introduced, namely:
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q = !KWr. (2.32)

In the limit as Cp= - K, equation (2.31) gives x = 0 corresponding to a nucleus of r = I

as it is in the free stream. The same result is found if one applies this condition to the cubic

flaccid bubble equation. Setting Cp = - K = 0 in equation (2.27), we find

r2 - 1 = 0 , (2.33)

which has a root at r = 1. For Cp=- K 0 and neglecting the cubic term as before, the

equation for r is written as

r2 -1- q =0. (2.34)

Equation (2.34) yields the same result as one gets by substituting (2.31) into (2.28),

nameley:

r = 41 + q (2.35)

Substitution of (2.30) into (2.28), with the expression for A in mind, yields

Il(3A + 2)[ 1 / ]t I-C 3A+1 (2.36)
r(t)- -22(3A + 1) 1+ (-Cp +(3 A +  1 -

This then is the flaccid bubble radius as a function of actual time, in terms of the flow

parameters Cp, K, and Wr. It is valid only in the region from the stagnation point up to the

initial point of vaporous growth. This is similar to the form derived by Baker [2], and as

was shown by him, shows very good agreement with experimental results of nucleus

measurements in this region.

2.3.2 Calculation of the Initial Radius. r(O'

For the vaporous growth phase the initial point at which the dimensionless labora-

tory time and the dimensionless bubble time are measured is the point on the body where

CP = - K Since vaporous growth is preceded by the flaccid bubble region, the initial

conditions for vaporous growth from the flaccid bubble equations should be evaluated at
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the point on the body surface where this Cp value is found. Recalling that equation (2.35)

was derived at the point where Cp = -K and if t to at this point, it can be written as

r(to) = -[I + q (2.37)

This then is the initial bubble radius at t = to and t = = 0, corresponding to the point

on the body where Cp = - K. Using this result one can define the dimensionless parame-

ter for any real time as
_ r(t)

u(t) =/l (2.38)

which is called the normalized bubble radius. Initially when t = to,

u(to) = 1. (2.39)

This normalized bubble radius can be applied to all further equations involving t and its

derivatives. Since its initial value is unity, it makes the scaling of the solutions much easier

to handle. Therefore the normalized bubble radius will be employed in those results which

form the basic ingredients for subsequent analyses of bubble dynamics.

2.3.3 Formulation of the Flaccid Bubble Growth Rate. iM

Another important characteristic of the flaccid bubble problem is the bubble growth

rate. The flaccid bubble growth rate is defied as the first derivative of the flaccid bubble

radius with respect to real time, t. This rate is found by differentiating the cubic flaccid

bubble equation. Thus from (2.27)

4T [Cpt) + Klr(t)4 + !r( dv+ - = 0. (2.40)drr

Substituting for ad- from (2.17) and solving for !, one finds the flaccid bubble growth

rate to be

Ir2(t) WrD" C( ds (2.41)dr 1 Dcp(t)dt I+ 1-~)W C~)+ K]
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This rate is a function of the flaccid bubble radius, the flow parameters - Cp, K, W,, th,

free stream velocity, v0, and also some body parameters. Particular to the body is the char-

acteristic diameter, D, and its pressure coefficient curve. This curve leads to the forcing

function on to a given body that ultimately stimulates the bubble nucleus vaporous growth.

This again is similar to the result achieved by Baker [2] and as he shows, it relates well to

experimental results.

To normalize this result with the same parameter used in the flaccid bubble

radius result, equation (2.38) and its derivative is applied to (2.41) resulting in

I !u2(t)WD'. (1 + q)(l - Cp(t))\" ds n (2.42)
du 8 rD 4( + q (2.42)

dt I + u(t)W,4l + q[Cp(t) + K]

This is the normalized flaccid bubble growth rate. Its initial value when t = 0 will be

discussed in a later section.

2.3.4 Calculation of the Initial Flaccid Bubble Growth Rate. i (0)

The initial growth rate begins when t = to and ts = r = 0, and at the point on the

body where Cp = - K. Using this relationship and substituting (2.37) into (2.41), one

gets an expression for the initial bubble growth rate with respect to real time which is

=j. 0 (l+ )Wr ,,(I + K _d cfK. (2.43)

It is desired to analyze the growth rate in terms of the dimensionless slow

laboratory time, t. To express the initial growth rate in terms of this time scale , the

derivative of the relationship

Vo
= -t , (2.44)

is substituted into (2.43), resulting in

dr il,. ( (+qW dC
I + K (2.45)'4 tz,, 0 ds )Cel = -K
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Relative to this time scale the initial bubble growth rate loses its explicit relationship to the

characteristic body diameter and free stream velocity, although the square of the free stream

velocity is contained in the Weber number.

Writing the initial bubble radius with respect to slow time in normalized form, one

needs the derivative with respect to slow time of equation (2.38). Applying this to the

result in equation (2.45), one sees that it becomes

du 1
t_ (1 + q)(l + K) dsC =-K• (2.46)

This is the normalized initial bubble growth rate with respect to the slow laboratory

time. One gets the same result from evaluating equation (2.42) at ts = 0 and converting it

to the slow time scale via equation (2.44).

So far the two initial conditions and the forcing function have been found for the

Rayleigh-Plesset equation in terms of the two dimensionless time scales involved in the

perturbation expansion for the point when Cp = - K. These can now be used to help solve

the expanded equations which will be derived from perturbation theory.

2.4 Formulation of the Dynamical Bubble Eauations to Order 3

The pulse-forced Rayleigh-Plesset equation (1.1) written in terms of the dimension-

less radius, r, with respect to real time, t, is

r 2- 2+ 1 3 - - + F(t) (2.47)

where F(t) is some forcing function characteristic of the governing body and the flow

properties1 . As noted in section 1.2 above, this is the governing equation for vaporous

growth and collapse of a spherical isothermal cavitation bubble. It is a second order

ordinary differential equation requiring the two initial conditions given above in equations

1 See Appendix D for de derivation of this dimensionless form of equation (1.1).
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(2.37) and (2.45). To derive an appropriate solution to this equation we shall expand it in

ascending powers of the small perturbation parameter e.

The method of multiple scales is used because of the two widely varying time scales

present in the problem. In the two-scale form [11], the small parameter c allows the effect

of the fast bubble time to be pulled into the slower laboratory time in a uniform fashion.

The slow laboratory time scale, ts , is the characteristic time for the bubble to pass along the

low pressure region in the boundary layer of a particular body. This time scale character-

izes the forcing function since it depends on the body. The fast bubble time scale, c, is the

characteristic time of the free stream nucleus oscillation period. This scale is very fast

compared to the slow time scale, so the two are related according to,

ts = ET . (2.48)

From these two time scales and the small perturbation parameter, the dynamical equation

can be expanded to order 03.

We shall write the first and second derivative expansions in terms of the two time

scales, because it is assumed that

r = r(t3 ,c,e). (2.49)

Taking the derivative of r with respect to real time, using the chain rule and (2.48), one has

dr ar (2.50)

dt- t ' '

and differentiating again, one gets

d2r 2 r 2 2r 1 a2r (2.51)
dt2 - N + E o-t. + E2 a,2

Next we applying the above first and second derivative expansions to a general

perturbation expansion of r of the form

r = r0 + rjel + r2e2 + r3e3 +..., (2.52)

which leads one to the completely expanded final forms. They are, up to order E3,
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dr Io, 1o r ar ar 2] + r 2  Dr

dte- E, +ej It + -I-J+ aat + a1 (2.53)

and

a j 2 +2 0] + 2 '2r + 2 ('2r

+L C _

+ a '&S + 1 (2.54)

Determination of each term of equation (2.47) can be based on the general

expansion for r and its derivatives (2.53) and (2.54). As was shown previously in section

2.2, the forcing function F(et) is involved only in the first order of e. This fact leads to the

first order equation being the only nonautonomous expansion equation.

The two initial conditions, r(ta) and dr(t0)/dt, must also be expanded by this

method. This is accomplished by equating the flaccid bubble initial radius of (2.37) and the

flaccid bubble initial growth rate of (2.45) to (2.52) and (2.53) respectively, and equating

like powers of e.

To unify the non-dimensional radius we introduce from equation (2.38), the

substitution of

r = u 4Tl + q , (2.55)

where q = KWr/4, as before. This comes from the flaccid bubble radius and allows one

to write the normalized isothermal Rayleigh-Plesset equation with initial conditions

consistent with those used by Baker [2]. Once solved for their respective ui's, the resulting

set of differential equations and initial conditions can, using (2.55), be substituted into

(2.52) in order to achieve a final perturbation solution for the non-dimensional bubble

radius as a function of real time. The normalized differential equations and initial conditions

up to order e3 are displayed below.
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uo _O 3 aull0 \ U, (2.56)

07a-,r/ 2U30(1 + q)312 
-u 0 (I +q31

with initial conditions,

uO0 ,) =1

(2.57)

El Order Equation:

a2U 1 +_L 3 U0 (aU I) [ Ia2U0  1
a~r uO~ a1 t) U0 [ , r 2(+ q)3/2 u~ 2

-2 a2uo 3 1+u a~ F(e, ts) (.8
atk dt, 2 u0 ZIT iz] u0 (I + q)3 /2  (.8

with initial conditions,

u1(O,O) = 0

au1(OLO) + auo0 ,o) - r (I + q) I T___ dCRJ (2.59)
5'r at$ 8)(1 ( )C =-K
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~ 2 + 3 au0 (cU2' U2  1 3v f
atC2 uO~ +U42 + u-2 q3/~u -U

F ___ 11 2 + 3 uo (Oul) + 3 aup (au1" ___O

-[2 a~at+2 + 2u 0 2-U
oCasU 0 a ats O t(ts+ _0't-S -T at -2

31 ~uo'j~1 111 a~ 1 3 1 (-Jul___ i 2.0
2 2uO ts)JuO a' 2  2uo CUT) u 4(1 +q)3/2 U2 (260

0110

with initial conditions,

U12(090) =0

aU2(o,o) au1(o,0) }(2.61)
+ =+ 0

E3 Order Equation:

U 3 + 13 NO (aU3  13 [ +u 1 vi i
&C2 UO a' Ut} uo[2 2(+ q)3/2y U2

-[ ~2+ 2-!2au + -U (0 U2---)[' aEts UO ats 1 UO UatS 110 (t5 ) +120a' ts

3 iul(u') a2U, + Ut a2u0  u _ u I i Ut a2 U2  L 12 a2U I
uots~ + ~t 2  U + +oat +~10~2 10

3 2

UO & U (1 +q3/2 2 + 1 262)0uO +q)/ U0
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with initial conditions

u3(0,0) = 0 ]
au3(O,0) au 2(0,) (2.63)

+ ats - 0 J

2.5 Estimates of Flow and Perturbation Parameter Ranges

In the previous sections many parameters have been defined. It is of prime concern

in this investigation to achieve results which are directly related to the characteristics of the

fluid flow and the governing body. As will be shown later all flow characteristics are

combined into one parameter, a so called vortex point affix defined in the bubble radius

versus radial velocity phase plane of the zero-order solution. This parameter, called uv, is

used throughout the analysis. The objective of this section is to determine ranges of the

parameters that define the flow from typical values of obsevable flow quantities.

There are three basic dimensionless parameters that define the flow. These are the

radial Weber number, Wr, the cavitation number, K, and the air content parameter, 'y. The

radial Weber number, as defined in equation (2.26), is based on the initial radius of the

bubble nucleus in the free stream. For water, experiments have shown that typical nucleus

radii vary in size over the range

5< R0 <150 gm, (2.64)

and the smaller the nucleii the greater their numbers. Along with the density and the surface

tension for water at 700 F, the Weber number also contains the free stream velocity, V0 .

Typical velocities obtainable in water tunnels vary in the range

0 < Vo < 80 ft/s. (2.65)

From these ranges, we find the range estimate for the radial Weber number for water to be

0 < Wr < 1215 (2.66)
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The cavitation number, as defined in equation (2.7), depends on the difference in

free stream static pressm"e and vapor pressure as well as the speed of the flow. Previously,

in his forced bubble growth analysis, Baker [2] used a small range of cavitation number

values typical of a hemispherical headform. But since cavitation numbers can reach as high

as 2 or 3 for certain conditions, for this estimate we use an expanded range that could

include a variety of models. This range varies from

0.1 < K < 3.0 . (2.67)

The Weber and cavitation numbers are both contained in the parameter q, as defined

in equation (2.32). Using the ranges for these in equations (2.66) and (2.67), we find the

range of q to be approximately

0< q<911 . (2.68)

The air content parameter depends on the size of the initial nucleus radius and the

partial pressure of the gas at the liquid-gas interface, p1 . This partial pressure is found

using Henry's Law where

Pa = PaC . (2.69)

Henry's Law constant, 0, is in general a function of pressure and temperature. But for

pressures well above atmospheric it is nearly independent of pressure, but it still

depends on the temperature. At a temperature of 700 F, Henry's Law constant is

S0.99 psia
ppm 09(2.70)

where "ppm" refers to molal parts per million. The amount of any dissolved gas, cc, in

water tunnel tests typically varies within the range

3 < a< 15 ppm. (2.71)

The air content parameter is defined as the ratio of the saturation air pressure to

the pressure due to surface tension, namely:
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p.Ro f aRo
-2 =  2---a (2.72)

Substituting the range of variables from (2.64), (2.70) and (2.7 1) into (2.72), one finds the

range for the dimensionless air content parameter to be approximately

1< y< 105 . (2.73)

The relationship between the slow laboratory time, ts, and the fast bubble time, t, is given

by the small perturbation parameter, e. It can be expressed as

R02

£ = Wr ,  (2.74)

which directly combines the key flow parameters in the Weber number and the characteristic

body diameter, D, into the single parameter, e. Figure 2.6 below, shows the dimensionless

relationships between the perturbation parameter, e, the body, the nucleus sizes and the

measurable flow, and fluid properties in accordance with equation (2.74).
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Number and Nucleus Size to Characteristic Body Length.
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CHAPTER 3

THE ZERO-ORDER SOLUTION

3.1 The First Intra

From the previous development the zero-order form of the Rayleigh-Plesset

differential equation in terms of the normalized dimensionless bubble radius u0(t) is

)2Uo _ 3 (DUo _-[ 1U O 3 
(3.1)5,2 I O = U3 (1 + q) 112  uo(I + q) 3 /2

with the initial conditions

Uo(O) - 1 (3.2)

T=O =0. (3.3)
T 0

It is assumed at this point that the zero-order equation is independent of the slow laboratory

time, ts, and therefore can be written as an ordinary differential equation in terms of the fast

bubble time, t. The reasons for this independence are addressed in section 3.5 below.

An important fact about this zero-order equation is that it is autonomous and

therefore its first integral is easily found. By letting

= duo

one can write (3.1) as two coupled first order equations, namely equation (3.4) and

d(u v2) 2y 2uo (3.5)

duo U (I + q)51 2  + (1 + 3/2

In anticipation of the discussion in section 3.5 we integrate both sides of equation (3.5)

partially with respect toc in order to obtain a first integral, one finds it to be

2
U'3 2,2n(uo) u + [- 1+(3.6)

v (1+ q)5/2 (1+q) 3 /2 + A(t 5 ) + (1 +q)3/ (
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where the quantity A(t) (1+ 3 is the constant of integration which must satisfy

the initial condition of equation (3.2). To also satisfy the condition in (3.3) at t. = T = 0,

however, A(0) must equal zero, which leaves

U3V0 - 2 ( Iqn(u0) - 20  + q). (3.7)(1 +q)[1 +J)• 3

Further arguments that A = constant = 0 and that the zero-order equation can be indepen-

dent of t, will be shown in section 3.5.

