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A heterogeneous shared memory multiprocessor, which contains different

types of specialized processors, may execute a complex problem faster than either a

homogeneous multiprocessor or a heterogeneous network. However, since dissimilar

processors often use different representations for primitive data types, the shared data

must be transformed. Analytical performance models and queueing models predict

the performance of alternative designs. These models indicate that significant

performance advantages are provided by hardware transformation units, caching of

unshared data, and local memory. Conversely, caching of shared data and the

location of the transformation units have a less significant effect on performance. The

primary applications for these type of designs are in special purpose applications

which require maximum performance and tight coupling between heterogeneous

processors. The linking that must be done at compile time makes these designs less

suited for general purpose applications and development work.
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Chapter 1

Introduction

Virtually all parallel processors that have been built or proposed to date use

only a single processor type. However, the ability to interconnect different types of

specialized high performance processors would allow the design of custom parallel

architectures for specific purposes. Heterogeneous parallel processors that are

specially suited to specific problems could offer a significant performance advantage.

For maximum performance, the ability to share memory is desirable. But since

different processors use different methods of data representation for the primitive data

types, the values in memory cannot be shared directly. The shared data must be

transformed into the appropriate representation for each processor.

In addition to the potential performance advantage, a heterogeneous system

provides greater versatility. In situations where a complex application has been

designed for a specific processor, it may be preferable to add that processor to the

system rather than port the application to a new processor.

Most of the prior research has focused on versatility and has addressed the

communication between heterogeneous computer systems at the network level. Some

of these projects include Mach [Rash87] [Rash88], XDR [XDR86], Matchmaker,

Agora [Bisi87], Nectar [Arno89], and Cronus [Dean87] [Scha88].

In a project conceptually similar to this research, MITRE developed VLSI

coprocessors to accelerate translations between network protocols [LAN 87]. One of

the significant performance problems encountered in this project resulted from the

overhead required to set up the transformation hardware [Frie88]. Their observations

1
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on the importance of minimizing overhead strongly influenced the early development

of this research.

This research focuses on heterogeneous shared memory multiprocessors

designed for maximum performance. Performance is emphasized for two reasons.

First, most of the previous work has addressed versatility rather than performance.

The purpose of this research is to help fill this void by proposing the use of hardware

transformation units that will enable shared memory access in heterogeneous

multiprocessors [StCr88]. Shared memory architectures were chosen because this is

the fastest way to share data between processors. These architectures are well-suited

for special purpose applications that require high speed execution, such as embedded

computer systems. An embedded computer system is one in which the computer is

designed into an end item such as an aircraft, a missile, communications or test

equipment, etc. Because of the emphasis on embedded systems, this research has

tended to explore those design alternatives that favor reduced run time hardware and

processor cycles and instead shift the burden to development and compile time. This

research does not specifically address general purpose computer systems which often

have greater emphasis on versatility than performance.

The second reason for emphasizing performance is because this author has

observed unique military applications that would benefit from tightly integrated, high

performance, heterogeneous multiprocessors. Some of these projects include the

Advanced Tactical Fighter (ATF), Joint Integrated Avionics Working Group

(JIAWG), Pilot's Associate, and autonomous vehicles. The Department of Defense

and the defense industry [Heil87] are aware of the importance of this problem. The

Air Force, Army, and Navy are all developing advanced aircraft that will have much
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tighter integration between dissimilar processors [JIAW88] [JIAW891, although the

details of the competing designs are still heavily shrouded in proprietary security

[ATF89].

In this research, a heterogeneous shared memory multiprocessor has two

characteristics. First, it contains different types of autonomous processors. Under

Flynn's taxonomy, this would be classified as a Multiple Instruction Multiple Data

(MIMD) architecture. Each processor must be capable of fetching and executing an

independent insuruction stream. Secondly, the processors must be able to access

shared memory. This characteristic differentiates these architectures from a

distributed computer system or a network of computers.

Analytical performance models are used to compare alternative heterogeneous

designs. The performance metric for this comparison is the average memory access

time. The intent of this research is not to espouse a certain design, but rather to

provide predictive models of performance which can be used by a designer of

heterogeneous architectures.

The only current heterogeneous shared memory multiprocessor known to the

author is the Explorer LX by Texas Instruments [ExLX87]. This system has two

processors, an Explorer LISP processor and a Motorola 68020, that share memory.

The XDR protocol (§3.3.1.) is used to transform the data.

However, the concept of specialized processors that share main memory is not

new to the history of computing. Computer architects have used heterogeneous

shared memory multiprocessors since the mid-sixties to take advantage of functional

specialization and high bandwidth communication. The IBM Systerm/360 [Hell67]

and the Texas Instruments Advanced Scientific Computer (ASC) [CrWa89] both used
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specialized stored-program processors to control the movement of data between

peripheral devices and main memory. These peripheral processors used the same

primitive data types as the main processor, which reduced the need for data type

transformations.

However, specialized processors can perform functions other than data

movement and simple control. An example of this is described in the next section.

But this heterogeneity brings with it the problem of data type portability between

processors. If the processors use dissimilar representations, the data types must be

transformed. This research proposes the use of a common data representation for

shared memory, and hardware transformation units for each processor in order to

provide low latency and high bandwidth communication to memory.

1.1. Advantage of Heterogeneous Multiprocessors

Some complex problems include a broad spectrum of tasks. An advanced

fighter aircraft requires a mixture of processors for digital signal processing (DSP),

graphics, and general purpose (GP) data (Figure 1-1). In situations such as this,

where high performance is vital, specialized processors provide a significant

performance advantage over general purpose processors. Specialized processors

exploit the structure of a task and its data, and can execute that task faster and often

cheaper than a general purpose processor. Lipovski and Malek [LiMa87] make a

similar argument from the standpoint of power and energy:

A well-designed special-purpose computer should require much less
power since enly the hardware needed by the procedure need be built. It
should execute faster because no run-time scheduling is necessary and
direct paths for data transfer should be implementable.

Specialized processors have been developed for digital signals, graphics and

images, floating point numbers, list manipulation, data bases, radar, electronic
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countermeasures, general purpose data, and others. Digital signal processors have

historically been eight to ten times faster at DSP than general purpose processors

[Morr86] [Morr88]. Similarly, the iMS34010 pixel addressable graphics processor

is estimated to be 16 to 20 times faster at graphics than current general purpose

processors [Chan9O] (Figure 1-2). Ideally, a heterogeneous multiprocessor with the

performance advantages shown in Figure 1-2 can execute the workload in Figure 1-1

in approximately one third the time required by a general purpose processor (Figure 1-

3). The execution times shown in Figure 1-3 are computed from the workload in

Figure 1-1 and the performance comparison shown in Figure 1-2. This relative

execution time is based on the equation:
2 Workload fractioni

Execution Time = Speedup'
i=0

General 16
Purpose 16
25% S

DSP p v 12
45% es 8

e 8
dG
uP 4

Graphic p
30% 0

Graphic DSP GP

Figure 1-1: Advanced aircraft Figure 1-2: Performance advantage of

workload a ne specialized processors relative to generalworkoad reakownpurpose (GP)
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H neous

33

Homogeneous- 100

0 20 40 60 80 100
Relative execution time

Figure 1-3: Execution time comparison of heterogeneous and homogeneous
multiprocessors for the performance data of Figure 1-2

In practice, the overhead involved in sharing data between heterogeneous

processors will somewhat reduce the actual performance advantage. Depending on

whether message passing or shared memory is used, this overhead may consist of

processor delay, data latency, memory contention, transformation time, and cache

invalidations and/or updates. If the frequency of shared memory access is low,

message passing and software transformations may be more cost effective. Shared

memory and hardware transformation units will be advantageous only when the

frequency and speed of shared memory accesses offset the cost of the shared memory

and transformation hardware. The performance models in this research provide the

computer designer information on the performance of shared memory and hardware

transformation units.

Designers are beginning to recognize the performance advantages of

heterogeneous multiprocessors. At a recent symposium, Motorola presented a design

that has an MC88 100 RISC processor pipelined with two DSP96002 DSP processors

for a graphics application which uses floating point numbers [Serr90]. In this case,
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transformations were not required since both types of processors use the same IEEE

floating point representation.

1.2. Dissertation Organization

Chapter 2 describes the need to maintain coherency for data values, addresses,

and data types. Cache coherency is more complex in a heterogeneous multiprocessor

because the representation of the data may vary between caches. Coherency can be

maintained through the use of transformation units, identical cache line sizes,

compatible cache coherency protocols [SwSm86], and compatible addressing

schemes. The problems involved in designing multiprocessors containing both early-

and late-binding processors are also discussed.

Chapter 3 examines the underlying problems related to the representation and

transformation of primitive data types. The types of transformations are categorized,

and a common data representation is proposed. The transformation errors that occur

between floating point representations are explained.

Chapter 4 examines alternative locations and methods for performing data type

transformations. The performance of shared memory and hardware TLJs is compared

to networks and transformations in software.

Chapter 5 uses analytical performance models and queueing models to

compare the performance of alternative designs using shared memory and hardware

transformation units. These models identify the design features that provide the

greatest performance improvement.

Chapter 6 briefly discusses the system software required to support these

heterogeneous architectures. A heterogeneous linker creates a master symbol table

containing the addresses and data types of shared data. Post-processors use the
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information from this table to insert transformation unit setup instructions into the

compiled code for each processor.

Finally, Chapter 7 summarizes the conclusions of this research and its

contributions to the design of high performance heterogeneous multiprocessors.



Chapter 2

Data Coherency

A heterogeneous multiprocessor must maintain coherency for data values,

addresses, and data types. Data value coherency requires compatible cache coherency

protocols. Address coherency is maintained through the use of fully aligned memory

storage, with specialized hardware for processors with smaller address and data

buses. Data type coherency is accomplished through transformations, which are

covered in the next chapter. When a multiprocessor includes both early and late

binding processors, some of the data type transformations are not known at compile

time and must be determined at run time.

2.1. Value Coherency

Heterogeneity imposes additional requirements on the cache (value) coherency

scheme. Many cache coherency protocols have been proposed and compared in the

literature [ArBa86] [BiDe86] [MiBa89]. All of these protocols are for homogeneous

multiprocessors, and they often rely on monitoring a common bus. Sweazy and

Smith [SwSm86] define a class of compatible consistency protocols supported by the

IEEE Futurebus. Three of their conclusions which are relevant to heterogeneous

multiprocessors are:

(1) [They] define a class of compatible protocols, such that each cache in
the system may implement one of the protocols in this class and still
maintain consistency with other caches implementing different
(compatible) protocols. This permits the coexistence of copy back caches,
write-through caches and non-caching boards in the same system
[SwSm86].

(2) All caches must use the same line size.

9
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(3) To implement the protocols, six signal lines are required on the bus.
Certain other protocols require a seventh signal.

A heterogeneous system is unique in that the cache representation (which is

determined by the location of the transformation unit) affects the performance and

thus, the choice of the coherence protocol. A protocol which invalidates shared lines

in other caches is not affected by the cache representation. However, a protocol

which updates shared lines in other caches will be delayed by a native representation

cache. A native representation cache requires a transformation when a shared line is

updated, while a common representation cache does not require a transformation for

updates (§5.3).

2.2. Address Coherency

Both the address and data lines are involved in maintaining coherency. Since

all protocols maintain coherency using the address of the cache line, all processors

which access shared memory must use the same addressing scheme (coherent

addresses).

The address coherency problem arises due to the fact that processors store

bytes in memory in one of two different orders. This is commonly referred to as the

Big-Endian (BE) vs. Little-Endian (LE) problem from a well-known article by Cohen

[Cohe8l]. This problem is further analyzed in [Kirr83]. The BE processor stores the

most significant byte of the word at the lowest address, while the LE processor stores

the least significant byte of the word at the lowest address (Figure 2-1 and 2-2)

[MIPS88]. Address coherency problems between BE and LE processors (§3.1.1.)

are caused by data that is not aligned on 32-bit word boundaries. When addressing a

misaligned word with a byte address of 3, Figure 2-3 shows the bytes that must be

accessed for each of the two conventions. These problems can be eliminated by
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requiring full alignment of all data in shared memory (as discussed in §3.3.4.). When

accessing an aligned 32-bit word in memory, both BE and LE processors put out the

same address - the byte with the lowest address. However, the BE and LE processor

are referring to different bytes in the word. Nevertheless, an aligned address will

return the same four bytes with either processor, although the four bytes in the word

will be in the opposite order. The byte order can be corrected by a transformation

unit.

