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NON-LINEAR DYNAMIC ANALYSES OF GEARED SYSTEMS

Rajendra Singh, Donald R. Houser, and Ahmet Kahraman
Ohio State University
Department of Mechanical Engineering
Columbus, Ohio 43216

Under the driving conditions, a typical geared system may be subjected to large
dynamic loads. Also, the vibration level of the geared system is directly related to the
noise radiated from the gear box. Accordingly, a good understanding of the steady
state dynamic behavior of the system is required in order to design reliable and quiet
transmissions. It is the main focus of this study with the scope limited to a system
containing a spur gear pair with backlash and periodically time-varying mesh stiffness,
and rolling element bearings with clearance type non-linearities. ‘I'he internal static
transmission etror excitation at the gear mesh, which is of importance from high
frequency noise and vibration control view point, is considered in the formulation in
sinusoidal or periodic form.

A dynamic finite element model of the linear time-invar:ant (LTI) system is
developed. Effects of several system parameters, such as torsional and transverse
flexibilities of the shafts and prime mover/load inertias, on free and forced vibration
characteristics are investigated. Several reduced order LTI models are developed and
validated by comparing their eigen solutions with the fintte element model results.
Using the reduced order formulations, a three-degree of freedom dynamic model is
developed which includes non-linearities associated with radial clearances in the radial
rolling element bearings, backlash between a spur gear pair and periodically varying
gear meshing stiffness. As a limiting case, a single degree of freedom model of the

spur gear pair with backlash is considered and mathematical conditions for tooth
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separation and back collision are defined. Both digital simulation technique and

analytical methods such as method of harmonic balance and the method of multiple
scales have been used to develop the steady state frequency response characteristics for
various non-linear and/or time-varying cases. Ditficulties associated with the
determination of the multiple solutions at a given frequency in the digital simulation
technique have been resolved. The proposed formulation has been validated by
comparing the predictions with the results of two benchmark experiments reported in
the literature. Several key system parameters such as mean load and damping ratio are
identified and their effects on the non-linear frequency response are evaluated
quantitatively. Ctiher fundamental issues such as the dynamic coupling between non-
linear modes, dynamic interactions between component non-linearities and time-varying
mesh stiffness, and the existence of subharmonic and chaotic solutions including routes

to chaos have also been examined in depth.
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CHAPTER 1|
INTRODUCTION

1.1. PROBLEM FORMULATION

Dynamic analysis of geared systems is an essential step in design due to two
reasons. First, under the driving conditions, a typical geared system 1s subject to
dynamic forces which can be large. ‘Therefore, the prediction of dynamic loads,
motions or stresses is needed in developing reliable gear trains. Second, the vibration
level of .he geared system is directly related to the noise radiated from the gear box. An
attempt in designing quiet gears requires a gocd understanding of the dynamic behavior
of the system and the gear mesh source. Accordingly, the main objective of this study
is to develop accurate mathematical models of a generic geared rotor-bearing system
shown in Figure 1.1a. Of interest here is to investigate several key modelling issues
which have not been addressed in the literature, such as system non-linearities and
time-varying mesh stiffness.

The generic geared system shown in Figure 1.1a consists of a single spur gear

mesh of ratio v8=d32/d rolling element bearings, a prime mover dniving the system

gl
at {2 speed and a typical inertial load. The system also includes other elements such
as cauplings and flywheel. A discrete model of the system is shown in Figure 1.1b.
Here, shafts are represented by discrete translational springs k¢, and k,, translational

dampers ¢ ; and c,, and torsional springs Ky, and K.,. The gear mesh is represented

by a time-varying mesh stiffness k(1) and a non-linear displacement function f,

L ———————————————
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Figure 1.1.  a) A generic xeared rotating system, b) discrete model of geared rotating

system.
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which includes gear backlash. Further, linear time-invariant (LTI) mesh damping c;, is
considered here. The rolling element bearings are defined by a time-invariant radial
stiffness k,, subject to a non-linear displacement function fy,, and an LTI damping
coefficient ¢,. The prime mover and load are modeled as purely torsional ¢!cments of

inertias I, and I; , respectively. The mean rotational speeds {25, and £2, and the

geometric end conditions are such that gyroscopic effects are not seen.

The generalized displacement vector {Ej(f)} , associated with the inertia elements,
consists of angular displacements 8 and transverse displacements X and y. The

goveming equation of motion for the non-linear, time-varying multi-degree of freedom

model can be given in the general form as
[M){g”@}+[Ca'®} +[Ko}{f@in} = {Fd} (1.1)

where [ﬁ] is the time-invariant mass matrix and {q(i)} is the displacement vector.
Here, damping matrix [E] is assumed to be LTI type, as the effect of the tooth

separation and time-varying mesh properties on mesh damping are considered

negligible; validity of this assumption will be examined later. The stiffness matrix

[K(i)] is considered to be time-varying, given by a periodically time varying matrix
[K®)]= [K(f +2n/ Q)] where 0y, is the fundamental gear mesh frequency. The

non-linear displacement vector {f (c';(i))} includes the radial clearances in bearings and

the gear backlash, and the forcing vector {F(f)} consists of both external excitations

due to torque fluctuations, mass unbalances and geometric eccentricities, and an

internal static transmiss:on error excitation.




1.2. OBJECTIVES

Specific objectives of this study are given as follows; each chapter, written in the
joumal paper style, deals with one major objective.

First, a dynamic finite element model of the linear time-invariant (LTI) system
given in Figure 1.1a is developed. Effects of several system parameters, such as
torsional and transverse flexibilities of the shafts and prime mover/load inertias, on free
and forced vibration characteristics are investigated. Three different reduced order LT1
models will be derived and the conditions under which these are valid will be
determined by comparing the eigen solutions with the finite element model resuits.
Development and verification of such a reduced order (with a very few degrees of
freedom) linear model is an essential step before the non-linear dynamic behavior is
analyzed [Chapter I].

Second, non-linear frequency response characteristics of a spur gear pair with
backlash are examined for both extemal and intemal excitations. The intemal excitation
is of importance from the high frequency noise and vibration contro! viewpoint and it
represents the overall kinematic or static transmission error. Such problems may be
significantly different from the rattle problems associated with external, low frequency
torque excitation. Two sclution methods, namely the digital simulation technique and
the method of harmonic balance have been used to develop the steady state solutions
for the intemal sinusoidal excitation. Difficulties associated with the determination of
the multiple solutions at a given frequency in the digital simulation techinique have been
resolved as one must secarch the entire initial conditions map. Such solutions and the
transition frequencies for various impact situations arc found by the method of
hamonic balance. Further, the principle of superposition can be employed to analyzs

the periodic transmission error excitaticn and/or combined excitation problems




provided the excitation frequencies are sufficiently apart from each other. Predictions
are compared with the limited experimental data available in the literature [Chapter I].

Third, non-linear frequency response characteristics of a geared rotor-bearing
system are examined. A three degree of freedom dynamic model is developed which
includes non-linearities associated with radial clearances in the radial rolling element
bearings and backlash between a spur gear pair; ime-invariant gear meshing stiffness is
assumed. The bearing non-linear stiffness function is approximated for convenience
sake by a simple model which is identical to that used for the gear mesh. This
approximate bearing model has been verified by comparing steady state frequency
spectra. The applicability of both analytical and numerical solution techniques to the
multi degree of freedom non-linear problem is investigated. Proposed theory is
validated by comparing the results with available experimental data. Several key
issues such as non-lincar modal interactions and differences between internal static
transmission error excitation and external torque excitation are discussed. Additionally,
parametric studies are performed to understand the effect of system parameters such as
bearing stiffness to gear mesh stiffness ratio, alternating to mean force ratio and radial
bearing preload to mean force ratio on the non-linear dynamic behavior. A criterion
used to classify the steady state soluvticns is presented and the conditions for chaotic,
quasi-periodic and subharmonic steady state solutions are determined. Two typical
routes to chaos cbserved in this geared system are also identified [Chapter III].

Fourth, this study exiends the non-linear single degree of freedom spur gear pair
model of Chapter II and multi-degree of free.dom geared rotor-bearing system model of
Chapter Il by including time-varying mesh stiffness ky, (1), and investigates the effect

of k(1) on the frequency response of lightly and heavily louded geared systems.

Interactions between mesh stiffness variation and systein non-linearities associated with




gear backlash and radial clearances in rolling element bearings are also considered.
Resonances of the corresponding linear time-varying (LTV) system associated with the
parametric and external excitations are identified using the method of multiple scales.

Theoretical results are validated by available experimental results [Chapter IV].

1.3. DEVELOPMENT OF LINEAR TIME-INVARIANT MODELS
1.3.1. Literature Review

The study of geared rotor dynamics requires that the coupling between torsional
and transverse vibrations be included in the model. Although several modeling and
solution techniques such as lumped mass models and the use of the transfer matrix
method have been applied to rotor dynamic problems, the finite element method (FEM)
seems to be a highly efficient and accurate method for linear modeling. In one of the
carly examples of FEM applied to a single rotor, Nelson and McVaugh (1] used a
Rayleigh beam finite element including the effects of translational and rotary inertia,
gyroscopic moments and axial load. Zorzi and Nelson [2] extended this by including
internal damping. Later, Nelson {3) developed a Timoshenko beam by adding shear
deformation to the Rayleigh beam theory. This model was further extended by
Ozguven and Ozkan [4] to include all possible effects such as transverse and rotary
inertia, gyroscopic moments, axial load, intemal hysteretic and viscous damping and
shear deformations in a single model. However, none of the rotor dynamics models
described above can handle geared rotor systems, although they are capable of
determining the dynamic behavior of rotors which consist of shafts supported at several
points and carrying rigid disks at several locations.

Gear dynamics studies, on the other hand, have usually neglected the lateral

vibrations of the shafts and bearings, and have typically represented the system with a




linear torsional model. Although negiecting transverse vibrations might be a good
approximation for systems having stiff shafts, it has been observed experimentally (5]
that the dynamic coupling between the transverse and torsional vibrations due to the
gear mesh affects the system behavior considerably when the shafts are compliant.
This fact directed the attention of investigators to the inclusion of transverse vibrations
of the shafts and the bearings in mathematical models. Lund [6] developed influence
coefficients at each gear mesh for both torsional and lateral vibrations, obtained critical
speeds and a forced vibration response. Hamad and Seireg (7] studied the whiiliig cf
geared rotor systems supported on hydrodynamic bearings; torsional vibrations were
not considered in this model and the shaft was assumed to be rigid. Iida, et al. (8]
considered the same problem by taking one of the shafts to be rigid and neglecting the
compliance of the gear mesh, and obtained a three degree of freedom model to
determine the first three vibration modes and the forced vibration response due to the
unbalance and the geometric eccentricity of one of the gears. Later, lida, et al.
[9,10,11] applied their model to a larger system which consists of three shafts coupled
by two gear meshes. Hagiwara, lida, and Kikuchi [12] developed a simple model that
included the transverse flexibilities of the shafts by using discrete stiffness values, and
studied the forced response of geared shafts due to unbalances and runout errors. They
included the damping and compliances of the joumal bearings and assumed a constant
mesh stiffness. Although most of these gear dynamics studies have discussed several
aspects of the problem, none of them has been able to represent a geared rotor-bearing
system completely since almost all of them have used one or more simplifying
assumptions such as rigid shafts, rigid bearings, rigid gear mesh etc. which may not be

applicable to a real system. In addition, these studies proposed lower order lumped

mass linear models.




Neriya, et al. [13] employed a dynainic finite element model which eliminates
many of the simplifying assumptions. They found the forced vibration response
of the system at the shaft frequency, excited by mass unbalances and runout =rrors of
the gears by using the modal summation. But they did no' consider the high
frequency, internal, static transmission error excitation which has the major role in
noise generation. An extensive survey of linear mathematical models used in gear

dynamics analyses is given in a recent paper by Ozguven and Houser [14].

1.3.2. Mathematical Model
Here, we assume linear bearings and no tooth separations with time-invariant
mesh stiffness, i.e. [K] # [K(f)] and {f(q(t))} = {Q()}. Then the corresponding LTI

form of equation (1.1) is:

[M}{a"®} +[CHa®} +[Kam} = {Fd} (1.2)

Since many investigators have modeled the generic system shown in Figure 1.1a as a
single degree of freedom model, our analysis uses it as a reference model to transform
the goveming equation into the dimensionless form. Focusing oniy on the gear pair as
shown in Figure 1.2, the equation of motion of the semi-definite system is given in

terms of the relative translational displacement G(t)= (dg,egl ~ dgzegz) /2

2= -
d u(t du(t T ——
mg, d% ) +cp l:j(( ) +kpu(t) = F(¥) (1.3a)

where m is the equivalent gear pair mass defined as




d

g2 g2

Figure 1.2.  Aingle degree of freedom dynamic model.




mey = l wg =< (1.3b.c)
= D) 3 : n= .3b,c
dgl + dgz M)
4181 4182

First, we establish the dimensionless time t as t = w,t. Second, we use the base circle
diameter of the pinion dg; and the equivalent mass m; as characteristic length and

mass parameters, respectively, to obtain the governing equations in the dimensionless

form as

IMHg(0)} +[CHa(0} +[KHa(0} = {Fn } + {Fan ()} + {Far (D)} (1.4)

where an overdot means derivative with respect to time t, and the dimensionless forcing
vector consists of a mean force vector (F,,} and two time-varying components: a) high
frequency excitation due to the kinematic gear transmission error {Fy,(t)} and. b) other
excitations due to mass unbalance Ug,-. geometric eccentricities (run-out errors) €gi and
p:ime mover and load torque pulsations Tg;,(t), typically at low frequencies, are

combined into a single term (F(t)}.

1.3.3. Gear Mesh Formulation
The gear mesh is represented by a pair of rigid disks connected by a translational,
viscously damped spring along the pressure line which is tangent to the base circles of

the gears as shown in Figure 1.3. By choosing the Y axis on the pressure line and the

X axis perpendicular to the pressure line, the transverse vibrations in the X direction




.y-gz +dgze(2 / 2+£gzsin9t2t

Figure 1.3.  Model of gear mesh used in FEM.
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are uncoupled from both the torsional vibrations and transverse vibrations in the Y

direction. The dynamic mesh force r:hY at the mesh point in the Y direction can be

written in terms of the symbols given in Figure 1.3 from the rigid body dynamics
- . N d, . . dgs .
Fy(t) = ch(Vg + %9‘1 + €582 ©068;) — g2 - _.;_etz
" _dy
—€42827 0562 — €Ny Q) cos(Ng0y))+ kp(Fg1 + '2—911
. _ dg> ' o s
+Eg)8in6y) =¥ - 79(2 —€g25in63 - ¢ sin(Ng18,1)) (1.5)

Here, only the fundamental component of the static transmission error &) is

considered, i.e. &(t)= ésin(Ng,QSli) where Ny is the number of teeth of gear gl.
Dynamic mesh force FbY also introduces moments Thgl and Tng about

instantaneous centers of the gears:

= (dg
Thg(1) = FhY(‘)(—;" +eg Coseu) (1.6a)

_ = (dg
Taga ()= ~Foy (f " +egacostir (1.

The total angular rotation 8y; of the i-th gear is 6;(t) = Qgt + Ogi(f) . i=1,2. The
displacement vector can be (decomposed into two parts as {}={a} +{Qn} where
{qs} .—_[il.’yl,91.....,ij,?j,9j,....,in.yn,ﬁn]. j=1ton, j#gl, j#g2 (excluding the

degrees of freedom of the nodes where the gear and pinion are mounted) and

12




{dn}= [igl,?gl,egl.igz.'y'gzﬁgz], i=1,2. The coupling effect due to gear mesh is
only seen in the terms governed by {qh} and the mesh stiffness [Kh], which

represents this dynamic coupling due to gear mesh is obtained from equations (1.5) and

(1.6) as
0 0 0 0 0 0
d d
0 1 1} 0 -1 --£
2 2
2
o S dm 4 _da _dade
= 2 4 2 4
=k
[Ko}=kn 0 0 0 0 0 0
d d (1.7a)
0 -1 e 0 i 82
2 2
2
o e dwe , S
L 2 4 2 4 ]

Since mesh viscous damping is proportional to the mesh stiffness,

[Eh]= %;[Kb]' (1.7b)

In the overall force vector, non-zero terms correspond to displacements {(-lh} and are

given in the following form:




Uglﬂgl sin Qsli + _F(i)l l
Uglﬁgl COSQSIE
2T,

S « P R,
™ gy cOs Qi +—;—Fl(t)+T8|a(t)

{Fa@}+ (Fa @} = . |

2 i B
U32Q52 sinQt — Fl(t)

(1.8a)
) -
U225 cosf2got
2T Im 2 - d 2 —_— e — .
dggl 5g2952cosns2t-—;_Fl(t)—TgZa(‘)
J
R(t)= ch (Eg282s2 €Ot — €51 €25 COSQ T +EN g L) cos(N 1Q24t))
+kp(Eg SiNfy1 — €1 5in Qg + E5in(N g Q) (1.8b)

where Tglm is the mean input torque.

1.3.4. Finite Element Formulation and Eigen-Value Problem

The finite element method has been employed in obtaining stiffness and mass
matrices of the system of equations (1.4). The shafts are discretized and five degrees of
freedom are defined at each node, only the axial motion being excluded. The stiffness
and mass matrices of each finite rotor element are derived by using the variational
principle [3,4,15). The system overall matrices are obtained by combining element
matrices, dynamic coupling matrices due to gear mesh defined by equation (1.7),
assumed bearing damping values and stiffnesses, and the inertias of the gears and other
lumped inertia elements. Here, [M] is diagonal and positive definite and (K] is

symmetric and positive semi-definite. The equation describing the undamped free

vibration of the system is obtained from equation (1.4) as




M{a()} +(K}a()} = {0}. (1.9)

The assumed form of the solution {q(t)} = {q, }cos(wt + ¢) is substituted into equation

(1.9) to obtain the standard eigen-value problem:

K}{Qa}z mle]{Qa}- (1.10)

The solation of equation (1.10) yield the eigen-vectors or modes {y,) and associated
cigen-values or natural frequencies w,. Here, a torsional rigid body mode at w=0

exists since {K) is semi-definite.

1.3.5. Forced Vibration Response

The excitation given by equation (1.8) (for no torque pulsations, i.e.

Tata(t) = Tg2a(1) = 0) is the sum of three sinusoidal terms at frequencies ), £, and

gear mesh frequency Ng €

{F(i)}=

3 {Fy}sin(@it + 051) + {Fy Jsin(Ngif1i + ) (1

'_M~

The steady state displacement response of the system due to this excitation is assumed

to be

2 = ] -
ta(} g[BS‘]l } in(Qit +95,) + {3 }{Fn } sin{ NgiQg1 + o) (1.12)
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where [Bgi] i=1, 2 and [B;,] are the dynamic compliance matrices in the frequency

domain corresponding to the excitation frequencies, {2, Q4 and Ny Q

sl
respectively.
d ety T .
B.:l= ¥, - rilye i=1,2; (1.13a)
[ zl] o [(m;_ggi)ujgrnsjm,]
n T

i [(mf -(N S,Qsi)2)+ 2 jQ,Nglﬂsim,]

{y;} represents the r-th mass matrix-normalized modal vector, n is the total number of
degrees of freedom of the system, j= V-1, and {; is the damping ratio for r-th mode.

See Appendix A for the computer code GRD which uses the theory given here.

1.4. PARAMETRIC STUDIES
1.4.1. Modes of Interest

The generic system shown in Figure 1.1 is modeled by FEM to examine the
natural modes of a general linear geared rotor-bearing system and to study the effects of
several system parameters on the dynamics of the system. Two numerical data sets as
listed in Table 1.1 are used. Predicted natural frequencies and modes for Set A are
presented in Table 1.2. The response of the system to &(t) is also computed; Figures
1.4, 1.5 and 1.6 display the response in the Y and torsional directions at the pinion
location and the dynamic load to static load ratio at the mesh point dgFyy / 2T
respectively. The system has no peak responses at the modes corresponding to motion

in the X direction since the excitation is applied in the Y (pressure line) direction, and
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Table 1.1 Numerical data sets of the system used for calculations.

Parameters

Set At

Set B

Igi 1 (kg-m?)
Ngi
kp
ky, (N/m)
Lo Lgyr (m)
Lo, Lor (m)
Kl' K2 (N-m/rad)
Ip, I} (kg-m?)
de1,00 ds2,0 (M)

dsy v dsz i (M)
¢ (m)

0.0018, 0.0018

1.84, 1.84
0.089, 0.089
28
1.0x108
variable
0.127, 0.127
0.127, 0.127

-

0.037, 0.037

0., 0.01
9.3x106

0.009/, 0.0097
3.45, 345
0.135, 0.135
30
1.0x108
rigid
variable
variable
variable
vanable
0.04, 0.04

T NASA Lewis Research Center gear test rig.




Table 1.2. First 10 natural frequencies for set A of Table 1.1 (ky/k,=10).

Modal Modes of  Natural! Frequency w, Natural Mode

Index Interest Hz. Description
0 0 torsional rigid body
1 V) 581 first transverse-torsional coupled
2 687 X direction, transverse (driving shaft)
3 Vi 689 Y direction, transverse
4 691 X direction, transverse (driven shaft)
S VD 2524 second transverse-torsional coupled
6 3387 Y direction, transverse
7 3387 X direction, transverse (driving shaft)
8 3421 X direction, transverse (driven shaft)
9 3421 Y direction, transverse

18
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Figure 1.4.

Forced response of the system with dataset A (Table 1.1) to the

displacement excitation in the direction of pressure line (at pinion
location) for four different bearing stiffnesses ky,.




0.0035 T —r T T T

0.0030

L

0.0025 +

o

o

o

N

o
1

torsional response (Rad.)
o
o
2
3
i

500 1000 1500 2000 2500 3000

excitation frequency (Hz)

Figure 1.5.  Forced torsional response of the system with dataset A (Table 1.1) to

the displacement excitation at pinion location for four different bearing
stiffnesses ky,.




