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Abstract. A conjecture on the convergence of diffusion models in

population genetics to a simple Markov chain model is proved. The notion

of bi-generalized diffusion processes and their limit theorems are used

systematically to prove the conjecture. Three limits; strong selection -

weak mutation limit, moderate selection - weak mutation limit, weak

selection - weak mutation limit are considered for typical diffusion

models in population genetics.

Key words: Diffusion model - Strong selection-weak mutation limit -

Markov chain model - Bi-generalized diffusion process

I. Introduction

In population genetics theory, stochastic models are described by

discrete time stochastic processes and they are approximated by

appropriate continuous time stochastic processes (see lizuka and Matsuda

1982; lizuka 1987 and the cited therein). In many cases, these

continuous time stochastic processes are diffusion processes and are

referred to as diffusion models in population genetics (Crow and Kimura

1970; Ewens 1979). Let xi(t), i=l,2,...,K; tm0 be the gene frequency

of the i-th allele at time t in a population. In the diffusion model,

x(t)=(x1 (t),x 2 (t),... XK-l(t)) is a K-i dimensional diffusion process
K-1

with xi(t) 0, i=1,2,...,K and 0-i=,xi(t)!l. The boundary condition,

when it is necessary, is usually the reflection boundary condition. The

infinitesimal generator of this diffusion process is

(.) L-1K-i 82 K-i
( aij(xa). + bi(x 8)

where x=(xl,x 2 ... XK_) with xi>0, i=1,2,...,K-1 and K-xi!l. For

example, the diffusion terms, aij(x,a) and the drift terms, bi(x,a,o) are
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specified in Gillespie (1989) (see Eq. (1)). The parameter a denotes the

effect of selection and 6 denotes the effect of mutation. From now on,

the diffusion processes satisfying the above conditions are called the

population genetical diffusion processes. For these diffusion processes

in the case of K>3 in general, it is difficult to obtain the

biologically interesting quantities such as the average homozygosity,

K 2E[7i=IXi(t)], the stationary distributions if exist and so on. The

exceptions are the case of no selection and the case of pure stochastic

selection without mutation and random sampling drift. The reason why it

is difficult to obtain the stationary distributions is that population

genetical diffusion processes are not time reversible in many cases (in

physics term, there is no "flux zero solution" for the Kolmogorov forward

equation). The numerical analysis for the diffusion equation or the

computer simulation for the corresponding population genetical diffusion

process may be applicable, but these methods are again difficult to

perform in the case where K is large.

Gillespie (1983a and 1983b) proposed the following conjecture in

which K-I dimensional population genetical diffusion processes with

selection, mutation and the random sampling drift are approximated by

simple Markov jump processes. Let X6(t)=(X8  6(t),...,X6_l(t)) be

a K-I dimensional population genetical diffusion process with the

infinitesimal generator

K-1 2 K-1I(1.2) Le =1 K-i a (x, _) + K bi (x,a S x

2 i,j~l 1 3 i:1 

where s>0 and a 6P, >0.

Conjecture (Gillespie)

Assume that a-#+0 and 6 -.0 as s-0 where a S  is fixed. Then

{X6(t)} converges weakly to a Markov chain as 8s-0.

In this conjecture, the limiting Markov chains are characterized as

follows. Assume that there exist two limits Aij(x)=lim S-0aij(x, a)/aS

and Bi(x)=limS- 0 bi(x,ac8 ,8 )/ 8 . (1) The case of Aij (x)=0 for
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i,j=1,2, ... ,K-1. The state space of the Markov chain is {x;Bi(x)=O,

i=1,2,...,K-1}, that is, a set of the equilibrium points for a

deterministic motion K- x (2) The case of A (x)>0 ford r i i=1ioni ij

some i and J. Assume that there exist the stationary distributions for

a diffusion process with the infinitesimal generator
1 K-I1j A 8x(x'82 % 1WK -

x 2 W i=Bi(X) i .  8 The state space of the Markov

chain is the set of the statio ary distributions for this diffusion

process, that is, the limiting Markov chain is a measure valued Markov

chain.

By the following proposition, however, the conjecture of Gillespie

never holds in the sense of weak convergence in the Polish space D with

the Skorohod topology (Billingsley 1968).

Proposition

Let {y n(t)},n=l,2..... be a sequence of diffusion processes. The

{yn (t} does not converge weakly in D to a jump process.

Proof. Assume that {y n(t)} converges weakly to y(t) in D. Let Pn

and P be the induced probability measures on D by Yn (t) and y(t),

respectively. The space of the continuous functions C is a closed

subset of D (Billingsley 1968). By weak convergence of {y n(t)} to

y(t) in D, we have P(C)1limsupn-+oPn(C)=1. This means that y(t) is

continuous with probability one. 0

By this proposition, the conjecture of Gillespie does not hold in the

sense of weak convergence in D. There is, however, a possibility that

the conjecture holds in a weaker sense of convergence such as the

convergence of the finite dimensional distributions. Indeed, Kipnis and

Newman (1985) proved the convergence of one-dimensional diffusion

processes related to the metastable behavior in statistical physics to a

jump process in the sense of the finite dimensional distributions. In

their proof, however, the constancy of the diffusion term is essential and
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hence not applicable to the conjecture of Gillespie.

