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Executive Summary
by

Kenneth R. Demarest, Principal Investigator

This final report describes the findings of our group during the contract period 6/2/88

through 8/30/89 under contract F30602-88-D-0027, Task Assignment No. E-8-7051. The purpose of

this contract was to develop analytical and numerical techniques capable of predicting the

electromagnetic scattering characteristics of conductor-backed dielectric sheets containing cracks in

the dielectric. The method chosen was the Finite-Difference Time-Domain (FDTD) technique.

This choice was based on the well known attractive characteristics of this technique, particularly

when dealing with arbitrarily shaped, dielectric structures.

The major effort during the contract period was to extend the FDTD technique to efficiently

model very thin conductor backed dielectric sheets, with and without cracks. Although the

standard FDTD technique can, in theory, model such sheets of all thicknesses, it becomes

increasingly unattractive for very thin sheets since the spatial grid size must be made small enough

to fully resolve the geometry being modeled. In order to efficiently model fractional wavelength

dielectric coatings and cracks, augmentations to the standard FDTD technique must be made.

The modeling philosophy adopted to address this problem was to develop models that

would allow relatively large spatial cells to used. To do this, the near field characteristics of the

thin sheets and the cracks would be built into those cells that contain them, thus allowing these

cells to be considerably larger than the sheets and cracks themselves. This philosophy is an

outgrowth of the integral equation view of FDTD [1].

The models for large cells containing dielectric sheets and conductor-backed dielectric

sheets were initiated in a previous RADC contract- No. F30602-81-C-0205, task number E-7-7064 [2].

These models were then incorporated in a standard FDTD code and tested to establish their

validity. Comparisons of the large cell FDTD results, both for two- and three-dimensional slabs,

with physical optics and the method of moments established that the large cell approach is

accurate and numerically efficient [34. [
E3

With the large cell approach for dielectric and conductor-backed dielectric sheets thus ---.-

established, the work was able to proceed to the development of large cell techniques for conductor- ...............

backed dielectric slabs containing cracks. This extension represented the most challenging aspect of

the contracted work, since the 'fields in the vicinity of a dielectric discontinuity are highly

nonlinear and not as well known as for perfectly conducting geometries.
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backed dielectric slabs containing cracks. This extension represented the most challenging aspect of

the contracted work, since the fields in the vicinity of a dielectric discontinuity are highly

nonlinear and not as well known as for perfectly conducting geometries.

It was very quickly realized that the thin crack model developed in [21 is not fully capable

of representing the fields in the region just outside the crack region, and thus not capable of correctly

predicting the response of the crack in an FDTD code. Fortunately, the very simulations that

exposed this flaw also pointed the way to the development of a more rigorous mudel. This

technique was implemented in our FD.TD code for two dimensional geometries and showed excellent

agreement with "brute force" FDTD simulations, but at a fraction of the computational cost.

Two FDTD computer codes were developed under this contract - one for two-dimensional

scatters [311 and one for three-dimmensional scatters [51. Both codes are similar in structure, but the

two-dimmensional code is more fully developed from the standpoint of the thin-dielectric

scattering of interest in this contract. The following table summarizes the capabilities of the two

codes,

2-D Code 3-D Code

Full cell conductors S /

Full cell lossy dielectrics V

Thin conductor-backed dielectrics V V

Thin cracks "

Arbitrary plane wave incidence " V

Far-field results V(steady-state) V(transient)

This technical report to follow describes in detail the modeling philosoply used to address

the problem of scattering from thin dielectric coatings on conducting surfaces, with and wit'hout

cracks. It consists of four major components. In the first, the finite-difference time-domain (FDTD)

technique is reviewed, with particular emphasis on the "smart cell" philosophy of modeling fine

detail. This is followed by three sections that present the modeling details and results for the

three geometries of interest: thin dielectric slabs, thin conductor backed dielectric slabs, and thin

conductor backed dielectric slabs with cracks. In each of these sections, numerous results are given

and each compared with other techniques to establish the limits of their models.
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Chapter 1: Introduction

Recent advances in aircraft and radar technology have given rise to changes in aircraft

construction. Such changes include the use of dielectric structures inside and outside the aircraft,

replacing metal structures which have been traditionally used. The impetus for the use of these

materials often stems from their desirable mechanical properties (high strength, low weight,

etc.), as well as possible reductions in radar cross section. The analysis of the electromagnetic

scattering properties of such dielectric structures is the subject in this report.

A dielectric structure of interest is the thin dielectric sheet. A thin dielectric sheet can

either be free standing or conductor-backed. The former can be used in aerodynamic control surfaces

such as fins, whereas the latter can be used in fuselage construction using thin, conductor-backed,

dielectric panels.

A challenging problem of particular interest in this study involves scattering from conductor-

backed dielectric structures that contain slots or cracks in the dielectric material. Such structures

are difficult to model because they combine two different problems- the volume scattering of the

dielectric and the nonlinear field behavior near the sharp discontinuities of the crack. In spite of

the importance of this particular structure, little progress has been made in the development of

analytical or numerical solutions of its scattering propei ties.

Two techniques that have been used to solve problems involving dielectric structlL.. are the

Method of Moments (MoM) [71, and the Finite-Difference Time-Domain technique (FDTD) [8]. Both

techniques have proved very successful, and both have their drawbacks. It has recently been shown

that the FDTD technique has certain advantages over the MoM when dielectrics are involved [9].

For example, while FDTD allows accurate modeling of dielectric structures without requiring very

accurate air-dielectric boundary specifications, the MoM does not. Other advantages of the FDTD

technique over the MoM stem from the overall savings in the number of computer operations

required in order to solve a given electrical problem.

The FDTD technique has recently been actvanced so that a wide range of geometries can be

modeled. Kunz and Simpson [101 developed a technique to increase the resolution of the FDTD

technique by introducing a finer subgrid model. Taflove and Umashankar [1] introduced the

integral equation approach in the FDTD technique, in which detailed analysis of the

electromagnetic fields penetrating narrow slots and lapped joints can be performed. Demarest [111

used the FDTD technique to model narrow apertures in conducting scatterers, whereas Holland and
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Simpson (121 applied the FDTD technique to analyze electromagnetic pulse coupling to thin struts

and wires.

One of the major objectives of this study is to further develop the FDTD technique to allow

modeling of thin dielectric structures (free standing, conductor-backed, and conductor-backed

containing dielectric cracks). Before attempting to do this, a brief overview of the FDTD technique

is given in Chapter 2. This overview includes some recent advances, limitations, and controversial

issues in FDTD applications and techniques.

Chapter 3 deals with the implementation of a near-field to far-field transformation. This

transformation allows the estimation of the far-field response and radar cross section (RCS) of the

structures under consideration. The amplitude and phase information required by this

transformation is obtained using a least squares estimation method.

In Chapter 4, it is shown how the FDTD technique can be applied to solve scattering problems

containing dielectric sheets. The modifications required to allow modeling of thin dielectric

sheets of thickness less than the cell size of the FDTD grid are also considered. Chapter 4 is

concluded with some radar cross section results obtained from dielectric sheets.

Chapter 5 deals with the modeling of conductor-backed dielectric structures. This modeling

is done initially by using very small cells to model the thin dielectric coating on top of the perfect

conductor, and then extended to cover modeling using cell sizes much larger than the dielectric

thickness. Numerical results obtained from both methods are compared to test the validity of the

thin structure model.

Chapter 6 is introduced with a study of the near-field physics of dielectric cracks using a

very fine resolution FDTD grid. The results of this study are used to verify a simple formulation of

the fields above a dielectric crack for a coarse FDTD code. This approach is applied initially to

two-dimensional problems and, once its validity is established, is extended to apply to three-

dimensional problems. Finally, some numerical examples are given for both cases.

Chapter 7 summarizes the results and conclusions of this report. Possible applications of this

study are also discussed. An appendix and a list of references is included at the end.
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Chapter 2: Review of the FDTD Technique

2.1 Yee's Formulation

The FDTD technique was first introduced to the electromagnetic community by Yee [8]. This is

a popular technique that solves Maxwell's time-dependent curl equations by converting them to

difference equations and applying the proper boundary conditions. Maxwell's equations in an

isotropic medium are

+VxE= 0

(2.1 a)

_D -VxH -J
a(2.1b)

D - eE (2.1c)

B =i L (2.1d)

where E is the electric field in volts/meter, H is the magnetic field in amperes/meter, J is the

current density in amperes/meter 2, e is the electrical permitivity in farads/meter, and 4j is the

magnetic permeability in henrys/meter. E, H, J, i, and F are assumed to be given functions of space

and time. In a rectangular coordinate system equations (2.1a) and (2.1b) can be converted into a set

of scalar differential equations and, by using a central difference schemeconverted to a set of

difference equations. With this approach the continuous electromagnetic fields in a finite volume

of space are sampled at specific points in space and time. The electric and magnetic fields are

interlaced in both time and space.

In two-dimensional problems it is assumed that the field values do not depend on the z

coordinate of a point, so the partial derivatives of the fields with respect to z are zero. It is also

customary to decompose any electromagnetic field into Transverse Electric (TE) and Transverse

Magnetic (TM) wave modes and analyze each mode separately. TE and TM modes are defined with

respect to the infinite dimension of the scatterer, i.e, they are transverse to z. These two modes are

characterized by [8]:
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1 ) Transverse Electric <TE)

HX = HV= O, E =0,

3H = -E9 Ex

at ax a

aH= a Ex - H= Ey 22

ay at' x at.2)

and

2) Transverse Magnetic (TM)

Ex = Ey= 0, HC= 0,

2E= E Hy 3Hx

at ax - a'
alHx  2E= VH 3E=r a Y = (2.3)

at ax

Equations (2.2) and (23) can easily be converted into difference equations using central

differencing. The resulting equations can be applied over an FDTD grid to model scattering by

two-dimensional structures.

Wave propagation is modeled by advancing the electric and magnetic fields at equally

spaced points in time. Scattering is modeled by imposing the proper boundary conditions on the

surface of the scatterer.

2.2 Integral Equation Approach

It has been shown [11 that a more effective view of FDTD technique is obtained by starting

with the integral form of Maxwell's time-dependent equations and applying them over small

surfaces of the solution space. In integral form, Maxwell's equations can be stated as:

H"dl = I+1--s E "dS

f *it dS S(2.4a)
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E-dl=-a--±f gdS

c at s (2.4b)

where equation (2.4a) is referred to as Ampere's law and equation (2.4b) as Faraday's law.

The FDTD approach proceeds to solve for the electric and magnetic fields resulting from a

particular incident field (or source) interacting with a scatterer by dividing both time and space

into a numerical grid as in the Yee approach. A planar cut of a three-dimensional FDTD grid

showing the integral contours used for advancing the electric and magnetic fields is shown in figure

2.1.