20 Y ~T T T Y

_ ko/ky=0.1 :
_____ ky/k,=0.5 hi

8l —— kp/ky=1.0 ,'" 1
kb/khzlo 0 '

16 Wi §

14+ EHE -

dynamic to static load ratio

121 i
005007000~ 1500 2000 ~ 2500 3000

excitation frequency (Hz)

Figure 1.6 Dynamic to static load ratio for dataset A (Table 1.1) due to the static
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the vibration in the X direction is dynamically uncoupled from the vibrations in the Y
and torsional motions, as described in the previous section. Therefore, the natural
modes corresponding to motions in the X direction can be eliminated when only &(i)
excites the system. Accordingly, the following three typical modes are of special

importance:

1. First Transverse-Torsional Coupled Mode wy: This is the second mode listed
in Table 1.2 at w; (581 Hz for the system considered). This mode corresponds to the
first peak in Figures 1.4 and 1.5 and its schematic shape is shown in Figure 1.7a.
Here, shafts move in opposite directions, gears vibrate in opposite directions also; but
transverse and torsional vibrations combine to yield small relative motion at the gear
mesh point. Therefore, dynamic loads at the mesh point are not large, resulting in no

peak in Figure 1.6 at @y while Figures 1.4 and 1.5 have peaks govemned by this mode.

L. Purely Transverse Mode W1 At this mode with natural frequency wyy (689
Hz in Table 1.2), there is no torsional vibration and both shafts vibrate in phase in the

pressure line direction as shown in Figure 1.7b schematically. The relative

displacement at mesh point is z¢ro since the gear ratio vg=1. Therefore, &(i) cannot

excite this mode as no peaks are observed in Figures 1.4, 1.5 and 1.6 at frequency wy;.

I11._Second Transverse-Torsional Coupled Mode Wij;: The second and the
highest peak seen in Figures 1.4, 1.5 and 1.6 corresponds to this mode at wy; . As
seen from the mode shape illustrated in Figure 1.7¢, both shafts and gears vibrate in
opposite directions, and transverse and torsional vibrations are additive at the mesh

point. Thus a large relative displacement at the mesh point is obtained, which results in
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a) first transverse-torsional coupled mode, Vi

b) purely transverse mode, W

¢) second transverse-torsional coupled mode, Vi

Figure 1.7.  Typical natural modes of interest; see Table 1.2 for further details..
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a large peak in Figures 1.4, 1.5 and 1.6. This is the mode at which the coupling
between transverse and torsional vibrations is very strong.

These three modes are observed in all geared rotor systems and they play an
important role in governing dynamic response of the system excited by &(f).
Therefore, any accurate mathematical model of the geared rotor-bearing systems must

be able to predict these modes.

1.4.2. Effect of Bearing Compliances

In most cases, radial stiffness of a typical rolling element bearings k, is roughly
of the same order of magnitude as the gear mesh stiffness k;; in general it lies in the
range 0.1k, <k <100k,. Therefore, bearing flexibility should be included in the
analysis. A parametric study for data set A of Table 1.1 has been conducted to
demonstrate the effect of ky, on the natural frequencies and the frequency response of
the system excited by €(t). Figures 1.4, 1.5 and 1.6 show the response in the Y and
torsional directions and the dynamic mesh load respectively for k, values ranging from
0.1k, to 10k;, shaft stiffnesses are being kept the same. An increase in bearing

stiffness results in an increase in both natural frequencies and the peak amplitudes.

Above the range of k,, the bearing becomes very rigid when compared to the shaft

compliances and its effect on the system can be ignored.

1.4.3. Effect of Shaft Compliance
Data set B of Table 1.1 has been used to study the effect of shaft compliance on
the natural modes. The shaft length is varied and the corresponding ®, values are

predicted by FEM; Figure 1.8 displays this result. The first natural frequency w; does

not change considerably with varying shaft length, whereas wy; and wyp are strongly
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Figure 1.8.  Effect of the shaft length on the typical natural frequencies.
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dependent on the shaft length, especially at smaller lengths. Another observation from
Figure 1.8 is that wy; and wp; become very large for smaller shaft lengths and clearly
move beyond the range of the operational speed of most geared rotor systems. In this
case, the first coupled transverse-torsional mode ) can be assumed to be uncoupled

from these two modes.

1.4.4. Effect of Load and Prime Mover Rotary Inertias

As shown in Figure 1.1, the shafts are connected to a prime mover and a load at
either end through flexible torsional couplings. The following parameters need to be
considered: motor and load rotary inertias, torsional compliances of the flexible
couplings, and stiffnesses of the driving and driven shafts.

First, the motor and load are assumed to be connected to the shafts without
considering any torsional couplings in between. Figure 1.9 displays the variation in
wy, 0y and wy; with a variation in the prime mover inertia. Here, data set B of Table
1.1 with L;=0.04 m is used. oy and wyy; are not affected and therefore, the inertias of
motor and load can be disregarded if the major concemn is to predict these two modes.
However, ay is strongly dependent on prime mover and load inertias.

Second, the load end prime mover inertias are fixed (Ip=51g )) and the torsional
springs K, and K,, which represent flexible couplings and shafts are varied. Figure
1.10 shows the variation in ; with changing K, and K,. Here wy; and wyy; are again
not affected, as expected. On the other hand, wj; is almost constant (which is nearly
equal to the value yielded by zero pnme mover and load inertias) up to a point and, it

starts increasing with increasing K. This indicates that the motor and load are isolated

from the geared rotor system when the in-between torsional elements are compliant
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Figure 1.9.  Effect of the prime mover inertia on the natural frequencies.
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enough, which is the case in most practical systems. Under these circumstances,

motor and load inertias can be neglected in the analysis.

1.5. REDUCED ORDER LINEAR TIME-INVARIANT MODELS

In this section, three different reduced order analytical models of the geared rotor-
bearing systems shown in Figure 1.1 will be developed and the conditions and system
parameters at which these simple models can predict the dynamics of the system
accurately, will be discussed. The finite element model of Section 1.3 will be

employed as a reference model to check the validity.

1.5.1. Single Degree of Freedom Torsional Model of Gear Pair
As the simplest model, a single degree of freedom (SDOF) model of geared rotor
systems shown in Figure 1.2 is considered. The shaft and bearing flexibilities and the

motor and load inertias are not considered in this model. This model can only predict a

single mode at a frequency w,, as defined in equation (1.3c) which corresponds to the
first transverse-torsional mode at wj . Here, 0;->@, when shaft lengths L;—0 and
bearings are very stiff. And, wy; and wy; are sufficiently beyond the operational speed
range and the variation in y is assumed to be negligible with shaft length as shown in
Figure 1.8. Therefore, in some cases, the SDOF model of Figure 1.2 can be used to
represent the system provided these conditions are met. For instance, for data set B of
Table 1.1 with Lg;=5 cm, a SDOF model can be utilized up to an operational rotational
speed of 6000 rpm which corresponds to the excitation frequency at 3000 Hz for
Ng1=30 teeth. As it is seen in Figure 1.8, only the first mode is observed and its

vaniation is not significant within 0S£Q2<3000 Hz and 0sL <S5 cm.
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1.5.2. Three Degree of Freedom Model

The SDOF model of Figure 1.2 is not adequate when the shafts and bearings are
compliant. To overcome this deficiency, a three degree of freedom (3-DOF)
transverse-torsional mode! as shown in Figure 1.11a is developed. Equation 1.4 gives
the equations of motion with dimensionless mass [M], damping [C] and stiffness [K]

matrices and displacement vector {q) given as follows:

1 0 0
[M]= 0 my) / mgy 0 ; (1.14a)
0 0 mgz/mcl
1 1 -1
Ch .
[Cl=—==| 1 (I+cpg/cp) -1 ; (1.14b)
Vknmg _s /
1 (1+Cb82 / Ch)
[ 1 1 -1
[K]= I (I+kyg /kp) -1 ; (1.14¢)
-1 -1 (1 +kpgy /kp)
{a}=[v. va1. a2 (1.14d)
0 d, »0,.9 Yo
u:_.g_l-—_._gz—g; y .=_g" i=],2_ (lldc.f)
2 ngl dgl

Here, ky,g) and kygy are equivalent lateral stiffnesses representing shaft and bearing

flexibilities, and cyg) and cpg; are equivalent viscous damping values. This model can
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Figure 1.11. Reduced order analytical models of Figure 1.1, a) three degree of
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accurately predict all three modes of interest as evident from Figure 2.8 and Table 1.3
where its predictions are compared with the results of FEM.

When the system is connected to the motor and load inertias, then the in between
torsional stiffnesses Kj and K, should be compliant enough to be abie to neglect the
effects of the motor and load inertias, as it is discussed earlier in Section 1.4.4. In
summary, the 3-DOF model shown in Figure 1.11a can be used to describe the
dynamics of the geared rotor system when: a) the shafts and bearings are compliant and
provided the shafts are short such that higher order bending modes of the shafts are out
of the frequency range considered, and b) the torsional stiffnesses of the connections in

between the motor and load inertias and the gear box are sufficiently compliant.

1.5.3. Six Degree of Freedom Model

A six degree of freedom (6-DOF) model as shown in Figure 1.11b can be
employed to represent the geared rotor-bearing system when the effects of the motor
and load are not negligible as mentioned in Section 1.4.4. Equations of motion are still

given by equation (1.4) and the dimensionless system matrices are defined as

1p/d2, 0 0 0 0 0|
0 Iy/di 0 0 0 0
1 0 0 l1,/d} 0 0 0
M]=— e "8 . : (1.152)
mg) 0 0 0 IL/dgl 0 0
0 0 0 0 my O
| 0 0 0 0 0 my;




Table 1.3. Comparison of typical modes obtained by FEM and 3-DOF models for set

B of Table 1.1; Lg;/dg=0.3.

Mode y
Vi Vi Y
Displacement FEM/3-DOF FEM/3-DOF FEM/3-DOF
9,1 -0.012/-0.011 -0.001/0.0 -0.210/-0.246
982 0.012/0.011 -0.001/0.0 0.210/0.246
Yg! 1.0/1.0 1.0/1.0 -1.0/-1.0
Y2 -1.0/-1.0 1.0/1.0 1.0/1.0
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FC )
= _%1_ 0 0 0 0
a2, d2,
cpv
(SLehy b 0 S _Sh
a2 4 4 2 2
1 Cy , CnVg C chpv cpv
(C]=T= -22--’. ) _...?2._ ._.____s_ -.;E
kpm; dgl 4 dsl 2 pi
G,
0 0
)
~symmetric - (Ch +Cpst)  ~Ch
L (Ch +Cps2)
(1.15b)
5 -3 0 0 0 o |
aZ dZ
(—l—(i'—+l‘L KnVe 0 L) _kn
ai, 4 4 2 2
kv kv kv
[K]"f‘ (—K—;-+-h—-5- -522- e Sh'g
d81 4 dgl 2 2
2 o 0
dgl
~symmetric - (kp, +Kpa1) ~kp,
o (kh +kb92)_
(1.15¢)
{q}=[ep’981’es2'91—~)’gl’)'gz] (1.15d)

For data set B of Table 1.1 predictions yielded by the 6-DOF model are compared
with those by FEM as shown in Figure 2.9 and Table 1.4. Based on these results, it
can be concluded that the 6-DOF model is accurate enough to predict the natural modes

of the system. Accordingly, 6-DOF model must be employed when the effects of the

motor and load are not negligible.




Table 1.4. Comparison of typical modes obtained by FEM and 6-DOF models for set
B of Table 1.1; Ly;/dgy=0.3, Ip/Iy=5.

Mode vy
Vi Vo Vi

Displacement FEM/6-DOF FEM/6-DOF FEM/6-DOF

Op 0.079/0.079 0.002/0.0 -0.018/-0.013

6,1 -1.0/-1.0 -0.005/0.0 1.0/1.0

8,2 1.0/1.0 -0.005/0.9 -1.0/-1.0

oL -0.079/-0.079 -0.002/0.0 0.018/0.013

Yl 0.006/0.006 1.0/1.0 0.391/0.451

Yg2 -0.006/-0.006 1.0/1.0 -0.391/-0.451
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1.6. CONCLUSION

In this chapter, a finite element model to investigate the dynamic behavior of
linear time-invariant geared rotor systems has been developed. The transverse
vibration of the system associated with shaft and bearing flexibilities and the dynamic
coupling between the transverse and torsional vibrations due to gear mesh have been
considered. Natural modes of the system have been identified and forced vibration
response due to both low frequency external and high frequency internal excitations
have been determined. Reduced order analytical models of the geared rotor bearing
system have also been developed. Three different linear time-invariant models (SDOF,
3-DOF and 6-DOF) have been suggested to represent the geared system. By
comparing results with FEM predictions, it has been shown that such reduced order
linear models are reasonably accurate. Therefore these models will be extended in
Chapters 11, III and IV in analyzing the effects of system non-linearities and time-

varying mesh stiffness.
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CHAPTER 11

NON-LINEAR DYNAMIC ANALYSIS OF
A SPUR GEAR PAIR

2.1. INTRODUCTION
2.1.1. Excitation Types and Backlash

The focus of this chapter is on the backlash non-linearity as excited primarily by
the transmission error between the spur gear pair. A gear pair is bound to have some
backlash which may be designed to provide adequate lubrication and eliminate
interference due to manufacturing errors. Backlash-induced torsional vibrations may
cause tooth separation and impacts in unloaded or lightly loaded geared drives. Such
impacts result in intense vibration and noise problems and large dynamic loads,
which may affect reliability and life of the gear drive [16,17]. Excitation mechanisms
can be grouped as follows:

A.Extemal Excitations; This group includes excitations due to rotating mass
unbalances, geometric eccentricities, and prime mover and/or load torque fluctuations
(18]. Although mass unbalances and geometric eccentricities can be reduced through
improved design and manufacturing, torque fluctuations are not easy to eliminare
since they are determined by the characteristics of the prime mover (piston engines,
dc motors etc.) and load [19]. Such excitations are typically at low frequencies hT

which are the first few multiples of the input shaft speed ﬁs. Practical examples

include rattle problems in lightly loaded automotive transmissions and machine tools

[19,20].
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B. Intemal excitations; This group includes high frequency —Qh excitations

caused by the manufacturing related profile and spacing errors, and the elastic
deformation of teeth, shafts and bearings. Under the static conditions, all such
mechanisms can be combined to yield an overall kinematic error function known as
"the static transmission error” €(t) [17,18]. This error is defined as the difference
between the actual angular position of the driven gear and where it would be if the
gears were perfectly conjugate [17,18,21-23). In gear dynamic models, €(t) is
modeled as a periodic displacement excitation at the mesh point along the line of
action [15,24-26] and its period is given by the fundamental meshing frequency
Q, =N Q, where N is the number of teeth on the pinion. Practical examples
include steady state noise and vibration problems in automotive, aerospace,

industrial, marine and appliance geared systems.

2.1.2. Literature Review

Experimental studies on the dynamic behavior of a spur gear pair with backlash
started almost 30 years ago and still continue {27-29]. As one of the better examples
of such experimicats, Munro [27] developed a lightly damped (damping ratio {=0.02)
four-square test rig to measure the dynamic transmission error of a spur gear pair.
He used high precision gears with rigid shafts and bearings, and showed
experimentally that the tooth separation takes place when the mean load is less than
the design load. Dynamic transmission error versus speed curves were plotted to

illustrate the steady state response and the jump phenomenon. Kubo [28] measured

the dynamic tooth stresses using a similar set-up in order to calculate the dynamic




factors. He also observed a jump in the frequency response of the gear pair with
backlash even though the test set-up was heavily damped ({=0.1).

Such experimental studies, though limited in scope, have clearly shown that the
gear pair dynamics can not be predicted with a linear model - see Ozguven and
Houser [14] for a detailed review of the linear gear dynamic models as available in the
literature. Although most of the non-linear mathematical models used to describe the
dynamic behavior of a gear pair are somewhat similar o each other, they differ in
terms of the excitation mechanisms considered and the solution technique used. For
instance, a large number of studies have focused on the rattle problem in lightly
loaded geared drives which are excited by the low frequency extermal torque
excitations [30-35]. A few investigators have included the static transmission error
excitation in the non-linear models [24,35-37].

The gear backlash non-linearity is essentially a discontinuous and non-
differentiable function and .. represents a strong non-linear interaction in the
governing difterential equation. This issue has been discussed by Comparin and
Singh [33] and they have concluded that most of the solution techniques available in
the literature can not be directly applied to examine this problem. Most of the gear
dynamic researcners recognized this problem implicitly, and therefore employed
cither digital or analog simulation techniques [19,24,29,35-38). For instance,
Umezawa et.al [29], Yang and Lin [32] and Ozguven and Houser [24] have solved a
one degree of freedom torsional model of the gear pair using numerical techniques.
Lin et.al. [38] included motor and load inertias in a three degree of freedom torsional
model. Kucukay [35] has developed an eight degrees of freedom model to include

the rocking and axial motions of the rigid shafts. In most of these studies, with the

exception of Umezawa's analysis [2G] which did not include any backlash, a




discontinuity has been seen in the frequency response characteristics. But many
investigators have typically joined two discrete points to show a broad jump in the
frequency response curve [24,35,38]. Some of these problems have been due to the
numerical simulation techniques which may not work or may result in misleading
answers if not ermployed properly. Such difficulties have been found by Comparin
and Singh [33], Singh et al. [34] and Gear [39-40] but are yet to be resolved or
addressed by the gear dynamics researchers. Accordingly, one of the major
objectives of this chapter is to examine whether numerical simulation techniques can,
in fact, be used to predict the dynamic response completely, and what precautions one
must take to develop such a mathematical model. Since Comparin and Singh [33]
and Singh ct al. [34] have examined the extemnal excitation problem, in this chapter
we focus mainly on the intemal excitation and see whether the numerical simulation
technique can be made to work for the prediction of the non-linear frequency
response characteristics.

A few researchers have artempied to obtain the analytical solutions for a gear
pair problem, based on the piece-wise linear techniques which divided the non-linear
regime into several linear regimes [41-43]. For instance, Wang [41 ,42] has used two
and three degree of freedom torsional models with backlash, and assumed that the
gear teeth are rigid and the driven gear has an infinite inertia. The governing
equations have been solved using the piece-wise linear technique. It should be noted
that the piece-wise linear technique gives only solutions for the equivalent linear
systems and one typically may have difficulties in combining such solutions [43].
Comparin and Singh [33] overcame these problems by employing the harmonic
balance method (HBM) and constructed analytical solutions for the non-linear

frequency response characteristics of a gear pair with backlash as excited by the
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external torque. In this chapter, we will use the same technique to examine the
internal excitation problem, and compare results with digital simulation and

experimental studies. Further literature review is included in subsequent sections.

2.2. PROBLEM FORMULATION
2.2.1. Physical Model

A two degree of freedom semi-definite model of the spur gear pair with rotary

inezc1as Igl and 182 and base circle diameters dgl and dgz as shown in Figure 2.1 is

considered here. The shafts and bearings are assumed to be rigid. The gear mesh is

described by backlash of 2b and by a ;ime invariant mesh stiffpess kp # kp (1)

when in contact and viscous damping ¢;. The equations of torsional motion of the

gear pair as shown in Figure 2.1 are

2 ,
d’e , , dglch(gﬂdagl i d_,de , _ﬁ)
Bl 2 2 U2 4t 2 4t dv
d, (dgl d , )
+-2—T Tegl-—z-egz—c(t—) =T81(t-) (2.1a)
29 d d do . d _de
. 9 g2 2°h{ 19981 %2 gz_d_s_)
82 2 2 \2 dt 2 dt  dt
d d d
__83-[_8_L e )__- -
> f 0" 982 e(t) )= Tsz(:) (2.1b)
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Figure 2.1.  Gear pair model.
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where Tgl(t)=Tglm+Tgla(t) and Tg2(t)=T32m+TgZa(t) are torques

on pinion and gear and f is a non-analytical function essentially describing the mesh

elastic force as shown in Figure 2.1. Here, output torque fluctuation Tg 5 (1) will
be neglected to simplify the dynamic problem, i.e. ’ng(f )= Tszm . Equations

(2.1a) and (2.1b) can be reduced to one equation in terms of G(t) which is defined

as the difference between the dynamic transmission ersror X(t) and the static

transmission error e(t).

d§  dg = da%e
mcl——7+chd—+khf( q(t)) = Fm+FaT(t)-mcgiT; (2.2a)

d
YD) =%(D) - &) = —- &l 0,,(1) - ‘ —5-0,,(D -8 ; (2.2b)

| a
cl = d2 d2 : mc2 = —d—l— y (2.2¢,d)
[ g! 82J g
a v,
2 2 2m.T (V)
S L d82m o G . 2“ ; (2.2¢.9)
gl g2 m ., gl
q(t) -b; G(t)>b
- f(q()) -
f(g(1)) = ——=10; -b<g(t) <b . (2.2g)
b gD +v; gD <-b
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where m_, is the equivalent gear pair mass, f:m is the average force transmitted

through the gear pair, F_(t) is the fluctuating force related to the ~xtemal input

torque excitation and f(G(t)) is the nonlinear displacement function. Equation
(2.2a) is nondimensionalized by letting q(t) =q(t) /b, ®@g,= N, kh/md ,
t=w,t and {= ¢,/ (2m_@,). Now, consider harmonic excitation for both
&(t) and F (1) as &t)=&sin(@ v +6 ), F (1) =F sin(Q 0 +¢)
where flh and ﬁ,r are the fundamental excitation frequencies of internal

displacement and external torque f{luctuations, respectively. Further, define

dimensionless excitation frequencies 2, = Q n/®oand Q.= Q 1/ @n
dimensionless external mean load F ;= F  / bk , » amplitudes of the dimensionless
intemal (F;(1)) and external alternating forces (Fo(t)) F .= F .7/ bk, and
F ., =€ /b and nonlinear displacement function f(q(t)) to yield the following

govemning equation of motion.

q(t) + 28q(v) + f(q(1)) = F(1) (2.3a)
F(t)=F, + FaT sin (QTI +¢T) + Fahni sin (th +¢b) (2.3b)
_ q(t) - 1; q(t) > 1
f
f(q(t)) = (q‘()t)) =40; -l<q(t) <1 (2.3¢)
q()+ 1; q(t) <=1 '
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2.2.2. Scope and Objectives

When only external forces excite the system, i.e. F,(1)=0, equation (2.3a)

reduces to

q(t) + 2Lq(t) + f(q(t)) =F _+F () =F + Fa‘r sin (Q'r' + ¢T) 2.4)

This equation has been solved both analytically and numerically by Comparin and

Singh {33]. Conversely, no analytical solution is available when the system is

excited by internal static transmission error at the mesh frequency £2,, which is
considerably higher than 2. The goveming equation is given by substituting

F.(t)=0 in equation (2.3a); note that the extemal mean load F, is not equal to zero.

d(0+ 2040+ £(q) =F p +F (0 =F +F 0 sin(Q,t+6,) (2.5

Both equations (2.4) and (2.5) include the clearance non-linearity. While
equation (2.4) represents the conventional represc :tation of the vibro-impact problem
[33,34], equation (2.5) is more applicable to the clearance problems in built-up
assemblies where the excitation is generated by the kinematic errors. This chapter
focuses on the steady frequency response characteristics of equation (2.5) which
represents a gear pair with backlash as excited harmonically by the static transmission
error excitation €(t) or Fy,. Specific objectives of this chapter are as follows:

1. Solve equation (2.5) numerically to resolve various modeling issues such as

the existence of multiple solutions, subharmonic resonances and chaos.
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2. Construct analytical solutions to equation (2.5) using the harmonic balance
method (HBM) which has been applied successfully to solve equation (2.4) by
Comparin and Singh [33].