It seems us that the proof of the conjecture of Gillespie for Ka3 is

difficult. The results of Fleidlin and Wentzel (1984) are closely

related to this problem but their results are rather abstract and do not

present limit theorems corresponding to the conjecture of Gillespie. Even

the case of K=2, there are several questions about the conjecture. First

of all, does the conjecture hold in the sense of the convergence of the

finite dimensional distributions? What is the appropriate time scaling to

obtain a limiting jump process (though Gillespie does not mention about

this)? What is the relation between a S  and 86 to obtain a limiting

jump process? What is the characterization of the limit process?

In this paper, we will consider the case of K=2. Even the case of

K=2, this is an interesting problems for the limit theorems in the theory

of stochastic processes. For example, this is a new type of limit

theorem, that is, from the processes with continuous paths to a jump

process. Further, the answers for the above questions will be hints for

the proof of the conjecture in the case of K>3.

The traditional methods to prove the limit theorems are the semigroup

approximation theorems (for example, see Kurtz 1975) and the martingale

methods (Stroock and Varadham 1979). These methods, however, are not

applicable to the present problem. Indeed, the coefficients of the

infinitesimal generator have no limit in some cases as we will see later.

Recently, one of the authors proposed a class of one-dimensional

stochastic processes called the bi-generalized diffusion processes and

proved some limit theorems for this class of processes (Ogura 1989). We

will use this method systematically in this paper. In §2, we will review

the results on the bi-generalized diffusion processes. We will prove two

limit theorems here, since the general results of Ogura (1989) do not

cover some cases in this paper. The conjecture of Gillespie for the case

of K=2 will be described explicitly in §3. Here, we will consider not

only the cases of a,-+- and OCOO but also the cases of aw*(O_<<+-)
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and 6 *0. In §4 the results on the cases introduced in §3 will be

obtained using the limit theorems presented in §2. In §5 we will

consider the other time scaling to obtain a non-trivial limit process

since the time scaling in §4 leads to a trivial limit in some cases. We

will discuss 'he results obtained so far in §6.

2. Bi-generalized diffusion processes and limit theorems

2.1. Feller's canonical form for one-dimensional difkusion processes

Let x(t),tkO be a one-dimensional diffusion process (ODDP for

brief) on the state space (A,r),- i<r<+o, with the infinitesimal

generator

(2.1) L = a(x) d2

2 + xdx

and given boundary conditions if they are necessary. The representation

(2.1) is referred to as Kolmogorov's canonical form and this is equivalent

to

= d d
(2.2) L d d

(2.3) s(x) = fx eB(Y)dy,

xo

(2.4) m(x) = f a--..yeB(Y)dy,
x0

where B(x) = 2 baiy3.dy, x0  is a constant (k<xO<r) and Q x<r. The

representation (2.2) is referred to as Feller's canonical form. The

continuous and strictly increasing functions s(x) and m(x) are

referred to as the scale function and the speed measure, respectively.

Note that we can replace a pair s(x) and m(x) by sI(x)=cs(x) and

m1 (x)=m(x)/c, where c is a positive constant. Conversely, extending

the two functions s(x) and m(x) on (Q,r) to R = (--,+o)

appropriately according to the nature of the boundary points I and r,
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s(x) and m(x) which are continuous and strictly increasing on (1,r)

determine a unique ODDP on (A,r).

2.2. Generalized diffusion processes

Feller (1959) proposed a class of one-dimensional stochastic

processes including ODDPs by means of weakening the conditions on m(x).

Let s(x) be a continuous and strictly increasing function on (k,r) and

m(x) be a right continuous nondecreasing function on (k,r). Then the

pair s(x) and m(x) (after their extension to R) determine a unique

strong Markov process. This class of stochastic processes are referred

to as the generalized diffusion processes (GDPs for brief). For example,

a birth and death process is a GDP. Let x n(t) be a GDP with the scale

function s n(x) and the speed measure mn (x),n=l,2 ..... We may expect

limit theorems where the convergence of {s n(x)} and {m n(x)} implies

the convergence of a sequence of GDPs {xn (t)} in some sense, for example

the sense of the convergence of the finite dimensional distributions. The

limit function s(x) of {s n(x), however, is not continuous nor strictly

increasing in general. In other words, the class of GDPs is not suitable

to consider the limit theorems. For this reason, it is necessary to

extend the class of GDPs by means of defining a new class of

one-dimensional stochastic processes by a pair s(x) and m(x) that are

not continuous nor strictly increasing in general.

2.3. Bi-generalized diffusion processes

Recently, Ogura (1989) extended the notion of a generalized diffusion

process to that of a bi-generalized diffusion process (BGDP for brief),

which is a Markov process corresponds to a nondecreasing function s(x)

and a right continuous nondecreasing function m(x). In the remaining of

this section, we summarize his definition and the analytical construction

of BGDPs, and then give two limit theorems for the BGDPs, which are slight.

extension of those ibid.
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2.3.1. Definition and analytical construction of the bi-generalized

diffusion processes

In this subsection, we will review the results in Ogura (1989) on the

construction of BGDPs and their stopped motions. Let --<1<92 + ,

Q=(kI,k 2 ), Q=[A1,2] and consider two nondecreasing functions s, m on Q.

Since we will only be concerned with the Stieltjes measure dm induced

by m, we assume that m is right continuous. Under some mild

assumptions, we can construct a unique Markov semigroup on Q associated

to s and m in the following way (for the rigid statement and its

justification, see ibid.).