The left hand side of this first integral is proportional to the kinetic energy of the

cavitation bubble motion, whereas the right hand side is proportional to the potential

energy, - V, of the bubble. Thus equation (3.7) can be plotted in a potential energy versus

uo plot and in a phase plane of 6 versus uo as shown in Figure 3.1 and the nature of its

phase-plane trajectories analyzed.

3.2 Phase-Plane Analysis

Had the quantity A not been zero in equation (3.6), suggesting a step-forced zeroth

order equation, the plot of the potential function and its corresponding phase plane trajecto-

ries would lead to the well-known solution of the autonomous equation arrived at by Baker

[2] and others before him. The phase plane then includes both vortex and saddle points,

and a separatrix which separates closed periodic trajectories from ones that grow without

bound.

Under the assumption that A is equal to zero, equation (3.7) can be plotted in the

phase plane and its trajectories analyzed. Figure 3.1 shows schematically the results of this

analysis for a typical value of the dissolved air content parameter, y = 1.4, after Baker [2].

The saddle point vanishes and all trajectories originate from the point at u0 = 1, v = 0. In

figure (3.1) the expression (1 + Q) is simply an approximate form of the exact expression

for 41 + q used in this analysis. Baker assumed that q was a small number less than one

which is not necessarily the case in this investigation. Despite this difference, figure 3.1
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shows the same qualitative phase plane relationships as found here. It is seen that the

location of the minimum potential energy point for a given value of q corresponds to the

vortex point in the phase plane about which the trajectories are focused. These vortex

points move from left to right as the value of q decreases to zero. Free oscillations of the

bubble will then have amplitudes determined by distance of the minimum energy level

below zero because the system being conservative, the initial energy is the total available

and it is set by the initial conditions to be at zero. The trajectories on the right represent

oscillations of expansion with significant vaporous growth accompanied by a reduction in

the partial air pressure in the bubble. Those on the left are compressive oscillations in

which the air contained in the bubble supplies the restoring pressure as before and the mass

of vapor in the bubble is reduced.

The dotted curve in the upper potential energy plot corresponds to the case where

the trajectory and the vortex are isolated at the origin in the phase plane. The motion in this

critical case is null except in the possible event of a momentary random disturbance which

would excite free oscillations of the bubble. Trajectories for this case would be centered

about the vortex point at u0 (O) = 1, v(O) = 0. The oscillation amplitude would depend on

the intensity of the momentary pulse. It would supply an initial increment of energy to the

bubble causing the initial energy level in figure 3.1 to move from zero, as required by the

present initial conditions, to some higher energy level These trajectories are not shown in

figure 3.1 because a random disturbance for that particular case is not contemplated. We

require the initial conditions, u0(0) = 1, v(O) = 0, to be satisfied strictly. Nevertheless the

natural frequency of these vibrations is of interest and these are discussed for small

oscillations in the section 3.41 below.

The importance of this critical case is that it separates the bubble motion into the

distinct types, oscillations of compression and expansion. Trajectories to the right of the

critical point represent larger amplitude oscillations involving vaporous growth and a small

amount of air induced motion. Since this investigation considers primarily the vaporous
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growth region, the trajectories to the right of the critical point will be emphasized, although

as will be found later there can be some flow conditions under which those on the left can

play a role.

The location of the vortex points corresponding to the minimum of the potential

energy curves is found by setting the first derivative of equation (3.7) equal to zero and

solving for uo, resulting in the affix of the vortex point being defined analytically by

(3.8)

Then for any air content, at the critical point where uv = 1, a critical value of q can be

defined as

qcrit = T -1. (3.9)

If qcrit = 0, then y = 1 which sets a minimum value for the dissolved air content parame-

ter for positive q values. Since q depends on the cavitation number and the Weber number,

a limiting value of q = 0 corresponds to K = 0 or v0 = 0. This result is equivalent to that

achieved by Baker [2], except in this case the value of q is not necessarily less than one.

Therefore, the denominator of equation (3.8) cannot be approximated using the binomial

expansion as stated before.

3.2.1 Measurable Flow Parameters and the Value of u.

The analytic expression for the vortex point affix, uv, in equation (3.8) contains all

thre of the dimensionless flow parameters described in section 2.5, namely: y, Wr, and

K, but it does not include the body size, D, because it applies only to the bubble. By using

uv and the small perturbation parameter, e which does not include the air content parameter,

y, or the cavitation number, K, but all flow variables and headform sizes can be contained

in e and uv. Therefore it is useful to complement the relationships of figure 2.6 with

another illustration that includes the remaining physical variables. We shall consider cases

of uv 2 1 only.
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The range of cavitation numbers is constrained by likely values of Cimin for

various submerged bodies. Thus if a particular vortex point is desired, various

combinations of flow variables and headfom sizes can be used to arrive at this number.

Using the critical values of q and the air content parameter arrived at above, along with the

ranges of values for the Weber Number and cavitation number from section 2.5, one sees

that values of uV vary in the range from

1 <5 u" -. 10 .(3.10)

A relationship for these parameters is shown in figure 3.2. The plot parameter, z, in the

figure is used to relate the two scales and is given by
1 U,

z+ -+, ' (3.11)

To use the graph, a cavitation number is chosen and traced horizontally to the appropriate

Weber number. This point corresponds to a certain value of z directly below it. Finding the

vertical intersection of this value of z with the chosen air content, ^, one can then move

horizontally to the scale on the right in order to find the affix of the vortex point . Finally,

since the radial Weber number is known one only needs to know the ratio R0/D from

figure 2.6 in order to find the proper value of C for the hydrodynamic configuration. And

since u. is now known, values of u.a and X follow from figures 3.3 and 3.4 below.

3.3 Ibe Period of the Zero-der Solution

The phase plane analysis shows that the first integral yields closed trajecto-

ries. Therefore both the zero-order radius and growth rate are periodic with respect to 'T.

By separating the differential dc from u0 and its differential in equation (3.7), one has

u0

d = (1+q)3 /4 2 C3 d. (3.12)

0 J 2u~ln(t) 2 + 1
1 i
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Because the solution is periodic this integral can be evaluated over half a period, say T/2,

and its evaluation takes the form,

T + duo (3.13)

J 2u ln(uo) - u 2  + 1

1

where the upper limit on the right hand integral, um(uv), is the maximum normalized radius

the oscillating bubble will reach.

The bubble grows from it's normalized value of unity to this maximum value and

then returns to unity. The maximum um occurs at exactly half the period of oscillation and

corresponds to half way around a trajectory in the phase plane plane. The value of ur as a

function of uv is obtained from solving equation (3.7) for uO > 1 under the condition that

v = 0, thus

2 -2+1 0
2uvIn(u)n + I =(3.14)

We see by inspection when u0 =Ur = 1 for any uv , that equation (3.14) is

satisfied. On the other hand if uv = I then um = 1 is the physically acceptable root of

equation (3.14). Therefore at the initial point where u0(O) = 1 there will be no bubble

motion ff uv = 1, as discused in section 3.2 above. Although a closed form of the required

solution for um(uv) is unobtainable, equation (3.14) can easily be solved for its inverse,

uv(um). But here we have used the numerical methods of regula falsi or bisection in order

to get the desired results. Figure 3.3 shows u.m as a function of u, and includes a nonlinear

least squares curve fit over the range of uv values. The curve fit matches the calculated data

very well but it was not used in the numerical calculations in order to secure the greatest

accuracy in subsequent numerical work in which values of uv must be prescribed.

Defining the integral of equation (3.13) in terms of a prescribed uv from
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equation (3.14) and excluding the constant term in front of the integral, we write the

half-period integral as

UM

I(U/) 2 C3 d (3.15)

2u ln( ) - C2 + 3

Since the half-period integral is now known, we can write the oscillation period of the

solution uo(uv,t) to be

T(uv) = 2 (1 + q)314 I(u,) . (3.16)

The period is a function of both uv and the flow parameters contained in the quantity q.

By using this period the non-dimensional bubble time, t, can also be normalized.

This is done by defining the normalized dimensionless bubble time, x, as

=T (3.17)

When r = 0, x = 0 and after one period when r = T, x = 1. This also allows the value

of um to occuratx = 1/2.

3.4 Zero-Order E.uation Solution

From the first integral of equation, (3.7) and the normalized bubble time from

equation (3.17), the exact first integral of the zero-order equation now looks like

2 2
duo T 2u.ln(u0 ) - + 1+(3.18)

dx -(I + q) 314  3

If one separates variables in equation (3.18) the problem of finding the inverse solution,

x(uv,uo), is reduced to the quadrature,



d4 = 2 d , (3.19)
0 2uln(C) - 2 + 1

1

where the period parameter, X, is a constant for a given value of u, and is related to the

period by

T(uv)
S + q)3/4 2I(u) (3.20)

These results make the zero-order solution a one-parameter family, uo(x,u,), which is

convenient for further analysis. It is noted that the other major components involved in this

equation also have been derived with this dependent parameter, such as um(uv) and X(uv).

Figure 3.4 shows a graph of the period parameter over the range of uv along with a least

squares curve fit of the function. Next we shall adopt the notation of equation (3.20) and

use it in equation (3.18) in order that it will have the same notation as equation (3.19):

2 ,2

duo ?, _ 2u2 ln(uo) - uO + 1 (3.18 a)

dx (uU 3

Equations (3.4) and (3.18a) have been used in order to calculate a number of phase

plane trajectories for the range, 0.50 uv < 1.50, enabling us to see how the trajectories

change as the value of uv passes through unity. These trajectories are shown in figure 3.5

below.

A solution to equation (3.19) would yield x = x(u0). By approximating the logarithmic air

content parameter with a cubic polynomial, Baker [21 found an approximate solution for

x(uo) in terms of elliptic integrals and functions. Of more general use is the inverse of this

function, or uo = uo(x). We shall proceed numerically because Baker's solution holds for

a rather small range of uv and it can not be inverted.

3.4.1 ZQero-O rSmall Qsilatn Study

From the phase plane plot of 6i0 vs Uo it is seen that for a given value of u, that the



43

Curve-fit and integrated values of X. compared.

300

C= 4.44288294

250 - a, = 6.55961, a 2 = 24.9862

a3 = 12.0325, a4 = 0.383326

20a 5 = 3.06795, a6 = 0.312796

'~150

1001

Numerical integration.
50 + Rational-fraction fit.

Co+(x-1 )[al+(x-1) (a2+(x-1 )(a3+(x-1 )a4))I~
0 /1 1+(x- 1)(a 5+(x-I 1)

2 4 6 8 10
Vortex point affix, u (= X).

Figure 3.4 Values of the Period Parameter, X, for a Range of uv, Values.



44

4 u~=0.50

Vortex points,

+

~0.6

0.95 1.05 1.15 1.25 1.35 1.50

z-2

-4I

0.0 0.5 1.0 1.5 2.0

Normalized radius, u(Tr).

Figure 3.5 Phase Plane Trajectories Calculated for Several u~,

Values in the Range 0.5:5 uv:5 1.5.



45

curves are closed and nearly elliptical, especially for small values of u, near 1.0. Conse-

quently, an ad hoc small-oscillation form or the zero-order solution was sought for the case

when

uv = 1 + , (3.21)

where 8 << 1. For this case an approximate form of A Lo

the first integral was sought using the equation for an

ellipse. To most closely approximate the form of the

first integral the ellipse was chosen to be centered at c, 0 U

one -half the distance between the two points, 1 and

u., on the u0 axis. The length of the vertical.axis is

determined by the requirement that the period of

oscillation must also agree with the correct result. The

use of these conditions leads to an equation for an ellipse of the form

0 " - (3.22)

where

a ( (3.23)

b = (fo)max , (3.24)

and

2 (urn+1) (3.25)

The coefficients a, b and c are all functions of u, since um = um(uv) and b comes from the

first integral equation which is also a function of u,. The quantity b equals the maximum

value of ,, which must be arrived at numerically. But as will be shown below, the

approximate solution can be written independently of the parameter b.
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=duo

Solving equation (3.22) for 6i0 
=  - and separating the solution into two integrals,

we find

b Jdd=1 d . (3.26)
a = -- -

1

where

U - C

a (3.27)

Integrating this equation over the limits and solving for u0, one gets a solution of the form,

uo( ) = c - a (3.28)

This is an oscillatory function of bubble time with a period determined by one circuit

around a phase plane trajectory as defined by the uv value. Evidently uO will have its

maximum value when

u0(Tt2) = c + a. (3.29)

b T
This will certainly be true if b = x, and since r = we have

b 2nc
a Tf" (3.30)

When this result is used in equation (3.28) and the normalized bubble time from

equation (3.17) is applied, the small oscillation approximate solution becomes

u0(ux) = c - a cos(2n x) . (3.31)

Equations (3.23) and (3.25) show that c and a depend on um(uv), and so equation (3.31)

depends on u,, , as well as the normalized bubble time, x. As with the exact solution, the

approximate solution has no explicit dependence on the parameter b. Equation (3.31) is

designed to have the correct nonlinear amplitude and period as determined by u, however.
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Moreover, when x = 0 equation (3.31) yields uo(u,,O) = 1. Differentiating (3.31) with
hduo =I.Tu qain(.1

respect to x and evaluating it at x = 0 one has duo I = 0. Thus equation (3.31)

satisfies the initial conditions.

Next we need to find the variation of ur with uv, when 8 -. uv - 1 << 1 from

equation (3.21). Knowing that u.. also doesn't vary greatly from unity for small

oscillations, we can be approximate it by

um = 1 + Ym , (3.32)

where ym << 1, but y. is slightly larger than 8. First one substitutes equation (3.32) into

equation (3.14) and expands the logarithmic term to O(ym) in order to obtain a quadratic

equation in ym.which can be solved for ym(u,). Then equation (3.21) can replace uv in

this solution in order to expand it to 0(82). Thus one gets the rather accurate expansion,

um= 1 + 28 + 82. (333)

Substituting this result into c and a for um in order to get a small oscillation

expansion for uo(x; u,) we see that it looks like

u= 1 + 8k + 8)(1 - cos2nx) . (334)

It is seen that as 8 -* 0, both uo, and um -, 1 which agrees with the initial condition.

In order to get an independent evaluation we now find a limiting small-oscillation

form of the period parameter, X, as given in detail in Appendix C. Here we only outline

the analysis. To this end we may generalize equation (3.32) by writing u0 = 1 + so that

when = ym, uo = um, but generally 0 < y. because 1 < u0 :5 um . Then the dummy

of integration in equation (3.15) is replaced by u0 and the denominator inside the radical of

equation (3.15) can be expanded to O( 3) and expressed in factored form using the three

roots of the approximating cubic at the three C values of 0, < ym, < b0. The period integral

then becomes
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I) f (1 + 3 d (3.35)
]u! (y." -) (bo " -

0

Additional expansions of the integrand, as explained in Appendix C, and term-by-term

integrations of the result give the respective components of I in terms of Ym" The sum of

these components gives the rough estimate,
I C(I+1 +1 2

Uv (+ Ym + Ym) -  (3.36)

Because of equation (3.35), equation (3.36) contains the limiting value, b0 = 3 as ym- 0

and uv- 1. Equation (3.36) shows that as uv-- 1, I = 2, exactly. But since b0 and Ym

depend on uv = 1 + 8, one can replace the estimate of (3.36) as an expansion of the half-

period integral in powers of 8 by consistent use of expansions of the formulas of appendix

C for Ym and b0 . But we prefer to use the expansion of equation (3.33). This expansion

can be used to expand the quantities Ym and b0, keeping terms up to order 82, in order to

obtain a small oscillation form of the half-period integral, replacing equation (3.36).