Big-Endian
Word

31 24 23 16 15 8 7 0 address
8 10 11 8
4 5 6 7 4
0 1 2 3 0

Most significant byte (byte 3) is at lowest address
Word is addressed by byte address of most significant byte

Figure 2-1: Addresses of bytes within words for Big-Endian

Little Endian
Word

31 24 23 16 15 8 7 0 address
11 10 1 9 8 8
7 6 1 5 4 4
- - 2 1 0 0

Least significant byte (byte 0) is at lowest address
Word is addressed by byte address of least significant byte

Figure 2.2: Addresses of bytes within words for Little-Endian



12

31 24 23 16 15 8 7 0
5 6 Big

Endian

31 24 23 16 15 8 7 0
I 6 I 5 I 4 Little

Endian
Bytes accessed when addressing a misaligned word with a byte address of 3

Figure 2-3: Bytes accessed for a misaligned word

A second type of address coherency problem occurs between processors with

different address lengths and "addressable data unit" lengths [BlBr87]. For example,

the MIL-STD-1750A has a 16-bit address and a 16-bit addressable data unit (i.e.,

word addressable, where a word=16 bits), whereas the R3000 has a 32-bit address

and an 8-bit addressable data unit (byte addressable). So every address on the 1750A

requires two addresses on the R3000 to hold the two bytes of data (Figure 2-4).

232 7 Z 216
6 Y

addresses 5 xI addresses
4 w I3 z !y 32 x !-w 2

I 1
0 a - - 0

8 bits 16 bits
MIPS R3000 MIL-STD-1750A

Figure 2-4: Address length vs. addressable data unit length

To share memory between these two processors, an address conversion must

be performed. A portion of the address space for the 1750A can be mapped to the

shared memory. When the 1750A puts out an address which is in that range assigned
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to shared memory, a decoder could cause 14 bits to be appended to the upper end of

the 16-bit address, and 2 bits to the lower end, to create a 32-bit address. The 2 bits

appended to the lower end are set to zero and ensure that the addresses generated by

the 1750A are four bytes apart, which maintains memory alignment on word

boundaries. The bits appended to the upper end control the location of shared

memory. These bits can be appended using hardwiring or a buffer. A buffer allows

the mapping to be software controlled.

2.3. Type Coherency

A third aspect of coherency is data type coherency. Data types and their

representations vary greatly between processors. TI-s problem and a solution are

considered in detail in the next chapter. Here we consider the effect of binding time

on type coherency.

2.3.1. Binding Time

When passing data from one routine (the source) to another routine on a

dissimilar processor (the destination), two transformations are necessary: one from

the source representation to the shared memory (SM) common representation, and a

second from the shared memory common representation to the destination

representation (Figure 2-5). Of course, if either the source or destination processor

use the same representation as shared memory, that processor can access shared

memory without a transformation.
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Source to SM SM to Destination
Transformation Transformation

Source Memory Destination

Figure 2-5: Source to destination transformations

In order to determine the appropriate transformation in an untagged

environment, the data type of the shared data must be known at compile time so that

the appropriate transformation instructions can be inserted in the code (§6.1). This is

normally not a problem, since most languages assign, or "bind" the data type when

the program is compiled. These are called early binding languages. However, some

languages such as LISP are late binding, which means that the data type is not

assigned until run time.

• Early binding is done at compile time

* Late binding is done at run time

A late binding time makes it impossible to completely specify both

transformations at compile time. The simplest solution is to force late binding

routines to do early binding for shared data; Common LISP permits this early

binding. In order to allow late binding of shared data, the late binding routine must be

capable of selecting the appropriate transformation at run time.

The four possible cases based on binding time and source or destination of the

data are: early to early, early to late, late to early, and late to late (Table 2-1).
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When sharing data between two early bound Binding Time
Combinations

routines, the data types at the source and destination are Source Destination

known at compile time, so the heterogeneous linker (§6.1) Earl Eate

can determine the necessary transformations. Iate Early
Lat Late

In the early to late case, the data type at the source Table 2-1: Binding
time combinations

is known but not at the destination. With a common

representation shared memory, the source-to-shared memory transformation can be

specified at link time. But the shared memory-to-destination transformation must be

specified by the late-binding routine at run time. The heterogeneous linker passes the

shared memory data type to the late binding destination routine at link time.

The late to early case is analogous to the early to late case: the data type at the

destination is known but not at the source. Since the setup command for the early

binding destination must be inserted at compile time, the shared memory data type

must be specified at compile time. This in turn restricts the output of the

transformation which the late binding source selects. The heterogeneous linker passes

the shared memory data type to the late binding source at link time.

In the late to late case, the. data type is not known at the source or the

destination at compile time. Late binding languages normally use data type tags to

pass data type information to other routines at run time. However, if the shared

memory common representation does not have tags, the data type information must be

communicated in some other manner. Either the shared memory data type must be

specified by the linker at compile time, or the data must be passed through the shared

memory unchanged so as to preserve the tags (§3.3.4. "opaque data").



Chapter 3

Data Type Representation and Transformations

Most processors have a similar set of primitive data types but they use

different methods to represent them. The representation is important because the

instruction set on a processor is designed to recognize and manipulate primitive data

types represented in specific ways. Different representations make it impossible for

heterogeneous processors to directly share data.

A primitive data type for a given processor is one which is represented in

hardware and is manipulated by the instruction set. The three most prevalent primitive

data types are signed integers, unsigned integers, and floating point numbers. Other

data types, which are often used in software but are not usually primitive data types,

are characters, vectors, arrays, strings, and complex numbers. Some scientific

computers such as the Cray and the ASC have vector and string primitive data types.

Various numerical methods are used to represent primitive data types. These

include two's complement, sign magnitude, exponent bias, hidden bit, the IEEE

floating point standard, and others. The representation of floating point numbers has

been quite diverse historically, as shown in Table 3-1. This diversity has made it

difficult to share data between processors, or even get the same numeric result when a

program is ported to another computer. But the recent development of the IEEE

Floating Point Standard [IEEE85] now makes it easier for processors that use this

standard to share floating point data.

16
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Table 3-1: Floating point representation methods
Total Exp Mant Exp Mant I

Processor Bits I Bits Bits Rep Rep Other

EEE- 24 SM,NHB _

1EEE-D 64 11 53 -+ 102 SHB

VAX-F 32 T 24 + 128 SM,NHB B M-0
VAX-D w56 + 128 SM,NHB OMZ-0
VAX-G 6- -11 3 + 1024 SMNHB O --
VAX-H 128 15 113 +16384 SM,NHB OMZ--0

CDC6 11 49 + 1024 OC,NI
Harris 4T T 9 "SM
TMS320C3 32 8 24 TC TC,NF
TMS320C30 40 8 32 TC TC,NF

17A-S 24 TC TC,NF
1750A-E 48 8 40 TC - TC,-NFP
Explorer SaL as IE
MC68882 Same as EE

TM S,D Same as EE
80387 E 5 11 65 +1683 NF1_ _

AM29027 Supps lEE]; IBM S & D; and Vax D, F,&G
IBM 32 7 25 + 64 SM,NF
I64 7 57 1+ 64 SM,NF
Cray 64 115 149 1+16384 1SMI

SM - Sign Magnitude
HB - Hidden Bit
NHB - Normalized, 1.0 < x < 2.0, Hidden Bit (the one is implied)
NF - Normalized Fraction, 0 < x < 1.0
NF1 - Normalized Fraction, 1.0< x < 2.0
OMZ - Order of Magnitude Zero
OC - One's Complement
NI - Normalized Integer (binary point at the right of bit 0)
TC - Two's Complement

Heterogeneity between processors can be accommodated in two ways: by

defining a standard data representation for all future processors, or by using

transformations between dissimilar representations.

A standard data representation may be the preferred long term choice because

it avoids the problems and incompatibilities that arise in data type transformations.
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The IEEE Floating Point Standard [IEEE85] is one such standard representation that

is now being widely used in new processors; this standard will simplify the exchange

of floating point numbers. Although in some cases a specialized application may

require a unique representation, heterogeneity does not necessarily require a different

data representation. For example, the TI TMS32OC30 DSP processor uses a two's

complement floating point representation for computing efficiency and reduced

complexity, whereas the Motorola 96002 DSP processor uses the IEEE standard for

compatibility with other processors.

In spite of the inherent simplicity of a standard data representation, no general

data standard is currently in existence or even on the horizon. Thus it appears that

transformations will be necessary for at least the next decade, and probably much

longer. A common data representation would reduce the complexity of these

transformations (§3.3.).

3.1. Data Type Representations

Some of the issues involved in data type representations and transformations

are illustrated by examining the primitive data types in four specialized processors: the

Explorer II LISP processor, the TMS320C30 Digital Signal Processor, the MIPS

R3000/4000 RISC Processor, and the MIL-STD-1750A Avionics Processor. All of

these processors are likely choices for a military system. The Explorer II "LISP

processor on a chip" was sponsored by DARPA for symbolic processing; the

TMS320C30 is a recent digital signal processor with on-chip floating point hardware;

the MIPS R3000/4000 RISC processor is one of two contenders for the new DoD

standard 32-bit avionics processor (Common Avionics Processor or CAP-32); and the

MIL-STD- 1750A is the Air Force standard 16-bit avionics processor.
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3.1.1. Byte Order: Big- or Little-Endian

In addition to the various numerical methods used to represent primitive data

types, the byte order may differ when data is stored in memory (as discussed in

§2.2). For example, in the Explorer LX system, both the Explorer LISP processor

and the Motorola 68020 use the IEEE Floating Point Standard, but they store the

bytes in memory in a different order [ExLX87]. This change in order makes the data

from one processor unintelligible to the other. Data type transformations must take

into account this difference in order. A recommended common data representation is

presented in §3.3.4.

The transformation problem has been somewhat simplified within the last two

years by the introduction of processors which can read data from memory using either

the Big-Endian (BE) or Little-Endian (LE) byte ordering. Processors which have this

capability include the Advanced Micro Devices 29000 [AMD89], the MIPS R3000

[MIPS88], the Motorola MC88100 [M88K 89], the Intel 80960CA [i960 89]. Not

all of these processors can reconfigure their byte ordering "on the fly"; the MC88100

can, whereas the R3000 must be configured at startup. The Intel 80486 has a single

cycle instruction for converting data between BE and LE [i486 89] [i486 90]. This

is an example of augmenting the instruction set to include transformation instructions.

3.2. Data Type Transformations

This section provides background information on sharing of data, describes

the information required to perform transformations, and categorizes the different

types of transformations.

In order to maximize performance, only shared variables need to be

transformed. This research focuses on transforming primitive data types rather than
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data structures. There are a wide variety of data structures, and it may be inefficient

and difficult to duplicate an entire data structure on a dissimilar language/processor.

Shared data may be transferred between processors either through a common

shared memory or by passing messages, usually across a network. There is some

overlap between these two approaches as some message passing systems use a shared

memory [HwBr84]. Generally, shared memory systems provide higher bandwidth

between processors than message passing and are better suited for systems with a

high degree of interaction between processors. A transformation is necessary when

the shared memory is accessed by a processor which represents data differently than

the representation used for shared memory. If a heterogeneous system had little

interaction between processors, a message passing system might be suitable. In a

message passing system, a transformation is necessary only when sending data to a

dissimilar processor.

In order to transfer data between dissimilar processors, three items of

information are necessary besides the data itself. These items are: (1) the source

processor type, (2) the source data type, (3) the destination processor type, and (4)

the destination data type. The source processor and data type are needed to correctly

interpret the meaning of the data bits, while the destination processor and data type are

needed to select the proper transformation. Some of these items may not be explicitly

required if they are known implicitly.

3.2.1. Types of Transformations

The types of transformations can be divided into four categories, based on the

data type and processor type (Figure 3-1). For the purpose of this categorization, we

only consider whether the data type and processor type at each end of the



21

transformation are the same or different. Examples of data types are integer, float,

character, etc. Examples of processor types are R3000, MIL-STD-1750A,

TMS32OC30, etc. Each of the four categories of transformation can be further

subdivided by considering the number of bits, order of the bits, and coding method

(Figure 3-2). Coding method refers to choices such as two's complement, sign-

magnitude, exponent bias, hidden bit, etc.

different 1 3
DATA

TYPE
same 2 4

same different

PROCESSOR TYPE

Figure 3-1: Types of transformations

# OF BITS "Ooo 0 0m

different

same 4 CODING

s sam
same METHMOD

same different

Examples:
1. LISP BIGNUM to LISP 32-bit float
2. MIL-STD-1750A 48-bit float to MIL-STD 32-bit float
3. LISP BIGNUM to MIL-STD 32-bit float
4. TMS320C30 32-bit float to MIL-STD 32-bit float

Figure 3-2: Types of transformations(cont.)
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The numbers in the blocks of Figure 3-1 and 3-2 correspond to the four

examples listed at the bottom of Figure 3-2. In Example 1, the transformation of a

LISP (i.e., the Explorer 11 LISP processor) BIGNUM (an integer which can be many

words long) to a LISP 32-bit float falls under the category of 'same processor

type/different data type' in Figure 3-1. This transformation can be further categorized

in Figure 3-2 as 'different number of bits/different order/different coding method.' In

Example 2, the only difference between the MIL-STD-1750A 48-bit float and the 32-

bit float is the fact that the 48-bit float has an extra 16 bits of precision in the mantissa

added to the end of the 32-bit float. So this transformation is categorized as 'same

processor type/same data type/different number of bits/same order/same coding

method.' Example 3 is similar to example 1, but is a 'different processor type.' In

Example 4, the TMS320C30 puts the exponent at the high end of the word, while the

MIL-STD-1750A puts the exponent at the low end of the word. So it is 'different

order.' But they both have the same number o" bits and use a two's complement

coding method.