3. Compare digital simulation and harmonic balance techniques and establish

the premises under which the jump phenomenon can be predicted.

4. Perform parametric studies in order to understand the effects of ¥, F, and
€ on the frequency response. Vary the force ratio f’:Fm/Fah which is a measure of
the load on the gear pair and compare the dynamic behavior for lightly and heavily
loaded gears.

5. Validate analytical and numerical solution techniques by comparing these
with previous experimental studies [27,28).

6. Compare the frequency response characteristics of equations (2.4) and (2.5),
and also examinc the possibility of finding overall response when both extemnal and

intemnal excitations are applied siraultaneously.

7. Consider the periodic static transmission error excitation case, i.e.

k
2 .
F)=Fn+F()=F+ Y (iQ,) F oy SINGQut+ 0,05 only the first
i=1
three (k=3) harmonics are included.

2.3. DIGITAL SIMULATION

Clearance or vibro-impact problems in single degree of freedom systems have
been examined by a number of investigators whose formulations are similar to
equation (4) - see Comparin and Singh [33] for a detailed review. Moreover, Shaw
and Holmes [43] and Mocn and Shaw [44] have considered an elastic beam with one

sided amplitude constraint subject to a periodic displacement excitation, and have
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shown experimentally and numerically that the chaotic and subharmonic resonance
regimes exist. Whiston [4547] has investigated the non-linear response of a
mechanical oscillator preloaded against a stop. He has solved the system equation for
harmonic excitation by digital simulation and studied the existence and stability of the
subharmonic and chaotic responses and the effect of preload on chaos. Similarly,
Ueda [48] has solved the Duffing's equation, q+ 2{q + q3 = F sin t, numerically
and defined the regions of different solutions on a { versus F map. According to
him, the existence of harmonic, subharmonic and chaotic responses depends on
values of { and F, and multiple steady state solutions typically exist. Thompson and
Stewart [49] have reviewed the available literature, with focus on the Duffing's
equation. It should be noted that equation (2.5) is differznt from the non-linear
differential equations considered by the above mentioned studies. Therefore,
equation (2.5) must be studied in depth as the results of the other non-linear equations
may not be directly applicable to our case.

First, we solve the goveming non-linear differential equation (2.5) numerically
using a S5th-6th order, variable step Runge-Kutta numerical integration routine
(DVERK of IMSL [50]) which is suitable for a strongly non-linear equation
[33,39,40]). Second, we investigate the existence of chaos and subharmonic
resonances. Since the steady state response of the system due to the sinusoidal
excitation is of major interest, it is necessary to run the numerical program for a
sufficient length of time. The number of cycles of the forcing function required to
reach the steady state depends on {.

A lightly loaded system (?’:Fm/Fah=O.5) with low damping ({=0.02) is

considered as the first example case. For F =0.1 and F;=0.2, the response q(t) is

coniputed over the frequency range 0 < €2, < 1.5. Figure 2.2 shows phase plane




plots q(t) vs. q(t) for different £, values. For £2,=0.3, all transients converge to
one periodic solution at the fundamental frequency 2, of the forcing function
irrespective of the initial conditions q(0) and q(0). Therefore, it is called a "period-
one, t, " attractor where tp=21t/Qh. But, in the case of {2, =0.5, three coexisting
period-one attractors have been found as shown in Figure 2.2. Here, q(0) and q(0)
define three steady state limit cycle solutions. For all initial conditions given by
-2<q(0)< 2 and -2<q(0)< 7, amap of the domains of attraction for each
steady state solution is obtained in the map in Figure 2.3. If a smaller increment is
used for the initial conditions, a finer resolution will be obtained. Hence each phase

plane plot shown in Figure 2.2 is strictly governed by a subset of the initial

conditions. Similarly, two period-one attractors are found at £2,=0.6. At £;=0.7,
besides two period-one tp attractors, two more solutions of period 3tp exist, i.e.
period-three attractors. But only a period-two 2tp attractor is seen when £2,=0.8.

Within the range 1.0 S Q2 < 1. 5, non-periodic, steady state or chaotic response is

observed. Figure 2.4 shows the chaotic time history and the Poincare map (strange
attractor) at £2,=1.0. These results are qualitatively, but not quantitatively, similar to
the studies reported on the Duffing's equation [48,49] and clearance non-linearity

(equation (2.4) type) [33].
It is concluded that the subharmonic response of period nty provided n # 1 and

the chaotic response (tp — o) are seen in the gear pair only for a certain set of
parameters F,, f‘, € and Q;. It must also be noted that the multi-solution regions

are strongly dependent on the choice of q(0) and q(0). Only one steady state

solution can be found via digital simulation when ordy one set cf initial conditions is

chosen at a given £, , and the rest of the steady state solutions are not predicted. This
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Figure 2.2. Phase plane plots of steady state solution q(t) for F =0.5, F,=0.1, £=0.02

and for different Q.h values; a) 2,=0.3, b) Q,=0.5, ¢) Qh=0.6, d) Q,=0.7,
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Figure 2.4. Chaotic response of a gear pair; F=0.5, F,=0.1, {=0.02 and Q,=1.0; a)

time history, b) Poincare map.
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results in an incomplete frequency response description. These issues will be
discussed further in Section 2.5.
A heavily loaded system with /l\==2. F,=0.1 and the same amount of damping

{=0.02 is considered as the second example case. Figure 2.5 shows the phase plane

plots for the same values of £ which are ured in the first example case. Unlike the

first example case, no chaotic responses are found here. All of the solutions are
period-one t, type for all £2,<1.0 and Figure 2.6 shows the typical domains of
attraction at £2,,=0.6. However, within the range 1.0 52, < 1. 5, one period-two
attractor co-exists with the period-one orbit. Hence the force ratio f’ determines the
existence of the chaotic and subharmonic responses. To illustrate this point, consider
chaos shown in Figure 2.4. As i\: and { are increased, significant changes in the
response are observed in Figures 2.7 and 2.8. A transition from the chaos to a
period-two, and then to a period-one steady state solution is seen when Fois
increased from 0.75 to 1.0 and then to 1.5. Similarly, an increase in { to 0.05
reduces chaos to a period-eight attractor, which then bifurcates to a period-two orbit
at {=0.1 as shown in Figure 2.8. Since most real geared systems are heavily loaded
with a high ,I\= chaotic and subharmonic responses should not be seen under the

normal driving conditions. This issue will be discussed again in section 2.6.

2.4. ANALYTICAL SOLUTION

An approximate solution for equation (2.5) is constructed using the harmonic

balance method (HBM). Assume that q(t) = qp +q, Sin(€2t + &) where q, and q,

are mean and alternating components of the steady state response, and ¢, is the

phase angle. Here, higher harmonics of the response are not included in the analysis.
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Figure 2.5. Phase plane plots of steady state solution q(t) for F=2, F_=0.1, {=0.02 and
for different £ values; a) ,=0.3, b) £2,=0.5, ¢) Q,=0.6, d) £2,=0.7, ¢)
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The quasilinear approximation to the nonlinear function f(q) with the excitation

F()=Fy+F.()=F+ Fahﬂzh Sin (2t + ¢ ) is in the form [33,51]
f(@) =N pdm+ Noq,sin(@ t+6,)+Nyg cos(Q,t+9,)  (2.6)

where the describing functions N,,, N, and N{ are defined as:

2x
N, 2T'qm {)f(qm +q, sin ¢)do ; (2.7a)
1 2r
No= Zqo {)f(qm +q, sin @)sin ed@ ; (2.7b)
1 2
N, = Tqo J£(qq +q, sin @)cosode ; @= Q t+ ¢, (2.7¢c,d)
0

Equation (2.3b) is substituted into equations (2.7a), (2.7b) and (2.7¢) to obtain

q
N_=1- ﬁ[g(m—g(v-)] . N,=1- —-[h(y,,\ +h(y-)] ; (2.8a,b)

N: =0 . Yi = q, (2.8¢,d)

where
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g(v)={%(78m"v+\/l-72): Ivis1

; (2.8¢)
Ik IM>1
2( . _
ff(sm ly+y-\/1—yz); Ms1
h(y) =4 : y<-1- (2.8)
11; y>1

Comparin and Singh [33] used truncated series expansions for functions g(y) and
h(y) given by equations (2.8¢) and (2.8f). They stated that the error involved in
using truncated series is within 6 percent when only the first two terms are considered
with the coefficient of the second term adjusted to yield the actual value for y=1.

Using the same approach, one gets

g(y) = %(l +(£§—2)Y2) ; h(y) = i‘('Y - (f;_n)ya) v Mst (2.9a,b)

and obtains the following frequency response by substituting equations (2.6) into

equation (2.5) and equating the coefficients of like harmonics:

Fahnfl Fm
q,= = = > 7 Qm =W ' (2.10a,b)
2 2
/(Na—nh) +(260))
2(;(1b
¢r=¢h_tan"l 5 (ZIOC)
Na—ﬂ;1
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Depending on the damping ratio { and the parameters F, F; and Q which
define the excitation, there are three cases at which different solutions are obtained:
(a) no impact (no tooth separation), (b) single sided impacts (tooth separation, but no

back collision), and (c) two sided impacts (back collision).

Case I: No Impact ; The tooth separation (impact) is not observed in a geared
system if the displacement q(t) lies in the region q(t)>1 all the time. This condition,

shown in Figure 2.9 as case I, can be described mathematically as
|Qm+Qa|>l and |‘1m—Qa|>l (2.1

Then, for no impact region in which the conditions defined by equation (2.11) are
satisfied, the describing functions are given by

=1 (2.12a,b)

m L]

T S
Nm=1-g.

Substitution of equations (2.12) into equations (2.9) yields the following goveming

equations for no impact case

2
F_Q
ah b
Qg = > —=, q =Fp+l; (2.13a,b)
2 2
ﬁl—ﬂb) +(26Q,)
rido
0, =0,—tan~! > |- (2.13¢)
1-Q




no impact (I)

— single sided
- B et )

double sided 29,
impact (I) *—

Figure 2.9. Nlustration of different impact regimes.
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Hence, whe.: there is no tooth separation, the system is linear and the mean and

alternating components of the response, q,, and q,, are uncoupled from each other.

The transition frequencies from the no impact (linear) regime to the other non-linear

regimes where tooth separation occurs are found by substituting q, = |4, — 1| into

the equations (2.13a) and (2.13¢) as

2

(1-2c2)i](1-252)2“(“(;%J]
e - (2.14)
(7))

where 2,, and £2,, are the transition frequencies from no impact to single sided

Q

impact regimes below and above resonance, respectively.

Case 1I: Single Sided Impact ; Mathematically, the single sided impacts (tooth

separation without back collision) are observed if

A +q,> 1 and 'qm_qal<l : (2.15)

As illustrated in Figure 2.9 as case 11, the solution remains in the region q(t) > — 1.

The describing functions satisfying equation (2.15) are in the form

9an
Nm= 1- ir

mil

(Y. - 8(1-)]; Na=1=3{I+h(y)] . (216ab)




Substitution of equations (2.10a) and (2.10b) into equations (2.16a) and (2.16b)

gives the describing functions for the single sided impact case:

N, =1+ -2%3:—1]-{;2:—[1+(“;2)(7_)2]-(y+)} ; (2.17a)
N,=1- 2(ln—an"‘“) [1-(55)an7 (2.17b)

Then equations (2.9a), (2.9b) and (2.9¢c) with the describing functions given by
equations (2.17a) and (2.17b) define the response of the system in the single sided
impact region. In this case, it is hard to find closed form expressions for transition
frequencies from single sided to double sided impact regions. The validity of the
solutions, obtained by solving equations (2.9) and {(2.17) iteratively, should be
checked. If the solution does not satisfy equation (2.15), then single sided impacts

are not seen at that particular frequency.

Case III: Double Sided Impact : The double sided impact case exists if q;, and

q, are such that the following conditions are satisfied:

q,>[1-q,| and q,>|1+q,] (2.18)

Figure 2.9 (case III) shows the double sided impact case at which g, is large enough

when compared to q,, so that back collision is observed. The describing functions
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for this case are obtained from equations (2.8a) and (2.8b) under the condition given

by equations (2.19):

2
2(m - 2) 4| 1 4a-my\{1+39m
N,=1- TQ:IIT . N,=1- i‘{qaﬂl —-( y) ){—_"“'—qim (2.19a,b)

The solution for the double sided impact case is obtained by solving equations
(2.9) and (2.19) numerically. The validity of the solution, again, should be examined
by using the conditions defined by equation (2.18), as it is done in the single sided
impact case.

The solutions of all three regimes are combined to obtain the overall frequency

response of the gear pair. Figure 2.10 illustrates typical g, versus {}, and g, versus

Q, plots. All three impact regimes are shown on these plots. Also we note the

frequency region where multiple steady state : olutions are obtained.

2.5. COMPARISON OF TWO SOLUTION METHODS

First, we validate the approximate analytical solutions of equation (2.5) by
comparing predictions with the results obtained by digital simulation. Again, two
example cases (a heavily loaded system and a lightly loaded system) are considered
and the frequency response curves q, versus £, and q, versus £, are generated.
Figure 2.11 shows the frequency response for the heavily loaded system with 'l\:=2.
F,,=0.1 and {=0.05. Numerical and analytical results agree very well as both predict
amplitudes and the transition frequencies for case I (no impact) and case I (single

sided impact) regimes, and both show that the double sided impact solutions do not

exist. These results demonstrate that the analytical solutions are indeed correct fur the
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heavily loaded system. Now consider the lightly loaded system as the second
example case with ,!\==0.5, F,=0.1 and {=0.05. From Figure 2.12 we note that
while case I and case II solutions as yielded by both solution techniques are very
close to each other, case III regime is predicted only by the analytical expressions.
Why is case III not predicted by the digital simulation? To answer this consider the

following:

a) In digital simulation, several sets of q(0) and q(0) must be tried to find all

of the steady state solutions within a multi-valued region, for instance

06=Q, <0.7 in Figure 2.11 and 0.4 < Qh < 0.7 in Figure 2.12. When q(0)
and q(0) are kept constant for each &, or if the steady state solution of the previous
frequency is used as the basis for the initial conditions for the next frequency
considered, only one of the solutions can be found while missing the other(s).
Figure 2.13 illustrates this point as the steady state solution of the previous frequency
is used here for the initial conditions at each £2,. Using this procedure, case II
solutions within the multi-valued regions are missed. Therefore, whenever digital

simulation is used to solve the equation of motion, dependence of the steady state

solutions on q(0) and q(0) must be taken into account to avoid the risk of obtaining

an incomplete frequency response description.

b) In the case of Figure 2.12, no initial conditions governed by case III are

found by the digital simulation within the range of initial conditions — 2 < q(0) < 2
and —2 < q(0)< 2 we have considered. Conversely, the analytical method

predicts this regime as the issue of initial conditions is irrelevant here. To illustrate
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this, first we consider the case of Figure 2.3 with %=0.5, F,=0.1, £{=0.02 and
£2,=0.5. Figure 2.14a shows the domain of attraction governed by case III within
the range =2 <q(0)< 2 and -2 < g(0) < 2 with a q(0) or q(0) increment of
0.2. Here, aimost half of the initial conditions considered define case III solutions.
Therefore the chance of having a double sided impact solution at £,=0.5 is
considerably high. Now, increase the damping to {=0.03. Onrce again a case III
regime is predicted analytically, but the number of initial conditions corresponding to
case HI is not sufficiently high like the case of {=0.02. In the digital simulation, the
transient solution will converge to case 1 or case II solution unless the initial condition
cormresponds to one of those shown in Figure 2.14b for case I[II. And the limiting
case is reached when {=0.04, while holding the other parameters the same; now no
initial conditions corresponding to case III are found. Obviously there might be
initial conditions, out of the range considered, which correspond to the analytical
results. Therefore the existence of case III solutions should be checked numerically
by searching the entire range of initial conditions as defined by the physical

considerations of the system.

2.6. PARAMETRIC STUDIES

Frequency response amplitudes, transition frequencies and the existence of
various impact regimes depend on F,, F and £. Therefore, a set of parametric
studies using analytical solutions of section 2.4 will be presented here; same results
can be duplicated by the digital simulation technique. First we examine the effect of
F,, and f’ while holding the damping ratio { equal to 0.05. Figures 2.15 and 2.16
compare results for four different /l'\-' values obtained by varying F,;, for a given

A
F,,=0.1. Both gears maintain complete contact with each other when F is very
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large, say /l\’=10 in Figures 2.15a and 2.16a. Consequently the dynamic system is
linear and the mean q,, and altemating q, components of the torsional motion are
uncoupled as expected. However, for /l\==2, no-impact regime (case I) can not cover
the whole frequency range and a region around the resonant frequency is diciated by

the single sided impacts (case I). Away from the resonance, over the range given by

Q.h>0.8 and ﬂb<0.7, solutions are single-valued, whether case I or case II solutions.
Conversely, near the resonance given by 0.7<£2, <0.8 dual-valued solutions are seen
in Figures 2.15b and 2.16b. And sudden discontinuities are observed, i.c. a jump
up at ,=0.8 and a jump down at 2,=0.7. When % is reduced further, double
sided impact (case Ill) solutions start to appear in Figures 2.15¢ and 2.16c. Now, the
frequency range of interest can be divided into the following four regions: i) case I,
2, <0.4; 1) case I and case IIT , 0.4<€2,<0.6; iii) all three cases, 0.6<€2; <0.625,; and
iv) only case I, £2,>0.625. Region (ii) disappears at % >0.5.

Next, we vary F by changing F_ for a given F,, =0.05. This set of
parameters does not yield any double sided impacts (Case III). Again, the tooth pair
does not lose contact when F is large enough, say ?210 and only the linear
solutions exist as shown in Figure 2.17a. But when /1\7 is lowered to ,I:'=4, 2and 1,
the response is non-linear which is compesed of cases I and II as shown in Figures
2.17b-d.

Next we examine the role of damping ratio { on the frequency response in Figure
2.18, given F =0.1 and F;;=2. Double-sided impacts are found at a low damping
value {=0.025 as shown in Figure 2.18a. When ( is increased to 0 0S5, case III
solutions rio longer exist and case I and case 1l solutions define the frequency

response completely. The jump-up and jump-down transition frequencies in Figure

2.18b are distinctly apart. With an increase in {, transition frequencies approach each
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other which narrows the dual-valued solution region. At {=0.1, the frequency
response is single valued and the jump-up and jump-down transitions in Figure 2.18d
take place almost at the same frequency. Finally, like the linear systems. the damping

ratio also lowers the amplitudes in the non-linear resonance regime.

2.7. EXPERIMENTAL VALIDATION

Our analytical solutions of Section 2.4 will be compared with the experimental
results of Munro [27] who used a four-square test rig to measure the dynamic
transmission error x(t) of a spur gear pair. High precision spur gears with
manufacturing errors much smaller than tooth deflections were selected. Pinion and
gear were identical with 32 teeth, face width of 12.7 mm and diametral pitch of 4.
Tooth profile modifications were applied to obtain a minimum (but not zero) €(t) at
the design load of 3780 N. Other components of the set-up including shafts,
bearings and casing were made as rigid as possible in order to simulate the
configuration shown in Figure 2.1. X(t) was measured for a range of gear mesh
excitation frequencies under different mean loads Fm . Some of the key parameters
were not specified by Munro [27]. For example, it was stated that some additional
inertias were added to the gears to shift the primary resonant frequency within the
operational speed range, but the specific values of such inertiz were not given. It
was also reported that the damping ratio { varies with load "in a rand~m mannes".

Also, backiash was not measured or reported. Therefore, in our study, we estimate

the damping ratio ({=0.0175) and the resonant frequency ® , by considering the

)
design load case a: which onlv linear t cnavior is seer;, time-invariant mesh stiffness is

assumed in the mo<Zel. The same vaiue of  1s used at cach discrete load Fm and a

backlash value of 2b=0.1 mm is assume-l in our model.
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Figures 2.19 to 2.22 compare measured and predicted frequency response of
the dynamic transmission error X(t) , on a peak to peak basis, at the design load and
at 1/4,1/2 and 3/4 of the design load, respectively. As shown in Figure 2.19, both
analytical and experimental results indicate that teeth maintain contact at the design
load and hence the system behaves as a linear system in spite of the backlash. This is
because the static transmission error €(t) is minimum at the design load which
results in a large force ratio F_/F,, say 50. However, when the mean load Fm is
lowered to 3/4 of the design load which corresponds to a larger static transmission
error €(t), tooth separation takes place. Consequently we note a jump in the
frequency response a- shown in Figure 2.20 for both analysis and experiment. This
Jump phenomenon is more noticeable at 1/2 and 1/4 of the design loads as shown in
Figures 2.21 and 2.22, respectiveiy. Our theory matches very well with Munro's
experimental results [27] in spite of the lack of knowledge of some relevant
parameters.

As the second example case, the experimental results of Kubo [28] are
considered and compared with our theory. Experimental results and the relevant
system parameters are extracted from a recent paper by Ozguven and Houser (24] and
the excitation e(t) is calculated using a spur gear elastic model {21]. Kubo

designed a four-square spur gear test rig which was heavily damped ({=0.1). He

measured dynamic root stiesses Oy and then estimated the dynamic factor Dg as
DS=od/os where o is the static tooth root stress. However, in several other studies

[16] the dynamic factor is defined as the ratio of the dynamic mesh load -Fd to static

mesh load F_ , given by DL=l_:d/Fm=Fd/Fm=(2C€|(t)+f(q(l))/Fm-

Note that D, is equal to Dg when the change of the moment arm due to a change in

contact point is neglected. Figure 2.23 shows the envelope of dynamic factor Ly
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measured for eight different teeth pairs and D; spectrum computed using the
analytical solutions of Section 2.4. Here, at most of the frequencies, our predictions
are not within the measwied envelope, but the transition frequency and the amplitude
at the jump discontinuity are predicted accurately. There might be several reasons for
the discrepancy including the usage of D; instead of Dg, the validity of the
computer model used to calculate €(t), insufficient knowledge of some system
parameters such as profile modifications, and the assumptions made in developing
our theory such as the time invariant mesh stiffness. Therefore the experimental data
is not exactly analogous to our analytical predictions even though a satisfactory
agreement is found. Obviously our theory should be refined in order to obtain a
better agreement with Kubo's data; for instance, time-varying mesh stiffness may be

included.

