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NON-LINEAR DYNAMIC ANALYSES OF GEARED SYSTEMS

Rajendra Singh, Donald R. Houser, and Ahmet Kahrarnan
Ohio State University

Department of Mechanical Engineering
Columbus, Ohio 43210

Under the driving conditions, a typical geared system may be subjected to large

dynamic loads. Also, the vibration level of the geared system is directly related to the

noise radiated from the gear box. Accordingly, a good understanding of the steady

state dynamic behavior of the systern is required in order to design reliable and quiet

transmissions. It is the main focus of this study with the scope limited to a system

containing a spur gear pair with backlash and periodically time-varying mesh stiffness,

and rolling element bearings with clearance type non-linearities. The internal static

transmission error excitation at the gear mesh, which is of importance from high

frequency noise and vibration control view point, is considered in the formulation in

sinusoidal or periodic fonn.

A dynamic finite element model of the linear time-invariant (LTI) system is

developed. Effects of several system paranueters, such as torsional and transverse

flexibilities of the shafts and prime mover/load inertias, on free and forced vibration

characteristics are investigated. Several reduced order LTI models are developed and

validated by comparing their eigen solutions with the finite element model results.

Using the reduced order formulations, a three-degree of freedom dynamic model is

developed which includes non-linearities associated with radial clearuances in the radial

rolling element bearings, backlash between a spur gear pair and periodically varying

gear meshing stiffness. As a limiting case, a single degree of freedom model of the

spur gear pair with backlash is considered and mathematical conditions for tooth
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separation and back collision are defined. Both digital simulation technique and

analytical methods such as method of harmonic balance and the method of multiple

scales have been used to develop the steady state frequency response characteristics for

various non-linear and/or time-varying cases. Difficulties associated with the

detennination of the multiple solutions at a given frequency in the digital simulation

technique have been resolved. The proposed formulation has been validated by

comparing the predictions with the results of two benchmark experiments reported in

the literature. Several key system parameters such as mean load and damping ratio are

identified and their effects on the non-linear frequency response are evaluated

quantitatively. Other fundamental issues such as the dynamic coupling between non-

linear modes, dynamic interactions between component non-linearities and time-varying

mesh stiffness, and the existence of subhannonic and chaotic solutions including routes

to chaos have also been examined in depth.
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LIST %)F SYMBOLS

b backlash

c, C viscous damping coefficient

d diameter

e static transmission error

f non-linear displacement function
F force
g, h non-linear functions

H total number of rolling elements in contact

I rotary inertia

j imaginary number

k, K stiffness

L length

mn, M mass

n power of non-linear bearing function

N, N describing functions
p relative displacement

q displacement

t time

T torque
U mass unbalance of the gear

u relative displacement

v gear ratio

w displacement vector

X coordinate axis at the direction perpendicular to the line of action

Y coordinate axis at the direction parallel to the line of action

x relative displacement

y transverse displacement

Z number of rolling elements

a angular position of the rolling element in contact
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P3 dynamic compliance

65 Kronecker delta

E geometric eccentricity of the gear

* phase angle

(P an angle

K dimensionless stiffness

S rotational displacement

o stress

Co natural frequency

£2 excitation frequency

damping ratio

"4'm ode shape

Subscripts:

a alternating component

b bearing

c, cl reference quantities

d dynamic

e external

gl pinion

g2 gear

h gear mesh

i internal

j an index

L load or left

m mean component

n natural

P prime mover

p period

R right

r mode index or response

S stress
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sI driving shaft

s2 driven shaft

s static or modal index

t inner contact

T torq'e

X coordu-ite axis at the direction perpendicular to the line of action

Y coordinate axis at te ,irection parallel to the line of action

I, I1, IUI modal index

Supercripts:

T matrix transpose

- dimensional quantities t

- amplitude of a harmonic function

derivative with respect to time
A stiffness or force ratio

"t All dimensionless quantities are without any superscript.

x



CHAPTER I

INTRODUCTION

1.1. PROBLEM FORRMULATION

Dynamic analysis of geared systems is an essential step in design due to two

reasons. First, under the driving conditions, a typical geared system is subject to

dynamic forces which can be large. T17herefore, the prediction of dynamic loads.

motions or stresses is needed in developing reliable gear trains. Second, the vibration

level of he geared system is directly related to the noise radiated from the gear box. An

attempt in desigring quiet gears requires a good understanding of the dynamic behavior

of the system and the gear mesh source. Accordingly, the main objective of this study

is to develop accurate mathematical models of a generic geared rotor-bearing system

shown in Figure 1.1 a. Of interest here is to investigate several key modelling issues

which have not been addressed in the literature, such as system non-linearities and

time-varying mesh stiffness.

The generic geared system shown in Figure 1.1 a consists of a single spur gear

mesh of ratio vg=d, 2/dg1, rolling element bearings, a prime mover driving the system

at i~s, speed and a typical inertial load. The system also includes other elements such

as couplings and flywheel. A discrete model of the system is shown in Figure 1. lb.

Here, shafts are represented by discrete translational springs k.l and ks2 , translational

dampers csl and cs 2, and torsional springs Ks, and Ks2 . The gear mesh is represented

by a time-varying mesh stiffness kh(i) and a non-linear displacement function fh



1-sLL LsLR Rigid Gearbox

Prime Mover dsto Pinion

dgi,Ngi Rolling)l Eleme~nt

Flexible _

Coupling 
Z Gear

dg2,Ng2 ds2,o
I-''=,' I ds2,R os n rial Load

(a)

-lj,mngl,dgj

kb,c h X~

I g2, mg2,d g2

(b)

Figure 1. 1. a) A generic teared rotating system, b) discrete model of geared rotating

system.
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which includes gear backlash. Further, linear time-invariant (LTI) mesh damping cb is

considered here. The rolling element bearings are defined by a time-invariant radial

stiffness kb subject to a non-linear displacement function fb, and an LTI damping

coefficient cb. The prime mover and load ame modeled as purely torsional -'ments of

inertias Ip and IL, respectively. The mean rotational speeds fl., and C2s2 and the

geometric end conditions are such that gyroscopic effects are not seen.

The generalized displacement vector {1(i)}, associated with the inertia elements,

consists of angular displacements 0 and transverse displacements X and y. The

governing equation of motion for the non-linear, time.varying multi-degree of freedom

model can be given in the general fomi as

[M]{"(i+)} ) + [R(iI){ff(4i0))} = {F(t)} (1.1)

where [M] is the time-invariant mass matrix and {q(i)} is the displacement vector.

Here, damping matrix [C] is assumed to be LTI type, as the effect of the tooth

separation and time-varying mesh properties on mesh damping are considered

negligible; validity of this assumption will be examined later. The stiffness matrix

[K(i)] is considered to be time-varying, given by a periodically time varying matrix

[K(i)] = [K(i + 2n / 5h)] where Uh is the fundamental gear mesh frequency. The

non-linear displacement vector {f(4(i))) includes the radial clearances in bearings and

the gear backlash, and the forcing vector {F(i)} consists of both external excitations

due to torque- fluctuations, mass unbalances and geometric eccentricities, and an

internal static transmission error excitation.

3



1.2. OBJECTIVES

Specific objectives of this study are given as follows; each chapter, written in the

journal paper style, deals with one major objective.

First, a dynamic finite element model of the linear time-invariant (LTI) system

given in Figure 1la is developed. Effects of several system parameters, such as

torsional and transverse flexibilities of the shafts and prime mover/load inertias, on free

and forced vibration characteristics are investigated. Three different reduced order LTI

models will be derived and the conditions under which these are valid will be

determined by comparing the eigen solutions with the finite element model results.

Development and verification of such a reduced order (with a very few degrees of

freedom) linear model is an essential step before the non.-linear dynamic behavior is

analyzed [Chapter I].

Second, non-linear frequency response characteristics of a spur gear pair with

backlash are examined for both external and internal excitations. The internal excitation

is of importance from the high frequency noise and vibration control viewpoint and it

represents the overall kinematic or static transmission error. Such problems may be

significantly different from the rattle problems associated with external, low frequency

torque excitation. Two solution methods, namely the digital simulation technuique and

the method of harmonic balance have been used to develop the steady state solutions

for the intemal sinusoidal excitation. Difficulties associated with the determination of

the multiple solutions at a given frequency in the digital simulation techunique have been

resolved as one must search the entire initial conditions map. Such solutions, and the

transition frequencies for various impact situations are found by the method of

harmonic balance. Further, the principle of superposition can be employed to analyze

the periodic transmission error excitation and/or combined excitation problems
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provided the excitation frequencies are sufficiently apart from each other. Predictions

are compared with the limited experimental data available in the literature [Chapter I1].

Third, non-linear frequency response characteristics of a geared rotor-bearing

system are examined. A three degree of freedom dynamic model is developed which

includes non-linearities associated with radial clearances in the radial rolling element

bearings and backlash between a spur gear pair; time-invariant gear meshing stiffness is

assumed. The bearing non-linear stiffness function is approximated for convenience

sake by a simple model which is identical to that used for the gear mesh. This

approximate bearing model has been verified by comparing steady state frequency

spectra. The applicability of both analytical and numerical solution techniques to the

multi degree of freedom non-linear problem is investigated. Proposed theory is

validated by comparing the results with available experimental data. Several key

issues such as non-lincar modal interactions and differences between internal static

transmission error excitation and external torque excitation are discussed. Additionally,

parametric studies are performed to understand the effect of system parameters such as

bearing stiffness to gear mesh stiffness ratio, alternating to mean force ratio and radial

bearing preload to mean foice ratio on the noni-linear dynamic behavior. A criterion

used to classify the steady state solutions is presenited and the conditions for chaotic,

quasi-periodic and subharmonic steady state solutions aw-e detemined. Two typical

routes to chaos observed in this geared system are also identified [Chapter III].

Fourth, this study exiends the non-linear sMngle degree of freedom spur gear pair

model of Chapter II and multi-degree of freiom geared rotor-bearing system model of

Chapter mII by including time-varing mesh stiffness kh (), and investigates the effect

of kh(i) on the frequency response of lightly and heavily loaded geared systems.

Interactions between mesh stiffness variation and system non-linearities associated with
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gear backlash and radial clearances in rolling element bearings are also considered,

Resonances of the corresponding linear time-varying (LTV) system associated with the

parametric and extemal excitations are identified using the method of multiple scales.

Theoretical results are validated by available experimental results [Chapter IVM.

1.3. DEVELOPMENT OF LINEAR TIME-INVARIANT MODELS

1.3.1. Literature Review

The study of geared rotor dynamics requires that the coupling between torsional

and transverse vibrations be included in the model. Although several modeling and

solution techniques such as lumped mass models and the use of the transfer matrix

method have been applied to rotor dynamic problems, the finite element method (FEM)

seems to be a highly efficient and accurate method for linear modeling. In one of the

early examples of FEM applied to a single rotor, Nelson and McVaugh [1] used a

Rayleigh beam finite element including the effects of translational and rotary inertia,

gyroscopic moments and axial load. Zorzi and Nelson [2] extended this by including

internal damping. Later, Nelson [3] developed a Timoshenko beam by adding shear

deformation to the Rayleigh beam theory. This model was further extended by

Ozguven and Ozikan [4] to include all possible effects such as transverse and rotary

inertia, gyroscopic moments, axial load, internal hysteretic and viscous damping and

shear deformations in a single model. However, none of the rotor dynamics models

described above can handle geared rotor systems, although they are capable of

determining the dynamic behavior of rotors which consist of shafts supported at several

points and carrying rigid disks at several locations.

Gear dynamics studies, on the other hand, have usually neglected the lateral

vibrations of the shafts and bearings, and have typically represented the system with a
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linear torsional model. Although neglecting transverse vibrations might be a good

approximation for systems having stiff shafts, it has been observed experimentally [5]

that !he dynamic coupling between the transverse and torsional vibrations due to the

gear mesh affects the system behavior considerably when the shafts are compliant.

This fact directed the attention of investigators to the inclusion of transverse vibrations

of the shafts and the bearings in mathematical models. Lund [6] developed influence

coefficients at each gear mesh for both torsional and lateral vibrations, obtained critical

speeds and a forced vibration response. Hamnad and Seireg [7] studied the whiiig Cf

geared rotor systems supported on hydrodynamic bearings; torsional vibrations were

not considered in this model and the shaft was assumed to be rigid. lida, et al. [8]

considered the same problem by taking one of the shafts to be rigid and neglecting the

compliance of the gear mesh, and obtained a three degree of freedom model to

determine the first three vibration modes and the forced vibration response due to the

unbalance and the geometric eccentricity of one of the gears. Later, lida, et al.

[9,10,11] applied their model to a larger system which consists of three shafts coupled

by two gear meshes. Hagiwara, lida, and Kikuchi [ 12] developed a simple model that

included the transverse flexibilities of the shafts by using discrete stiffness values, and

studied the forced response of geared shafts due to unbalances and nmout errors. They

included the damping and compliances of the journal bearings and assumed a constant

mesh stiffness. Although most of these gear dynamics studies have discussed several

aspects of the problem, none of them has been able to represent a geared rotor-bearing

system completely since almost all of them have used one or more simplifying

assumptions such as rigid shafts, rigid bearings, rigid gear mesh etc. which may not be

applicable to a real system. In addition, these studies proposed lower order lumped

mass linear models.
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Neriya, et al. [13] employed a dynamic finite element model which eliminates

many of the simplifying assumptions. They found the forced vibration response

of the system at the shaft frequency, excited by mass unbalances and runout errors of

the gears by using the modal summation. But they did not consider the high

frequency, internal, static transmissio, error excitation which has the major role in

noise generation. An extensive survey of linear mathematical models used in gear

dynamics analyses is given in a recent paper by Ozguven and Houser [ 14].

1.3.2. Mathematical Model

Here, we assume linear bearings and no tooth separations with time-invariant

mesh stiffness, i.e. [K] * [K(i)] and {f(l(i))} = {f(i)}. Then the corresponding LTI

form of equation ( 1.1 ) is:

+ [cJ{4'00)} + [K{() Fi}(1.2)

Since many investigators have modeled the generic system shown in Figure 1.La as a

single degree of freedom model, our analysis uses it as a reference model to transform

the governing equation into the dimensionless form. Focusing only on the gear pair as

shown in Figure 1.2, the equation of motion of the semi-definite system is given in

terms of the relative translational displacement li(i) = (dg1 Ogl - dg2Og2) / 2

mcI d + ch d--- + khU(i) = F(i) (1.3a)

where mnI is the equivalent gear pair mass defined as



SCh

kb,

e(t) ig2 dg2

Figure 1.2. A single degree of freedom dynamic model.
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MI 2 (ion (1.3b,c)
(d -g + dg2 )

4 1g1 4 1g2

First, we establish the dimensionless time t as t = toni. Second, we use the base circle

diameter of the pinion dg. and the equivalent mass mc, as characteristic length and

mass parameters, respectively, to obtain the governing equations in the dimensionless

form as

[M]{q(t)} + [C]{q(t)} + [K]{q(t)} = {Fm} + {Fah(t)1 + {FaT(t)}. (1.4)

where an overdot means derivative with respect to time t, and the dimensionless forcing

vector consists of a mean force vector (Fm) and two time-varying components: a) high

frequency excitation due to the kinematic gear transmission error (Fh(t)) and. b) other

excitations due to mass unbalance Ugi, geometric eccentricities (run-out errors) egi and

pi ime mover and load torque pulsations Tgia(t), typically at low frequencies, are

combined into a single term (Fa.rt)).

1.3.3. Gear Mesh Formulation

The gear mesh is represented by a pair of rigid disks connected by a translational,

viscously damped spring along the pressure line which is tangent to the base circles of

the gears as shown in Figure 1.3. By choosing the Y axis on the pressure line and the

X axis perpendicular to the pressure line, the transverse vibrations in the X direction

10



YgI , Pinion

.g, +dg tl /2++gl sin

Eg9

x41
e(t)

kb b

Yg2 +dg2 E Q 2 +Eg 2 sino,2 ýgV21

Figure 1.3. Model of gear mesh used in FEM.
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are uncoupled from both the torsional vibrations and transverse vibrations in the Y

direction. The dynamic mesh force F at the mesh point in the Y direction can be

written in terms of the symbols given in Figure 1.3 from the rigid body dynamics

!W0 = c l + 2dsI + EgiY$si COSI - - dg2 - t2

-Eg2(Qs2 cos0t2 - e NgIf(s, cos(Ngletl))+ kb(ygl + 2--1 t1

+tgl sin Ot - Yg2 - "2 0- E.2 sin012 - i 1 sil(Ng i))(15
2

Here, only the fundamental component of the static transmission error E(i) is

considered, i.e. i(t)= Esin(Ngfsli) where NgI is the number of teeth of gear gl.

Dynamic mesh force F also introduces moments 'I'h and "hg2 about

instantaneous centers of the gears:

hgl(i) = ( + Egl cos0tj (1.6a)

Thg2(Q) -- y(0)(ý-2 + £g2 cos %t2 ) (1.6b)

The total angular rotation Oti of the i-th gear is 0ti(t) = Qsii+ Ogv(t) . i=1.2. The

displacement vector can be 'lecomposed into two parts as {4} = {1s} + {'lhI where

0s)}= [XlYl,1 ...... 1j, jej, .... XnYn,0 ], j= lton, j* gl, j* g2 (excluding the

degrees of freedom of the nodes where the gear and pinion are mounted) and

12



{hl = [Xg1,YgIOgIXg2,Yg2,0g2J, i=1,2. The coupling effect due to gear mesh is

only seen in the terms governed by {Ohl and the mesh stiffness [Kh], which

represents this dynamic coupling due to gear mesh is obtained from equations (1.5) and

(1.6) as

0 0 0 0 0 0

0 dgi 0 -1 dg2
2 2

dg- d-- 0g I l dgldg2

[Kb]=kh 2 4 2 4
0 0 0 0 0 0

0 -1 dgL 0 1 dg2 (1.7a)

2 2

S dg2 dgldg2 0 dg2 d-2

2 4 2 4

Since mesh viscous damping is proportional to the mesh stiffness,

kh

In the overall force vector, non-zero terms correspond to displacements {qh } and are

given in the following form:

13



2

UgIs2I cosCslt
2 Tglm dog CSli + . I

- EgCO~fsit~FIit) +Tgia(t)

Fah (i)} + {FaT(D) = dgI 2g2

Ug2n 2 sinfls2i - FI(i) (1.8a)

Ug2Qs2 cOs('s2i
2Tglm 2Q

YO =Ch(Eg2As2 Cosi 2s2t - Egl(Qsl cosilsli + Nglfisi cos(Ngiflslt))

+kh(FEg2 sin "s2t - EgI sinflsli + isin(NglIslt)) ( .8b)

where TgIm is the mean input torque.

1.3.4. Finite Element Formulation and Eigen-Value Problem

The finite element method has been employed in obtaining stiffness and mass

matrices of the system of equations (1.4). The shafts are discretized and five degrees of

freedom are defined at each node, only the axial motion being excluded. The stiffness

and mass matrices of each finite rotor element are derived by using the variational

principle (3,4,15]. The system overall matrices are obtained by combining element

matrices, dynamic coupling matrices due to gear mesh defined by equation (1.7),

assumed bearing damping values and stiffnesses, and the inertias of the gears and other

lumped inertia elements. Here, [M] is diagonal and positive definite and [K] is

symmunetric and positive semi-definite. The equation describing the undamped free

vibration of the system is obtained from equation (1.4) as

14



[M]{((t)} + [K]{q(t)} = {0}. (1.9)

The assumed form of the solution {q(t)} = {q.)cos(o~t + 0) is substituted into equation

(1.9) to obtain the standard eigen-value problem:

[K]{qa} = o)2 [M]{qa}. (1.10)

The solution of equation (1.10) yield the eigen-vectors or modes ( ,) and associated

eigen-values or natural frequencies wr. Here, a torsional rigid body mode at W=0

exists since [K] is semi-definite.

1.3.5. Forced Vibration Response

The excitation given by equation (1.8) (for no torque pulsations, i.e.

Tgla(i) = Tg2a(i) = 0) is the sum of three sinusoidal terms at frequencies C1.1, R2 and

gear mesh frequency NgiIsI

{ji) X{gj I}sin(f~i + Os)+ {Pý)sin(NgjQ5 1 i + Oh) (1.11)

The steady state displacement response of the system due to this cxcitation is assumed

to be

, [0i j sin(Qs + Osz) A- joh]tFI, I Rin(Ng i + h) (1-12)
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where [I3 gi] i=l, 2 and [13h] are the dynamic compliance matrices in the frequency

domain corresponding to the excitation frequencies, sfl, C1s2 and NgIfl"s,

respectively.

n idT[1Ogi Y] 1 •1[t•_i :{•~ fs(r, i1,2; (1.13a)

T=1 f~i) +2j4r2sj(Or]

)2)+ 
01.1 3b)

('Vt) represents the r-th mass matrix-normalized modal vector, n is the total number of

degrees of freedom of the system, j = N -1, and ýr is the danmping ratio for r-th mode.

See Appendix A for the computer code GRD which uses the theory given here.

1.4. PARAMETRIC STUDIES

1.4.1. Modes of Interest

The generic system shown in Figure 1.1 is modeled by FEM to examine the

natural modes of a general linear geared rotor-bearing system and to study the effects of

s-veral system parameters on the dynamics of the system. Two numerical data sets as

listed in Table 1.1 are used. Predicted natural frequencies and modes for Set A are

presented in Table 1.2. The response of the system to F(i) is also computed; Figures

1.4, 1.5 and 1.6 display the response ii the Y and torsional directions at the pinion

location and the dynamic load to static load ratio at the mesh point dgF-hy / 2Tmgi,

respectively. The system has no peak responses at the modes corresponding to motion

in the X direction since the excitation is applied in the Y (pressure line) direction, and

1 6



Table 1.1 Numerical data sets of the system used for calculations.

Parameters Set At Set B

IgI, 1g2 (kg-m 2 ) 0.0018, 0.0018 0.009/, 0.0097

mgj, mg2 (kg) 1.84, 1.84 3.45, 3.45

dg1, dg2 (m) 0.089, 0.089 0.135, 0.135

NgI 28 30

kh 1.0x 108  1.0x 108

kb (N/m) variable rigid

LsIL, LsIR (m) 0.127, 0.127 variable

Ls2L, Ls2R (m) 0.127, 0.127 variable

K 1 , K2 (N-m/rad) -- variable

Ip, IL (kg-rn 2 ) -- variable

dl,,o, ds2,o (m) 0.037. 0.037 0.04, 0.04

dsi,, ds2.i (m) 0., 0.01 --

i (M) 9.3x10-6  -

t NASA Lewis Research Center gear test rig.
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Table 1.2. First 10 natural frequencies for set A of Table 1.1 (k"kb=10).