If the cell under consideration contains only homogeneous media, the evaluation of equations

(2.4a) and (2.4b) proceeds by assuming that the dimensions of the cell are small enough (less than

1/10) in each direction so that the electric and magnetic fields can be considered linear functions of

position. Under these assumptions, it is shown in [21 that the resulting equations for advancing the

electric and magnetic fields are exactly the same as those obtained by applying Yee's approach.

z

Hy X

a y E z Ic 2  Ex
I y HzXJ Hz

ELC1 HX ...
&Z Ez  E L_

i z Hy

Figure 2.1 FDTD grid shoving the integral contours for advancing the

x-direcf d electric and magnetic fields in homogeneous media.

Application of Faraday's law over contour C1 (see figure 2.1) results in the following equation

for advancing the x-directed magnetic field in homogeneous material:

Hn +112 (I,J,K) = Hn + 1 2 (I,J,K)
+.~t A[~yiE n (I,J,K) - En (I,J,K)] +-IL[En (I,J,K) - En (I,J,K)]}

S(Ay Az (2.5)
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where the I, J, K indices indicate that the field point is associated with the I, J, K .th cell. Dy and

Dz are the unit cell dimensions in the y and z direction respectively and Dt is the time increment.

The superscripts (n+1/2), (n-1/2), and n indicate that the field under consideration is evaluated at

time t=(n+I/2)Dt, t=(n-1/2)Dt, and t=nDt respectively.

Once the values of the magnetic fields at time t=(n+l/2)Dt have been updated in each cell,

an application of Amperes law in each cell yields the electric fields at t=(n+l)Dt. A

representative expression for advancing an x-directed electric field in a cell containing only

homogeneous material and no currents is

En +' (I,J,K) = En 1 (I,J.,K)

- A-L(Hn+1I2 (I,J,K) - Hz + 1 2 (I,J,K)
C y

+ -L[Hn+/2 (I,J,K) - Hn+1/2 (1,J,K)]}
AZ (2.6)

Similar equations for the other four components of the electric and magnetic fields can be derived

following the same procedures..

2.3 Features of Current FDTD Codes

The FDTD technique, whether applied to two-dimensional or three-dimensional structures,

sequentially evaluates the magnetic fields over the entire solution space, and then the electric

fields at half-time steps. This process is repeated for many time steps. In this way, time marching

solutions to electromagnetic scattering problems are obtained.

Because no computer can store an unlimited amount of data, the computation zone of the FDTD

technique must be limited in size, but still large enough to enclose the target of interest. To close off

the outer boundary of the computation zone, the FDTD technique must employ a radiation boundary

condition (RBC) to simulate the field sampling space extending to infinity by suppresing reflections

off the outer boundary. At present the most commonly used RBC is the second order technique

developed by Mur [131, utilizing the wave equation in cartesian coordinates. A similar RBC can be

obtained by utilizing the dispersion relation for the one-way wave equation [14]. Having an

efficient RBC in the FDTD code results in a lower computational noise floor because of the reduced

reflections from the outer boundary. An efficient RBC also increases the modeling dynamic range

which is important for certain classes of scatterers, like dielectric structures.

8



The total solution space ii often divided into two regions. The first one is the total field

region where the modeled structure is embedded, and where total (incident + scattered) electric and

magnetic fields are time stepped. The second one is a scattered field region which surrounds the

total field region. Here, only scattered electric and magnetic fields are time stepped. One benefit

of this scheme is that a connecting condition between the total field and the scattered field regions

allows the generation of an arbitrary incident plane wave having a u.,er specified time waveform,

angle of incidence, an1 polarization [141. This field region zoning has been found to provide three

more basic advantages [141:

1) wide computational dynamic range,

2) simple programing of dielectric structures, and

3) far-field response.

A wide computational dynamic range is obtained because low field levels within cavities

(i.e, metal, conductor-backed dielectric cracks) or deep shadows can be computed directly in total

field regions. These low level fields are not contaminated by noise subtraction, as in scattered-field

type codes, resulting from relatively large incident and scattered field components.

Another benefit of the use of separate total field and scattered field regions is encountered

when modeling dielectrics. This is because when the dielectric is located within a total field

region, the code does not have to calculate the incident field at all points within the dielectric.

Finally, providing a scattered field region allows the location of a scattered-field virtual

surface, which is required for the near-field to far-field transformation. A virtual surface between

the total-field/scattered-field boundary and the outer boundary is chosen on which the

equivalence principle is applied to achieve this transformation. A detailed explanation of the

near-field to far-field transformation will be given in chapter 3.

A pictorial representation of the outer boundary, the total-field/scattered-field boundary,

and the virtual surface on which the equivalence principle is applied, is illustrated in figure 2.2.

The total-field and scattered-field regions are also shown in the following figure.

9



Outer Boundary

Vi rtual Surface

Total-field/Scattered-field Boundary
I I

Surface of Scatterer

I.. .. .. ............. I
I. .. .. .............. I

Total Field Region I
I II I

Scattered Field Region j

Figure 2.2 Zoning of the problem space in FDTD technique

2.4 Limitations of the FDTD Technique

FDTD is an established technique for modeling complex scatterers both in the frequency and

time domain. In spite of its success, however, the method also has its weaknesses. One such

weakness is its relative inability to model geometries that are both electrically large and yet

contain fine details. Such details could include sharp points, small apertures, and thin dielectric

sheets. Small substructures such as these cause problems with the FDTD technique because the

fields in the vicinity of these objects exhibit rapid spatial variations.

Although fine detail can be modeled by using a finer spatial grid, this can also be a source of

problems. First, if cells small enough to solve the fine detail are used throughout the problem

space, the total number of cells may be enormous. Therefore, small cells will tremendously increase

the number of unknown fields in the FDTD code. Second, if the cell dimensions are small, the time

increment used will also have to be small to satisfy the Courant stability condition [8]. This would

mean that the computational efficiency of the FDTD technique would be greatly reduced. Fine

subgrid models can also be used, but there can be problems of numerical noise being transferred across

the fine/coarse grid boundaries.

10



An alternative method of dealing with the problem of fine detail in FDTD codes is to build

the near-field physics of the fine detail in question into those cells that contain them, thus

allowing the cell size in the solution space to be uniform and relatively large [3]. The reasoning

behind this technique is that while the "normal" FDTD equations for advancing the fields assume

a smooth linear variation in each cell, these"smart" cells can have a specified nonlinearity built in

and still be large. This approach has been used with success in modeling thin dielectric structures.

Another limitation of the FDTD technique is its inability to model targets that include

curved surfaces. This is so because the technique uses square (two-dimensional) or cubic (three-

dimensional) cells as its building blocks. However, recent developments [11 have shown that this

problem can be overcome by applying the integral form of Maxwells equations on smoothly curved

conducting surfaces.
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Chapter 3: Near-Field to Far-Field Transformations

3.1 Introduction

Neither the far-field response, nor the radar cross section of a scatterer, is provided directly

by the FDTD technique. A near-field to far-field transformation can be achieved by applying the

equivalence principle [151 around a scattered field virtual surface, as shown in figure 3.1.

(E, Hs) 1 E3 , H3 ) l

(E , H3 )2 2
I Scattering Object I I
I I , I
I I I I
I SI Zero Fields
I I n-- I
I I I I
I Js I S1  I I
I. J L

Vi rt ual Surface J = n x H 3 M = E3 x n

Figure 3.1 General formulation of the equivalence principle

When Es and Hs are known scattered fields surrounding the scatterer along the closed surface
Sa, the equivalent tangential electric current Js and equivalent magnetic current Ms can be defined

as

J, (r)= n x H" (r) (3.1)

Ms (r) = - n x E" (r) (3.2)

where n is the outward unit normal vector at the surface Sa, and Es and Hs are the scattered fields

on the surface. The equivalent currents defined by equations (3.1) and (3.2) on the closed surface Sa

will produce the same scattered fields (Es, Hs) external to Sa as in the original problem.

This approach is applied to extrapolate the near fields of the FDTD technique to the far-

field radiation zone for both two-dimensional and three-dimensional problems. The two-

dimensional transformation is implemented in the frequency domain, whereas the three-

12



dimensional trasformation is implemented in the time domain. For the two-dimensional case the

steady-state information required is obtained using a least squares estimation method.

A somewhat differcnt approach for obtaining the far-field response directly in the time

domain, for two-dimensional structures, is reported by Britt [151. The closed contour (virtual

surface) used for the integration of the equivalent currents is different in this case from the one used

in figure 3.1. Instead of enclosing the target, one of the faces of Britt's contour encloses the far-field

observation point. The contribution from this face to the far-field is assumed to be negligible.

3.2 Two-Dimensional Transformation

Once the steady-state equivalent currents along the virtual surface Sa are calculated, the

electric and magnetic potentials for two-dimensional problems can be evaluated using the equations

[141

A (p) - J Js (p) H 1 (kip- P1) ds' (3.3)
4j

F P I s H (P) R

4j I is ) (kip- p) ds'

where the integration extends over the cross section of the source, or in this case over the closed
surface Sa. In equations (3.3) and (3.4), H0 (2 ) is the zero order Hankel function of the second kind

and k is the wavenumber. The primed coordinates represent the location of the source, whereas the

unprimed coordinates represent the location of the observer. For k I p - pl large, the Hankel

function in equations (3.3) and (3.4) can be approximated by

H" ) (kip- P) z 2j e-kIp - '3
klp-.5)

Furthermore, when p >> p' as shown in figure 3.2, then

Ip- p' = p - p' cos (0 - (3.6)

13



Y

To distant

Source field point

X

Figure 3.2 Geometry for determining the far fields

The second term in (3.6) must be retained in the phase factor, exp( -k j I p - p'l ), but not in the

magnitude factor, I p - p, 1-1/2, of equation (35).

Applying all the previous assumptions to equations (3.3) and (3.4) the electric and magnetic

vector potentials simplify to

A (P) = OS1kp J (p) ejkpcs ds' ( 3.7)

F (P) jkp f (p) eikpcos ds' (3.8)

However,

kp' cos(* -4') - kp' COS O cos o + kp' sin* sin '. .(3.9)

Converting (3.9) from cylindrical to rectangular coordinates using the transformation

x'= cos V, y'= pcos p,= (,y (3.10)

one obtains the following expression in rectangular coordinates:

kp'cos(*-f)= k(x'cos*+y'sine). (3.11)

14



Replacing (3.11) into (3.7) and (3.8) and realizing that the surface integrals are actually line
integrals applied over the closed surface Sa (for two-dimensional problems), the final expressions

of the electric and magnetic vector potentials are

A Kc f J (x*,U') ejk(x'cos#+y'sin¢) dl' (3.12)
sa

F = K, f M (x,y) ejk(x ' c s # + y ' sin+) dl (3.13)

where

C e-jkp e-Jkp ej/4K /8 = 'jk p =  8-skp

3.2.1 Application to TM Polarization (Ez, Hx, Hy)

The FDTD grid for TM polarization is shown in figure 3.3. In this figure some of the fields

involved in the calculation of the equivalent electric and magnetic currents are shown.