2.8. COMPARISON OF EXCITATIONS
2.8.1. Internal versus External Excitation
First, we assume that only one type of excitation exists at a time and compare

the frequency response characteristics of the system due to the internal static

transmission error sinusiodal excitation F;(t) given by equation (2.5) with the extemal

sinusoidal excitation Fe(t) given by equation (2.4). The comparison is based on the
analytical solutions which are constructed in Section 2.4 for equation (2.5) and in
Reference [33] for equation (2.4). In the case of intenal excitation, the amplitude of
the alternating force has a sz term: which makes the alternating force amplitude
frequency dependent. This amplitude Fabﬂi is smaller than F,,, for £2, <! and

greater than F . when Q>1. Hence the overall altemating force amplitude ratio

&3




Fonl Fahﬂi varies with Q, even though £ Fp/ F is kept constant. In the
case of extemal excitation, the force amplitude ratio ?:Fm/FaT is frequency
independent.

Figures 2.24 and 2.25 compare the frequency responses for four values of F
given F_=0.1, Q, =Q=Q and {=0.05. When F is sufficiently large, say F 210,
only case I solutions corresponding to the no-impact (case I) exist. Accordingly both
excitations result in the linear system responses which are close to each other for
£2<1; but for Q>1 there is a difference which grows with increasing frequency Q as
shown in Figure 2.24a. When % is reduced to 2, both case I and case Il regimes
exist; the difference between two excitations is again significant at higher £2 as shown
in Figure 2.24b. The transition frequencies also diffcf, and a larger range of dual-
valued solutions is seen for equation (2.5). Case III solutions are witnessed at lower
values of /!\’ (1 and 0.5) as shown in Figures 2.25a and 2.25b. While equation (2.5)
always has a case i1 regime at low §, equation (2.<) does not produce case | at
/l\:=0.5. Another important observation from Figures 2.24 and 2.25 is that up to two
steady state solutions are seen in the external torque excitation case; conve.sely as
many as three solutions are found for the geared system excited by the static

transmission error.

2.8.2. Periodic or Combined Excitation

_The approximate analytical solutions given in Section 2.4 are constructed only

for a single harmonic internal excitation term e(t) or F,(t). However, in the real
geared systems, €(t) or F,(1) is a periodic which can be represented by a fourier

series of the fundamertal frequency €2;,. Therefore, it is necessary to consider the
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higher harmonics of F(1) besides the fundamental component which is already

included in the analysis. On the other hand, both external F,(t) and internal Fi(t)

excitations may exist simultaneously. These two cases require that F(t) in equation

(2.3) be refonmuluted as follows

k
F()ymFp+ Fe()+ Fi(t)= Fry + )) I:nTjsm(jnTt'M’Tj)

J=1
d 2
+,§'1 (i) ijsm(Jth+¢hj) (2.20)

In order 10 construct analytical solutions of this equation, we must investigate
the applicability of the principle of superposition, which would consider first each
excitntion separately and then superimpose the corresponding responses to generate
the overall frequency response. Two cases are considered and the analytical results
based on the principle of superposition are verified through digital simulation.

Conwider only the static transmission error excitation F(t) in equation (2.20)

3
with 3 harmonics, ie. Fot) and F()=F, + ¥ (jﬂh)2 Fanjsin(j€yt + ¢pj). The
J=1

amplitudes of the harmonics are nelected to be F . ,=0.05, F,,,=0.02 and F;,=0.01,
and the mean force F=0.1. First each excitation component is considered separately
without paylng any attention to the phase angles and the frequency responses are
obtnined using digital simulation ss shown in Figure 2.26. Second, all there

exchtjons wre included simultancously and the overall response is compared with the

previous solutions i Figure 2.20. The frequency 1esponse due to cach harmonic of




the excitation is very close to the overall solution around the resonance peaks
governed by that harmonic. When all of the soiutions corresponding to each
harmonic are added algebraically by also considering the phase angles, the overall
response improves as shown in Figure 2.27. This response is in the form
3 .
q.() = '}:1 qajs'm(th +¢)hJ) where Uy 1s the alternating dispiacement when only
j=
the j-th harmonic 1s considered. Figure 2.27 suggests that the principle of
superposition can be applied tc a gear pair with backlash provided that the excitation
frequencies are sufficiently far apart from each other. In the case of periodic static
transmission excitation, this 1s valid as all excitation frequencies are at least £, apar.
Now, the principle of superposition, which has been already verified by digital
stmulation, can be used to obtamn the approxunate analytical solutions per Section 2.4

when the penodic forcing function is considered. Figure 2.28 shows the analytical
frequency response curve for F =0.1, F,;;=0.05, F;;,=0.02, F,;,=0.01 and
£=0.05. Here the jump discontinuity is seen only at the peak ,, govemed by Fani
since F /F,» and F_ /F 1 are both sufficiently high so that no tonth separation

occurs at £~ and €2, ;. respectively. However, the ‘nmp phenomenon can also be
seen at the higher harmonics depending on the force ratios Fm/Fahj- j# 1 and { in
accordance with the results of Section 2.6. The same concept can be applied to the
superhammonic components of the external torque excitation of equation (2.20)
provided Fahjz()'

The principle of superpositio. 1s now extended to the case where both intemal
F;(1) and external F (1) sinusoidal excitations exist sunultaneously as given by
equation (2.3) provided that the excitation frequencies £2), and €2 are not close to

each cther. In areal geared system, £2; is much higher than £ which implies that
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the principle of superposition should be suitable for this case Figure 2.29 illustrates
the frequency response solutions due to the fundamental hannonic componcnt of both
excitations for F =0.1, F; ;=F,1,=0.05, {=0.05 and by assuming that Q=2 .
Here, the jump discontinuity 1s seen at two frequencies. However, when 2 = Q T
or when one of the superharmonic peaks of F,(t) coincides with the resonant peak
governed by F (1), the principle of superposition will no longer be applicable. In
such cases, we will use the digital simulation as the analytical mierpretation of these

cases Is yet to be explored.

2.9. CONCLUSION

This analytical study on the non-linear dynamics of a spur gear pair with
backlash as excited by the static transmission error has made a number of
contributions to the state of the art. First, difficulties associated with the digital
simulation technique have been resolved as multiple steady state solutions at a given
frequency can be found provided the entire initial condition map is searched. Second,
new trequency response solutions for the gear pair have been constructed using the
method of harmonic balance. Third, our mathematical models have been validated as
these compare well with two previous experimental studies and the key parameters
such as the mean load, mean 10 alterﬁating force ratio, damping and backlash have
been identified. Forth, the chaotic and subhammonic resonances are observed if the
mean load is too small for a lightly damped system. Fifth, mathematical conditions
for tooth separation and back collision have been established which are compatible
with available measured data. Sixth, the periodic transmission error excitation case
has been analyzed using the method of harmonic balance in conjunction with the

principle of superposition. Finally, on a more fundamental note, our study enriches



the current literature on the clearance non-linearity or vibro-impact systems as the

governing non-linear differential equation is different from the conventional single

degree of freedom system formulation.




CHAPTER 111

NON-LINEAR DYNAMIC ANALYSIS A GEARED ROTOR-
BEARING SYSTEM WITH MULTIPLE CLEARANCES

3.1. INTRODUCTION

Mathematical modeling of geared rotor-bearing systems, being an essential step in
designing quiet and reliable power transmissions, has been the subject of numerous
studies over the past few decades. Most proposed dynamic models, as reviewed by
Ozguven and Houser [14], are essentially linear. However in several cases, it has been
experimentally shown that the geared systems exhibit non-linear behavior [27-29.35).
For instance, vibro-impacts are observed in a lightly loaded transmission with gear
backlash or loose bearings [30,31,34]. Accordingly, we must develop non-linear
mathematical model of the geared system - this is main focus of this chapter with
emphasis on the clearance type non-linearity in gears and rolling element bearings. In
Chapter 1I we had considered the single degree of freedom non-linear model of a spur
gear pair with backlash and investigated the effects of system parameters on the
vibrations and chaos excited by the static transmission error. Applicability of the
hammonic balance method and digital simulation technique to the solution of the steady
state response has been demonstrated, and difficulties associated with the digital
simulation technique when applied to such systems govermned by stiff non-linear
differential equations have also been resolved in Chapter II.

Although there is a vast body of literature which considers a single degree of

freedom system with clearances, as reviewed earlier in Chapter II, studies on the multi
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degree of freedom vibro-impact systems are very limited. For example, Galhoud et.al.
{52] considered a two degree of freedom translational system with a gap and found the
forced harmonic response using the piecewise linear technique. Winter and Kojima
[53] also used the same technique to study the geared systems with backlash.
However, it should be noted ti.at the piecewise linear technique can not predict several
non-linear phenomena such as subhain.:~nic and chaotic responses since it employs the
assumption that both impact and no-impact regimes "are repeated in an identical manner
once every period of excitation” [52]. Kucukay [35] developed an eight degree of
freedom model of a helical gear pair with backlash to include the rocking and axial
motions of rigid shafts and radial deflections of linear bearings. Lin et.al. {38] included
motor and load inertias in a three degree of freedom torsional model. Both of these
studies employed the digital simulation technique, but did not consider a number of
issues of primary concern in non-hinear system such as the existence of multiple steady
state solutions, their dependence on tnitial conditions, subharmonic, quasi-periodic and
chaotic responses, ctc. A few of these 1ssues have been addressed by Singh et.al [34]
on the gear rattle problem. Comparin and Singh [54] have also used the digital
simulation, anaiog simulation and harmonic balance method to analyze coupled impact
pairs assuming that the modss are "weakly coupled”, which allows the system to be
represented by a combination of single impact pairs. They included only the low
frequency external torque excitation and found .ne steady state frequency 1esponse at
the primary resonance. This solution has then been used te analyze the neutral gear
probllcm in more detail {551

The other two groups of studies which consider multi-degree of freedom systems
with continuous non-linearities [56-61] and periodic excitations due to mesh stiffness

variations {29,62], will not be addressed here since their responscs are significantly
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different from the clearance non-lineaii.. s as discussed by Compann and Singh [33].

The literature on chaotic vibrations and rolling element bewtings will be discussed later.

3.2. PROBLEM FORMULATION
3.2.1. Scope

Figure 3.1 shows the generic geared sysiem considered in this study. It consists
of a spur gear pair mounted on flexible shafts which are suppo:*ed by rolling element
toarings assembled in a rigia gear box. Since the shafts and bearings are comphant,
cur single degree of freedom model of spur gear pair which assumes fixed gear centers
is obviously not suitable. Instead, a thyee degree of freedom non-linear model as
shown i Figure 3.2a 18 considered. It includes equivalent stiffness and damping
elements representing the shaft and the bearings. The corresponding linear model has
been found to be sufficiently accurate when compared with a finite element model for
eigen solutions provided that the gear dynamic response (mesh force, dynamic
transmission crror, etc.) is of major concern. Gear backlash and radial clearances in
bearings are defined analytically. An approximate ncon-linear bearing model is also
proposed. Applicability of both analytical and numerical solution techniques to ti 's
problem is investigated. Several key 1ssues such as non-linear modal interactions and
differences between intemal static transmission error excitation and external torgue
excitation are discussed. Parametric studies are conducted to understand the effect of
system pr ameters such as bearing stiffness k;, to mesh stiffness ky, ratio

k = ky,; / k,, , alternating to mean force ratio F/F,; and radial bearing preload to mean

force ratio Fy/F,;, on the non-linear frequency response. A criterion 1s used to classify
Jdie steady state solutions, and the conditions for chaotic, quasi-periodic and

subharmonic steady state solutions are detennined. Two typical routes to chaos
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observed on a geared system are also identified. Finally, our formulation is vcrified by

comparing predictions with measurements {27].

3.2.2. Physical Model and Assumptions

The three degree of freedom non-linear model of the geared rotor system with
gear inertias 1y and I,5, gear masses my; and my,, and base circie diameters dg; and
dgy, as shown in Figure 3.2a, is considered here. The gear mesh is described by a
non-linear displacement function f, and viscous damping c,.  Friction forces at the
mesh point are assumed to be negligible [18]. Thus the transverse vibrations in the
pressure line direction are uncoupled from the vibrations in the direction perpendicular
to the pressure line. Bearings and the shafts that support the gears are modeled by
equivalent elements with viscous damping coefficients ¢y, and ¢y and non-linear
springs defined by force-displacement functions fy,, and fy,;. The effects of the prime
mover and the load inertias are not considered assuming that these inertial elements are
connected to the gear box through soft torsional couplings. Furiher, we assume that
the system is symmetric about the plane of the gears and the axial motion (parallel to the
shafts) 1s n=gligible. Like the spur gear pair model of Chapter Il, both low frequency
external excitation due to torque fluctuations and high frequency internal excitations due
to the static transmission error €(t) are considered in the formulation. Input torque
fluctuation is included, but the output torque is assumed to be constant, i.e.

Ta1(D) = Tyym + Tg1a (D) and Tg2(1) = Tyam. Extemnal radial preloads ) and Ry, are

also applied to both rolling element bearings.
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PO =X(1)+ Y5 (1) -T2 (D) -E(1) ; (3.2a)

mgl 0 0 Ygl(i) Chi 0 Ch yél(i)
0 mg2 0 S"'s'z(i\ +{0 cp2 -cp 'y-éz(i)
-mg mg mg || prD) 0 0 ]| O

kyy 0 ky fbl(ygl) --Isbl
+ 0 kyy —kp [{fo2(Fg2)p = Fp2 . (3.2b)
0 0 l(h fh(].—)) -Fm - mclE”(f)+l_:a-r(i)

A dimensionless form of equation (3.2b) is obtained by letting
ygi()) = gi(0)/ be, pPH=P(D)/ b, 0n=+kp/mey, @y = [kpi/mg (i=1,2) and
t = w,t where b, is the characteristic length. Here, we consider harmonic excitation for
both &(f) and F,1(t) as &(t) = &sin(Qyt + ¢y, ), For() = Fypsin(Qri+ ¢1) where 0y,
and Q7 are the fundamental excitation frequencies of intemal displacement and extemnal

torque fluctuations, respectively. Further, define dimensionless excitation frequencies
Gy, = Qy /w, and Qf = ﬁT / ®q to yield the following dimensionless goveming

equation of motion.

1
0
-1

0 K¥ga(t)p+2[0 Lyp =823 Ryga(t)

0 0]|¥u(®) Cin 0 &3 ||ya®
1
1 pay 0 0 &)l pw

ki1 0 xp3 || ferlygn)
+HO0 x22 -x23 [{fe2(yg)r={F)}; (33a)




{Fw) = {F),, +{F), +(F0),

~Fy1 0 0
=4 By p+{ 0 psin(Qpt+0p)+4 0 Pain(Crt +67);(3.3b)
Fm F,,,Qf, Far
—Sni . L Y —<h . 33
= ; = 1=],2; . D, C.d.e)
Qu Zmon 3= 2 ion Sl s {
2
k=SB e _..u. Fy = _%L w12 (3.3Mg.h)
wh Mgy De Wy
F'_" - —jm-_.z,. : F!h - E' F"-] =2 — P -3 (3'3‘0j0k)
mgy bewy be meibg (1),,

where Fy; (i=1,2) and Fp,, are the dimensionless coinponents of the mean force vector
{F)m, and Fg1 and Fy, pertain to the alternating external excitation {F(t)), and Internal

excitation {F(t)}, force vectors, respectively.

3.2.4, Modceling of Non-linearities

The non-linear displacement functions fyi(yg), i=l1, 2 and f},(p) In equation
(3.3a), which represent the bearing radial and gear mesh stiffnesses, respectively,
should be defined explicitly before solving the non-linear equations. Here, fj(p) in,
defined as a clearance type dead spuce function with a backlash 2by, and lincar time-

invariant mesh stiffness of one, in the dinensionless form
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fh(p)=40; -En<p<2h-. (3.4)
bc b,

p+h;  pe-2h

be be

For the i-th rolling element bearing, radial force ﬁyi versus displacement ¥

relationship under the static loading condition is defined as [63-65)

H n -
ki },l(y,. cosQL, "bbi) coso,,; ¥gi > boi
e

Pyl(ygi)" 0. ~ bpi <y‘, < by; 3.5)

H n
-k Xlu?g.'cusu, - bb|) CO8 0, Vg <—bui
[ ]

t

where kqj is the inner contact stiffness, a, is the angular position of the r-th rolling
element in contact, 2by, is the radial clearance of the i-th bearing, n is the power of the
non-linear force displacement relationship (n=1.5 for ball bearings and n=10/9 for
roller bearings) and 11 is the total number of rolling elements in contact under loaded
conditions. Now the dimensionless bearing displacement function fy(y ) of equation

(3.3a) is obtained from equation (3.5) as
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fpi(ygi) =

Figure 3.3 shows

H by n b
. - —bi .y —bi
cos Q. cosao, ; >
rEI(Ygx T b, ) r Ygi b
k;be bc b. (3.6)
H bs; n b
- - bi . —bi
cos COosO;, <=

\ r§l(|y9‘ ' c) ‘ '8 be

the non-linear function fg;(yg;) for a roller bearing with n=10/9,

k,=1x108 N/m!0/9, total number of rollers Z=15 and by,=0.01 mm. In Figure 3.3, we

note almost a line

ar relationship for large displacements, say yg;>3by,;/b.. Since the

degree of non-linearity is not very significant, equation (3.6) can be approximated by a

piece-wise linear function, similar to fi,(p) given by equation (3.4), in order to simplify

the analysis considerably. Figure 3.3 also illustrates two linear approximations A and

B beyond the clearance for fbi()’gi) in the form

foi(ygi) =

Note that both app

by bpi
Ygi — —bil; Ygi > —bbc_l
0, -le<ygi<Ebi-. 3.7)
b, be
Yoi + P—Qi—; Yoi € tlbl
L bC bC
roximations A and B differ in clearances by 4 and bbiB but have the

same slope as the exact bearing stiffness curve for ygi>3by,;/b., i=1,2, which is unity in

the dimensicnless form. The validity of these approximations will be given later.
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2.3. CORRESPONDING LINEAR MODEL

As a limiting case, equations of motion of the corresponding linear system are

obtained by substituting fy,;(yg;) = ygi , for i=1 and 2, and f,,(p) = p in equation (3.3a)

1 0 0][¥u® S 0 &3 ][yet®
0 1 OR¥ea()p+2[0 L =83 [jyga(t)
R ¥ 0 0 Caflpm

LS T 0 xi3 Ygl(t)
+ 0 X33 =23 [iyga(t)p ={F()} (3.82)

or in the matrix form with {q(t)} as the displacement vector

[MJg(t)} +[Clq(t)} +[K]{q(t)) = (F(t)) (3.8b)

where the mass [M], damping [C] and stiffness [K] matrices are all positive definite.

These matrices are asymmetric due to ygy and ygy terms in the last row of matrix

equation /3.8a). For this linear system, the mean and altemating components of the
motion can be separated by letting ygi(t):‘ygim"’)'gia(t)' i=1,2 and p(t)=p,+palt).

Hence, equation (3.8a) is rearranged in terms of the altemating motion as

(M]{@, (D) +[CHG, (D) +[K(q,a (1)) = (F(1)); +{F(t))e (3.9

The natural frequencies ®, and the modes {Y,} are calculated by considering the

corresponding eigen-value problem. The forced harmonic vibration response is then
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obtained by the modal expansion technique in the following form

3 YALAN 2 .
{(qa())= % r ! 'Fath sin(2pt + ¢4 )
e |(m$-ﬂ§)+jnhc,]

3 T
+8 W poldn@peter), j=vET (3.10a)
r=1 |(W¢ -QT)+_|QTC,]
=) TICNYS): 5=t TS (3.10b)
Ors OB 0 res '

‘Table 3.1 shows the natural frequencies of the three degree of freedom linear
system given by equation (3.9) and the ones found by finite element method for three
different k = ky; /ky, values with mg;=1 kg, 1,;=0.0008 kg/m2, dgi=0.08 m,
§;=0.01, §3=0.0125, §33=0.05, i=1, 2 and k;,=2x108 N/m. As evident from Table
3.1, the three degree of freedom and finite element models {15] result in virtually the

same natural frequencies. This concludes that the three degree of freedom model is

indeed suitable for the geared-rotor bearing system. The first y; and third y; natural
modes are coupled transverse-torsional modes while ) is purely transverse type [15].
The second natural mode y; is not excited by €(1) in this particular case, since the gear
ratio v g=dgo/dg) is one for a symmetric pair. Therefore only two peaks should exist in

the frequency response spectrum which will be presented in Section 3.5.
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Table 3.1. Natural frequencies of the corresponding three degree of freedom (3-
DOF) linear model .
k=kp; /kp
S 5 10

Vr ®r  3.DOFFEM! 3.-DOFFEM 3-DOF/FEM

first transverse- g 0.396/0.402 0.500/0.512  1.262/1.275
torsional coupled

purely transverse o 0.758/0.795  1.118/1.157 1.475/1.560

second transverse- Wy 0.880/0.930 1.581/1.692 1.796/1.868

torsional coupled

t

Finite Element Method (FEM) from Reference [15].
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34. TWO DEGREE OF FREEDOM SYSTEM STUDIES
3.4.1. Equations of Motion

As a first example, we reduce the three degree of freedom transverse-torsional
semi-definite model to a two degree of freedom non-linear model. This is obtained by
clamping one of the gear centers as shown in Figure 3.2b, i.c. one of the transverse
displacements is assumed to be zero, say yg1=0 which physically corresponds to a
system with one gear gl mounted on a rigid shaft which is supported by very stiff
bearings while the other gear g2 is assembled with compliant lumped shaft and

bearings. Equations of motion of the reduced order system are obtained from equation

(3.3a) by letting y,=0.