Modal Modes of Natural Frequency or Natural Mode
Index Interest Hz. Description

0 0 torsional rigid body

I Vi 581 first transverse-torsional coupled

2 687 X direction, transverse (driving shaft)
3 wII 689 Y direction, transverse

4 691 X direction, transverse (drnven shaft)
5 VhD 2524 second transverse-torsional coupled

6 3387 Y direction, transverse

7 3387 X direction, transverse (driving shaft)

8 3421 X direction, transverse (driven shaft)
9 3421 Y direction, transverse
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Figure 1.4. Forced response of the system with dataset A (Table 1.1) to the

displacement excitation in the direction of pressure line (at pinion
location) for four different bearing stiffnesses kb.
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Figure 1.5. Forced torsional response of the system with dataset A (Table 1.1) to

the displacement excitation at pinion location for four different bearing
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Figure 1 .6 Dynamic to static load ratio for dataset A (Table 1. 1) due to the static
transmission error excitation for four different bearing stiffiiesses kb.
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the vibration in the X direction is dynamically uncoupled from the vibrations in the Y

and torsional motions, as described in the previous section. Therefore, the natural

modes corresponding to motions in the X direction can be eliminated when only E()

excites the system. Accordingly, the following three typical modes are of special

importance:

I. First Transverse-Torsional Coupled Mode WI: This is the second mode listed

in Table 1.2 at " (581 Hz for the system considered). This mode corresponds to the

first peak in Figures 1.4 and 1.5 and its schematic shape is shown in Figure 1.7a.

Here, shafts move in opposite directions, gears vibrate in opposite directions dlso; but

transverse and torsional vibrations combine to yield small relative motion at the gear

mesh point. Therefore, dynamic loads at the mesh point are not large, resulting in no

peak in Figure 1.6 at "o while Figures 1.4 and 1.5 have peaks governed by this mode.

U. Purely Transverse Mode W111. At this mode with natural frequency "o (689

Hz in Table 1.2), there is no torsional vibration and both shafts vibrate in phase in the

pressure line direction as shown in Figure 1.7b schematically. The relative

displacement at mesh point is zero since the gear ratio v 8=l. Therefore, t(i) cannot

excite this mode as no peaks are observed in Figures 1.4, 1.5 and 1.6 at frequency COll.

IM. Second Transverse-Torsional Coupled Mode - The second and the

highest peak seen in Figures 1.4, 1.5 and 1.6 corresponds to this mode at "i . As

seen from the mode shape illustrated in Figure 1.7c, both shafts and gears vibrate in

opposite directions, and transverse and torsional vibrations are additive at the mesh

point. Thus a large relative displacement at the mesh point is obtained, which results in
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a) first transverse-torsional coupled mode, V I

b) purely transverse mode, Vun

c) second transverse-torsional coupled mode, WM

Figure 1 .7. Typical natural modes of interest; see Table 1.2 for further details..
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a large peak in Figures 1.4, 1.5 and 1.6. This is the mode at which the coupling

between transverse and torsional vibrations is very strong.

These three modes are observed in all geared rotor systems and they play an

important role in governing dynamic response of the system excited by Z().

Therefore, any accurate mathematical model of the geared rotor-bearing systems must

be able to predict these modes.

1.4.2. Effect of Bearing Compliances

In most cases, radial stiffness of a typical rolling element bearings kb is roughly

of the same order of magnitude as the gear mesh stiffness kh; in general it lies in the

range O.1kh<kb<100kh. Therefore, bearing flexibility should be included in the

analysis. A parametric study for data set A of Table 1.1 has been conducted to

demonstrate the effect of kb on the natural frequencies and the frequency response of

the system excited by E(i). Figures 1.4, 1.5 and 1.6 show the response in the Y and

torsional directions and the dynamic mesh load respectively for kb values ranging from

O.lkh to l0kh, shaft stiffnesses are being kept the same. An increase in bearing

stiffness results in an increase in both natural frequencies and the peak amplitudes.

Above the range of kb, the bearing becomes very rigid when compared to the shaft

compliances and its effect on the system can be ignored.

1.4.3. Effect of Shaft Compliance

Data set B of Table 1.1 has been used to study the effect of shaft compliance on

the natural modes. The shaft length is varied and the corresponding (or values are

predicted by FEM; Figure 1.8 displays this result. The first natural frequency "o does

not change considerably with varying shaft length, whereas oI and "In are strongly
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Figure 1.8. Effect of the shaft length on the typical natural frequencies.
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dependent on the shaft length, especially at smaller lengths. Another observation from

Figure 1.8 is that "oI1 and onq become very large for smaller shaft lengths and clearly

move beyond the range of the operational speed of most geared rotor systems. In this

case, the first coupled transverse-torsional mode 4i can be assumed to be uncoupled

from these two modes.

1.4.4. Effect of Load and Prime Mover Rotary Inertias

As shown in Figure 1.1, the shafts are connected to a prime mover and a load at

either end through flexible torsional couplings. The following parameters need to be

considered: motor and load rotary inertias, torsional compliances of the flexible

couplings, and stifffnesses of the driving and driven shafts.

First, the motor and load are assumed to be connected to the shafts without

considering any torsional couplings in between. Figure 1.9 displays the variation in

"OI, "o11 and "olI with a variation in the prime mover inertia. Here, data set B of Table

1.1 with Lsi=0.04 m is used. w• and "I,* are not affected and therefore, the inertias of

motor and load can be disregarded if the major concern is to predict these two modes.

However, " is strongly dependent on prime mover and load inertias.

Second, the load end prime mover inertias are fixed (IP= 5 1gl) and the torsional

springs K1 and K2 , which represent flexible couplings and shafts are varied. Figure

1.10 shows the variation in ci. with changing K1 and K2. Here wu and a0m are again

not affected, as expected. On the other hand, " is almost constant (which is nearly

equal to the value yielded by zero prime mover and load inertias) up to a point and, it

starts increasing with increasing K. This indicates that the motor and load are isolated

from the geared rotor system when the in-between torsional elements are compliant
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Figure 1.9. Effect of the prime mover inertia on the natural frequencies.
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between the gear box and the prime mover & load inertias on the natural
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enough, which is the case in most practical systems. Under these circumstances,

motor and load inertias can be neglected in the analysis.

1.5. REDUCED ORDER LINEAR TIME-INVARIANT MODELS

In this section, three different reduced order analytical models of the geared rotor-

bearing systems shown in Figure 1.1 will be developed and the conditions and system

parameters at which these simple models can predict the dynamics of the system

accurately, will be discussed. The finite element model of Section 1.3 will be

employed as a reference model to check the validity.

1.5.1. Single Degree of Freedom Torsional Model of Gear Pair

As the simplest model, a single degree of freedom (SDOF) model of geared rotor

systems shown in Figure 1.2 is considered. The shaft and bearing flexibilities and the

motor and load inertias are not considered in this model. This model can only predict a

single mode at a frequency :o. as defined in equation (1.3c) which corresponds to the

first transverse-torsional mode at "i, . Here, (l-- 4 (on when shaft lengths Lsi-O and

bearings are very stiff. And, wn and aot are sufficiently beyond the operational speed

range and the variation in "o is assumed to be negligible with shaft length as shown in

Figure 1.8. Therefore, in some cases, the SDOF model of Figure 1.2 can be used to

represent the system provided these conditions are met. For instance, for data set B of

Table 1.1 with Lsi=5 cm, a SDOF model can be utilized up to an operational rotational

speed of 6000 rpm which corresponds to the excitation frequency at 3000 Hz for

Ngl=30 teeth. As it is seen in Figure 1.8, only the first mode is observed and its

variation is not significant within 0:52<3000 Hz and 0lsi<5 cm.
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1.5.2. Three Degree of Freedom Model

The SDOF model of Figure 1.2 is not adequate when the shafts and bearings are

compliant. To overcome this deficiency, a three degree of freedom (3-DOF)

transverse-torsional model as shown in Figure 1.1 Ia is developed. Equation 1.4 gives

the equations of motion with dimensionless mass [M], damping [C] and stiffness [K]

matrices and displacement vector (q) given as follows:

1 0 0
[M] mgI/mcl 0 (l.14a)

0 0 mg2 / MCl

[1 1 - 11
[C]= Ch 1 ( + CbsI/ h) -1 [ (1.14b)

VkhmdC -1 -1 ( +Cbs2 /ch)J

[K]=[I (I+kbsI/kh) -1+l (1.14c)
-- I -1I (I+ +kbs2 / kh)-

{q}=[u, yI, Yg2] (I. 14d)

U= 0 g!-1 dg2g2 Ygi = , i= 1,2. 0.14e,f)
2 2d gI dg1

Here, kbsI and kbs2 are equivalent lateral stiffnesses representing shaft and bearing

flexibilities, and CbsI and cbs2 are equivalent viscous damping values. This model can
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Figure 1.11. Reduced order analytical models of Figure 1.1; a) three degree of

freedom model, b) six degree of freedom model.
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accurately predict all three modes of interest as evident ffom Figure 2.8 and Table 1.3

where its predictions are compared with the results of FEM.

When the system is connected to the motor and load inertias, then the in between

torsional stiffnesses K1 and K2 should be compliant enough to be able to neglect the

effects of the motor and load inertias, as it is discussed earlier in Section 1.4.4. In

summary, the 3-DOF model shown in Figure 1.11 a can be used to describe the

dynamics of the geared rotor system when: a) the shafts and bearings are compliant and

provided the shafts are short such that higher order bending modes of the shafts are out

of the frequency range considered, and b) the torsional stiffnesses of the connections in

between the motor and load inertias and the gear box are sufficiently compliant.

1.5.3. Six Degree of Freedom Model

A six degree of freedom (6-DOF) model as shown in Figure 1.llb can be

employed to represent the geared rotor-bearing system when the effects of the motor

and load are not negligible as mentioned in Section 1.4.4. Equations of motion are still

given by equation (1.4) and the dimensionless system matrices are defined as

Ir/d21 0 0 0 0 0

0 Ig/d21  0 0 0 0

1 0 0 0g2 / d2 0 0 0
1]MCI 0 0 0 9 1/2

0 0 0 0 mgi 0

0 0 0 0 0 mg2
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Table 1.3. Comparison of typical modes obtained by FEM and 3-DOF models for set

B of Table 1.1; Lsi/dgl--0. 3 .

Mode V

WI WII ll

Displacement FEMI3-DOF FEM/3-DOF FEM/3-DOF

0 gI -0.012/-0.011 -0.001/0.0 -0.210/-0.246

eg2 0.012/0.011 -0.001/0.0 0.210/0.246

YgI 1.0/1.0 1.0/1.0 -1.0/-1.0

Yg2 -1.0/1.0 1.0/1.0 1.0/1.0
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11 0. 0 0 0

C 2  0

-syri metrC- (Ch + Cb0l ) Ch

(Ch Cbs2 )

(1.l5b)

d 1 2 1 4

K1  k- khVg kh kh

._ + )L L L2 !ha

2 2

(C'Tkhml 24 4 d1 2

[KJ=-hds

K 2  0

-symmetric - (kh + kbul) -kh

(kh +kbs2)

(l.15c)

{q} = hOP, Og1, 082' 9 L, Ygl, Y g2I (1.15d)

For data set B of Table 1.1 predictions yielded by the 6-DOF model are compared

with those by FEM as shown in Figure 2.9 and Table 1.4. Based on these results, it

can be concluded that the 6-DOF model is accurate enough to predict the natural modes

of the system. Accordingly, 6-DOF model must be cmployed when the effects of the

motor and load are not negligible.
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Table 1.4. Comparison of typical modes obtained by FEM and 6-DOF models for set

B of Table 1.1; L-sj/dgi=0.3, Ip/lgj= 5.

Mode •i

Displacement FEM/6-DOF FEM/6-DOF FEM/6-DOF

Op 0.079/0.079 0.002/0.0 -0.018/-0.013

OgI -1.0/4.0 -0.005/0.0 1.0/1.0
0 g2 1.0/1.0 -0.005/0.0 -1.0/-1.0
OL -0.079/-0.079 -0.002/0.0 0.018/0.013

Ygi 0.006/0.006 1.0/1.0 0.391/0.451
Yg2 -0.006/-0.006 1.0/1.0 -0.391/-0.451
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1.6. CONCLUSION

In this chapter, a finite element model to investigate the dynamic behavior of

linear time-invariant geared rotor systems has been developed. The transverse

vibration of the system associated with shaft and bearing flexibilities and the dynamic

coupling between the transverse and torsional vibrations due to gear mesh have been

considered. Natural modes of the system have been identified and forced vibration

response due to both low frequency external and high frequency internal excitations

have been determined. Reduced order analytical models of the geared rotor bearing

system have also been developed. Three different linear time-invariant models (SDOF,

3-DOF and 6-DOF) have been suggested to represent the geared system. By

comparing results with FEM predictions, it has been shown that such reduced order

linear models are reasonably accurate. Therefore these models will be extended in

Chapters II, II and IV in analyzing the effects of system non-linearities and time-

varying mesh stiffness.
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CHAPTER I1

NON-LINEAR DYNAMIC ANALYSIS OF

A SPUR GEAR PAIR

2.1. INTRODUCTION

2.1.1. Excitation Types and Backlash

The focus of this chapter is on the backlash non-linearity as excited primarily by

the transmission error between the spur gear pair. A gear pair is bound to have some

backlash which may be designed to provide adequate lubrication and eliminate

interference due to manufacturing errors. Backlash-induced torsional vibrations may

cause tooth separation and impacts in unloaded or lightly loaded geared drives. Such

impacts result in intense vibration and noise problems and large dynamic loads,

which may affect reliability and life of the gear drive [16,17]. Excitation mechanisms

can be grouped as follows:

A. Extemal Excitations: This group includes excitations due to rotathig mass

unbalances, geometric eccentricities, and prime mover and/or load torque fluctuations

(18]. Although mass unbalances and geometric eccentricities can be reduced through

improved design and manufacturing, torque fluctuations are not easy to eliminate

since they are determined by the characteristics of the prime mover (piston engines,

dc motors etc.) and load [19]. Such excitations are typically at low frequencies CT

which are the first few multiples of the input shaft speed fl, . Practical examples

include rattle problems in lightry loaded automotive transmissions and machine tools

[19,20].
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B. Internal excitations: This group includes high frequency Q h excitations

caused by the manufacturing related profile and spacing errors, and the elastic

deformation of teeth, shafts and bearings. Under the static conditions, all such

mechanisms can be combined to yield an overall kinematic error function known as

"the static tranmission error" i(TO) [17,18]. This error is defined as the difference

between the actual angular position of the driven gear and where it would be if the

gears were perfectly conjugate [17,18,21-23]. In gear dynamic models, i(T) is

modeled as a periodic displacement excitation at the mesh point along the line of

action [15,24-26] and its period is given by the fundamental meshing frequency

Q b =N CS where N is the number of teeth on the pinion. Practical examples

include steady state noise and vibration problems in automotive, aerospace,

industrial, marine and appliance geared systems.

2.1.2. Literature Review

Experimental studies on the dynamic behavior of a spur gear pair with backlash

started almost 30 years ago and still continue [27-29]. As one of the better examples

of such experinric.nts, Munro [27] developed a lightly damped (damping ratio ;=-0.02)

four-square test rig to measure the dynamic transmission error of a spur gear pair.

He used high precision gears with rigid shafts and bearings, and showed

experimentally that the tooth separation takes place when the mean load is less than

the design load. Dynamic transmission error versus speed curves were plotted to

illustrate the steady state response and the jump phenomenon. Kubo [28i measured

the dynamic tooth stresses using a similar set-up in order to calculate the dynamic
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factors. He also observed a jump in the frequency response of the gear pair with

backlash even though the test set-up was heavily damped (-0. 1).

Such experimental studies, though limited in scope, have clearly shown that the

gear pair dynamics can not be predicted with a linear model - see Ozguven and

Houser [14] for a detailed review of the linear gear dynamic models as available in the

literature. Although most of the non-linear mathematical models used to describe the

dynamic behavior of a gear pair are somewhat similar to each other, they differ Ln

terms of the excitation mechanisms considered and the solution technique used. For

instance, a large number of studies have focused on the rattle problem in lightly

loaded geared drives which are excited by the low frequency external torque

excitations [30-35]. A few investigators have included the static transmission error

excitation in the non-linear models [24,35-37].

The gear backlash non-linearity is essentially a discontinuous and non-

differentiable function and -. represents a strong non-linear interaction in the

governing differential equation. This issue has been discussed by Comparin and

Singh [33] and they have concluded that most of the solution techniques available in

the literature can not be directly applied to examine this problem. Most of the gear

dynamic researchers recognized this problem implicitly, and therefore employed

either digital or analog simulation techniques [19,24,29,35-38]. For instance,

Umezawa et.al [29], Yang and Lin [32] and Ozguven and Houser [24] have solved a

one degree of freedom torsional model of the gear pair using numerical techniques.

Lin et.al. [38] included motor and load inertias in a three degree of fireedom torsional

model. Kucukay [35] has developed an eight degrees of freedom model to include

the rocking and axial motions of the rigid shafts. In most of these studies, with the

exception of Umezawa's analysis [29] which did not include any backlash, a
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discontinuity has been seen in the frequency response characteristics. But many

investigators have typically joined two discrete points to show a broad jump in the

frequency response curve [24,35,38]. Some of these problems have been due to the

numerical simulation techniques which may not work or may result in misleading

answers if not em'ployed properly. Such difficulties have been found by Comparin

and Singh 133], Singh et al. [34] and Gear [39-40] but are yet to be resolved or

addressed by the gear dynamics researchers. Accordingly. one of the major

objectives of this chapter is to examine whether numerical simulation techniques can,

in fact, be used to predict the dynamic response completely, and what precautions one

must take to develop such a mathematical model. Since Comparin and Singh [331

and Singh et al. [34] have examined the external excitation problem, in this chapter

we focus mainly on the internal excitation and see whether the numerical simulation

technique can be made to work for the prediction of the non-linear frequency

response characteristics.

A few researchers have attempted to obtain the analytical solutions for a gear

pair problem, based on the piece-wise linear techniques which divided the non-linear

regime into several linear regimes [41-43]. For instance, Wang [41,42] has used two

and three degree of freedom torsional models with backlash, and assumed that the

gear teeth are rigid and the driven gear has an infinite inertia. The governing

equations have been solved using the piece-wise linear technique. It should be noted

that the piece-wise linear technique gives only solutions for the equivalent linear

systems and one typically may have difficulties in combining such solutions [43].

Comparin and Singh [33] overcame these problems by employing the harmonic

balance method (HBM) and constructed analytical solutions for the non-linear

frequency response characteristics of a gear pair with backlash as excited by the
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external torque. In this chapter, we will use the same technique to examine the

internal excitation problem, and compare results with digital simulation and

experimental studies. Further literature review is included in subsequent sections.

2.2. PROBLEM FORMULATION

2.2.1. Physical Model

A two degree of freedom semi-definite model of the spur gear pair with rotary

ine:ias IgI and Ig2 and base circle diameters dg. and dg2 as shown in Figure 2.1 is

considered here. The shafts and bearings are assumed to be rigid. The gear mesh is

described by backlash of 2b and by a dime invariant mesh stiffness kb * kh(i)

when in contact and viscous damping ch. The equations of torsional motion of the

gear pair as shown in Figure 2.1 are

d2Ogl dgICh (dg, d'3g dg2 dOg2 dF

gI d-.2 + 2 2 d" 2 dt dT"

dt
-0 U2 ((t) (2.1a)

g2 2 j g 8g g2 g ii

I- - I - -8 - "-" -2- -I
g 2 -2 2 2 dT 2 dt dtdt

d g 2 (dgOIdg 2  '

2 2 g 12 g2- F g2(t (.1b
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Figure 2.1. Gear pair model.
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where T gI( T glm + T )gla(_0 and T g2(i") = %2 + Tg2a(-) are torques

on pinion and gear and f is a non-analytical function essentially describing the mesh

elastic force as shown in Figure 2.1. Here, output torque fluctuation T g 2a(F) will

be neglected to simplify the dynamic problem, i.e. T g(F)= . Equations

(2.1a) and (2.1b) can be reduced to one equation in terms of q(t ) which is defined

as the difference between the dynamic transmission error !(Ft) and the static

transmission error

2 dq+ f( d2 •

MCI + Ch--+ khf( - PFm +FaT(i)- mcc ; (2.2a)

dgl dg2
d g2 I g2 (D) - F(T) (2.2b)

I 4 1g1
m 2 2 m 2  -- ; (2.2c,d)

ci ( d g g2
g1 g2 41

gI g2i

2Tg8lM 2Tg2m 2mcr Sla D''
.- gim =aT(m ) = -l (2.2e,t)

Pm d gI d 92AT m c2d8I(.e•m gI - g2 mc2dgi

r4(t-) b; q(T) > b
f(• t')= kh 0= ; -b < (4 ')<b •(2.2g)

h(t) + b; q(T) < - b
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where mc, is the equivalent gear pair mass, Fm is the average force transmitted

through the gear pair, FaT(T) is the fluctuating force related to the external input

torque excitation and f( l(t)) is the nonlinear displacement function. Equation

(2.2a) is nondimensionalized by letting q(it) = 4(t) / b, 0.) n= kh/mc,

t=(O•t and ý = c / (2mclcon). Now, consider harmonic excitation for both

Z(F) and PaT(t) as (F)-- =sinF(.ht + h, PaT(F)=P ATsin(L'Tl + .T)

where Qh and flT are the fundamental excitation frequencies of internal

displacement and external torque fluctuations, respectively. Further, define

dimensionless excitation frequencies Q.b = Q h/(on an d Q T =-T2 /(on,

dimensionless external mean load F m = P m / bk h . amplitudes of the dimensionless

internal (Fi(t)) and external alternating forces (Fe(t)) F aT = T / bkh a n d

F ah = F /b and nonlinear displacement function f(q(t)) to yield the following

governing equation of motion.

F(t) + 2Fm(t) + f(q(t)) = F(t) (2.3a)

F(t)= Fr+ aT sin (QTt + +F hQ2 sin (i- t +*h) (2.3b)

f (4(t)) [q(t) - 1; q(t) >1._

f(q(t))= b - 0; -< q(t) < I
q(t) + 1; q(t) <-1 (2.3c)
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2.2.2. Scope and Objectives

When only external forces excite the system, i.e. Fi(t)=O, equation (2.3a)

reduces to

4(t)+2q•((t)+f(q(t))=FM+Fe(t)=I +FaT sin (QITt + (2.4)

This equation has been solved both analytically and num-rically by Comparin and

Sirgh [33). Conversely, no analytical solution is available when the system is

excited by internal static transmission error at the mesh frequency fib which is

considerably higher than CIT, The governing equation is given by substituting

Fe(t)- 0 in equation (2.3a); note that the external mean load Fm is not equal to zero.