The exact set of transformations required will be dependent on the language

and compiler used by each processor. The mapping between the primitive data types

of each language and the primitive data types of the processor is the most significant

factor in determining the transformations required. A possible set of transformations

is shown in Figure 3-3 for three of the example processors (LISP, TMS32OC30,

MIL-STD-1750A). The set consists primarily of transformations between integers

and floating point numbers of various bit lengths and representations. The integer

transformations are straightforward and well understood. The most complex of the

transformations are between the IEEE floating point standard and other floating point
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representations such as two's complement. This floating point transformation was

coded in LISP in order to clarify the issues involved, and to determine the complexity

of a hardware transformation unit (Appendix A). Floating point transformations are

discussed in detail in §3.4.

Transformations to data types with fewer bits can cause a loss of precision

and/or range. Selection of the proper destination data type is important, but this loss

of information will be unavoidable in some cases. When this occurs, the

transformation unit should set a flag indicating that information has been lost. Any

subsequent exception processing would be handled by software.

Ideally, the data type of a shared variable would be agreed upon before any

code i, written. This would minimize loss of information resulting from

transformations between different data types. But in practice, existing programs may

sometimes be used rather than rewriting the program. Data type differences that arise

from patching together existing programs should be handled by the transformation

units.

In many cases, existing compilers can provide transformations between data

types within a given processor (same processor type/different data type). These

transformations have various names: implicit conversion, coercion, promotion,

widening, cast, and explicit conversion. Some compilers (i.e., C, LISP)

automatically perform implicit conversions when they encounter expressions

containing mixed data types. Similarly, a programmer can specify explicit

conversions to transform the type of a variable. (To aid in the detection of data type

errors, Ada does not perform implicit conversions. All conversions must be explicit.)

Some compilers use no-loss transformation rules when performing these conversions.
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This, however, may not always be possible in a heterogeneous environment. When

performing transformations across data and processor types (i.e., Processor A integer

to Processor B float), it may be more efficient to first have the compiler match data

types (Processor A integer to Processor A float), and then transform similar data types

across processors (Processor A float to Processor B float).

. ..

-. G

n:L- 00)E-. - M -o- P .. o

LISP Machine"CLM)

24-bit integer X X
24-bit float
32-bit float
24-bit character
Symbol
Array
BIGNUM integer
64-bit float
Complex
Rational

TM32in30
16-bit integer
32-bit integer
32-bit float
40-bit float

16-bit integer
32-bit integer
32-bit float
40-bit float

Lagen± X - Recommended transform C - May lose precision (Conditional)
L - Loss of precision

Figure 3-3: A set of example transformations between data types.
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3.3. A Common Data Representation

This section briefly reviews prior research on common data representations,

examines three existing common data representations - Sun XDR, Cronus, and

ASN.1 - and then proposes a recommended common data representation. The Sun

XDR protocol is widely used between networked computers and is well documented.

Crorus is less well known, but it is being developed with the support of the Air

Force, and documentation on the data types was available. ASN.1 is part of the OSI

international standard for computer communication.

The complexity of the transformation process can be reduced by storing

shared data in a common, or standardized, data representation. A common data

representation reduces the complexity of the transformations from Order(N2 ) to

Order(N), as shown in Table 4-1. The problems and errors encountered with

transformations will vary with the common data representation that is chosen. A

judicious choice of representations will minimize the complexity and cost of the

hardware transformation units, reduce errors caused by transformations, and

maximize performance. Ideally, a common data representation should maximize

conformance with commoniy used data representations and with existing standards.

- Common Data Representation - a standardized method of storing
primitive data types. Defines the size and order of the bits, bytes, and
words for specified data types.

Much of the prior research on data transfer between heterogeneous processors

has concentrated on distributed operating systems and network services. Three recent

distributed operating systems are Mach/Matchmaker and Agora at CMU [Rash87]

[Bisi87], V System at Stanford [Cher83], and Cronus at BBN [Dean87]. Sun has

also addressed the transformation problem in the area of networking heterogeneous
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computers through their External Data Representation (XDR) standard [XDR86]. All

of these projects have used software transformation methods, using either operating

system calls or software subroutines. Early software solutions are often later

implemented in hardware to improve performance [Dean87]. This research examines

the use of hardware for transformations, and compares the performance of hardware

and software transformation methods.

Bisiani briefly addresses the problem of data representation and transformation

at the processor level by saying "...sharing cannot happen at such a low level of data

representation, e.g. because of incompatible byte orderings or alignment requirements

of different processors" [Bisi87]. This research shows that sharing is possible at the

processor level of data representation.

3.3.1. Sun XDR

Sun Microsystems developed the External Data Representation (XDR)

protocol specification to allow two dissimilar machines to exchange operands over a

network despite differences in byte ordering, word length, floating point

representation, and so on [ExLX86]. XDR is part of the Network File System

(NFS), "which provides a transparent file service between machines of different

manufacture. The NFS is implemented on a wide range of platforms and is quite

popular as the de facto standard for file-sharing in the 80's, and most likely the 90's

as well [Rose9O]."

Computers which use this standard perform transformations ("filter") their

own internal representation of data before sending it out on the network. The

destination computer than transforms the data from the XDR representation to its own

internal representation. Although Sun created XDR to aid in networking, the XDR
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protocol itself does not involve networking. XDR is only a data representation

standard, independent of where that data might reside. ("By some strange

coincidence, the XDR representation is identical to the hardware representation used

by Sun [Rose90]." )

The XDR manual [XDR86] states that "XDR library routines should be used

to transmit data that is accessed (read or written) by more than one type of machine."

Note that a transformation is not theoretically required when sending data to an

identical processor. However, the destination processor must know if the data is not

in the XDR representation so that it does not attempt to "un-transform" the data. For

this reason, in a general heterogeneous environment, the XDR representation would

normally always be used to avoid confusion. The XDR standard assumes that the

order of the bits in a byte is preserved across hardware boundaries. The least

significant bit is transmitted first in a Little-Endian style in conformance to the

Ethernet standard. All data types require a multiple of four bytes (or 32 bits) of data,

with unused bytes set to zero. The bytes are numbered from 0 through n-i, and

lower numbered bytes are transmitted first.

The XDR standard defines 14 XDR Data Types
Primitive Constructor

data types. Of these, six are primitive Integer Enumeration

data types and eight are compound, or Unsiged integer Boolean
Hy Integer O ue

"constructor" data types, which are yr Unsigned Byte string
Sinle Float Fix -size array

composed of multiple data types Double Float Variable-size array
Structures

(Table 3-2). While the XDR standard Discriminated union

uses a Little-Endian order for the bits Table 3-2: XDR data types

in a byte, it uses a Big-Endian order
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for bytes in a word. The most significant of the four bytes is designated "byte 0" and

the least significant byte is designated "byte 3". Likewise, the most significant bit of a

single precision floating point number (i.e. the sign bit) is designated "bit 0" and the

least significant bit of the fraction is designated "bit 3 1".

Integers are represented by a 32-bit two's complement (TC) notation.

Unsigned Integers (U) are represented by a 32-bit unsigned binary number. Hyper

Integer is a 64-bit two's complement integer. Hyper Unsigned is a 64-bit unsigned

binary number. Single and Double Precision floating point numbers are represented

using the IEEE standard. The remaining eight data types are constructor data types.

Enumerations have the same representation as integers. For example, the

three colors red, yellow, and blue could be described by an enumerated type named

"colors":

typedef enum (RED=2, YELLOW=3, BLUE=5) colors;

Actually, enumerations are better viewed as a class of data types rather than an

individual data type. Since they are user definable, they would be difficult to

implement in hardware. Booleans are an enumeration with the form:

typedef enum {FALSE=0, TRUE=I) boolean;

Opaque data is a class of user-named data types that are passed between

processors uninterpreted. A counted byte string consists of an unsigned integer

showing the number of bytes in the string, followed by the "n" bytes of the string. If

"n" is not a multiple of four, the "n" bytes are followed by enough zero-valued bytes

to make the total byte count a multiple of four.

Users can declare fixed-sized arrays of homogeneous elements. The elements

are sent in their natural order, 0 through n-l. Variable-size arrays of homogeneous
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elements are preceded by an unsigned integer which specifies the size of the array.

Structures are a class of constructor data types which can be defined by the user. The

final data type, discriminated unions, provides a way of choosing from among a set of

specified data types.

3.3.2. Cronus

Cronus is a distributed operating system developed at BBN Laboratories and

supported by the Air Force's Rome Air Development Center. Like XDR, Cronus is a

proprietary standard developed in the early 80's for exchanging data across

heterogeneous networks. Both XDR and Cronus have a similar set of data types.

The system-supplied common, or canonical, data types in Cronus include 16- and 32-

bit two's complement integers, 16- and 32-bit unsigned integers, 32- and 64-bit IEEE

floating point numbers, boolean, ASCII, and arbitrary strings of bytes [Dean87]

[Scha88]. Cronus also has several other data types for system functions such as date,

time intervals, host numbers, access control and unique numbers. New composite

data types can be built out of the system-supplied data types [Dean87].

3.3.3. ASN.I

Abstract Syntax Notation One (ASN.1) is part of an evolving international

standard which, although predicted to be very popular for network communications,

is not an efficient common data representation for shared memory. It is mentioned

here because in the future it is expected to have a significant impact on communication

between heterogeneous computers across networks.

ASN.1 is a formal description language used to define data types. Within

ASN.1 are a set of Basic Encoding Rules (BER) that describe one particular set of

data types. Both the ASN.1 and the BER are based on the 1984 CCITT
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Recommendation X.409. ASN. 1 and the BER are part of a larger suite of protocols

called the Open Systems Interconnection (OSI) Reference Model. "Although there are

very few OSI systems deployed today, it is widely predicted that OSI will become the

networking solution of choice within the next several years ... ASN. 1 is destined to

become the network programming language of the 90's, just as the C programming

language is largely seen as having been the systems programming language of the

80's [Rose90]."

The BER provides an encoding scheme general enough to support all
machine architectures; however, the scheme is not particularly efficient to
implement on any existing machine architecture. As such, the price of
interoperability can be tremendous inefficiency. For example, informal
measurements comparing the BER to [XDR] show that using the BER to
encode an integer on a Motorola 68020 processor is anywhere from three
to twenty times slower than using the XDR ... This has led to a
controversy regarding the cost of using ASN. 1 and the BER [Rose90].

Although ASN.1 and the BER are much more flexible, XDR is much closer to

the representation actually used by processors. XDR thus allows simpler hardware

transformations and is a better choice for a common data representation in shared

memory.

3.3.4. Recommended Representation

This section proposes a common data representation for exchanging data

between heterogeneous computers in hardware. This representation is a subset of

XDR, and differs only in that the proposed bit and byte order is more consistent than

XDR. However, the particular order which is chosen is not as important as simply

agreeing on an order. From a practical standpoint, given the widespread acceptance

of XDR, it would be reasonable to use that (inconsistent) order.

The number of primitive data types defined has been kept to a minimum to

keep the hardware simple. The recommended representation has five primitive data
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types: single and double precision floating point, 32-bit signed integers, character,

and opaque (or uninterpreted) data. Opaque is used when no transformation is

required. Additional data types could be added if their frequency of use justified the

additional complexity. Potential additional data types include 16-bit signed and

unsigned integers, 32-bit unsigned integers, boolean, and one dimensional arrays (or

vectors). A separate data type is not required for 16-bit integers since they can be

represented in a 32-bit integer. The only reason to provide a 16-bit integer data type is

to avoid the need to check for overflow when converting from a 32-bit integer.

The clear choice of representation for floating point numbers is the IEEE

Floating Point Standard [IEEE85J. The increasing number of processors which use

this representation will require no transformation, and some of those that do not use it

provide instructions or routines for transforming their representation to and from the

standard. The hidden bit provides one additional bit of precision over representations

without a hidden bit, and values for singularity conditions are defined.

Signed integers are represented using a 32-bit two's complement notation.

Two's complement is the most common representation used today for signed integers.

The character data type has four 8-bit ASCII characters packed in a 32-bit

word. Unused bytes are set to zero.