[1 O]{ygz(‘) +2 §22 —§23 {5’22(1)
1] p) 0  Caa i p(t)

X -K fi,5( )
402 B {"2 k). G
0 1 fi.(p)

The intent here is to simplify the physical system in order to investigate several
key issues in depth. Specifically, the objectives arc to: a) justify using approximate
bearing models proposed in Section 3.2.4 by comparing the frequency responses
excited by €(t), b) show applicability of the harmonic balance method (HBM) to solve
non-linear system equations and compare its predictions with the results yielded by the
digital simulation technique, c¢) study interactions between system non-linearities for
both weakly and strongly coupled modes, and d) compare the steady state frequency
response spectra due to internal static transmission error excitation (F(t)}; and extemnal

torque excitation {F(t)},.
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3.4.2. Solution

Both analytical and numerical solution techniques which we have used
successfully for the spur gear pair problem are employed again to solve equation
(3.11). First, approximate analytical solutions are constructed using the harmonic
balance method [33,51] with only the bearing non-linearity assuming no gear backlash,

i.e. by,=0 or f,(p)=p. For the harmonic excitation given by equation (3.3) , we assume

p(l)=pm+pasin(ﬂht+¢p); Yg2()=Ygom +¥g2asin(Qpt +¢,5)  (3.12ab)

where subscripts m and a represent mean and altemating components of the steady state
response, and ¢, and ¢, are the phase angles. The ron-linear bearing function is

approximated as

f52(¥g2) = NmYgam + NaYg2a sin(€pt +67). (3.13)

where Nip=Np,(¥Yg2m.yg2a) and No=Na(ygom.yg24) are the describing furctions which
are given in Chapter II; these need to be defined for ea h impact regime (no inipact,
single sided impact, double sided impact). Governing frequency response equations
are obtaineC by substituting equations (3.12) and (3.13) into equation (3.11) and

equating the coefficients of like harmonucs:

LA% + (202252 )Z]Q%Fah
a= == ,
vA

P (3.14a)
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A= (-QpKa3A; + Q00000 + ny A + 40505, A,)?

+H(-200800K 03 = 288234, +2Q4823A% +8Q1L50)7 . (3.14b)

Ay =xpN,-Qf  Ay=1-Q}: p.=F,: (3.14c,de)
2 . 2 1/2
& (K3 = 4Q802,523)° +(2Q4822%23 + 208234

2 +K23Pn

Yg2m = XN, (3.14g)

The overall frequency response is obtained by solving equation (3.14) numerically for
each impact regime separately.

Second, the digital simulation technique is used to sclve equation (3.11) for no
gear backlash. A Sth-6th order variab'e step size Runge Kutta numc.ical integration
algorithm [50], which has already been employed successfully in solving similar
problems. is used here. Figure 3.4 compares frequency response spectra obtained
using the hammonic balance method and digital simulation. Although both methods are
in a very close agreement for the case considered in Figure 3.4, one should be aware of
the following: (i) several problems may exist in the application of the numerical
integration method to the clearance type problems, hence caution must be exercised,
and (ii) the harmonic balance method is incapable of predicting chaotic and
subharmonic responses. Accordingly for further analysis, we will use only the digital

simulation technique.

112



a)
¥
£
H
b)
(]
8
£
-y
§
Figure 3.4,

3
o digital simulation
& HBM
: ?
2 |
@
‘-.i
I : e‘°b.
) rf‘ )
Y o u%a
o ~poggost g
0 o0oal® . 29900002gy4
0 1
6
"0 digital simulation
4 HBM
A
0
Po
68
3t I b
° @
R S
s “og )
o2 900000,
a
Ownnh:nﬂaaa "
v 1
frequency

Comparison of harmonic balance method and digital simulation technique.
Fn=1.0, Fa4=0.5, Fy3=0, by=0, by,=b, $33=0.05, §;3=0.0125

£27=0.01, k = 1; a) Yg2a Versus £, b) p, versus ;.



4.3, Validation of Non-lncur Bearing Model

We examine the validity of two approximutions for fy(y ). as suggested in
Section 3.2.4 and shown in Figure 3.3, by assuming bywt) and F 1m0, Equation
(3.11) is solved using the digital simulation techniyue, given F'pel.0, I',m0.08,
Fpaw0, §2390.01, §33m0.05, §23=0.0128 and K3;wx33%0.29, for three bearing models
(exact, approaimations A: by whyseb, approximation B: byy,, 1.0y, %1.03b)
Figures 3.5u and 3.5b compare y gy, versus &1y, and py versus 63), specien for all thiee
bearing models. Both approximations are in a very close sgiezmem with the el
bearing model over the entlre frequency range. ‘The frequency and the amplitude of the
jump at the first peak in predicied accurntely by both approatimate models  Hence we
conclude that the approximate piecewise linear model can be used for s bewring withou

losing any accuracy and the dynunic behavion i not sennitive to the minos vaistiom in

bearing clentunces by,

Md.d, Non-tinenr Modul Interactions

Although both natural modes of the corresponding Hnear model nre trmnverse-
torsional coupled modes, Nirst mode Yy v more depend=nt on transverse vibiations than
the second peuk. Accordingly, it is expected that bearing non-lneasiies should affect
the first peak directly while gear buckinshy should dominste the second peak in Figue
3.4, The validity of this claim depends on the nature of non-linearities and system
parameles values, as lumrated below.

'Fim, a act of paraneters v selecied so thar natural frequencles wy and wyy of the
corresponding Hiew nywtem are far away from each other: wp=0 437 and w1 144
(o1 Kpp0.28, nyyalh. 25, §2=0.01, §340.0128, und §3yw0 08, Frequency reaponse

characterintion of the system with s forcing function, Fy w10 and Py 0.8 are evaluated
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Comparison of frequency responses obtained by using the exact and
approximate bearing displacement functions given in Figure 3.3;
Fmel.0, Fap=0.5, Fp2=0, by=0, bpa=b,, §33=0.05. §23=0.0125.
§2220.01, k = 1; a) Yg2a versus £y, b) p, versus £y,
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for the following three cases: a) no gear backlash, by,=0, non-linear bearing, by;=b; b)
gear backlash, by=10b_, linear bearing, by;=0; and ¢) gear backlash and non-linear
bearing with b,=10by,=10b,. In the last two cases, gear backlash is taken to be 10
times the bearing clearance as it is a typical order of magnitude value for many geared
rotor systems supported by roller bearings. Figures 3.6 and 3.7 show the frequency
responses, ygy, versus L2y and p, versus 2, respectively, for all three cases given
above; also superimposed is the linear trequency response curve for comparison
purposes. As shown in Figure 3.6a and 3.7a, a jump discontinuity is observed at the
first peak only for case a. In the case with only gear backlash non-linearity, jump is
seen at the second peak while the first peak is continuous as shown in Figures 3.6b and
3.7b; this supports the claim of torsional mode dominance of the second peak. Finally,
when both non-linearities are inclvded simultaneously, both peaks become non-linear
as shown in Figures 3.6c and 3.7¢. For such a system, natural modes are essentially
"uncoupled” and the interactions between component non-linearities are rerligible. In
summary, for case a of Figures 3.6a and 3.7a, a linear model can b i-cen .0 predict the
frequency response beyond wj , say Q> 0.6. Similarly, a linear mndel could be
suitable for case b for £2;,<0.8 as shown in Figuies 3.6b and 3.7¢c. But for case ¢, a
linear model is suitable only far away from the resonances.

Second, choose a dataset, say x77=0.64, x53=0.10, {;22:0.01. §23=0.0125, and

C33=0.05. such that two natural frequencies for the corresponding linear system are

brought closer to each other: w=0.720, w;;=1.101. We again consider the same cases
a,b and ¢ and compare the frequency response for F;;=2.0 and F,;,=0.5 in Figures 3.8
and 3.9. Here, cach non-linearity affects both modes, resulting in jumps at each peak.
Therefore, for this set of parameters, modes are considered to be "coupled” because of

dynamic interactions. Accordingly both non-linearities must be included
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simultaneously in the dynamic model.

3.4.5. Internal versus External Excitation

Here we will apply only one type of excitation at a time and compare frequency
response characteristics of the system due to sinusoidal excitations {F(t)}; and {F(t)},
in equation (3.3a). Here, only the bearing non-linearity will be considered assuming
no tooth separation, by=0. In the case of internal excitation, amplitude of altemating
component is dependent on Qﬁ. Conversely, the amplitude of alternating extemal force
is frequency independent. Therefore, for a constant force ratio F,;/F,,, i=h,T, the
overall amplitude ratio D22 F /F,, for intemal excitation varies with excitation frequency
whereas the overall amplitude ratio F,1/F, for external excitation remains constant
similar to the single degree of freedom model of Chapter II.

Figures 3.10a and 3.10b compare ygy, versus £ and p, versus {2 spectra for
0,=02,=Q, F=1.0, Fp=F,;,=0.5, Fpy=0, $5,=0.01, §,3=0.0125, £;3=0.05 and
K37=K33=0.25. As shown Figures 3.10a and 3.10b, both excitations yield the same
values at £2=1.0 since Fm/FaT=Fm/QzFah at £2=1.0. For £2>1 the internal excitation
gives larger amplitudes than the external excitation, but the converse is true for £2<1.
Another important difference is that for increasing {2, there are twe jumps ( a jump-up
from the no-impact regime to the double sided impact regime at £2=0.3 and a jump-
down from the double sided to the single sided impact regimes at £2=0.4) for the
external excitation; but the double sided impact regime is not seen in the intemal
excitation case and only one jump from the no-impact to the single sided impact is

found at £2=0.35.
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Pa versus £2),.
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3.5. THREE DEGREE OF FREEDOM SYSTEM STUDIES
3.5.1. Classification of Sieady State Solutions

The steady state response results excited by intenal force {F(t)}; at each
frequency €2, have been categorized into the following five groups: (i) harmonic o1
nearly harmonic solution at the same period t,=27n/Q), as that of forcing function
(period-one), (ii) non-harmonic period-one solution, (iii) subharmonic solution with
period nty, n>1, (iv) quasi-periodic solution, and (v) chaotic solution (non-periodic,
n — o). The solution classification criteria are based on time histories, phase plane
plots, Poincare maps and Fourier spectra {66-71]. Figures 3.11 through 3.15 illustrate
different types of steady state solutions obtained from the three degree of freedom non-
linear model of Figure 3.2a. As shown in Figure 3.11, period-one, non-harmonic
solutions have a non-circular (non-elliptic) phase plane plot and repeat themselves at b
Figure 3.12 shows the time histories, phase plane plots and Poincare maps for a 2,
subharmonic solution. In this case, the Poincare map consists of two discrete points.
Similarly, the 6tp (ultra)subharmonic response has six points on the Poincare map as
shown in Figure 3.13. Figure 3.14 illustrates a typical quasi-periodic response
(combination oscillations) which consists of two or more "incommensurate”
frequencies [66,67]). Quasi-periodic solutions result in closed orbits on the Poincare
map as shown in Figure 3.14c. The chaotic responses which are defined by a non-
periodic time history and as many points as the numter of cycles considered in the
analysis on the Poincare map are illustrated in Figure 3.15. Figures 3.16a-e show the
FFT spectra corresponding to the time histories given in Figures 3.11 to 3.15. For
period-one non-harmonic solution of Figure 3.11, corresponding spectrum has peaks at
mo where @ is the fundamental frequency and m is a po.itive integer, as shown in

Figure 3.16a. The nt, subharmonic solutions contain peaks at the frequencies mw/n.
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For instance, spectra of the 2tp and 6t solutions of Figures 3.12 and 3.13 have peaks
at frequencies mw/2 and mw/6 respectively in Figures 3.16b and 3.17a. The quasi-
periodic solution of Figure 3.14 consists of two fundamental frequencies ®; and w, at
a ratio ®, / W; =8 (an irrational number) and there are peaks at the combination
frequencies mw,;+rw,, m,r=0,%1,£2.... Finally, a characteristic broad band
spectrum is obtained in Figure 3.18 when the solution as shown in Figure 3.15 is

chaotic.

3.5.2. Routes to Chaos

In Chapter I, we had investigated the effect of mean load F,, and damping { on
chaotic response of a gear pair. It has been shown that chaos typically exists in
lightly damped and lightly loaded gear pairs. Now, two different routes to chaos for

the three degree of freedom system are illustrated.

A, Period-Doubling Route to Chaos : This consists of a sequence of bifurcations

of the periodic response to another periodic response with twice the period of the
original response due to a change in one of the system parameters [66, 68-70]. Figures
3.19 10 3.23 demonstrates this with a change in excitation frequency Qy, given F,=0.1,
Fap=0.05, Fpi=0 i=1,2, §;,=8,,=0.01, §,3=8,3=0.0125, §33=0.05, x,,=x5,=1.25,
K13=K33=0.25, b.=by, and bp;=0, i=1,2. At £;,=1.500, with zero initial conditions,
we note a tp harmonic solution in Figure 3.19. This tp solution bifurcates to 2tp
subhammonic solution in Figure 3.20 when €2y, is reduced to £2;,=1.48. Furthennore at
{2,=1.44 a 4t solution is obtained which is further transformed to a 81, response at
2,=1.402 as shown in Figures 3.21 and 3.22 respectively. At Q=14 however the

steady state solution becomes chaotic as evident from Figure 3.23. Also note from
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Figure 3.11. A non-harmonic period-one response; F,=1.0, F;,=0.5, F,2=0, by,=0,
bpa=b, £33=0.05, {;1=8~1=0.0125, §;;={5,=0.01, k=5, Q,=0.6; a)

time histories, b) phase plane plots.
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Figure 3.12. A period-two subharmonic response; Fp,=1.0, F;;,=0.5, Fy>=0, b,=0,
p2=be. $3320.05, §13=02,=0.0125, §;;=C25=0.01. k=5. ©,=0.85.
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Figure 3.13. A period-six (ultra)subharmonic response; F =10, Fyu=0.5, Fpp=0,
bp=0, bpo=be, £33=0.05, §11=(21=0.0125, §;;=02,=0.01, k=5,
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Figure 3.15. A chaotic response; Fp=1.0. F3;,=0.5, Fya=0, by=0, byo=b., {11=0.085,

§13=823=0.0125, §;;=(;,=0.01, k=5, 2;,=0.85.
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Figure 3.16. FFT spectra of yga(t) for the responses given in Figures 3.11 to 3.12 a)
period-one, b) period -two.
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Figure 3.17. FFT spectra of yga(t) for the responses given in Figures 3.13 t0 3.14 a)

period-six, b) quasi-linear.
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Figure 3.18. FFT spectra of ygzl(t) for the chaotic response given in Figure 3.15
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spectra of Figures 3.19 to 3.23 that the single peak spectrum is transformed to a broad
band spectrum corresponding to chaos through period-doubling.

Quasi-periodic Route to Chaos; In this case, instead of going through the

period doubling, the response undergoes a sequence of Hopf bifurcations with a
change in a system parameter. First a quasi-periodic response and finally a chaotic
response are obtained [66,71]; Figures 3.24-3.27 shows such a route to chaos. 3tp
solution at £2;=1.1 bifurcates to a quasi-periodic solution when £2y, is increased to 1.2
as shown in Figure 3.24 and 3.25. A further increase in 2, to 1.3 yields a deformed
closed orbit Poincare map as shown in Figure 3.26. It is then transformed to a chaotic
strange attractor at £2,=1.4 in Figure 3.27. Similar observations are evident from the
Fourier spectra shown in Figures 3.25-3.27; the spectrum consists of combination
frequencies for the quasi-periodic solution, but it finally changes to a broad band

spectrum characteristic of chaos.

3.5.3. Parametric Studies

The three degree of freedom non-linear model of Figure 3.2a is used to study the
effect of several system parameters such as the stiffness ratio, k= ky /ky i=12,
radial bearing preload to mean load ratio, Fy,;/Fp, (i=1,2) and altemating load to mean
load ratio Fy/Fp, on the non-linear dynamic behavior. A geared rotor-bearing system
of one-to-one gear ratio (vg=1) with mg;=1 kg, 1;;=0.0008 kg/m?, d;;=0.08 m, i=1,2,
and mesh stiffness k,=2x108 N/m is selected. Five percent mesh damping and one

percent bearing damping values, which are somewhat realistic [72,73], are used, i.e.

§11=522=0.01, §,3=5,3=0.0125 and $33=0.05. Both non-linearities are considered

separately in this parametric study. The case when both bearing non-linearities and
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Figure 3.19. Frequency doubling route to chaos; F,=0.1, Fan=0.05, Fy3=0, by=b,.
bp2=0 {33=0.05, §;3=033=0.0125, §j=§2,=0.01, k=5; period-one
response at £2,=1.5.
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Figure 3.20. Frequency doubling route to chaos; Fp=0.1, F;,=0.05, Fy2=0, by=b,.

bp2=0 §33=0.05, §;3=821=0.0125, {;,;=;,=0.01, k=5: period-two
response 1t £2,=1.48.

135



’ Ww“wnwnwﬂw“w“w"@

-.10
-.10 Ygl(t) 0.10
3 FFT spectrum
0.05 10
» b3
v ¢
yg1(t) Lol )
l [N
-.10 -3l I “ll
-.08 }'gl(t) -.C4 10 o, 1.0

Figure 3.21. Frequency doubling route to chaos; Fu=0.1, F;5,=0.05, Fy2=0, by=b,

bpz=0 §33=0.05, {;3=023=0.0125, {;;=572=0.01, k=5; period-four
response at 2,=1.44.
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Figure 3.22. Frequency doubling route to chaos; F,=0.1, F,;,=0.05, Fy,=0, by=b,,
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Figure 3.23. Frequency doubling route to chaos; Fry=0.1, F33,=0.05, Fy2=0. by=b,,
bp2=0 §33=0.05, {11=023=0.0125, §;;={;2=0.01, k=5; chaos at
Qp=14.
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backlash exist simultaneously is not considered here as it has already been examined in

Section 3.4 using the two degree of freedom model.

A._Gear Backlash, Linear Bearings: For the non-linear model of Figure 3.2a with
linear bearings (by,;=0), by, is used as the characteristic length b.. Figures 3.28a and

3.29a show yg14(£2y)and p,(£2p) spectra respectively for the soft bearings (k =1) with
Fy=0.1 and Fy,/F\;=0.5. Here y,o, spectrum is not included since yg,=yg2, (yg1(t)=-
yg2(t)) for a une-to-one gear ratio. As evident from Figures 3.28a and 3.29a, y,, at
the first peak is larger than that seen at the second peak. Conversely, p, is much lower
at the first peak, implying that first mode is dominated by the transverse vibrations
whereas the second mode is dictated by the torsional vibrations for soft bearings. This
corresponds to a large dynamic bearing force Fgp; = ky,;yg;, but a small dynamic
transmission error (p(t)+e(t)) around the first natural frequency. Jump phenomenon is
observed only at the second peak which is governed by the gear mesh where the
excitation e(t) is applied. This indicates that for k =1 the modes are weakly coupled.
Accordingly the gear mesh non-linearity, which forces the second peak to be non-
linear, does not affect the linear charactenistics of the first peak. However the modal
coupling becomes stronger with an increase in k as evident from the jumps seen at both
peaks in Figures 3.28b and 3.29b for k=5 and Figures 3.28¢c and 3.29c for k=10.
Torsional vibrations start to dominate the first mode, and the second peak shifts upward
and it may eventually move out of the operationa! speed range. Therefore, for a large k
value associated with stitf shafts and bearings, a single degree of freedom torsional
model as used in Chapter Il should be sufficient. Another effect of a large k is that the
nt, subharmonic solutions replace some of the harmonic solutions as shown in Figures

3.28b,c and 3.29b.c.
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Figure 3.28. ygi, versus Qy, plots for Fp,=0.1, F,,=0.0%, Fpi=0. bp=b.=0.1,
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Figure 3.30. yj, versus y, plots for Fp,=0.1, Fp;=0, b,=b=0.1, bpi=0 £13=0.05,
€l3=§23=0.0125. §“=§22 =0.01, k=1; a) Fah=0.05, b) Fah'_'l’O;

harmonic, o period-n subharmonic, e quasi-periodic or chaos, —=-——
corresponding linear response.

146




a)
3
£
=%
§
b)
3
£
=
g

Figure 3.31. p, versus Qy, plots for Fp=0.1, Fy=0.05, Fp;=0, bp=b.=0.1, by,;=0, a)
k=1, b) k=5, ¢) k=10; o harmonic, o period-n subharmonic, e quasi-
corresponding linear response.

04

0.2}

0.0
0 1
08
A
'\
{
o | .“ °
'Il’ [ \\ o
04 ooa / O\\ o.‘

0.0

periodic or chaos,

frequency

147




Figures 3.30a, 3.31a and 3.30b, 3.31b examine the effect of load ratio for
Fa/Fn=0.5 and 1 respectively with F,=0.1 and k=1, The frequency response is
well-defined and dominated by the harmonic solutions for Fg,/Fp,=0.5. However
when Fp/Fy, is increased to 1, the region beyond £2=1.0 becomes strongly non-linear
consisting of subharmonic, quasi-periodic or chaotic responses. This was also seen for

the gear pair model.

B. No Gear Backlash, Non-linear Beagings: Now consider the same system with

b,=0 and non-linear bearings described by the approximate model given in Sections
3.2.4. Results are presented for both roller and ball bearings separately since the radial

clearance in a ball bearing is much smaller than that typically found in a roller bearing

with the same inner and outer race diameters, say bbimuu - IObbi,,,"' For each case,
by; 18 used as the characteristic length b

Figures 3.32 and 3.33 show the steady state frequency response plots for the
roller bearings of by;=0.01 mm (i=1,2), for three different k= ky, /Ky, values. As
shown in Figures 3.32a and 3.33a for soft bearings (k = 1), two modes of interest are
weakly coupled, and therefore the jump phenomenon is seen only at the first peak
which is dictated by mostly transverse vibrations. Here, the bearing non-linearities
affect the transverse dicplacunentey g and y o which makes the first mode non-linear,
The second peak is more dependent on the modal interactions. Here, again all of the
solutions are purely harmonic and only no impact and single sided impact regimes
exist. However, an increase in k introduces chaotic and subharmonic responses as
shown in Figures 3.32b,c and 3.33b,c. For instance, all the solutions within the range
0.6<£2;,<1.7 are non-hamonic for k =10, the frequency response is no longer well

defined and modal coupling is sufficiently strong so that jump discontinuities are
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observed at both pcaks.