Hx Hx g

H 
I

Ez EZ IZ
H I

Ez

I I
I Sa Virtual Surface

Y=O I enclosing the target

x-O x=h

Figure 3.3 FDTD grid for TM polarization
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The equivalent electric and magnetic currents at each lattice point on the virtual surface

surrounding the target can be found as follows:

(ai x - h face

JZ(X Y) .X X HK9 Y M Hy

(x', y') - X x Ezy -' aEz

(b) x - 0 face
Jz(X',y = -X x Hy Y=-Z- Hy
My(x', y) 3x Ezi -' Ez

(c) y - h face
Jz(x , y) y.&x Hx2 xz Hy
Mx(x', y') -YxE x Ez

(d) y = 0 face
Jz(x , y) = x Hxx =z Hy
Mx(x', y') - -y x Ez. zx Ez (3.14)

It should be noted at this point that the location of the magnetic field points do not coincide

with the virtual surface where the equivalence principle is applied. In order to avoid violating
the equivalence principle, new magnetic field locations are defined on the virtual surface Sa, by

averaging the values just inside and outside the virtual surface. In this way, consistency is retained

in applying the equivalence principle since both E and H are found on the same surface, and

therefore more accurate results are obtained. Also, care should be taken in handling the corners
where the Ez fields are located. For example, consider an Ez field that is located where the x = h

and y = h faces of figure 3.3 intersect each other. Since this point is common to both faces, the field

located at this point could give rise to a magnetic current that is x-directed or y-directed. In order

to resolve this problem, the amplitude of of the electric field at this particular field point is

divided into two equal parts, with one half contributing to the x-directed magnetic current and the

other half to the y-directed magnetic current.

Once the equivalent electric and magnetic currents are established on the four faces of the
surface Sa as shown in figure 3.3, the electric vector potential (Az ) and the magnetic vector

potentials (Fx, Fy) can be evaluated using equations (3.12) and (3.13), respectively. Transforming

these potentials from rectangular back to cylindrical coordinates, one obtains

F, -Fx sin , + Fy cos *
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AZ -= Az. (3.15)

Finally, the far fields can be evaluated using the following relations:

EzS ($) - -Wo'z + jkF* (3.16)

Hes (f) -EzS ( )/l, (3.17)

where iq represents the intrinsic impedance of free space (120p Ohms). The radar cross section of the

scatterer can be evaluated using

RCS (0) - im 2xp E3

P- I (3.18)

where Ezi represents the amplitude of the incident field.

3.2.2 Application to TE polarization (Ex , Ey, H z )

The FDTD grid for TE polarization is shown in figure 3.4.

*H e Hz H y

E=h __ Ex Ex z

H. Eye IEJ*HzI 0

Ex Ex  'Sa
-1 I

I I n

I I
_y=O 0

x=O x=h

Figure 3.4 FDTD grid for TE polarization
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The equivalent electric and magnetic currents at each lattice point on the virtual surface

surrounding the target can be found in a fashion similar to the TM polarization case as follows:

(a) x - h face
Jy(x', yj -,Xx Hz z =-Y Hz

Mz(X', y') -X x Eyy - -z Ey

(b) x - 0 face
JO',y)- x Hz iiHz

Mz(X', y') =X x Ey =z Ey

(C) y = h face
Jx(x', yj y x Hz 'x Hz
Mz(x', y') - x Ex z = x Ex

(d) y = 0 face
Jx(x', y' Y x Hzz =x Hz
Mz(x', y') - -Y x Ex x =-z Ex (3.19)

Once the above equivalent currents are established on the four faces of the FDTD problem

space shown in figure 3.4, the electric vector potentials (Ax, Ay) and the magnetic vector potential

(Fz) can be evaluated using the equations (3.12) and (3.13), respectively. Transforming these

potentials from rectangular to cylindrical coordinates, one obtains

A =- Ax sin 4 + Ay cos

Fz = Fz. (3.20)

Finally, the far-field response can be evaluated using

E s (0) = -jqWLFO - jkFz (3.21)

HzS (0) - E 5s (0)/l. (3.22)

In the same manner as the TM case, the radar cross section of the scatterer can be found using the

equation

RCS Pd) = im 2xP

R-- r Iq E' I(3.23)
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where Ei can be an Ex component, an Ey component, or a combination of the two.

3.3 Three-Dimensional Transformation

A procedure similar to the one followed in two-dimensional problems can also be applied to

three-dimensional problems. Once the equivalent currents along the virtual surface Sa are

established, the vector potentials for three-dimensional problems can be evaluated using the

equations [15, p. 1001

A lr=J(r') e-jklrr'l (3.24)x fr) f' Ir - r'l d'(.4

M ' (r') e - j klr - r 'l d '( .5
F (r)= J I-r d' (3.25)

Considering only the far-field region (r >> rmax) as shown in figure 3.5, the following

approximation can be made

Ir - r*1 z r- r' C0s (3.26)

where k is the angle between r and r'. Furthermore, the second term of equation (3.26) can be

neglected in the magnitude term of equations (3.24) and (3.25), but not in the phase term.

r - r To distant
Soucefield point

., - - I
r - I

Figure 3.5 Geometry for calculating the far fields
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Applying the above assumptions and realizing that the volume integrals are actually surface

integrals over the closed surface Sa, (3.24) and (3.25) simplify to:

A =e-jkrf J (r) eJkr' cos 4ds'
4nr JJSa (3.27)

F =p-ikr ff (r') eJkr' cos 4ad'
4nr uSa (3.28)

Equations (3.27) and (3.28) are Fourier transformable, allowing the evaluation of the vector

potentials directly in the time domain. Therefore, for three-dimensional problems, it is not

necessary to convert the time-domain fields into the frequency domain before evaluating the far-

field response. In this way, time marching vector potentials are obtained, which are then used to

find the far-field response of three-dimensional structures directly in the time domain. For more

information on the implementation of the three-dimensional transformation the reader is referred

to [51.

3.4 Amplitude and Phase Estimation

A least squares estimation method [161 can be used to obtain accurate information about the

magnitude and phase of sinusoidal steady-state problems. This information is used in the two-

dimensional near-field to far-field transformation, as well as to plot the amplitude distribution of

selected field points in the near-field region. Given the form of a two parameter model to be

X= A cos ot + B sin Cot + ct (3.29)

where Xt is the tth data value and et is the tth residual needed to make the equality exact, the

least squares method proceeds by minimizing the mean square error, as expressed in the following

equation:

n-1
T(A,B) = (Xt- A cos ot -B sin U)2

10(3.30)

Taking the partial derivatives of T(A, B) with respect to A, and B and setting them equal to

zero, results in

n-1r-2y coszA(Xt-Acosa-Bsint)=0
aA o (3.31)
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aT n-1-.2 sin cd (Xt- A cos a- B sin cot) = 0
aB (3.32)

Rearranging and solving the resulting system of two equations with two unknowns for A, and B, the

following solution is obtaired:

A--1fn-1 nn-1
A = j Xt os Ot (sin O)2 - I Xt sin ,A , cos wt sin cot

1.o 1o .o (3.33)

n-1 n-1 n-1
B Y Xt sin at (cos OA) 2 - Xt COS aI Cos (t si,,(It60o 1o .0 (3.34)

n- n-i In-1
A = 1 (COS (t)2  (sin O12. cos cot sin cot

where W, W.

The summations involving only trigonometric functions can be evaluated as [16]

n-I
y (coS O)t) 2 =11 (1 + Dn (2o)) Cos (n- 1) c}

2o (3.35)

n-1
cos (t sin (t =- -ft{1 + Dn (2a)) sin (n -1) (}

ho 2 (3.36)

n-1 Dn(0))  i

2: (sin (t)2 .=n {1-Dn (2)cos (n- 1)() wheren sin (K) (1.0 2 where 12i (3.37)

The summations involving (Xt) are evaluated as the FDTD technique time steps the fields in the

problem space.

Once A and B are evaluated the phasor form of selected points in the FDTD problem space can

be found using the expressions

R= fA+B2 (3.38)

4= Arctan (- B/A), (3.39)

where R represents the amplitude and 0 the phase of a selected point in the FDTD grid. It is

required that several periods of the waveform be time stepped (4-7 cycles) before this algorithm is
applied, in order for the transient response to die out. Once the waveform reaches steady-state, the
algorithm is invoked and accurate estimates of the amplitude and phase of the waveform are
obtained. If a d.c term is expected to be present in the scattered fields, a three parameter model can
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obtained. If a d.c term is expected to be present in the scattered fields, a three parameter model can

be used to convert the time domain fields into the frequency domain. The third parameter involved

will be the mean value of the scattered sinusoidal field. For the problems examined in this study

the d.c term was found to be zero and hence, a two parameter model was chosen.

3.5 2-D Numerical Results

The near-field to far-field transformation is tested by evaluating the far-field response of an

infinitely long filament of constant a-c current along the z-axis. To do this, the FDTD code uses a

second order RBC as well as a total-field/scattered-field zoning scheme. The infinitely long

filament of constant a-c current is simulated using the FDTD code by forcing four sinusoidally

varying magnetic fields (of equal amplitude and phase) in the FDTD grid, as shown in figure 3.6.

F I
!XI I x

I HxI

I y Hx
II
I I
I 'lx I

Virtual SurfaceI g Sa

Figure 3.6 Implementalion of an infinitely long filament of constant
a-c current using the FDTD technique.

The far fields of this radiator should be independent of the look angle, 0, since the line

source is symmetric in 0. In other words, the constant a-c current source should represent an isotropic

radiator. This simulation was repeated for several FDTD cell sizes to analyze the behavior of the

numerical error involved as the cell size of the FDTD grid decreases. The z-component of the

electric field in the radiation zone is shown in figure 3.7 for different cell sizes. For a cell size
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equal to X/10 there are small variations (about 2%) from the exact value of the amplitude of the

electric field as the look angle changes. However, much better results are obtained for smaller cell

sizes.

The total numerical error estimated using this simulation is mainly due to the combined

effects of:

1) the error produced from the amplitude and phase estimation of the data using the

least squares method,

2) the error introduced when averaging the tangential magnetic field inside and outside

the virtual surface in order to find an approximate value of the magnetic field on the

virtual surface,

3) the error due to the fact that the FDTD -d,- caicalates average field values taken at

sample points in the grid, while :he equivalence principle requires surface currents over

the extent of the whole FDTD unit cell.