Let di- the image measure of dm by the map s:

(2.5) f q(k)dii(k) f Q qos(x)dm(x), q e C(s(Q)),

s(Q) Q

where C(S) is the space of all bounded continuous functions on a set S.

We want to define a GDP associated to the speed measure dfii and the

natural scale s()=4. In order to do so we must settle the state space

and the boundary conditions when they are necessary. Exploiting

Watanabe's convention, however, we can carry over the boundary conditions

to the state space by extending it and by setting the trap conditions at

the end points (see Watanabe 1975 and Minami et at. 1985 for detail).

Thus we set =(1i,12), '=[kiZ2] and f \s(Q)di()=O, where

kie [-o,inf s(Q)] and Z2E[sup s(Q),+oo]. Notice that ki, i=1,2 are

uniquely determined from s and m in Ogura (1989) by the convention

there. More precisely, let R=[-w,+o] and extend s and m to the

functions R-*R so that i) at least one of s(9 2 ) [s(91)] and m(9 2 )

[m(k1-)] is equal to +- [resp. -ce], ii) ki is not a common jump point of

s and m. In the above and the following we denote s(a+)=lim xs(x) and

s(a-)=limxas(x). We then set Z2=s(Q2
- ) if m(k2 )=+, k2=+ if

m(k2)<+O, and similarly for Z,. We also note that the image measure dmi

is induced by the nondecreasing function m given by
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( sup{m(x):s(x)!}, if { } 0i,

m(--), if { } = .

We now have the Green function H(a,gn), a>O, 4,ne and the

transition density q(t,g,n), t>0, 4,nrA associated to di (and ) by

the standard method, which we give in the following for completeness. Fix

a continuity point g0e of iii, and let i(ga), 92(ta) be the

solutions to the following integral equations

9i(4'a) I + cftf+

S= - + 4 ( - n) 2(n,)d!(n), t ,
to+
0 +

where J +f(nldi(n)=.f(4O,4f(n)df(n) if 4e[4 0 ,Z2 l, =-f(to]f(n)di-(n)

if kE[I,40). Then, for each a>0, there exist the limits

h1 (a) = -lim

h2 (a) = lm V2(4 a)/l(4,a)'
4 2

where we use the usual convention 1/=0, (±a)/O=±oo for positive a.

Define the function h(a); a>0 and ui(k,a), i=1,2, a>O by

1/h(a) = 1/hl() + 1/h2(a),

ui(ta) = 1(t,a) + (-1) i+l 2 (,a)/hi(a).

It is then known that ul(g,a)[u2 (t,a)] is positive and nondecreasing

[resp. nonincreasing] in g and ul(4 0,a)=u 2 ( 0 ,ca)=l. Further, their

Wronskian is equal to 1/h(a). We thus obtain the associated Green

function H(a,g,n) and the transition density by

H(a,g,n) = H(a,n,g) = h(a)ul(,a)u2 (nra), 11 <  t ! n < 12'
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+0 e t q( ,g,,n)dt + 0(4n) =H(c*,4,n), a~ > 0, 4n E=

0

for some function J?(4,n) independent of a. The precise formula of

0(4~,n) is given in Mi-iami et at. (1985), but we do not use it here.

Now the semigroup T tfor the pair (s,m) is defined by the formula

(2.6) +0 eat fxd=I H'ct,s(x),s(y))f(y)dm(y), c*>0, xeQ, fEB(Q),

and the semigroup T* for the stopped motion by

(2.7) +00 egtT 5xd H(a,s(x),s(y))f(y)dm(y)
fo tQ

+ u1 (s(x),ca) +~,U~~)a , -*,fr ()

where u(R1+,cx)=lim,, u(k,ca) and uR-a=',zuta and B(S) is

the space of all bounded Borel measurable functions on S. Notice that

Ttf(x) = I5 q(t,s(x),s(y))f(y)dm(y),

Tj~f(x) = q(t,s(x),s(y))f(y)dm(y)
t IQ

+ f(9Q2)fo qZ' (tc,s(x))dtc + f Q.1)fq k (x,s(x))dx,

where q, (,r,s(x))[q, (tc,s(x))I is the inverse Laplace transform of the

function u l(s(x),a)/u1 (k2-,a) [resp. u2 (s(x),c*)/u 2(R1 +,a)]. Although the

semigroups Tt and T* are not strongly continuous in general, there

exist Markov processes X=(x(t),e,,,P) on Q and X'=(x*(t),P') on

such that

EX[f(x(t));e A>t] = Ttf(x), t>O, XEQ, feB(Q),

Ei[f(x*(t))] = T~f(x), t>O, xeiZ, fE=B(q),x

where E [E1l stands for the expectation with respect to P.Ilresp. P"]x x X x
(strictly speaking Q is joined with 9,or g2 whenever they are
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reflecting point). We call the process X'=(x'(t),P') a stopped BGDP or

briefly a SBGDP.

2.3.2. Limit theorems for a sequence of bi-generalized diffusion

processes

The question whether the convergence of the sequence of s and

m implies the convergence of that of the associated processes is now onn

stage. Throughout this subsection, we adopt the convention in the

previous subsection and assume that

lim s (x) = s(x), x E R,

(2.8) n-

lim mn (X) = m(x), x r R\J(m),
n-*c

where J(m) is the set of jump points of m. As is shown in Ogura

(1989), if J(s)nJ(m)nQ=O, then the induced measures d-n converge to

di, so that the finite dimensional distributions of the associated

processes. However, this is false in general if the condition

J(s)nJ(m)niQ= fails. Furthermore, in the following applications, we

actually encounter with the case of J(s)nJ(m)nQ d, to which we now

advance.