4(t)+2q'q(t)+f(q(t))=F +F (t)=Fm +F Q sin(Qht + h) (2.5)

Both equations (2.4) and (2.5) include the clearance non-linearity. While

equation (2.4) represents the conventional represc :tation of the vibro-impact problem

[33,34], equation (2.5) is more applicable to the clearance problems in built-up

assemblies where the excitation is generated by the kinematic errors. This chapter

focuses on the steady frequency response characteristics of equation (2.5) which

represents a gear pair with backlash as excited harmonically by the static transmission

error excitation i(t) or Fah. Specific objectives of this chapter are as follows:

1. Solve equation (2.5) numerically to resolve various modeling issues such as

the existence of multiple solutions, subharmonic resonances and chaos.
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2. Construct analytical solutions to equation (2.5) using the harmonic balance

method (HBM) which has been applied successfully to solve equation (2.4) by

Comparin and Singh [33].

3. Compare digital simulation and harmonic balance techniques and establish

the premises under which the jump phenomenon can be predicted.

4. Perform parametric studies in order to understand the effects of Fm, Fah and
A

on the frequency response. Vary the force ratio F =Fm/Fah which is a measure of

the load on the gear pair and compare the dynamic behavior for lightly and heavily

loaded gears.

5. Validate analytical and numerical solution techniques by comparing these

with previous experimental studies [27,28].

6. Compare the frequency response characteristics of equations (2.4) and (2.5),

and also examine the possibility of finding overall response when both external and

internal excitations are applied sirm•ultaneously.

7. Consider the periodic static transmission error excitation case, i.e.
k

F(t)=Fm+Fi(t)=Fm+ (j(ah) 2 Fahjsin(Jilht + h; only the first
j=l

three (k=3) harmonics are included.

2.3. DIGITAL SIMULATION

Clearance or vibro-impact problems in single degree of freedom systems have

been examined by a number of investigators whose formulations are similar to

equation (4) - see Comparin and Singh [331 for a detailed review. Moreover, Shaw

and Holmes [43] and Moon and Shaw [441 have considered an elastic beam with one

sided amplitude constraint subject to a periodic displacement excitation, and have
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shown experimentally and numerically that the chaotic and subharmonic resonance

regimes exist. Whiston [45-47] has investigated the non-linear response of a

mechanical oscillator preloaded against a stop. He has solved the system equation for

harmonic excitation by digital simulation and studied the existence and stability of the

subharmonic and chaotic responses and the effect of preload on chaos. Similarly,

Ueda [48] has solved the Duffing's equation, 4 + 2ýq1 + q 3 = F sin t, numerically

and defined the regions of different solutions on a ý versus F map. According to

him, the existence of harmonic, subharmonic and chaotic responses depends on

values of ý and F, and multiple steady state solutions typically exist. Thompson and

Stewart [49] have reviewed the available literature, with focus on the Duffing's

equation. It should be noted that equation (2.5) is different from the non-linear

differential equations considered by the above mentioned studies. Therefore,

equation (2.5) must be studied in depth as the results of the other non-linear equations

may not be directly applicable to our case.

First, we solve the governing non-linear differential equation (2.5) numerically

using a 5th-6th order, variable step Runge-Kutta numerical integration routine

(DVERK of IMSL [50]) which is suitable for a strongly non-linear equation

[33,39,40]. Second, we investigate the existence of chaos and subharmonic

resonances. Since the steady state response of the system due to the sinusoidal

excitation is of major interest, it is necessary to run the numerical program for a

sufficient length of time. The number of cycles of the forcing function required to

reach the steady state depends on ý.
A

A lightly loaded system (F=Fm/Fah=0.5) with low damping (4--0.02) is

considered as the first example case. For Fm=O.. and Fah=0.2, the response q(t) is

coniputed over the frequency range 0 < 01h < 1.5. Figure 2.2 shows phase plane
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plots 4(t) vs. q(t) for different flb values. For QLh=0.3, all transients converge to

one periodic solution at the fundamental frequency aLh of the forcing function

irrespective of the initial conditions q(O) and 4(0). Therefore, it is called a "period-

one, t p " attractor where tp= 2 1t/lh. But, in the case of Qb=0.5, three coexisting

period-one attractors have been found as shown in Figure 2.2. Here, q(0) and 4(0)

define three steady state limit cycle solutions. For all initial conditions given by

- 2 < q(0) < 2 and - 2 < q'(0) < ., a map of the domains of attraction for each

steady state solution is obtained in the map in Figure 2.3. If a smaller increment is

used for the initial conditions, a finer resolution will be obtained. Hence each phase

plane plot shown in Figure 2.2 is strictly governed by a subset of the initial

conditions. Similarly, two period-one attractors are found at ah =0 .6. At L2= 0 .7,

besides two period-one t p attractors, two more solutions of period 3t exist, i.e.

period-three attractors. But only a period-two 2tp attractor is seen when fib=0 .8.

Within the range 1. 0 < Q h 1. 5, non-periodic, steady state or chaotic response is

observed. Figure 2.4 shows the chaotic time history and the Poincare map (strange

attractor) at fh=l.0. These results are qualitatively, but not quantitatively, similar to

the studies reported on the Duffing's equation [48,49] and clearance non-linearity

(eqation (2.4) type) [33].

It is concluded that the subharmonic response of period ntp provided n • 1 and

the chaotic response (tp -+ 00) are seen in the gear pair only for a certain set of

parameters Fm, , 9 and flh" It must also be noted that the multi-solution regions

are strongly dependent on the choice of q(0) and 1(0). Only one steady state

solution can be found via digital simulation when ordy one set of initial conditions is

chosen at a given fah, and the rest of the steady state solutions are not predicted. This
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Figure 2.2. Phase plane plots of steady state solution q(t) for F =0.5, Fm=O.=1. (=0.02

and for different fO values; a) fib=0 .3, b) fbl--0.5, c) Qb=0.6, d) 9"2h=0 .7,

e) lh=0.8, f) Qh=1.0.
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Figure 2.3. Domains of attraction for three attractors; x no impact (Figure 2.2bl),

single sided impact (Figure 2.2b3), 0 double sided impact (Figure 2.2b2);
A
F=0.5, Fm"O.l, ý--0.02 and Qh=0.5.
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Figure 2.4. Chaotic response of a gear pair; =0.5, Fm=O.l, 1 =0.02 and fh=-1 .0 a)

time history, b) Poincare map.
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results in an incomplete frequency response description. These issues will be

discussed further in Section 2.5.
A

A heavily loaded system with F =2, Fm=O. 1 and the same amount of damping

=--0.02 is considered as the second example case. Figure 2.5 shows the phase plane

plots for the same values of f2h which are ued in the first example case. Unlike the

first example case, no chaotic responses are found here. All of the solutions are

period-one tp type for all flh<1 .0 and Figure 2.6 shows the typical domains of

attraction at Qh=0.6. However, within the range 1. 0 • Q b -' 1. 5, one period-two

A
attractor co-exists with the period-one orbit. Hence the force ratio F determines the

existence of the chaotic and subharmonic responses. To illustrate this point, consider

chaos shown in Figure 2.4. As P and ( are increased, significant changes in the

response are observed in Figures 2.7 and 2.8. A transition from the chaos to a

period-two, and then to a period-one steady state solution is seen when P is

increased from 0.75 to 1.0 and then to 1.5. Similarly, an increase in ( to 0.05

reduces chaos to a period-eight attractor, which then bifurcates to a period-two orbit

at (=0.1 as shown in Figure 2.8. Since most real geared systems are heavily loaded
A

with a high F, chaotic and subharmonic responses should not be seen under the

normal driving conditions. This issue will be discussed again in section 2.6.

2.4. ANALYTICAL SOLUTION

An approximate solution for equation (2.5) is constructed using the harmonic

balance method (HBM). Assume that q(t) = qm + qa sin(l'Zht + ý) where q. and q.

are mean and alternating components of the steady state response, and ý r is the

phase angle. Here, higher harmonics of the response are not included in the analysis.
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Figure 2.5. Phase plane plots of steady state solution q(t) for F =2, Fm= 0 . ,=O.02 and

for different fb values; a) Qth=0.3, b) l2h--0 .5 , C) flh=0.6, d) -bh=0.7, e)

Qh=0.8, f) h=l-.0.
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Figure 2.8. Time histories of q(t) for Fm=O. 1, F --0.5 and a) =--'0.05, b) ý=O. 1.
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The quasilinear approximation to the nonlinear function f(q) with the excitation

F(t)F= +Fi(t) = Fo+ F Q sin (0ht+ h) is in the form [33,51]

f(q) =Nmqm+ Naqasin(f tt +.r)+N~qfcos(Oht +4"r) (2.6)

where the describing functions NmI Na and N: are defined as:

1 2i
2 n

N _ 1 fqm=-fq +qa sinw•)dwp; (2.7a)
2 'E1qm 0

2=ff(qm +q. sin ))sin qxhp; (2.7b)

2aIf(q. +q,, sin P) cosW(d(P T Q ht+r. (2.7cd)

Equation (2.3b) is substituted into equations (2.7a), (2.7b) and (2.7c) to obtain

Nm= 1 -) ) Na I-- 1-[ h(y+)+h(y-)] ;(2.8a,b)

1 ±: qm 
(2.8c,d)N•= 0 'Y±- qa

where
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g(Y)= n (2.8e)

sin + y-/Iý- :

h(y) = Ii; y< 1 (2.8f)

11; Y> I

Comparin and Singh [33] used truncated series expansions for functions g(y) and

h(y) given by equations (2.8e) and (2.8f). They stated that the error involved in

using truncated series is within 6 percent when only the first two terms are considered

with the coefficient of the second term adjusted to yield the actual value for Y = I.

Using the same approach, one gets

g(Y)m 1+( 72 ; h(4) _ _; 1) 1 (2.9a,b)

and obtains the following frequency response by substituting equations (2.6) into

equation (2.5) and equating the coefficients of like harmonics:

F 2

qa= ah- b q m ; (2.1Oa,b)

Na -12) + (2ýb)2

r h tan Na- )") (2.1 Oc)
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Depending on the damping ratio , and the parameters F F and fl which

define the excitation, there are three cases at which different solutions are obtained:

(a) no impact (no tooth separation), (b) single sided impacts (tooth separation, but no

back collision), and (c) two sided impacts (back collision).

Case I: No Impact : The tooth separation (impact) is not observed in a geared

system if the displacement q(t) lies in the region q(t)>l all the time. This condition,

shown in Figure 2.9 as case I, can be described mathematically as

jqm +qa.>1 and jqm-qaI>l (2.11)

Then, for no impact region in which the conditions defined by equation (2.11) are

satisfied, the describing functions are given by

f • q= m (2.12a,b)

Substitution of equations (2.12) into equations (2.9) yields the following governing

equations for no impact case

Fah h 2
qai A/( - l 2 +( h )2 q ml = Fm + 1; (2.13a,b)

j~2- + 2m

= p -tan - - 2 (2.13c)
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Figure 2.9. Illustration of different impact regimes.
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Hence, whe,: there is no tooth separation, the system is linear and the mean and

alternating components of the response, qm and q., are uncoupled from each other.

The transition frequencies from the no impact (linear) regime to the other non-linear

regimes where tooth separation occurs are found by substituting q, = Iq, - II into

the equations (2.13a) and (2.13c) as

S2 ) F a b
(II -• 2r, 2,T-(

12,1 il (1 Fah))±) (2.14)

where L21 and 0t2 are the transition frequencies from no impact to single sided

impact regimes below and above resonance, respectively.

Case 1; Single Sided Impact ; Mathematically, the single sided impacts (tooth

separation without back collision) are observed if

qm+qa> I  And 1qm- qal < 1 • (2.15)

As illustrated in Figure 2.9 as case D1, the solution remains in the region q(t) > - 1.

The describing functions satisfying equation (2.15) are in the form

Nq - [I+ h(N,_)] (2.16a,b)m 1 -q [Y+ -(,Y-)] I N 1- ![I+ -~ y-6
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Substitution of equations (2.10a) and (2.10b) into equations (2.16a) and (2.16b)

gives the describing functions for the single sided impact case:

N(= 1+ 2.17a)

Then equations (2.9a), (2.9b) and (2.9c) with the describing functions given by

equations (2.17a) and (2.17b) define the response of the system in the single sided

impact region. In this case, it is hard to find closed form expressions for transition

frequencies from single sided to double sided impact regions. The validity of the

solutions, obtained by solving equations (2.9) and (2.17) iteratively, should be

checked. If the solution does not satisfy equation (2.15), then single sided impacts

are not seen at that particular frequency.

Case III: Double Sided Impact : The double sided impact case exists if q6 and

qa are such that the following conditions are satisfied:

qa>1l-qq. and qa>II+q.1 (2.18)

Figure 2.9 (case IH) shows the double sided impact case at which q. is large enough

when compared to qc so that back collision is observed. The describing functions
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for this case are obtained from equations (2.8a) and (2.8b) und,!r the condition given

by equations (2.19):

2(n -2) 41 1 4 - n(+q~f
Nm n1 2; Na= 1- n q M 4 q3- (2.19a,b)

•qam ' am

The solution for the double sided impact case is obtained by solving equations

(2.9) and (2.19) numerically. The validity of the solution, again, should be examined

by using the conditions defined by equation (2.18), as it is done in the single sided

impact case.

The solutions of all three regimes are combined to obtain the overall frequency

response of the gear pair. Figure 2.10 illustrates typical qa versus Qh and c6 versus

f/h plots. All three impact regimes are shown on these plots. Also we note the

frequency region where multiple steady state ,olutions are obtained.

2.5. COMIPARISON OF TWO SOLUTION METHODS

First, we validate the approximate analytical solutions of equation (2.5) by

comparing predictions with the results obtained by digital simulation. Again, two

example cases (a heavily loaded system and a lightly loaded system) are considered

and the frequency response curves qa versus fh and qm versus Qh are generated.
A

Figure 2.11 shows the frequency response for the heavily loaded system with F =2,

Fm=O-l and ý=0.05. Numerical and analytical results agree very well as both predict

amplitudes and the transition frequencies for case I (no impact) and case II (single

sided impact) regimes, and both show that the double sided impact solutions do not

exist. These results demonstrate that the analytical solutions are indeed correct fcr the
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Figure 2.10. Typical frequency response plots for a gear pair; a) qa versus 11h. b) qm

versus •(.
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heavily loaded system. Now consider the lightly loaded system as the second
A

example case with F =0.5, Fmo=0.1 and ý=0.05. From Figure 2.12 we note that

while case I and case II solutions as yielded by both solution techniques are very

close to each other, case m] regime is predicted only by the analytical expressions.

Why is case [I not predicted by the digital simulation? To answer this consider the

following:

a) In digital simulation, several sets of q(0) and 4(0) must be tried to find all

of the steady state solutions within a multi-valued region, for instance

0.6 -S Qnh • 0.7 in Figure 2.11 and 0.4 <5 Qh • 0.7 in Figure 2.12. When q(0)

and q(0) are kept constant for each Qh or if the steady state solution of the previous

frequency is used as the basis for the initial conditions for the next frequency

considered, only one of the solutions can be found while missing the other(s).

Figure 2.13 illustrates this point as the steady state solution of the previous frequency

is used here for the initial conditions at each fil, Using this procedure, case U

solutions within the multi-valued regions are missed. Therefore, whenever digital

simulation is used to solve the equation of motion, dependence of the steady state

solutions on q(0) and 4(0) must be taken into account to avoid the risk of obtaining

an incomplete frequency response description.

b) In the case of Figure 2.12, no initial conditions governed by case III are

found by the digital simulation within the range of initial conditions - 2 < q( 0 ) < 2

and - 2 < l(0) < 2 we have considered. Conversely, the analytical method

predicts this regime as the issue of initial conditions is irrelevant here. To illustrate
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A

this, first we consider the case of Figure 2.3 with F=0.5, Fm=0.1, t=0.02 and

ah=0.5. Figure 2.14a shows the domain of attraction governed by case HI within

the range - 2 < q(0) < 2 and - 2 < 4(0) < 2 with a q(O) or 4(0) increment of

0.2. Here, almost half of the initial conditions considered define case m solutions.

Therefore the chance of having a double sided impact solution at Qh= 0 .5 is

considerably high. Now, increase the damping to 4--0.03. Once again a case 11l

regime is predicted analytically, but the number of initial conditions corresponding to

case II is not sufficiently high like the case of ý=0.02. In the digital simulation, the

transient solution will converge to case I or case II solution unless the initial condition

corresponds to one of those shown in Figure 2.14b for case Ill. And the limiting

case is reached when ý=0.04, while holding the other parameters the same; now no

initial conditions corresponding to case IllI are found. Obviously there might be

initial conditions, out of the range considered, which correspond to the analytical

results. Therefore the existence of case III solutions should be checked numerically

by searching the entire range of initial conditions as defined by the physical

considerations of the system.

2.6. PARAMETRIC STUDIES

Frequency response amplitudes, transition frequencies and the existence of
A

various impact regimes depend on Fm, F and ý. Therefore, a set of parametric

studies using analytical solutions of section 2.4 will be presented here; same results

can be duplicated by the digital simulation technique. First we examine the effect of
A

Fm and F while holding the damping ratio ý equal to 0.05. Figures 2.15 and 2.16
A

compare results for four diffeient F values obtained by varying Fah for a given
A

Fm=O.1. Both gears maintain complete contact with each other when F is very
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AFigure 2.11. Comparison of theory with numerical simulation; Fm=0.l, F =2, ý=0.05;

a)qa versus fi, b) q. versus 1-h.
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AFigure 2.12. Comparison of theory with numerical simulation; Fm=O.l, F =0.5, ý=0.05;

a) q. versus Oh, b) qm versus ý2h.
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Figure 2.13. Comparison of theory with numerical simulation when initial conditions are
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kept constant; Fm=O.1, ý=0.05; a) F=2, b) F =0.5.
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Figure 2.14. Domains of attraction for case RII solutions for F 1=O.1, F=0.5. Ah=
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A

large, say F=10 in Figures 2.15a and 2.16a. Consequently the dynamic system is

linear and the mean c6 and alternating qa components of the torsional motion are

A
uncoupled as expected. However, for F =2, no-impact regime (case I) can not cover

the whole frequency range and a region around the resonant frequency is dictated by

the single sided impacts (case IU). Away from the resonance, over the range given by

Ubn>0.8 and f£2<0.7, solutions are single-valued, whether case I or case II solutions.

Conversely, near the resonance given by 0.7<Qb<0.8 dual-valued solutions are seen

in Figures 2.15b and 2.16b. And sudden discontinuities are observed, i.e. a jump
A

up at flh-0.8 and a jump down at 12h=0.7. When F is reduced further, double

sided impact (case MI) solutions start to appear in Figures 2.15c and 2.16c. Now, the

frequency range of interest can be divided into the following four regions: i) case I,

ih< 0 .4; ii) case I and case III , 0 .4<-2h<0.6; iii) all three cases, 0 .64 h< 0 .6 2 5 ; and
A

iv) only case II, 12h> 0 .6 2 5 . Region (ii) disappears at F >0.5.
A

Next, we vary F by changing Fm for a given Fah =0.05. This set of

parameters does not yield any double sided impacts (Case If). Again, the tooth pair
A

does not lose contact when F is large enough, say •Ž10 and only the linear
A A

solutions exist as shown in Figure 2,17a. But when F is lowered to F=4, 2 and 1,

the response is non-linear which is composed of cases I and II as shown in Figures

2.17b-d.

Next we examine the role of damping ratio ý on the frequency response in Figure

2.18, given Fm---O. and Fah=2. Double-sided impacts are found at a low damping

value O--0.025 as shown in Figure 2.18a. When ý is incteased to 0 05, case III

solutions no longer exist and case I and case U solutions define the frequency

response completely. The jump-up and jump-down transition frequencies in Figure

2.18b are distinctly apart. With an increase in ý, transition frequencies approach each
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Figure 2.15. Frequency response qa for different alternating loads; Ffl=0.1, Y=0.05,
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a)F=10, b) F=2,C) F=l,d) F=0.5.
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Figure 2.18. Frequency respons, qa for different damping values; Fm= 0 .1 . F=2, and

a)=---.025, b) ý=0.05, c) =0.075, d) =-0.1.
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other which narrows the dual-valued solution region. At ý=0.1, the frequency

response is single valued and the jump-up and jump-down transitions in Figure 2.18d

take place almost at the same frequency. Finally, like the linear systems. the damping

ratio also lowers the amplitudes in the non-linear resonance regime.

2.7. EXPERIMENTAL VALIDATION

Our analytical solutions of Section 2.4 will be compared with the experimental

results of Munro [271 who used a four-square test rig to measure the dynamic

transmission error i(D) of a spur gear pair. High precision spur gears with

manufacturing errors much smaller than tooth deflections were selected. Pinion and

gear were identical with 32 teeth, face width of 12.7 mnm and diametral pitch of 4.

Tooth profile modifications were applied to obtain a minimum (but not zero) '(') at

the design load of 3780 N. Other components of the set-up including shafts,

bearings and casing were made as rigid as possible in order to simulate the

configuration shown in Figure 2.1. Li() was measured for a range of gear mesh

excitation frequencies wider difftrent mean loads F Some of the key parameters

were not specified by Munro [27]. For example, it was stated that some additional

inertias were added to the gears to shift the primary resonant f1tcquenc) within the

operational speed range, but the specific values of such inertihi were not given. It

was also reported that the damping ratio ý varies with load "in a ranO-,m manner".

Also, backlash was not measured or reported. Therefore, in our study, we estimate

the damping ratio (ý=0.017_5) and the resonant frequency 0,, by considering the

design load case a: wvhich onlv linear L_,itavlor is seern; time-invariant mesh stiffness is

assumed in the mowel. The saune value of • is used at each discrete load Fm and a

backlash value of 2b=O. I num is assumed in otir model.
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Figures 2.19 to 2.22 compare measured and predicted frequency response of

the dynamic transmission error X(T), on a peak to peak basis, at the design load and

at 1/4, 1/2 and 3/4 of the design load, respectively. As shown in Figure 2.19, both

analytical and experimental results indicate that teeth maintain contact at the dcsign

load and hence the system behaves as a linear system in spite of the backlash. This is

because the static transmission error e(t-) is minimum at the design load which

results in a large force ratio Fm/Fa, say 50. However, when the mean load Fm is

lowered to 3/4 of the design load which corresponds to a larger static transmission

error i(T), tooth separation takes place. Consequently we note a jump in the

frequency response a; shown in Figure 2.20 for both analysis and experiment. This

jump phenomenon is more noticeable at 1/2 and 1/4 of the design loads as shown in

Figures 2.21 and 2.22, respectively. Our theory matches very well with Munro's

experimental results [27] in spite of the lack of knowledge of some relevant

parameters.