In the following chapters, the FDTD technique is applied to scattering problems inwlving

relatively thin dielectric structures. The general trend in the analysis is to apply the FD'I D

technique to solve the scattering problem initially in a 'brute force" method. That is, very fine

resolution cells are used despite the computational burden they have on the technique. Then,
"smart" cells are developed where the structure under consideration has dimensions less than the

cell size of the FDTD grid. This method will be referred to as the "thin equation" approach.
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Ax = Ay = X/10

Ax = Ay = V15

-- AX= Ay = ./20

1.00 ....... Ax = Ay =V40
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17.80 ,, ,I ,, , , , ,, , , I, ,, , , , , , I , , , , ,,
0.00 50.00 100.00 150.00

(degrees)

Figure 3.7 Far-filed obtained using the FDTD code from an infinite line source of constant a-c current
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Chapter 4: Modeling of Dielectric Structures

4.1 Numerical Techniques Applied to Dielectrics

There are are several frequency domain analytical and /or numerical methods that can be

applied to scattering by homogeneous dielectric structures. For structures whose boundary surfaces

coincides with a given coordinate system, separation of variables can be applied and the scattered

fields can be estimated in closed form. Analytical solutions have been obtained for simple

structures such as a sphere and a circular cylinder [181. For structures of arbitrary shape, either the

volume [201, [17] or the surface [201 integral equation approach has been applied. For three-

dimensional problems several authors have utilized different basis functions [221, [231, [241 based on

the method of moments approach.

The volume integral equation approach is based on relating the induced polarization currents

to the corresponding total fields, which consist of the scattered and incident fields. By associating

an unknown polarization current to the cells composing the structure, the operator form of the

integral equation can be converted into an equivalent matrix equation. Employing the volume

equivalence principle and method of moments, scattering results can be obtained from structures such

as dielectric cylinders, plane dielectric slabs, dielectric cylindrical shells, and biological tissue

cylinders.

The surface integral equation approach is very well suited to analyzing homogeneous

dielectric structures. This approach reduces the original problem to two equivalent problems, one

for the external medium and one for the internal medium. The scattered fields inside and outside

the dielectric are assumed to be produced by some unknown equivalent electric and magnetic surface

currents radiating into unbounded media. These currents can be determined by solving a set of

coupled integral equations, obtained by applying prorer boundary conditions to the tangential

components of the total electric and/or magnetic tields. One may use the same or different sets of

equivalent currents for the internal and external problems.

Structures of arbitrary cross section can be analyzed, using either the volume or surface

integral equations, in conjuction with the method of moments approach. This method is well suited

for low frequency scattering problems, with structures extending to one or two wavelengths in three

dimensions [241. For planar surfaces, one can conveniently use "pulse expansion, point matching" in

conjunction with the volume integral equation approach [221 to obtain far-field results that are as

accurate as those obtained using "triangular patches" in conjunction with the surface integral
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approach. However, pulse expansion functions give rise to charge distributions within the body

which theoretically cannot exist in homogeneous dielectrics, thus resulting in erroneous near-fields

[211.

A better alternative to frequency domain techniques is provided by the FDTD technique,

which solves Maxwell's time-dependent integral equations directly in the time domain. It has

recently been shown that FDTD has certain advantages over the MoM when dielectrics are

involved [9]. A serious limitation of the traditional MoM technique is the need to invert a large

matrix equation. This requires order N3 computations and order N2 storage, where N is the number

of pulse basis functions (cells) used to subdivide the structure. FDTD requirements for storage and

execution time are often less. Also, the FDTD technique allows the modeling of dielectric structures

without requiring accurate air-dielectric boundary specifications [91. In contrast, MoM requires very

accurate air-dielectric boundary specifications, as well as the removal of the fictitious line charge

sources that are generated when pulse basis point matching functions are used. These requirements

prevent the application of efficient iterative techniques, like the fast-Fourier-transform conjugate

gradient technique, to solve the linear system of equations and help reduce the computational and

storage requirements [9].

4.2 Application of FDTD to Dielectric Structures

The analysis of scatterers containing solid dielectric components using the FDTD technique is

very straightforward. When homogeneous dielectric material is present throughout the cells in

which total fields are being evaluated, it is only necessary to provide the dielectric constant of the

material filling the cells when applying Ampere's law (see equation 2.4a). Figure 4.1 shows a two-

dimensional cut of a FDTD spatial grid containing a dielectric slab scatterer. The dielectric slab, of

thickness d and permitivity e, is represented by the shaded region.
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6zz

C3  H

Figure 4.1 The orientation ofa dielec:tnci slab within the FDTD grid.

When applying Ampere's law over contour C1 of figure 4.1, the only change that has to be

made, assuming a lossless slab, is to replace e.0 by e Oer in updating the electric fields. In updating

the magnetic fields by applying Faraday's law over contour C2 of figure 4.1, no change need be

made, assuming the magnetic permeability of the slab is the same as that of free space. Where

there is an interface with free space, as shown in contour C3 of figure 4.1, an average dielectric

constant is assumed over the contour. Therefore, e is replaced by (e + .0)/ 2 in the equation used to
update these fields.

If a homogeneous lossy material is to be modeled, the equations for updating the electric

fields must be modified to take into account the electric loss. Assuming an electrical conductivity a

in mhos/meter and applying Ampere's law over contour C1 (see figure 4.1), one obtains

f 1 H I~Js $+EJSE (4.1)

Evaluating the surface integrals on the right hand side of (4.1) by assuming linear electric field

distribution and replacing the partial derivative with respect to time by a central difference

equation, the following expression is obtained:

{ ~ (4.2)
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Assuming that

n/2 = Ex 1 -E
2 (4.3)

the final form of equation (4.2) can be written as

1---- A t AL
En+1/2 (I,J,K) = 2RE En+ 1 2 (I,J,K) + - Jt H • dl1+-a-- A t 1+ -y At t12E 2e (4.4)

where the line integral in the second par of (4.4) can be evaluated as shown earlier. If the cell lies

at an air-dielectric interface as shown in contour C3 of figure 4.1, then a is replaced by a/2 and E by

(e + eo)/2, as mentioned previously.

Similar equations can be derived for the remaining two electric fields (Ey, Ez). Since zero

magnetic loss was assumed for the dielectric slab, the equations for advancing the H-fields do not

have to be modified.

4.3 Modifications for Thin Dielectric Slabs

When a scatterer contains thin dielectric sheets, one can use cell dimensions that are small

enough to resolve the sheet as a collection of solid cells of dielectric. This, however, requires cell

dimensions throughout the problem space at least as small as the dielectric sheet thickness,

resulting in high computational and storage requirements. In order to circumvent this undesirable

situation, a model whereby the cell size can be allowed to be much larger than the slab thickness is

desirable. The detailed derivation of such a model is found in [2].

Figure 4.2 shows a two-dimensional cut of a FDTD spatial grid containing a thin dielectric

sheet scatterer. The dielectric, of thickness d and permitivity e, is represented by the shaded

region. The electric and magnetic field sample points pertinent to this discussion are labeled in this

figure.
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Figure 4.2 Orientation ofa thin dielectric slab in the FDTD grid

Since the slab is electrically thin, all components of the magnetic and the tangential

components of the electric fields can be considered linearly distributed within the dielectric.

However, the normal component of the electric field exhibits a discontinuity across the dielectric

interfaces. As a result, the calculations of the tangential magnetic fields adjacent to the slab have

to be modified. Updating of the electric field inside the slab also has to be modified so as to take

into account the effective dielectric constant within the cell.

Starting with Ampere's law and realizing that the slab is centered with respect to the

contour over which the equation is applied, and that the x-directed electric field varies linearly

throughout the contour, one obtains

ftH -dl= - - af 1E E-dS = ZaeE SE a t Sa (4.5)

where cave represents the average dielectric constant in the cell. Integrating the magnetic fields

over contour C1 (see figure 4.2) and evaluating the partial derivative of the electric field with

respect to time using central differencing, the following expression for updating the x-directed

electric field is obtained:

29



Erw' (I,JK)= E"(I,JK)

C at H n -[( H 1 ,2 (1,J -I ,K)- Hn", 2 (I,J,K)]
t o + (cCO z . -

+ H n * A ,J, K) - n" 2(1,J, K -)
& 9 (4.6)

A similar equation can be developed for the y-directed electric field.

In order to update the magnetic fields above and below the slab, Faraday's law (equation

2.4b) must be evaluated around a contour such as C2 (see figure 4.2). Here the evaluation of the

right hand side of equation (2.4b) proceeds exactly as if the dielectric were not there since it has

been assumed that the magnetic field has distributed itself linearly throughout the cells. On the

other hand, the evaluation of the line integral of E around the perimeter of the cell must be

handled differently due to the discontinuity of the normal component of E at the air/dielectric

interface. Figure 4.3 shows the behavior of Ez as a function of z in a cell that contains the dielectric

slab. The function describing this behavior is

f -0 [Ez (I,J,K) + Az] - A-< z <2-A + d-
Ez=C 2 2 2

f~[~(11 K+I2 2 2 (4.7)

where z is measured with respect to the center of the contour C2, and "A" is the slope of Ez .

Ez

Ez (IJK)

d/2
i I 2

2 2

Figure 4.3 Behavior of the normal electric field along the z-direction

30



In order to evaluate the line integral of Ez in the left hand side of Faraday's law (equation

2.4b), knowledge of the slope "A" of the electric field under consideration is required. However,
"A" can be estimated from known values of Ez on both sides of the slab. Thus:

A(,J)= -- [ En (I,J,K) - Enz(I,J,K-I 1 (4.8)

where A(IJ) denotes the slope of Ez along the lattice lines x = I Ax and y = J Ay. Substituting (4.7)

and (4.8) into Faraday's law and integrating around contour C2 yields [2]:

H " t (I ,J,K) - H-"/2 (I ,J,K)

* [ A(I,J) - A(I,J+ I) ± -Co 1) 6

* ay [ E" (I,J,K+ 1 EE <I,J,K)]} (4.9)

A similar equation can be developed for Hy. If the slab becomes thicker than X/10, it is best to

model it as solid cubes.

4.4 Numerical Results

Numerical results obtained using the analysis outlined in the previous sections of this

chapter are presented here. To begin with, figure 4.4 shows the radar cross section (RCS) of a lossy,

thin dielectric slab versus the observation angle. The slab, of dimensions 2X x X/40, has a relative
dielectric constant of Er = 4.5(1 - j1). The loss tangent in this case equals one ( i.e, tanS = 1). Here,

results obtained using the brute force method are compared with results obtained using a MoM code

provided by Richmond [301. Excellent agreement within the main lobe and first sidelobe of the

RCS pattern is illustrated when using the two methods. The slight disagreement in the second

sidelobe level can be attributed to the inability of either the FDTD or the MoM codes to model the

edges of the dielectric slab correctly.
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A similar plot of the RCS versus the observation angle is exhibited in figure 4.5. The results

were again obtained using the brute force method and the MoM. In this case, however, the

dielectric slab has zero loss. Again, excellent agreement with the MoM is demonstrated within the

mainlobe and first sidelobe of the RCS pattern. A much better agreement is.obtained in predicting

the second sidelobe levels of the RCS pattern, compared to the previous case. The FDTD technique,

however, does not agree with the MoM in predicting the nulls of the RCS pattern (predicting about

-32 dBsm instead of -40 dBsm as predicted by the MoM).
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Figure 4.4 RCS of a lossy dielectric slab versus the observation angle obtained using the brute force

FDTD method and the MoM (TM Polarization).
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Figure 4.5 RCS of a lossless dielectric slab vcrstis the observation anglc obtained using the brute

force FDTD mtthod and the MoM (TIM Polarization).
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The RCS of a longer dielectric slab (5). x X/40) versus observation angle is shown in figure 4.6.