Let X(n)=(x(t), e ,,P (n)) on Q(n) and X (n)= (x'(t),P.(n)) on
i(n) the BGDPs and SBGDPs associated to sn and mn. The corresponding

semigroups are denoted by Ttn ) and Tt (n ) respectively. Also the space

of continuous functions on Q with compact support is denoted by C0 (Q).

Theorem 2.1. In addition to the condition (2.8), assume that

(2.9) lim i-n( f(k), 4 c- R\J(if),

n-

(2.10) lim f qosn(x)dmn(X)=[ qos(x)dm(x),

n-.m [a,b] [a,b]

a,b E (J(s)uJ(m))CnQ, q e C&.

Then for every lT2 ...... EN>0, fl,f 2 .... fNECo(Q), NEN, we have
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(2.11) lim T(n)(f T(n)(. .. (f T (n)f ). ..))(x)
n-o X 1 2 N-1 N N

=T i(fIT'2 ( ... (fN-ITN N fN ) ' ' ))(x) '  x E Q.

Remark 1)Since the conditions (2.9) and (2.10) are automatically

satisfied in the case of J(s)nJ(m)nQ=O, we use Theorem 2.1 in the later

without mentioning them in that case.

2)The condition (2.9) does not seem to imply (2.10) in general. Indeed,

in view of the relation

qosn (x)dm n(x) = f q()dmfin(g)s-(b~2)(bl,b 2 ]n

in Ogura (1989), we can not expect much information on (2.10) if a or b is

the flat point of sn or s.

Proof of Theorem 2.1. We will show (2.11) only for N=l. The outline of

the proof is same as that in Ogura (1989). Indeed, as is shown there,

(2.9) implies that limn+qn(t,g,n)=q(t,4,n ) uniformly in t,neK for

every compact set K in . Hence we have

lim qn(ts n(x),sn (y))f(y)dm n(y) - Qq(ts n(X),Sn (y))f(y)dm n(Y)l = 0.
n-+o JQ n n nnJQ'

Further, since q(t,g,n) is uniformly continuous in g,neK, we have

lim I q(ts n(x),Sn (y))f(y)dm n(y) - q(t,s(x),Sn(Y))f(y)dm n(Y)l = 0.

n-+o JQ n fQ(tsxsn

Thus the assertion follows from the next Lemma. 0

Lemma 2.1. Under the assumption of Theorem 2.1, it holds that

(2.12) lim f qosn(x)f(x)dmn(x)=f qs(x)f(x)dm(x), qEC( ), feC0 (Q).

n-oo Q fQ

Proof. Denote the support of f by sppt(f) and fix an s>0. Then, due

to the uniform continuity of f, we can find a 0<6gs such that

If(x)-f(y)l<s for all x,yEsppt(f) with Ix-yl<26. Also we may assume
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that Jq(g)-q(n)t<p8 for all x.,Yrsppt(f) with lx-yI<26. Let J6 (s)={xeQ:

s(x+)-s(x-)k-6. It then follows that

lrn sup{Iqes n(x)-qos(x)I:xE-K\J 6 (s)} r. e for compact KcQ.

Denote J (s)nsppt(f)={x1 x<. Ixk and let U=u1..1 Ii, 11=(a1 ,b1 ) where

-1 <a 1 <XI<b 1<- .<a i<x i<b1 <-. .<xk <b k<k2, x1-ai<6/2, b i-xi <6/2 and all a1

and b.i are continuity point of s and m. We then divide the desired

difference as

fqos (x)f(x)dm (x)...,qos(x)f(x)dm(x)

= (f~q- sn(x) f(x)dmn (x)-fqos(x)f(x)dm(x))

+(n Q\ on xfxdn(x)-fQ\ qos(x)f(x)dm(x)) a I n+ II n

First of all,

In=(fQq osn(x) f(x)dmn(x)-fQ\ qos(x)f(x)dm n(x))

+ (fJQ\ qos(x)f(x )dm n(x)-fQ\ qos(x)f(x)dm(x)) aIII n +IVn

and

Tim iiiini< 2eIlfIIoo Timn mn(sppt(f)).
n-oo n-# n

Further, it is easy to show that

=rn 1IiV I!c 2slfi Tim mnsptf)

since the integrand is continuous modulus slIfIIoo.

Further,

k k
i=j ( qosn(x)f(x)dm(x)-,f qos(x)f(x)dm(x)) E In (1),

and
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mci) :! f1 qosn(x)(f(x)-f(x9))dm n(x)I

+ If(xi)( fi qosn(x)dmn(x)- fiq-sx)dmcx)nl

+ I faoqs(x)(f(x)-f(x))dm(x)I.

The first and the third term is dominated by esup{Iqosn(x)l~xElmn(I.)

and esup{Iqos(x)I:xe~i~}m(Ii) respectively. Further, from (2.10), the

second term goes to zero as n--m, so that

T-iii I I nI :! s sup[{Iqos(x) I:xesppt(f)lm(U).

Since 8>0 is arbitrary, we obtain (2.12).