Multiplying the result by a factor of 2, the small oscillation form of the period parameter is

2 48 ) -5) (3.37)

As 8 -+ 0, the value of -+ z'F2 which sets the value of X for uv = 1. As explained in

section 3.2, this value of I is the period parameter for free oscillations which are expanding

in one part of the cycle and are compressive during the other part. It is also noted in ap-

pendix C that equation (3.35) is a complete elliptic integral of the third kind, from which the

limiting value of 1 has been found in order to check the limit from equation (3.36).

These small oscillation results are useful for similar studies of the first-order equation. A

comparison the small oscillation results with numerical calculations shows that the small

oscillation equations are very accurately valid for the range of uv from unity up to 1.03.
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3.4.2 Numerical Solution

Since there is no closed form solution for uo(x), an integral such as the one in

equation (3.19) is generally evaluated numerically. For this task we have used Simpson's

rule for incremental steps of uo. The integrand on the right side of equation (3.19) contains

integrable singularities at u0 = 1 and um, and their presence must be accounted for in the

numerical work.

This integrand from the right side of equation (3.19), labeled F, is

3

Fu 2 (3.38)

2u! In (u0 ) _ U2 +1

The denominator ofF has roots, as seen from equation (3.14), at uo = 1 and uo = urn.

By using a small perturbation analysis about these points approximate formulas can be

derived to avoid discontinuities.

This is done by first perturbing u0 about the point uo(O) = 1, so we let

U0 = 1 + 8, (3.39)

where 8 << 1. Substituting this into (3.38) and using a series expansion for small parame-

ters, one finds a general first order approximation for F about the point corresponding to

x = 0tobe

Fix. 0 + B 4F (3.40)

where A and B are arbitrary constants. To determine the two constants (3.40) is evaluated

at two incremental steps in x. Letting h represent an incremental step, one finds that the

two equations are

A + B h = 1/hF, (3.41)

A + 2Bh =/2hF 2 J
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Here F1 and F2 are equation (3.38) evaluated at x equal h and 2h respectively. When these

two equations for A and B are solved, a so called "start" value for equation (3.38)

integrated over 2h is

2 /5.
start = 3  (u)h(4F1 - 4 2F2) (3.42)

The constant X(u,) is needed to make the 'start' value consistent with equation (3.19).

This is labelled a 'start' value since it is used at the beginning of the integration when

x = 0.

The other singularity occurs at the point where uo(2) = um. Applying the same

method for

uO =U -6, (3.43)

one finds that the first order approximation of equation (3.38) reduces to

Fl 1 L = A r8- + B 8 312  (3.44)
=2

Solving for the A and B as before yields a so called "stop" value for equation (3.38) over

2h of

stop = 15X(uv)h(4 [-F1 - F2) . (3.45)
1 1

Here F1 and F2 are equation (3.38) evaluated at x equal - h and - 2h, respectively.

This is labelled a "stop" value since it is used at the end of the first half period of the

solution when x = 1

The fact that the zero-order solution is periodic allows the "start" value to be used

over the first two steps of the integration nearest x = 0 and also over the last two steps at

the end nearest x = 1. Similarly, the "stop" value can be used over the two steps just1
preceding and just following x = . Periodicity also warrants integration only up to the

X point since the values of the solution between one-half and one will correspond to
tw

the reverse of those between one and one-half.
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The numerical calculation of the zero-order solution involves first finding a value of

um for a given value of uv using equation (3.14). Simpson's rule is then employed over

the range of steps between the first two and last two for 0 < x < 4. The curve over this

interval is well behaved and resembles a versine curve, as exemplified in the small

oscillation analysis. Then the start and stop values are added to the result. These values

are then used in a cubic interpolation scheme to produce evenly spaced values of u0 over

the whole range of x from 0 to 1. A Fortran source code for these calculations is given in

appendix A.

The numerical solution for u0 and its derivative versus x for various values of uv

are shown in figure 3.6. It is seen that the curves resemble versine curves, insuring a

smooth transition to the small oscillation result. To get a better picture of the zero-order

solution's periodicity, figure 3.7 shows uo and its derivative over two periods in x for a

single value of u, = 1.05 where they have nearly trigonometric shapes. These results

pertain to the case in which uv > 1. In order to compare such solutions with solutions when

uv < 1, figure 3.8 shows calculated results for uv = 1.5, 1.0 and 0.5. These curves appear

to show a 1800 phase shift as uv passes through unity. The cause of this can be seen in the

phase plane of figure 3.5 in which trajectories on the right of u0 = 1 are traced in the

counter clockwise sense as x increases, starting on the upper part of a loop. Trajectories to

the left start on the lower branch of a loop and also proceed in the counter clockwise

direction with increasing x. The elongated shape of the trajectory for uv = 1.5, showing

rather modest values of fi especially on its right, insures that in figure (3.8) the central part

of the solution near x = 1/2 will be relatively gently rounded comp_-ed to its behavior in the

neighborhood of u0 = 1. In this latter region figure 3.5 shows larger velocities which

increase rapidly from zero near u0 = 1. Therefore in figure 3.8 the solution is relatively

steep near x = 0 and 1. On the trajectory for uv = 0.5 of figure 3.5 the larger and rapidly

changing velocities are found near its left extremity. Consequently, figure 3.8 shows sharp

minima at x - 0.5 and 1.5, but gentle rounding near its maxima at x = 0 and x = 1.
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Zero-order solution for several vortex point affixes, u.,.
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The zero-order solution, uo(x) and duo/dx , uv= 1.05.
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Figure 3.7 Numerical Zero-Order Solution Over Two Periods in
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Figure 3.8 Calculated Oscillations of Expansion, uv > 1, Compared

with Compressive Oscillations, u,, < 1.
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3.4.3 Aypproimate Solution Using Fourier Series

It is seen that the small oscillation approximate solution resembles the first two

terms of an even function expressed in a Fourier cosine series. This encouraged the

development of a compatible approximate solution for the zero-order solution using Fourier

series expansions.

Considering the fact that the zero-order solution is periodic and also an even

function as displayed by the numerical results, it seems fitting that the data from the

numerical solution over one period could easily be fitted to a truncated Fourier cosine series

in which the an vary continuously with u. Then by doing this for a large number of uv

values, curve fits for the needed an(u,) terms can be found using a least squares method.

The array uf equations for the appropriate number of Fourier cosine terms represents

essentially a closed form approximate u0 solution as a function of x for a given value of u,.

The advantages of having such a solution are found in the relative speed and ease of

computation, along with the fact that many of the complications associated with numerical

methods are avoided.

The first thing is to determine the number of terms to include in the truncated series.

Initially 100 an coefficients were calculated by recursion [14] for a number of uv values.

The same was done for 50 a. coefficients and the results compared to the corresponding

numerical data. It was seen that a truncation to 50 coefficients loses very little accuracy

compared to the numerical results.

Adopting a 50 coefficients truncation for the Fourier series at numerous values of

u, over the range from I to 10, 50 separate curve fits were then applied to the as's over

their corresponding range of u,. This is to say that only the lower numbered terms were

used for smaller values of u., and as u, increased so did the number of terms. It was

found that all except a0 were effectively handled if they were represented by a rational

fraction in terms of u. A quartic polynomial seemed most appropriate for a0. Each curve

fit was determined using a least squares method. Then given a value of u, the appropriate
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number and value of as's can be determined and each multiplied by it's cosine of its

frequency and summed up over a period in x from 0 to 1, yielding a truncated series zero-

order solution.

The convenience of crve fitting does cost some accuracy. It was found that in

summing up the cosine terms the required value of u0(o,uv) = 1 was missed by various

small amounts depending on the value of uv. To insure that this initial condition is satisfied

by the approximation, the error, A(uv), between the Fourier solution and the initial

condition at x = 0 is calculated and added to the total sums for all x in [0,1].

Examples of the results obtained for several values of u, are shown and are

compared with numerical results for the same values in figure 3.9. This method yields

reasonably good approximations to the zero-order solution and retains the main features

which are dependent on u. But when this method was used to represent u0 in the first-

order analysis, the accumulated errors were excessive. Thus to retain accuracy, only

numerical methods were used in the following first-order analysis.

3.5 Time Scale Dependence

Throughout this analysis the zero-order equation has been assumed to be

independent of the laboratory time, t. The object of this section is to investigate this

assumption by using the coupled time scale terms of the first-order equation. If there is a

possibility that there may be a dependence upon ts we must uncover it. Beginning from the

elliptical small oscillation result for uo, a generalized 2-scale analysis is applied such that

u0 = u0(t3,; u").

3.5.1 Small Oscillations

One begins the argument by returning to equation (3.22) and differentiating the

whole equation partially with respect to r. This leaves the right side of the equality equal to

zero. Integrating this again leaves a constant of integration which is at most a function of

t., such that
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Numerical and Fourier series approximations of uo.

UV  2.0

3.0

. 2.5 Numerical points.
Fourier series curve fits.

~2.0 2.0u v = 1.5.

1l.5
uv is vortex point phase-plane affix.
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I _ I , I , I L
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Normalized bubble time, x.

Figure 3.9 Comparison of Numerical Zero-Order Solutions with 50-Term

Truncated Fourier Series Approximations for Several Uv Values.
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+ (0 I + A (Q .

where A(O) = 0 to hold with the initial conditions. Separating this into two integrals as in

the previous analysis and integrating, one finds the bubble time plus another constant of

integration depending on the laboratory time, such that
b 2

= sin'I + B(ts) + 7-

where B(o) = 0 from the initial conditions and now

a O41 + A(ts) 
(3.48)

Substituting for t and solving for uo, one finds the 2-scale representation as

u0(ts,; u,,) = c - a 41 + A(t,) cos( T - B (ts))] (3.49)

In order to suppress secular terms in the zero-order solution the coupled time scale terms

in the first-order expansion equation must be set equal to zero. To ensure this, they are set

equal to zero here and evaluated using the generalized 2-scale equation (3.49) for u0.

The coupled time scale terms from the first-order expansion equation set to zero are
i2Uo + 3 Uo L}Uo

2u+ 3- 0 . (3.50)

Substituting equation (3.49) and its partial derivatives into equation (3.50), we find that

1-sin A T - B- 2(1 + A)-cos - B

5 dAs(b B)

-ah(I + A) 4A 3sin 2 T - B - 2cos2 (T - B )=0. (3.51)
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Expanding the arguments using trigonometric identities and factoring out terms involving

the bubble time, r, we can write the above equation as

b c dA oB - 2(1 + A)q-sinB sinat1 + =A 1 o t

- [ sinB - 2(1 + A)!cosB cos-x}

5 aab !ccos2B - 2(1 + A)asin2B sin2 t)

- d sin2B - 2(1 + A)!-cos2B cos2 -}

[b(I + A) =0. (3.52)

The trivial solution to this equation is dA/dt% = dB/dts = 0. If a more general

solution exists, it must exist for all time or and ts. Since the constants in front of the major

brackets are not equal to zero and the periodic terms involving the bubble time are linearly

independent functions and not all are equal to zero at the same time, the only way to satisfy

the equality is to equate each square bracketed term to zero. This leads to five independent

equations all of which are equal to zero.

The first two square bracketed expressions lead to two equations which can be

solved for the two unknowns, A and B. Looking at the first of the square bracketed

expressions, we see that it can be written as

1 dA _ ARsinB =
(1 + A)d-k dtcosB 0 (3.53)

An integration of (3.53) with respect to laboratory time yields

In (1 + A) + In (cos2 B) = C , (3.54)

where C is an integrating constant. Evaluating this for the initial values of A and B, one

sees that C = 0. Solving this equation for A in terms of B, one has
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sin 2 Bcos 2 B

Its derivative with respect to laboratory time is then

dA 2 dB sinB
dts- ds cos3 B (3.56)

These two expressions can now be substituted into the second square bracketed expression

from equation (3.53) to obtain an equation solely in terms of B. It is

2  F sinB sinB 1
dts Lcos3 + cosB]J

This equation is satisfied if either dB/dts = 0, or the part in brackets is equal to zero.

Equating the bracketed term to zero we get

tanB =-1, (3.58)

which leads to

B -(3+4n)- and -(l+4n)!, n=0, 1,2,3... (359)

But these values of B violate the initial condition which requires that B(O) = 0. Therefore,

the only solution to equation (3.57) for all ts is

dB
- = 0, (3.60)

or, from the initial value,

B(t,) = 0. (3.61)

Substituting this back into equation (3.55) one gets the constant value of A for all t. to be

A(t ) = 0 , (3.62)

which satisfies the initial value.

It now must be determined whether the other three expressions derived from

equation (3.52) hold for the same values of A and B. Applying the previous procedure on
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the third and fourth square bracketed expressions from (3.52), first find the expression for

A to be

A 1 - cos2B
cos 2 B (3.63)

Substituting this and its derivative into the fourth expression we get for B

2 !!sec 2 2B = 0 (3.64)

This equation says that since secant squared never equals zero for any B, again

dB/dts = 0, and

B(ts) = 0 • (3.65)

Putting this back into equation (3.63) one again gets the result

A(ts) = 0. (3.66)

It is also recognized that the fifth bracketed expression from equation (3.52) is also satisfied

for both these conditions. Applying these results to equation (3.49) one gets the same

expression derived earlier which was independent of the laboratory time, ts. Evidently in

the small oscillation case, the zero-order solution is indeed independent of the laboratory

time, t. It now remains is to determine whether or not this is the case for the formal zero-

order equation over the full range of the parameter, uv.

3.5.2 The Integrability Condition: Basic Structure and Most General Solution

The integrability condition is usually satisfied by substitution of an explicit zero

order solution, uo(c,t s) in order to find the dependence of uo upon ts. In the present case

this can be done only for values of ut very near 1 where the small oscillation solution

applies. As preparation for the determination the form of uo with respect to ts for all

values of u, we now consider the properties of uo that follow from the partial differential

equation itself, namely:

2 uo -+ 3 -0. (3.50)
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If uo should happen to be independent of t. this integrability condition is certainly

satisfied. But are there also forms of u0(t,ts ) depending on ts as well as '- which

satisfy the integrability condition ? That is the question to be answered and some

knowledge about the basic properties of the partial differential equation and the forms

of the integrability functions that will satisfy it may be helpful.

This partial differential equation is a hyperbolic quasilinear equation in normal

form with characteristic directions on the lines T= constant and t, = constant. In order
Uo auo  

2uo a2uo a2uo
to see this we let p= , q= ,r- ,s- andw=ts 2

Then the two equations,

dp= r d + s dts (3.67)

and

dq =sdr + w d, (3.68)

result directly from the chain rule applied to the formulas for p and q. The partial

differential equation can now be expressed as

2 pq=0. (3.69)

Suppose next that one has a curve F in the t,t plane Ats -

along which u0 and its normal derivative, du , are:dt
d'€

prescribed. This is the same as saying that Uo , p and q as

well as d p and dq are known along r. Consequently, along

F we have three equations in three unknowns:

0 + r d t + s dt = dp, (3.70)

0 + s dt + wdt = dq, (3.71)

0+ s +0 .2 pq. (3.72)
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These equations enable us to determine the derivatives r, s and w everywhere along F,

provided that A, the determinant of these equations, never vanishes along r. When this

is true r is called an ordinary curve and it is possible to find derivatives of u0 of all

orders along r and one can therefore expand uo as a Taylor series about every point on

I in order to determine the solution on a strip in the r,t plane. The width of this strip is

determined by the radius of convergence of the series at every point along F. Character-

istic directions at any point on I' are defined as those directions for which A vanishes. In

such a situation the derivatives of u0 can not be found and the computation of the solu-

tion as described above can not be carried out. In the present case if any point on r is

tangent to such a direction we must have

d'r dts 0

A= 0 dT dts = ddt,=0, (3.73)
0 1 0

and the solution can not be continued as indicated above. Clearly, all lines r = constant

and t. = constant must be characteristic lines as stated at the outset.