These results are also obtained using the brute force method and MoM. Good agreement is obtained

in this case also between the FDTD technique and MoM despite the large dynamic range (40 dB) of

this problem. The agreement indicated by this example can be attributed to the fact that the effect

of the edges is smaller since a longer dielectric slab is used.

A comparison between the thin equation and brute force models of a thin, lossless dielectric

slab versus the observation angle for TE polarization is illustrated in figure 4.7. The two curves

show excellent agreement in predicting the mainlobe and first sidelobe of the RCS pattern. Figure

4.8 shows the distribution of the x-component of the electric field along the surface of dielectric

slab Again, there is good agreement between the two methods in the near-fields also.

Figure 4.9 compares the RCS of a dielectric slab for TM polarization, obtained using the thin

equation approach, the brute force method, and the MoM. Although there is fair agreement

between the three curves within the mainlobe of the RCS pattern, the results of the FDTD thin

equation approach fail to predict the correct nulls of the RCS pattern. The difference between the

curves at the null points is about 20 dB when compared to MoM, and 12 dB when compared to the

brute force method. This problem was analyzed further using the brute force method in order to

provide an explanation as to why the thin equation approach fails to predict the correct RCS of the

dielectric slab for TM polarization. It was then found that the y-component of the magnetic field

exhibited a distribution across the dielectric
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Figure 4.6 RCS of a lossy dielectric slab versus the observation angle obtained using the brute force

FDTD method and the MoM (TM Polarization).
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Figure 4.7 RCS of a lossless dielectric slab versus the observation angle obtained using the brute

force and thin equati-o approaches (TE Polarization).
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Figure 4.8 Near fields of a lossless dielectric slab versus the the position along the slab obtained

using the brute force and thin equation approaches (TE Polarization).
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Figure 4.9 RCS of a lossless dielectric stab versus the observation angle obtained using the thin

equation approach and the MoM (TM Polarization).
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material that is not accounted for in the theoretical model. Instead of a linear distribution with a

constant slope above and below the slab, it has a linear distribution but with a different slope

above and below the dielectric material.

Figure 4.10 compares the RCS of a lossless to a lossy dielectric slab. The lossy dielectric slab

projects a higher radar cross section than the lossless dielectric slab, especially at normal

incidence. The lossless slab has a lower RCS than the lossy one because it allows the

electromagnetic energy to propagate through without much reflection. On the other hand, the

lossy dielectric slab is a better reflector of the electromagnetic energy.

Finally, figure 4.11 shows the transient backscatter from a three-dimensional thin dielectric
plate of size 16m x 16m x 0.5m, and Er = 4.5. This example compares the thin equation approach, the

brute force method, and the physical optics method. The incident pulse is also shown in this figure.

Note that the physical optics results lie between the results obtained using the thin equation

approach and those obtained from the brute force method. For more scattering results obtained

using a three-dimensional FDTD code, refer to [4].
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Chapter 5: Modeling of Conductor-Backed Dielectrics

5.1 Ltroduction

The problem of electromagnetic scattering from structures coated with dielectric and/or

magnetic materials has been studied for many years by using exact (series), approximate (high

frequency, low frequency) and numerical techniques [261. Exact analytical solutions have been

derived for simple scatterers such as circular cylinders coated with lossy dielectric material [271.

An asymptotic high frequency estimation of monostatic radar cross section of a finite planar

metallic structure coated with lossy dielectric material is obtained theoretically in [26. The

results are compared with experimental data, showing good agreement. Single-layered and multi-

layered coated surfaces have been investigated using a transmission line approach [281.

Three major numerical methods that are applicable to scattering by layered dielectric

materials are the Method of Moments (MoM), the Finite Element Method (FEM), and the Finite-

Difference Time-Domain technique. In a recent publication [291, a new set of integral equations with

reduced unknowns (two unknowns instead of three) was derived for modeling two-dimensional

nonhomogeneous composite structures. This new set of integral equations was then solved using the

MoM. Also, solutions to scattering problems involving coated dielectrics have been obtained using a

hybrid FEM [311.

In this chapter the FDTD technique is used to analyze electromagnetic scattering by coated

dielectric sheets. This analysis is done in two ways: 1) very small cells are used to model the thin

dielectric coating on the top of a perfect conductor, and 2) coarse cells that are bigger than the size

of the coated dielectric structure are used. The first method is referred to as the "brute force"

method, whereas the second method is referred to as the "thin-equation" approach. Using the first

method the dielectric coating can be either lossless or lossy. Using the second method only lossless

dielectric coatings are considered.

5.2 Brute Force Method

Modeling of composite structures, such as coated dielectrics, is implemented in FDTD using a

brute force method as shown in figure 5.1. In this figure the dielectric sheet is represented by the

shaded region, whereas the conducting sheet is shown as the line beneath the dielectric.
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Since the dielectric material occupies full cells, updating the electric and magnetic fields

within these cells is done as in section 4.2, where bare dielectric sheets are analyzed. However, at

the conductor/dielectric interface the proper boundary conditions on the magnetic and electric

fields must be applied. These call for zero tangential electric fields and zero normal magnetic

fields. Once the proper boundary conditions on the conductor/dielectric interface are applied,

accurate modeling of coated dielectric sheets is obtained using the brute force method.

X

x

....... .. . . .: :. : ........

d

Figure 5 1 Brute force modeling of a diielectnc sheet backed bi

=' '. .= :' 1: : :' ': :' ': :' ' . . ." . .:' ': .. . . . . ..:' '
. . . . . . . . . ..::: :: :: :: :: :: . '. ;. -' - 4 . - - -.'' ' ' . ." " '

62 \Perfect
Ay I Conductor

Figure 5.1 Brute force modeli ng of a dielectr'ic sheet backed by a

Derfect conductor

5.3 Thin Conductor-Backed Dielectric Sheets

Modeling of thin dielectric slabs backed by a vanishingly thin conducting sheet is, in some

ways, easier than modeling a thin dielectric slab. This is because the tangential electric and

normal magnetic fields at the dielectric/conductor interface are known (i.e., they are zero).

The FDTD model for a thin, conductor-backed, dielectric sheet is shown in figure 5.2. The

dielectric sheet is represented by the shaded region, whereas the conducting sheet is shown as the

line beneath it. A typical contour used to evaluate the tangential electric fields at the

air/dielectric interface is shown as C1. Here, the contour is shortened in the z-dimension as
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compared to "normal" contours, due to the presence of the conducting sheet at the bottom. Ampere's
law can be utilized along this contour to evaluate Ex along the air/dielectric interface if

assumptions are made about the behavior of Ex and Hz within and along the contour.

z

H - I -Cl xr-- -

I I

E L3___Hx IE

Figure 5.2 Orientation of a thi n dielectric sheet backed by a perfect conductor

Since both Ex and H. have zero values at the conductor surface and will vary linearly near

and within the dielectric, Hz and Ex can be modeled as [2]

& z <z < -dHz= 0 dT
Hz (5.1)

HZ Hz (I,J,K) [D +-I- -d <z < 63Z(5)

d d

and,

6- < Z < -df0 dT
Ex Ex ( I,J , K)[1 +-d< -d 6zA (5.2)

d

45



where Hz(I,J,K) and Ex(I,JK) represent the values of these fields at the air/dielectric interface.

Also, z is measured with respect to the center of C1. Equations (5.1) and (52) are depicted in figure

5.3.

d

ExI0JK)

H Hz

H Hz (,J,K)

- AZd a z

2 2
Figure 5.3 Assumed Variations along the z-direction of the tangential

electric and normal magnetic fields.

Substituting (5.1) and (5.2) into Ampere's law (see equation 2.4a) and integrating about contour C1

(see figure 5.2) one obtains

E 1' (I,J,K)= En (I,J,K)

_ At { " [ 1, -I <,_ ,k)

&Z2 az 3d,Td--* + T8) - V (1,J,K). - z]f 1/2  Hn ' / '

+ [ Hr' 1 (I,J,K)- H -" (,,)] } (5.3)

where Hyc(,J) is the y-directed magnetic field in the middle of the dielectric material.
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The x-directed magnetic field in the middle of the dielectric material can be updated by
applying Faraday's law over contour C2. The assumption in this case is that the normal electric

field within the slab equals the electric field above the slab multiplied by the constant (I/er) to

take care of the boundary conditions. This is a reasonable assumption because the normal electric

field approaches the surface of the perfect conductor with a zero slope. Taking into consideration

all the above assumptions, the equation for advancing the x-directed tangential magnetic field in

the slab can be shown to be

~At c Co [ E(IJKIHfw s / 2 (1,J) = Hn-"'2 (1 ,J) + En (1J K+

En (1,J+ I ,K +I] + I 1J +1 54

Similar equations for the y-directed electric and magnetic fields can easily be derived by following

the same procedure.

The evaluation of Hz at the air/dielectric interface needs no special attention since the

integration contour takes place for a fixed value of z and the fields Hz , Ex , and Ey are continuous

across the interface. Finally, the expressions for updating the tangential magnetic field

components (Hx and Hy) below the conductor must be slightly modified to reflect the fact that the

conductor sheet is protruding into the cells under the slab. In evaluating Faraday's law around
contour C3 (see figure 5.3), it is noticed that the point at which Hx is to be evaluated is not the

center of the contour, giving rise to an ambiguity in its value since the slope of Hx at that point

cannot be known exactly. Fortunately, since this point is close to a perfectly conducting surface, the

slope of Hx with respect to z will be small and thus relatively unimportant. Thus, the algorithm

for calculating Hx needs only to be modified by noting that the surface surrounded by C3 is smaller

by the multiplier ( - d/Az).

5.4 Numerical Results

Numerical results that validate the thin equation approach are presented in this section.

Along with these results the effect of a lossy dielectric material on the RCS of a conductor-backed

dielectric structure is examined.
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Figure 5.4 shows the RCS versus the observation angle of a two-dimensional conductor-backed

dielectric slab. The dimensions of the slab are 11 x X/40, while the relative dielectric constant of
the coating is 10 (i.e, Er = 10). Results obtained using the brute force method and thin equation

approach show excellent agreement. However, this is somewhat due to the fact that the dominant

scatterer in this case is the perfect conductor, which is modeled exactly by both methods. The

contribution of the lossless dielectric material to the far fields is very small compared to that of

the perfect conductor.

Very good agreement is also obtained in the near-field distribution of tne same stru.ure

when the brute force method and thin equation approach are used. These results are compared in

figure 5.5. Also, in this figure the differences between the fields of the conductor with and without

the coating are shown. This accuracy in predicting the near fields of a conductor-backed dielectric

slab using a coarse grid is very important for the next chapter where the thin equation model of

cracks will be developed. The equations derived for the thin conductor-backed dielectric case will

be utilized in the next chapter where cracks are analyzed.
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Figure 5.4 RCS of a Iosslcss dielectric slab backed by a perfect conductor obtained using the brute

force method and the thin equation approach (TE Polarization).
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Figure 5.5 Near fields of a lossless dielcctric slab backed by a perfect conductor versus the

position along the slab. Also shown are the near fields of a bare perfect conductor

sheet (TE Polarization).
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These equations are used to update all the field points of the conductor-backed dielectric slab

except those in the cell containing the crack.