Remark In view of the above proof, (2.10) can be replaced with a weaker

condition: for each xeJ(s)cnJ(m)nQ and 5>0 there exists an interval

I=(a,b)cQ such that x-S<a<x<b<x+6, a,b e (J(s)uj(m))cnQ and (2.10) holds.

As is noted in Ogura (1989), Theorem 2.1 does not assure the

convergence of the finite dimensional distributions, since fkE=CO(Q) is

assumed. However, it is not difficult to trace the proof there to obtain

the next theorem.

Theorem 2.2. Under the assumption in Theorem 2.1, it holds that

(2.13) lim P n xt)>a,-,~

=P*(x(t ) > a1 ,... .,x(tN >a

for every NrEN, 0 <tl1<t 2 < ...<tN9 al9a 2 '...,aNErQ\J(m) and xeQ.

3. Populatioii genetics models

Let x8 (t) be a ODDP on 10,11 with the infinitesimal generator

'31 d8 
= 

2 +d

dx
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where a (x)>0 (O<x<l), aS(0)=a6 (1)=0 and b8 (0)k0, b (1).0. The

concrete functional form of a (x) and b (x) will be specified below in

(3.10). The ODDP is uniquely determined by a (x), b (x) and the

boundary conditions if they are necessary. If the boundary 0 or 1 is

regular, then we assume the reflection boundary condition as is usually

done in population genetics theory. For a,b[0,11, we define

3 (a,b) = jb eB aW dx
a

(3.2)

LI(ab) =fb 2 eB6 (x) dx

where BS(x)=2ft{bS(x)/a6 (x)}dx, and

( IS(O,x)/Is(Ol) (0 g x g 1)

(3.3) ss(x) =

x (otherwise),

0 (x g 0)

(3.4) ms(x) = IS(0,x)IS(0,l) (0 g x < 1)
(IS(0,1)IS-(0,1) (x k 1).

The ss(x) and ms(x) are the scale function and the speed measure of

the ODDP x6 (t), respectively. The ODDP xe(t) is uniquely determined

by the pair (sS(x),mS(x)).

We introduce a time scaled process

(3.5) X (t) = x(x t)

for x6 (t), where

(3.6) = IS(0,1)Ie(0,1).

The X (t) is a ODDP with the scale function s (x), the speed measure

m (x) and the infinitesimal generator L

- 15 -



(3.7) sW(x) = s6 (x)

(0 (x < O)

(3.8) m (x) = m6 (x)/XA = I (O,x)/I (O,1) (0 g x r 1)

ICx 1)

(3.9) L8 = x LE.

In the following, we consider the functional form of

( a6 (x) = x(l - x) + caSx 2(1 - x)2

(3.10) 1

( bS(x) = as x(1 - x){cB(1 - 2x) + (1 - c)g(x)} + 06(1 - rx),

where O,r:I, c=O or c=l and sup05 x5 1Ig(x)i<+oo. Let G(x) be

G(x)=fg(x)dx with G(x)kO (Osxgl). This functional form of (3.10) covers

many models in populatioi. genetics as we see in the following. The

population genetical meaning of the ODDP xe(t) is the gene frequency of

the allele A1  in the population at time t. The l-xg(t) is the gene

frequency of the allele A2  in the population at time t. Here, we are

considering a diploid model with the two alleles, A 1 and A 2. The term

x(l-x) in a6 (x) denotes the effect of random sampling drift (random

effect due to the finiteness of population size). The term 0 S(1-rx)

in b Ex) denotes the effect of mutatiom. Let u (resp. v) be the

mutation rate from A2 (resp. A1 ) to A1 (resp. A2 ). The parameter r 1

is r=1+v/u. In the case of symmetric mutation (u=v), r=2. In the case

of one way mutation from A2 to A1, r=l. The parameter 0S  corresponds

to 2Nu, where N is the (effective) size of population. The remaining

terms in a sx) and b (x) denote the effect of selection. Let S be the

order of selection. The parameter a corresponds to 2NS. The case of

c=l is stochastic selection. In the stochastic selection model, the case

of 0>1 is the SAS-CFF model proposed by Gillespie (1978). The case of
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$=1 in the stochastic selection model is the TIM model proposed by

Takahata et at. (1975). The case of c=0 is deterministic selection.

Two typical examples of g(x) are g(x)=l (genic selection) and g(x)=1-2x

(overdominance).

The conjecture of Gillespie in §1 in the case of K=2 is to consider

the limit of the sequence of ODDPs {x6 (t)) (after an appropriate time

scaling) with as +o and 6 0. In this paper, we consider three cases

including the above. (i) a -+0 and 0-0. (1i) ccF -*(0<ta<+-) and 0640.

(iii) a 6-0 and 0 6.0. These three limits are referred to as the strong

selection - weak mutation limit (SSWM limit), the moderate selection -

weak mutation limit and the weak selection - weak mutation limit,

respectively. In the next section, we condider the following seven cases

with the time scaling x introduced above. (1) a -#a (Ota<+O), 0S 0,

c=0. (2) a -00+, 0-#0, c=0, r=2, g(x)=1. (3) a -+O, 6-'0, c=0, r=2,

g(x)=1-2x. (4) ceS-#0, 6 -O, c=l, r=2, oil. (5) as -#c (O<a<+), 06-40, c=1,

r=2, Sk1. (6) a8 -+O, as.0, c=1, r=2, 0>1. (7) a 8 +®, e+40, c=l, r=2, 0=1.