When r is an ordinary curve one can use Cramer's rule in order to find the

value,, of r, s, and w at any point on r. Thus we have for the present problem the

solution,

d'r dp 0

(A) s 0 d q d ti (3.74)

0 3-'-'p q 0

On a characteristic, since A = 0, the best that we can hope for is that solution for s will

be simply indeterminate on r. Such will be the case if we also insist that
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dr dp 0

0 dq dts =drdts j__pq =0 (3.75)
3 2 u0

0 - -pq 0

along the characteristics. This characteristic relationship provides the key for the deter-

mination of the dependence of u0 upon the laboratory time ts . In order to see how, we

recall that all derivatives in the zero-order partial differential equation determining u0 are

taken with respect to r. Therefore solution uo is reduced to a quadrature by means of

two partial integrations with respect to T and its only dependence on t% is found in the

constants of integration A(t.) and B(ts). But in terms of the integrability condition from

the first order perturbation equation, a partial integration over r implies that d t = 0. But

duo =  0 d + .dt= pdt + qdts.

Therefore we have

qdts= duo - pdr.

Therefore the characteristic relationship, 3
drdt3 ti3pq =0,

becomes

dr2-p(duo - pd) =0.

But the factor d - 3 p is certainly not generally zero. Therefore the condition
2 uO

(d Uo - p d r) = 0 suggests that uo is independent of t, in general.

The fact that the integrability condition of Equation (3.50) has a rather symmetric

form and has a cross second derivative for its highest order term suggests that one might

find a general form for uo(',t.) which is analogous to dAlembert's well known solution

for the wave equation. In order to exploit this symmetry we can let v = -U as before.
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Then the integrability condition is

2 dv 3 2uq
v ts U -0 (3.76)

Evidently this equation can be rewritten as - ln (v u3/2) = 0, from which one finds that
at,

u03/2°- - = f(r). A second partial integration with respect to r leads to

U05/2= f@ )dT + ;,. = g(r) + h(ts).

Consequently, the integrability condition wili be satisfied by any functions g(r) and h(t,)

in an equation of the general form,

uo(e,t,) = [g(c) + h(ts)]2/5. (3.77)

That this result is the most general form of the integrability function can be verified

directly by differentiation to show that

ts 2--' [g(r) + h(t)] -6/5 and that 3 u° au° =6 [g() + h(t)] -6/5.
kj~, 5 at1 25

As we have noted, equation (3.77) is expressed in characteristic coordinates. In

order to exhibit a form which gives the solution on an ordinary curve, F( 1 ,t1) as illus-

trated above, we need a transformation between the characteristic and r coordinates,

= V(,tl) and ts = V(rl,tl). For example, suppose we take - = (@i+ tl)/42 and

ts= (rj- t)/4-2., corresponding to r being a line at 450 with respect to the horizontal

and upon which t1 = 0. Then one can write

u0(*l,tl) = [gl(rl+ t1) + hl(rc1- tl)] 2/ 5,

where the suffixes on g, and h, denote that the r coordinates have been rescaled in order

to cause u0(rl,tl) to resemble more closely the classical d'Alembert solution. This formal

resemblance must not be allowed to obscure the fact that physically, the proper coor-

dinates are r and t. and that the question of whether or not the zero-order solution

depends on t. as well as x is uppermost in our minds.
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Two successive partial integrations of Equation (3.1) with respect to C have given

the quadrature,

,r + b(ts ) = (1 + q)3/4 - , 3\2 d4 (3.78)

uv Inu -n 2 + I + a(ts)

which is certainly not of the general form required by the integrability function. Equation

(3.78) can be brought into an acceptable form if a(t) = b(t.) = 0. This choice satisfies

the initial conditions and we may then write the solution symbolically as uO(ts,t) = G('t),

where it is supposed that the integral can be evaluated and inverted (numerically if need

be.) More generally one could suppose, because of the small oscillation result discussed

above, that this inversion might have a form such as,

uO(r,ts) = A(ts) F[T + B(ts)].

The general form of Equation (3.77), appears to preclude this possibility, however, and

this conclusion is reinforced by the direct use of this tentative form of uO in the

integrability condition, equation (3.50).

3.5.3 A Direct Approach to the General Solution

Since the inverse form, r[uv; Uo, a(ts),b(ts)], has been reduced to the quadrature

of equation (3.78), one can use the Leibnitz rule in order to test further the finding ob-

tained thus far in the hope that if there is a dependence on ts , it might at least be found

numerically. We shall start our direct approach using the closed-form result, v = au0/ar,

which we shall now write as

(1 + q)3/2 v2 = [2u InUo - u2 + + a(ts)]/u3 (379)

Therefore the mixed second derivative is found to be
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R vU - U 0
___... 3v Duo 1 1 da

- vu 0 (1+ q)3/2 - J + (l+q)3/2 2u v dts'

so that the second-order term in the integrability condition is

2 1[2Uo 2 (u -UO) -1 1 da2uk t uo 3-3+ t0.)
= u(I+ q)3/2 +s (q) 3 /2 U2 dt 3.0

The second term in the integrability condition, involving the product of aud/a and

auoJats, can be written as 3 v- which eliminates the term, -3v -o, in the mixed

second order derivative of equation (3.80) from the integrability condition. Consequently

the integrability condition, when written as 2uo- + 3v = 0, becomes
(Its

d--I+ -0.
u( (1+ q)3/2 (+ q)3/ 2 2v dt%

This result simplifies to

2(U2_ &!a da =0 . (3.81)

The only factor depending on b(ts) results from the derivative, auo/ats . After

applying Leibnitz's rule [12] to equation (3.78) and rearranging the result, one finds that
U0

Duodb _ _ _=l a v S+i(I ~ t, or that

U0
u db v da f dt (3.82)

dts-r2 + q) dt J 43V3
=c + 2(l+q) 33 '3.33

1
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Equation (3.82) can now be substituted into the integrability condition of (3.81) After

separating the terms involving the derivatives of a(ts) and b(ts), Then one finds that{ u 2 _u2 11(u - uo) U0v d da 2 2. db
u0+ -j- rf }v(4,a)]3 - + 2(Uv V = 0. (3.83)

0 +1+ q)3 "Jv(~a 0) dtts

The integrability condition of equation (3.83) is a single condition for the two unknown

functions, a(ts) and b(ts). If a and b are truly independent arbitrary functions then they

must vanish identically. Otherwise, equation (3.83) implies that a and b are

interdependent.

Suppose therefore, that we were to consider a = a(b). The differential dt, is then

eliminated from Equation (3.83). If in general the differentials da and db are not zero

simultaneously, equation (3.83) will be satisfied only if the coefficients of da and db

vanish. Then we would have two equations for the unknowns a(t.) and Uo. If these equa-

tions were solved for values of the unknowns near their starting values, a = 0 and u0 = 1.

Then one would evaluate Equation (3.78) from 1 to uo and so calculate the sum, ts + b(ts),

with the help of the condition t4 = n. But he could not determine t. or b without an added

constraint which does not appear to exist for this formulation. Thus we see that if a(t.) and

b(t) are not independent functions of integration , the system of equations is not closed.

Moreover even if the system were closed, these two equations do not vanish at the initial

condition, where a(0) = v(0,0) = 0 and u0(0,0) = 1. Then the requirement that the coeffi-

cients of da and db vanish for all t. and T is certainly not satisfied.

Suppose next, that one considers the differential equation (3.83) and the quadrature

of Equation (3.78) as two of a governing system of equations. How might the system be

closed? One possibility may be suggested by the behavior of the zero-order radial velocity,
duodi-f- which from the chain rule and the condition dts = edc, is
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duo DUo u° (3.84)

d - dr + E s "

The two partial derivatives of u0 in equation (3.84) are given by the square root of

equation (3.79) and by equation (3.82), respectively. Equation (3.84) can be used to

determine the maximum and minimum values of uo.These values are given by the two
du0

roots of-d-= 0, namely:

j [2U2 lnuo- U2 + + a(t)]/u 3  uo
_N_+ db + v a =0. (3.85)L dt 2(1+q)3 d ts

If the roots of (3.85) can be found starting at the initial point, the value of Urax,

say, permits one to assign a series of equally spaced points over the interval [l,umax].

Let the first new value of u0 be 1+ h, where h is the step size. Of course, Urax and Umin

must be found at each step because the values of a and b will change with each compu-

tational step. Therefore it is possible that the size of each step should be found from

integration of equation (3.84) and equation (3.85) should be reserved for the determi-

nation of uin and Urax. We note in equation (3.85) that a(ts) and b(td are the

unknowns. The same is true of equation (3.83). Equation (3.78) has a, b and x as

unknowns, provided that uO can be found from integrating equation (3.83). Then by

making use of t. = vc, we see that the fundamental unknowns are a, b and r at each step

and there are three equations. Therefore, the system is closed; but it remains to design an

algorithm for a step by step solution. All of this is conjectural. Therefore the present

study is restricted to the case in which a = b = 0 and the integrability condition is indeed

satisfied. This approach may be useful preparation for an attack on this generalized

problem, should it be necessary. The present special formulation will reveal some aspects

of the solution properties that must also be dealt with even in a generalized approach.

This will be especially true in the neighborhood of of the initial point t = ts = 0 because

a and b will be very small in this neighborhood.
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CHAPTER 4

FIRST-ORDER EQUATION ANALYSIS

4.1 Statement of Equation

The two-scale perturbation expansion in section 2.4.2 gives the iarst-order linear pertur-

bation partial differential equation for ul(t,t s) where u1 is the first order normalized

dimensionless bubble radius, u1. The two dimensionless time scales are t., and 't and the

first order equation was found to be,

,aUI+3 allo (aUl'+ _ U, [a2uo 1 2
_T2 UO Cuo a,1 u 2(1 +q) 3 /2  

-2 I

F a 2u0  3 1 Ou 0 duo] F(ts)

= 2~+- .- &Iai2u C I+ q3/ (4.1)

with initial conditions of

(0,0) = 0 (4.2)

and

au1(0,o) auo(0,0) 1(
+ Wr4(1 + q)(1 + K) d ) (4.3)'t + s S Cp=-K

In equation (4.1), F(t,) is the pressure forcing function of section 2.2 and the term

to the right of the equality in (4.3) is the flaccid bubble response, from section 2.3.4, to

F(ti). The first-order equation depends on the zero-order equation and its derivatives as

well the affix of the vortex point, U,.

To write this equation in terms of the normalized bubble time, x, one applies

equation (3.17) and its derivatives to equation (4.1). In section 3.5 we have taken the zero-

order solution to be independent of the slow laboratory time, t., so that those terms

containing derivatives of u0 with respect to t. must vanish. Moreover, the mixed derivative

terms in the second-order equation of u2 also vanish for the same reason. Thus, the first-
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order equation may be considered to be independent of the laboratory time, t%, and can be

written as an ordinary differential equation depending only on the bubble time, 'r. Applying

this and the period parameter from equation (3.20), we can write a normalized form of the

first-order equation as

r /2
d2U 1  3 duo (dul' ul d2 u0  12 1'3u Ui __X2____x (4.4)
dx2  u0  ) u dX2  u 2 J2 U0

with corresponding initial conditions of

u1(0) = 0 (4.5)

and

dul(0) - W(1 + q)5/4( +K) - (4.6)
dx 8d~s Cp = -K

Tis leaves a single-degree-of-freedom system governed by a linear second-order

nonhomogeneous ordinary differential equation. Due to the !act that the zero-order

equation has periodic solutions, this ordinary differential equation has time dependent

periodic coefficients that can produce parametric excitations in the system. This type of

system is discussed by Nayfeh and Mook [7] among others, and as they suggest it can be

solved using Lhe Floquet theory for the homogeneous solution and variation of parameters

for the particular solution [12].

4.2 Homogeneous Solution from the Floquet Method

4.2.1 Standard Form of the Equation

The linearity of equation (4.4) permits the forcing term to be set to zero, leaving a

homogeneous equation involving only derivatives with respect to the normalized bubble

time, x. The homogeneous part of Equation (4.4) can then be written as

d2u du+ rPI(X)j + P2(X) U = O ,(4.7)

where
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p(x) = 3 duo
uo dx (4.8)

and

2 u 2
P2(X) d + k - - 1 (4.9)

U d2 U 2

For ease of writing and to avoid confusion in later analysis, the first-order subscript

is dropped for the homogeneous form of the equation. Because they depend on u0, both

coefficients, pi(x), are periodic functions in x with a normalized period of unity.

Equation (4.7) can be expressed in standard form by eliminating the first

derivative term. Using the transformation

z

U -= u3 (4.10)

and its derivatives, one can write equation (4.7) in the standard form,

d2z
dx 2 + p(x)z = 0 (4.11)

where

p x) =V (4.12)
21 2-

The parameter p(x) is also a periodic function, dependent on the zero-order solution

and ti. Figure 4.1 shows the form of p(x) for various values of Uv. It is seen that as the

value of U, increases, portions of the function p(x) become increasingly steeper and

steeper. This phenomenon causes equation (4.11) to become increasingly stiff with rising

u, values, and some care must be taken if this equation is to be evaluated numerically.

This standardized form of the first-order equation in (4.11) is among the class

known as Hill's equations, and can have stable or unstable solutions depending on the

value of u, in p(x). For the special case when p(x) has the form
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Coefficient p(x) and dp/dx for several uv values.

l I I I
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p(x) 200
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Noumalized bubble time, x.

Figure 4.1 The Periodic Coefficient, p(x), and its Derivative from the Standard

Form of the First Order Equation for Several Values of uv.
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(4.13)
p(x) = d* + 2 e*cos(2 x)

where d* and e* are stability parameters, equation (4.11) reduces to a form of Mathieu's

equation dealing with the problem of vibrations of an elliptic membrane. With the homoge-

neous first-order equation in this standard form its stability and its solution are well known

and are given by Abramowitz and Stegun [9] among others.

4.2.2 Small Oscillation Stability Analysis

As discussed in Nayfeh and Mook [8], the stability of equations (4.7) and (4.11) is

the same. So the stability of one will be the same as that of the other. Using the small

oscillation results from the zero-order solution for the case

uv = 1 + a , (4.14)

where 8 << 1, a small oscillation form of the standard equation can be obtained. Sub-

stituting the small oscillation expressions for uo and I from equations (3.34) and (3.37) into

equation (4.11) and keeping terms to the second order in 6, one finds a small oscillation

form of the homogeneous first-order equation to be

d-+41(2[+Lcos(22 x) -- cos(2x) + cos(4nx) z = 0.

(4.15)

Equation (4.15) can be recognized as a Hill's equation.By letting 0 = 71x and

ruling out terms containing 40; one can write this equation to the second-order in 8, except

for the neglected 40 term, as

d2 i + 621 + 8 1- d5 cos(20) z=0
'I + 4L 6 - d21 /i =0 (4.16)

This is a standard Mathieu equation with the form of the coefficients as described in

equation (4.13). The term 82 2 cos(4 x x) from equation (4.15) was left out of the

expression in (4.16) in order to produe the proper form for a Mathieu equation. This
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omission seems acceptable since similar results to the present analysis were obtained while

only keeping terms up to the first order in 8.

Comparing the coefficient in equation (4.16) to the Mathieu form in equation

(4.13), we find that the stability parameters are

8*= 4(1 + 82)61) (4.17)

and

6*= 5(11- (4.18)

Therefore both 8* and e* are functions of 8.