As the second example case, the experimental results of Kubo [28] are

considered and compared with our theory. Experimental results and the relevant

system parameters are extracted from a recent paper by Ozguven and Houser [24] and

the excitation F(T) is calculated using a spur gear elastic model [21]. Kubo

designed a four-square spur gear test rig which was heavily damped (ý-0.1). He

measured dynamic root stresses Od and then estimated thte dynamic factor Ds as

Ds=ad/as where os is the static tooth root stress. However, in several other studies

(16] the dynamic factor is defined as the ratio of the dynamic mesh load F d to static

mesh load Fro' given by DL =F d /Fm=Fd/Fn=(2ýq(t)+fQq(t))/FM

Note that DL is equal to Ds when the change of the moment arm due to a change in

contact point is neglected. Figure 2.23 shows the envelope of dynamic factor DS

77



0.050
theo_.,'

"' experiment

0
o 

'I

0.025;/6

--D 0
0 'C 

b

0.000 -. .. . ...__ _ __ _ _ __ _ _ __ _ _ __ _ _u.6 0.8 1.0 1.2 1.4

frequency

Figure 2.19. Comparison of the theory with Munro's [27] experiments at design load.
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Figure 2.20. Comparison of theory with Munro's [271 experiments at 3/4 of design load.
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Figure 2.21. Comparison of theory with Munro's [271 experiments at 1/2 of design load.
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measured for eight different teeth pairs and DL spectrum computed using the

analytical solutions of Section 2.4. Here, at most of the frequencies, our predictions

are not within the meastued envelope, but the transition frequency and the amplitude

at the jump discontinuity are predicted accurately. There might be several reasons for

the discrepancy including the usage of DL instead of Ds, the validity of the

computer model used to calculate i(T), insufficient knowledge of some system

parameters such as profile modifications, and the assumptions made in developing

our theory such as the time invariant mesh stiffness. Therefore the experimental data

is not exactly analogous to our analytical predictions even though a satisfactory

agreement is found. Obviously our theory should be refined in order to obtain a

better agreement with Kubo's data; for instance, time-varying mesh stiffness may be

included.

2.8. COMPARISON OF EXCITATIONS

2.8.1. lntcrnal versus External Excitation

First, we assume that only one type of excitation exists at a time and compare

the frequency response chatracteristics of the system due to the internal static

transmission error sinusiodal excitation Fi(t) given by equation (2.5) with the external

sinusoidal excitation Fe(t) given by equation (2.4). The comparison is based on the

analytical solutions which are constructed in Section 2.4 for equation (2.5) and in

Reference [331 for equation (2.4). In the case of internal excitation, the amplitude of
2

the alternating force has a !Q 2 term which makes the alternating force amplitude
h2

frequency dependent. This amplitude F Q" 2 is smaller thn Fah for f• <I and

greater than Fah when Q0>l. Hence the overall alternating force amplitude! ratio
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2 A
Fm/F FAhh varies with "h even though F = Fm / F is kept constant. In the

A
case of external excitation, the force amplitude ratio F=Fm/FaT is frequency

independent.

A
Figures 2.24 and 2.25 compare the frequency responses for four values of F

A A

given Fmo-. 1, uh=QT=• and ý=0.05. When F is sufficiently large, say F Ž10,

only case I solutions corresponding to the no-impact (case I) exist. Accordingly both

excitations result in the linear system responses which are close to each other for

0<1; but for f2>1 there is a difference which grows with increasing frequency f2 as
A

shown in Figure 2.24a. When F is reduced to 2, both case I and case II regimes

exist. the difference between two excitations Ls again significant at higher Q as shown

in Figure 2.24b. The transition frequencies also differ, and a larger range of dual-

valued solutions is seen for equation (2.5). Case III solutions are witnessed at lower
A

values of F (1 and 0.5) as shown in Figures 2.25a and 2.25b. While equation (2.5)

always has a case i regime at low f", equation (2.4) does not produce case I at
A
F =0.5. Another inportant observation from Figures 2.24 and 2.25 is that up to two

steady state solutions are seen in the external torque excitation case; conve.'sely as

many as three solutions are found for the geared system excited by the static

transmission error.

2.8.2. Periodic or Combined Excitation

The approximate analytical solutions given in Section 2.4 are constructed only

for a single harmonic internal excitation term e(t) or Fi(t). However, in the real

geared systems, -(t) or Fi(t) is a periodic which can be represented by a fourier

series of the fundamertal frequency f•hI Therefore, it is necessary to consider the
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Figure 2.24. Comparison of the frequency response due to the external torque exci~ation
given by Comparin and Singh [33] and the static tsansmission error excitation.
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ý=0.05, FM=O, 1h=!QT and a) F=10, b) F-2.
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Figure 2.25. Comparison of the frequency response due to the external torque excitation

given by Comparin and Singh [33] and the static transmission error excitation;
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•.-0.05, Fm=o-.l, •h=•T and a) F=I, b) F-0.5.
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higher harmionics of Fi(t) besides the fundamental component which is already

included in the analysis, On the other hand. both external Fe(t) and internal Fi(t)

excitmtions may exist simultaneously. These two cases require that F(t) in equation

(23) be reformulated as follows

k
F(t)N Fi + FC(t ) + Fi(t)= Fm + FaTj sin (jl Tt + 0Tj)

)= I

k
+ X i h F)F ihj sin (jiLht + 0hj) (2.20)

In order to conotruct analytical solutions of this equation, we must investigate

the applicability of the principle of superposition, which would consider first each

exclitation separately and then superinpose the corresponding responses to generate

the overall frcquency response. Two cases are considered and the analytical results

bamed on the principle of superposition are verified through digital simulation.

Coriuidei only the static transmission error excitation Fi(t) in equation (2.20)

3

with 3 htnronics, ie. Fr(t) arid F(t)= Fm + Z (jf2h) 2 Fahjsin(j(lht + Ohj). The

amplitudes of the hamionics are selected to he Fahl=0.05, Fh2-0.02 and Fh3--O.01,

ajnd the IIIeta fo(e F,1",m, 1. First each excitation component is considered separately

without paing aniy attlention to the phase angles and the frequency responses are

o'lottied LJushig digital simulation us shown in Figure 2.26. Second, all there

cxtahii,(ml wre included sintultaieously and the overall response is compared with the

pr)vloutl solutionxs m Figure 2,20, The frequency response due to each harmonic of
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the excitation is very close to the overall solution around the resonance peaks

governed by that harmonic. When all of the solutions corresponding to each

harmonic are added algebraically by also considering the phase angles, the overall

response improves as shown in Figure 2.27. This response is in the form

3
qa(t)= I qajsin(Oht +4)hj) where %aj is the alternating dispiacement when only

j=l

the j-th harmonic is considered. Figure 2.27 suggests that the principle of

superposition can be applied to a gear pair with backlash provided that the excitation

frequencies are sufficiently far apart from each other. In the case of periodic static

transmission excitation, this is valid as all excitation frequencies are at least Uh apart.

Now, the principle of superposition, which has been already verified by digital

sinulation, can be used to obtain the approxinate analytical solutions per Section 2.4

,when the periodic forcing function is considered. Figure 2.28 shows the analytical

frequency response curve for Fmr=0.1, Fahl= 0O05, Fah2=O. 0 2 , Fah3=0.Ol and

ý=0.05. Here the jump discontinuity is seen only at the peak 01hl governed by FahI

since Fi/Fahl2 and FnmFah3 arc both sufficiently high so that no tonth separation

occurs at Qh2 and i•0.3 respectively. However, the imnp phenomenon can also be

seen at the higher harmonics depending on the force ratios Fni/Fahj. j * I and ý in

accordance with the results of Section 2.6. The same concept can be applied to the

superhanuonic components of the external torque excitation of equation (2.20)

provided Fa -=0.

The principle of superpositio1 o is now extended to the case where both internal

Fi(t) and external Fe(t) sinusoidal excitations exist simultaneously as given by

equation (2.3) provided that the excitation frequencies Q1, and QT are not close to

each other. In a real geared system, -h is much higher than L'1 which implies that
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Figure 2.27, Comparison of digital simulation results obtained by using the principle of

superpoiaitioi and by considering all three harmonic excitations applied
simultaneously; Fm=O.l, t" 0.05, Fhl=O.05, Fah2=0.02 and Fh 3=0.01. In

rids case, phaixe angles are included in the superposition.
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Figure 2.28. Comparison of the frequency response q. due to first three harmonics of the

static transmission error. This curve is based on the principle of
superposition applied to the analytical solutions which have been constructed
by the method of harmonic balance; Fmo=0.1, ý=0.05, Fahl-0=.05, Fah2=0.02

and Fh3=0.01.
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Figure 2.29. Frequency response qa due to both the external torque and the static

transmission error excitations. This curve is based on the principle of

superposition applied to the analytical solutions which have been constructed
by the method of harmonic balance; Fm= 0 .1, ý=0.0", Fah=0.05, FaT=0.05,

Dh=2MT.
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the principle of superposition should be suitable for this case Figure 2.29 illustrates

the frequency response solutionis due to the fundamental hannonic coriponciit of both
excitations for Fro-0.1, Fahl=FaT1= 0 .05, '=0.05 and by assuming that Fh 2 'T

Here, the jump discontinuity is seen at two frequencies. However, when -2 h = Q T

or when one of the superharmonic peaks of Fi(t) coincides with the resonant peak

governed by Fe(t), the principle of superposition will no longer be applicable. In

such cases, we will use the digital simulation as the analytical hiaeipretation of these

cases is yet to be explored.

2.9. CONCLISION

This analytical study on the non-linear dynamics of a spur gear pair with

backlash as excited by the static transmission error has made a number of

contributions to the state of the art. First, difficulties associated with the digital

simulation technique have been resolved as multiple steady state solutions at a given

frequency can be found provided the entire initial condition map is searched. Second,

new frequency response solutions for the gear pair have been constructed using the

method of harmonic balance. Third, our mathematical models have been validated as

these compare well with two previous experimentald studies and the key parameters

such as the mean load, mean io alternating force ratio, damping and backlash have

been identified. Forth, the chaotic and subhanronic resonances are observed if the

mean load is t-o small for a lightly damped system. Fifth, mathematical conditions

for tooth separation and back collision have been established which are compatible

with avadable measured data. Sixth, the periodic transmission error excitation case

has been analyzed using the method of harmonic balance in conjunction with the

principle of superposition. Finally, on a more fundamnental note, our study enriches

t).3



the current literature on the clearance non-linearity or vibro-impact systems as the

governing non-linear differential equation is different from the conventional single

degree of freedom system formulation.
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CHAPTER III

NON-LINEAR DYNAMIC ANALYSIS A GEARED ROTOR-

BEARING SYSTEM WITH MULTIPLE CLEARANCES

3.1. INTRODUCTION

Mathematical modeling of geared rotor-bearing systems, being an essential step in

designing quiet and reliable power transmissions, has been the subject of numerous

studies over the past few decades. Most proposed dynamic models, as reviewed by

Ozguven and Houser [14], are essentially linear. However in several cases, it has been

experimentally shown that the geared systems exhibit non-linear behavior [27-29.35].

For instance, vibro-impacts are observed in a lightly loaded transmission with gear

backlash or loose bearings [30,31,34]. Accordingly, we must develop non-linear

mathematical model of the geared system - this is main focus of this chapter with

emphasis on the clearance type non-linearity in gears and rolling element bearings. In

Chapter II we had considered the single degree of freedom non-linear model of a spur

gear pair with backlash and investigated the effects of system parameters on the

vibrations and chaos excited by the static transmission error. Applicability of the

harmonic balance method and digital simulation technique to the solution of the steady

state response has been demonstrated, and difficulties associated with the digital

simulation technique when applied to such systems governed by stiff non-linear

differential equations have also been resolved in Chapter 11.

Although there is a vast body of literature which considers a single degree of

freedom system with clearances, as reviewed earlier in Chapter II, studies on the multi
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degree of freedom vibro-impact systems are very limited. For example, Galhoud et.al.

[52] considered a two degree of freedom translational system with a gap and found the

forced harmonic response using the piecewise linear technique. Winter and Kojima

153] also used the same technique to study the geared systems with backlash.

However, it should be noted twi.t the piecewise linear technique can not predict several

non-linear phenomena such as subhai1 ,;-,nic and chaotic responses since it employs the

assumption that both impact and no-impact regimes "are repeated in an identical manner

once every period of excitation" [521 Kucukay [351 developed an eight degree of

freedom model of a helical gear pair with backlash to include the rocking and axial

motions of rigid shafts and radial deflections of linear bearings. Lin et.a,. 138] included

motor and load inertias in a three degree of freedom torsional model. Both of these

studies employed the digital simulation technique, but did not consider a number of

issues of primary. concern in non-linear system such as the existence of multiple steady

state solutions, their dependence on initial conditions, subhamionic, quasi-periodic and

chaotic responses, ctc. A few of these issues have been addressed by Singh et.A' [34]

on the gear rattle problem. Comparin and Singh [54] have also used the digital

simulation, analog simulation and harmonic balance method to analyze coupled impact

pairs assuming that the modes are "weakly coupled", which allows the system to be

represented by a combination of single impact pairs. They included only the low

frequency external torque excitation and found ,ne steady state frequency iesponse at

the primary resonance. This solutioin has then been used to analyze the neutralJ gear

problem in mrc ,'tail 1551

"1 he other two groups of studies which consider multi-degree of freedom systems

with continuous non-linearities [56-61] and periodic excitations due to mesh stiffness,

variations [29,62], will not be addressed here since their responses are significantly
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different from the clearanct non-lineail,.. s as discussed bv Comparin and Siongh [33].

"The literature on chaotic vibrations and rolling element betings will be discussed later.

3.2. PROBLEM FORMIULATION

3.2.1. Scope

Figure 3.1 shows the generic geared system considered in this study. It consists

of a spur gear pair mounted on flexible shafts which are suppo:red by rolling element

.' axirng,; assenb!ed in a rigid gear box. Since the shafts and bearings are compliant,

our single degree of freedom model of spur .4ear pair which assumes fixed gear centers

is obviously not suitable. Instead, a iluee degree of freedom non-linear model as

shown in Figure 3.2a is considered. It includes equivalent stiffness and damping

elements representin:c the shaft -nd the ..--,i . The corresponding linear model has

been found to be sufficiently accurate wlhen compared with a finite element model for

eigen solutions provided that the gear dynamic response (mesh force, dynamic

transmission error, etc.) is of major concern Gear backlash and radial clearances in

bearings are defined analytically. An approximate non-linear bearing model is also

proposed. Applicability of both analytical and numerical solution techniques, to ti 's

problem is investigated. Several key issues such as non-linear modal interactions and

differences between internal static transmission error excitation and external toraue

excitation are discussed. Parametric studies are conducted to understand the effect of

system pr ameters such as bearing stiffness kbi to mesh stiffness kh ratio

k = kbi / kh , altemating to mean force ratio Fa/ni ,nd radial bearing preload to mean

force ratio Fb//F,, on the non-linear frequency response. A criterion is used to classif'.

die steady state solutions, and the conditions for chaotic, quasi-periodic and

subhaarnionic steady state solutions are detennined. Two typical routes to chaos
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Figure 3.1. Generic geared rotor-bearing system.
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observed on a geared system are also identified. Finally, our formulation is ,trified by

comparing predictions with measurements [27].

3.2.2. Physical Model and Assumptions

The three degree of freedom non-linear model of the geared rotor system with

gear inertias I., and Ig2, gear masses mg, and mg2, and base circle diameters dgi and

dg2, as shown in Figure 3.2a, is considered here. The gear mesh is described by a

non-linear displacement function fh and viscous damping ch. Friction forces at the

mesh point are assumed to be negligible [18]. Thus the transverse vibrations in the

pressure line direction are uncoupled from the vibrations in the direction perpendicular

to the pressure line. Bearings and the shafts that support the gears are modeled by

equivalent elements with viscous damping coefficients cbl and cb2 and non-linear

springs defined by force-displacement functions fbi and fb2. The effects of the prime

mover and the load inertias are not considered assuming that these inertial elements are

connected to the gear box through soft torsional couplings. Furiher, we assume that

the system is symmetric about the plane of the gears and the axial motion (parallel to the

shafts) is negligible. Like the spur gear pair model of Chapter It, both low frequency

external excitation due to torque fluctuations and high frequency internal excitations due

to the static transmission error E(i) are considered in the formulation. Input torque

fluctuation is included, but the output torque is assumed to be constant, i.e.

Tgji) = Tgim + Tgia (i) and Tg2() =Tg2m. -External radial preloads F1,1 and F1 ,2 are

also apolied to both rolling element bearinps.
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•()= ()+ YgI (0) Yg2 (6) - ();(3.2a)

mgi 0 0 fY1(t)[ _+cI 0 Cb- hY, (i)1

0 mg 2  0 Y9 i 0 C1, 2 -cb Y2[-mcI mcI mci "(i)- P L 0 Cb[ ,(P) J

[k1,  0 kb ]fbl(ygI)-F,

0 kh fh(P) IPM - (i)+ TaTr()

A dimensionless form of equation (3.2b) is obtained by letting

Ygi(t) = Ygi(t)/bc, p(i)= P(i)/bc, On = /kb/mCI , Wbi = Vkbi/mgi (i=1,2) and

t = coni where bc is the characteristic length. Here, we consider harmonic excitation for

both E(i) and FaT(t) as F(i) = i sin(lhi + Oh), aT(O) = FaT sin(iri + OT) where 1h

and !IT are the fundamental excitation frequencies of internal displacement and external

torque fluctuations, respectively. Further, define dimensionless excitation frequencies

f"h = ?h / (On and OT = 5T / (On to yield the following dimensionless governing

equation of motion.

0 0 Y1t 0 ý• o - l(t)

0 10 Yg2(t) +2 0 k2 -k3 y'g2(t)
1 p(t) 0 0 33 (t)

'CI 1 0 K13 I fbj(ygl)

+00 K22 1(23 fb2(Yg2)j{F(t)}; (3.3a)

1 0 2 fh(P)
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{F(t)1 = {Flm + {F(t))1 + {F(t)),

-FbIl 0 1 0
j 1Fb2 + 0 Slfn(flht +#h)+ 0 sen("(Tt1+#T);(3,3b)

;j3 i- 0b b ,i12; ;.,13 Ch• (3,3cAd,e)

2 mgiw; 2mBWO, 2rcto)n

S.J . C -- "- . IA (~, , 3M, gf~ h)

.0 2 . (.A.i,j.k)

where Fbt (i-1,.2) and Fm, are the dhmensionlems components of the mean force vector

(FJm, and FreT and Fsh pertain to tihe alternating externai excitatlon tF(t)}e ujid internal

excitation (F(t)}1 force veCtors, respectivelyi

I3.2.4. Modeling of Nut-Iluirilies

The non-linear displacement functions fbI(Ysg), I-l, 2 and fh,(P) in equation

(3.3a), which represent the bearing radial and ce n meuh selffnessue, re pectively,

should be defined explicitly before solving thf non-linear equations, Here, fh,(p) is,

defined as a clearance type dead space function with a hacklaNh 21)i and linear thilc-

invariant mesh stiffness of one, in the diniensionlels fonn
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pp>Ž;
bc be

fh(P)" =0; -bhc <p.b (3.4)
be be

For the i-th rolling element bearing, radial force Pyi versus displacement Ygi

relationship under the static loading condition is defined as 163-65]

k iI(,jcnc,- cosbr Ygj > bbi

Pyl(Y1g) 0; bbi < Ygi <bbi (3.5)

-kjT (jY, 1ICos, a nCo cbbi~cs,'
r-1

where kti is the inner contact stiffness, a, is the angular position of the r.th rolling

element in contact, 2bb, is the radial clearance of the i-th bearing, n is the power of the

non-linear force displacement relationship (n=1l.5 for ball bearings and n=10/9 for

roller bearings) and I IIs the total number of rolling elements in contact under loaded

conditions. Now the dimensionless bearing displacement function fbi(YgI) of equation

(3.3a) Is obtained from equation (3.5) as
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S b i/n
H (gi coSr ) cosar; Ygi >

r F bc b bc

-b (Ygi -y 0; bt~ Iy gi : t

fbi (Ygi) kb -:-•=O c . (3.6)
ktib" bc (3.6)

H1 ( Cos a - I )n COSar; Ygi <z-r=-1 glc s r b¢ . bc

Figure 3.3 .shows the non-linear function fgi(ygi) for a roller bearing with n=10/9,

kt=1xl08 N/mI0 /9 , total number of rollers Z-15 and bb=O.0l mm. In Figure 3.3, we

note almost a linear re!.tionship for large displacements, say Ygi> 3 bbi/bc. Since the

degree of non-linearity is not very significant, equation (3.6) can be approximated by a

piece-wise linear function, similar to fh(P) given by equation (3.4), in order to simplify

the analysis considerably. Figure 3.3 also illustrates two linear approximations A and

B beyond the clearance for fbi(ygi) in the form

gi _ .gIYibc , gi bc

fb(g)=1 ; tLI <z yi '< bb•. (3.7)
bc bc

Ygi + bL; ygi r "
b¢ bc

Note that both approximations A and B differ in clearances bbiA and bbiB but have the

same slope as the exact bearing stiffness curve for ygi> 3 bbi/bc. i=1,2, which is unity in

the dimensionless form. The validity of these approximations will be given later.
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Figure 3.3. Exact and approximate bearing deflection functions.
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3.3. CORRESPONDING LINEAR MODEL

As a limiting case, equations of motion of the corresponding linear system are

obtained by substituting fbi(Ygi ) = Ygi , for i=l and 2, and fh(P) = p in equation (3.3a)

1 0 0j sg(t) L I1 1 9(

tO +g() 2 0 ý22 - 23 Yg2(t)1 I 0 i(t) _J 0 ý33] ,)J

+ 0 K 23 |1 3 yg2(t) = {F(t)) (3.8a)

[0 0 K33 . p(t)J

or in the matrix form with (q(t)) as the displacement vector

[M]4q(t)} +[C](q(t)) + [K]{q(t)j = (F(t)} (3.8b)

where the mass [M], damping [C] and stiffness [K] matrices are all positive definite.

These matrices are asymmetric due to Ygl and Yg2 terms in the last row of matri;

equation 13.8a). For this linear system, the mean and alternating components of the

motion can be separated by letting ygi(t)=ygjm+ygia(t), i=1,2 and p(t)-pm+Pa(t).

Hence, equation (3.8a) is rearranged in terms of the alternating motion as

NMINqO(t)) +(C](qa(t)) +[KJ]qa(t)) =F(t))i + {F(t))e (3.9)

The natural frequencies w. and the modes hVr) are calculated by considering the

corresponding eigen-value problem. The forced harmonic vibration response is then
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obtained by the modal expansion technique in the folowing form

3 {Wr)lWr IT tn2 •.-
{qa(t)} = Y 2 • F ah='bsmn(f'htl+ h)

(2 _n2r=I F( - hr +b)+ JhCr

++ Ir[( 2 r2 FaTTsin(.LTt+OT); j=-,i (3.10a)

=1 r Os (1; rc~ s

Cr ("41r)TI[CIN 4 I S) .81s=1 (3.l1Ob)
6rs ' 10; r s

"rable 3.1 shows the natural frequencies of the three degree of freedom linear

system given by equation (3.9) and the ones found by finite element method for three

different k= kbi /kh values with mgi=l kg, 1gi= 0 .0 0 0 8 kg/m2, dgi=0.08 m,

jii=0.01, •i3=0.0125, 433=0.05, i=l, 2 and kh=2xl0 8 N/rn. As evident from Table

3.1, the three degree of freedom and finite element models [15] result in virtually the

same natural frequencies. This concludes that the three degree of freedom model is

indeed suitable for the geared-rotor bearing system. The first Wi and third WI1n natural

modes are coupled transverse-torsional modes while W11 is putely transverse type [15].