These seven cases are important examlpes in population genetics.

4. Results on population genetics models

We have the following results using the limit theorems in §2. Let

X6 (t,x0) be X (t) defined above with the initial condition X (0)=x0

where x0  is a constant (0 x0.1).

(1) Deterministic selection, weak or moderate selection - weak

mutation limit (a -*a; 0-<U<+00, O.40, c=0)

For simplicity, we consider the case of r1l. Define

(s(x),m(x)) by

f fxe-2aG(y)dy/f 1 e-2aG(Y)dy (0 : x : 1)

(4.1) s(x) =
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lx (otherwise)

0 (x < 0)

(4.2) m2 [ 1 2c[G(1)-G(O)]1  (0 g x < 1)

t :e (x 1),

where G(x) is defined in the previous section. Then, we have s (x)

..s(x) for every x and m E(x)-om (x) for every x with x0O. Further,

for rol, we have

(4.3) Xa - Le 2aG(O) + IT e2aG(1)) I e-2aG(Y)dy,

where as.b s means a /bP-.1 as s-#O. Note that Q=(--,+-), J(s)=O,

J(m)={0,1} and J(s)nJ(m)nQ=O. By Theorem 2.2, {X6 (t,x0 )} converges to

a Markov jump process X(t,x0 ) for t>0 in the sense of the finite

dimensional distributions, where

t P(X(t,x0 ) = 0) = p + (I - p - x0 ) e- t/P (1 -P)

(4.4)
P(X(t,x0 ) = 1) = 1 - P(X(t,x0 ) = 0)

and p={l+ r_-- e2cFG(1)-G(O)]}- I  The (4.4) is obtained by the method in

§2.3.1. Note that x6 +m by (4.3) and hence Lp=x LS does not have a

finite limit. In this case, it is not necessary to put some specific

relation between a and 06.

For simplicity, only the case of symmetric mutation (r=2) will be

considered in the following.

(2) Deterministic genic selection, strong selection - weak mutation

limit (a -0+0, 06-tO, c=O, g(x)=l)

In this case, we assume that

(4.5) (log 0S)/a e - 0 as s - 0.
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Note that (4.5) holds if a 6 S=C, O<C<+-. Let (s(x),m(x)) be

(0 < x < 1)

(4.6) s(x) =

x (otherwise)

0 (x < 1)

(4.7) m(x) =

I ~(x )

Under the condition of (4.5), s (x)-ps(x) for every x, m (x)..m(x) for

every x and

2a6

(4.8) x -N e /2a e ,

as e-O. Note that Q=(-o,+-), J(s)={O}, J(m)={1} and J(s)nJ(m)nQ=O.

By Theorem 2.2, {X5(t,x0 )} converges to X(t,x0 ) in the sense of the

finite dimensional distributions, where

(4.9) P(X(t,x0 ) = 1) = 1

and t>O.

(3) Deterministic overdominance. strong selection - weak mutation

limit (a8-+ , 8.40, c=O, g(x)=i-2x)

In this case, we assume (4.5). Let (s(x),m(x)) be

r 1/2 (0 < x < 1)
(4.10) s(X) I

lx (otherwise)

0 (x < 1/2)

(4.11) m(x) 1 (x 1/2).
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Under the condition of (4.5), s (x)-4s(x) for every x, m (x)-om(x) for

every x1I/2 and

20 -3/2 /2

(4.12) xP . 4/2n a - e

as e-0. Note that Q=(--,+oo), J(s)={O,1), J(m)={1/2} and J(s)nJ(m)nQ=O.

By Theorem 2.2, {X S(t,x 0 )1 converges to X(t,x 0) in the sense of the

finite dimensional distributions, where

(4.13) P(X(t,x0) = 1/2) = 1

and t>O.

(4) Stochastic selection, weak selection - weak mutation limit

(ap-0O, GP-#O, c=l, O>-1)

Let (s(x),m(x)) be

(4.14) s(x) = x

0 (x < 0)

(4.15) m(x) = 1/2 (0 x < 1)

1 (x 1)

Then, sE(x)-s(x) for every x, m (x)-+m(x) for every x 0 and

(4.16) AP 6  2/0 2

as s-+O. Note that Q=(-oo,+w), J(s)=O, J(m)={O,1} and J(s)nJ(m)nQ=O.

By Theorem 2.2, {X6 (t,x0 )} converges to a Markov jump process X(t,x O )

in the sense of the finite dimensional distributions, where

( P(X(t,x0 ) = 0) = {1 + (1 - 2x0 )e-4t 1/2

( P(X(t,x O ) = 1) = 1 - P(X(t,x0 ) = 0)

and t>0.
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(5) Stochastic selection, moderate selection - weak mutation limit

Let (s(x),m(x)) be

(41) sx P f{tay(1 - y) + 1) Ody/f I{cty(i - y) + I)rOdy (0sxs1

, (otherwise)

1/2 (0 x < )

(4.19) mWx = { / (0 x < )

1(x > )

Then, s P(x)-+s(x) for every x, m P(x)-tm(x) for every x0O and

(4.20) x 2f 1 ly(1 - y) + 11)8 dy/68

as 6-tO. Note that Q=(-oo,+oo), J(s)=O, J(m)={O,11 and J(s)nj(m)nQ=O.