The stability of the Mathieu equation can be visualized by plotting 8* against c*. In

the 8*,e* plane. for the present case there are two curves of neutral stability [9] given by,
4 L(*2+ 5 (C, 4+

5* = 4 -. (e)2 + 13 8 2 4 "- + "'" (4.19)

and

5* = 4+ 1(1*)2 1 382 1 (e) + (4.20)

In the region between these two curves the solution to the Mathieu equation is

unstable, while outside these curves the solution is stable. Remembering that

8 = uv- I , (4.21)

one can plot equations (4.17) and (4.18) as in figure 4.2 for various small values of u,.

Note that two such curves are plotted in figure 4.2. One curve is shown as a continuous

curve with circled points showing various uv values in the interval [1,1.013]. The second

curve is shown as a sequence of small black squares and this curve covers the uv interval

[1, 0.987] . Included in this figure are the neutral stability curves from equations (4.19)

and (4.20).

As 8 -+ 0 and u, -+ 1, the Mathieu equation in question yields neutral stability

parameters of 8"*- 4 as e*- 0. Similarly, both neutral stability curves also approach a
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Depature from stability of first-order solution, u 1(x).

0.14 Uv =1.013
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Figure 4.2 Ilhe Stability Region of the First-Order Differential

Equation for Small Oscillations.
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value of 8"- 4 when e*-+ 0. This shows that the homogeneous part of the first-order

solution departs from a point of neutral stability at u, = 1, continuing into an unstable

region as u, increases or decreases. When u, = 1, the period parameter assumes the value

X = ni 2 and the Mathieu equation in (4.11) becomes the equation of a harmonic oscillator

which is indeed neutrally stable. It appears from figure 4.2 that the small oscillation

solution curves continue to stay in the unstable region for all higher values of uv, although

the small oscillation approximation will break down as the value of u,, increases or

decreases too far outside of the range [0.98, 1.03].

4.2.3 Floouet Method

The homogeneous first-order equation describes the behavior of a system governed

by a linear ordinary differential equation with periodic coefficients. The functional behav-

ior of single-degree-of-freedom systems can be characterized using the Floquet theory.

This theory determines general properties of the solutions from systems governed by

equations of the form (4.7), without actually solving them. These properties can then be

used to determine numerical approximations to the solutions. These approximations have

factors that are periodic, allowing them to be used over many cycles, whereas other

numerical solution techniques tend to accumulate excessive errors when used over an

extended range. The nonperiodic factors are exponentials which also permit accurate

numerical evaluation. The following development is given by Nayfeh and Mook [8], and

applied to the equation at hand.

Since equation (4.7) is a second-order linear homogeneous equation, it has two

linearly independent solutions ul(x) and u2(x). Here the subscripts refer to the two

independent solutions to the first-order homogeneous equation and not to the first or

second-order equations of the two scale expansion. Functions such as ul and u2 are

usually referred to as a fundamental set of solutions because every solution is a linear

ni of these two solutions, and because they satisfy the fundamental initial

conditions of
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u l (O) = 1 l (0) = 0 (4.22)

U2(0) = 0 12(0) = 1

Since the zero-order solution is periodic, equations (4.8) and (4.9) are also periodic

and

P(X) = P(X + T) , (4.23)

where T is the period and in the normalized sense equal to unity. It follows that if ul(x)

and u2(x) are any two solutions of equation (4.7), then ul(x + T) and u2(x + T) are also

solutions of equation (4.7). Also, if ul(x) and u2(x) are linearly independent, then

ul(x + T) and u2(x + 1) must be linearly dependent on ul(x) and u2(x) because a second-

order equation has only two linearly independent solutions. Therefore, there exist two

constants for each solution that do not both vanish at the same time such that

(ui(x + T)) = [A] (ui(x)) , (4.24)

where i 1 and 2 and the matrix [A] contains the four constants

[A] al
l 12 ]

a21 a22 I (4.25)

Applying the fundamental initial conditions from (4.22) and the normalized

period to equation (4.24) and its derivative, we find the constants to be

all = U(1) a 12 = il(l) (4.26)

a21 = u2 () a 2 2 = i 2()

Once ul(x) and u2(x) are known the aij constants can be determined.

Since equations (4.7) and (4.11) are both a form of Hill's equation and have the

same stability cscs, the above process also holds true for a fundamental set of

solutims, zl(x) and z2(x). In the actual numerical solution process it is the fundamental set

of z, solutions which are found, and they are tirnsformed back into the ul form using

equation (4.10). This is done for convenience, since the small oscillation and stability
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results are more easily obtained from equation (4.11), as will be shown later. However,

u1 and u2 will continue to be used in the development of the solution to avoid confusion.

It can also be stated that there exist fundamental sets of solutions having the

property

Vi(x + T) = Xjvi(x) , i = 1, 2; (4.27)

where X are the eigenvalues of the matrix [A]. These eigenvalues may be complex.

Equation (4.27) represents what are called Floquet normal solutions, and are related

linearly to ui(x) by a 2 x 2 constant nonsingular matrix, [P], such that

{ui(x)) = [P] (vi(x)) . (4.28)

The substitution of equation (4.28) into equation (4.24) yields

(vi(x + T)) = [P]- [A] [P] [vi(x)) , (4.29)

or

(vi(x + T)) = [B] (vi(x)) . (4.30)

The matrices [A] and [B] are said to be similar matrices because they have the same

eigenvalues, that is

I[B] - )i[I1 = I[A] - Xi[I] = 0 , i= 1,2. (4.31)

The eigenvalues of matrix [A], which will also satisfy matrix [B], must now be found1 . It

follows from linear algebra that a nonsingular matrix [P] can be chosen so that [B] will

have its simplest possible or Jordan canonical form. This form depends on the eigenvalues

of [A] which are found by solving

I[A] - ,[l]I = 0 , i= 1,2. (4.32)

1 It is hoped them will be no confusion between X for the period parameter and k for the
eigenvalues.
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This leads to the equation

2
X "2ak+ A '0 (4.33)

where

11
a -- I [U(1) + ii2 (1)] - [all + a22] (4.34)

and

A = uI(1)i 2(0) - il(I)u 2(i) = alia 22 - a12 a21. (4.35)

The quantity A represents the Wronskian determinant of ul(I) and U2() as defined by

A = u(l) 1( l )  (4.36)
U20) U20)

Since equations (4.7) and (4.11) have the same stability characteristics, the

Wronsdan of equation (4.11) can be analyzed to determine its value. From equation

(4.11) for the two solutions z, and z2 , it follows that

il(l) + P(X)Z 1 (l) = 0 (4.37)

Z2 (l) + p(x)z2(l) = 0 J
Subtracting z2 times the first equation from z, times the second one gets

z(0)'z0) - (Z 2 ) = 0, (4.38)

which can be integrated to yield

A(x) = zI(x) 2(x) - l(x)z 2(x) = constant . (4.39)

Converting this back to the uj solutions using equation (4.10), one finds that the expression

is still equal to a constant Evaluating this and using the initial conditions of (4.22) one

gets

A(x) a 1 , (4.40)
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which is as it should be in the case of a Hill's equation [8]. This is an important result. It

can be used later to indicate roughly the error in the numerical solutions for u1 and u2.

The stability parameter, a, is used to determine the value of the eigenvalues, X, of

[A]. With A = 1, equation (4.33) yields

X1,2-- 4 a 2 - 1 (4.41)

where the roots are related by

X = 1 (4.42)

If a = 1!, equation (4.41) yields only one eigenvalue, namely

X = a = ±1 . (4.43)

If a * 1, equation (4.41) yields two distinct eigenvalues, and [B] takes on the diagonal

form

[B)2 (4.44)

It follows from equation (4.30) that

vi(x + nT) = X vi(x) (4.45)

where n is an integer and i = I and 2. Then as x -+ c@, n -- cc and

A if lxil < 1 (4.46)

1x 0 if lxil> 1

Whenkj = 1, vi is periodic with period T. When Xi = -1, vi is periodic with period

2T. Thus the cases X, = X = ±1 separate stable from unstable solutions for the

fundamental set and are called transition values.

It remains to express equation (4.27) in normal Floquet form. First we multiply

the respective equations by exp[- y,(x + T)], which yields

e- Yi(x + T) vi(x + T) = e" yx vi(x) , (4.47)
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where

e" -iT - (4.48)

and

T f lnXi . (4.49)

The term y in equation (4.49) is called the characteristic exponent. The right side of

equation (4.47) is periodic with period T, and can be expressed as

e"f i x vi(x) = Oi(x) , (4.50)

where Oi(x + T) = Oi(x). Hence, vi(x) can be expressed in the normal form

vi(x) = e ix Oi(x) (4.51)

For the case when X± = 1, similar reasoning yields the same result for vl(x), but

v2(x) will have the form

v2(x) = ezx [q, 2 (x) + --- O(x)] (4.52)

due to the double root. These give expressions for the approximate normal Floquet

solutions of equation (4.7) derived from the properties of the numerical solutions, ul(x)

and u2(x). They are made up of well defined exponential functions multiplied by periodic

functions, Oi.

The stability of the fundamental set of solutions in Floquet form from equaions

(4.51) and (4.52) can be analyzed by calculating the value of c. When Ic I> 1, the

absolute value of one of the A, is larger than one while that of the -'her is less than one,

according to equation (4.42). This leads to 'y and y2 having equal magnitudes but

opposite signs. Thus, one of the normal solutions is unbounded and the other is bounded

as x -- o, as evidenced by equation (4.46). When l61 < 1, the roots from equation

(4.41) are complex conjugates having unit moduli. As stated before, the transition from

stabiity to instality occurs for lcd - 1, which coresponds to the repeated roots
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,= X2 - 1 andX 1 = X2 = -1 sothat 1 -= y2 = 0ori . The former case has a

periodic normal solution with period T, while the latter case has a periodic normal solution

of period 2T. The locus of transition values where lcl = 1 is a very important outcome of

this method and can be used to determine critical flow values that will produce neutrally

stable solutions. The stability parameter, cx, the eigenvalues, k, and the characteristic

exponents, y,, can be determined from equation (4.11) by numerically calculating the two

linearly independent solutions, z1 and z2, during the first period of oscillation. With the

help of these solutions and their first derivatives at x = T, one can calculate a and A from

equations (4.34) and (4.35). Then the X's and Ys can be determined from equations

(4.41) and (4.49) respectively.

The solutions u1 and u2 can be found by taking the numerical results for z, and z2

from equation (4.11) and transforming them into u1 and u2 with the help of equation

(4.10). But, due to numerical instabilities in the adaptive Runge-Kutta algorithm used

here, errors will accumulate in the numerical process because the equation is stiff in cetain

limited x intervals durring the integration over a period, [0,1]. The degree of stiffness

increases as Uv departs more and more from unity.This aspect of the work will be dis-

cussed further below. Over the full range of the forcing function the solutions need to be

extended over many periods in x, which will greatly reduce accuracy as the erors keep

accumulating. To overcome this error accumulation the numerical solutions can be

transformed into normal or Floquet solutions which in general have periodic factors as

noted above. This would require numerical solutions of u1 and u2 for only one period of

oscUlation, thus minimizing the errors. This is also all that is required in the calculation of

the previous stability parameters and characteristic exponents.

It then remains to find the components of the Floquet solutions in equation (4.51)

in terms of the numerical u, solutions. The Ys have already been developed. Expressions

for the periodic functions,#, must then be found. This is begun by relating the uj

solutions to the vi solutions using equation (4.28). To find the components of the matrix
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[P] in (4.28), the eigenvectors corresponding to the eigenvalues of matrix [A] are found,

such that

IX [1] - [A]I [P] = 0, (4.53)

where, for cases i = 1 and 2

[P i [P] " (4.54)

Expanding equation (4.53) for both values of i, four equations are obtained and can be

expressed as

a, Pli + a1 2P2i = XiPli (455)

a21 P1 i + a2 2 P2i = ,iP2iJ

From this set of equations, we find the ratio

Pli a12  i - a2 2
P2i-X - al - a21  (4.56)

This leads to the modal matrix

[]= a 12 a12 ai ] - a22 X2 - 221 (4.57)[P]= I - all ;-72 -all1 a2l a21

Either of these matrices can be used to transform between variables, or their average could

be used to try and minimize errors in a computer code. Only the first form is used here.

From equation (4.28) it is seen that the inverse of [P] is needed to express the

solutions in Floquet form. The inverse of [P] is

P- = [ - a, I -a 1 2 ] ir= __[ a21-(. 2  a2 2 ) (4.58)

[pI Alp- " all) a12  AP -a21  X,1 - a2 2  (

where

A P - a 12 (X2 - X1) = a2 1 (. 1 - ; 2  (4.59)

For convenience, the first of these is chosen for use in the following development.
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Applying equation (4.58) to equation (4.28), one finds that the Floquet normal

solutions in terms of the numerical solutions are

(x2 " a)ul(x) - a 1 2u2(x)
v1(x) a12 (X2 - 0

V2(x) ( X a11)uj(x) + a 12 u2(X)
a12(2 - (4.61)

Equation (4.51) can be solved for j. It is found to be

(X) = e"¥ix vi(x) (4.62)

and its first derivative is

#i e"i r - ivi(x) (4.63)

The normal Floquet solutions and their derivatives in terms of the numerical solutions from

equations (4.60) and (4.61) can then be substituted into equations (4.62) and (4.63). Both

*j and d are periodic functions in x and we only need ui numerical solutions over the

first period to be continued indefinitely.

In summary, two linearly independent solutions to equation (4.7) can be found

numerically, by starting with initial conditions for a fundamental set and integrating over

one period of oscillation. The value of these solutions when x = T = 1 can be used to find

the characteristic parameters of the solutions, namely: the stability parametera , the

eigenvalues, X, and the characteristic exponents, yi. These solutions can then be used to

determine a periodic function which, along with the characteristic exponent, can be used to

express an approximate normal Floquet form of the solutions which can be continued over

many periods. It now remains to find the particular solution to the equation, to combine it

with complementary function and to evaluate the constants of integration, A and B, in the

complementary function in terms of the initial conditions.
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4.3 he Particular Solution

To find the particular solution to the nonhomogeneous form of the first-order

equation, one can use variation or parameters [12]. Ordinarily it is impossible to find a

particular integral of a nonhomogeneous lint -.r differential equation by inspection. But

since a form of the homogeneous solution can be found by the Floquet theory, the general

variation of parameters method enables one to replace the constants of integration in the

complementary function with the functions a(x) and b(x). This is done by assuming a

particular solution to the first-order equation of the form

up(x) = a(x)ul(x) + b(x)u 2(x) , (4.64)

where again ul(x) and u2(x) are the two fundamental solutions to the homogeneous

solution, and a(x) and b(x) are functions of x that satisfy the additional condition

da db
ux "I - u2"7 = 0 .(4.65)

Differentiating equation (4.64) with respect to x two times and applying the condition in

equation (4.65) one gets

= du1  du2
dx - - (4.66)

and

d2up d2u1 +! du1  d2u2  db du2
dx 2 ffi a-+- x + b- 2  dxdx (4.67)

The particular solution must satisfy the original forced first-order equation.