The second natural mode 4l! is not excited by i(i) in this particular case, since the gear

ratio yg=dg2/dg1 is one for a symmetric pair. Therefore only two peaks should exist in

the frequency response spectrum which will be presented in Section• 3.5.
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Table 3.1. Natural frequencies of the corresponding three degree of freedom (3-

DOF) linear model.

I=kbi/kh

1 5 10

W/r (Or 3-DOF/FEMt 3-DOF/FEM 3-DOF/FEM

first transverse- 0.396/0.402 0.500/0.512 1.262/1.275
torsional coupled

purely transverse (on 0.758/0.795 1.118/1.157 1.475/1.560

second transverse- ¢ 0.880/0.930 1.581/1.692 1.796/1.868
torsional coupled

t Finite Element Method (FEM) from Reference [15].
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3.4. TWO DEGREE OF FREEDOM SYSTEM STUDIES

3.4.1. Equations of Motion

As a first example, we reduce the three degree of freedom transverse-torsional

semi-def'mite model to a two degree of freedom non-linear model. This is obtained by

clamping one of the gear centers as shown in Figure 3.2b, i.e. one of the transverse

displacements is assumed to be zero, say Yg,=0 which physically corresponds to a

system with one gear g I mounted on a rigid shaft which is supported by very stiff

bearings while the other gear g2 is assembled with compliant lumped shaft and

bearings. Equations of motion of the reduced order system are obtained from equation

(3.3a) by letting yg1=0.

0(t) J L 0 23 if 0g(t)l

[K22  -K231 {fb2(Yg2) } F~t}. (3.11)
+1 1J11 fh(P)

The intent here is to simplify the physical system in ordet to investigate several

key issues in depth. Specifically, the objectives are to: a) justify using approximate

bearing models proposed in Section 3.2.4 by comparing the frequency responses

excited by E(i), b) show applicability of the harmonic balance method (HBM) to solve

non-linear system equations and compare its predictions with the results yielded by the

digital simulation technique, c) study interactions between system non-linearities for

both weakly and strongly coupled modes, and d) compare the steady state frequency

response spectra due to internal static transmission error excitation IF(t))i and external

torque excitation (F(t))e.
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3.4.2. Solution

Both analytical and numerical solution techniques which we h:ave used

successfully for the spur gear pair problem are employed again to solve equation

(3.1 1). First, approximate analytical solutions are constructed using the harmonic

balance method [33,51 ] with only the bearing non-linearity asstmuing no gear backlash,

i.e. bh=O or fh(P)=P- For the harmo,iic excitation given by equation (3.3) , we assume

p() = Pm + Pasin(fht + p); Yg2(t)= Yg2m +Yg2a sin(Qht + g2) (3.12a,b)

where subscripts m and a represent mean and alternating components of the steady state

response, and fp and 4.2 are the phase angles. The non-linear bearing function is

approximated as

fb2(Yg2) = NmYg2m + NaYg2a sin(fht + Og2). (3.13)

where Nm=Nm(Yg2m,Yg2a) and Na=Na(Yg2mYg2a) are the describing furctions which

are given in Chapter II; these need to be defined for ea. h impact regime (no impact,

single sided impact, double sided impact). Governing frequency response equations

are obtained by substituting equations (3.12) and (3.13) into equation (3.11) and

equating the coefficients of like harmonics:

[_A21 + (2ý220-h) I 2hFah

Pa2= '-- ; (3.14a)vA\
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A = (Q 23j+ 4 flbk2•23 + 112 Aý + 4~~A)

42 2 2+(-20ý2 2 K2 3 -20hý23Ai +2flhý33AI + 8 QhM22ý33) ; (3.14b)

Al = K22Na _- A2 = 1 - 2 ; Pm = Fm, (3.14c,d,e)

[ 23 .2/2

Yg2a = K12 23 )2 ( h223 2 )2 (3.14f)
I(K2A, 4 fb2h ,23) +( 2 0hb22K23 2 flbý23A1

Fb.2 + K23Pnh
Yg2m = K22Nm (3.14g)

The overall frequency response is obtained by solving equation (3.14) numerically for

each impact regime separately.

Second, the digital simulation technique is used to solve equation (3.11) for no

gear backlash. A 5th-6th order variab.'e step size Runge Kutta num-.ical integration

algorithm [50], which has already been employed successfully in solving similar

problems. is used here. Figure 3.4 compares freque!ncy response spectra obtained

using the harmonic balance method and digital simulation. Although both methods are

in a very close agreement for the case considered in Figure 3.4, one should be aware of

the following: (i) several problems may exist in the application of the numerical

integration method to the clearance type problems, hencc caution must be exercised,

and (ii) the harmonic balance method is incapable of predicting chaotic and

subharmonic responses. Accordingly for further analysis, we will use only the digital

simulation technique.
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Figure 3.4. Comparison of harmonic balance method and digital sanulation technique.

FM=l.O, Fah=0.5, Fb2=O, bh=O, bb2=bc, ý33=0.05, 423=0.0125,
422=0.0 1, 1--1; a) Yg2a versus f~h, b) p. versus flh.
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3.4.3. Validation (it No,-hIvna~r Hearirng Modl~d

We camine the vitldity of two approximations for fbi(yol), su gugleated in

Section 3.2.4 and shown in Figure 31, by alluming bhwo ind Psa-mO, Iljuulon

(3.11) in solved using the digital ,lmulniur lteclulique, given I''ll1,0, I'S,-O,05 ,

Fb2mO, ;22001, - W 0,05, ;•020m(0123 arnd xbKZj2)bwO,23, for three beAring models

(exact, tpproximations A- ba,2AmIs, approximation H1; bb2, *l .(t'ht,-I .61l)

Pigures 3.5a and 3.5h comrpme yIs veru il £l, ud p5 vCISuS ill, saemlsra for ll thite

hearing rmodclpi, Both approxh iiilol. ril 11n a very dole i(SC g icnenllt wilh ile i CAl

beating iideld over the ntire frequency ranpe, 'Ilb frqiei•ny aud the aplitilude of tie

jump at the firtl peak is predivied ac.curtely Ihy b•olt ApploAlimale Imdelo fleiie we

conclude thait the approAtimir piec'tewIse l•nir in(KIrl cm be used (o, N h1utainlg willtihl

losing any acicutay juad the dynwuic behavior Is not etiit lve to the mihior vlUlw at• Ili

hearing clcarlwwel Ibi.

.1,4,4, Nn.hllt, er Niodul Iit, uvinlhMi

Although holh natural modre of the .orresponding lI•nia model ae trouioveru.

torsional coupled niodiri, first mode 4/I IN moore Oepl.d.ni onl tranverse vibrations tIhan

the seconld •vak. Avcordingly, It is evpelted that haruing nun-liruearhitem should afieLI

the first peak directly while e•e bacrklah should dominale tile iteond pela hI I'Igue

3.4. The validity of this clalm depeind on the rialtire of rol-ulltritles and mystrel

ponraimeer values, &A Illustrated below.

Firlt, a aet of ]riuilelel" Is selec•ed so thalt nliural frequei-e,, (1)1 and ('opl f the

corr•cs•i•odi•tg Ihf.nu myNicti are Ifat away fri|i erch olher-, w=(i 41'7 aid roll- I 144

for K22 -0,23, 1%2 ,,,25. ý2 ,-,)0l)0 4•',I1.02123, and •.10 (05. !'cle •=,ty lChlhIlse

Char~taer laticic of thle Nymiriut Wiith is olilig fitvtion, P,,,- L fIad po11uO. Sre evilnted
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approximation B
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b) 6exact
... approximation A

"approximation B
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frequency

Figure 3,5. Comparison of frequency responses obtained by using the exact and
approximate bearing disl',,cement functions given in Figure 3.3;
FmmlJO, Fah-0.5, Fb2-O, bh-O, bb 2 =bc. C3 3 =0.05, ,23=0.0125,

;22(.O01, k 1; a) Yg2a versus -2h. b) Pa versus Oh.
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for the following three cases: a) no gear backlash, bh--O, non-linear bearing, bb2=bc; b)

gear backlash, bh=10bc, linear bearing, bb2--O; and c) gear backlash and non-linear

bearing with bh=l0bb2=l0bc. In the last two cases, gear backlash is taken to be 10

times the bearing clearance as it is a typical order of magnitude value for many geared

rotor systems supported by roller bearings. Figures 3.6 and 3.7 show the frequency

responses, Yg2a versus flh and Pa versus f-h respectively, for all three cases given

above; also superimposed is the linear frequency response curve for comparison

purposes. As shown in Figure 3.6a and 3.7a, a jump discontinuity is observed at the

first peak only for case a. In the case with only geai backlash non-linearity, jump is

seen at the second peak while the first pceak is continuous as shown in Figures 3.6h and

3.7b; this supports the claim of torsional mode dominance of the second peak. Finally,

when both non-linearities are inchided simultaneously, both peaks become non-linear

as shown in Figures 3.6c and 3.7c. For such a system, natural modes are essentially

"uncoupled" and the interactions between component non-linearities are ne-ligible. In

summary, for case a of Figures 3.6a and 3.7a, a linear model can b, ,. en :o predict the

frequency response beyond woI , say fib> 0.6. Similarly, a linear m'-del could be

suitable for case b for ibh<0. 8 as shown in Figuies 3.6b and 3.7c. But for case c, a

linear model is suitable only far away from the resonances.

Second, choose a dataset, say K22 =0.64, K23--0.10, 22=0.01, ý23--0.0125, and

p33=0.05, such that two natural frequencies for the corresponding linear system are

brought closer to each other: Mo=0.720, "I= 1. 101. We again consider the same cases

a, b and c and compare the frequency response for Fm= 2 .0 and Fah--0.5 in Figures 3.8

and 3.9. Here, each non-linearity affects both modes, resulting in jumps at each peak.

Therefore, for this set of parameters, modes are considered to be "coupled" because of

dynamic interactions. Accordingly both non-linearities must be included
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Figure 3.6. Y;2a versus ill, plots fol tie case of unlcouplrd mogdeM; 1) ,m 1kal'N.1,1l,
non-linear bearings, b) backlash, linear bea.-ngm, o. backlaNh, ron-linec
bearings; ------ corresponding liniat response
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Figure 3,7. PO versus flh plots for the case of uncoupled modes, a) no backlash, non-
linear bearings, b) backlash, linear bearings, c) backlash, non-linear

bearings; ------ corresponding linear response.
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Figure 3.8. Yg2a versus f~ Plots for the case of coupled modes. a) no backlash, non-
linear bearings, b) backlash, linear bearings, c) backlash, non-linear
bearings;-------corresponding linear response.
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Figure 3.9. Pa versus 92h plots for the case of coupled modes. a) no backlash, non-
linear bearings, b) backlash, linear bearings, c) backlash, non-linear

bearings; ------ corresponding linear response.

120



simultaneously in the dynamic model.

3.4.5. Internal versus External Excitation

Here we will apply only one type of excitation at a time and compare frequency

response characteristics of the system due to sinusoidal excitations (F(t)}i and I F(t)}e

in equation (3.3a). Here, only the bearing non-linearity will be considered assuming

no tooth separation, bh=O. In the case of internal excitation, amplitude of alternating

component is dependent on 02. Conversely, the amplitude of alternating external force

is frequency independent. Therefore, for a constant force ratio Fai/Fm, i=h,T, the

overall amplitude ratio 22 Fah/Fm for internal excitation varies with excitation frequency

wheieas the overall amplitude ratio FaT/Fm for external excitation remains constant

similar to the single degree of freedom model of Chapter 11.

Figures 3.10a and 3.10b compare Yg2a versus Q and Pa versus 0) spectra for

"t=fh=f2, Fm=1.0, FaT=Fah-0. 5 , Fb2=0, ý22=0.01, ý23=0.0125, p33=0.05 and

KC22=KC23 =0.25. As shown Figures 3.1Oa and 3.1Ob, both excitations yield the same

values at f1=1.0 since Fm/FaT=Fm/12 Fah at 0=l.0. For 0i>l the internal excitation

gives larger amplitudes than the external excitation, but the converse is true for 0)<l.

Another important difference is that for increasing -2, there are two jumps ( a jump-up

from the no-impact regime to the double sided impact regime at f1=0.3 and a jump-

down from the double sided to the single sided impact regimes at 0=0.4) for the

external excitation; but the double sided impact regime is not seen in the internal

excitation case and only one jump from the no-impact to the single sided impact is

found at 02=0.35.
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Figure 3.10. Comparison of frequency responses due to internal static transmission

error and external torque excitation; Fm--.O, Fah=0. 5 , Fb2-O, bh=O,

bb2"bc, 433=0.05, 23=0.0125, 22=0.01, k =1; a) Y$2a versus Qh, b)

Pa versus Qh.
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3.5. THREE DEGREE OF FREEDOM SYSTEM STUDIES

3.5.1. Classification of Sieady State Solutions

The steady state response results excited by internal force (F(t))i at each

frequency i2h have been categorized into the following five groups: (i) harmonic oi

nearly harmonic solution at the same period tp= 2 n/flh as that of forcing function

(period-one), (ii) non-harmonic period-one solution, (iii) subharmonic solution with

period ntp, n>l, (iv) quasi-periodic solution, and (v) chaotic solution (non-periodic,

n -* oc). The solution classification criteria are based on time histories, phase plane

plots, Poincare maps and Fourier spectra 166-71]. Figures 3.11 through 3.15 illustrate

different types of steady state solutions obtained from the three degree of freedom non-

linear model of Figure 3.2a. As shown in Figure 3.11, period-one, non-harmonic

solutions have a non-circular (non-elliptic) phase plane plot and repeat themselves at tp.

Figure 3.12 shows the time histories, phase plane plots and Poincare maps for a 2tp

subharmonic solution. In this case, the Poincare map consists of two discrete points.

Sirmilarly, the 6tp (ultra)subharmonic response has six points on the Poincare map as

shown in Figure 3.13. Figure 3.14 illustrates a typical quasi-periodic response

(combination oscillations) which consists of two or more "incommensurate"

frequencies [66,67]. Quasi-periodic solutions result in closed orbits on the Poincare

map as shown in Figure 3.14c. The chaotic responses which are defined by a non-

periodic time history and as many points as the number of cycles considered in the

analysis on the Poincare map are illustrated in Figure 3.15. Figures 3.16a-e show the

FFT spectra corresponding to the time histories given in Figures 3.11 to 3.15. For

period-one non-harmonic solution of Figure 3.11. corresponding spectrum has peaks at

mro where w. is the fundamental frequency and m is a poitive integer, as shown in

Figure 3.16a. The ntp subharnionic solutions contain peaks at the frequencies m0o/n.
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For instance, spectra of the 2tp and 6tp solutions of Figures 3.12 and 3.13 have peaks

at frequencies mio/2 and mw/6 respectively in Figures 3.16b and 3.17a. The quasi-

periodic solution of Figure 3.14 consists of two fundamental frequencies (01 and "- at

a ratio (.) / (2 =8 (an irrational number) and there are peaks at the combination

frequencies mco1+ro02 , m,r = 0, ± 1,± 2.... Finally, a characteristic broad band

spectrum is obtained in Figure 3.18 when the solution as shown in Figure 3.15 is

chaotic.

3.5.2. Routes to Chaos

In Chapter 1I, we had investigated the effect of mean load Fm and damping ý on

chaotic response of a gear pair. It has been shown that chaos typically exists in

lightly damped and lightly loaded gear pairs. Now, two different routes to chaos for

the three degree of freedom system are illustrated.

A. Period-Doubling Route to Chaos : This consists of a sequence of bifurcations

of the periodic response to another periodic response with twice the period of the

original response due to a change in one of the system parameters [66, 68-70]. Figures

3.19 to 3.23 demonstrates this with a change in excitation frequency h given Fm=0 .1,

Fah=0.05, Fbi--O i=1,2, 11--22=0.01, 413=23=0.0125, 433=0.05, KII=K22=1.25,

K13=K23=0.25, bc=bb and bbi=0, i=1,2. At flh= 1 .50 0 , with zero initial conditions,

we note a t p harmonic solution in Figure 3.19. This tp solution bifurcates to 2tp

subharmonic solution in Figure 3.20 when Ob is reduced to f 2 h=1 .48. Furthermore at

•h=1.44 a 4tp solution is obtained which is further transformed to a 8tp response at

flh=l.402 as shown in Figures 3.21 and 3.22 respectively. At Qh= 1 .4, however the

steady state solution becomes chaotic as evident from Figure 3.23. Also note from
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Figure 3.11. A non-harmonic period-one response; Fm=l.0, Fah=0.5, Fb2=0, bh=O,

bb2=bc, ý33=0.05, 13=ý23=0.0125, • I=ý22=0.01, 1=5, Qh=0.6 ; a)

time histories, b) phase plane plots.
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Figure 3.12. A period-two subhannonic response, Fm=l.0 , Fah=0.5, Fb2=O. bh=O,
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Figure 3.13. A period-six (ultra)subharmonic response; Fm=l.0 , Fah=0, 5 . Fb2=O,

bh=O, bb2=bc, 3.=0.05, 13=ý23=0.0125, ý,,=r,22=0.0l, k=-5.

f•h= 1.-07
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Figure 3.15. A chaotic response; Fm= 1.0. Fah=O. 5 , Fb2=0, bh=O, bb2=bc, C33=0.05,
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Figure 3.16. FFT spectra of Yg2(t) for the responses given in Figures 3.11 to 3.12 a)

period-one, b) period -two.
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Figure 3,17. FF1" specra of y,2(1) for the responses given in Figures 3.13 to 3.14 a)

period-six, b) quasi-linear.

131



1000 1f3 1

100 4/3

10
2

1/

.1
v.0 0.2 0.4 0.6 0.8

frequency

Figure 3.18. FF1 spectra of yg2(t) for the chaotic response given in Figure 3.15
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spectra of Figures 3.19 to 3.23 that the single peak spectrum is transformed to a broad

band spectrum corresponding to chaos through period-doubling.

B. Ouasi-periodic Route to Chaos: In this case, instead of going through the

period doubling, the response undergoes a sequence of Hopf bifurcations with a

change in a system parameter. First a quasi-periodic response and finally a chaotic

response are obtained [66,71]; Figures 3.24-3.27 shows such a route to chaos. 3tp

solution at f-h= 1 .1 bifurcates to a quasi-periodic solution when fb is increased to 1.2

as shown in Figure 3.24 and 3.25. A further increase in fih to 1.3 yields a deformed

closed orbit Poincare map as shown in Figure 3.26. It is then transformed to a chaotic

strange attractor at fhb= 1 .4 in Figure 3.27. Similar observations are evident from the

Fourier spectra shown in Figures 3.25-3.27; the spectrum consists of combination

frequencies for the quasi-periodic solution, but it finally changes to a broad band

spectrum characteristic of chaos.

3.5.3. Parametric Studies

The three degree of freedom non-linear model of Figure 3.2a is used to study the

effect of several system parameters such as the stiffness ratio, i = kb, /kh i = 1,2,

radial bearing preload to mean load ratio, Fbi/Fm (i=1,2) and alternating load to mean

load ratio FaWFm on the non-linear dynamic behavior. A geared rotor-bearing system

of one-to-one gear ratio (vg=l) with mgi-= kg, Igi= 0 .0 0 08 kg/m 2 , dgi=O. 0 8 m, i=1,2,

and mesh stiffness kh=2xl08 N/m is selected. Five percent mesh damping and one

percent bearing damping values, which are somewhat realistic [72,73], are used, i.e.

ý1I"22=0.01, 13="23=0.0125 and ý33-0.05. Both non-linearities are considered

separately in this parametric study. 'he case when both bearing non-linearities and
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Figure 3.20. Frequency doubling route to chaos; Fm=0,1, Fah=O.5. Fb2-=O, bh=bc,
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Figure 3.22. Frequency doubling route to chaos; Fm=O.l, Fah=O.0 5 , Fb2=O, bh=bc,
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Figure 3.24. Quasi-periodic route to chaos; Fm=O.,. Fah-O.0 5 . Fb2=0. bh=bc=O.I.
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backlash exist simultaneously is not considered here as it has allready been examined in

Section 3.4 using the two degree of freedom model.

A. Gear Backlash. Linear Bearings: For the non-linear model of Figure 3.2a with

linear bearings (bbi=O), bh is used as the characteristic length bc. Figures 3.28a and

3.29a show YgIa(lb)and Pa(flh) spectra respectively for the soft bearings (k = 1) with

Fm--O. 1 and Fah/Fm--'O.5. Here Yg2a spectrum is not included since Yg.a=Yg2a (YgI(t)="

Yg2(t)) for a one-to-one gear ratio. As evident from Figures 3.28a and 3.29a, YgIa at

the first peak is larger than that seen at the second peak. Conversely, Pa is much lower

at the first peak, implying that first mode is dominated by the transverse vibrations

whereas the second mode is dictated by the torsional vibrations for soft bearings. This

corresponds to a large dynamic bearing force Fdbi = kbiYgi, but a small dynamic

transmission error (p(t)+e(t)) around the first natural frequency. Jump phenomenon is

observed only at the second peak which is governed by the gear mesh where the

excitation e(t) is applied. This indicates that for k = 1 the modes are weakly coupled.

Accordingly the gear mesh non-linearity, which forces the second peak to be non-

linear, does not affect the linear characteristics of the first peak. However the modal

coupling becomes stronger with an increase in k as evident from the jumps seen at both

peaks in Figures 3.28b and 3.29b for i = 5 and Figures 3.28c and 3.29c for k = 10.

Torsional vibrations start to dominate the first mode, and the second peak shifts upward

and it may eventually move out of the operational speed range. Therefore, for a large k

value associated with stiff shafts and bearings, a single degree of freedom torsional

model as used in Chapter II should be sufficient. Another effect of a large k is that the

nt p subharmonic solutions replace some of the harmonic solutions as shown in Figures

3.28b,c and 3.29bc.
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Figure 3.28. Ygia versus.0h, plots for Fmo=0.1, Fah= 0 .0 5 , Fbi=O, bh=bc=O.1,

bbi=O, a) k=l, b) k=5, c) k=10; r- harmonic, A period-one non.
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coIresponding linear response.
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Figure 3.29. Ra versus Ph, plots for Fm=O.l, Fah=O.05, Fbi=O, bh=bc=O.1, bbi=O, a)
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Figure 3.31. Ra versus.92b plots for Fm=O. 1, Fah=0.05, Fbi -O, bh -bc -O. 1, bbi=O, a)
k=l, b) k=5, c) k=lO; o harmonic, o period-n subharmonic, • quasi-
periodic or chaos, ------ corresponding linear response.

147



Figures 3.30a, 3.31a and 3.30b, 3.31b examine the effect of load ratio for

Fa/Ffm= 0 .5 and 1 respectively with Fm=O.1 and k = 1. The frequency response is

well-defined and dominated by the harmonic solutions for Fah/Fm=0.5. However

when Fab/Fm is increased to 1, the region beyond fl.-=1.0 becomes strongly non-linear

consisting of subharmonic, quasi-periodic or chaotic responses. This was also seen for

the gear pair model.