By Theorem 2.2, fX PS(t ,x0 )} converges to a Markov jump process X(t,x 0 )

in the sense of the finite dimensional distributions, where

(421 fP(X(t,xo) = 0) = {1 + (1 - 2xo)e 4t)/2

I (X(t,x0 ) = 1) = 1 - P(X(t,X0 ) = 0)

and t>0.

(6) Stochastic selection, SAS-CFF model, stronx selection -weak

mutation limit (as -#+W, 0 9-0, c=i, 03>1)

In this case, we assume that

(4.22) (log 08 )/(log as - 0 as s -# 0.

Note that (4.22) is equivalent to
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(4.23) asb - +e as s 0, for every b > 0.

The condition (4.23), hence (4.22) holds if 0 log aF=C, 0<C<+-. Let

(s(x),m(x)) be

1/2 (0 < x < 1)

(4.24) s(x)

x (otherwise)

(0 (x : 0)rxr
(4.25) m(x) = Wl - y)I -2dy / {y(l - y)1 0-2dy (0!x:i)

0'0

1 (x > I).

Under the condition of (4.22), s (x))-s(x) for every x, m (x)-*m(x) for

every x and

(4.26) , 4 T a0-2f'{y(l - y)}0- 2 dy

PS -0

as e-#0. Note that Q=(-o,+oo), J(s)={0,1}, J(m)=O and J(s)nJ(m)nQ=O.

By Theorem 2.2, {X6 (t,x0 )} converges to X(t,x 0) in the sense of the

finite dimensional distributions, where

(4.27) P(X(t,x0 ) e A) = fA dm(y)

= y(1 - y)} 0-2dy / I {y(1 -y)-2dy,A 0

Ac[0,11 and t>0.

(7) Stochastic selection, TIM model, strong selection - weak mutation

limit (aS -.*+, 06-00, c=1, 0=1)

In this case, we assume that

(4.28) O0 log -r ' 0 as s - 0.

The condition (4.28) holds if aC G = C, O<C<+ . Let (s(x),m(x)) be
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1/2 (0 < x < 1)

(4.29) s(x) =I

lx (otherwise)

0 (x < 0)

(4.30) m(x) = 1/2 (0 - x < 1)

I (x k 1).

Under the condition of (4.28), sS (x)-s(x) for every x, m6 (x)-+m(x) for

every x 0, i (x)-I(x) for xeR\J(!), (2.10) holds and

4 log 8

(4.31) xe 14 S

as a-*0. Note that Q=(-o,+) , J(s)=J(m)={0,1} and J(s)nJ(m)nQ={0,1}.

By Theorem 2.2, {X S(t,x 0 )} converges to a Markov jump process X(t,x O )

in the sense of the finite dimensional distributions, where

( P((X(t,x0 ) = 0) = 11 + (1 - 2x0 )e-4t }/2

(4.32) 1

I P(X(t,x O ) = 1) = - P(X(t,x O ) = O)

and t>O.

5. Other time scalings for population genetics models

In the case of strong selection - weak mutation limit for the

deterninistic genic or overdominance selection (the case (2) and (3) in

the previous section), the limit process X(t) is trivial since this

process is traped at some point instanteniously. The conjecture of

Gillespie, however, imlpies that the limit process stays at boundary

points with finite holding time then jumps to some trap point. In this

section, we will obtain the limit processes with finite holding time at

the boundary. The reason why the limit prcesses in the previous section
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move to the trap point instantinuously is that the time scaling

A =I8(0,1)I8(0,l) tends to infinity too fast as e- . In this section,

we will introduce a time scaling x that tends to infinity but slower

than AS '

Let xC(t) be the ODDP in the previous section. We define a new

time scaling x.=X (6) by

(5.1) = t8 (6) = I8(0,1)I (0,6)

for 0<3-l. The time scaled process for x6(t) by x is

(5.2) YC(t) = x8 (- t).

The infinitesimal generator, the scale function and the speed measure are

denoted by L8 , s (x) and m (x) again. Then

(5.3) LP = X LC = d2  +d
Ps 28{ 8  dx 2  + , d

I£(0,x)/I£(0,1) (0 - x < I)
(5.4) ss (x) =

x 
(otherwise)

0 (x ! 0)

(5.5) m(x) = I(o,x)/Ic(0,6) (0 < x : I)

I6(0,1)/I6(0,6) (x k 1)

We have the following results. We consider the case of symmetric

mutation (r=2) for simplicity.

(8) Deterministic genic selection, strong selection - weak mutation

limit (cs-#+oo, O-.0, c=O, g(x)=l)

In this case, we fix a 6 (0<6<1) and assume that

log Os
(5.6) lim l -2.

84O a8
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2ai
The condition (5.6) holds if 06 e 6 =C, 0<C<+00. Let (s(x),m(x)) be

(10 (< x .r.I

(5.7) SWx

Lx (otherwise)

0 (x < 0)

(5.8) MWx 1 (0 < x < 1)

+00~C (K 1) .

Under the condition of (5.6), s PS(x)-#s(x) for every x, m S (x)-#m(x) for

every x0d, fii (x)-# I(x) for xreR\J(if), (2.10) holds and

(5.9) ve= X6()-aS208- 1 /0P

as S-40. Note that Q=(-co,1], J(s)=(0}, J(m)={0,1} and J(s)nJ(m)nQ={0}.