Substituting these results into equation (4.4) one has

a~d pI(x)-- + p2(x)ul +b[X2 + pI(x)-- + p2(+u)u2

daddXl db d2 

+ !+ u F(fx) (4.68)
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But both ul and u2 are solutions of the homogeneous equation, so that the first two

terms in equation (4.68) are zero according to equation (4.7). Therefore equation (4.68)

is reduced to

da du1  db du2  2d + Lb - =X- F(x) . (4.69)

Equations (4.65) and (4.69) yield two equations for the two unknowns, da/dx and

db/dx. They can be written as

[ x2 F(ex) (4.70)
uI u2 _Uo F

The determinant of this system is

A = uIu 2 - uIu 2 • (4.71)

This is the Wronskian of the homogeneous equation from (4.39) and is equal to

unity. Equation (4.70) yields two equations. Integrating them, one finds a(x) and b(x) to

be

x

a(x) = - " F(e,4 ) d
f 1JO(4)
0

and (4.72)

x

b(x) X2 U() F(e,) d,

where a(0) = b(0) = 0. Substituting these into equation (4.64) one gets the particular

solution of

[x F(e,x) d + x ]u2( n~x) (4.73)
Up(X) -- Z Ul(X) U24 Fe4 k+u2(x) u0(x) F(,,) dt
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When x = 0, both integrals in (4.73) vanish leaving

up(O) = 0 . (4.74)

Differentiating equation (4.73) to obtain the particular growth rate, we find

x X
_ u2(4) F(,,) d + u2(X) ]u ( )  (4.75)

-x FO( ) df J U F) d

0

Both of these integrals also vanish when x = 0, thus

d x.O= (4.76)

Equations (4.73) and (4.75) represent the particular integral and its derivative for the

normalized first-order equation. They can be combined with the complementaty function

to obtain a complete integral of the differential equation and then the initial conditions can

be used to solve for the constants of integration, A and B.

To be able to continue the particular solution numerically over many cycles we

avail ourselves of the above normal or Floquet solution. Using it we can transform the

particular solution into normal or Floquet form. To do this, we substitute u1 , u2 and their

derivatives into the particular solution. The matrix [P] from equation (4.57) is used to get

them in terms of the Floquet variables v, and v2,. According to the relationship in

equation (4.28),

ul(x) = a12 1VI(X) + v2(x)] (4.77)

u2(x) = (k1 -a l l )vl(x) + (X2 -a l l )V2(X) • (4.78)

Substituting these expressions back into tquations (4.73) and (4.75), we find
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uP(x)= ; 2 a12 (XI -2) VI(X) J -F(e,4) v2(x) -, d4J, (4.79)

and its derivative

v2(a) F(1 , ) dv l )-FE d I
dul 2 a12(XI - X2) [l(x) F(e,) d4 - '2(x) v4 F(•,) (4.80)

oI
Equations (4.60) and (4.61) give v1 and v2 in terms of u1 and u2. Since the integrals in

equations (4.79) and (4.80) both vanish when x = 0, initially one has

Up(O) = 0 (4.81)

x- 0

Equations (4.79) through (4.81) represent the normal or Floquet form of the first-order

particular solution, its particular growth rate, and the particular initial conditions. These

can be combined with the Floquet form of the homogeneous solutions to write a complete

integral for the first-order equation in normal Floquet form. At the upper limit of the

integrals in equation (4.79) when , = x, the two exponential terms contained in the two

Floquet variables when they are multiplied together become unity since' and y, have the

same magnitude but opposite signs for the case a > 1. If the corresponding *i(x), u0(x)

and F(x,e) are bounded in [0, x], then as x -+ oo, the first integral in (4.79) also approach-

es - since y> > 0 and the exponential part of v, dominates the solution. In the same

regard, the second integral approaches a constant because y2 < 0 and the exponential part

of v2 vanishes. This means that for values of a> 1, as is the case for this analysis, the

first integral in equation (4.79) is unstable while the second integral is stable as x -+ co.

Exactly how unstable the first integral will become depends upon the magnitudes of the

parameters such as ,.
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4.4 First-Order Eguation Solution

With the homogeneous solution and particular integral for the first-order equation

found in both numerical and normal Floquet form, they can be combined to form the com-

plete solution. One does this by multiplying the two linearly independent fundamental

functions by arbitrary constants and adding these to the particular solution. Thus, the

complete solution to the normalized first-order equation in (4.4) has the form,

u(x) = A u (x) + B u2 (x)

x x
+u2() F(,,) dt + u2(x) u-4 , (4.82)+x2[-ux)f( )d ()JFc )j

f UA)(4.82)
0

where A and B are the arbitrary constants that must be evaluated from the initial condi-

tions. It is noted that although the variables to the left of the equality ul and u2, they form

the fundamental solution set for the first-order equation, they should not be confused with

the notation in section 2A above for the two scale equations of the original Rayleigh-

Plesset equation.

The initial conditions for the first-order equation were derived from the flaccid

bubble analysis as in equation (2.45) giving t"¢ initial growth velocity. From equations

(4.5) and (4.6) above we have

ul(0) =0 (

= Wr(1 + q)14_(1 +K) (CS 2 ) p-4.83)

It was shown in the particular-solution analysis that both the particular solution

and its derivative are equal to zero when x = 0. Applying this fact and equation (4.83)

to equation (4.82) and its first derivative, one finds the equations,

Aul(0) + Bu 2(0) = 0, (4.84)

Aui(O) + Bu 2(0) = C. (4.85)
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From the initial conditions of fundamental set of equations (4.22), we find that these two

equations yield

A = 0, (4.86)

B =C. (4.87)

Substituting (4.86) and (4.87) into equation (4.82), one finds that the complete first-order

solution looks like

u(x) = Cu 2(x) - )2 U(X u24 ,4) d- - U2 (X) J - F(,,) dt (4.88)
fIO4 UA()
0 0

where C is given by equation (4.83). Differentiating equation (4.88), one also finds that

the complete first-order growth rate is

du F. (u 2 ( c, ) .d - u2(x) u1() F(,4) dt
= Cu 2(x) - [ui(x) f (4 ) U2(X ) (4.89)

01

To express the complete solution and its derivative in normal Floquet form, the ui's

must be expressed in terms of the Floquet variables. The substitution of equations (4.77)

and (4.78) into (4.88) and (4.89) yields

u(x) = C[(. 1 - all)vl(x) + 02 - v2(x)]

+ X2 al2(Ll .- X,2) v1(x) J!4- F(e,t) dt- V2(X) v(4) F(,t) dj (4.90)

and its derivative is
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du d [(. - a11)i' 1(x) + (X2 - a, 1) 2(x)]

v2({)v()

+ 2 a12 (XI - X2) [,(X) v2(4) F(e,) d4 - ,2(x) v'(4) F(,,4) dj , (4.91)
0 0

where vl(x) = ey1x 1(x) and v2(x) = et2x f2(x) as noted previously in equation

(4.51). These are the complete first-order solution and its derivtive in terms of the normal

Floquet variables, vi.

To study the complete first-order solution it is best to use the normal or Floquet

form which can be continued from the first period for many periods in x. A computer

code was developed which uses the zero-order solution and the forcing function in terms

of the normalized bubble time x, along with values of u, as input.

The first step needed is the numerical calculation of the homogeneous solutions,

ul(x) and u2(x), for one period as 0 : x < 1. As stated earlier, this was done by first

finding z, and z2 and converting them to ui.It was noted that equation (4.11) becomes

stiff as portions of p(x) become large with increasing values of u,. For cases of large uv,

standard numerical techniques such as a Runge-Kutta method prove to be insufficient But

according to Gear [101, the fourth-order explicit Runge-Kutta method produces convergent

and stable solutions for real values of the quantity h.p(x) between 0 and approximately

2.7. Here h is the step size in x and p(x) comes from equation (4.11). From equation

(4.12) one sees that

p(O) = 2 X2 > p(x) , (4.92)

so that

h.p(x) < 2hX2 < 2.7 . (4.93)
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If 200 steps are taken over the range 0:< x 5 1, equation (4.93) yields conservative values

of X < 16.4 which corresponds to a largest value of u, - 2.14. If 100 steps are taken a

value of X < 11.6 is obtained, corresponding to a value of u, - 1.77. Using a variable

step size fourth-order Runge-Kutta method, one sees that the number of steps taken over

the period of x for the entire range of u, fell between 100 and 200. This then tells us that

the numerical solutions obtained from this method are stable for values of uv at least up to

1.77.

By looking at the curves of p(x) in figure 4.1 for higher values of uv, for a number

of steps between 100 and 200, we see that the value of p(x) only violates the inequality in

equation (4.93) over very narrow strips near the values of x = 0 and x = 1. These regions

of stiffness produce unstable solutions over very small intervals compared to the rest of the

range of x where stable solutions are found. It was felt therefore, that the errors accumu-

lated using this variable step size Runge-Kutta method might be acceptable. This is indeed

the case, which will be verified later when the Wronskian of the system is calculated for a

range of uv values. Thus, we are quite fortunate in the fact that even :hough there exist

regions of numerical instability over the range of x for the solutions to equation (4.11),

these regions are small and a reliable proven numerical technique can be used to find the

solutions with acceptable error.

The use of the WKB method was explored for this problem because the value of

the parameter X becomes large as uv increases. It was found that although the equation is

certainly stiff in such cases, many terms beyond the order of I/A? must be obtained if one

is to get a sufficiently accurate asymptotic expansion.

The variable step size fourth-order Runge-Kutta method was applied once for each

solution, z, and z2, and these were then converted back to ui's using equation (4.10).

These solutions and their derivatives, for one value of u , are shown in figures 4.3.

Later on in the analysis the values of such solutions, along with u0(x), will need to be

given in even increments of x for numerical integration purposes. To obtain evenly
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Figure 4.3 A Fundamental Set of Solutions of the Homogeneous First-Order Equation.
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spaced values, a cubic interpolation scheme was used, which picked a target value of x

and used the surrounding four known values of the solution to interpolate the corre-

sponding value. The use of an interpolation scheme is also apt to add error to the

solution. But since the solutions are well behaved and a third-order method [L15] was

used, these errors were felt to be insignificant. This same method was applied to get

evenly spaced values of u0 as input to the calculation of the first order solution.

The values of the fundamental solutions and their derivatives at x = 1 are next used

to determine the constants in the matrix [A] from equation (4.26). From these values the

Wronskian of the system can be determined using equation (4.35). This Wronskian is

used to assess the accuracy of the numerical calculations of the fundamental solutions. As

was shown for Hill's equation, the Wronskian should have a constant value of unity. By

monitoring the value of the Wronskian for given values of u, the confidence that the

solution is sufficiently accurate is measured. Figure 4.4 shows the scatter in values of the

error (A - 1) over the range of u,. It is seen that although the variations from A = I

increase with uv, the difference is less than I0 ", which is acceptable for this analysis.

Closer inspection of this figure shows that great accuracy is obtained for values of u, up to

around 2, which verifies the numerical stability of the ui solutions talked about earlier

using the work of Gear [10]. As the i'alue of u, gets larger, the stiff regions of the

equation produce some error in the solutions, but not enough to discredit the present use of

the variable step size Runge-Kutta method.

The stability parameter, a, can also be determined from the values of matrix [A]

using equation (4.34). The value of this parameter leads to dynamic stability assesment of

the fundamental set of solutions used in the complete first-order solution. The fundamental

set of solutions begins at a neutral stability point when u, = 1, corresponding to a value of

a = 1, as shown in figure 4.5. This figure also shows that, exept for the special value of

uv = 1, cc is greater than unity over the whole range of u, values. Thus, for 1 > u, > 1,

cx > 1 and the fundamental set of solutions has one bounded and one unbounded solution
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Calculations of the First-Order Solution.
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Figure 4.5 Stability of the First-Order Fundamental Set of Solutions for a Range of u,.
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as time increases, and excupt for, uv = 1, no values of u,, do both of the the solutions

become stable. For the case of uV = 1, a = 1 and X1 = X2 = 1, the fundamental set reduces

to neutrally stable trigonometric solutions ofunit period and becomes unstable again with

further decreases in uv.

The next step is to determine the Floquet variables, vi(x) and vi(x). For computa-

tional purposes, it is desired have them in the form of equation (4.51) which involves a

well defined exponential function multiplied by a periodic function. From the a value, X1

and X2 can be determined from equation (4.41). From these, y1 and y2 can be determined

from equation (4.41) with a unit period of T = 1. The known characteristic exponents take

care of the exponential part of the Floquet variables.

Values of vi for one period in x can be found using the fundamental set of

solutions and equations (4.60) and (4.61). In the same fashion, j can be found. Then

using equation (4.62) and its derivative with respect to x, the periodic i and i can be

determined. Figure 4.6 shows a plot of Oi and i for several values of u,. This then

takes care of the periodic part of the Floquet variables. There now exists a form of vi(x)

and ',i(x) that can be continued over many periods in x.

It remains now to determine the integrals involving the forcing function from the

particular solution. This is simply done using Simpson's rule for evenly spaced values of

uo(x), v:(x), and F(Cx). The same process is applied to the integrals in the first derivative

equation. All these components are then combined as in equations (4.90) and (4.91). The

constant C can be determined using the forcing function and equation (4.83).

The above steps are combined into a computer program contained in appendix A.

Some of the input needed for the code is the pressure coefficient data for a circular cylinder

and a cavitation number. For this example, a value of K = 2.3 was used along with a

typical value of the free stream velocity of 40 fps. The initial nucleus radius size was taken

to be 7 microns and a characteristic length for the circular cylinder was D = 2 in. Values of
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the surface tension and density of water at 70 degrees were used and a dissolved air

saturation pressure of 10 psia was also used. The computed value of uv for these input

parameters is u, = 0.5994 and e is 1.6xlO6. But figures 4.7 and 4.8 show the complete

first-order solution and its derivative over many periods in x for a value of uv = 1.5994.

The reason for this change is that the calculated value of u" from these input data

fell below the critical value of unity for this investigation. The calculated value of uv corre-

sponds to small scale compressive air bubble oscillations which characterize the zero-order

phase plane trajectories to the left of the uO() = 1 point shown in figure 3.1. As was

stated in chapter 3, the present numerical analysis deals only with vaporous growth

trajectories to the right of this point. The extension of the code to smaller values of uv

could have been made, but it was not carried out; because the dynamic stability analyses

for values of uv to the left as well as to the right of the critical point show that, aside from

the case of neutral stability at uv = 1, all first order solutions are unstable as shown in

figures 4.2 and 4.5. We concluded therefore that calculations carried out for uv = 1.5994

can give a useful illustration of the consequences of the first-order instability.

It is seen from figure 4.7 that the total ul solution grows exponentially with x. For

this case the value of a is greater than 1, thus producing exponential terms with positive

exponents that will become unbounded as x increases. Figure 4.8 shows the derivative of

this complete integral. Figures 4.9 and 4.10 show the homogeneous and particular parts of

the first-order solution. From them we see that the large magnitude of the total u1 solution

comes from the homogeneous part. This is due the constant C multiplying the comple-

mentary function. C is of the order 103 for the given input values. Because this constant

term is relatively large, it dominates the smaller oscillations from the particular part of the

solution. The particular part of the solution grows at a slower rate than the homogeneous

part due to the fact that the amplitude of the forcing function contained in the particular

integrals grows rather slowly in terms of bubble time so that the modulated first order
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oscillations show a less rapid growth than does the complementary solution. But because

ofthe presence of the complementary function in the particular solution, it is also basically

unstable. It must be remembered also that since E is of the order of 10-6 , the entire first

order solution will be of the order of 10-3 compared to the zero-order solution. But it

appears from their forms that the present zero and first order solutions can not lead to any

useful inception criteria. It is necessary, therefore, that the suggestion developed at the end

of section 3.53 above be seriously considered in a separate investigation. This is particu-

larly important because it appears that the zero-order solution will frequently dominate the

first order solution, at least in the initial phases of the forced bubble motions as examined

here. Therefore, a more general reexamination of the zero-order solution centered around

the integrability conditions is warranted.

The preceding results do not restrict the value of uv and for that reason it has not

been possible to give a closed form perturbation solution. On the other hand when uv = 1

the solution is neutrally stable and there is a possibility that the forcing function can have

more influence on the bubble growth than was found in the proceeding example. Therefore

it is of interest to obtain a solution for this special case even though the condition uv = 1 is

too severe a restriction to make the result of practical value.