B. No Gear Backlash. Non-linear Bearings: Now consider the same system with

bh--O and non-linear bearings described by the approximate model given in Sections

3.2.4. Results are presented for both roller and ball bearings separately since the radial

clearance in a ball bearing is much smaller than that typically found in a roller bearing

with the same inner and outer race diameters, say bbijI~e• w l0bbibli. For each case,

bbi is used as the characterLstic length bc,

Figures 3.32 and 3.33 show the steady state frequency response plots for the

roller bearings of bbi=O.01 nun (i=1,2), for three different i - kbI / kh values. As

shown in Figures 3.32a and 3.33a for soft bearings (k m 1), two modes of interest are

weakly coupled, and therefore the jump phenomenon is seen only at the first peak

which is dictated by mostly transverse vibrations. Here, the bearing non-linearities

affect the transvc),,r di.,1A.,a, '.,'n(-tit Y.1 and y. which makes the first mode non-linear.

The second peak is more dependent on the modal interactions. Here, again all of the

solutions are purely harmonic and only no impact and single sided impact regimes

exist. However, an increase in i introduces chaotic and subharmonic responses as

shown in Figures 3.32b,c and 3.33b,c. For instance, all the solutions within the range

0.6 <92h<l. 7 are non-hamionic for k = 10; the frequency response is no longer well

defined and modal coupling is sufficiently strong so that jump discontinuities are
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observed at both pcaks.

A decrease in Fm/Fa enhances the degree of the non-linearity as shown in

Figures 3.34a,b and 3.35a,b. At Fm/Fah=l in Figures 3.34b and 3.35b, the responses

within 0.5<,Lb<I. 4 are scattered and non-harmonic. However radial preloads Fbi on

bearings should help the mean load Fm in limiting the effect of non-linearities. To

prove this claim, we apply a high radial preload to both bearings, say Fm= Fi,, i = 1, 2,

corresponding to Fbi--0.25 for Fm=1.0 in the dimensionless form, and compare results

with the previous case of Fbi=O in Figures 3.34a,c and 3.35a,c. Figures 3.34c and

3.26c show that most of the subharmonic and chaotic solutions of Figures 3.34a and

3.35a are replaced by harmonic solutions. Hence a well defined frequency response

curve with clear jump discontinuities is obtained by applying Fbi.

Now. replace roller bearings with ball bearings with bc=bbi=0.001 mm and again

investigate the effect of k = kb / kh in Figures 3.36 and 3.37. With soft bearings

(k = 1) the frequency response is linear (no jumps) which indicates that there are no

impacts within the frequency range considered as shown in Figures 3.36a and 3.37a.

However at a larger value of ik, double sided impact solutions appear since the

clearance 2 bbi is very small. In Figures 3.36b and 3.37b for k = 5, the frequency

region of 0.6 5<fbh<0. 8 consists of the double sided solutions. When i is increased

to 10, the same behavior is also seen at the second peak as shown in Figure 3.36c and

3.37c. The earlier discussion on the effect of FaW/Fm and Fbi/Fm for roller bearings is

also applicable to the ball bearings as well.

3.6. EXPERIMENTAL VALIDATION

Munro's experimental dynamic transmission error results [271, which were

acquired in 1962 using a four-square spur gear test rig, have been used earlier to
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Figure 3.34. Ygia versus fh plots for the case of roller bearings; Fm-l.0, bh=1,
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validate the spur gear pair model of Chapter II assuming that the modes are weakly

coupled with each other. Now, we use the threc degree of freedom non-linear model of

Figure 3.2a to analyze his test set-up (27]. In our analysis, bearings are assumed to be

linear since they were highly preloaded, only gear backlash non-linearity is considered

with 2 bb=0.12 mm [74]. Table 3.2 lists the system parameters used Li equation (3.3a)

under four different mean loads. The system damping ratios are assumed to be uniform

at each load. Average mesh stiffness kh and alternating load Fab values assocLited with

each mean load Fm are also tabulated in Table 3.2.

Figures 3.38 through 3.42 compare dynamic transmission error predictions with

the measurements [27]. At the design load (DL), which corresponds to the minimum

static transmission error, good agre-ment is seen except for the jump discontinuity

found experimentally at the second peak. In our model, we have increased Fah slightly

beyond the value given in Reference [27], so that the predicted amplitude of the first

linear peak matches very well with the experiment. Such slight changes in critical

system parameters such as Fah and t, although they are varied within the experimental

uncertainties, may alter the frequency response drastically as illustrated in Figures

3.39a and 3.39b. In Figure 3.39a we note that when we reduce the force ratio Fm/Fah

from 30 (the value given in Reference 1271) to 10, a jump discontinuity at the second

peak is seen which is compatible with the experiment. Similarly, a small change in the

damping values, which are not reported in Reference [27], also affects the frequency

response as shown in Figure 3.39b. Figures 3.40 to 3.42 compare the dynamic

transmission error spectra at 3/4, 1/2 and 1/4 of the design load. From these spectra we

conclude that our proposed theory agrees well with the experimental results of Munro

[27] bo,I lualitatively and quantitatively, although amplitudes in the off-resonance

regions are slightly off. Such amplitudes are close to the noise floor in the experiment.
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Table 3.2. Parameters of the Munro's experimental set-up extracted from Reference

[27].

Mean load, Fm

design load(DL) 3/4 of DL 1/2 of DL 1/4 of DL

0.183 0.146 0.105 0.0579

Fab 0.0058t 0.0178 0.0296 0.0393

kb (N/m) 1.16x10 9  1.16x10 9  1.16x10 9  1.16x10 9

kh (N/m) 3.44x10 8  3.22x10 8  3.01x10 8  2.72x10 8

Kl1 , K22  0.950 0.966 0.983 1.007
K13 , tK2 3  0.242 0.242 0.242 0.242

ýI I, k22?? 0.01 0.01 0.01 0.01

ý13, ý23tt 0.00375 0.00375 0.00375 0.00375
ý33 tt 0.015 0.015 0.015 0.015

t modified so that the linear peak matches with the measured value.

?t estimated using the experimental data of Reference [27].

157



1.0

theory

...... experiment

0.5 %

0.0

v.4 0.8 1.2 1.6

frequency
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Further, discrepancies between the theory and the experiment may be due to the

assumptions made in this study. It should however be pointed out that the experiment,

even though it was very precise, was conducted almost three decades back before the

advent of modem non-linear dynamics and chaos science [66-71]. Interestingly,

Munro [271 had also reported subharnonic responses at 3/4, 1/2 and 1/4 of the design

load, and "unrepeatable responses" (probably chaos) at 1/4 of the design load. Our

results agree with such experimental observations as well. Both experiment and theory

show that the chaotic solutions dictate the frequency response beyond the second

resonance for 1/4 of the design load in Figure 3.42.

3.7. CONCLUSION

This analytical study on the non-linear dynamics of a geared rotor-bearing system

with gear backlash and bearing clearances, as excited by the internal static transmission

error and/or external torque pulsations, has made a number of contributions to the state

of the an. First, an approximate non-linear model of the rolling element bearings with

clearances has been developed and validated. Second, our mathematical model has

been validated as it compares well with a previous experimental study, and several key

parameters such as the mean load, mean to alternating force ratio, radial bearing

preload, bearing stiffness and damping have been identified. Third, conditions for the

chaotic and subharmonic resonances, and the routes to chaos have been identified.

Forth, non-linear modal interactions have been examined. Finally, on a more

fundamental note, our study enriches the current literature on coupled vibro-impact

pairs [52,54,551.
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CHAPTER IV

INTERACTIONS BETWEEN TIME-VARYING MESH STIFFNESS
AND CLEARANCE NON-LINEARITIES

4.1. INTRODUCTION

Dynamic models of geared systems can be classified into four main groups. The

first group includes 1;w:zar time-invariant (LTI) models, as evident from an extensive

review of the literature given in Reference [14]. The second group considers linear

time-varying (LTV) mesh stiffness kh(i) in the analysis [27,29.62]. Periodic variation

in kh(i) is due to the changing of the number of conjugate teeth pairs in contact during

the convolute action. Accordingly, the system is excited parametrically as well as by

the static transmission error E(i) introduced by kinematic errors and tooth deflections.

In this case, the equation of motion of the gear pair essentially reduces to the Mathieu's

or Hill's equation with a periodic external forcing function. The third group includes

gear backlash in the models, but with time-invariant average mesh stiffness kh * kb(i)

[25,30,31,33,34,41,42]. It should be noted that backlash is bound to exist either by

design or due to manufacturing errors and/or wear in any gear pair. Finally, the last

group considers bc h gear backlash and mesh stiffness variation simultaneously

[24,35-37,53]. However, none of these studies have addressed explicitly the effect of

kh(i), including its interaction with zhe backlash non-linearity, on the steady state

frequency response. Ozguven and Houser [24] have attempted to analyze this prkblein

by replacing kh(i) with a constant mesh stiffness and by defining the "loaded static

transmission error" excitation at the mesh point. But, Ozguven [75] has stated recently
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that this approach may not work depending on the system parameters, and

recommended a detailed investigation of this issue.

Numerous publications have analyzed LTV systems [76-78] and time-varying

systems with quadratic and/or cubic non-linearities [79-82]. However, such studies are

not directly applicable to the geared rotor systems which are the main focus of this

chapter. This problem requires the solution to a set of time-varying differential equations

with clearance-type non-linearities as excited by a periodic force generated at the gear

mesh.

4.2. PROBLEM FORMULATION

A generic geared rotor-bearing system, which consists of a spur gear pair

mounted on flexible shafts which are supported by rolling element bearings as shown

in Figure 4. 1 a, is considered here. The gear box is assumed to be rigid. The effect of

the prime mover or the load inertia is not considered assuming that such inertial

elements are connected to the gear box through soft torsional couplings. Further, we

assume that the system is symmetric about the plane of the gears and the axial motion

(parallel to the shafts) is negligible. The governing equations of motion can be given in

the matrix form as

+ [C]{q'(i)} + [K(i)]{f(4(t))} = {F(i)} (4.1)

where [M] is the time-invariant mass matrix and {f(i)} is the displacement vector.

Here, damping matrix [C] is assumed to be time-invariant, as the effect of the tooth

separation and time-varying mesh properties on mesh damping are considered

negligible; validity of this assumption will be examined later. The stiffness matrix
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[K(i)] is considered to be a periodically time-varying matrix given by

[K(t)] = [K(t + 2n / Db)] where ih is the fundamental gear mesh frequency The

non-linear displacement vector {f(4(t))} includes the radial clearances in bearings and

the gear backlash as shown in Figure 4.1b, and the forcing vector {F(i)1 consists of

both external torque and internal static transmission error excitations.

This chapter extends our previous non-linear single degree of freedom spur gear

pair model of Chapter II and multi-degree of freedom geared rotor-bearing system

model of Chapter III by including time-varying mesh stiffness kh(t), and investigates

its effect on the frequency response of lightly and heavily loaded geared systems.

Interactions between mesn stiffness variation and system non-linearities associated with

gear backlash and radial clearances in rolling element bearings are also considered.

Resonances of the corresponding LTV system associated with the parametric and

external excitations are identified using the method of multiple scales. Our formulation

will be validated by comparing predictions with available experimental results (27,28].

4.3. MATHEMATICAL MODEL

A reduced order form of the multi-degree of freedom system of equation (4. 1),

the three degree of freedom non-linear model of the geared rotor system, which has

been used in Chapter III, is considered here. This includes gear inertias I., and lg2,

gear masses mgI and mg2, and base circle diameters d-.I and dg2, as shown in Figure

4.2a. The gear mesh is described by a non-linear displacement function fl with time

varying stiffness kh(t) and linear viscous damping ca. Bearings and the shafts that

support the gears are modeled by equivalent elements with viscous damping

coefficients Cbl and cb2 and non-linear springs defined by force-displacement functions

fbl and fb2 which are approximated by piece-wise linear, dead zone type non-linearities
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as suggested in Chapter II. Both low frequency external excitation due to torque

fluctuations and high frequency internal excitation due to the static transmission error

F(i) are considered in the formulation. Input torque fluctuation is included, but the

output torque is assumed to be constant, i.e. TS 0 )=Tglm +Tglia(i) and

Tg2(t)= Tg2m. External radial prelr acs FN and Fb2 are also applied to both rolling

element bearings.

4.3.1. Equations of Motion

Equations of coupled transverse-torsional motion of the geared rotor-bearing

system shown in Figure 4.2a with the displacement vector

{1(t)} = {7gj(t), Yg2(0), P(t)} are given in matrix form as follows:

Io 0o 0 Y9I Y(t), l Cbl 0 Ch' Y9(t),1

0 mg2 0 jjYg2(i) ~+ 0 Cb2 -ch 'Y92(i)

- mcI mCI mcU "() 0 Ch.b '() J

[k1,  0 kb (t) 'bl(Ygl(t)) 1 I F1,1
"+ 0 kb2 -kh(i) - fb2(Yg2(0)- 2 1; (4.2a)

[0 0 kh(t)- h(P(W ) J 1 -mC I (z)+FFT6(i).

)= (t ) 'gi( ) - dg g2(t)+Ygl(i)-Yg2(i)-E(i);(.b

1 2 Ti T2migai

S 2 Fm 2g - 2m FaT(O)= -clfgla(, (4.2c-e)
dgi + dg 2 j dgI dg2 2 1g

41g1 41g2)
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2n)
kh(k)= kh(i+ =ý) = k + rkn + harcos(rhi + hr); (4.20

f~b r=I

Ygi - bbi; Ygi > bbi ( _bh ); > bb

fbi(ygi)= 0; - bbi < Ygi<bbi ; fh(P/)= 0; - bh < P<bh.-(4.2g,h)

Ygi + bt~i; Ygi < -bbi (p+ bh ); p< -bh

Here, ( )' donates derivative with respect to time t, Yg, and 0., are the transverse and

torsional displacements of the i-th gear (i=1,2), mcl is the equivalent gear pair mass,

Fm is the average force transmitted through the gear mesh, and FaT(t) is the fluctuating

force related to the external input torque excitation. Equations (4.2a-h) have been used

previously in Chapter III except for kh(i) term, which is expanded in equations (4.2a-

h) in the Fourier series form. Here P(t) is the difference between the dynamic

transmission error and the static transmission error i(i). A dimensionless form c:

equation (4.2a) is obtained by le:ting ygi(i)=YgijI)/bc, p(i)= (i)/b,/ ---

Wrl = i/-m / mcl , -Ohbi = \ikbi /.lgi (i=1,2) and I = (Oni where bc is the characteristic

length. Here, we consider periodic excitation for both E(i) and FaT(i) as

l(i)= yarcos(rl2,i +4cr), %0T()= IPaTrcos(rnTi +OT.) where 5h and !-• are
rut r~I

the fundamental excitation frequencies of internal displacement and external torque

fluc~tuctions, respectively. Further, define dimensionless excitation frequencies

ll, = ilh / (on and "•T = UrT/ (n to yield the following go, -rning equations of

motion in the dimnenwoonless fonn:

1 / C

- p tt q tlt , '••q , ,s + N •I



0- 41(g(t) 1g (t0)
01 0 Yg2() 1+2 0 k22 - 23Jjg2(t)
[-0 0 ý33 o00l l ~

V1  0 ii[ p(t)J 03-i' 0 (t)0

+ 0 K22-K1 3(t)lfb2(yg = 2 0 (4.3a)

K0 0 g33(t)f2 fh(P) Fm Fah(t) FaT(t),

00

Fah(t I Fahr(ri2 h) 2 cos(rflht + ýer); Fahr (4.3b,c)
r=l b c

=FaTr

FaT(t) • FaTrCOS(rI{Tt++Tr); FaTr 2 (4.3d,e)

Fm - Fm 2 = _ i __ i=1,2; (4.3f-g)mcl bc(0n 'Fimgibc n

Cbi= Ch , i=1,2; 3 = h (4.3h-j)21ngi(n 2 mgi(On 2mci(0n

(2. kh(t)
Ki i = n; Ki3 (t) mgi(= 2-, i=1,2; (4.3k-1)

K3 3 (t) kh(t) 1 + •Er cos(rflht + hr ); (4 .3m)

k hn, 7=l
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Ygi - b--i Ygi > bbi P bb P > b-
ibc bc bc

_bbi bbi p--bh;
1; f?= 0< l p b ; (4.3n,o)fbi(Ygi)= 0; b<- <Ygiy•.-, fh(P)< 0;

bcb bc bc '

Ygi + bb; Ygi <- bbi P+bb; < bh
bbc bc

where Fbi (i=1,2) and Fm are the dimensionless components of the mean force vector

IFlm, and FaT(t) and Fah(t) pertain to the alternating external excitation (F(t))e and

internal excitation I F(t)) i force vectors, respectively.

4.4. GEAR PAIR STUDIES

First, we consider the spur gear pair model of Chapter II, as shown in Figure

4.2b, and investigate the effect of kh(i) on the steady state frequency response. The

equation of motion of the gear pair is obtained from equation (4.3a) by substituting

ygi(t)--O for fixed gear centers. Neglecting the input torque variations for the sake of

convenience, FaT(t)=O, we obtain the following equation of motion of a loaded gear

pair with time-varying mesh stiffness and backlash, as excited by the static

transmission error.

0(t) + 2ý330(0)-•- K:33 (t)fh(1)(t)) = Fm + Fab (t) (4,4)

where 3 K3 3 (t), fh(P), Fn and Fah are still given by equation (4.3). Since nonw !,

the existing analytical solution methods are found to be suitable for this problem, the

digital simulation technique is used to solve equation (4.4) A lth-6ti order Runge

Kutta numerical integration algorithm weti. variable -;ljie step 150] is used her'!. This
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technique has already been employed successfully in Chapter II for the gear pair

problem with time-invariant mesh stiffness.

First consider only sinusoidally varying mesh stiffness and the static transmission

error excitation, i.e. X33(t)=l+ElCOS(L'bht+*bh) where F-= E I and

Fah(t) = Fahl[lh 2 CoS(lbt + ýel) " The tooth deflection or Fah(t) is maximum under the

applied mean load Fm when 1C33 (t) is minimum (i.e. minimum number of gear pair in

contact). Similarly, minimum Fah(t) corresponds to maximum K33(t). Therefore, there

is an out of phase relationship between Fah(t) and K33 (t), i.e. hl"=-eI+n. Here, we

set ýhl=xt and el--'O for the sake of convenience. Hence, equation (4.4) is modified

to:

2
1(t) + 2; 33P(t) + [1 - E cos(fiht)]fh(p(t)) = Fm + Fab!h •cos(ht). (4.5)

4.4.1. Linear Time-varying (LTV) System

For zero gear backlash bh, the gear mesh displacement function is fh(p)=p. Hence

equation (4.5) reducLs to an LTV equation as follows:

2p(t) + 2ý 3 3P(t) + [1 - E cos(CLbt)]p(t) = Fm + Fahblh cos((Uht) (4.6)

Approximate analytical solutions of similar LTV differential equations with parametric

and external excitations are already given in the literature [76,77,79-82]. Therefore, we

will not attempt to solve equation (4.6) completely. Instead we identify the

corresponding resonances using the method of multiple scales [76]. A first order

uniform solution is given by an expansion having the following form where the scalar

parameter E is assumed to be very small.
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p(te)= po(To,T)+ 'pl(T 0 ,T1)+O(E2 (4.7)

where T, = Ent is the n-th time scale. Expansions for the derivatives with respect to t

is obtained in temis of the partial derivatives with respect to time scales Dn = a / al'n

d/dt=Do+EJ'1 +O(e2); d2 /dt 2=D2o+2eDoD+O(£) (4.8a,b)

Substituting equations (7) and (8) into equation (6) and equating like powers of E, with

the external force being applied at O(O), one obtains

DONP + Po =Fm + Fahli2 cOs(flhTO) (4.9a)

D0op +PI = -2DoDIPo - g.DoPo + Po cos(QhTo) (4.9b)

where g.t=2ý33. The solution of equation (9a) is given in the complex domain as

P0 = A(TJ)eiT° +Fm + Ae"IhTo +cc; A = Fahle2/2(1-f2C) (4.1Oa,b)

where cc represents the complex conjugate terms and i = V-•. At L~h - 1, we note that

(1- f 1 will make the amplitude of the response boundless; this is the primary

resonance since it appears in the first order. Substituting equation (4.10) into equation

(4.9b) we get
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2 ITi fhl Aei(' +Ch)To
Dopl +pl = -2iDAeiTo -ilLAe' To -iVAf~hehT +2

+I Aci(I_"h)To+ I Ae241hT- + -FmeifhTo + A + cc (4,11)
2 2 2

Besides the primary resonance at lb - 1, the particular solution of equation (4.11) has

other secular terms when 2 f.h -1 and fb - 2. At 2f"h - 1, summation of the

external excitation frequency and the parametric excitation frequency is close to the

dimensionless natura] frequency which is unity. One could also observe resonances at

lh -- n, n>2 when higher scales are considered in equation (4.7). In summary,

equation (4.6) has resonances at ilh - 0..S and n, where n= 1,2.3....

Now, we solve equation (4.6) using digital simulation. Figure 4.3 shows the

steaJy state frequency response curves pa(flh) and Pm(Oh) for a lightly loaded system

with Fm=O.l, Fahl"0.05, ý33"0.05, bh=O and four different E values. Note that E=0

represents the LTI system. For r>0, we do not observe any multi-valued regions and

jump phenomenon. similar to those seen for the non-linear systems. Mesh stiffness

variation E has a negligible effect on the natural frequency which corresponds to the

largest peak in Figure 4.3a; but an increase c in amplifies Pa in both resonance and off-

resonance regions. Here Pm is no longer uncoupled from p., and it varies substantially

in the vicinity of primary resonance at ih= 1 0 , and the parametric resonance at

fh--'-'5, especially for a large C confirming the analysis given earlier. Note that our

study is limited to only these two resonances as aui itvestigation of subharmonic

resonances at 92h - n, n>l is beyond the scope of this study.
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4.4.2. Non-linear Time-varying System

Next we consider the time-varying non-linear system with backlash, given by

equation (4.5). Figure 4.4 shows Pa(flh) and pm(L-lb) spectra with Fm=O.l, Fal--O.05,

C33=0.05, and four E values. In this case, we notice a jump discontinuity at the

resonant frequency and a dual-valued region bounded by jump-up and jump-down

transition frequencies. For --=0, Pm * Pm (fh) is evident in the no-impact regime,

similar to the results given in Chapter H. But when e>O, the transition frequencies

which define the jump phenomenon become smaller, arid Pa at the jump-down

frequency grows with increasing F. This indicates that kh(b) enhances the degree of

non-linearity associated with the gear backlash. Similar to the results of LTV system in

Figure 4.3, we again observe in Figure 4.4a a parametric resonance at fh--0.5, which

is strong for £-=0.2 and 0.4 curves. Figure 4.5 compares the time histories p(t) for

each E values at the parametric resonance peak, fh---0.5. For the LTI system (E=0), a

harmonic no-impact type steady state solution exists as illustrated in Figure 4.5a. With

increasing E, this solution is transformed into a non-harmonic periodic solution with a

larger peak to peak value as a result of the parametric mesh stiffness excitation, as

shown in Figures 4.5b-d.