By Theorem 2.2, [Y C (t,x 0 )} converges to a Markov jump process Y(t,x 0 )

in the sense of the finite dimensional distributions, where Y F ( t'xO)

(resp. Y(t,x 0) is the process Y (t) Cresp. Y(t)) with Y S(0)=0 (resp.

Y( t)=x ) andt PY(t,0) = 0) = e-t

(5.10)

, PY~tO)= 1) = 1 - e-t

(5.11) P(Y(t,x0 ) = 1) = 1 (0 < x -C 1)

for t>O.

(9) Deterministic overdominance, strong selection - weak mutation limit

In this case, we fix a a (0<6<1/2) and assume that

(5.12) lim log 06 :.-/ n a /2 +- a -- 0
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Note that the first condition in (5.12) is equivalent to

u6b

(5.13) 08e 0 as 8 - 0 for every b < 1/8,

-a /8
and (5.12) holds if O8=Ca e , 0<C<+O. Consider x0 with 0:x 0 <1/2

for a while. Let (s(x),m(x)) be

1/2 (0 < x < 1)

(5.14) S(X) f

x (otherwise)

(0 (x < 0)

(5.15) m(x) = 1 1 (0 ! x < 1/2)

( +W (x i 1/2)

Under the condition of (5.12), s (x)-+s(x) for every x, m (x)-+m(x) for

every xO, i (x)E-i(x), (2.10) holds and

2e-1

(5.16) 8 a 8- /08

as s-0. Note that Q=(-o,1/2], J(s)={O,11, J(m)={0,1/2} and

J(s)nJ(m)nQ={0}. By Theorem 2.2, {YS(t,x 0 )} converges to a Markov jump

process Y(t,x 0 ) in the sense of the convergence of the finite dimensional

distributions, where

( P(Y(t,0) = 0) = e
- 2 t

(5.17)

P(Y(t,O) e [1/2,1]) = 1 - e- 2 t

(5.18) P(Y(t,x0 ) e [1/2,11) = 1 (0 < x0 < 1/2)

for t>0. Now, we consider x0 with 0-x0 I. By the symmetry

at x=1/2, {Y S(t,x 0 )} converges to Y(t,x 0) in the sense of the

finite dimensional distributions, where
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rm(Y(t,) = o) = e-
2t

(5.19) 1

1 P(Y(t,O) = 1/2) = 1 - e- 2 t

(5.20) P(Y(t,x O ) = 1/2) = 1 (0 < x0 < 1)

P(Y(t,l) = 1) = e 2 t

(5.21) 1

P(Y(t,1) = 1/2) = 1 - e- 2 t

for t>0.

6. Discussion

The natural candidate for the time scaling is that of (3.5) with which

the normalization s (0) = mS (0) = 0 and s S(1) = mS (1) = 1 holds. This

time scaling is used in §4. First, we consider the weak selection - weak

mutation limit (see the case (1) and the case (4)). In this case, random.

sampling drift due to the finite population size predominates over the

effect of selection and mutation. The limits are Markov chains with state

space 10,1, that is, the monomorphic states due to random sampling drift.

In the moderate selection - weak mutation limit, the results are very

similar to those of weak selection - weak mutation limit (see the case (1)

and the case (5)). The reason is that the effect of mutation is very weak

in these cases and random sampling drift predominates over selection in

the neighborhood of 0 and 1. The effect of moderate selection can be seen

only on the time scaling (4.3), (4.20) and p in (4.4).

Next, we consider the strong selection - weak mutatiom limit which

corresponds to the conjecture of Gillespie. First, we consider the

stochastic selection models. In the SAS-CFF model (see the case (6)), the

limit is the stationary distribution for the pure stochastic selection
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model without random sampling drift and mutation. This result is

consistent with the conjecture of Gillespie (see §1). Since there is a

unique stationary distribution in this case, the state space of the limit

is stationary distribution valued but with no jumps. In the TIM model

(see the case (7)), the limit is a Markov chain with the state space {0,1}.

This result is consistent with the following fact. In the pure TIM model

without random sampling drift and mutation, there is no non-trivial

stationary distributions and the quasi fixation will occur as t -0 +-. The

limit process jumps between two trivial stationary points 0 and 1. The

results on deterministic selection models, however, are not consistent

with the conjecture of Gillespie (see the case (2) and (3)). In the

limit, these processes go to some trapped point instanteniously. This

trivial results are due to the incorrect choise of the time scaling in

these cases. In §5, we have introduced an appropriate time scaling for

which non-trivial results are obtained (see the case (8) and (9)). The

results for the case (8) and (9) are very consistent with the conjecture.

The state space of the limit is stationary points for the ordinary

differential equation that describes the pure deterministic selection

model without random sampling drift and mutation. The limit process goes

to the unique stable stationary point for the ordinary differential

equation as t -+ +o.

As we have seen in the above, we have proved the conjecture of

Gillespie. The convergence is that of the sense of the finite dimensional

distributions. We have identifed the limit processes, the appropriate

time scaling and the relation between a and 66. We have applied the

notion of bi-generalized diffusion processes and their limit theorems

systematically. Our method is effective not only for the present problem

but also for many models that are described by diffusion equation (for

examlpe, a quantitative genetics model in Newman et at. (1985)) as far as

the model is one-dimensional. For the multidimensional cases, our method

is not applicable since the notion of bi-generalized diffusion processes
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is just for one-dimensional stochastic processes and the proof of the

conjecture of Gillespie for the multidimensional cases is an open problem.
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