The recommended order for data is a completely consistent Little-Endian for

bits, bytes, and words (32-bit) (Figure 3-4) [Kirr83].
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LSB

B7 B6IB5 B41B3IB2jBl BO Byte 0

B15:8 Byte I Increasing
Address

B23:16 Byte 2
M

S B31:24 Byte 3
BI

B=bit
LSB=Least Significant Bit
MSB=Most Significant Bit

Figure 3-4: Consistent Little-Endian order

Of the four example processors described in §3.1, the data paths on three are

32 bits wide, and one is 16 bits wide. As a result, the transformation units, shared

memory, and the bus are all 32 bits wide in order to optimize performance for the 32-

bit processors. The 16-bit processor requires a 16-bit buffer to capture the data from

the 32-bit bus without delaying the bus cycle.

All data must be fully aligned. For a byte-addressable processor, the two least

significant bits of the address must be equal to zero to be aligned on 32-bit word

boundaries. This prevents data from extending across two words in memory. Data

which is not aligned requires two memory cycles and shift operations before it can be

used by the processor. Unaligned data was more common in the past when memory

was more expensive, because it avoids unused bytes in memory. Many RISC

processors today require alignment, preferring to waste bytes of memory rather than

waste cycles aligning the data. Both the R3000 and the MC88100 require aligned

memory addresses. Full alignment also eliminates address incoherency between Big-

Endian and Little-Endian processors (§2.2).
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The integer and floating point representation methods for the four example

processors, and the three common data representations described in this section are

summarized in Table 3-3.

Table 3-3: Integer and float representation methods
Integer Integer Float Float Byte

Processor I size rpresent. represent. Orer
R3000 32 TC32,64 IEEBE, LEExplorer 32,64,T- 32,64 IEEE

TMS320 6,3 TC, 16,32,40 TC HB) LE

1750A 16,32 TC 32,40 TC BE
XDR 32,64 TC 3,4IEEE B
,Cronus 16,32 TC,U 3,4IEEE BE
Recomm. 32 TC 032,64 MME LE

TC Two's Complement BE Big-Endian
U Unsigned integer LE Little-Endian
HB Hidden Bit

3.4. Floating Point Transformations

This section analyzes the errors caused by the transformation of 32-bit (single-

precision) floating point numbers. The transformation of 64-bit, double-precision

floating point numbers is virtually identical. Computers using the IEEE Floating

Point Standard will not require a transformation and will not induce errors.

Transformations between most other representations will lose precision and/or range.

D.W. Matula considered the effect of transformations on precision. He

examined the number of digits required in different representation systems for one-to-

one and onto mappings [Matu67]. He also examined the accumulated error of

successive conversions using both rounding and truncation [Matu68] [Matu70].

Matula's work considered conversions between floating point numbers using

differing radices. In today's computing environment, all computers known to the

author use a radix of two for representing floating point numbers. The analysis in this
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section will use a radix of two as this more specific analysis will be more useful to

today's computer designers. The analysis could be generalized to consider other

radices.

3.4.1. Transformation Mappings

When examining transformations between different representations, it is

useful to consider whether they are one-to-one or onto mappings [Matu67].

With a one-to-one (1:1) mapping, each element of the domain is mapped to a

different element of the range (Figure 3-5). A mapping with this property makes it

possible to input two numbers that are very close to each other and yet still have them

remain distinct from one another in the new representation. There may be elements in

the range which have no corresponding element in the domain (i.e., the range has

more elements than the domain).

With an onto mapping, each element of the range is mapped to by at least one

element of the domain. In an onto mapping, there may be elements in the domain

which have no corresponding element in the range. Two elements in the domain can

map to one element in the range.

If a mapping is both one-to-one and onto, it is a one-to-one correspondence

(Figure 3-5). This is true because the only mapping that satisfies both one-to-one and

onto requirements is a mapping with an equal number of elements in both the domain

and range which are uniquely paired.

The first concern when performing a transformation to another representation

is whether that transformation is one-to-one. As long as the destination (or

intermediate) representation has an equal or greater number of bits than the source

representation, the transformation is one-to-one and no information will be lost in the
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transformation. At this point, the fact that there may be extra elements in the

intermediate representation is not a concern. A given value in the source

representation can be transformed into the intermediate representation and then

transformed back with no loss of information.

1:1 +Onto=
1:1 Onto 1:1 Correspondence

*-.------ -------- ~ 4 0

Domain Range

Figure 3-S: Mappings: one-to-one, onto, and one-to-one correspondence

However, the presence of extra elements in the intermediate representation

means that information may be lost when transforming to a representation with fewer

bits. This is an onto mapping. This can occur when an operation is performed on a

value in the intermediate representation. The resulting value in the intermediate

representation may not have a unique corresponding element in the source

representation. In other words, multiple values in the intermediate representation may

map to the same value in the source representation. A rounding or truncation

transformation must be used to map values from the intermediate representation back

to the source representation. Multiple conversions between representations using

incommensurable bases can cause errors to build up [Matu70]. The bases P and Q are

commensurable if and only if Pi = Q for some nonzero integers i and j. For example

two, four, eight, and sixteen are commensurable bases, whereas base ten is
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incommensurable with these bases. The major lesson to learned from Matula's work

is to avoid multiple conversions in-and-out of base ten. Programs requiring decimal

input and output may have errors at the start and end, but programs do not generally

require intermediate transformations to base ten.

3.4.2. Floating Point Transformation Errors

This section examines the errors that occur when transforming radix-two

floating point numbers between different representations. Errors can occur due to

differences in five areas:

1) the number of bits in the exponent

2) the number of bits in the mantissa

3) the singularity conditions

4) the representation method

5) the rounding method

These errors will be illustrated by using as an example two of the most

common floating point representations in use today - the IEEE Floating Point

Standard (IEEE) and two's complement (TC) without a hidden bit. The Explorer

LISP processor uses the IEEE representation, while the TMS320C30 and the MIL-

STD- 1750A each use slightly different two's complement representations (the

exponent and mantissa are reversed in order and the C30 uses a hidden bit). The

mapping between these two representations is illustrated in Figure 3-6 and described

in the following sections.
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IEEE Two's Complement
32-bit Floating Point 32-bit Floating Point

(no hidden bit)

Figure 3-6: Mapping between IEEE and two's complement floating point

3.4.2.1. Exponents

Both representations use an 8-bit exponent. The IEEE exponent is biased by

+127 and could represent numbers from -127 (00000000) to +128 (11111111). But
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these two extreme values, -127 and +128, are reserved for indicating denormalized

numbers and the quasi-infinites, respectively. So the usable range is -126 to + 127.

The two's complement exponent represents numbers from -128 (10000000) to + 127

(01111111). The values illustrated in Figure 3-6 are shown in Tables 3-4 and 3-5 in

decimal and binary, respectively.

Table 3-4: Decimal representation of values in Figure 3-6
Name (IEEE vectors) IEEE Valuee  TC Conversion Value Flags

pos-infinity NaN 1.9999998 * 2**126a  I
pos-biggest 1.9999999 * 2**127 1.9999998 * 2**126a  O,P
pos-biggest-x 1.9999999 * 2**126 1.9999998 * 2**126a  P
pos-smallest 1.0 * 2**-126 1.0 * 2"*-126
pos-unnorm-biggest 0.9999999 * 2*-126 0.9999999 * 2**-126
pos-unnorm-smallest-x 0.125 * 2**-126 0.125 * 2**-126b
pos-unnorm-smallest 0.00000012 * 2**-126 0.125 * 2 **_1 2 6b U
pos-zero 0 * 2**0 0 * 2**0
zero 0 * -** 0 * 2**0
neg-zero -0 * 2**0 0 * 2**0
neg-unnorm-smallest -0.00000012 *2*-126 -0.12500012*2**126c U
neg-unnorm-smallest-x -0.12500012 2 -0.12500012*2**-126c
neg-unnorm-biggest -0.9999999 * 2"*-12 -0.9999999 * 2"*-126
neg-smallest -1.0 * 2**-126 -1.0 * 2**-126
neg-biggest-x -1.0 * 2**127 -1.0 * 2*127d

neg-biggest -1.9999999 * 2*127 -1.0 * 2 ** 127d 0,P

neg-infinity NaN -1.0 * 2** 127d

Comments: BM:
atc-pos-biggest 0 - Overflow
btc-pos-smallest U - Underflow
Ctc-neg-smallest I -Infinity
dtc.neg.biggest P - Precision loss
eUnbiased exponent; add 127 for biased value
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Table 3-5: Binary representation of mantissa values in Figure 3-6
Name (IEEE vectors) IEEE ValueeS TC Conversion Valueg Flags

pos-infinity X.X...X * 2"128 0.1...1 * 2**127a  1,0
pos-biggest 1.1...1 * 2"' 127 0.1...1 * 2**127a  0,P
pos-biggest-x 1.1...1 * 2"'126 0.1... 1 * 2**127 a  P
pos-smallest 1.0 ...0 * 2**-126 0.10.. .0 * 2"*-125
pos-unnorm-bigest 0.1...1 * 2**-126 0.1...1 * 2**-126
pos-unnorm-smallest-x 0.001 * 2*-126 0.1 * 2"*-12 8 b
pos-unnorm-smallest 0.0.. .01 * 2**-126 0.1 * 2 ,*. 12 8b U
pos-zero 0.0.. .0 * 2**0 0.0.. .0* 2**0
zero 0.0...0 * 2**0 0.0.. .0 * 2**0
neg-zero -0.0.. .0 * 2**0 0.0.. .0 * 2**0
neg-unnorm-smallest -0.0...01 * 2**-126 .0.01...100*2**.126c U
neg-unnorm-smallest-x -0.0010.. .01*2"*-126 -0.01... 100*2**_126c
neg-unnorm-biggest -0.1...1 * 2**-126 -0.0...01 * 2**-126
neg-smallest -1.0...0 * 2**-126 -0.10.. .0* 2**-125
neg-biggest-x -1.0...0 * 2"'127 -0.0...0 * 2"'127d
neg-biggest -1.1...1 * 2"127 -0.0 ... 0 * 2**127d 0,P

neg-infinity X.X.. .X * 2**-128 -0.0.. .0 * 2**127d I

Comments: 0=ag:
atc-pos-biggest 0 - Overflow
btc-pos-smallest U - Underflow
Ctc.neg.smallest I - Infinity
dtc-neg-biggest (-0.0.. .02 tc = -1.010) P - Precision loss
eUnbiased exponent; add 127 (01111111 2)for biased value

fMantissa base 2, hidden bit shown (i.e. 1.XXX)
gMantissa base 2, two's complement

3.4.2.2. Mantissas

Both representations use 24-bits for the mantissa (sometimes also called the

characteristic). However, the IEEE mantissa uses a hidden bit to gain an extra bit of

precision. The mantissa is normalized to a sign-magnitude binary number between

one and two (i.e., 1.011). The I to the left of the binary point is not represented -

only the fractional part is represented. The mantissa sign bit is in bit 31. The TC

mantissa uses a normalized TC fractional representation. The IEEE mantissa with the
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hidden bit can represent twice as many numbers as the two's complement mantissa

without the hidden bit ( 224 vs 223).

3.4.2.3. Singularity Conditions

The three floating point singularities, or abnormal situations, are exponent

overflow, exponent underftow, and Order-of-Magnitude Zero (OMZ) [Hwan79].

The first singularity, exponent overflow, occurs when the exponent is greater than the

largest allowable positive value. The result can be positive or negative and is

represented by the symbols +- and --c; these are called quasi-infinites. The second

singularity, exponent underftow, occurs when the exponent is less than the most

negative allowable value. The result is represented by +e and -e which are called

infinitesimals. The final singularity, Order-of-Magnitude Zero (OMZ) occurs when a

floating point number has a zero mantissa, while the exponent can assume any

legitimate value. As shown in Table 3-1, most representations do not allow OMZs,

but require that True Zero be represented with a zero exponent as well as a zero

mantissa. Only the VAX permits OMZ.

The IEEE representation reserves values for indicating exponent overflow and

underftow. In addition, the use of unnormalized numbers allows gradual underflow

by sacrificing the number of bits of precision.

Problems will arise in the following situations when attempting to perform

conversions between the two representations:

1. When the IEEE exponent equals 127 or 128 (i.e. E=11111110 or

11111111) an overflow will occur when converting to TC. An overflow must be

signaled to the TC processor. For example:

1.11...1 2 x2 (IEEE) -> 0.1...12 x 2127 (TC OK)
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1.02 x 212 7  (IEEE) -> 0.12 x 2128 (TC overflow)

2. When the TC exponent equals -126, -127 or -128 (10000010, 10000001

or 10000000), underflow will occur when converting to IEEE. The conversion can

be made to an IEEE unnormalized number. However zero, one, or two bits,

respectively, of precision will be lost. Similarly, if a positive unnormalized IEEE

number less than (2-3 x 2-126 = 2-129) is converted, an underflow will occur. If a

negative unnormalized IEEE number less than or equal to -2- 12 9 is converted,

underflow will occur.