Similar results for an oblique incidence angle (45 degrees) are exhibited in figures 5.6 and 5.7.

In these examples, the relative dielectric constant was changed from 10 to 4.5. Good agreement is

obtained in this case also between the brute force method and thin equation approach, both in the

far fields and near fields. A cell size of X/20 was used in this case, instead of X/10 used in the

previous example, to compensate for the additional numerical error introduced by di"persion

effects. It is well known that the dispersion effect in the FDTD technique is known to be maximum

when an oblique incidence angle of 45 degrees is used.

Figure 5.8 compares the RCS of a perfect conductor, when the conductor is bare, and when a

thin layer of lossy dielectric material is deposited on top of it. The lossy dielectric material has an
Cr = 4-5 ,. - j). This figure illustrates that the RCS of the conductor is reduced by 3 dB at the

maximum return point when the lossy coating of thickness X/20 is deposited on its surface. These

results were obtained using a TE polarized wave at an oblique incidence angle. Similar results at

normal incidence are shown in figure 5.9.

The effect on the RCS of :he conductor-backed dielectric slab when the polarization of the

incident wave is changed is shown in figure 5.10. Less variation is exhibited in the RCS pattern for

TM polarization th.,n for TE polarization. Also, the RCS for TE polarization is lower than the one

for TM polarization.
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force method and the thin equation approach (TE Polarization).
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Figure 5.8 RCS of a iossy dielectric slab backed by a perfect conductor, with and without the

dielectric coating versus the obscrv'ation angle (TE Polarization).
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Figure 5.9 RCS of a lossy dielectric slab backed by a perfect conductor, with and without the

dielectric coating versus the observation angle (TE Polarization).
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Chapter 6: Conductor-Backed Dielectrics With Cracks

6.1 Introduction

The problem of modeling a dielectric slab backed by a perfect conductor with a thin crack in

the dielectric presents a challenge when using any electromagnetic technique. This difficulty

arises from the relatively complex field distribution in the vicinity of the crack. These fields

exhibit a severe localized perturbation from their smooth behavior away from the crack due to the

collection of bound charges across the crack. The bound charge distribution can be thought of as

arising from the disruption of polarization currents flowing within the dielectric since the crack

presents an open circuit to these currents.

In this chapter, the scattering properties of such structures are analyzed using the FDTD

technique in two different ways. First, the "brute force" method is applied, whereby the crack in

the dielectric material is modeled using very small unit cells. This approach is applied only to

two-dimensional structures because of the large computational requirements of three-dimensional

analysis. Second, a "thin equation" approach is applied whereby the crack sizes are allowed to be

smaller than the size of the unit cell of the FDTD grid. Derivations are first made for two-

dimensional structures. Once the validity of the thin equation approach is established, the

method is extended to model three-dimensional structures is straightforward.

6.2 Brute Force Modeling of 2-D Cracks

In section 5.2, a brute force method was applied to dielectric sheets backed by a perfect

conductor. In this section, a similar approach is applied to dielectric sheets backed by perfect

conductors with cracks in the dielectric material. Figure 6.1 shows the orientation of such a

structure in the FDTD grid. In this figure, the dielectric material is represented by the shaded

region, whereas the perfect conductor is shown as the line beneath the dielectric. The crack is

assumed to be a "clean" cut in the dielectric sheet. The width of the crack is equal to a unit cell of

the FDTD grid.
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Using this method, any crack size, as well as dielectric thickness, can be selected by the user.

Also, the dielectric material to be modeled can be either lossless or lossy. All these advantages,

however, are obtained at the expense of bigger storage requirements and execution time. This is due

to the fact that this model requires very fine resolution cells in order to analyze relatively thin

cracks.

Crack in the dielectric

x

. . .. ... - . .. o * i . ,. ,. . . . ..

.... . .. ... .....-. . ..
.. . . . . . , . . . . . . .,o . . . . | . . . ,.

.. . .. , . . . . , ., o . o .. . . . . . - . ,.

. .. .. . . .I . . .) . . ; .. . . " . . .'. ..

\Perfect
a~x Conductor

Figure 6.1 Orientation of a dielectric backed by a perfect conductor

containing a crack in the dielectric material.

In order to study the effect of a relatively large crack (with respect to the free space

wavelength) on the radar cross section of a conductor-backed dielectric slab, the simulation shown

in figure 6.2 is performed. The thickness of the crack is equal to the thickness of the dielectric

coating, i.e., X/5, whereas its width is X./10. The overall length of the conductor-backed dielectric

slab is 21. TE polarization, at oblique incidence, is used. The RCS obtained with and without the

crack in the dielectric is shown in this figure. A large perturbation in the RCS pattern is obtained

when the crack is present in the dielectric material. In particular, a drop in the RCS is observed

within the mainlobe of the pattern. On the other hand, a higher RCS within the sidelobe of the

pattern is seen when the crack present.
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In figure 5.8, the maximum RCS of a bare conductor of the same electrical size as the one used in this

simulation is found to be 13 dBsm. When a lossy dielectric material of thickness X/20 is deposited

on its surface, it is found that the RCS of the structure is reduced by 3 dB at the maximum return

point. In figure 6.2, where the thickness of the lossy dielectric coating is X./5, the RCS is reduced by

10.5 dB. Furthermore, when a crack is artificially inserted in the dielectric material, the RCS is

reduced by 12.5 dB. From this example it is reasonable to expect that there is an optimum crack

width, and thickness, as well as an optimum number of cracks that can be used in a certain structure

that will make the reduction in RCS maximum. Such an analysis is possible with the present

FDTD code.

A second simulation is performed where the dielectric thickness, and hence the crack

thickness, is decreased from X/5 to X/20. In the same way the width of the crack is decreased from

/10 to X/20. The results of the RCS pattern obtained with and without the crack in the dielectric

are shown in figure 6.3. Absolutely no difference between the two curves is obtained in this case -

the reason being the inability of the relatively small crack to contribute significantly to the far

fields of the overall conductor-backed dielectric structure.

However, the fact that there is little effect in the RCS pattern of a 2-D conductor-backed

dielectric slab because of the presence of a small crack in the dielectric material does not guarantee

the absence of any effect in the near-field distribution of the tangential electric field along the

surface of the dielectric. Indeed, when the amplitude distribution of the x-component of the

electric field along the surface of the dielectric coating is compared with and without the crack,

the effect of the crack is evident. This effect is shown in figure 6.4. A field perturbation is

observed within the vicinity of the crack. This perturbation in the electric field is localized and

does not contribute to the far-field radiation of the overall structure.
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6.3 Two-Dimensional Thin Crack Model

A FDTD model of a dielectric slab backed by a perfect conductor with a narrow crack is shown

in figure 6.5. Here, it is assumed that the air/dielectric interface lies along a grid coordinate axis,

and the perfect conductor lies below at a depth d (d < Dy). The crack is assumed to be a "clean" cut

in the dielectric, of width w (w < Dx), that extends through to the conductor surface. This
alignment is such that the top of the crack coincides with the evaluation point of Ex. This

particular orientation of the crack within the FDTD lattice has been chosen so that the effect of

the crack can be most accurately modeled for situations where the incident field produces strong

fields across the crack (i.e., TE polarization).

EX

ICI  Ix
E 9 Hz i1 EyI C

-.--.-.-...-- . ...........~i!i~ii!!
................. ze

Figure 6.5 Orientation of a thin, conductor-backed dielectric slab with a
narrow crack in the dielectric material.

Since the dielectric is non-magnetic, it can be assumed that the magnetic fields in its vicinity

vary linearly throughout the ceil On the other hand, this assumption cannot be made about the

tangential electric field in the vicinity of the crack since it is expected that this field component
will be enhanced inside the crack and exhibit a disruption similar to a static dipole. This effect

was shown in the previous section where the brute force method was used to analyze the near-fields

of a crack (see figure 6.4).

This static dipole effect gives rise to two difficulties: 1) the nonlinear behavior of the field
will change the way that the right-hand side of Ampere's law (equation 2.4a) is evaluated to

calculate the field in the lattice point given a knowledge of its surface integral and, 2) it is not the
value of Ex (1,) at the lattice point that is needed in Faraday's law when updating the magnetic
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fields, but rather its line integral over the length of the respective cell wall. Thus, the nonlinear

behavior of Ex along the x-direction must also be correctly modeled in order to calculate the

magnetic fields accurately.

As was observed when using the brute force method, a relatively thin crack produces a

localized perturbation in the tangential electric field in the vicinity of the crack. Since the

perturbation is localized, a quasi-static approach can be followed to describe the nonlinear

behavior of the tangential electric field.

The orientation of the crack, as well as the coordinate system used for the derivation of the

crack model, is shown in figure 6.6. The center of the crack is defined as the origin of the coordinate

system. The crack walls are at a distance w/2 away from the center. The perfect conductor lies at a

distance d below the origin. The length of the conductor underneath is assumed to be much larger

than the dimensions of the crack. A TE polarized incident field will produce x-directed

polarization currents in the dielectric material. The intensity of these currents (i.e., jo)eo(er-l)E)

will vary from a maximum value at the top surface of the dielectric to a zero value at the surface of

the perfect conductor. Once these currents encounter the crack walls, they deposit bound charges on

the respective walls of the crack. The charge distribution that is created will perturb the

tangential electric field in the vicinity of the crack.
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.. .. - . - . .- .X- . .... .... .. .. .

iiiii~ i~iiiiiiiii!(0,0) :::::: ii:.~~. ... .
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Figure 6.6 Enlarged geometry of a crack in the dielectric material.
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Now that we have a physical understanding of the nonlinear behavior of the tangential

electric field above the crack, vve can ascame a mathematical model that will describe this

nonlinear behavior. This model is

Ex(xy)=ExL(I+ -. + Ex L f(x, y ) + Ax (6.1)

where ExL and A represent the linear behaviors of the field associated with the conductor-backed

dielectric slab without the crack, in the y and x directions, respectively. The middle term,

however, models the highly nonlinear dipole term. Here, f(x,y) is a dimensionless dipole pattern

function of the positive and negative charges on opposite sides of the crack, including the image due

to the presence of the perfect conductor. ExNL is the strength of this nonlinear field in volts/in.

Since the crack is located symmetrically about x = 0, the last term of equation (6.1) drops out

when integrated across the cell from -Ax/2 to Ax/2. This, however, does not occur with the

remaining two terms, leaving the apparent dilemma that the field model in the cell containing the

crack is not uniquely specified since it contains two constants. This dilemma can be resolved,

however, by realizing that the strength of the dipole term is directly related to the magnitude of

the polarization charges deposited on the crack walls, which is in turn dictated by the electric

field strength at the walls.