4.4.1 The Solution when uv--1

In Section 3.4.1 we found in the limit as uv -+ 1, that the zero-order oscillation

parameter is X = x -F and according to Equation (2.20) the period is T = (1+ q)3/4L.

Therefore when uv = 1, 1 + q = y and T = ry 3 /4 2. Moreover, the zero-order au-

tonomous differential equation (3.1) and its initial conditions, (3.2) and (3.3), insure that

at uv = 1 the zero-order solution is simply u0(r) = I for all values of the bubble time r, as

discussed in connection with Equation (3.14). Therefore we are free to consider the first

order differential equation (4.4), for ul(t), and its initial conditions, equations (4.5) and

(4.6). The fact that uO - constant in this case causes the derivatives of uo to vanish in
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equation (4.4) and the limiting value of X together with the unit value of u0 permits one to

simplify equation (4.4) to read

d2u1 + 4ir2u1 = 2x2F(ts). (4.92)

dx2

In equation (4.92) the forcing function argument has been transformed from real time, t, to

dimensionless laboratory time ts = tDN O, so that now

F(ts)= Wr[-Cp(ts)- K] WrFi(ts)

and in accordance with the discussion of Appendix B, the term Fl(ts) represents a closed

form approximation to the numerical data used above. In shifted laboratory time F1 is given

by equation (B.3). Moreover, the normalized bubble time, x, is now a reduced form of

equation (3.17) which becomes

x - Xy314,-2 .(4.93)

Since ts = e', it follows that the laboratory time and the normalized bubble time are related

by

ts = e x y¢7314"f. (4.94)

Consequently when x is the independent variable the initial condition of equation (4.83)

above becomes

fi,1 (0) = C =lW, /4V -1 .dd[, (4.95)
8 Cp =f -K

while we have the condition u1(0) = 0 as before.

The solution of Equation (4.92), subiect to the prescribed initial conditions is

well known:

uI = C sin 2xx + 1 WrATI(e; 4) sin 2x(x-)dt, for x < x., (4.96a)

and ifx > xs,



107

CX
Ui =C sin2zx~m +rs f(e;4)sin2x(x- )d

+ (2.225 - K) rsin 2x(x- 4) dx (4.96b)

If we let b = Ry3/4 /2 we can write the approximate formula for F1(e; x) for

t, < ts or for x :5 xs, as

F, (e; x) = a1 - K + a2to(K) + a2ebx + a3sin[a4ebx + a4 to(K)+ a5]; (4.97)

and in the laminar separation zone when x > xs = (0.365 - to)/(Eb),

F I(e; x) = 2.225 - K, (4.98)

as already indicated in equation (4.96b). The quantity t0(K) is the origin of the forcing

function and is given analytically in figure B4. The quantities ts and xs denote the

separation point in shifted coordinates, t = ts- to.

Because of the form of equation (4.97), the integral in equation (4.96a) can be

expressed as the sum, 11 + 12 + 13 , for 1 < Is or x < xs. If x is greater than xs there

also will be a fourth integral, J4, given by the second integral of (4.96b). Considering

these integrals in order, one finds that

11 a - K + a2to(K) (1-cos2xx), ifx5xs or2 x

=a, - K + a2to(K)
2x = I ~oK[cos2x(x-x.) -cos2xxs], if x x.

12 - 2 x -- sin 2xx} if x <xs or

12 12-- b {xscos2(x-x) +-L[sin2x(x-xs)-sin27cx }, if x>x s.

Using the trigonometrical addition formulz and integrating, one can write 13 as
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13 {2,+a 4eb [sin(a4 bx+ ) + sin(2xx-O)]

+ 21 [sin(a4ebx +) -sin(27 +
27c -a4ebsi(cx)}

where =a 4to(K) + a5 and 0:_ x:5 xs. For the case in which x xs we have,

13 = {21t + b [sin(a 4ebx + -27c(x- xs)) + sin(27x- )]

212c+ 1 in22x+)I
+2,-a 4eb [sin(a 4 ebx+ + 27c(x- xs) -sin(27x +

Continuing with the case x > xs, we evaluate the last integral, 14 in equation

(4.96b), in order to account for the constant pressure in the separation bubble. This last

result is

2.225 -K
14= 27c [1- cos2,r(X-Xs)].

Then the complete closed-form solution to order e can be written as

u(x) = u+Eu1 I1 +{ E sin2rx + 1-Wr[ 1 +12+13+ 141 (4.99)

where 14 =0 if x < x.. Because of the approximations representing F,(e,x) from

Appendix B and the stability of the solution in this case, one can examine the influence

of the forcing function on the solution given in equation (4.99). As already found in the

general case, the term from the initial condition simply provides a steady oscillation of

amplitude L at the natural frequency of the bubble.

The interesting part of the solution is found in the sum of the integrals. We shall

use the artificial example of e = 0.001, K = 2.3, y = 12.9 and b = 30.3. From these data

and with the help of equation (4.94) and figure B5 one sees that xs = 10. We also find that

to = 0.06 from figure B4. Then since we have y, K and uv, the Weber number can be

found from figure 3.2, and it is Wr = 2 4 . These parameters and the coefficients, al, ... , a5,

from figure B3 are all that one needs in order to evaluate the term, AWr[ 1,+ 12+ 13+ 14], in

equation (4.99). The result of this calculation is shown in figure 4.11, below. The figure
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shows that the fundamental vibration of the bubble is modulated by the forcing function as

one expects. The bubble grows and starts to collapse but when the bubble reaches the

laminar separation zone its collapse is arrested and the bubble simply vibrates in place. The

growth shown by this example is modest, compared to the initial condition which con-

tributes the term, 43.35 sin2cx. Consequently, even though this initial term provides no

growth its effect will obscure the forcing function response. It also evident that the

condition uv = 1 is too restrictive. No inception calculations can be carried out if uv is so

constrained even if the growth were greater. As this example shows, however, the first

order solution does respond to the forcing function as expected.

1.5

G Laminar Separation Point

".1.0-

0.5

0.0

I , , I . • I .. . I

0 5 10 15
Normalized bubble time, x.

Figure 4.11 Particular First-Order Solution for uv = 1 as Calculated from

the Convolution Integrals of Equations (4.96a) and (4.96b).
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CHAPTER 5

SUMMARY AND CONCLUSIONS

This investigation has sought to solve the forced Rayleigh-Plesset equation for the

dynamics of forced vaporous growth of a cavitation bubble in an inviscid incompressible

flow about submerged bodies using a two-scale perturbation expansion. Of course, the

introduction of a viscous term into the equation could well introduce a third time scale.

Experience with straight forward numerical integrations of the forced Rayleigh-Plesset

equation with and without viscosity has shown the viscous term to have negligible effect

for relatively long pulse forcing functions of interest here. Other simplifying assumptions

were that the isothermal bubbles are spherical and that they do not interact with each other

or with the surface of the submerged body. For further simplification we suppose that the

pressure distribution on the body supplies the excitation for the bubble dynamical equation

and that the boundary layer slows the progress of the bubble along the surface in a very

rudimentary way. The bubble growth is not coupled to the shear layer. The two time scales

arise firstly, from the natural period of a microbubble itself and secondly, from the time

required for the growing vapor bubble to move through the low pressure region on the

body. The first of these dimensionless times is the fast "bubble time" and the second is the

slow "laboratory time". The ratio of slow to fast times is the perturbation parameter, e.

The first part of this investigation dealt with the forcing function that drives the

growth of the bubble. Baker [2] used pressure coefficient data from a hemispherical

headform having a short laminar bubble followed by turbulent reattachment. The present

analysis considers a new possibility for a forcing function, namely the supercritical flow

about a circular cylinder, because this flow exhibits a laminar separation bubble just

upsuream of the turbulent separation point. It presents an instance of cavitation inception
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not previously studied in this context, and may help to determine if this type of analysis can

be applied to any body which has a boundary layer with a short laminar separation bubble.

Using pressure coefficient data for a circular cylinder and employing a very simple bubble

convection model , we converted these data into a forcing function dependent on the slow

laboratory time.

Next, the kinematics of a bubble as it travels through the high pressure region on

the body were considered because this region lies directly upstream of the vaporous growth

region. These results were used to derive initial conditions at the start of vaporous growth.

Using the two time scales of the present problem, the dynamical equations and their i-fitial

conditions were derived to the third order of the small parameter, e. A few errors were

found and corrected in similar equations derived by Baker.

The relationships between the measurable flow, body and bubble parameters were

then considered in order to indicate their effect on the range e. It was found useful to

express these several parameters as dimensionless quantities and to relate them to practical

experimental ranges of the variables to cover likely applications of this analysis. As Baker

showed from his zero-order phase plane study, there is a single parameter, u,, the affix of

the vortex point in the zero order phase plane, that relates the bubble dynamics to key flow

parameters such as the cavitation number, Weber number and dissolved air content. This

then is the single parameter which characterizes each member of the family of solutions.

A solution of the zero-order equation was next obtained. For small values of u, in

the neighborhood of unity, the zero-order solution is nearly sinusoidal. Thus a simple

closed form approximate solution for small oscillations in u,, was found using

trigonometric functions which correctly displayed the periods and amplitudes of the u0

solution. Although Baker's zero-order solution in the form, t = f(uo), showed good

results, it can not be inverted, The solution of the first-order equation requires the zero

order solution to have the form uO(). Therefore, a numerical u0 solutions were found for
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one period in x that are accurate over the range of u, values. The solution for one period

can be reused over large ranges in x due to its periodicity.

Considerable study centered upon the first-order integrability condition and it

suggests that the zero-order solution should be independent of the slow laboratory time.

The integrability condition is a second order partial differential equation for u0 consisting of

those terms having mixed partial derivatives in the first order equation that must be set

equal to zero. The above independence will be true only if the arbitrary functions of the

slow time, which result from partial integrations with respect to the fast time, are in fact

completely independenit functions. This is the situation ordinarily encountered and it is a

fundamental precondition in thpresent investigation. That the zero order solution is then

independent of ts was shown explicitly for the small oscillation approximation to the zero

order solution. Next the integrability condition itself was examined from the viewpoint of

the theory of charactersitics. In addition the most general functional form of u0 was found

in terms of the two time scales by direct integration. These considerations verified that the

zero order solution should not depend on independent arbitrary functions of the slow

time. The importance of this comes in the fact that all terms involving derivative of u0 with

respect to ti in the higher order equations vanish, presumably suppressing secular terms in

the solutions. It also allows both the zero and higher order order equations to be written as

ordinary differential equations instead of partial differential equations.

Finally, the first-order equation was solved. This turned out to be a nonhomo-

geneous linear second-order differential equation with periodic coefficients which are

functions u0. It was found that the homogeneous form of this equation could be

transformed into a special form of Hill's equation. For small oscillations in uv, the first

order solution can be approximated in terms of Mathieu functions. This fact was used to

investigate the departure of the solution from a neutrally stable state, involving only simple

harmonic oscillations, to unstable states as the oscillation amplitude increases with

increasing u.
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The linearity of the first-order equation enabled the superposition of the compli-

mentary solution and the particular integral in order to arrive at the complete integral for the

first-order problem. The solution to the homogeneous form of the first-order equation can

be found using Floquet theory. This solution in normal Floquet form was found

numerically for one period in x, then extended over more periods using the periodicity of

the Floquet variables. Variation of parameters was then used to derive the particular

integral and the initial conditions were used in conjunction with the complete solution to

evaluate the constants of integration. Again it was found that these constants are

independent of laboratory time, and that only the bubble time appears explicitly in the

solution.

Normally the u1 solution would be multiplied by the first-order of e and be added to

the u0 solution to obtain an approximate result to the governing Rayleigh-Plesset equation.

But in this investigation, only the nature of the complete first-order solution was obtained.

This is because the actual value of uv which is consistent with the other flow parameters for

the test case is u, = 0.5994. This value defines a zero order phase plane trajectory to the

left of u,, = 1.0, denoting compressive oscillations of u0. The present study has been

limited to cases for which the zero-order trajectories lie to the right of u, = 1.0,

corresponding to oscillations of expansion which would naturally seem to lead to further

vaporous growth under the influence o a forcing function. The present example shows

that this may not always be true. Nevertheless a specific example for uv = 1.5994 has been

worked out in order to indicate important features of the present solution.

New things that have emerged from this work include the small oscillation theory

which showed that trigonometric functions can be used to derive approximate results to

both the zero and first-order solutions for values of u close to unity. To the authors'

knowledge, this is the first application of the Floquet theory to bubble dynamics. This

approach makes it possible to investigate the dynamic stability of the solutions and we

found that aside from the small oscillation case at uv = 1, all other solutions are unstable. It
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was also useful because numerical work was only needed over the first period of the first

order complementary complementary function, u1, thereby minimizing error accumulation

since the complete solution is extended over many periods. The forcing function for the

circular cylinder was used to show one example of the solution. It is presented to demon-

strate that a numerical solution can be found using different but appropriate bodies. The

chief practical physical interpretation to be obtained from these calculations is that the lack

of stable solutions prevents their use for the inception problem.

Finally we note that our our decision to satisfy the first order integrability condition

by taking the zero order solution to be independent of the slow laboratory time, ts, has had

a profound effect on the outcome of this research. This choice was based upon the fact that

in the absence of additional conditions on the problem, constants or functions of integration

are arbitrary independent functions of the slow time. Perhaps the most important effect of

this requirement may be the dynamic instability found in the first order solution. Conse-

quently it appears that if one abandons his insistence that that the functions of integration in

the zero order solution be independent arbitrary functions of the slow time, then further

progress might be possible and a physically acceptable solution might be the outcome.

Whether or not a generalized approach to the problem as suggested in section 3.5.3 above

can succeed in changing the present unsatisfactory state of affairs remains to be

investigated.
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APPENDIX A

FORTRAN CODE LISTING

This is a listing of the computer code used to do all the calculations. This

includes calculating the forcing function, zero-order solution and first-order solution.

Since phases of the code were developed at different times throughout the analysis and

pieced together into this final code, its working order is by no means the most efficient.

The important result is that it works.

The code is written in standard FORTRAN 77, and was run on both a

MACINTOSH PC and a VAX 11-780 system. Many of the numerical subroutines have

been adapted from Numerical Recipes by Press et al. [15] which made much of the

programming easier and more efficient.

The inputs needed for the code are provided fiom three different files. The first

file corresponding to unit 10 contains initial values to perform the first-order integration.

These include the initial and final values of x for one period, X1 and X2, an estimated

step size to be used in the Runge-Kutta routine, H, the required accuracy used in the

integration, EPS, the minimum step size allowed, HMIN, and the number of fist-order

equations to be solved, N, which is two for this problem. The code then reads the

initial values of the fundamental set of solutions into the 2 dimensional array ZO.

The next input file corresponding to unit 11 contains the basic parameters of the

flow. These include the cavitation number, XKVAL, the free stream velocity in ft/s,

VNOT, the initial free stream nucleus radius in pm, RNOTMIC, the characteristic

body length in in., DIAMINCH, the density of the liquid in slugs/ft3 , RHO, the

surface tension of the liquid in lb/ft, SIGMA, and the dissolved air pressure in psia,

PAINCH Unit 12 corresponds to the input file containing the prsure coefficient
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versus dimensionless arc length data. It is read by first inputing the total number of data

points, NUM_PTS, and then reading the table for S and CP.