3. A normalized IEEE number with the LSB=1 will lose one bit of precision

in the conversion to TC, whether rounding or truncation is used.

This section has described the errors that can occur in the transformation

between the IEEE floating point standard and a two's complement representation.

One bit of precis~nn may be lost due to the extra hidden bit in the IEEE mantissa.

Exponent overflow and underflow can occur for numbers which are near the

maximum and minimum limits of the representation.



Chapter 4

Alternative Transformation Approaches

This chapter examines alternative locations and methods for performing data

type transformations. Local, central, and distributed locations are compared in terms

of complexity and concurrency. A spectrum of implementations is then considered,

ranging from software subroutines on the host processor to combinatorial logic. The

general models presented in §4.2 were developed early in this research and assume a

message passing approach. These models provided the basis for the decision to

consider in more detail the shared memory approach with local hardware

transformation units which is discussed in Chapter 5.

4.1. Location of Transformation Units

Data type transformations can be performed locally, centrally, or can be

distributed throughout the system. These three approaches are briefly defined below

and are explained in more detail in the following sections.

Local - the transformations are performed by the processor itself, or by a
transformation unit (TU) attached to each processor.

Central - all transformations are performed by a central TU.

Distributed - the transformations are performed by specialized TUs
which are distributed throughout the system.

The following twelve questions will be used to evaluate these three locations.

This analysis assumes a message-passing approach is used.

(l)Will bottlenecks occur if additional processors are added (non-inductive)

[LiMa87]?

42
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(2) How many transformation units are required?

(3) What is the minimum complexity of the transformation unit?

(4) What is the maximum complexity of the transformation unit?

(5) What is the minimum complexity of the sum of all the transformation units in

the system?

(6) What is the maximum complexity of the sum of all the transformation units in

the system?

(7) What is the maximum concurrency (i.e. how many transformations can be

performed at one time?)

(8) How many additional transformation units are required to add a processor if

that type is already present?

(9) How many additional transformation units are required to add a new

processor type?

(10) What is the performance of this transformation scheme (i.e. the relative

transformation time)?

(11) What information is required by the transformation unit (i.e. source

processor type, data type, destination processor type)?

(12) Does this transformation scheme require specialized control?

4.1.1. Local Transformation

With the local transformation approach, the transformation is performed by the

processor itself, or by a TU attached to each processor. Data is transformed to a

common representation and sent to the destination TU. The destination TU

transforms the common representation into the destination representation. Some

processors may not require a separate TU if they already have specialized hardware
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for shifting bits. For example, the LISP processor has a barrel shifter for extracting

tag bits. If this hardware can be used effectively, a separate TU may not be required.

This is an example of an augmented instruction set (§4.3).

The local transformation approach requires a representation which is common

to all the TUs. The 'network' side of all the TUs uses this common representation.

Each TU translates between the common representation and the representation on its

particular processor. The common representation must be capable of representing all

data types which are to be transformed, preferably without loss of precision. The data

type description is needed by the source and destination TUs so the appropriate

transformation can be performed. The LISP processor uses a tagged data

representation, which includes a description of the data type with the data.

The local transformation approach will not cause bottlenecks as additional

processors are added. Since each processor has a TU, the number of TUs grows

with the number of processors in the system. For P processors, P TUs are required.

The minimum possible complexity of each TU is based on the assumption that each

data type in a given processor (Px) is transformed to only one data type in the

common representation. This is the lower bound on the complexity, or number of

transformations required, of each TU. So if nx is the number of data types for

processor Px, 2nx transformations are required to transform these data types to and

from the common representation. Some data types may require more than one

transformation. For example, an integer may require transformations to integer,

character, or float depending on the situation. The maximum possible complexity is

based on. the assumption that each data type in a processor is transformed to all data

types in the common representation. This is the upper bound on the number of
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transformations required. If nc is the number of data types in the common

representation, 2nxnc is the upper bound on the number of transformations required

for Px. The minimum total system complexity for all processors is:
P

S(2nx) = 2Np, (Np = nj + n2 +...+np)
i=l

where Np is the total number of data types in all processors.

Likewise, the maximum total system complexity is 2Npnc. The maximum

concurrency is P since each of the P TUs can work simultaneously.

One additional TU is required when adding either an additional processor of a

type already present in the system, or a new processor type. In the former case, the

TU will be a copy of an existing unit. In the latter case, a new TU must be designed.

In either case, existing TUs are not affected.

The local scheme requires two transformations. The data is transformed from

the source representation to the common representation, and then from the common

representation to the destination represe, dion. If T is the time for one transformation,

the total transformation time is 2T. The transformation time is discussed in more

detail in §4.2.

The only information the TU needs is the data type description. The source

processor type and destination processor type are not needed. The source

(destination) processor type is implicitly known by each source (destination) TU, and

the destination (source) processor type is not needed since the data is transformed to

(from) a common representation. However, the interconnection network still needs to

know the destination. No specialized control is required.
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4.1.2. Central Transformation

In the central transformation scheme, all transformations are performed by a

central TU. Data is sent in the source representation to the central unit, transformed to

the destination representation, and sent on to the destination.

The central TU can become a bottleneck. As additional processors are added,

a central unit of a given capacity will become saturated. Multiple central units could

be provided, but they would require some means of distributing the load. This

section assumes one central unit. The complexity is based on the same assumptions

discussed under the local transformation scheme. In addition, it is assumed that the

central TU uses a common internal representation. This reduces the number of

transformations required from Order(Q2) to Order(Q), but at the time expense of two

transformations.

Since the central transformation approach has only one unit, the total system

complexity is the same as the unit complexity. The total system complexity of the

central approach will be less than the distributed approach when the number of

processors is greater than the number of processor types (P > Q); in other words,

when there are multiple copies of some processor types. But as before, since two

transformations are required the transformation time is 2T. The maximum

concurrency is one since there is only one TU (assuming no pipelining in the central

TU). Additional processors of a type already present in the system do not require any

changes in the central TU. However, the addition of a new processor type would

require a new central TU.
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With message passing, the source processor type, source data type,

destination processor type and destination data type must all be explicitly

communicated to the central unit. No additional control is required.

4.1.3. Distributed Transformation

In the distributed transformation scheme, the transformations are performed

by specialized TUs which are distributed throughout the system. Each TU is only

capable of performing transformations from one source processor type to one

destination processor type. For Q processor types, Q2 units would be required to

provide all possible transformations. This number includes a TU for the case where

source processor type and destination processor type are the same. This unit may be

required for 'same processor type/different data type' transformations. Bottlenecks

may occur as additional processors are added. The minimum unit complexity is nx.

The maximum unit complexity is nxnd, where nd is the number of data types in the

destination processor for that TU. The minimum total system complexity is:

Q(nl + n2 +... nq) = QNQ

The maximum total system complexity is:
Q Q

i=1 j=1

This includes identity transformations. The maximum concurrency is Q2 since

there are Q2 TUs. For P = Q, many of these units would be idle at any given time.

Additional copies of existing processors do not require any additional TUs. New

processor types require Q additional TUs. Only a single transformation is required in

this approach, so the transformation time is T. Only the data type is required since the

source and destination type are implicitly known. Additional control is required to
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direct the data to the appropriate TU. But since the destination processor must be

communicated to the network anyway, this may not be a significant factor.

The number of TUs may be reduced by using a partially connected matrix

[Caro86]. Rather than providing TUs between all processor types, only provide TUs

between heavily used processor types. Less frequently used transformations can be

accomplished by routing the data through more than one TU. For example, assume

processor A has TUs to and from processors B, C, and D. A transformation between

processors C and D can be accomplished via (C to A) and (A to D) transformations.

This approach reduces the number of TUs from that required in the completely

connected distributed scheme. But it requires additional control and multiple

transformations.

4.1.4. Conclusions on TU Location

The answers to the twelve questions posed at the beginning of §4.1. are

summarized in Table 4-1. The local transformation approach has the advantages of

flexibility, moderate complexity, and ample concurrency. The addition of a new

processor to a system does not affect the other processors and simply requires an

additional TU. Each TU is relatively simple as it only has to transform data from that

processor's representation to the common representation. Since each processor has it

own TU, bottlenecks will not occur due to transformations. A central TU is complex,

inflexible, and subject to bottlenecks. A distributed approach has high complexity and

useless excess concurrency. For these reasons, the designs in Chapter 5 will use

local TUs. Note however that these three approaches are points on a spectrum, and

other combinations are possible. For example, multiple central units could be used to
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minimize bottlenecks, or a local transformation unit could be shared by two identical

processors.

Table 4-1: Comparison of alternative locations
Question Local Central Distributed

1. Bottlenecks No Yes Ye
2. Units Required P r Q?
3. Minimum Unit 2nx 2NQ nxComplexity
4. Maximum Unit 2nxnc 2NQnc nxnd

Complexity
5. Minimum System 2Np -NQ QNQ

Complexity
6. Maximum System 2Npnc 2 NQnc NQ2

Complexity
7. Maximum Concurrency P I Q2

8 Additional Processors 1 0
9. New Processor Types 1 1 
10. Transformation Time 2 2T T
11. Information Required t s/t/d t
12. Control Required No No Yes

P = number of processors
Q = number of processor types (Q<P)
N = total number of data types
Np =nl + n2 + • .. + np
NQ =n+ n2 +... + nQ
nx = number of data types in processor x
nc = number of data types in common representation
nd = number of data types in destination processor
T = transformation time
s/t/d = source processor type, data type, destination processor type

4.2. Performance Models for Alternative Locations

This section will derive network performance models for the three

transformation locations using message passing. These models will show the average

time required to transmit a value between any two processors (Tavgx).
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4.2.1. Local Transformation

In the local transformation scheme, the time required to transmit a value from a

given processor to another is:

(s + Tn + Td)

Ts and Td represent the average transformation time for the source and

destination TUs. Tn is the time required to transmit the information through the

interconnection network connecting the processors. The average transformation time

is a weighted average of all the possible transforms. Just as different instructions

require different amounts of time in a processor, likewise some transformations will

have different execution times than others. The average transformation time for a

given TU is:
n
i piti

There are n transforms, each having its own execution time, ti, and

probability, pi. (Note: Lowercase p refers to a probability, uppercase P is the

number of processors in the system.)

The network time can be broken down into access time (Ta) and transmit time

(TO.

Tn =-Ta + Tt

Ta is the average time required to gain access to the network, and Tt is the time

required to transmit the information across the network. The sigi, :Icance of these two

components will vary with the type of network used. For a dedicated data bus

between-two processors, both of these times may be negligible. For a shared bus, the

access time may be significant, while the transmit time is negligible. For a shared

multistage network, both components may be significant.
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The average time to transmit a value from any processor to any other

processor will be the weighted average of all possible combinations:
P P

TavgL= I I psd (Ts + Tn + Td), fors*d
s=1 d=1

Here psd is the probability of transmitting a value from source s to destination

d, and the sum of all the probabilities equals one. P is the number of processors in

the system. When the source and destination are the same (s = d), the transmit time is

zero since the value is already present in the source processor. Hence the above

summation has the restriction that s*d.

4.2.2. Central Transformation

In the central transformation scheme, the average time required to transmit a

value from any processor to any other processor is:

TavgC = (Tc 4- 2Tn)

TC is the average time required by the Central TU and is a weighted average of

all the possible transforms. Assuming a common internal representation:

TC= I Psd Us + Td)
s=1 d=l

The total number of transforms in the Central TU will be much higher than the

number in any one of the local TUs. However, if a common internal representation is

used in the Central TU, the total number of unique transforms in both the central and

local approaches will be the same. The network time, Tn, is multiplied by two since

two network access and transmit times are required; once from the source processor to

the Central TU, and once from the Central TU to the destination processor.
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4.2.3. Distributed Transformation

In the fully connected distributed transformation scheme, the time required to

transmit a value from one specific processor to another is:

(Tsd + 2Tn)

Tsd is the average transformation time for the 'sd' TU connecting source

processor, s, to a destination processor, d. Only one transformation is required. As

in the central transformation model, two network accesses are required.

The average time to transmit a value from any processor to any other

processor is (Df= Distributed, fully connected):P P
TavgDf = dPsd (Tsd + 2Tn)

s=1 d=1

In the partially connected distributed transformation scheme, the time required

to transmit a value between two processors that are not directly connected is:

(Tsa + Tad + 3T)

This assumes that both the source and destination processor are connected via

a common processor 'a'. An additional network access is required to go from the 'sa'

TU to the 'ad' TU.

The average time required to transmit a value between any two indirectly

connected processors in the distributed, partially connected scheme is (Dp=

Distributed, partially connected):
P P

TavgDp = PSd (Ts + T12 + T23 +...+ Tmd + (m+)Tn)
s=1 d=1

where m is the number of TUs used.