A decrease in F;,/F,;, enhances the degree of the non-linearity as shown in
Figures 3.34a,b and 3.35a,b. At F /F ;=1 in Figures 3.34b and 3.35b, the responses
within 0.5<€<1.4 are scattered and non-harmonic. However radial preloads Fy, on
bearings should help the mean load F,,, in limiting the effect of non-linearities. To
prove this claim, we apply a high radial preload to both bearings, say F,= R, i=1.2,
corresponding to Fy,;=0.25 for F,=1.0 in the dimensionless form, and compare results
with the previous case of Fy,;=0 in Figures 3.34a,c and 3.35a,c. Figures 3.34c and
3.26¢ show that most of the subharmonic and chaotic solutions of Figures 3.34a and
3.35a are replaced by harmonic solutions. Hence a well defined frequency response
curve with clear jump discontinuities is obtained by applying Fy,;.

Now, replace roller bearings with ball bearings with b.=by;=0.001 mm and again

investigate the effect of k = k,; /k, in Figures 3.36 and 3.37. With soft bearings

(fc = |) the frequency response is linear (no jumps) which indicates that there are no
impacts within the frequency range considered as shown in Figures 3.36a and 3.37a.
However at a larger value of k , double sided impact solutions appear since the
clearance 2by,; is very small. In Figures 3.36b and 3.37b for k=S5, the frequency
region of 0.65<€2,<0.8 consists of the double sided solutions. When k is increased
to 10, the same behavior is also seen at the sccond peak as shown in Figure 3.36¢ and
3.37c. The earlier discussion on the effect of Fy,/F,, and Fy;/Fy, for roller bearings is

also applicable to the ball bearings as well.

3.6. EXPERIMENTAL VALIDATION
Munro's experimental dynamic transmission error results {27}, which were

acquired in 1962 using a four-square spur gear test rig, have been used earlier to
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Figure 3.32. Ygia Versus Qy, plots for the case of roller bearings: F,=1.0. Fy,=0.5,
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150




amplitude
ki
S
/"

b) 6
T
[¥] ,,‘ [ ] ¢
© 1t [ ]
£ 3 0 A
— p t \
g‘ l' 1 / D\\
o\ I %
DA.I \ /
l ! .o\a ° .// \w:
. s
0 1 2
c) 6
]
]
1
[
[ [}
'g " || o o
2 3f |\ o
;-a [} \‘ ° o °o..
g ,‘ \ O /\\
o\ \
a
I A I AO..\\ II ODD}’
'\‘\
0 — =/
0 1 2
frequency

Figure 3.33. p, versus €1, plots for the case of roller bearings; F,=1.0, F,,,=0.5,
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validate the spur gear pair model of Chapter II assuming that the modes are weakly
coupled with each other. Now, we use the threc degree of freedom non-linear model of
Figure 3.2a to analyze his test set-up [27]. In our analysis, bearings are assumed to be
linear since they were highly preloaded, only gear backlash non-linearity is considered
with 2by=0.12 mm [74). Table 3.2 lists the system parameters used in equation (3.3a)
under four different mean loads. The system damping ratios are assurned to be uniform
at each load. Average mesh stiffness ky, and alternating load F,), values associated with
cach mean load F, are also tabulated in Table 3.2.

Figures 3.38 through 3.42 compare dynamic transmission error predictions with
the measurements [27]. At the design load (DL), which corresponds to the minimum
static transmission error, good agreament is seen except for the jump discontinuity
found experimentally at the second peak. In our model, we have increased Fyy, slightly
beyond the value given in Reference [27], so that the predicted amplitude of the first
linear peak matches very well with the experiment. Such slight changes in critical
system parameters such as F,p, and §, although they are varied within the experimental
uncertainties, may alter the frequency response drastically as illustrated in Figures
3.39a and 3.39b. In Figure 3.392 we note that when we reduce the force ratio F,,/F,;,
from 30 (th= value given in Reference [271) to 10, a jump discontinuity at the second
peak is seen which is compatible with the experiment. Similarly, a small change in the
damping values, which are not reported in Reference [27], also affects the frequency
response as shown in Figure 3.39b. Figures 3.40 to 3.42 compare the dynamic
transmission error spectra at 3/4, 1/2 and 1/4 of the design load. From these spectra we
conclude that our proposed theory agrees well with the experimental resuits of Munro
[27) bo.! jualitatively and quantitatively, although amplitudes in the off-resonance

regions are slightly off. Such amplitudes are close to the noise floor in the experiment.
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Table 3.2

Parameters of the Munro's experimental set-up extracted from Reference

[27).

Mean load, F,
designload(DL)  3/4 of DL 1/2 of DL 1/4 of DL
0.183 0.146 0.105 0.0579
Fan 0.00581 0.0178 0.0296 0.0393
kp, (N/m) 1.16x109 1.16x109 1.16x109 1.16x109
kg, (N/m) 3.44x108 3.22x108 3.01x108 2.72x108
X1, K22 0.950 0.966 0.983 1.007
K13, K23 0.242 0.242 0.242 0.242
STROT A 0.01 0.01 0.01 0.01
Ci3. L2att 0.00375 0.00375 0.00375 0.00375
a5ttt 0.015 0.015 0.015 0.015

T

modified so that the linear peak matches with the measured value.
tt  estimated using the experimental data of Reference [27].
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Further, discrepancies between the theory and the experiment may be due to the
assumptions made in this study. It should however be pointed out that the experiment,
even though it was very precise, was conducted almost three decades back before the
advent of modern non-linear dynamics and chaos science [66-71]. Interestingly,
Munro [27] had also reported subharmonic responses at 3/4, 1/2 and 1/4 of the design
load, and "unrepeatable responses” (probably chaos) at 1/4 of the design load. Our
results agree with such experimental observations as well. Both experiment and theory
show that the chaotic solutions dictate the frequency response beyond the second

resonance for 1/4 of the design load in Figure 3.42.

3.7. CONCLUSION

This analytical study on the non-linear dynamics of a geared rotor-bearing system
with gear backlash and bearing clearances, as excited by the intemal static transmission
error and/or external torque pulsations, has made a number of contributions to the state
of the an. First, an approximate non-linear model of the rolling element bearings with
clearances has been developed and validated. S=cond, our mathematical model has
been validated as it compares well with a previous experimental study, and several key
parameters such as the mean load, mean to alternating force ratio, radial bearing
preload, bearing stiffness and damping have been identified. Tbird, conditions for the
chaotic and subharmonic resonances, and the routes to chaos have been identified.
Forth, non-linear modal interactions have been examined. Finally, on a more
fundamental note, our study enriches the current literature on coupled vibro-impact

pairs {52,54,55].
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CHAPTER 1V

INTERACTIONS BETWEEN TIME-VARYING MESH STIFFNESS
AND CLEARANCE NON-LINEARITIES

4.1. INTRODUCTION

Dynamic models of geared systems can be classified into four main groups. The
first group includes tincar time-invariant (LTI) models, as evident from an extensive
review of the literature given in Reference [14]). The second group considers linear
time-varying (LTV) mesh stiffness k(1) in the analysis [27,29.62). Pericdic variation
in ky (1) is due to the changing of the number of conjugate teeth pairs in contact during
the convolute action. Accordingly, the system is excited parametrically as well as by
the static transmission error €(t) introduced by kinematic errors and tooth deflections.
In this case, the equation of motion of the gear pair essentially reduces to the Mathieu's
or Hill's equation with a periodic external forcing function. The third group includes
gear backlash in the models, but with time-invariant average mesh stiffness ky, # ky, (1)
[25,30,31,33,34,41,42]. It should be noted that backlash is bound to exist either by
design or due to manufacturing errors and/or wear in any gear pair. Finally, the last
group considers bc h gear backlash and mesh stiffness variation simultaneously
[{24,35-37,53]. However, none of these studies have addressed explicitly the effect of
ky(t), including its interaction with the backlash non-linearity, on the steady state
frequency response. Ozguven and Houser [24] have attempted to analyze this prublem
by replacing ky,(t) with a constant mesh stiffness and by defining the "loaded static

transmission error” excitation at the mesh point. But, Ozguven [75] has stated recently
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that this approach may not work depending on the system parameters, and
recommended a detailed investigation of this issue.

Numerous publications have analyzed LTV systems [76-78] and time-varying
systems with quadratic and/or cubic non-linearities [79-82]. However, such studies are
not directly applicable to the geared rotor systems which are the main focus of this
chapter. This problem requires the solution to a set of time-varying differential equations

with clearance-type non-linearities as excited by a periodic force generated at the gear

mesh.

4.2. PROBLEM FORMULATION

A generic geared rotor-bearing system, which consists of a spur gear pair
mounted on flexible shafts which are supported by rolling element bearings as shown
in Figure 4.1a, is considered here. The gear box is assumed to be rigid. The effect of
the prime mover or the Joad inertia is not considered assuming that such inertial
clements are connected to the gear box through soft torsional couplings. Further, we
assume that the system is symmetric about the plane of the gears and the axial motion
(parallel to the shafts) is negligible. The governing equations of motion can be given in

the matrix form as
[M){g”®} +[C){g'®}+[KD}{f@in} = {F®} @

where [l—\d-] is the time-invariant mass matrix and {q(i)} is the displacement vector.

Here, damping matrix [E] is assumed to be time-invariant, as the effect of the tooth

separation and time-varying mesh properties on mesh damping are considered

negligible; validity of this assumption will be examined later. The stiffness matrix
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Figure 4.1 a) Generic geared rotor-bearing system, b) clearance non-linearity in
gears and bearings.
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[K(i)] is considered to be a periodically time-varying matrix given by
[-K(i)] = [K(i + 2n/ﬁh )] where ﬁh 1s the fundamental gear mesh frequency The
non-linear displacement vector {f (a(i))} includes the radial clearances in bearings and
the gear backlash as shown in Figure 4.1b, and the forcing vector {l—i(i)} consists of
both external torque and internal static transmission error excitations.

This chapter extends our previous non-linear single degree of freedom spur gear
pair model of Chapter II and multi-degree of freedoin geared rotor-bearing system
model of Chapter Il by including time-varying mesh stiffness kp (t), and investigates
its effect on the frequency response of lightly and heavily loaded geared systems.
Interactions between mesh stiffness variation and system non-linearities associated with
gear backlash and radial clearances in relling element bearings are also considered.
Resonances of the correspondiné LTV system associated with the parametric and
extemal excitations are identified using the method of multiple scales. Our formulation

will be validated by comparing predictions with available experimental results [27,28].

4.3. MATHEMATICAL MODEL
A reduced order form of the multi-degree of freedom system of equation (4.1),

the three degree of freedom non-linear model of the geared rotor system, which has

been used in Chapter I11, is considered here. This includes gear inertias Igy and Ig5,
gear masses mg) and my;. and base circle diameters d ) and dy3, as shown in Figure
4.2a. The gear mesh is described by a non-linear displacement function fy, with time
varying stiffness ky(t) and linear viscous damping c,. Bearings and the shafts that
support the gears are modeled by equivalent elements with viscous damping

coefficients ¢ and ¢y, and non-linear springs defined by force-displacement functions

fy1 and fy2 which are approximated by piece-wise linear, dead zone type non-linearities
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as suggsested in Chapter III. Both low frequency external excitation due to torque
fluctuations and high frequency internal excitation due to the static transmission error
€(t) are considered in the formulation. Input torque fluctuation is included, but the

output torque is assumed to be constant, ie. Ty (1) =Ty, +Tp,() and
ng(f) = Tszm. Extemnal radial prelr acs Ky, and Ry, are also applied to both rolling

element bearings.

4.3.1. Equations of Motion
Equations of coupled transverse-torsional motion of the geared rotor-bearing
system shown in ligure 4.2a with the displacement vector

{@®} = {Fg1(®. 7520, BD)} are given in matrix form as follows:

Mgy 0 0 y'g,l(i) Chi 0 Ch .y-'gl(i)
0 mg2 0 Y'gz(i) +|0 cp2 —ch ?éz(f)
-mg; mgy Mgy || PU(D 0 0 cn p'(t)

kyy 0 ky(®][fo1Tg(® ~Fou
+ 0 kpz —kp(®) K fo2(Fg2(IN} = Ry2 ; (4.2a)
0 0 kpM]| fHE) F —=mge” (O +Fyr ()
o d . d ) ) o
;’a(t)=—-zgiegl(t)-—,33932(:)+*y‘8,(t)-y82(t)-5(x); (4.2b)
1 _ 2T 2T, _ o omgeTopa(t
Mgy =75 2 v Fp = glm _ ~_g2m ; FaT(‘)=‘-d—glaQ : (4.2¢c-e)
dLl_’_d_Sz__ dgl ng Zlgl
4151 4132
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- -2 > — .
kh(t):' kh(t+ﬁ—n)=khm + zkba: cos(rth+¢h,); (420
h r=1

Yo ~bbii Vg >bui (P-bpk  P>by
fi (Fgi) =105 = bpi <¥gi <bvi; f,(F)={0; —bp, <P <by-(4.28.h)
Vg +bpii Vg <—bpi (P+by),  P<-by

Here, ()" donates derivative with respect to time t, y; and 8y are the transverse and
torsional displacements of the i-th gear (i=1,2), m.; is the equivalent gear pair mass,
F is the average force transmitted through the gear mesh, and F,1(t) is the fluctuating
force related to the external input torque excitation. Equations (4.2a-h) have been used
previously in Chapter III except for ki, (1) term, which is expanded in equations (4.2a-
h) in the Fourier series form. Here p(t) is the diiference between the dynamic
transmission error and the static transmission error €(t). A dimensionless form c:
equation (4.2a) is obtained by leiting yg(t)=¥g't)/be, pH)=p(t)/ b,
@y, = Khn / Mep s Obi = \/’m;ﬁ; (i=1,2) and t = ,t where b, is the characteristic
length. Here, we consider periodic excitation for both &1t) and Fyp(t) as
&t)= E.E,cos(r(_lhi +ber ). Far(i)= EF,T, cos(rQ7i + ¢, ) where Qy, and Qr are
the funr:;:xmcmal excitation frcqucncicrs:lnf intemal displacement and extemal torque

fluciuetions, respectively.  Further, define dimensionless excitation frequencies

£, = £,/ 0, and Q7 -‘-‘-ﬁ'r / W, 10 yield the following gov.:rning equations of

motion in the dimensionless fornn:




1 00 ygl(t) Cu 0 §l3 5’gl(t)
0 1 0j¥ga()+2[0 &y Loz [yga(t)
UL by 0 0 & ]lpw
Kir 0 xp3(t) |{for(ygt) | =Ry 0 0
HO X2 =X R fealygadp =1 F2 p+{ 0 r+{ 0 ; (4.32)
0 0 K33(t) fb(p) Fm Fah(t) Fa-r(l)
Fip(= 3 Fop (1€2)? cos(rfpt + 0¢,); Fypy, =5 (4.3b,c)
r=} c
i I-:aTr
Far(M= ¥ Firrcos(fQpt +47,);  Fapp = —2-, (4.3d,e)
=1 m¢ by
Fn= Fn ; Fei= Fbi—z—. i=1,2; (4.3f-g)
m¢ bewy, Mgibe

Lo Shi L p - _h i=1.2: _  Ch thei
Sii 2mgwp, - Gis 2mgjw, NS L 2m o, ' (@-5h-5)
2 Kk \
Wy h(t/ .
Kii =—§-‘; Kja(1) = ,i=1,2; 4.3k-¢
ii o i3 mgiwin ( )
K33(t)=w =1+ T e, cOS(rf2pt + Op, ) (4.3m)
l‘hm r=|
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byi bui bh by
Ygi b, Ygi b P b, P b,
be: be: b b
fr:(yo:)=10: - by b ={0; -bep<cb: @43n0
brs by b b
Vet yg <- p+i  p<il
L C C \ [+ C

where Fy, (i=1,2) and F, are the dimensionless components of the mean force vector
{F)m. and Fo7(t) and Fy(t) pertain to the altemating external excitation {F(t)), and

intemal excitation {F(t)}; force vectors, respectively.

4.4. GEAR FAIR STUDIES

First, we consider the spur gear pair model of Chapter II, as shown in Figure
4.2b, and investigate the effect of k;,(t) on the steady state frequency response. The
equation of motion of the gear pair is obtained from equation (4.3a) by substituting
ygi(t)=0 for fixed gear centers. Neglecting the input torque variations for the sake of
convenience, F,7(t)=0, we obtain the following equation of motion of a loaded gear
pair with time-varying mesh stiffness and backlash, as excited by the static

transmission error.

P(t) +2833p(1) -+ K33()f R (P(1)) = Fry + Fgpy (1) (4.4)
where {33, X33(1), f,,(p), Fp,, and Fy, are still given by equation (4.3). Since none: ¢,
the existing analytical solution methods are found to be suitable for this problem, the
digital simulation technique is used to solve equation (4.4). A ’ith-6th order Runge

Kutta numerical intcgration algorithm witi. variable e step [50] is used hers. This
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technique has already been employed successfully in Chapter II for the gear pair
problem with time-invariant mesh stiffness.

First consider only sinusoidally varying mesh stiffness and the static transmission
error excitation, i.e. X33(t)=1+g cos(Qpt+¢p;) where €=€; and
Fpp(t) = Fahlnh2 cos(Qpt + ¢y ). The tooth deflection or Fyp(t) is maximum under the
applied mean load Fp, when k33(t) is minimum (i.e. minimum number of gear pair in
contact). Similarly, minimum F,;(t) corresponds to maximum K33(t). Therefore, there
is an out of phase relationship between F,p(t) and x33(t), i.e. ¢p=¢. +n. Here, we
set ¢, =Nt and ¢,,=0 for the sake of convenience. Hence, equation (4.4) is modified

to:

P(t)+2833p(t) +[1 —ecos(Qpt))fp (p(t)) = Fy, + Fahglzm cos(£2pt). 4.5)

4.4.1. Linear Time-varying (LTV) System
For zero gear backlash by, the gear mesh displacement function is f(p)=p. Hence

equation (4.5) reduccs to an LTV equation as follows:

(1) + 2833p(1) +{1 - Ecos(Qyt)Ip(t) = Fy + FapQE cos(fpt) (4.6)

Approximate analytical solutions of similar LTV differential equations with parametric
and external excitations are already given in the literature [76,77,79-82). Therefore, we
will not attempt to solve equation (4.6) completely. Instead we identify the
corresponding resonances using the method of multiple scales [76]. A first order
uniform solution is given by an expansion having the following form where the scalar

parameter € is assumed to be very small.
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P(L:€) = po(Ty, Ty) + €py (T, Ty ) + O(e™) 4.7)

where T, = €™t is the n-th time scale. Expansions for the derivatives with respect to t

is obtained in terms of the partial derivatives with respect to time scales D, =9/ dT,

d/dt=D,+eu +0(€?); d?/dt® =D?2 +2eD,D; +O(e?) (4.8a,b)
o i o1

Substituting equations (7) and (8) into equation (6) and equating like powers of €, with

the external force being applied at O(€°), one obtains

D2Po + Po = Fm + Fani2h cos(QyT,) (4.9a)

D2p; +Pp) = -2DuDyp, = KDoP, + Po COS(AT,) (4.9b)
where En=2(33. The solution of equation (9a) is given in the complex domain as

Po =A(T)e ™ +Fy +Ae™To 4 cc;  A=FpQE/20-0F)  (4.10a,b)
where cc represents the complex conjugate terms and i = V-1. At £2y, =1, we note that

¢l —Q,z,," will make the amplitude of the response boundless; this is the primary

resonance since it appears in the first order. Substituting equation (4.10) into equation

(4.9b) we get
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Dipy +p; = -2iDjAe'™ — ipAe’ ™o — inAQpe e + %Ae““nh 7T

4':1’2-;6‘&“'nh To 4 %Aezmhn +%Fmem"7° +A+cc  (4.11)

Besides the primary resonance at £y, = 1, the particular solution of equation (4.11) has

other secular terms when 20y, =1 and 2 =2. At 2Q; ~ 1, summation of the

external excitation frequency and the parametric excitation frequency is close to the
dimensionless natural frequency which is unity. One could also observe resonances at
2;, = n, n>2 when higher scales are considered in equation (4.7). In summary,
equation (4.6) has resonances at £}, = 0.5 and n, where n=1,2,3....

Now, we solve equation (4.6) using digital simulation. Figure 4.3 shows the
steady state frequency response curves p,(£2},) and p,,(€2y,) for a lightly loaded system
with F,=0.1, F},1=0.05, {33=0.05, by=0 and four different € values. Note that €=0
represents the LTI system. For €>0, we do not observe any multi-valued regions and
jump phenomenon, similar to those seen for the non-linear systems. Mesh stiffness
variation € has a negligible effect on the natural frequency which corresponds to the
largest peak in Figure 4.3a; but an increase ¢ in amplifies p, in both resonance and off-
resonance regions. Here pp, is no longer uncoupled from p,, and it varies substantially
in the vicinity of primary resonance at £2,=1.0, and the parametric resonance at
2,,=0.5, especially for a large ¢ confirming the analysis given earlier. Note that our

study is limited to only these two resonances as an investigation of subharmonic

resonances at £, = n, n>1 is beyond the scope of this study.
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Figure 4.3. Frequency response spectra of a lightly loaded LTV gear pair with
sinusoidal €(1) and kp (1), Fy=0.1, Fppy=0.05, {33=0.05, b,=0 and four
different € values, a)p, versus £y, b) py, versus £,
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4.4.2. Non-linear Time-varying System

Next we consider the time-varying non-lincar system with backlash, given by
equation (4.5). Figure 4.4 shows p,(£2;) and pp,(£2y,) spectra with F,=0.1, F,,=0.05,
£33=0.05, and four € values. In this case, we notice a jump discontinuity at the
resonant frequency and a dual-valued region bounded by jump-up and jump-down
transition frequencies. For £=0, p,, # pm(£2y) is evident in the no-impact regime,
similar to the results given in Chapter II. But when €>0, the transition frequencies
which define the jump phenomenon become smaller, and p, at the jump-down
frequency grows with increasing €. This indicates that ki, () enhances the degree of
non-linearity associated with the gear backlash. Similar to the results of LTV system in
Figure 4.3, we again observe in Figure 4.4a a parametric resonance at £2,,=0.5, which
is strong for €=0).2 and 0.4 curves. Figure 4.5 compares the time histories p(t) for
cach € values at the parametric resonance peak, £2,,=0.5. For the LTI system (€=0), a
harmonic no-impact type steady state solution exists as illustrated in Figure 4.5a. With
increasing €, this solution is transformed into a non-harmonic periodic solution with a
larger peak to peak value as a result of the parametric mesh stiffness excitation, as
shown in Figures 4.5b-d.