Starting with the relationship between the x-component of the total electric field just inside

the left wall of the crack and the induced polarization current one obtains

Jp(-w/2-, y) = (c - Co) -aEx (-w*/2, y) (6.2)at

where Ex(-w/2-,y) is the electric field intensity just inside the left wall. Relating this

polarization current to the surface charge density on the crack results in

J~x (-w/, Yj ) -ps (-W o Y) (c - co) -LE(-w/2, y (6.3)
at at
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Dropping the time derivative from both sides of equation (6.3) results in

Ps (-w'/2 ,)= (c - Co) Ex (-W/2, y) (6.4a)

The line charge distribution on the crack wall can be found by integrating the surface charge

distribution over the length of the crack wall in the y direction. Evaluating this integral results in

0

ps (-w/2) = J (c - co) Ex(-/2-, 0)dy
-d

z -(c - Co) [ Ex + ExNL f(-/2-, 0) (6.4b)
2

Here, it has been assumed that the functional behavior of f(-w/2-,y) with respect to y within the

crack varies as (1 + y / d), just as the linear field component. Also, we note that f(x,y) is continuous

at y = 0. Therefore, the surface charge distribution is proportional to the total electric field just

inside the crack walls. But the nonlinear dipole strength, ExNL, is also proportional to the charge

distribution on the crack, and thus is also proportional to the quantity [ExL + ExNL f(-w/2-,O)I.

Choosing the constant of proportionality between the nonlinear dipole strength and the total

electric field just inside the wall to be unity (this forces ExNL to be the total electric field just

inside the crack wall) and evaluating these quantities at y=0, one obtains

ExNL = Ex (-W/2 , 0 ) (6.5)

Substituting Ex(-w/2,0) in equation (6.5) in terms of ExL and ExN, we can relate the constants

ExNL and ExL as follows:

ExL
ExNL = (6.6)

1 - f(-w/2. 0)
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Replacing (6.6) into (6.1), one obtains

EX(X A)= ExL 1 + 3L+ /x'n)

I d I1 - f(-w/2-, )(67 (6.7)

We have now expressed the functional behavior of Ex(xy) above the crack with respect to one

unknown only.

Realizing that the FDTD technique updates average values of electric and magnetic fields,

we must express the unkown constant ExL in terms of the average value of Ex(x,O). Now, the

average value of Ex(xO) from -Dx/2 to Dx/2 is defined as

Ax

< Ex(XO0) > = _.xEx(X,O) dx

2

=ExL [1+ <f(x,). ] (6.8)
1 - f(-w/2,O)

Ax
ax

2

Solving (6.8) for ExL and replacing ExL in (6.7), the following final equation for Ex(x,y), in terms of

the average value of Ex(xO), is obtained:

Ex(X' Y) = 1 I + (6.9)

+ < fix,0) > d 1 - f(-w l2O)
1+

1 - f(-w/2O)

In order to derive the function fRx,y), we refer to equation (6.4a), which relates the surface

charge distribution with the total electric field just inside the crack walls. Since the dielectric
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thickness is small (d < 1/20), the distribution of Ex(-w/2",y) in the y direction can be assumed to be

linear with respect to y. This linear behavior is described by the relationship

Ex(-w/2IJ ). Ex (-v/21 )I + L~. (6.10)

where Ex(-w/2-,0) is the field at the corner. Note that Ex(-w/2",y) becomes zero at the surface of

the perfect conductor for which y = -d.

By evaluating Ex(xy) using equation (6.1) at x = -w/2- and y = 0 (neglect the term "Ax") and

solving the resulting equation for ExNL , it can be shown that Ex (-w/2-,0) = ExNL. Therefore, the

constant ExN L equals the total tangential electric field at the upper left corner of the crack.

Substituting (6.10) into (6.4a) results in

P3 (-w/2,yj) (c - co) EXL [I + L~- dyj .(.1

The same distribution, but of opposite sign can be obtained on the right wall of the crack. The
function f(x,y) is the pattern function of the surface charge of strength equal to (e -e0)(1 + y/d) on

the walls of the crack (opposite sign on each wall), including the images due to the presence of the

conductcr. The product of ExNL and f(x,y) represents the total radiated field due to the bound

charge on both sides of the crack. For two-dimensional problems it is desirable to express the

surface charge distribution in terms of infinite lines of charge to avoid integrating in the z-

dimension. Therefore, an incremental line of charge of infinite extend in the z-direction is: dPL =

Psdy.

The radiated field due to an infinitely long line of constant charge is given by
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dEr = dPL ar (6.12)

where

r =I-v -(x-x+ (9yS)

and ar (x-x') x +(qU-j'.)

and 8r 7 (Y-'T

In this case the primed coordinates represent the location of the source whereas the unprimed

coordinates represent the location of the observer. Since we are interested in the x-component of of

the radiated electric field, equation (6.12) simplifies to

dL(x-x') xdExr(X,y)= (6.13)
2nzo[ (x-x')? + (Y-W) .

Replacing drL = r. dy' = (e -e0 )(1 + y'fd) dy' into (6.13) and rearranging, one obtains

I Cr I + SL (x-x')dj'

dE(x,) Ex. 21t (xx + (yy] (6.14)

Equation (6.14) can be written in the form

Er (x, y) = ExNL df(x, y) (6.15)

cr~ (1- )(x - x') dy'

where df(x,y)= C-- )(x-x) -
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In order to find the total radiated field along the cell wall that contains the crack, the

function df(xy) has to be integrated over the whole charge distribution, including the charge

images due to the presence of the perfect conductor. The functions fRx,O) and f(O,y) are required to

implement equation (6.9) in the FDTD code. These functions can be derived in dosed form by

integrating df(xO) and df(Oy) over the whole charge distribution. The derivation of these

functions is included in the appendix. Also, another important parameter that is required by the

FDTD code is the value of f(-w/2",O) at the upper left corner of the crack. This parameter is also

derived in the appendix.

Ex(x,y) can now be updated in FDTD by applying Ampere's law over contour C2 of figure 6.5.

The final equation for updating the x-component of the electric field along the crack is

En+1 (1,J)=. En(1,J)* + t (Factor) [Hn1 /2 0I ,J) - Hz© z/2I,J)] (.6

1+

I - f(-w/2;O)
where Factor <f(Ou)> Ay+d

& &Y 3d _2_

1 -f1(-w,/2,0)

6Yt/22 r (~)d
and <f(,y)>= R )-daj+ d Ld/2

Hzc(IJ) is the value of the magnetic field in the center of the crack.

Once the correct average value of Ex is estimated, the application of Faraday's law over

contour C1 (see figure 6.5) will correctly update the x-component of the magnetic field above the

crack. The remaining fields are updated as in the conductor-backed dielectric case.

In order to check the validity of this thin equation approach, two simulations of conductor-

backed dielectric slabs containing narrow cracks in the dielectric coating are performed. The first

simulation models a dielectric coating of thickness X/50, containing a crack of width X/I00. The

overall length of the slab is 0.95;. These dimensions are selected such that the crack lies exactly in

the center of the slab. The plot shown in figure 6.7 represents the amplitude distribution of the

tangential electric field on the surface of the dielectric material, obtained using both the brute

force method and thin equation approach. The amplitude of the electric field above the crack, as
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provided by the thin equation approach, represents the average over the cell containing the crack.

This is because every sample point produced by the thin equation approach corresponds to five

sample points of the brute force method (the ratio of the respective unit cell sizes is 1:5).

Although it first appears from figure 6.7 that the thin equation approach has failed to

correctly predict the behavior of the field in the vicinity of the crack, we note that with a

knowledge of the correct value of the average electric field over the cell containing the crack and

using equation (6.9), the actual electric field distribution over the unit cell length, Ax, can be

obtained. This field distribution, along with the five samples of the brute force method, is shown

in figure 6.8. In this case 500 sample points of the function f(x,O) are used and therefore 500 sample

points corresponding to one unit cell of length 1./20 are obtained. To generate five sample points

corresponding to the five samples of the brute force method, the actual distribution of figure 6.8 is

averaged over every 100 sample points. These 5 samples are compared in table 5.1 with those

obtained using the brute force method. The relative error between the values obtained using the

two different methods is also tabulated. The maximum relative error obtained is 2.34% indicating

that the thin equation approach updates correctly the average value of the tangential electric

fieil above the crack.
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Figure 6.8 Near field distribution of the electric field above the crack predicted by the thin

equation approach after relating the coarse cell average value to the total field

expression (equation 6.9).
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Table 6.1 Sample points of the electric field above the cell (s)
of the crack.

Sample Brute Force Thin Equation Relative Error

Ex (v/m) Ex (v/m) %

1 0.2753 0.2816 2.31

2 0.2447 0.2464 0.70

3 0.5190 0.5178 0.22

4 0.2447 0.2457 0.41

5 0.2753 0.2814 2.34

perturbation due to the crack is confined only within the cell containing the crack. To analyze the

effect on the numerical error, the width of the crack is now increased and a second simulation is

performed. While keeping the other parameters the same as in the previous example, the crack

width is increased from /100 to 3X/100. The crack in this case occupies 60% of the unit cell when

modeled using the thin equation approach. The tangential electric field distribution along the

dielectric surface is shown in figure 6.9. In figure 6.10, the actual distribution of the field

reproduced using its average value, along with the five sample points obtained using the brute force

method, is shown. In the same way as in the previous example, 500 samples of the function f(x,0)

are used, and hence 500 samples of the field are obtained. When a 100 point averaging is performed

on the actual distribution, 5 sample points are produced. These 5 sample points are compared in

table 6.2 with the ones obtained using the brute force method. This comparison shows that the error

increases as the width of the crack increases. This is so because for larger crack widths, the crack

affects field points not only within the cell containing it but also within neighboring cells.
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Table 6.2 Sample points of the electric field above the cell (s)
of the crack.

Sample Brute Force Thin Equation Relative Error
Ex (v/m) Ex (v/rm)

1 0.2241 0.2309 3.03

2 0.4091 0.3653 10.70

3 0.3752 0.3429 8.60

4 0.4091 0.3648 10.83

5 0.2241 0.2317 3.80

In conclusion, it has been shown that the thin equation approach can be applied to correctly

model conductor-backed dielectric slabs containing cracks in the dielectric material as long as the

crack width is confined to at least less than 40% of the length of the unit cell of the FDTD grid. To

produce the actual distribution of the electric field above the crack, knowledge of the average

value of the field, as well as the function f(x,0) is required.
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Figure 6.9 Near-field distribution of the tangential electric field along the surface of the

dielectric material (TE Polarization).