Now, consider a heavily loaded gear pair with Fm--O.1, Fal=0.0 1 and 433=0.05.

Figures 4.6a and 4.6b show Pa(fhb) and Pm(flh) spectra, respectively. In this case,

tooth separation does not occur for E=0 which results in a linear frequency response

curve with a constant Pm. A small jump is seen at --0. 1, and this jump becomes larger

for ---0.2 and 0.4; overall alternating amplitudeE Pa at resonance and within the off-

resonance regions increase considerably. This suggests that the mesh stiffness

variation is especially important for a heavily loaded gear pair with backlash.
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4.4.3. Non-linear Time-varying Mesh Damping

In order to investigate the effect of non-linear, time-varying gear mesh damping

on the steady state frequency response, we consider a sinusoidally varying gear mesh

damping ý33(0) which is assumed to be proportional to the mesh stiffness function

K33(t), and a non-linear velocity function gh associated with tooth separation. Hence

the governing equation of motion is

20(t) + 2 ý33t)gh(p(t)) +l - Ecos(fQht)]fh(p(O) = Fm + Fah!fb cos(Qht); (4.12a)

=33() = ( 333( + C cOs(fht + bhl)) , (4.12b)

0; ,h bh

gh(0(0) = 0 bc bc (4.12c)

10(t); else

Figure 4.7 compares frequency response spectra for the cases of a) non-linear tine-

varying gear mesh damping defined by equation (4.12), and b) linear time-invariant

mesh damping, ý33 * 33(t) with gh(P(t))= p(t), as given by equation (4.5). As

shown in Figure 4.7, both mesh damping models yield virtually the same spectra.

Therefore a linear time-invariant gear mesh damping model can be used without losing

any accuracy.

4.4.4. Periodic F(i) and kh(i)

Up to now, we have only considered the sinusodally varying kh(t) and E(i). In

real geared systems, however, both kh(t) and eCi) are periodic which can be
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Figure 4.7. Frequeocy response spectra of gear pair corresponding to non-linear time
varying and linear viscous damping mod,-1s; a)Pa versus Oh, b) Pm versus
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Figure 4.8 E(t) and kh(i) plots for a low contact ratio spur gear pair [21]. Here,
number of teeth is 28, diametral pitch is 8, the pressure angle is 20
degrees, and a 6xlO4 in. tip modification starting at 26 degrees roll

angle is applied.

184



Table 4.1 Fourier coefficients of E(i) and kh(i) given in Figure 4.8

Amplitude

Harmonic n K(t) kh(i)

(•mn) (MN/m)

0 20.00 107.8

1 3.45 10.3

2 0.26 5.7

3 0.45 1.3

4 0.38 4.0

5 0.27 1.5

6 0.26 1.4
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Figuir 4,9, Frequency response spectra of a non-linmar gear pair with periodic E(i) and
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4.5. GEARED ROTOR-BEARIN(; SYSTEM STUDIES

Next, we solve the three degree of freedom non-linear model of Figure 4.2a and

equation (4.3a) using the digital simulation technique for excitation Fah(t) with

FaT(t)=0.

4.5.1. Sinusoidal E(i) and kh(t)

Similar to Section 4.4, assume sinusoidal forms: K33 (t) = I +Ecos(fQht + (hl)

and Fah(t)= Fahlf2h 2 COS(4ht + ýei)- Equation (4.3a) reduces to an LTV matrix

equation when gear backlash and radial bearing clearances are set to zero, i.e.

fh(P(t))-p(t) and fbz(Ygi(t))=ygj(t), i=1,2. Figure 4.10 shows Pa( h) and yg I a(h)

spectra of this LTV system under heavily loaded conditions with Frm=O.1, Fah I--0.01,

.33=0.05, ti 3=0.0125 and ýi=0.01, i=l, 2. Note that Ygla =Yg2a since the gear ratio

is one. As shown in Figure 4.10, frequency response has peaks at foh="=0. 4 and

L-h=0)I1=l. 2 5 where o.I and Oilw are the natural frequencies of the LTI system,

corresponding to the fast two coupled transverse-torsional modes. In Figure 1 0a, we

observe a parametric resonance at 2fMb=o" similar to the gear pair model of Section 4.4

whereas the parametric resonance at 2fih=Ol is more obvious in Pa(Qh) spectrum of

Figure 4. 1Ob for a larger c value. Again like the LTV gear pair results of Figure 4.3,

Ygia and Pa are amplified with increasing e in both resonance and off-resonance

regions.

Now introduce the gear backlash bh=bc to this heavily loaded system;

corresponding results are given in Figure 4.11. The most significant effect of kh(') is

that it interacts with the gear backlash non-linearity to develop a jump discontinuity at

the second primary resonance peak. This is clearly evident from the fact that either

backlash or kh,(i) alone can not cause a jump for such a heavily loaded system.
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Figure 4.10. Frequency response spectra of a LTV geared rotor-bearing system of

Figure 2a with sinusoidal F(i) and kb(i), Fm-O.1, Fahl=0.01, 433=0.05,

ý33=0.05, ýi3-0.01 2 5 and tii=0.01, Kii=0.5, bb=bbbi--O, i=l, 2, and four
Ei=e values; a) Ygia versus 11b, b) Pa versus flb.
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Besides an increase in amplitudes in Figures 4.1 la and 4.1 lb, chaotic and/or quasi-

periodic solutions, which do not exist in heavily loaded time-invariant systems as

shown in Chapter III, are also predicted in the following regimes: 1.3 5 <Q'b<1.65 for

F-=0.2 and 1.2 5<L0<l. 7 for c=0.4. Similar to the LTV system of Figure 4.10,

parametric resonances at 2Mcb="i and 2.f=Ciq are again observed here.

Next, radial clearances in bearings bbi=bc are considered for a heavily loaded

system with zero gear backlash, Fm=l.0, Fah1 =0.1, ý33=0.05, ýi=0.0125 and

ýii=0.01, i=l, 2. In this case, mesh stiffness variation and non-linearity exist in

different components. As shown in Figure 4.12, F again increases the amplitudes, but

the spectrum shape is essentially the same. This is further evident from Figure 4.13,

given for a lightly loaded drive with Fm=1.0 and Fahl=0.5. This suggests a weak

interaction between the gear mesh stiffness variation and bearing non-linearities.

4.5.2. Periodic F(i) and kh(i)

Similar to the gear pair analysis of Section 4.4.4, we consider periodic K33(t) and

Fah(t) with three Fourier coefficients. Figure 4.14 shows spectra for Fm=o0.1,

Fajl=0.01, Fah2=0.0 04 , Fab3=0.002, p33=0.05, Z.3=0.0125 and ýii=0.01, i=l, 2;

E1/E2=2, £j/E2=4 , ard El=E=O, 0.1 and 0.2. Here only the gear backlash non-linearity

(bh=bc and bbi=O) is considered. Peaks at fhb=o)l/n and f/b=oll/n, n=1,2,3 are

predicted corresponding to excitation Fahr. Periodic mesh stiffness enhances the

alternating amplitudes over the values given by the time-invariant mesh stiffness case

and introduces a jump discontinuity at the second primary resonance similar to the

sinusoidal mesh stiffness case.
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Figure 4.11. Frequency response spectra of a non-linear geared rotor-bearing system
with sinusoidal F(i) and kh(l), FmO0.l, FahlO.Ol1, p33=0.05,
p33=0.05. ýB3=O.O125 and ýi=0.0i, Kij=0.5, bb=bc, bbi,=0, i=1, 2, and
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Figure 4.12. Frequency response spectra of a non-linear geared rotor-bearing system
with sinusoidal i(i) and kh(t), Fm=l.0, Fati=O.1, ý33=0.05, ý33=0.05,
•i3=0.0125 and ýii=0.Ol, Kii--0.5, bbi=bc, bb--O, i=l, 2, and four E£1 -
values; a) Ygia versus fh, b) Pa versus f'I.

191



(a)

2
Ec=O.
--0.2

UA

......... ... ... .......... 
.....

~~~ .............. ...0 .

0 1 2

frequency

(b)

6

~~~. .... . ... .....2...

.£=o

......- ".

0 2
0O 1 2

frequency

Figure 4.13. Frequency response spectra of a non-linear geared rotoi -be aring system

with sinusoidal i(i) and kb(i), Fm=l.O, Fahl-O.5, 433=0.05, 433=0.05,

i3=0.0125 and i=O.01, ii-O.5, bbi=bc, bb--O, i=1, 2, and four El=e
values, a) Ygia versus QLh, b) Pa versus Qb.
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Figure 4.14. Frequency response spectra of a non-linear geared rotor-beaiing system
with periodic Z(i) and kh(i), FMo=0.1, Fahl=0.01, Fah2=O.O0 4 ,
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versus flh, b) Pa versus fbh.
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4.6. EXPERIMENTAL VALIDATION

4.6.1. Spur Gear Pair Dynamics

First we compare our theory with experimental results of Kubo 1281, as extracted

from Reference [24]. Kubo used a heavily damped (33=0. 1) four-square spur gear

test rig, and measured dynamic factor as the ratio of the dynamic to static tooth root

stresses. The experimental set-up was designed to support a gear pair with very stiff

shafts and bearings. Therefore our gear pair model can represent the test rig

adequately, similar to Chapter 11. The static transmission error ý(i) and tune-varying

mesh stiffness Kh(i) of the tested gear pair has been predicted using ai; existing elastic

spur gear model [21 ] and then equation (4.4) is solved to predict the dynamic response.

Here, we define the dynamic factor as the dynamic to static mesh foice ratio which is

equivalent to the dynamnic facto' calculation based on the stress analysis undcr thc

assumption that the change in the moment arm due to changes in the contact point is

negligible. Figure 4.15 compares the envelope of measurements obtained by Kubo for

several tooth pairs with our predictions. When the mesh stiffness kh(t) is assumed to

be time-invariant, the predicted jump discor.tinuity is not as large as the jump seen in

experimental data and the predicted transition frequency is higher than the measured

value, as reported in Chapter 11. However predictions improve significantly when

sinusoidally varying kh(i) and E(it) at !h are used, as given by equation (4.5). A

sharp jump discontinuity is found which matches well with experiment, and the

predicted dynamic factor is very close to measured envelope. Finally, prediction agrees

with cxpcritment cvcn b-etter when periodically varying 'ý(-) and kh(-) with the fOrst three

Fourier coeflicients considercd. This figure clearly shows that the timc-invariant lincar

or non-linear model can not predict the true dynamic behavior, as time-varying mesh

stiffness must be included in the non-linear miathctmaltiCal formllulatiotn.
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Figure 4.15 Comparison of theory with Kubo's [24,28] experimental results.
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4.6.2. Geared Rotor-Bearing System

As the second example case, experimental results of Munro [27] are compared

with our geared rotor-bearing model of Figure 4.2a and equation (4.3). These

experimental results were used earlier to validate time-invariant multi-degme of frcedomi

non-linear system of Chapter TH in which we had to reduce the damping ratio and

increase the excitation i(i) in order to correlate theory with experiment. Now we go

back to the original system parameters giveii in References [27J anid Chapter 111, aii

predict the dynamic transmission error spectra using both time-vatying and time.

invariant gear mesh stiffness formulations for a three degree of freedom non-lincar

model with gear backlash and linear bearing;, Figure 4.16 compares reults at the

design load which corresponds to the minimum excitation t(i), In this cue, ithe men,

load to alternating load ratio F = Fni / r-, is very large, any P - 30. Time. iivarbant

stiffness model prediction differs considerably from the experiment in Figure 4,16,

Predicted amplitudes are coniderably lower than the measurements, and a algniftaVu)t

jump discontinuity found experimentally around the second naturul frequency (on is not

even predicted by this formulation. But when the perodically-varying mehli tjiffieha, I,

considered, our model predicts the frequency response accurately Including the Jump

discontinuity. The reason for a large jump around "11 for a very heavily loaded system

(fi- 30) is now clear. The second natural frequency toll of the corresponding LT!

system is nearly twice the first natural frequency to,. This folrcf the ,&eond pilnmujy

resonance at f2h - till to coincide with the parametrli tef.CNanIe at Lli•, 2w 1o,

consequently a very large jump discontiiuity is developed.

At 3/4 of the design load with P 10, the effect of k11(i) Is ob!seivd b) lHgir

4.17. Although the time-invariwit mWlel predictls the jumtp atl ul, ire(i-led amIIIJl)iide*

1O(



.eximent

-atin.vf'ying mCM stIthiepu

Simejivaw mith uhffness

9.4

0A O. 1.2 1.6

frequency

MiOuMe 4.16 Coprhmtimon of lhcory with Munro's 127J experiim'ent at the design load,
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Figure 4.17 Comparison of theory with Munro's [27] experiment at 3/4 of the

design load.
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Figure 4.18 Comparison of theory with Munro's [27] experiment at 1/2 of the

design load.
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Figure 4,19 Comparison of theory with Munro's [27) experiment at 1/4 of the

design load.
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are far below the measurements. The inclusion of kh(i) improves predictions

drastically. Similarly at 1/2 and 1/4 design loads, mesh stiffness variation as shown in

Figures 4.18 and 4.19 respectively, affects the frequency response significantly and

yields predictions closer to the measurements.

4.7. CONCLUDING REMARKS

This chapter on the non-linear dynamics of a geared rotor-bearing system with

time-varying mesh stiffness kh(i), as excited by the static transmission error under a

mean load, has resolved a number of fundamental issues. First, the interaction between

time-varying mesh stiffness kh(i) and mean torque load has been understood.

Second, frequency response of the corresponding LTV system has been studied, and

the -resonances associated with parametric and forced excitations have been identified.

Third, dynamic interactions between kb(i) and system non-linearities associated with

gear backlash and radial clearances in rolling element bearings have been investigated; a

strong interaction between kh(i) and gear backlash is found where as the coupling

between kb(i) and bearing non-linearities is weak. Finally, our time-varying non-

linear formulation has yielded good predictions as compared with benchmark experiments.
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CHAPTER V

CONCLUSION

5.1. SUMMARY

In this study, linear and non-linear mathematica! models of a generic geared

rotor-bearing system shown in Figure I. I a are developed, and several modeling issues

which have never been addressed previously in the literature are investigated in depth.

In Chapter I, a dynamic finite element model of the system is developed. Effects of

several system parameters such as torsional and ,aansverse flexibilities of the shafts and

prime mover/load inertias are investigated, and modes of interest are identified. Three

reduced order linear time-invariant models are developed and the conditions under

which such models are suitable are determined by comparing the eigen-solutions with

the finite element model results.

In Chapter II, non-linear frequency response characteristics of a spur gear pair

with backlash and time-invariant mesh stiffness are examined for both external and

internal excitations. The internal excitation is of importance from the high frequency

noise and vibration control view point and it represents the overall kinematic or static

transmission error i(i). Such problems may be significantly different from the rattle

problems associated with external, low frequency torque excitation. Two solution

methods, namely the digital simulation technique and the method of harmomc balance

have been used to develop the steady state solutions for the internal sinusoidal

excitation. Difficulties associated with the determination of the multiple solutions at a

given frequency in the digital simulation technique have been resolved as one must
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search the entire initial conditions map. Such solutions and the transition frequencies

for various impact situations are found analytically by the method of harmonic balance.

Further, the principle of superposition can be employed to analyze the periodic

transmission error excitation and/or combined excitation problems provided the

excitation frequencies are sufficiently far apart from each other. Predictions compare

reasonably well with the experimental data available in the literature.

In Chapter EII, non-linear frequency response characteristics of a geared rotor-

bearing system are examined. A three degree of freedom dynamic model is developed

which includes non-linearities associated with radial clearances in the radial rolling

element bearings and backlash between a spur gear pair; linear time-invariant gear

meshing stiffness is assumed. Bearing non-linear stiffness function is approximated

for convenience sake by a simple model which is identical to that used for the gear

mesh. This approximate bearing model has been verified by comparing the steady state

frequency spectra. Applicability of both analytical and numerical solution techniques to

the multi-degree of freedom non-linear problem is investigated. Proposed theory is

validated by comparing the results with available experimental data. S.veral key issues

such as non-linear modal interactions and differences between internal static

transmission error excitation and external torque excitation are discussed. Additionally,

parametric studies are performed to understand the effect of system parameters such as

bearing stiffness to gear mesh stiffness ratio, alternating to mean force ratio and radial

bearing preload to mean force ratio on the non-linear dynamic behavior. A criterion

used to classify the steady state solutions is presented, and the conditions for chaotic,

quasi-periodic and subharmonic steady state solutions are determined. Two typical

routes to chaos observed in this geared system are also identified.
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Non-linear frequency response characteristics of a geared rotor-bearing system

with time-varying mesh stiffness are examined in Chapter IV. The spur gear pair

model of Chapters II and geared rotor-bearing system model of Chapter III are

modified to include periodic mesh stiffness kb(i). Governing non-linear time-varying

equations which include clearance non-linearities associated with gear backlash and

rolling element bearings, as excited by the static transmission error E(i) under a mean

torque load, are solved using digital simulation technique. Resonances of the

corresponding linear time-varying (LTV) system associated with parametric and

external excitations are identified using the method of multiple scales and digital

simulation. Interactions between mesh stiffness variation and clearance non-linearities

have been investigated; a strong interaction between time varying mesh stiffness kb(t)

and gear backlash is found whereas the coupling between kb(t) and bearing non-

linearities is weak. The predictions yielded by the proposed time-varying non-linear

model agree well with the experimental results available in the literature.

5.2 FUTURE RESEARCH AREAS

The following topics are identified as areas of future research, based on the

present study on non-linear dynamic analysis of geare, rotor-bearing systems:

1. Extension of current models to study dynamics of helical and bevel gear drives,

and multi-gear mesh systems such as planetary gear trains.

2. Iteration procedures for the transmission error input and inclusion of the

interactions between external and internal kinematic error excitations. Also

inclusion of side-bands in non-linear dynamic analysis.
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3. Design of a passive vibration :ontrol strategy using squeeze film dampers. And,

investigation of semi-active and active vibration and noise control schemes using

piezoelectric actuators or hydraulic mounts.

4. Statistical energy analysis of non-linear geared systems.
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APPENDIX A

USER'S GUIDE FOR THE GEARED ROTOR DYNAMICS
PROGRAM - GRD

A.I. DESCRIPTION

Geared Rotor Dynamics Program "GRD" is a general purpose finite element

computer program to analyze dynamics of a system consisting of two shafts supported

on bearings and coupled by a gear mesh. It computes natural frequencies, mode shapes

and the vibration response of the system to static transmission error excitation, mass

unbalances and geometric eccentricities of gears. Many rigid disks, bearings, and

hollow shafts can be considered by GRD. Since GRD uses finite elements method, the

system should first be discretized to small rotor elements. It is also necessary to enter

data for each element in sequence.

A.2. USING THE PROGRAM

There are two ways to input data in GRD. Data can be entered through a file or

interactively. The first set of questions will give the user this option (the Primaa

Qption). Display on screen:

ENTER DATA INTERACTIVELY OR FROM A DATA FILE?
OPTION (1): ENTER DATA INTERACTIVELY
OPTION (2): ENTER DATA FROM FILE
CHOOSE OPTION I OR 2 (NO DEFAULT) >>

A.2.1. OPTION 1: Interactive Data Entry

By selecting this option, the user will be prompted to enter all the data that will be

necessary to nin this program. In the process, a new data file will be created from the

user's input. The data entered will be reorganized in a format so that the program may

read from it. For this reason, a new data file will be created and the user will be

prompted to name this new file as follows:

DATA WILL BE INPUT INTERACTIVELY, AND IN THE PROCESS. YOUR INPUT
WILL BE ORGANIZED'IN A NEW DATA FILE FOR THIS PROGRAM TO
READ FROM.
ENTER AN INPUT FILE NAME. >>
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If an error should arise from opening this new file, the user will be given the option to

try again:

*ERROR IN OPENING FILE* DO YOU WISH TO TRY AGAIN?
TYPE (1) FOR YES OR (2) FOR NO >>

If YES, then the user will be asked the file name again. If NO, the program will

return to the Primary Option.

2.1.1. Data Entry Groupings

In this section, the user will enter the necessary data. The questions will be

grouped into the following categories.

1. GENERAL DATA
2. MATERIAL PROPERTIES
3. ELEMENT PROPERTIES
4. GEAR MESH PROPERTIES
5. FORCED RESPONSE DATA (If user chooses this option)

, General Data:

In this section, the following general information about the overall system will be

entered:

1) THE NUMBER OF ROTOR ELEMENTS IN THE FIRST SHAFT
2) THE NUMBER OF ROTOR ELEMENTS IN THE SECOND SHAFT
3) THE NUMBER OF ROTOR ELEMENTS BEFORE THE GEAR IN THE FIRST SHAFT
4) THE NUMBER OF ROTOR ELEMENTS BEFORE THE GEAR IN THE SECOND

SHAFT

As an example, consider the system shown in Figure AI. The first step is to the

divide rotors into small pieces (finite rotor elements) to obtain a finite element model of

the system (as illustrated in Figure A2). The shorter the rotor elements, the higher the

accuracy and the longer the computation time. In Figure A2, each shaft is divided into

4 pieces. The numbering can start at any end of the driving rotor and finish at any end
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Figure A2. Finite Element Model
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of the driven rotor. In Figure A2 for example, we start at the left end of the first shaft

and fini.qhied numbering at the right end of the sccond shaft. According to this

configuration (Figure A2), the number of rotor elements in the fiust and second shafts

are both 4 and the number of rotor elements before the pinion and gear are 2 and 6,

respectively.

2. Material Propenies:

In this section, material properties of the shaft considered will be entered. The

following will be required:

1) THE DENSITY OF THE SHAFT MATERIAL (kg/m-r) (DEFAULT=7800)
2) THE VISCOUS DAMPING COEFFICIENT (s) (DEF=O)
3) THE HYSTERETIC DAMPING COEFFICIENT (DEF=O)
4) THE MODULUS OF ELASTICITY (N/m 2 ) (DEF=.20 7EI2)
5) SHEAR MODULUS OF ELASTICITY (N/m 2 ) (DEF-.0795EI2)

3. Element Proerties:

The main portion of data to be entered is in this section. The options given are the

following:

1) DEFINING THE DISK ELEMENT
2) DEFINING THE BEA-RING ELEMENT
3) DEFINING THE ROTOR ELEMENT (also the default selection)
4) DEFINING THE GEAR ELEMENT
5) FINISH WITH DATA INPUT FOR FIRSI SHAFT
6) FINISH WITIH DATA INPUT FOR SECOND SHAFT

The most important part in this section of questions is the order of data entny. The

order is based on the numbered finite element model (see Figure A2). For the finite

element model shown in Figure A2, the order of data input is as follows:

1) DEFINING BEARING #1
2) DEFINING ROTOR #1
3) DEFINING ROTOR #2
4) DEFINING GEAR#I
5) DEFINING ROTOR #3
6) DEFINING ROTOR #4
7) DEFINING BEARING #2
8) TYPE IN OPTION 5 (FINISHED WITH DATA INPUT FOR SHAFT #1)
9) DEFINING BEARING #3
10) DEFINING ROTOR #5
11) DEFINING ROTOR #6
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12) DEFINING GEAR#2
13) DEFINING ROTOR #7
14) DEFINING ROTOR #8
15) DEFINING BEARING #4
16) TYPE IN OPTION 6 (FINISHED WITH DATA INPUT FOR SHAFT #2)

From the example above, one can see the ordering of data entry moving from the first

element in shaft #1 to the last element in shaft #2. Ultimately, the program will also

read from the data file in this order.