Now, consider a heavily loaded gear pair with F=0.1, F,;=0.01 and {33=0.05.
Figures 4.6a and 4.6b show p,(Q2},) and p,,(£2},) spectra, respectively. In this case,
tooth separation does not occur for €=0 which results in a linear frequency response
curve with a constant p,,. A small jump is seen at €=0.1, and this jump becomes larger
for €=0.2 and 0.4; overall alternating amplitudes p, at resonance and within the off-
resonance regions increase considerably. This suggests that the mesh stiffness

vanation is especially important for a heavily loaded gear pair with backlash.
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Figure 4.4. Frequency response spectra of a lightly loaded non-linear gear pair of
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=b, and four different € values; a)p, versus £, b) p, versus €y,
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different € values; a)p, versus Qy, b) pp, versus €2,



4.4.3. Non-linear Time-varying Mesh Damping

In order to investigate the effect of non-linear, time-varying gear mesh damping
on the steady state frequency response, we consider a sinusoidally varying gear mesh
damping {33(t) which is assumed to be proportional to the mesh stiffness function
x33(t), and a non-linear velocity function gy, associated with tooth separation. Hence

the goveming equation of motion is

p(t) +2833(1)gR(p(1) + {1 = ecos(Qp O (p(1) = F, + Fathzl cos(2pt);  (4.12a)

C33(t) = C33K33(l)= §33(1 + €cos(C2pt + Opy ) s (4.12b)
. 0; —-b—l-’-<p< —l?-h-
gh(p) = b be (4.12¢)
p(t), else

Figure 4.7 compares frequency response spectra for the cases of a) non-linear time-
varying gear mesh damping defined by equation (4.12), and b) linear time-invariant
mesh damping, {33 # {33(t) with gh(p(t))=p(t), as given by equation (4.5). As
shown in Figure 4.7, both mesh damping models yield virtually the same spectra.
Therefore a linear time-invariant gear mesh damping model can be used without losing

any accuracy.

4.4.4. Periodic &(i) and kg(1)
Up to now, we have only considered the sinusodally varying ky, (1) and &(t). In

real geared systems, however, both ky(1) and &) are periodic which can be
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expreaned In the Fourjer series form Pigure 4.8 illustrates k(1) and &) for a low
Conact ratio sput gens paer, these 1y pocnl time histories are predicted using an existing
sput gear tooth model (21 ‘The first six Fourier coefficiems of ky, (1) and &) are
given in Table 4.1. Note that n-th hanmonic of &(t) causes 2 resonance around
£=1/n. Henve higher hatmonics are impontant only a1 low frequencies. Accordingly,
only the first three Fourier coefficients of e(t) are deemed sufficient hzre, given the
natute of the practical gesr noise und vibration problems. Similarly, k(1) is also
trancated for the ahe of convenience, retaining the first three termys, Higher terms

(nxY) could be casily Included in the malywis if necexsmy. Therefore the governing

eqimtion with b t)=4 s
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Figues 4.9 and 4 9b show frequency sesponne spectry for F s0.1, Fpy, =008,
Fan2=0 02, Faa=0.01, {aa=(L08, ¢ /ey=2, £/t 484 and four different €y=e values.
An shown in Figurs 4.9, two other jump disconunvities, which are clearly associated
with I'ypy2 and T gy, are found. Thewe Jumpn are wimilar 1o the fundamental resonance
penh except they have luwer amplitudes. In otder for thexe two jumps to exist, Fgy2
mnd Py, v excitations hiuve 1o be large. Once again, 1 in evident that the periodic mesh

stiffnewn endunces the extent of backlush non-linearity
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Table 4.1 Fourier coefficients of &(f) and ky(t) given in Figure 4.8

Amplitude
Harmonic n i) kp(t)
(Um) (MN/m)
0 20.00 107.8
1 345 10.3
2 0.26 57
3 0.45 1.3
4 0.38 4.0
5 0.27 1.5
6 0.26 14
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4.5. GEARED ROTOR-BEARING SYSTEM STUDIES
Next, we solve the three degree of freedom non-linear model of Figure 4.2a and
equation (4.3a) using the digital simulation technique for excitatiorn F,(t) with

FaT(l)=0.

4.5.1. Sinusoidal &) and ky(t)

Similar to Section 4.4, assume sinusoidal forms: K33(t) =1+€&cos(Q2,t + ¢y))
and F,(t) = Fahlﬂhz cos(f2t + e ). Equation (4.3a) reduces to an LTV matrix
equation when gear backlash and radial bearing clearances are set to zero, ie.
fa(p(t)=p(1) and fy,(ygi())=y4i(1), i=1,2. Figure 4.10 shows p,(£2;) and )'gla(nh)
spectra of this LTV system under heavily loaded conditions with Fp,=0.1, F,;,,=0.01,
£33=0.05, §;3=0.0125 and {;;=0.01, i=1, 2. Note that y,, =yy>, since the gear ratio
is one. As shown in Figure 4.10, frequency response has peaks at )=w;=0.4 and
£2,=w=1.25 where w; and wy; are the natural frequencies of the LTI system,
corresponding to the first two coupled transverse-torsional modes. In Figure 10a, we
observe a parametric resonance at 2£2,=wy similar to the gear pair model of Section 4.4
whereas the parametric resonance at 2{2;,=wy; is more obvious in p,(£2},) spectrum of
Figure 4.10b for a larger € value. Again like the LTV gear pair results of Figure 4.3,
Ygla and p, are amplified with increasing € in both resonance and off-resonance
regions.

Now introduce the gear backlash by=b_ to this heavily loaded system;
corresponding results are given in Figure 4.11. The most significant effect of kp, (1) is
that it interacts with the gear backlash non-linearity to develop a jump discontinuity at

the second primary resonance peak. This is clearly evident from the fact that either

backlash or ki (t) alone can not cause a jump for such a heavily loaded system.
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Figure 4.10. Frequency response spectra of a LTV geared rotor-bearing system of
Figure 2a with sinusoidal €(f) and ky(t), F=0.1, Fy,1=0.01, {33=0.05,
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Besides an increase in amplitudes in Figures 4.11a and 4.11b, chaotic and/or quasi-
periodic solutions, which do not exist in heavily loaded time-invariant systems as
shown in Chapter III, are also predicted in the following regimes: 1.35<€QQ,<1.65 for
€=0.2 and 1.25<Qy<1.7 for €=0.4. Similar to the LTV system of Figure 4.10,
parametric resonances at 2=y and 2{2p=w are again observed here.

Next, radial clearances in bearings by;=b. are considered for a heavily loaded
system with zero gear backlash, Fy,=1.0, Fpy=0.1, {33=0.05, {;3=0.0125 and
£;i=0.01, i=1, 2. In this case, mesh stiffness variation and non-linearity exist in
different components. As shown in Figure 4.12, € again increases the amplitudes, but
the spectrum shape is essentially the same. This is further evident from Figure 4.13,
given for a lightly loaded drive with F,;=1.0 and F;;|=0.5. This suggests a weak

interaction between the gear mesh stiffness variation and bearing non-linearities.

4.5.2. Periodic &) and kp(b)

Similar to the gear pair analysis of Section 4.4.4, we consider periodic X33(t) and
Fan(t) with three Fourier coefficients. Figure 4.14 shows spectra for F;,=0.1,
Fan1=0.01, Fypr=0.004, F,;,3=0.002, {33=0.05, {;3=0.0125 and {;;=0.01, i=l, 2;
€1/69=2, €/€5=4, ard g;=€=0, 0.1 and 0.2. Here only the gear backiash non-linearity
(by=b, and by;=0) is considered. Peaks at ,=w;/n and £2y=wy/n, n=1,2,3 are
predicted corresponding to excitation Fgp,.. Periodic mesh stiffness enhances the
alternating amplitudes over the values given by the time-invariant mesh stiffness case

and introduces a jump discontinuity at the second primary resonance similar to the

sinusoidal mesh stiffness case.
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Figure 4.11. Frequency response spectra of a non-linear geared rotor-bearing system
with sinusoidal &(t) and kp(1), Fy=0.1, Fup1=0.01, {33=0.05,
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Figure 4.12. Frequency response spectra of a non-linear geared rotor-bearing system
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Figure 4.14. Frequency response spectra of a non-linear geared rotor-bearing system
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4.6. EXPERIMENTAL VALIDATION
4.6.1. Spur Gear Pair Dynamics

First we compare our theory with experimental results of Kubo [28], as extracted
from Reference [24]. Kubo used a heavily damped ({33=0.1) four-square spur gear
test rig, and measured dynamic factor as the ratio of the dynamic to static tooth root
stresses. The experimental set-up was designed to support a gear pair with very stiff
shafts and bearings. Therefore our gear pair model can represent the test ny
adequately. similar to Chapter 11. The static transmission error €(t) and time-varying
mesh stiffness Ky, (1) of the tested gear pair has been predicted using ar: existing elastic
spur gear model [21] and then equation (4.4) is solved to predict the dynamic response.
Here, we define the dynamic factor as the dynamic to static mesh force ratio which is
equivalent to the dynammc factor caiculation based on the stress analysis under the
assumption that the change in the moment arm due to changes in the contact point is
negligible. Figure 4.15 compares the envelope of measurements obtained by Kubo for
several tooth pairs with our predictions. When the mesh stiffness k(1) is assumed to
be time-invariant, the predicted jump discontinuity is not as Jarge as the jump seen in
experimental data ang the predicted transition frequency is higher than the measured
value, as reported in Chapter 1I. However predictions improve significantly when
sinusoidally varying k,(t) and &(1) at Q;, are used, as given by equation (4.5). A
sharp jump discontinuity is found which matches well with experiment, and the
predicted dynamic factor is very close to measured envelope. Finally, prediction agrees
with experiment even better when periodically varying (0 and kh(t) with the first three
Fourier coetlicients considered. This figure clearly shows that the time-invarniant linear
or ron-linear model can not predict the true dynamic behavior, as time-varying mesh

stiffness muast be included 1n the non-linear mathematical formulation.

191




T experiment
kj, # kp(1), sinusoidal €(1)

~emne . ginusoidal kp(D) and &()
r periodic ky(E) and &)

¢
B |
Y 2
g
c
>
3
l-
v.2 0.6 1.0

frequency

Figure 4.15  Comparison of theory with Kubo's {24,28] experimental results.
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4.6.2. Geared Rotor-Bearing System

As the second example case, experimental results of Munro (27] are compared
with our geared rotor-bearing model of Figure 4.2a and equation (4.3). Thexe
experimental results were used earlier to validate time-invariant multi-degree of freedom
non-linear system of Chapter Ill in which we had to reduce the damping ratio and
increase the excitation &(t) in order to correlaie theory with experiment. Now we go
back to the original system parameters given in References [27]) and Chapter 111, an
predict the dynamic transmission error spectra using both time-varying and time-
invariant gear mesh stiffness formulations for a three degree of freedom non-lineur
model with gear backlash and linear bearings. Figure 4.16 compares results al the
design load which corresponds 1o the minimum excitation 8(1). In this case, the mean
load to alternating load ratio F = P / Funy is very large, say P =30, Time invariant
stiffness model prediction differs considerably from the experiment in Figure 4.106,
Predicted amplitudes are conciderably lower than the measurements, and a significan
jump discontinuity found experimentally around the second natural frequency oy, is not
even predicted by this formulation. But when the perindically-varying mesh stiffneas is
considered, our model predicts the frequency response accurately including the jump
discontinuity. The reason for a large jump around wy; for a very heavily loaded system
(F = 30) is now clear. The sccond natural frequency wy; of the corresponding LT1
system is nearly twice the first natural frequency w). This forces the aecond primary
resonance at £, = wj) to coincide with the parametric resonance at b3y, = 2wy,
consequently a very large jump discontinuity is developed.

At 3/4 of the design load with F w10, the effect of Ky, (1) In obaerved in Figure

4.17. Although the time-invariant model predicis the jump st oy, predicied mmipliudes
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are far below the measurements. The inclusion of ky(1) improves predictions
drastically. Similarly at 1/2 and 1/4 design loads, mesh stiffness variation as shown in
Figures 4.18 and 4.19 respectively, affects the frequency response significantly and

yields predictions closer to the measurements.

4.7. CONCLUDING REMARKS

This chapter on the non-linear dynamics of a geared rotor-bearing system with
time-varying mesh stiffness kp(t), as excited by the static transmission error under a
mean load, has resolved a number of fundamental issues. First, the interaction between
time-varying mesh stiifness k(1) and mean torque load has been understood.
Second, frequency response of the corresponding LTV system has been studied, and
the resonances associated with parametric and forced excitations have been identified.
Third, dynamic interactions between ky, (1) and system non-linearities associated with
gear backlash and radial clearances in rolling element bearings have been investigated; a
strong interaction between kp,(t) and gear backlash is found where as the coupling
between k(1) and bearing non-linearities is weak. Finally, our time-varying non-

linear formulation has yielded good predictions as compared with benchmark experiments.
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CHAPTER V
CONCLUSION

5.1. SUMMARY

In this study, linear and non-linear mathematica! models of a generic geared
rotor-bearing system shown in Figure 1.1a are developed, and several modeling issues
which have never been addressed previously in the literature are investigated in depth.
In Chapter 1, a dynamic finite element model of the system is developed. Effects of
several system parameters such as torsional and *ransverse flexibilities of the shafts and
prime mover/load inertias are investigated, and modes of interest are identified. Three
reduced order linear time-invariant models are developed and the conditions under
which such models are suitable are determined by comparing the eigen-solutions with
the finite element model results.

In Chapter II, non-linear frequency response characteristics of a spur gear pair
with backlash and time-invariant mesh stiffness are examined for both external and
intemal excitations. The intemal excitation is of importance from the high frequency
noise and vibration control view point and it represents the overall kinematic or static
transmission error €(t). Such problems may be significantly different from the rattle
problems associated with external, low frequency torque excitation. Two solution
methods, namely the digital simulation technique and the method of harmonuc balance
have been used to develop the steady state solutions for the internal sinusoidal
excitation. Difficulties associated with the determination of the multiple solutions at a

given frequency in the digital simulation technique have been resolived as one must
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search the entire initial conditions map. Such solutions and the transition frequencies
for various impact situations are found analytically by the method of harmonic balance.
Further, the principle of superposition can be employed to analyze the periodic
transmission error excitation and/or combined excitation problems provided the
excitation frequencies are sufficiently far apart from each other. Predictions compare
reasonably well with the experimental data available in the literature.

In Chapter III, non-linear frequency response characteristics of a geared rotor-
bearing system are examined. A three degree of freedom dynamic model is developed
which includes non-linearities associated with radial clearances in the radial rolling
element bearings and backlash between a spur gear pair; linear time-invariant gear
meshing stiffness is assumed. Bearing non-linear stiffness function is approximated
for convenience sake by a simple model which is identical to that used for the gear
mesh. This approximate bearing model has been verified by comparing the steady state
frequency spectra. Applicability of both analytical and numerical solution techniques to
the multi-degree of freedom non-linear problem is investigated. Proposed theory is
validated by comparing the results with available experimental data. S:-veral key issues
such as non-linear modal interactions and differences between internal static
transmission error excitation and external torque excitation are discussed. Additionally,
parametric studies are performed to understand the effect of system parameters such as
bearing stiffness to gear mesh stiffness ratio, altermating to mean force ratio and radial
bearing preload to mean ferce ratio on the non-linear dynamic behavior. A criterion
used to classify the steady state solutions is presented, and the conditions for chaotic,

quasi-periodic and subharmonic steady state solutions are determined. Two typical

routes to chaos observed in this geared system are also identified.




Non-linear frequency response characteristics of a geared rotor-bearing system
with time-varying mesh stifiness are examined in Chapter IV. The spur gear pair
model of Chapters II and geared rotor-bearing system model of Chapter Il are
modified to include periodic mesh stiffness kp(t). Governing non-linear time-varying
equations which include clearance non-linearities associated with gear backlash and
rolling element bearings, as excited by the static transmission error €(t) under a mean
torque load, are solved using digital simulation technique. Resonances of the
corresponding linear time-varying (LTV) system associated with parametric and
external excitations are identified using the method of multiple scales and digital
simulation. Interactions between mesh stiffness variation and clearance non-linearities
have been invrcstigated; a strong interaction between time varying mesh stiffness ky, (t)
and gear backlash is found whereas the coupling between k(1) and bearing non-
linearities is weak. The predictions yielded by the proposed time-varying non-linear

model agree well with the experimental results available in the literature.

5.2 FUTURE RESEARCH AREAS
The following topics are identified as areas of future research, based on the

present study on non-linear dynamic analysis of geare«; rotor-bearing systems:

1. Extension of current models to study dynamics of helical and bevel gear drives,
and multi-gear mesh systems such as planetary gear trains.

2. Iteration procedures for the transmission error input and inclusion of the
interactions between external and intermal kinematic error excitations. Also

inclusion of side-bands in non-linear dynamic analysis.
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Design of a passive vibration zontrol strategy using squeeze film dampers. And,
investigation of semi-active and active vibration and noise control schemes using
piezoelectric actuators or hydraulic mounts.

Statistical energy analysis of non-linear geared systems.
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APPENDIX A

USER'S GUIDE FOR THE GEARED ROTOR DYNAMICS
PROGRAM - GRD

A.1. DESCRIPTION

Geared Rotor Dynamics Program "GRD" is a general purpose finite element
computer program to analyze dynamics of a system consisting of two shafts supported
on bearings and coupled by a gear mesh. It computes natural frequencies, mode shapes
and the vibration response of the system to static transmission error excitation, mass
unbalances and geometric eccentricities of gears. Many rigid disks, bearings, and
hollow shafts can be considered by GRD. Since GRD uses finite elements method, the
system should first be discretized to small rotor elements. It is also necessary to enter
data for each element in sequence.

A.2. USING THE PROGRAM
There are two ways to input data in GRD. Data can be entered through a file or
interactively. The first set of questions will give the user this option (the Primary
Option). Display on screen:
ENTER DATA INTERACTIVELY OR FROM A DATA FILE?
OPTION (1) : ENTER DATA INTERACTIVELY

OPTION (2) : ENTER DATA FROM FILE
CHOOSE OPTION 1 OR 2 (NO DEFAULT) >>

A.2.1. OPTION I: Interactive Data Entry
By selecting this nption, the user will be prompted to enter all the data that will be

necessary to run this program. In the process, a new data file will be created from the
user's input. The data entered will be reorganized in a format so that the program may
read from it. For this reason, a new data file will be created and the user will be
prompted to name this new file as follows:

DATA WILL BE INPUT INTERACTIVELY, AND IN THE PROCESS, YOUR INPUT

WILL BE ORGANIZED IN A NEW DATA FILE FOR THIS PROGRAM TO

READ FROM.
ENTER AN INPUT FILE NAME >> __
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If an error should arise from opening this new file, the user will be given the option to
try again:

*ERROR IN OPENING FILE* DO YOU WISH TO TRY AGAIN?
TYPE (1) FOR YES OR (2) FOR NO >>__

If YES, then the user will be asked the file name again. If NO, the program will
return to the Primary Option.

2.1.1. Data Entry Groupings
In this section, the user will enter the necessary data. The questions will be
grouped into the following categories.

1. GENERAL DATA

2. MATERIAL PROPERTIES

3. ELEMENT PROPERTIES

4. GEAR MESH PROPERTIES

5. FORCED RESPONSE DATA (If user chooses this option)

1. General Data:

In this section, the following general information about the overall systemn will be
entered:

1) THE NUMBER OF ROTOR ELEMENTS IN THE FIRST SHAFT
2) THE NUMBER OF ROTOR ELEMENTS IN THE SECOND SHAFT {
3) THE NUMBER OF ROTOR ELEMENTS BEFORE THE GEAR IN THE FIRST SHAFT
4) THE NUMBER OF ROTOR ELEMENTS BEFORE THE GEAR IN THE SECOND

SHAFT

As an example, consider the system shown in Figure Al. The first step is to the
divide rotors into small pieces (finite rotor elements) to obtain & finite element mode! of
the system (as illustrated in Figure A2). The shorter the rotor elements, the higher the
accuracy and the longer the computation time. In Figure A2, each shaft is divided into
4 pieces. The numbering can start at any end of the driving rotor and finish at any end
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of the driven rotor. In Figure A2 for example, we start at the left end of the first shaft
and finished numbering at the right end of the sccond shaft. According to this
configuration (Figure A2), the number of rotor elements in the first and second shafts
are both 4 and the number of rotor elemerts before the pinion and gear are 2 and 6,
respectively.

2 Material P e
In this section, material properties of the shaft considered will be entered. The
following will be required:

1) THE DENSITY OF THE SHAFT MATERIAL (kg/m?) (DEFAULT=7800)

2) THE VISCOUS DAMPING COEFFICIENT (s) (DEF=0)
3) THE HYSTERETIC DAMPING COEFFICIENT (DEF=0)
4) THE MODULUS OF ELASTICITY (N/m2) (DEF=.207E12)
5) SHEAR MODULUS OF ELASTICITY (N/m?) (DEF=.0795E12)
3, _Element Properties:

The main portion of data to be entered is in this section. The options given are the
following:

1) DEFINING THE DISK ELEMENT

2) DEFINING THE BEARING ELEMENT

3) DEFINING THE ROTOR ELEMENT (also the default selection)
4) DEFINING THE GEAR ELEMENT

$) FINISH WITH DATA INPUT FOR FIRS1 SHAFT

6) FINISH WITH DATA INPUT FOR SECOND SHAFT

The most important part in this section of questions is the order of data entry. The
order is based on the numbered finite element model (see Figure A2). For the finite
element model shown in Figure A2, the order of data input is as follows:

1) DEFINING BEARING #1
2) DEFINING ROTOR #1
3) DEFINING ROTOR #2
4) DEFINING GEAR#|

5) DEFINING ROTOR #3
€) DEFINING ROTOR #4
7) DEFINING BEARING #2
8) TYPE IN OPTION 5 (FINISHED WITH DATA INPUT FOR SHAFT #1)
9) DEFINING BEARING #3
10) DEFINING ROTOR #5
11) DEFINING ROTOR #6
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12) DEFINING GEAR#2

13) DEFINING ROTOR #7

14) DEFINING ROTOR #8

15) DEFINING BEARING #4

16) TYPE IN OPTION 6 (FINISHED WITH DATA INPUT FOR SHAFT #2)

From the example above, one can see the ordering of data entry moving from the first
element in shaft #1 to the last element in shaft #2. Ultimately, the program will also
read from the data file in this order.