76



Thin Equation Aproach

xxxxxx Brute Force Method

0.45

0.35

E

-6 0.25

x
Iu

0.15

0 .0 5 . ... ... . . ..... .... ... ... . . . .. . . . . . .. .. ..
0.0 100.00 200.00 300.00 400.00 500.00

Sample # (over Ax)

Figure 6.10 Near field distribution of the electric field above the crack predicted by the thin

equation approach after relating the coarse cell average value to the total field

expression (equation 6.9)
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6.4 Three-Dimensional Thin Crack Model

A model of a three-dimensional dielectric plate backed by a perfect conductor with a long

narrow crack in the dielectric material is illustrated in figure 6.11.

z
II

/~/

I/ lx

d 1
Y

Figure 6.11 Three dimensional conductor- backed dielectric plate

with a long narrow crack in the dielectric material.

A two-dimensional cut in the y-z plane of the conductor-backed dielectric plate with a crack is

shown in figure 6.12. Also shown in this figure is the orientation of the structure with respect to the

FDTD grid. Note that the plate and the crack are positioned in the same manner as in the two-

dimensional case.
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Figure 6.12 Orientation of a thi n conductor-backed dielectric plate
containing a crack in the dielectric material.

The mathematical model used for the y-component of the electric field above the crack is

similar ;c the one derived for the two-dimensional crack. This model can be expressed as

E9(x,y,z) = EL( + !) + EqNLf(X,YZ) + Ax + By (6.17)

It is expected that the same static dipole effect across the crack will be observed in this case also.

The width of the crack is assumed to be at least less than 40% of the length of the unit cell. In this

way, the perturpation in the electric field due to the crack is confined within the cell containing

the crack (in the f direction). An enlarged pictorial representation of the three-dimensional crack

with the coordinate system that is used for the derivation of the function f(x,y,z) is shown in figure

6.13. Note that the length of the plate is Ix and Iy meters in the x and y direction respectively.

The thickness of the crack is d. and its width is w.

Although the model used for the tangential component of the electric field across the three-

dimensional crack is the same as that of the two-dimensional case, the derivation of the function

f(x,y,z) is done in a slightly different manner. This is because the dimensions of the crack are

finite. Therefore, the infinite line of charge representation that was used in the two-dimensional

case cannot be used here. The charge distribution over the finite area of the crack walls (dA = dz

dx, see figure 6.13) will have to be integrated numerically in order to derive the function f(x,y,z).

The numerical integration that is introduced will significantly add to the overall cpu time required
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to solve a given problem. In the two-dimensional case, because one dimension was of infinite extent,

we were able to use the infinite line of charge representation and, hence, solve the problem by

integrating over one dimension only.

A second problem is that image theory cannot be applied in this case because of the finite

dimensions of the slab in the x direction. Image theory was used to find the image of the charge

distribution due to the presence of the perfect conductor.

W/ r/

Figure 6.13 Enlarged geometry of a three dimensional crack.

A study concerning the first problem showed that for a unit cell size of the FDTD grid bigger

than one meter, it is not required to integrate over the whole slab dimension (in the x direction) in

order to get the exact radiated electric field over a unit cell. Integrating over a unit cell only is

enough to provide the exact distribution of the radiated electric field. This is because the radiated

electric field is inversely proportional to r3 , r being the distance from the charge. For distances

greater than one meter the radiated field becomes very small and hence insignificant. This

observation simplifies the derivation of the function f(x,y,z), and also reduces the cpu requirements.

Furthermore, if we assume that the charge distribution over a unit cell affects the y-

component of the electric field inside that cell only, then image theory can be applied with no

problem except at the edges of the slab (in the x-direction). This assumption is correct given that

the length of the conductor-backed dielectric slab is much bigger than a unit cell in either the x or y

direction. The error though due to the edges can be reduced by increasing the size of the slab in the x

direction. This effect was observed in chapter 4 (see figure 4.6).
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Therefore, assuming that a unit cell of length greater than one meter is used and that the dimension

of the slab in the x direction equals several unit cells, it can be shown that

q(x,Y,Z) = EyNL(O,-\v/2,0)"- f(x,Y~z) (6.18)

-2d Ax/2

where f(xyz)= L /2 df(xyz)dz'dx

C -2d &x/2 ( +L) (U-U)dz'dx'

4n &x/2 (4(x -x)
2+ (YY*) 2  +(z - Z)

Following almost the same procedure as in the two-dimensional case, the final equation for

advancing the y-component of the electric field above a cell containing a three-dimensional crack

can be shown to be.

E"'t (I,J,K) = En(I,J,K) + Lt (Factor)x

([Hr"' I,J, Q - Hx°(I,J>] ,ax

+ [H"t(I_1,j,K)_F " 2 I,J,K)]tz} , (6.19)

I+ < f(O, Y,O) >

where Factor = I - f(,-w/2,0)

2 8d 8 1 - f(0,-w/2,0)

Once the correct value of the Ey field is estimated in the FDTD code, then application of

Faraday's law over contour C1 (see figure 6.12) will correctly update the x-component of the

magnetic field above the crack. The remaining of the fields are updated as in the conductor-backed

dielectric case.
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The implementation of the three-dimensional crack equations in the FDTD code is a topic of

ongoing research, as well as improvements in the existing theoretical model. Other methods that
can be used to validate the crack results are also being considered. Among these are the brute force

FDTD method for three-dimensional structures, and the geometrical theory of diffraction (GTD).

Also, experimental results (measurements) from three-dimensional dielectric structures is another

possibility.
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Chapter 7: Conclusions

The intent of this work was to use the Finite-Difference Time-Domain (FDTD) technique to

model scattering of relatively thin dielectric structures. These structures included thin dielectric

sheets, conductor-backed dielectric sheets, and conductor-backed dielectric sheets containing cracks

in the dielectric material.

The near-fields given by the FDTD technique were extrapolated to far-fields using a

frequency-domain near-field to far-field transformation. The amplitude and phase of the fields

were estimated using a least squares estimation method. The maximum error of the near-field to

far-field transformation was found to be 2.0%. This error, corresponding to a standard FDTD cell

size of X./10, was found by simulating the far field radiation of an infinitely long filament of

constant a-c current. As the cell size of the FDTD grid decreases, the numerical error decreases.

Two approaches were applied to model dielectric structures. First, the FDTD was applied in

a brute force method whereby very small unit cells are used to model relatively thin dielectric

structures. When compared to the MoM, the brute force method was very accurate in modeling

lossless and lossy, thin dielectric sheets. In order to improve the computational efficiency of the

brute force method, the thin equation approach was used.

In modeling thin dielectric sheets, the thin equation approach produced fair agreement with

the MoM results for TM polarization. The results for TE polarization using the thin equation

approach compared well with the brute force method results. The two methods demonstrated

excellent agreement both in the near-fields and far-fields.

Modeling of conductor-backed dielectric slabs is done accurately using both the brute force

method and the thin equation approach. This is mainly due to the fact that the dominant scatterer

in this case is the perfect conductor whose effect is accounted for exactly by both methods. But the

fact that good results were obtained in the near-fields of the thin conductor-backed dielectric slab

prompted us to extend this analysis to structures that contain cracks in the dielectric material.

New equations were derived to model the tangential electric field perturbation within the cell

containing the crack, while retaining the same equations as in the conductor backed dielectric case

for the rest of the FDTD unit cells.

The effect of a crack on the overall RCS pattern of a two-dimensional conductor backed

dielectric slab was examined using the brute force method. It was observed that when the sizes of

the crack are bigger than X/20, the crack affects the RCS pattern. A crack in the dielectric

83



material of thickness X/5 and width X/10 can reduce the RCS by at least 2 dBsm, when TE

polarization at oblique incident angle (45 degrees) is used. While the RCS pattern decreased at the

mainlobe, the opposite effect was exhibited at its sidelobes. I the crack is very small, its effect on

the far field radiation of the conductor backed dielectric structure is insignificant. However, a

large perturbation in the near fields is obtained. Particularly, the crack enhances the tangential

electric fields exactly on top of it and produces a static dipole effect in its vicinity. For some crack

geometries, the tangential electric field on the top of the crack was found to be twice the amplitude

of the field that is produced when the crack is not present.

Using the thin equation approach, it was found that the near fields of a conductor backed

dielectric slab containing a crack can be modeled with an error of as little as 2.34% when the crack

is relatively thin compared to the unit cell of the FDTD grid. The small error found in this case

prompted us to extend this analysis to model three-dimensional conductor backed dielectric slabs

with cracks.

In this way, scattering from dielectric structures up to 25k in extent can be examined using the

two-dimensional FDD code. The thickness of the dielectric coating can extend from few

wavelengths to as little as X/100. Cracks of very small size in the dielectric can be modeled with

the thin equation approach. If the cracks become large, the brute force method is applied to study

their scattering behavior. For three-dimensional structures smaller electrical sizes can be handled

because of the increased requirements for storage and execution time.
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Appendix

A. Derivation of the Functions f(x.0,). f(O.v), and f(-w/2.0)

For a two dimensional crack the function df(x,y) was defined as:

(ICr- I+) (x-x')dy'
-- d(A.l)

Z [(Xix'? + (y_ Y.1

In order to find f(x,y), the function df(x,y) must be integrated over the charge

distribution on the walls of the crack, including the images due to the presence of the

perfect conductor.

y

(-w/2,O) (w/2,0)
+ (0,0) x
+

C + C+

-2d +
+ - Po3ition of P.C

- +

+ E Image

- +
- +

(-,#/2,- 2d) (w/2,-Z2d)

Figure A. I Integration region for the calculation of f(x,y),
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Therefore, in an integral form the function f(x,y) can be expressed as follows:

f(x,y)- f df(x,y) dy' (A.2)
over charge

The charge distribution, including the images due to the perfect conductor, is shown

in figure A.1. To find the function f(x,O), we integrate df(x,O) as described by

equation A.1 over the charge distribution of figure A.1. Expressing the integral in

two parts, one corresponding to the distribution on the left crack wall, and the other

to the right crack wall, one obtains:

f~xO)=Cr- 2d (t+ Y2)(X+ 4-d) -~2d +. !d. (X-
1'-X' J=z o (2 d( +  (Y.-+)2 (dy I (A.3)

2 )'+ 1 2

i -2d + ,djI. " 2-2d
L e t- + 2++'

2

- 2d -)
X+T X-

1 1 ( 1 ) . 1 
)8]6



S im i rIy ,

12= d2f (-d

Replacing 11 and 12 into equation (A.3), and simplifying, the resulting equation for

f(x.0) is as follows:

zu+ ban -4 
2

-1 2d L ~ 2)}

z +tan- + L5. Ln [x~))d A~

The average value of f(xO), i.e < f(x.O) >, over the length of the unit cell can

be found using numerical integration. At x=-wl2 the function f(x,o) is

discontinuous. Its value at. this point has to be estimated in closed form using the

lefthand limit with x approaching -w/2. This value of f(-wl12,O) can be shown to

be equal to:

f(-v/O)Imf(xfO)=ollows InI-I-- L - (A.5)
x- -v/+4d 22) j
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The function f(O,y) can be found in a similar manner as f(x,o) by integrating

a slightly different function. It can be shown that f(O,y) equals to:

2+ y 2

2d 2 . ... .] ") j (A.6)

The average value of f(O,y), i.e. < f(O,y) >, can also be found using

numerical integration.
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