The combined average time for both directly and indirectly connected

processors is:



53

TavgDc = (P1)TavgDf + (P2)TavgDp

where Pl is the probability of a direct connection and P2 is the probability of an

indirect connection. The value of p2 is likely to be small. If two processors

communicate frequently it is probably worthwhile to have a dedicated TU, hence a

direct connection.

The total number of TUs in the fully connected distributed scheme is Q2 where

Q is the number of processor types. In the partially connected scheme, the number of

TUs can be reduced to 2Q-1 assuming we limit the number of sequential transforms to

two.

4.3. Implementation Alternatives

A spectrum of implementation alternatives exist for transforming data types

(Figure 4-1). The transformations could be performed by combinatorial logic, by a

processor (or coprocessor) with specialized transformation instructions, by software

on a processor with an augmented instruction set, or by network software, operating

system calls or software subroutines on a general purpose processor. The type of

implementation is a function of the cost and performance requirements. Each of these

alternatives are discussed in this section.

• combinatorial logic
Hardware • specialized instructions

Cost C coprocessor

augmented s/w
*s/w

Tine --

Figure 4-1: Spectrum of transformation implementation alternatives
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4.3.1. Transformations with Combinatorial Logic

In order to demonstrate the performance advantages of hardware

transformation units, a transformation unit using combinatorial logic was designed for

one of the more difficult transformations. This unit performs transformations from

32-bit, single-precision IEEE floating point numbers to a two's complement floating

point number. Four exception flags indicate that one of the following singularity

conditions has occurred: exponent overflow or underflow, zero exponent, and

infimity. These exceptions must then be handled in software.

The conceptual logic was developed by writing the transformation in LISP

code (Appendix A). The hardware transformation unit was then designed using nine

20-pin PALS (PAL16L8). These parts were used due to their availability and have a

maximum latency of 35 nanoseconds (ns). Two levels of chips are required to

complement the mantissa which results in a total latency of 70 ns. This provides a

transformation rate of over 14,000,000 transformations per second. A single-level

design would cut the latency in half, but would require a 21 input OR gate.

Faster versions of this PAL are available with latencies as short as 10 ns

(PAL16LSD). Two chip delays at 10 ns each results in a total latency of 20 ns, and a

transformation rate of 50,000,000 transformations per second. The performance

could be further improved and chip count reduced by using very large PALs (i.e., a

100 pin PAL) or ultimately a custom VLSI transformation unit.

If further improvements in performance are desired, pipelining could be used

for speedup. The number of stages in the pipeline would be determined by the

desired speedup, the length of the input vectors and cost constraints.
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Texas Instruments USA has recently begun sampling a device very similar to

the one just described that converts between the IEEE and the TMS320C30 floating

point representations [Reif9O]. This bidirectional custom gate array is already in use

by TI Japan to reduce the latency in sharing data with graphics devices. The cost of

this gate array is around ten dollars.

4.3.2. Transformations with Specialized Instructions

A transformation coprocessor is essentially a specialized 32-bit processor with

a very specific instruction set tailored to transformations. It does not require complex

hardware such as a multiply unit, and most of the instructions are fairly simple. Such

a unit would be expected to be at the low end of the processor cost spectrum, even

considering that the production volume would be much lower than a more general

purpose processor.

Three instructions are necessary for transformations: shift, add/subtract, and

two's complement. These instructions could be added to an instruction set for a new

processor, or a transformation coprocessor could be designed which would allow

users to define specific transformations. Such a device would be relatively simple and

inexpensive compared to current microprocessors.

The shift operation is required for bit reordering and byte reversal. This is

often implemented in hardware with a barrel shifter. However, even a barrel shifter

requires multiple operations for each part of the word to be shifted. For example, the

reversal of four bytes requires at least four operations. An n*log2n network can also

perform bit reordering, although the flexibility of such a network will generally not be

needed. The fastest implementation for a pure reordering transformation is a hard-

wired connections between the appropriate input and output .ins. A pure reordering
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transformation is one in which the bits are moved to a different position, but no

arithmetic operations are required. The only pure reordering transformations for the

four example processors occur with the IEEE floating point (Big-Endian to Little-

Endian, and Explorer to Little-Endian).

Addition and subtraction are required for biasing and unbiasing exponents.

The two's complement operation is required for transformations between sign

magnitude and two's complement. This operation compler.ents all the bits (one's

complement) and adds one. Hwang[Hwan79] describes a bit-scanning circuit for

performing this operation.

Not all processors will require a transformation coprocessor. Processors

which use Little-Endian, two's complement integers, and the IEEE Floating Point

standard may not require any transformations. Some processors already have an

instruction set which has been augmented with instructions that can be readily applied

to transformations. These are discussed in the next section.

4.3.3. Transformations in Software

The alternative to a hardware transformation unit is to perform the

transformations in software on the host processor. In order to accurately determine

the performance advantage of a hardware transformation unit, the time required to

perform the transformations in software must be determined. This time will vary

depending on the processor and the instruction set. The TMS320C30 and the

Explorer LISP processor both have barrel shifters which are very useful in

performing transformations. Similarly, the MC88100 can reorder bytes "on the fly"

between Little-Endian and Big-Endian byte ordering. So although these processors

do not have specific instructions for performing transformations, they do have an
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augmented instruction set that can perform transformations more quickly than a

general purpose processor.

The TMS32OC30 User's Guide [TMS88] provides two versions of a program

which converts floating point numbers between its own representation and the IEEE

Standard. These programs provide excellent data on the best possible time required to

perform a floating point transformation in software. The programs are hand-coded in

assembly language on a digital signal processor with a powerful, single-cycle

instruction set and a barrel shifter. The fast version of the program does not properly

handle the special cases of denormalized numbers, infinity, and NaN (Not a

Number), while the complete version handles all the special cases. The program

length in words and the number of cycles required are shown in Table 4-2.

Table 4-2: Software transformation time
T f t Program Length

Transformation (words) dcles
IIEEE => C30 12(34) 8/12(12/23)
C30 => IEEE 15(25) 10/14(11/31)

Cycle time = 60 ns
Fast version (Complete version)
Best/Worst case

In order to compare a hardware TU against software with similar capabilities,

the best case time for the complete version of the program will be used. The best case

time represents the time for the normal transformation. This is comparable to a

hardware TU since it would probably trap to software for the special cases. This best

case time is 11 or 12 cycles, depending on the direction of the transformation, and is

shown in bold print in Table 4-1. Another 17 to 25 cycles are required for procedure

call overhead, and pipeline fill time and conflicts, which yields a total time of around

35 cycles. The same program on other, less powerful processors would require
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additional instructions and cycles, perhaps 50 to 100 cycles. In contrast, the

proposed hardware TU can perform a transformation in a single cycle (§5.2.2., Table

5-3).

4.3.4. Transformations in Heterogeneous Networks

This section compares shared memory and networks in regards to the time

required to access and transform shared data. A heterogeneous shared memory

multiprocessor provides the capability to access shared data two to three orders of

magnitude faster than a heterogeneous network. Two of the factors which contribute

to this difference in performance are the overhead of message passing across a

network and software transformations. The published papers on the projects referred

to in this section only provide the total time for shared memory access. They do not

provide component times such as processor cycle time, or the relative contributions of

the network and the software transformations.

For this research, the predicted time for shared memory access and

transformation is 13.7 cycles (§5.3.1., Table 5-8). At a cycle time of 60 nanoseconds

(16.67 Mhz), this would be 822 ns. The performance advantage of this approach

relative to the following approaches is shown in Table 4-3.

In the Agora project [BiFo87], the write access time averages 217

microseconds (gsec) and the read access time averages 56 gsec. That same paper also

provide values for sharing on general purpose systems:

Moreover, in current implementations on general purpose systems,
communication is rather expensive since there is a message passing
overhead even on shared memory architectures (currently about 2 ms for a
general purpose 1 MIPS machine) [BiFo87].

The Nectar project [Arno89] has as a performance goal the ability to send a

message between processors in under 30 psec.
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Table 4-3: Shared data access time comparisont
Mect Access Time Slower by factor of:
Tis research 822 nsec c13.7 cycles) -
Aorawite 217h - sec 264
Agora read 5isec 68
General propose 2 ms 2433
Nectar 30 psec 36
tcomparison of total access time; component times such as processor
cycle time not available

4.4. Conclusions on Transformation Alternatives

This chapter has shown that the use of shared memory and hardware

transformation units can provide a significant performance advantage over message

passing across networks and software transformations. Table 4-4 compares the

transformation time of the implementation alternatives discussed in this section. The

second column list the number of cycles required to perform a transformation, the

third column lists the cycle time, and the fourth column lists the transformation time

which is the product of the previous two columns.

The effect of faster transformations on average memory access time depends

on the frequency of shared data accesses, as well as the magnitude of the

transformation time relative to the other components of shared memory access time.

The next chapter will develop performance models to address these issues. The

results of those models are shown in the last column of Table 4-4.
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Table 4-4: Shared data transformation and access time comparisonICycles per Cycle Transform. Access
Iitransform, time (ns) time (ns) |time (ns)

PAL 2 20
n Gate Ar-ay 1 <
Specialized -1 6U68
instructionAugmented 35 60 2,100 2,784
instruction
Gen'l. purpose 60 6 364
instruction
Nectar - - -
Agora (read) - - - 56,000



Chapter 5

Shared Memory Performance Models

The previous chapter considered alternative methods and locations for

performing data type transformations. This chapter focuses on the design of a

heterogeneous shared memory multiprocessor with a local hardware transformation

unit.

The performance of a system using hardware transformation units is affected

by the workload and the choice of at least seven design variables. Alternative designs

resuling from these choices are compared using analytical performance models. The

parameters in these models are assigned baseline values taken from values reported in

the current literature. This allows relative comparisons of alternative designs. The

valucs of some key parameters are then varied from the baseline to determine their

effec: on performance.

Results show that hardware transformation units, caching of unshared data,

and local memory all provide significant performance advantages. Conversely,

caching of shared data and the location of the transformation units have a less

signii icant effect on performance.

5.1. Design Variables

Seven major variables affect the design of heterogeneous multiprocessors with

hardware TUs. These variables, or design decisions, are shown in a taxonomy in

Figures 5-1 and 5-2 and listed in Table 5-1. This research examines the branches

shown in standard type (non-italicized) because these approaches reduce the

61
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complexity of the transformation and memory hardware. Each of these variables are

described in detail in the following sections.

In Figure 5-1, the variables are grouped into three categories: Address Space

Structure, Transformation Methods, and Cache. The Address Space Structure is

affected by two factors: 1) the presence or absence of local memory and whether that

local memory can be accessed by other processors, and 2) the amount of overlap

between the address spaces of each processor. The branches under the Cache

category represent three solutions to the cache coherency problem: do not use a

cache, do not store shared memory (sm) data in the cache, or keep the shared data

coherent.

The third category, Transformation Methods, is expanded in Figure 5-2. The

data transformations can be performed either in software or hardware. A hardware

Transformation Unit (TU) can be single-stage, pipelined, or integrated as part of a

network. Each processor can have its own TU, or one or more central or distributed

TUs could be shared by multiple processors. This research examines the use of

hardware TUs since there has been little research in this area and this approach offers

the potential for performance improvement. The models in Chapter 5 assume that

each processor has its own local, single-stage TU. The TU can be located in the

processor hardware, in a coprocessor, or in-line with the data bus. An in-line TU can

be located either between the processor and the cache (P-TU-C-SM), or between the

cache and the shared memory (P-C-TU-SM).
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Heterogeneous Multiprocessor
Coherency Related
Design Variables

Address space see taxonomy of
structure Data Type

Transformation Methods nt

Local Address space sm cahdsm not
memory overlap c ached

Absent Present Complete.. .Partial native common
format format

Shared Unshared
Figure 5-1: Taxonomy of coherency-related design variables

Data Type
Transformation Methods

Software Hardware Transformation Units

Pipelined Single stage Part of network

Central Local Distributed

In processor Coprocessor In-line

P-TU-C-SM P-C-TU-SM
Figure 5-2: Taxonomy of data type transformation methods
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Table 5-1: Coherency-related design variables
Cate -r_ Variables

Address 1. Address Complete overlap
Space Space Overlap Partial overlap

Structure 2. Local memory present
3. In processor

TU 4. Corocessor
Location 5I In-line a. Between processor and cache

b. Between cache and shared mem.
6. Cache present

Cache . Shared data a. Common representation
cacheable b. Native representation

5.1.1. Address Space (Memory) Structure

The address space, or memory, structure of a multiprocessor is affected by the

amount of overlap between the address spaces of the constituent processors, and the

presence of a local memory.

5.1.1.1. Address Space (Memory) Overlap

Many multiprocessors available today use a single, shared address space.