According to the option selected (disk, gear, rotor element or bearing), the
following information is required.:

The disk element - option 1:

1) DISK OUTER DIAMTTER IN (m)
2) WIDTH OR THICKN =SS OF DISK IN (m)
3) MATERIAL DENSITY OF DISK IN (kg/m?) (DEF=7800)

The bearing element - option 2:

THE STIFFNESS (N/m)
1) Kxx
2) Kxy
3) Kyx
4)Kyy
THE DAMPING (N-s/m)
5) Cxx
6) Cxy
8) Cyy

The rotor element - option 3:

1) LENGHT OF ROTOR ELEMENT IN (m)

2) OUTER DIAMETER OF ROTOR ELEMENT IN (m)

3) INNER DIAMETER OF ROTOR ELEMENT IN (m) (for hollow rotor) (DEF=0)
4) THE AXIAL LOAD IN (N) (DEF=0)

The gear element - option 4:

1) PITCH CIRCLE DIAMETER IN (m)
2) FACE WIDTH IN (m)
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3) GEAR MATERIAL DENSITY IN (kg/m3)  (DEF=7800)

Option § should be chosen when the elements of the first shaft have been defined.
The user will then be given the material properties of the second shaft., and given the
option to make changes to this set of data. Similarly, option 6 should be entered
when all elements of the second shaft have been entered.

4. Gear Mesh Propenties;
The following gear mesh properties will be entered in this section:

1) GEAR MESH STIFFNESS (N/m)

2) GEAR MESH DAMPING (N-s/m) (DEF=0)
3) BASE CIRCLE DIAMETER OF FIRST GEAR (m)

4) BASE CIRCLE DIAMETER OF SECOND GEAR (m)

Following the input of gear mesh data, the program will also ask the user for the
number of natural frequencies wanted in the output.

5. Forced Response Data;

Here, the user is given the option to have forced response calculated. If the
selection is NO, then interactive input will be complete. If the selection is YES, then
the following options are given:

1) WHIRLING ORBIT AT A SPECIFIED NODE
2) DEFLECTIONS AT A SPECIFIED NODE
3) DYNAMIC LOAD TO STATIC LOAD RATIO AT THE MESHING POINT

Following the options menu, the general information for thus section will be required:

1) GEOMETRIC ECCENTRICITY (RUNCUT) OF GEAR I (m) (DEF=0)
2) GEOMETRIC ECCENTRICITY (RUNOUT) OF GEAR 2 (m) (DEF=0)
3) PEAK TO PEAK VALUE OF STATIC TRANSMISSION ERROR (m)

4) MASS UNBALANCE OF GEAR 1 (kg-m) (DEF=0)
5) MASS UNBALANCE OF GEAR 2 (kg-m) (DEF=0)

6) NUMBER OF TEETH IN GEAR 1 (PINION)
7) AVERAGE FORCE TRANSMITTED (N)
8) VALUE OF MODAL DAMPING (DEF=.01)

After the general information for this section has been completed, the program will
require certain information based from the choice selected from the options menu :
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Forced response option 1: Whirling orbit at a specified node, the following
information will be required.

1) NUMBER OF NODE AT WHICH WHIRL ORBIT IS REQUIRED
2) ROTATIONAL SPEED OF SHAFT 1 (rad/s)

Forced response option 2: Deflections at a specified node will be required.

1) STARTING ROTATIONAL SPEED OF SHAFT |  (rad/s) (DEF=0)
2) UPPER LIMIT OF ROTATIONAL SPEED OF SHAFT 1 (rad/s)
3) INCREMENT FOR ROTATIONAL SPEED  (rad/s) (DEFa$)

4) DIRECTION AT WHICH FORCED RESPONSE IS WANTED (1,2 OR 3) (DEF=1)
§) NUMBER OF NODE AT WHICH FORCED RESPONSE IS WANTED

In question (4), enter: 1 for deflection in pressure line direction; 2 for deflection in

direction perpendicular to pressure line; 3 for torsional deflections

1) STARTING ROTATIONAL SPEED OF SHAFT | (rad/s) (DEF=0)
2) UPPER LIMIT OF ROTATIONAL SPEED OF SHAFT 1 (rad/s)
3) INCREMENT FOR ROTATIONAL SPEED (rad/s) (DEF=$5)

Having completed this section on forced response, the program will then read from the
new data file created from the interactive input. The output will be in an output data file
named FOR001.DAT .

A.2.2. OPTION II: Enter Data From File

With this selection, the user is then requested to give the name of the file where the
data is stored, instead of entering data interactively. The program will then proceed to
read from the file. If an error should occur in opening the file, then the user will be
given the option to try again. If the user opts to try again, then the user will be asked
the file name again. If no, then the program will retum to the primary option. After the
program has read from the file the output will be found in an output data file.
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A4. SAMPLE OUTPUT FILE FORO001.DAT a

HARRAAARARARANARA R AT NP A A A RN RNARAANRARAN A AR AN TAA AR AR NN RN RARAAN N AN

GEARED ROTOR DYNAMICS PROGRAM
GRD
GEAR DYNAMICS AND GEAR NOISE RESEARCH LABORATORY

THE OHIO STATE UNIVERSITY

AN AR A AN AR A AN AN RANRN RN A AR AR AR TR A KRN ARARN AR A AAR RN AN AR AR RA AN AN AR NAN

THE FIRST SHAFT:

-— - - - -

MATERIAL PROPERTIES OF THE SHAFT:

DENSITY OF THE MATERIAL..... = 0.78000E+04 KG/M**3
ELASTIC MODULUS............. = 0.20700E+12 N/M**2
SHEAR MODULUS............... - 0.79500E+11 N/M**2
VISCOUS DAMPING COEFFICIENT.= 0.00000E+00 S
HYSTERETIC LOSS FACTOR..,...=™ 0.00000E+00

AT 2w 0.0000 M THERE EXISTS A BEARING WITH THE
FOLLOWING STIFFNESS AND DAMPING COEFFICIENTS:

KX X= 0.10000E+10 N/M KXY= 0.00000E+00 N/M
KYX= 0.00000E+00 N/M KYY= 0.10000E+10 N/M
CXX= 0.00000E+00 N-S/M CXY= 0.00000E+00 N~S/M
CYX= 0.0000CE+00 N-S/M Cyy= 0.00000E4+00 N~3/M

AT 2= 0.0000 M THERE EXISTS A FINITE ROTOR ELEMENT WITH THE
FOLLOWING SPECIFICATIONS:

LENGTH OF THE ELEMENT...,...=w 0.50000F-01 M
OUTER DIAMETER.......co00vn. - 0.30000E-01 M
INNER DIAMETER....... e e - 0.00000E+400 M
AXIAL LOAD.......... I 0.00000E400 N

AT 2= 0.0500 M THERE EXISTS A FINITF ROTOR ELEMENT WITH THE
FOLLOWING SPECIFICATIONS:

LENGTH OF THE ELEMENT..... o= 0.50000E-01 M
OUTER DIAMETER............. J- 0.30000E-01 M
INNER DIAMETER........... N 0.00000E+00 M
AXIAL LOAD......vvevuunn - 0.00000E+400 N

AT i= 0.1090 M THERE EXISTS A RIGID DISK WITH THE FOLLOWING
SPRCIFICATIONS:

OUTER DIAMETER...... - 0.13500E400 M
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WIDTH....... I
MATERIAL DENBIYY. ... =

AT o=
FTOLLOWING BPECIFICATIONS!

LENGTH OF THE RLLYEMENT.......=

OUTLR DIAMETER, ., v v v rv 0o ™

INN‘R warnkl LN R I I I I B A A A ] l.

AXIALww'll"llll"""l'l.
AT 2=~

FOLLOWING SPECITICATIONS:

LENGTH OF THEL ELEMENT,......=

QUTER DIAMETER. . ... v v ve ™

INNER DIAMETER,,...... I

AXIAL LOAD. . v v v vv i vitnsa e ™
AT L~

0.25400r-01 M
0,.76000E404 KG/M**)

0.1000 M THERE EXISTS A FINITE ROTOR ELEMENT WITH THE

0.%0000£-01 M
0.30000£-0) M
0.00000E400 M
0.00000£400 N

0.1500 M THERE ZX13T8 A FINITE MOTOR RLEMENT WMITH THE

0.50000£~01 M
0.30000E-01 M
0.00000R400 M
0.00000E+00 N

0.2000 M THERE EX1876 A BEARING WITH THE

FOLLOWING BTIFYNEHS ANL DAMPING COLFFICIENTS;

KX X = 0.10000K+10 N/M

KYXmw 0.00C00K+00 N/M

CXXm 0.000008+400 N~A/M

CiXe= £.00000£400 n-2/M
THE BECOND BHArT)

MATERIAL PROFERTIES OF THE BHAFT:

DERBITY OF THE MATERIAL..,..™

ELASTIC MODULUD., . ....vviv i v ™

BHEAR MODULUS., ., v v v v ™

VISCOUB DAMFING COErriClENT , =

HYSTERETIC LOBS FACTOR,..,..=
AT i=

¥XY= 0.00000K+00 N/MH
KYY= 0.10000K+410 N/M
CXY= 0.000000400 N-8/M
CYY=- 0,000007.400 HN~A/HM

0.780007+¢04 KG/M**)
0.20700K412 N/M**2
0.79500r+13 N/M**2
0.00000E400 8
0.00000KE400

0.,0000 M ‘'HERE EX18TE A BLAIING WITH THL

FOLLOWING BTIFFNESS8 AND DAMPING COEIFTICIENTSE:

K¥X= 0.10000E+10 N/M
KYXw 0.00000E+00 N/M
CXX= 0.00000r400 N~8/M
CYXe 0.00000E40N N-8/M

AT =

FOLLOWING GPECTIFICATIONS!
LENGTH OF THE ELEMENT.,.....=
OUTER DIAMEIER, ., v evv e o™
INNER DIAMETER. . ... v viev 0™
AXIAL LOAD . oo v v v i v oo™

KXYe 0.00000E+00 N/M
KYYm 0.10000E+10 N/M
CXYw 0,000002400 N~8/M
CYY= 0.00000E400 N-B/M

0.0000 M THERE EXISTHE A FINITE ROTOR ZLEMENT WITH THE

0.%0000r-01 M
0.40000F~01 M
0.00000E£400 M
0.00000E400 N




AT 7= 0.0Z00 M THERE EXISTS A FINITE ROTOR ELEMENT WITH THE
FOLLOWING SPECIFICATIONSG:

LENGTH OF THL ELEMENT,...... - 0.50000E-01 M

OUTER DIAMETER............ o= 0.40000E-01 M

INNER DIAMETER.....c.vvs o= 0.00000E400 M

AXIAL LOAD, . . ... v inonn, - 0.00000E400 N
AT Im 0.10C0 ¥ THERE EXISTS M RIGID DISK WITH THE FOLLOWING
SPECIFICATIONS:

OUTER DIAMMETER..,,,.= 0.24500E400 M

WIDTH. .. .vcv v vvnes ™ 0.25400E-01 M

MATERIAL DENS1TY,...= 0.78000L+404 KG/M**3

AT 2= 0.1600 M THERE EXISTS A FINITE ROTOR ELEMENT WITH THE
FOLLOWING SPECIFICATIONS:

LENGTH OF THE ELEMENT.......= 0.50000E-01 M

OUTER DIAMETER............. .- 0.40000E-01 M
INMER DIAMETER. ............. - 0.00000E+00 M
AXIAL LOAD. ..ot vvvvnnnns P 0.00000E+00 N

AT 2= 0.1500 M THERE EXISTS A FINITE ROTOR ELEMENT WITH THE
FOLLOWING SPECIFICATIONS:

LENGTH OF THE ELEMENT.......= 0.50000E-01 M
OUTER DIAMETER. . ... 0.v e v e - 0.40000E-01 M
INNER DIAMETER. . .....c.00s,.™ 0.00000E+00 M
AXIAL LOAD., . v vvseenunsnse .= 0.00000E+00 N

AT 2= 0.2000 M THERE EXISTS A BEARING WITH THE
FTOLLOWING STIFFNESS AND DAMPING COEFFICIENTS:

KXX= 0.10000E+10 N/M KXY= 0.00000E+00 N/.
KYXm= 0.00000E+00 N/M KYY= 0.10000E+410 N/M
CXXw 0.00000£+00 N-S/M CXY= 0.00000E400 N-S/M
CYXw 0.00000E400 N-S/M CYY= 0.00000E+00 N-S/M

GEAR MESH PROPCRTIES:

BASE CIRCLE DIAMETER OF GEAR 1l...= 0.1270 M

BASE CIRCLE DIAMETER OF GEAR 2...~ 0.2310 M
AVERAGE MESH SBTIFFNESS........... = (0.20000E409 N/M
AVERAGE MESH DAMPING.......... +..% 0.00000E+00 N-S/M
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A. FREE VIBRATION ANALYSIS:

B A s D A A e

FOLLOWING NATURAL FREQUENCIES AND MODESHAPES ARE CALCULATED
FOR THE ABOVE SPECIFIED SYSTEM:
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NATURAL FREQUENCY=

0.0002 (RHZ.)

CORRESPONDING MODESHAPES:

~.260E-08
-.358E-08
0.119E-08
-.524E-08
.299E-08
.771E-08
.253E-07
.188E-09
.256E-07
-.781E-08

I oo |

OO COO0OO00O0O

.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
-000E+00
.000E+00
.000E+00

ROT. ABOUT Y ROT. ABOUT X

[oNeNeNoNeNoNeRo el

.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+00

1o
P
- oo
= o W0
e m
1o
oo
T

00O ! ocooQC i
wn
w
w
o]
\
(=]
~3

ROT. ABOUT 2
.599E+01
.599E+01
.599E+01
.599E+01
.599E+401
.329E401
.329E+01
.329E+401
.329E+401
.329E401

[oNoNeloloNaeNoNolleNa
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NATURAL FREQUENCY=

486.0262 (HZ.)

CORRESPONDING MODESHAPES:

0.929E-02
0.261E+400
0.375E+400
0.261E+00
0.929E-02
-.950E-02
-.918E-01
-.129E+00
-.918E-01
-.950E-02

.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+400
.000E+00
.000E+0Q0
.000E+00
.000E+00

[«NeNeoNeNoNolNo ool

ROT. ABOUT Y ROT. ABOUT X

- -

OO0 OO QCQOOOO0O0

.000E+00
.000E+00
.000E+00
.000E+00
.000E+00
.000E+0V
.000E+00
.000E+400
.000E+00
.000E+00

0.551E401
0.410E401
-.119E-06
-.410E+01
-.551E+01
.180E+01
.134E+01
.995E-09
.134£+01
0.180E+401

(= Bl |

ROT. ABOUT 2
-.646E4+01
-.645E+401
-, 643E401

.645E401

.646E401

.110E401

.110E401

.109E401

0.110E+01

0.110E£+01

oo ol
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MODE 10

NATURAL FREQUENCY= 2479.9504 (HZ.)
CORRESPONDING MODESHAPES:

DIsSP. IN Y DISP. IN X ROT. ABOUT Y ROT. ABOUT X ROT. ABOUT 2

0.124£-01 0.000E+400 0.000E+0C 0.459E401 0.978E+01
0.212E£+400 0.000E+20 0.000E+00 0.288E+01 0.950E+01
0.279E400 0.000E400 0.000E+00 -.897E2-10 0.865E+401
0.21224+00 0.000E+00 0.000E400 -.288E+401 0.950E+01
0.124E-01 0.000E+00 0.000E+00 ~.4592401 0.978E+01
-.990E-02 0.000E+00 0.0C0E4+00 ~.134FE+C1 -.166E+4+01
-.€91E-01 0.000E+00 0.000E400 -,897£400 ~.162E+01
-.917e-01 0.000E+00 0.000E+400 -.562E~-10 -,147E+01
~.691E-01 0.0002+400 0.000E400 0.897E+400 -.162E+01
-.990E-02 0.000E+400 ¢.000E400 0.134£+401 ~-.166E+01

AAATNNNARRAN A AR AN A AAR RS ARANARAAAAAAA R A AR ANAA AR AR AN AN AN A AARNNAAA R AN AN

B, FORCED VIBRATION ANALYSIS:

FORCED RESPONSE AT THE SPECIFIED FREQUENCY RANGE:

0.591142E-04
0.675.86E-04
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APPENDIX B
DIMENSIONAL AND NON-DIMENSIONAL QUANTITIES
FOR THE EXPERIMENTAL TEST RIGS

Table Bl. Dimensionless and dimensional parameters for Kubo's test rig [28].

DIMENSIONAL QUANTITIES
Number of teeth 25/25
Loy Ign (kg-m2 (Ib-ft2)) 0.00115 (0.0278)
m.; [kg) 0.23
dgy.dgy [m (in)) 0.094 (3.7)
ky rigid
ky [N/m (1bf/in)) 3.8E8 (2.17E6)
F, [N @1bh) 2295 (1030)
¢ [m (in)] 1.92E-6 (7.56E-5)
by (m (in)) 0.1E-3 (0.0039)
DIMENSIONLESS QUANTITIES
L (page 44) 0.1
Fn (pege 44) 0.06
Fon (page 44) 0.0192
Fn/Fan 3.12
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Table B2. Dimensionless and dimensional parameters for Munro's test rig [27].

DIMENSIONAL QUANTITIES
number of teeth 3232
Igl, 182 [kg-m2 (1b-ft2)) 0.136 (3.29)
mgy. My [kg (Ib)) 31.1 (68.5)
0.2 (8)

dg1.dgz [m (in)]

by [m(in)] 0.12E-3 (4.7E-3)
Design Load (DL)  3/4 DL 1/2 DL 1/4 DL
F, [N (bf/in FW)] 3782 (1700) 2836(1275) 189i (850) 947 (425)
ky [N/m] 3.44E8 3.22E8 3.01E8 2.72E8
¢ [m) 3.5E-7 1.06E-6 1.78E-6 2.36E-6
DIMENSIONLESS QUANTITIES
Design Load (DL)  3/4 DL 12DL 1/4 DL
Fm (equation 3.31) 0.183 0.146 0.105 0.058
Fan (equation 3.3)) 0.0058 0.0178 0.0296 0.0393
X|1, K22 (equation 3.3f) 0.950 0.966 0.983 1.007
K}3, K23 (equation 3.3g) 0.242 0.242 0.242 0.242
811, 822 (equation 3.3c) 0.01 0.01 0.01 0.01
13, §23 (equation 3.3d) 0.00375 0.00375 0.00375 0.00375
{33 (equation 3.3¢) 0.015 0.015 0.015 0.015
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APPENDIX C
LENGTH OF TRANSIENT SOLUTION AND CPU TIME

C.1. Length of Transient Solution

It is necessary to run the digital simulation routines for many cycles in order to
reach the steady state solution. This can easily be detected by a time history repeating
itselt and a phase plane trajectory followed at each period of the steady state goiution.
Following are found to be the major factors which determine the length of the transient
region of the time history:

1. Damping Ratio; Damping ratio is inversely proportional to the time needed to
reach steady state solution. lL.arger the damping, shorter the transients. Figure Bl
shows this relationship for the single degree of freedom model of gear pair. A similar
trend is observed in Multi-degree of freedom model also.

2. Excitation Frequency; The transient solution is found to be longer in the
vicinity of the resonance frequency than the off-resonance region. Figure Bl compares
length of transient solution versus damping ratio curves comresponding to resonance
and off-resonance excitation frequencies.

3. Iniir} Conditions:. Transients are longer when the initial displacement and

velocity are away from the mean values of the steady state solution sought.

C.2, CPU Times
CPU time needed in digital simulation depends on: i. the number of increments

per period of forcing function (20-40 points per period is good enough), ii. the
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Figure C1. Length of the transient solution in a gear pair as a function of damping

ratio for off-resonance (£2=0.5) and resonance (£2=0.7) frequencies

tolerance of the solution accuracy (1x10-3 to 1x10-9 is acceptable), and iii. number of
degrees of freedom. For the single degree of freedom model with a tolerance of 1x109
and an increment of 20 points/period, nearly 10 sec. of CPU time is required to run for
100 cycles. The three degree of freedom model with same parameters uses 1.2 min. of

CPU time for 100 cycles.
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APPENDIX D
COMPARISON OF PREDICTIONS WITH NASA MEASUREMENTS

In this section, a comparison of the FEM predictions of the NASA Gear Noise
Test Rig shown in Figure D1 with the measurements of NASA is given. System
parameters and the predicted natura! modes of the system have already been given in
Tables 1.1 and 1.2, respectively. The static transmission error and mesh stiffness
variation predictions are also shown in Figure 4.8. Here, the comnparison of the
predicted frequency response spectrum with measurements of NASA is limited to
torsional (angular acceleration) vibrations since the set-up was not equipped for
transverse vibration measurements. Only a qualitative agreement is observed between
the predictions and measurernents as shown in Figure D2 due to the uncertainties
associated with the sensitivities of instruments and due to the errors involved in

measurement such as resonance and calibration problems of angular transducers.

coupling

\ torquemeter

motor

Figure D1. NASA Gear Noise Test Rig.
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Figure D2.  Angular acceleration spectrum of the NASA Gear Noise Test Rig at pinion

location; a) measurements b) FEM predictions.
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APPENDIX D
COMPARISON OF PREDICTIONS WITH NASA MEASUREMENTS

In this section, a comparison of the FEM predictions of the NASA Gear Noise
Test Rig shown in Figure D1 with the measurements by NASA is given. System
parameters and the predicted natureal modes of the system have already been given
in Tables 1.1 and 1.2, respectively. The static ransmission error and mesh stiffness
vanation predictions are also shown in Figure 4.8. Here, the comparison of the predicted
frequency response spectrum with measurements by NASA is limited to torsional
(angular acceleration) vibrations. Only a qualitative agreement is observed between
the predictions and measurements as shown 1n Figure D2 Quantitative discrepancies

are attributed to the resonance problems experienced with the angular transducers.

coupling
torquemeter
\ [ |pinion
T:Hbcariri g
motor ;D:
L gear
, load
gear box

Figure DI. NASA Gear Noise Test Rig.
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