These parameters are input with their given physical dimensional units. The

code automatically converts each parameter into consistent units and eventually into the

proper nondimensional form. It then converts the input into a corresponding value of

u, and forcing function, then it solves the zero-order and first-order equations. The

output of the program includes the total first-order solution into unit 40, the first-order

stability parameters into units 15 and 16, and a summary of the inputed and calculated

flow parameters into unit 45. Simple modifications can be made to the code in order to

output any of the intermediate variables.
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APPENDIX B

PRESSURE DATA TABULATION AND FORCING FUNCTION CALCULATION

Bi1. DaTbultio
This appendix tabulates two sets of pressure coefficient Cp, versus dimensionless arc

length, s, for a circular cylinder at supercritical Reynolds numbers. Table B. 1 contains the

original data as read from a graph given by Gowen and Perkins [4]. Since these data, as

read, did not produce a smooth curve, Lagrangian interpolation was used to produce evenly

spaced points over the interesting range of s. These points were then smoothed. They are
given in in Table B.2 and they are the input Cp(s) data used in the Fortran code.

Table B. I OialData Table B.2 SmhData
No. s Cp No. s Cp

1 0.0000 1.0000 1 0.000 1.00000000
2 0.0403 0.9600 2 0.064 0.93858008
3 0.0873 0.9200 3 0.128 0.87090363
4 0.3491 0.5000 4 0.192 0.78682947
5 0.6981 -0.5750 5 0.256 0.68326172
6 1.0472 -1.8313 6 0.320 0.55809864
7 1.2217 -2.2531 7 0.384 0.41404022
a 1.2654 -2.3063 8 0.448 0.25018646
9 1.3090 -2.3813 9 0.512 0.06653735

10 1.3526 -2.4563 10 0.576 -0.13690708
11 1.3963 -2.5000 1I 0.640 -0.36078890
12 1.4399 -2.5531 12 0.704 -0.60684652
13 1.4835 -2.5688 13 0.768 -0.86596418
14 1.5272 -2.5667 14 0.832 -1.11726326
15 1.5708 -2.5583 15 0.896 -1.35007730
16 1.6144 -2.5000 16 0.960 -1.56440630
17 1.6581 -2.4406 17 1.024 -1.76025025
18 1.7017 -2.3500 18 1.088 -1.93760915
19 1.7453 -2.2750 19 1.152 -2.09648302
20 1.8326 -2.2438 20 1.216 -2.22826666
21 1.9200 -2.1625 21 1.280 -2.33585874

22 1.344 -2.43371901
23 1.408 -2.51203038
24 1.472 -2.55500333
25 1.536 -2.55466889
26 1.600 -2.50791555
27 1.664 -2.41927707
28 1.728 -2.32443463
29 1.792 -2.26472235
30 1.856 -2.22700000
31 1.920 -2.22500000
32 1.984 -2.22500000
33 2.048 -2.22500000
34 2.112 -2.22500000
35 2.176 -2.22500000
36 2.240 -2.22500000
37 2.304 -2.22500000
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B 2. Pressure Distribution and Forcing Function on the Cylinder

As noted in Chapter 2 we have used the data as read from curves presented in

Reference 4 for low speed but supercritical Reynolds numbers as a basic set for this

investigation. In this section we discus an alternative approach to the numerical approach

employed in the Fortan program of Appendix A, which may not necessarily be as precise as

that of the code, but which can be advantageous for engineering applications. The data as

read and smoothed data are given above. Some of the points as read are plotted in figure

B.1. A curve has been fitted to these data in order to give them an approximate analytical

representation over the linited range of importance for inception in order that the analytical

approximation can be a reasonably close approximation. The region of constant pressure

indicates roughly the position of the laminar separation bubble on the cylinder which is

followed by boundary layer separation and a turbulent free shear layer bounding the wake

behind the cylinder. Figure B. 1 appears to span the range of arc lengths of interest for

possible vaporous cavitation bubble growth.

The derivation of a forcing function requires that the pressure distribution be

converted from the dimensionless arc length on the body to the dimensionless laboratory

time t,, as seen by a typical bubble moving with the vortex sheet which approximates the

boundary layer in this study. We can write the laboratory time as in Equation (2.15):

s

tJ -Cp(S) (B.1)
1.15

were the lower limit denotes the first abscissa of the seventeen points in Figure B.1. The

upper limit refers to each successive point. Rather than use the curve fit for the pressure

distribution, we have used the data as shown by the points in Figure B I and the trapezoidal

rule in order to correlate all plotted points with t. The seventeen points are shown in the

plot of figure B2 in which t. is the abscissa. This correlation was fitted by a polynomial as

also shown in the figure. From these correlated (s,t.) points, each Cp(s) point was assigned
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Figure B 1 Pressure Distribution Data and Approximating Curve Fit for

a Circular Cylinder at Supercritical Reynolds Number.
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Figure B2 Correlation of Arc Length to Dimensionless
Laboratory Time for a Circular Cylinder.
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a value of ts in order to construct a Cp(tS) plot as shown in figure B3 Again, an approxi-

mating curve fit was found for these points in order to permit an analytical representation for

the forcing function,

Ft) Wr [- C(%s) - K].

As explained in Section 2.2, when one traces the pressure distribution starting at

the stagnation point, the forcing function has its origin at the first zero of the quantity

[Cp(ts) - K]. The laboratory time for this point will be called to and it can be found from

a trial and error solution of the equation,

FI(ts) = a1 + a2to + a3sin(a4to + a5) - K = 0, (B.2)

in which the notation, Fl(ts), indicates a radial Weber number of 4 or more simply,

the quantity, - Cp - K. The solution of (B.2) was found for the five successive K

values of 2.1, 2.2, 2.3, 2.4 and 2.5, as illustrated in Figure B4. A cubic fitting curve

for t0(K) is also shown in the figure. Then we can put tS = to(K) +4 in Equation (B.2)

in order to write the forcing function for various t as

FI(t) = a1 + a2 (to + t) + a3sin(a 4t+ a4to+ a5) - K. (B.3)

A short Fortran program was written to find the values of to and evaluate F,(b for

the five K values. Figure B5 shows the function F.(t) although the abscissa is labeled as

tS in order to emphasize the fact that the forcing function is measured in units of laboratory

time. Figure B.5 also shows the start of laminar separation at the junction of the curves

from equation (B.3) and the straight segments, having ordinates at 2.225 - K. At any K this

ordinate is constant because once a nucleus finds itself in the laminar separation bubble it

will grow in place by air diffusion until it becomes large enough to be swept into the

turbulent free shear layer downstream of the cylinder. This approximate laminar separation

point is defined in terms of the shifted laboratory time by

ts = 0.365 - to(K). (B.4)
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Figure B3 Pressure Distribution on the Cylinder in Terms of

Dimensionless Laboratory Time.
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Figure B5. The Bubble Forcing Function for Various Cavitation Numbers.
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A further calculation is required in order to evaluate the initia_ condition i 1 (0) = C in

shifted time coordinates in accordance with equation (2.46). The evaluation depends upon

the derivative dCp/ds at the point so = so[t0(K)]. The calculation is facilitated by use of

the additional fitting function,

s0(t0) = 1.478 + 1.8797to - 0.073 t. (B.5)

For then at any value of K the derivative dCp/ds can be evaluated from the curve fit of

Figure B. 1 at the correct value of so.

In the special case when uv = 1, we have 1+ q = y and Equation (2.46) can be

written as

8 ~Cp = -K'

Equation (B.6) pertains to du l evaluated at t0 = to (or'? = 0 in shifted coordinates.)dts

When uv = 1 these results can be used to obtain a closed-form approximate solution for

bubble growth in this special case.

Or more generally, equations (B.3), (B.4) and (B.5) can be used to replace some

of the purely numerical parts of a code such as that discussed in Appendix A. In such a

procedure, we recall that since F, holds for a Weber number such that ( Wr ) = 1 the

forcing function is calculated from

F(ts) = WrF(ts). (B.7)

Morover, although the present example supposes that a laminar separation bubble is

present, there appears to be no reason to restrict the preceding approach to shuch flows. The

method should apply to unseparated boundary layer flows also.



139

APPENDIX C

LIMITING VALUE OF THE OSCILLATION-PERIOD PARAMETER A.(uv)

A convenient starting point for the present analysis is equation (3.20) which

defines the oscillation period parameter as

T(uv)

.(Uv) = (1 + q)3/4 - 2I(uv), (3.20)

where the half-period integral, I(uv), is defined by equation (3.15) as

u (3.15)

I(uV) = J d2
2 u ln( - C2+ 1

1V

We seek the limit of I(u,) as uv -4 1. Consequently, as we have seen, Urn = 1 + ym and

= 1+ y, where um is the amplitude of oscillation and 0 < y < ym < 1 because the

amplitudes are small when uv is in the neighborhood of unity. Therefore we can rewrite

equation (3.15) as

YF (C.1)
= (1+y)3  dy,

(2/3)UY [y2_ Icy+ I]

0

where the denominator of the radicand has been expanded to O(y3) and factored to2

3 Uv+

account for the root at y = 0. The coefficients of the quadratic are ic - 3 2 and

u 2

= - 2 We also know that yna is a zero of the denominator. It is the smaller
uv

root of the quadratic at Y The larger root is given by
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= "+ ( ~)- 2A. Therefore, in ascending order, the three roots are 0,< ym,< b.

Next we can put y = Ym 4 in order to write (C.1) as

I= F (1+ Ym 4)3 d4. (C.2)
(2/3) uvbo (1 - 4)[1 - (ymfjbo)]

0

Now we expand the factor,(l+ ym4)3/2( q/~ / I3+0)m+81 o -'-)Ym2 + ..

[ I _- y m , . 0 .1 / 2  = I + 2 3 + .2 4 2

which enables us to decompose (C.2) into three integrals. These become

I= (2/3)Uvbo + )YM2+ 3(I+ -+ 1 )Y213} (C.3)

in which

I,= f d 12= kd ) and 13= f 2dt
A-0( - ) fA( 1 - _6 f F4( 1- 4)"

0 0 0

Clearly, I, = 7 and 12 = 2 The third integral, 13, can be dealt with if the radicand in

its integrand is written as - - )2. Then the numerator becomes

12 2 4i

Therefore 13 can be expressed as the sum of three integrals, which upon integration give

I 8(2+ ) + 4 - 8"

These values of I, 12 and 13 can now be put into equation (C.3). The result is

1 {1+'(3+ )Ym+ 9 (1 + L + I)y2 (C.4)

V(2/3) U bo
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As uv - 1, r -+ 3, .L - 0, ym- 0 and b0- 3. Therefore I- 2 From this result and

equation (3.20) it follows that

X(1) = n = 2.2214415 . (C.5)

Next we repeat the analysis using a different method. Therefore we return to the

integral I and write it as

Ym

I =\ 3 (I+ y (Ymy)(bo -Y) y (11 + 12 (C6)

0

where

Ym Ymf (l+y) dyanI"-1/, +y>
= J Y(Ym Y)(bo- dy and 12 J (YmY)(bo dy

0 0

are complete elliptic integrals. The properties of such integrals are discussed in detail by

Byrd and Friedman'. In terms of the roots displayed by the factors in the integrands we

can write

Ym(bo + 1) 2 y  and -sinY bo(Ym-y)
bo(Ym+ I) g -\bo(ym+ 1) by(bo-y)

For complete integrals the lower limit of integration is y = 0 and =7 but if y = Ym,

=0. ThenwehaveI, =I2 F( k) + (ym-i)ll( 2 ta2,k)bo T'-T- (Ym + 1) 2

where F(2 , k) is the complete elliptic integral of the first kind and where fl(!. a 2 k)

is the complete elliptic integral of the third kind. Then we take the limit as u,-+ 1,

ym -O,k -+0, and a -+0. HenceF(!,O) =7 and f(2,0'0)=F(,0)= "

Recalling that bo= 3 in the limit, we see that

lIPan! F. Byrd and Morris D. Friednm, Handbook of Eli c InWrs for Enginers and Physicists,

Springer Verlag. Berlin, 1954. See p. 116, #255.20 an #255.11.
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- (1

From Byrd and Friedman we find that 12 can be expressed in terms of elliptic

integrals of the first, second and third kinds. After some manipulation they can be

written in the form of complete integrals as

12 = 2 4/(Ym + 1 )b0 -E(1+ k ) y+ ( + (1 ) (R,, k)

In view of the limiting values of the several parameters one finds that

Then from equation (C.6) with uv = 1 we find that

1= -6 -33 A+ r-

in agreement with the value of I given above. Therefore the value of I given in equation

(C.5) is confirmed.
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APPENDIX D

BACKGROUND NOTES

D 1 Basic Bubble Dynamics

The well known Rayleigh-Plesset differential equation governs the growth or

collapse of a spherical vapor bubble in a perfect fluid when the static pressure surrounding

the bubble varies with the time, t, [ 16]. In the present investigation we shall consider the

vaporous growth of such bubbles in a flow in which the the bubble, in moving along the

surface of a submerged body, is influenced by its pressure distribution. The bubble will

contain air and water vapor so that the dynamic force balance is

p(RR+2 -Pi- - p(t). (D 1)

In this equation R(t) is the bubble radius, p is the liquid density, a is the surface tension

and p(t) i, the static pressure distribution on the body as seen by the moving bubble. The

pressure inside the bubble is pi and if the bubble is -othermal , Pi = Pv + Pa (Ro/R)3. Here

pv is the vapor pressure and Pa is the air pressure in the bubble at radius Ro in the free

stream. The radius Ro is the size of a typical microscopic cavitation nucleus and Pa is

related to the dissolved air content in the water. Therefore the basic equation of present

interest is

p(RR+1-12 )= N+Pa(ROJR) 3 -2o/R - p(t). (D2)

Next we shall introduce dimensionless variables. We start by letting R = r Ro and observe

that
1 1 2

p(t) = Po" 2 PV0 Cp and that pv = po + i pV; K, where Cp is the pressure coefficient on

the submerged body and K is the cavitation number. Therefore we have Pv - p(t) f -

IPVo (Cp+ K). Substitution of these definitions into the differential equation leads to
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2 0  (.+ .2)= (Pa 1 1i+i

S2-R 0  r + + Wr('Cp-K), (D3)

where the definition of Wr is Wr = / ,the radial Weber number. We shall define the
Pr2

air content parameter by y = Pa and also observe that the factor 2 has the
2a/R0  2a/R0

dimension of [Time] 2. Therefore we shall define a new dimensionless time r by r =

t -q(2o)/(p R . Consequently we can write the dimensionless equation of motion as

dr2 +3() 2  r - + F(t), (D4)

where the forcing function is defined by

F(t) =f -" Wr [-~t - (D 5

D 2 Laminar Separation and Cavitation on Circular Cvlinde-rs

Cavitation inception observations on circular cylinders have been reported by Ihara and

Murai [3]. Their experiments were designed to see whether or not laminar separation plays

a role in the onset of cavitation on smooth cylinders in critical and supercritical flow ranges

and on cylinders having a boundary layer trip. They observed inception resembling bubble-

ring cavitation in the reattachment region when a laminar bubble was present at Reynolds as

high as 3.27x 105 on a smooth cylinder. They called this cavitation "bubble-line"cavitation.

Ordinarily, superciitial flow is encountered at Reynolds numbers of 3x105 or greater. No

tunnel wall effect coetions are noted in the paper. Such effects must have been present

because the tunnel height was 5.42 cylinder diameters, and at a Reynolds number of

3.3x 105 a minimum pressure coefficient of -2.9 is reported. This Cp magnitude is

somewhat larger that those ordinarily observed in the absence of wall effects. This fact is of



145

minor importance because these authors' measurements do establish the role of laminar

separation on smooth circular cylinders in this Reynolds number range; but it suggests to

us that we should use the pressure measurements of Gowen and Perkins [3] which appear

to be free of wall effects.