Only one set of addresses exist, although all addresses may not be accessible to all

processors. The address spaces of the different processors have complete overlap. In

contrast, systems with multiple address spaces provide different address spaces for

different processors, but they require some overlap to communicate between the

address spaces. The memory addresses at this partial overlap are defined in both

address spaces. This overlap is called shared memory and allows high speed

communication between dissimilar processors. For a heterogeneous multiprocessor,

partial overlap may be easier to implement than complete overlap because each address

space does not have to be redefined (i.e. interrupt vector locations, operating system

area, etc.). As shown in Figure 5-3, the amount of overlap can vary between
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complete overlap (i.e. a single address space) and partial overlap. Although the

choice between complete and partial overlap may affect implementation, it does not

significantly affect performance. As a result, this variable is not included in the

evaluation of candidate designs in §5.3. Since a 16-bit processor such as the MIL-

STD-1750A has a much smaller address space than a 32-bit processor, complete

overlap is not possible. Part or all of the smaller address space can be overlapped

with the larger address space (see §2.2. for a discussion of the address conversion).

This research assumes that data in shared memory is stored in a standardized,

or common, representation (§3.3.4.). Data in non-shared memory is in the

representation of the processor which uses that memory.

Partial

Complete

Processor A (Pa) Address Space

SProcessor B (Pb) Address Space

[ Overlapping Address Space

Figure 5-3: Address space overlap - complete vs. partial

5.1.1.2. Local Memory Presence

As an alternative to one large central memory, the main memory can be broken

down into smaller units that are spread out among the processors. Shared data is kept
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in a smaller, shared, central memory while code and non-shared data are stored

locally. In this way, only requests for shared data are delayed by contention for the

interconnection network and shared memory. Local memory is in the processor's

native representation and does not require transformations. This local memory is not

a high-speed cache, but rather allows main memory to be distributed closer to the

processors. This would be a block of addresses in a single address space design or a

separate address space in a partial overlap design.

With a single address space, a local memory can either be accessible only by

the local processor, or can be connected to the interconnection network and accessed

by other processors. However, access to another processor's local memory makes

memory coherence and transformations more complex than a shared memory in a

common representation. This transformation complexity is discussed in [StCr88].

This research assumes that local memory can be accessed only by the local processor.

5.1.2. Transformation Unit (TU) Location

A hardware Transformation Unit (TU) can be located in the processor

hardware, in-line with the data bus, or in a coprocessor.

5.1.2.1. In-processor TU

Transformation instructions implemented in hardware in the processor itself

provide the highest performance of the three locations. Virtually no overhead is

required to set up and read the TU, as with the other locations. However, this

approach is only applicable to new processors. Existing processors must use either

the in-line location or a coprocessor.
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5.1.2.2. In-line TU

An in-line TU is located in-line with the data bus between the processor and

the shared memory. If a cache is present, the in-line TU can be located either between

the processor and the cache, or between the cache and shared memory. The location

of the TU relative to the cache determines whether the shared data stored in the cache

will be in the same common representation used for the shared memory (§3.3.4.) or

in the processor's native representation. An in-line location does not require

additional cycles for writing(reading) data to(from) TU registers, as with the

coprocessor approach.

Common Format Cache

When an in-line TU is located between the processor and the cache, lines are

moved between the cache and shared memory without transformation and are stored

in the cache in the common representation. This simplifies the transformation process

because only single words, as opposed to cache lines, must be transformed as they

are accessed by the processor. For each shared memory reference, the transformation

instruction is written to the TU instruction register. The transformation instruction is

inserted in the code by the linker and post-processor (§6.). Since most memory

accesses are to local memory and do not require transformation, the TU automatically

reverts back to the null, or straight-through, transformation after each shared memory

access. The null transformation is faster than the other transformations. Each shared

data access requires a transformation, which delays the processor. In addition, all

accesses to local memory are slightly delayed by the null transformation.
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Native Format Cache

When an in-line TU is located between the cache and the shared r.-mory,

shared data is stored in the cache in the processor's native representation. A complete

cache line if transformed into the native representation when it is read into the cache.

If a word in a cache line is modified, that cache line must be transformed back to the

common representation when it is written back to shared memory.

The update policy between the cache and shared memory affects the

transformation process. With a write-through update policy, transformation

instructions inserted in the code set up the TU for all shared data reads and writes. A

transformation is performed on all writes to shared data since shared memory is

updated immediately. On shared data reads, a transformation is only performed on

cache misses. If the shared data is already in the cache, a transformation is not

needed. Since cache misses can not be predicted, the TU must be set up for all shared

data reads, even though a transformation may not be necessary.

With a write-back update policy, the transformation instructions inserted in the

code can still be used to set up the TU for shared data reads. But data type tags are

required in the cache since a dirty cache line could be written back to shared memory

on any memory access. For the same reason, a cache coherency protocol that updates

the cache would also require tags. This requires a more complex cache and a TU

capable of reading the tags. A logical extension to a tagged cache is to also tag the

shared memory. This would completely eliminate the need to send setup instructions

to the TU.

An in-line location between the cache and shared memory has three

advantages. First, as shared cache lines are moved into the cache, they are
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transformed into the processor's native representation. Future accesses to data in that

line will not require a transformation. Second, local memory accesses are not delayed

by the TU. And third, the TU can remain set to the previous transformation, which

may be the same as the next one, rather than reverting back to the null transformation.

However, this location has two disadvantages. First, with a write-back update policy

the cache must use tags to identify the data type. Second, if invalidations occur

frequently, the advantage of the native representation cache may be offset by the

overhead of transforming words in the line which are invalidated before they are used.

5.1.2.1. Coprocessor TU

The final location for the TU is in a coprocessor. Coprocessors can be

interfaced wi h processors in two primary ways: as a memory-mapped (or I/O-

mapped) peripheral, or as a processor extension. A third approach, which is a

variation of memory-mapping, uses the address bus to communicate the instruction

[Glas9O]. In all cases, the coprocessor is at an address rather than in-line with the

data bus.

With a ,iemory-mapped coprocessor, the instructions and operands are

written to registers on the coprocessor by explicitly coding memory write instructions.

Similarly, the result is read from an output register. The coprocessor instruction and

operand registers are mapped to specific addresses in the processor's address space.

Any processor can use a memory-mapped coprocessor (as long as they both use the

same datatypes). And multiple coprocessors can be used, each at different addresses.

However, memory-mapping requires additional memory cycles to -'rite the

coprocessor instruction, write each operand, and read the result(s).
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When a coprocessor is connected as a "processor extension", this means that

the processor has been designed to automatically recognize coprocessor instructions

and write them to the coprocessor. The user does not need to code the read/write

instructions for sending the information to and from the coprocessor, which reduces

the overhead time somewhat. This more tightly integrated approach requires that the

processor be designed to recognize coprocessor instructions. Some processors allow

for multiple coprocessors by sDecifying the coprocessor number as part of the opcode

[M688 871 [MIPS88], while the intel 80x86 only allows one coprocessor to use the

built-in interface [Glas9O]. In the latter case, additional coprocessors must be

memory-mapped.

The third approach, used by the Weitek Abacus 3167, uses a 64K address

block instead of one address for each register. The data bus carries the data while the

address bus tells the processor which instruction to perform. So instead of sending a

separate instruction to the coprocessor, the instruction is determined by the address to

which the data is sent. This reduces the number of memory cycles required by

sending the instruction and one operand simultaneously.

Both the memory-mapped peripheral and the Weitek 3167 approaches can be

readily used by a transformation coprocessor. Memory mapping is well-understood

and easy to implement. The approach used by the Weitek 3167 is a novel method for

reducing overhead, as long as the address space is sufficiently large to accommodate

the block required. The processor extension approach could only be used if the

processor provides user-definable coprocessor instructions.

The coprocessor performance models in this research use a standard memory-

mapped approach. The overhead time consists of writing the instruction to the
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coprocessor (ttuc), writing the data to be transformed (ttui), and reading the

transformed result (ttuo). The first two components of this overhead have been

reduced with the following two techniques. First, the previous transformation

instruction is retained in the coprocessor instruction register, so a subsequent

transformation instruction only needs to be sent if it is different froo.n the previous

instruction (Psd). This is determined by the compiler post-processor (§6.2).

Secondly, data only needs to be written to the coprocessor on shared memory writes.

This is because on shared memory reads, the coprocessor reads the value from the

data bus and performs the transformation automatically. The TU can be programmed

to recognize only shared memory addresses, or it can simply transform everything

that appears on the data bus since the processor will only read the TU for data that

actually required transformation.

The coprocessor connection has two advantages: the TU does not delay the

majority of the accesses which do not require transformation, and the instruction

needs to be written to the TU only when a subsequent transformation is different from

the previous one. The disadvantage is an extra cycle(s) is required to read the result

from the TU output register.

5.2. 'erformance Model Parameters

This section describes the parameters that are used in the performance models

and assigns them values. The performance model parameters are broken down into

two categories: those that are primarily a function of the program, or workload (Table

5-2), and those that are primarily a function of the architecture, or implementation

(Table 5-3). At this level of modeling, some of the parameters are affected by both

the architecture and the workload. For example, the probability of a cache miss is
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affected by both the cache size, which is an architectural implementation issue, and the

locality of the program, which is a function of the workload. For consistency, all the

probabilities (px) are listed under workload parameters, while times (txx) are listed

under architecture parameters. The cache access time (tc) is defined as the standard

time unit and all other time values are stated as multiples (or fractions) of this

parameter (the cache access time is assumed to be the same as the processor cycle

time).

In order to establish a reference point in this multi-dimensional design space,

this research uses one possible set of parameter values as a baseline to compare

alternative designs. Although other values can be used, these appear to be reasonable

starting points. Wherever possible, these parameter values have been taken from

published studies. If published values were not available or were unknown, the

assigned values are believed to be representative of existing architectures and

workloads. A designer can change parameter values easily or vary them across a

range to determine their effect on performance. Finally, since virtually no data for

heterogeneous multiprocessors is available, values for homogeneous multiprocessors

have been used.

5.2.1. Workload Parameters

Those performance model parameters which are primarily a function of the

program, or workload, are listed in Table 5-2.
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Table 5-2: Workload parameters and baseline values
Baseline

Parameter Description Value
P probability of a cache miss .10
Pcms probability of a cache miss for shared memory
PdlL prbbltyYo a dit line in the cache 0.25
P pr ty a subsequent transformation is different .5
Psm probability of a shared memory reference 13
P probability a shared reference is a read 0.2
Pw.... probability a shared reference is a write 0.08

Memory
Studies done by Smith references

[Smit85], and Eggers and Katz 100%

[EgKa88] [EgKa89] provide values
Code Data

for many of these probabilities. Smith 50% 50%

provides statistics for the relative
Read(R) Write(W) R Wfrequencies of instruction fetches, data 50% 0% 33% 17%

reads, and data writes based on 49 Figure 5-4: Relative frequency of
memory references [Smit85]

traces from 6 machine architectures.

Based on traces from the IBM 370 and DEC VAX, he indicates that, as a rule of

thumb, half of all memory references are data accesses, and that one-third of these are

writes. Thus, the relative frequency of memory references are 50% instruction reads,

33% data reads, and 17% data writes (Figure 5-4).

Smith provides another rule of thumb that half of the data lines in a write-back

(also called copy-back) cache will be dirty. Thus, assuming that a unified cache

which holds both instructions and data is used, that code is not self-modifying, and

that 50% of the cache ines are data, then 25% of these lines will be dirty (dL in Table

5-2). In the performance models, the term (I+pdL) accounts for the fact that a line is



74

always read in on a cache miss, and is written back to the cache if the line to be

replaced is dirty.
Memory

Eggers and Katz [EgKa88] references
100%

provide relative frequencies based on

four trace statistics from parallel CAD
Code Data

programs. One of the significant 62% 38%

aspects of this work is their Read(R) Write(W) Private Shared

measurement of the frequency of 62% 0% 25% 13%

shared data (psm in Table 5-2). Three R W R W

18% 7% 12% 1%of their traces are from a 12 processor Figure 5-5: Relative frequency of memory

Sequent machine running Unix and references [EgKa88]

the fourth is from a 5 processor

ELXSI 6400 running Embos. The mean values from the four traces are shown in

Figure 5-5. Again, these frequencies for homogeneous multiprocessors are used in

the following performance models since data is not available for heterogeneous

multiprocessors. Because psm is so workload dependent and is a key parameter in the

performance of the memory system, it will be the subject of further discussion and

sensitivity analysis in §5.3.3. (Figure 5-18).

The parameter psd accounts for the fact that with a coprocessor TU, and an in-

line TU between the cache and shared memory, an instruction needs to be written to

the TU only if it is different from the previous one.
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5.2.2. Architecture (Implementation) Parameters

Those performance model parameters which are primarily a function of the

architecture are listed in Table 5-3 (to clarify the choice of parameter names, the letters

used in the parameter name are capitalized in the description column).