According to the option selected (disk, gear, rotor element or bearing), the

following information is required:

The disk element - option I:

I) DISK OUTER DIANT7ER IN (m)
2) WIDTH OR THICKM-SS OF DISK IN (m)
3) MATERIAL DENSITY OF DISK IN (kg/nm3) (DEF=7800)

The bearing element - option 2:

THE STIFFNESS (N/m)
1)Kxx
2) Kxy
3) Kyx
4) Kyy
THE DAMPING (N-slm)
5) CXX
6) Cxy
7) Cyx
8) Cyy

The rotor element - option 3:

1) LENGHT OF ROTOR ELEMENT IN (m)
2) OUTER DIAMETER OF ROTOR ELEMENT IN (m)
3) INNER DIAMETER OF ROTOR ELEMENT IN (m) (for hollow rotor) (DEF=O)
4) THE AXIAL LOAD IN (N) (DEF=O)

The gear element - option 4:

1) PITCH CIRCLE DIAMETER IN (M)
2) FACE WIDTH IN (W)
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3) GEAR MATERIAL DENSITY IN (kg/m3) (DEF-7800)

Option 5 should be chosen when the elements of the first shaft have been defined.

The user will then be given the material properties of the second shaft., and given the

option to make changes to this set of data. Similarly, option 6 should be entered

when all elements of the second shaft have been entered.

4. Gear Mesh Properties:

The following gear mesh properties will be entered in this section:

I) GEAR MESH STIFFNESS (N/ni)
2) GEAR MESH DAMPING (N-s/m) (DEF--O)
3) BASE CIRCLE DIAMETER OF FIRST GEAR (m)
4) BASE CIRCLE DIAMETER OF SECOND GEAR (i)

Following the input of gear mesh data, the program will also ask the user for the

number of natural frequencies wanted in the output.

5. Forced Response Data:

Here, the user is given the option to have forced response calculated. If the

selection is NO, then interactive input will be complete. If the selection is YES, then

the following options are given:

1) WHIRLING ORBIT AT A SPECIFIED NODE
2) DEFLECTIONS AT A SPECIFIED NODE
3) DYNAMIC LOAD TO STATIC LOAD RATIO AT THE MESHING POINT

Following the options menu, the general information for this section will be required:

1) GEOMETRIC ECCENTRICITY (RUNOUT) OF GEAR I (m) (DEF=0)
2) GEOMETRIC ECCENTRICITY (RUNOUT) OF GEAR 2 (m) (DEF-0)
3) PEAK TO PEAK VALUE OF STATIC TRANSMISSION ERROR (m)
4) MASS UNBALANCE OF GEAR I (kg-m) (DEFm0)
5) MASS UNBALANCE OF GEAR 2 (kg.m) (DEF-0)
6) NUMBER OF TEETH IN GEAR I (PINION)
7) AVERAGE FORCE TRANSMITTED (N)
8) VALUE OF MODAL DAMPING (DEF=.01)

After the general information for this section has been completed, the program will

require certain information based from the choice selected from the options menu:
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Forced response option 1: Whirling orbit at a specified node, the following

information will be required.

1) NUMBER OF NODE AT WHICH WHIRL ORBIT IS REQUIRED

2) ROTATIONAL SPEED OF SHAFT 1 (rad/s)

Forced response option 2: Deflections at a specified node will be required.

1) STARTING ROTATIONAL SPEED OF SHAFT I (rad/s) (DEF--O)
2) UPPER LIMIT OF ROTATIONAL SPEED OF SHAFT I (rad/s)
3) INCREMENT FOR ROTATIONAL SPEED (rad/s) (DEF=5)
4) DIRECTION AT WHICH FORCED RESPONSE IS WANTED (1,2 OR 3) (DEF=I)
5) NUMBER OF NODE AT WHICH FORCED RESPONSE IS WANTED

In question (4), enter: I for deflection in pressure line direction; 2 for deflection in

direction perpendicular to pressure line; 3 for torsional deflections

I) STARTING ROTATIONAL SPEED OF SHAFT I (rad/s) (DEF=O)
2) UPPER LIMIT OF ROTATIONAL SPEED OF SHAFT I (rad/s)
3) INCREMENT FOR ROTATIONAL SPEED (rad/s) (DEF=5)

Having completed this section on forced response, the program will then read from the

new data file created from the interactive input. The output will be in an output data file

named FOROO.DAT .

A.2.2. OPTION If: Enter Data From File

With this selection, the user is then requested to give the name of the file where the

data is stored, instead of entering data interactively. The program will then proceed to

read from the file. If an error should occur in opening the file, then the user will be

given the option to try again. If the user opts to try again, then the user will be asked

the file name again. If no, then the program will return to the primary option. After the

program has read from the file the output will be found in an output data file.
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A.4. SAMPLE OUTPUT FILE FOROO.DAT

GEARED ROTOR DYNAMICS PROGRAM

GRD

GEAR DYNAMICS AND GEAR NOISE RESEARCH LABORATORY

THE OHIO STATE UNIVERSITY

THE FIRST SHAFT:

MATERIAL PROPERTIES OF THE ShAFT:

DENSITY OF THE MATERIAL ..... - 0.78000E+04 KG/M**3
ELASTIC MODULUS ............. - 0.20700E+12 N/M**2
SHEAR MODULUS ................ - 0.79500E+11 N/M**2
VISCOUS DAMPING COEFFICIENT.- 0.OOOOOE+00 S
HYSTERETIC LOSS FACTOR ...... - 0.00000E+00

AT Z- 0.0000 M THERE EXISTS A BEARING WITH THE
FOLLOWING STIFFNESS AND DAMPING COEFFICIENTS:

KXX- 0.10000E+10 N/M KXY- 0.OOOOOE+00 N/M
KYX- O.OOOOOE+00 N/M KYY- 0.10000E+10 N/M
CXX- 0.OOOOOE+00 N-S/M CXY- 0.OOOOOE+00 N-S/M
CYX- 0.00000E+00 N-S/M CYY- 0.OOOOOE+00 N-S/M

AT Z- 0.0000 M THERE EXISTS A FINITE ROTOR ELEMENT WITH THE
FOLLOWING SPECIFICATIONS:

LENGTH OF THE ELEMENT ....... - 0.500007-01 M
OUTER DIAMETER................ - 0.30000t-01 M
INNER DIAMETER .............. - 0.OOOOOE+00 M
AXIAL LOAD ..................- 0.OOOOOE+00 N

AT Z- 0.0500 M THERE EXISTS A FINITE ROTOR ELEMENT WITH THE
FOLLOWING SPECIFICATIONS:

LENGTH OF THE ELEMENT ....... - 0.50000E-01 M
OUTER DIAMETER .............. - 0.30000E-01 M
INNER DIAMETER ..............- 0.00000E+00 M
AXIAL LOAD .................. - 0.OOOOOE+00 N

AT Z- 0.1000 M THERE EXISTS A RIGID DISK WITH THE FOLLOWING
SPECIFICATIONS:

OUTER DIAMETER .......- 0.13500E+00 M
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WIDT .......... - 0.75400.101 M
MATERIAL DENDZV', .. 0,760000404 KG/HM03

AT Z- 0.1000 M THERE EXIOTO A FINITE ROTOR 91,0MHET WITH THE
FOLLOWING sPEcirICATIONBS

LENGTH or THE %LTFEHT ....... - 0,50000-01 M
OUTER D1IAMETER .............. - 0.30000E-01 M
ZNNER DIAMZTTR .............. - 0.0000Et00 H
AXIAL 1OAD I I......... - O,O000000+0 14

AT Z- 0.1500 M THERE EXIXTO A FINITE POTOR ELEMENT WITH TIlt
FOLLOWING SJECITICATIONS:

LENGTH OF THt ELEMENT ....... - 0.50000E-01 M
OUTER DIAMETER ........... .- 0,30000-01 m
INNER DIAM7TP•r............. - 0.000004E00 MQ
AXIAL LOAD ..................- 0,000001.00 N

AT Z- 0,2000 M THERE EXI6T* A BEAIING WITH THE
FOLLOWING STIFFNgfiS ANo DAMPiNG COErFICIENT&I

KXX- 0,0000r410 N/M PY- 0,OOU000E00 "/M

KYX- 0,00000E*00 N/m KYY- 0,300009410 N/H
CXX- 0,000009+00 11-8/m CXY- 0.00000t+00 N-DIM
CyX- 01,000009400 f-!/m CYY- ,0000F400 I-N/m

THE SECOND SHAfTi

MATERIAL ?PlROITItd Or THE SHAFTm

DENSITY or THE MATERIAL ..... - 0.78000t+04 KG/HM*3
ELASTIC MODULUS ............. - 0,207009412 N/M*02
SHEA. MODULUS ............... - 0,79b00o +il N/M**2
VISCOUn DAMPiING coerriclNT,- 0,000009400 8
HYSTERETIC LOSS FACTOR .. ,.. - 0,000001.00

AT Z- 0,0000 M TrHERE ZXISTC A bVAlkl1UL WITH THL
FOLLOWING 81Tr7flitE AND DAMYLNQ COEETICIENT8i

JXX- 0.10000t,110 N/H KXYw 0.000001+00 N/H
KYX- 0.00000E+00 N/M KYYI 0,10000EI10 N/H
CXX- 0100000P+00 N-5/1 CXY- 0,000n01400 N-8/M
CYX- 0,O000E400 N-D/M CYY- 0.00000Z400 H-S,/M

AT E- 0,0000 M THERE EXISTO A FINITE ROTOR ZLEMZNT WITH THE
FOLLOWING 5ptcTrICATIONHS

LENGTH OF THE ELEMENT ....... - 0.50000E-01 H
OUTER DIAM,'IEP ............. 0.40000E-01 M
INNER DIAMETER .............. 0,000001+00 M
AXIAL LOAD ................ .." 0.00000r+00 N

224



AT Z- 0.0:00 M THERE EXISTS A FINITE ROTOR ELEMENT WITH THE
FOLLOWING SPECIFICATIONS:

LENGTH OF THE ELFA49NT ....... - 0.50000E-01 M
OUTER DIAMETER .............. - 0.40000E-01 M
INNER DIAMETER .............. - o.oooooE+0o m
AXIAL LOAD .................. - 0.OOOOOE+00 N

AT Z- 0.10C0 M THERE EXISTS A RIGID DISK WITH THE FOLLOWING
OPECICICATIONS:

OUTEP DIAMETER ...... - 0.24500E+00 M
WIDTH ................- 0.25400E-01 M
1ATERIAL DENSITY....- 0.78000E+04 KG/M**3

AT Z- 0.1600 M THERE EXISTS A FINITE ROTOR ELEMENT WITH THE
FOLLOWING SPECIFICATIONS:

LENGTH OF THE ELEMENT ....... - 0.50000E-01 M
OUTER DIAMETER .............. - 0.40000E-0i M

INNEZR DIAMETE.R ..............- 0.OOOOOE+00 M
AXIAL LOAD .................. - O.OOOOOE+00 N

AT Z- 0.1500 M THERE EXISTS A FINITE ROTOR ELEMENT WITH THE
FOLLOWING SPECIFICATIONS:

LENGTH OF THE ELEMENT ....... - 0.50000E-01 M
OUTER DIAMETER ..............- 0.40000E-01 M
INNER DIAMETER .............. - 0.OOOOOE+00 M
AXIAL LOAD .................. - 0.OOOOOE+00 N

AT Z- 0.2000 M THERE EXISTS A BEARING WITH THE
FOLLOWING STIFFNESS AND DAMPING COEFFICIENTS:

KXX- 0.10000Z+10 N/M KXY- 0.OOOOOE+00 Ni.
KYX- 0.OOOOOE+00 N/M KYY- 0.10000E+10 N/M
CXX- 0.00000E+00 N-S/M CXY- 0.OOOOOE+00 N-S/M
CYX- 0.00000+00 N-S/M CYY- 0.OOOOOE+00 N-S/M

GEAR MESH PROPERTIES:

BASE CIRCLE DIAMETER OF GEAR 1-...- 0.1270
BASE CIRCLE DIAMETER OF GEAR 2...- 0.2310 M

AVERAGE MESH STIFFNESS ........... - 0.20000E+09 N/M
AVERAGE MESH DAMPING ............. - 0.OOOOOE+00 N-S/H

A. FREE VIBRATION ANALYSIS:

FOLLOWING NATURAL FREQUENCIES AND MODESHAPES ARE CALCULATED
FOR THE ABOVE SPECIFIED SYSTEM:
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MODE 1

NATURAL FREQUENCY- 0.0002 (HZ.)

COCVLSPONDING MODESHAPES:

DI:!. IN Y DISP. IN X ROT. ABOUT Y ROT. ABOUT X ROT. ABOUT Z

-.- 260E-08 0.000E+00 0.000E+-0 -.---- E-06 0.599E+01
-. 358E-08 O.OOOE+00 O.OOOE+00 0.108E-06 0.599E+01

0.119E-08 0.OOOE+00 0.OOOE+00 -. 411E-07 0.599E+01
-. 524E-08 0.OOOE+00 0.OOOE+00 -. 983E-07 0.599E+01
-. 299E-08 0.OOOE+00 0.OOOE+00 0.136E-06 0.599E+01
0.771E-08 0.OOOE+00 0.OOOE+00 0.499E-06 0.329E+01
0.253E-07 0.OOOE+00 0.OOOE+00 0.535E-07 0.329E+01
-. 188E-09 0-000+O00 0.OOOE+00 --. 118E-05 0.329E+01
-. 256E-07 0.000E+00 0.OOOE+00 0.557E-07 0.329E+01
-. 781E-08 0.OOOE+00 0.OOOE+00 0.505E-06 0.329E+01

MODE 2

NATURAL FREQUENCY- 486.0262 (HZ.)

CORRESPONDING MODESHAPES:

DISP. IN Y DISP. IN X ROT. ABOUT Y ROT. ABOUT X ROT. ABOUT Z

0.929E-02 0.OOOE+00 0.OOOE+00 0.551E+01 -. 646E+01
0.261E+00 0.OOOE+00 0.OOOE+00 0.410E+01 -. 645E+01
0.375E+00 0.OOOE+00 0.OOOE+00 -. 119E-06 -. 643E+01
0.261E+00 0.OOOE+00 0.OOOE+00 -. 410E+01 -. 645E+01
0.929E-02 0.000E+00 0.OOOE+00 -. 551E+01 -. 646E+01
-. 950E-02 0.000E400 0.OOOE+0 -. 180E+01 0.110E+01
-. 918E-01 0.OOOE+00 0.OOOE+00 -. 134E+01 0.110E+01

-. 129E+00 0.OOOE+00 0.OOOE+00 0.995E-09 0.109E+01
-. 918E-01 O.OOOE+00 0.OOOE+00 0.134E+01 0.110E+01
-. 950E-02 0.OOOE+00 0.OOE+00 0.180E+01 0.11oE+01

*********************************************************************
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MODE 10

NATURAL FREQUENCY- 2479.9504 (HZ.)

CORRESPONDING MODESHAPES:

DISP. IN Y DISP. IN X ROT. ABOUT Y ROT. ABOUT X ROT. ABOUT Z

0.124E-01 0.000E+00 0.000t+00 0.459E+01 0.978E+01
0.212E+00 0.000E•00 0.OOOE+00 0.288E+o1 0.950E+01
0.279E+00 0.OOOE+00 O.OOOE+00 -. 8979-10 0.865E+01
0.212E+00 0.OOOE+00 0.000t+00 -. 2889+01 0.950E+01
0.124E-01 0.000E+00 0.OOOE+00 -. 459E+01 0.978E+01
-. 990E-02 0.000c+00 0.OOOE+00 -. 134E+01 -. 166E+01
-. 691E-01 O.OOOE+00 0.OOOE+00 -. 897E+00 -. 162E+01
-. 917E-01 O.O00E+O0 0.000E+00 -. 562E-10 -. 147E+01
-. 691E-01 0.000+÷0O 0.000E+00 0.897E+00 -. 162E+01
-. 990E-02 0.000E+00 0.000E+00 0.134E+01 -. 166E+01

B. FORCED VIBRATION ANALYSIS:

FORCED RESPONSE AT THE SPECIFIED FREQUENCY RANGE:

0.591142E-04
0. 675:86E-04
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APPENDIX B

DIMENSIONAL AND NON-DIMENSIONAL QUANTITIES

FOR THE EXPERIMENTAL TEST RIGS

Table B 1. Dimensionless and dimensional parameters for Kubo's test rig [28].

DIMENSIONAL QUANTITIES

Number of teeth 25/25
I1g, Ig2 [kg-m 2 (lb-ft2 )] 0.00115 (0.0278)

mci [kg] 0.23

dgId.2 [m (in)] 0.094 (3.7)

kb, rigid

kh [N/m (lbf/in)] 3.8E8 (2.17E6)

Fm [N (lbf)] 2295 (1030)

i [m (in)] 1.92E-6 (7.56E-5)

bh [m (in)] 0.1E-3 (0.0039)

DIMENSIONLESS QUANTITIES

S(page 44) 0.1
Fm (page 44) 0.06

Fab (page 44) 0.0192

F-n/Fah 3.12
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Table B2. Dimensionless and dimensional parameters for Munro's test rig [27].

DIMENSIONAL QUANTITIES

number of teeth 32/32
Isj, Ig2 [kg-m 2 (Ib-ft2)] 0.136 (3.29)

mgI, mg2 [kg (lb)] 31.1 (68.5)

dg1, dg2 [m (in)] 0.2 (8)

bh [m(in)] 0.12E-3 (4.7E-3)

Design Load (DL) 3/4 DL 1/2 DL 1/4 DL

Fm [N (lbf/in FW)] 3782 (1700) 2836 (1275) 1891 (850) 947 (425)

kh [N/rn] 3.44E8 3.22E8 3.0 1E8 2.72E8

i [m] 3.5E-7 1.06E-6 1.78E-6 2.36E-6

DIMENSIONLESS QUANTITIES

Design Load (DL) 3/4 DL 1/2 DL 1/4 DL

Fm (equation 3.3i) 0.183 0.146 0.105 0.058

Fab (equation 3.3j) 0.0058 0.0178 0.0296 0.0393

Kjl, KI22 (equation 3.30 0.950 0.966 0.983 1.007

K113 , K23 (equation 3.3g) 0.242 0.242 0.242 0.242

ý'1, k22 (equation 3.3c) 0.01 0.01 0.01 0.01

;13, ;23 (equation 3.3d) 0.00375 0.00375 0.00375 0.00375

;33 (equation 3.3e) 0.015 0.015 0.015 0.015
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APPENDIX C

LENGTH OF TRANSIENT SOLUTION AND CPU TIME

C.1. Length of Transient Solution

It is necessary to run the digital simulation routines for many cycles in order to

reach the steady state solution. This can easily be detected by a time history repeating

itself and a phase plane trajectory followed at each period of the steady state soiution.

Following are found to be the major factors which determine the length of the transient

region of the time history:

1. Dampg Ratio: Damping ratio is inversely proportional to the time needed to

reach steady state solution. Larger the damping, shorter the transients. Figure B I

shows this relationship for the single degree of freedom model of gear pair. A similar

trend is observed in Multi-degree of freedom model also.

2. Excitation Frequency; The transient solution is found to be longer in the

vicinity of the resonance frequency than the off-resonance region. Figure B 1 compares

length of transient solution versus damping ratio curves corresponding to resonance

and off-resonance excitation frequencies.

3.LIni,1,; nditign Transients are longer when the initial displacement and

velocity are away from the mean values of the steady state solution sought.

C.2. CPU Times

CPU time needed in digital simulation depends on: i, the number of increments

per period of forcing function (20.40 points per period is good enough), ii, the
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Figure Cl. Length of the transient solution in a gear pair as a function of damping

ratio for off-resonance (Q-0.5) and resonance (f0=0.7) frequencies

tolerance of the solution accuracy (Ix 10-5 to Ix 10"9 is acceptable), and iii. number of

degrees of freedom. For the single degree of freedom model with a tolerance of I x 10-9

and an increment of 20 points/period, nearly 10 sec. of CPU time is required to run for

100 cycles. The three degree of freedom model with same parameters uses 1.2 mrin. of

CPU time for 100 cycles,
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APPENDIX I)

COMPARISON OF PREDICTIONS WITH NASA MEASUREMENTS

In this section, a comparison of the FEM predictions of the NASA Gear Noise

Test Rig shown in Figure DI with the measurements of NASA is given. System

parameters and the predicted natura! modes of the system have already been given in

Tables 1.1 and 1.2, respectively. The static transmission error and mesh stiffness

variation predictions are also shown in Figure 4.8. Here, the comparison of the

predicted frequency response spectrum with measurements of NASA is limited to

torsional (angular acceleration) vibrations since the set-up was not equipped for

transverse vibration measurements. Only a qualitative agreement is observed between

the predictions and measurements as shown in Figure D2 due to the uncertainties

associated with the sensitivities of instruments and due to the errors involved in

measurement such as resonance and calibration problems of angular transducers.

coupling torquemeter

motorI j i

shaft _ ga

load

gear box

Figure DI. NASA Gear Noise Test Rig.
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(a)
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(b)
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frequency (Hz)

Figure D2. Angular acceleration spectrum of the NASA Gear Noise Test Rig at pinion

location; a) measurements b) FEM predictions.
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APPENDIX D

COMPARISON OF PREDICTIONS WITH NASA MEASUREMENTS

In this section, a comparison of the FEM predictions of the NASA Gear Noise

Test Rig shown in Figure DI with the measurements by NASA is given. System

parameters and the predicted naturea! modes of the system have already been given

in TFables 1.1 and 1.2, respectively. The static transmission error and mesh stiffness

variation predictions are also shown in Figure 4.8. Hlere, the comparison of the predicted

frequency response spectrum with measurements by NASA is limited to torsional

(angular acceleration) vibrations. Only a quanlitative agreement is observed between

the predictions and measurements as shown in Figure D2 Quantitative discrepancies

are attributed to the resonance problems experienced with the angular transducers.

torquemeter

gear box

Figure Dl. NASA Gear Noise Test Rig.
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