Table 5-3: Architectural parameters and baseline values
Baseline

Parameter Description Value
L cache Line size in 32-bit words (not bytes) 4
N Number of processors 5
= Cache access Time (defined as one time unit) I

to; Cache Coherency Time 0.5
tm main/shared Memory access Time 4
tm2 main/shared Memory sequential word access Time 1
jmL_ main/shared Memory Line access Time 7
ta Average Memory access Time Calc
t interconnection NETwork latency 2.0
N x Queue (wait) Tune for the IN and shared memory -alc
ts average transformation Tme in SoftWare 35
tt write Time for the TU Control (instruction) register 1
ttui write Time for TU Input register 1
tmn TU Null transformation Time 0.3
tgn. read Time for TU Output register 1
u TU average Transformation Time 1

An embedded (§ 1.) heterogeneous multiprocessor is expected to have a

relatively small number of processors (i.e. N=5 above). The performance advantage

of such a system is a result of the specialized processors rather than from massive

parallelism. The cache coherency time reflects the degradation on performance caused

by maintaining coherency (see next section). Although both shared memory and loca:

memory have the same chip access time (tin), access to shared memory is delayed by

the latency of the interconnection network (tnet) and the queueing time (tq). The

average transformation time in software (tsw) includes the time for switching context,
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reading in the instructions and data, performing the transformation and returning to

the previous context (§4.2.2.).

5.2.2.1. Cache Assumptions

This section explains the assumptions made regarding the caches. A single set

of assumptions is a simplification since each processor and cache controller may work

in a slightly different manner. However, these assumptions allow accurate first order

comparisons of alternative heterogeneous multiprocessor designs.

The cache is a small high speed memory which is faster than either the local

memory or shared memory. As discussed previously, it is more difficult to maintain

cache coherency on heterogeneous multiprocessors due to different data types and

representations. Three possible solutions are: do not use a cache, do not store shared

data in the cache, or store both shared and unshared data in the cache and keep the

caches coherent. All of these approaches are evaluated.

These models assume a unified cache containing both instructions and data. A

unified cache, rather than a split cache, is frequently required for upgrading systems

because old programs, which still must be run, were written with self-modifying code

[Craw9O]. The unit of transfer between cache and main memory is one line

(sometimes called a block). The processor sends all memory requests to the cache

first and, if a miss occurs, that line and word is brought into the cache and processor,

respectively, from the local or shared memory. If a processor writes to a line in the

cache, it is called a dirty line and the entire line is written back to the memory either

immediately (write-through) or when the line is replaced (write-back). All but one of

the designs in this research use write-back. Design J, which has a native
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representation cache, uses write-through to avoid the need for tags in the cache and

shared memory.

The benefit of caching shared data is somewhat offset by the cost, in both

hardware and performance, of maiitaining coherency. Baylor and Briggs [BaBr89I

report that a cross-interrogate protocol degrades the overall performance of parallel

PDE algorithms by 10 to 30 percent. This research does not model specific cache

coherency protocols, since the intent of this research is to compare alternative system

designs.

The effect of coherency protocols on performance is modeled primarily

through the values assigned to Pcms (probability of a cache miss for shared memory

data) and tcc (cache coherency time). The probability of a cache miss for shared

memory data (pcms) is greater than the probability of a cache miss for native memory

data (Pcm). This is due to the cache invalidation which occurs when another

processor writes any variable in that cache line. For the baseline, Pcms = 4 *pcm to

reflect invalidation of shared data. Results from [EgKa89] indicate that the probability

of a miss for shared data is approximately nine times greater than unshared data.

However, this data is based on steady state conditions (cache already filled - "warm

start") on homogeneous multiprocessors. A cold start analysis, which is more

appropriate for analytical performance models, would increase the miss ratio for

unshared data more than shared data. This is because a very high percentage of the

shared data misses are invalidation misses.

The cache coherency time is added in on every shared memory access and it

reflects the fact that cache coherency operations delay the processor from accessing

the cache.
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S.2.3. Queueing Model for Shared Memory

Shared memory accesses are delayed when there is contention with other

processors for shared memory. This delay is modeled with a closed, finite population

queueing model [Ferr78]. The use of a queueing model assumes that a queue exists

in some form (either real or virtual) to control access to a single-user interconnection

network and shared memory. The closed, finite population model is based on the

assumption that a processor cannot submit a new shared memory rmquest until the

previous request has been satisfied.

The three inputs to the queueing model are the number of processors, N; the

average time between shared memory accesses, Et; and the service time, Es. The time

between shared memory accesses is different for each design and is a function of the

probability of a shared memory reference, the presence of a local memory and/or

cache, and the cacheability of shared memory data. The service time also varies for

each design and is of the form

Es = tnet + pl*tm + P2*tmL

where pi and p2 are the relative frequencies of single-word and cache-line accesses to

shared memory. Single-word accesses to shared memory occur in designs that do not

permit caching of shared data. The formulas and values for Et and Es, as well as the

other factors in the queueing models, are given in Appendix B.

The output of the queueing model is the mean response time, W, which is

calculated by the formula

N*EsEtW-Et
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The term p0 is the probability that shared memory is idle, and it is calculated by the

formula [Klei76] [Alle80J

P0=  (N-n!) tj

By definition, the mean response time, W, is the sum of the service time plus

the queueing time:

W = Es + tq

The queueing time is calculated by simply subtracting the service time Es from the

value calculated for W:

tq=W- Es

5.3. Example Designs and Performance Models

This section uses analytical performance models to examine the effects of the

design variables on ten candidate designs (Table 5-4). Analytical performance models

provide first-order estimates of the relative performance of alternative designs. These

models allow alternative topologies to be compared early in the design process. One

advantage of these analytical performance models is that they allow a designer to

change parameter values easily or vary them across a range to determine their effect on

performance. The candidate designs provide a cross-section of the possible

combinations of the design variables.

First, a coprocessor TU is used to compare the impact of the six combinations

of local memory, caching of unshared data, and caching of shared data (Designs A -

F, Table 5-4). The coprocessor TU is then compared to an in-processor TU, to an in-

line (IL) TU at two locations, and to software transformations. These last five
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designs (Designs F - K) are all identically configured with local memory, a cache, and

caching of shared data.

Table 5-4: Design variable combinations for candidate designs
Candidate Designs

Variables ABC D E J K

ache-unshared T7 7 -4 - -4
SMcacheable -q" - -q _qopoessor 1 4
In processor
IJL P-TU-C-SM'

IL P-C-TU-SM --
Software

Figures 5-6 through 5-13 show the topologies for these architectures. For

drawing simplicity, these figures all show two processors (Pa and Pb) on a bus, but

actual designs can have additional processors and use other types of interconnection

networks (IN). The performance metric for comparing these designs is the average

memory access time, tma. This includes the time required to transform shared

variables into the processor's native representation. Average memory access time

directly affects processor performance, as long as it is slower than the processor cycle

time [Gi1187]. The specific performance model for each design is listed in Table 5-5.

Design A has coprocessor TUs (TUa and TUb) with no local memory or

cache. The single shared memory is shown divided into sectors. Shared data is

stored in the shared memory (SM) sector in the common representation. Unshared

data such as code is stored in the corresponding process(. . sector (Ma and Mb) in

that processor's representation and does not require transformation. Design B has

coprocessor TUs and local memory (LMa and LMb). Design C has coprocessor TUs

with caches (Ca and Cb) for unshared data only. Design D has coprocessor TUs,
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local memory, and unshared cache. Design E has coprocessor TUs with a cache for

both shared and unshared data. Design F has coprocessor TUs, local memory, and a

cache for both shared and unshared data.

Designs F through K all have local memory and a cache for both shared and

unshared data, but they differ in the location of the TU: F has a coprocessor, G has

the TU integrated as part of the processor hardware, H has the TU in-line between the

processor and the cache, J has the TU in-line between the cache and shared memory,

and finally, K performs the transformations in software.
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Pa Pb

TUa TUb

Paa LP

-aN_ 
IN_

Figure 5-6: Design A Figure 5-7: Design B

Pa Pb Pa Pb

TUa TUb Tha TUb

Ca Cb La C b L~

INI

Figure 5-8: Design C Figure 5-9: Design D
(unshared cache), Design E (unshared cache), Design F
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(P+TU)a (P+TU)bPa 
P

TUa TUb

Lca CbLI.b

Figure 5-10: Design GFiue51:DsgH

Pa Pb Pa Pb

LA Ca Cb LW Ta TUb

Wa TUb UU C bIM

Figure 5-12: Design J Figure 5-13: Design K
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Table 5-5: Specific performance models

P De Performance Model
4a =psm*(psd*ttuc+pw*ttui+ttuo+ttut+(tqa+tnet+tmn))+

(1 -psm)*Wtqnet+!tm)
B =psnm'(sd ttuc+pw*ttui+ttuo+ttut+(tqb+tnet+trn))+

(1 -psm)*tmn
C =psm*(psd*ttuc+pw*ttui+ttuo+ttut+tqc+tnet+tm)+

D =psm* sdttuc+pw ttui+ttuo+ttut+tqd+tnet+tm +
(l-psrn)*(tc+pcm*(1U!dL)*tmL)

E =psm*(psd*ttuc+pw*ttui+ttuo+tc+tcc+ttut+
pcms*(tqe+(1+pdL)*(mnet+tniL)))+

(1-psm)*(tc+pcmn*(!qe+(1+pdL)*(tnet+tmnL)))
F =psm*(psd*ttuc+pw~ttui+ttuo+tc+tcc+ttut+

pcms*(tqf+(1 +pdL)*(tnet+tmnL)))+
(1-psm)*(tc+pcm*( 1+pdL)*"txL)

* =psm*(tc+tcc+ttut+pcms*(tqg+(1 +pdL)*(tnet+tmL))

* -psm*(ttuc+tc+tcc+ttut+pcms*(tqh+(1+pd (tnet+t
niL)))+(l -psm)*(tc+ttun+pcm (1 +pdL)*umL)

J =psm*(psd*ttuc+tc+tcc+pw*(tqj+tnet+tmnL+L*ttut)+
pcms*Qtqj+(I +pdL)*(tnet+tmL+L*ttut)))+
(1-psm)*(tc+pcm*( l+pdL)*tmL)

K =psm*(tc+tcc+tsw+pcms*(tqk+(l +pdL)*(tnet+tmL)
))+(1-psm)*(trc+pcm*( 1+pdL)*trnL)

The relationships between the performance model parameters are illustrated in

a general taxonomy in Figure 5-6. Multiplicative factors are shown on vertical lines

and additive factors on horizontal lines. All of the specific performance models can be

derived from this taxonomy. The equation for the taxonomy and rules for deriving

specific models are shown in Table 5-5. If the condition in a rule is not true, the

parameters use their normal value and the non-applicable "switches" (C, CSM, LM,

CP, ILc, and ILn) are set to zero.
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Memory Access Time (tma)

Shared data INon-shared data
psm i1-psm

Enpsd CSM Cp 1-ELn 11-c C 1-CIL

pw ttc[ tnun pcmI-CSM Ic tr trW"

elI "q I'pd I1-L

jx tnt L ttut tnetl IL*ttut
Figure 5-14: Taxonomy of performance model parameters

Table 5-6: Equation and rules for general performance model
tma =
psm*(ILn*pw*(tqx+tnet+tmL+L*ttut)+
(1-CSM)*(tqx+tnet+tm)+psd*ttuc+
CSM*(tc+tcc+pcms*(tqx+(1+pdL)*(tnet+tmL+ILn*L*ttut)))+
CP*(pw*ttui+ttuo)+(1-ILn)*ttut)+
(1-psm)*(ILc*ttun+C*(tc+ pcm*(tqx+(1+pdL)*
((1-LM)*tnet+trnL)))-+(-C)*(tm+(1-LM)*(tqx+tnet)))
If cache, C=1
If cacheable shared memoE, CSM=1
If in software, ttuc--ttun=O, ttut=-tsw
If homogeneous, ttuc=ttut=O
If in-line P-TU-C-SM, ELc=psd=1
If in-line P-C-TU-SM, ILn=1
If local memory, LM=1
If coprocessor, CP=I
If in-processor, ttuc=O

5.3.1. Baseline Results

The average memory access time is computed for each design using the

baseline values for the parameters as listed in Table 5-2 and 5-3. The results for these

baseline values are shown in Figure 5-15 and Table 5-7. (Design A is usually

significantly slower than the other designs. In some of the bar graphs that follow, the
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bar for Design A has been truncated and the scale expanded so that the differences

between the other designs can be seen more easily. In these cases, the bar has been

shaded to remind the reader that it has been truncated. The number at the top of the

truncated bar represents the correct value.) Some of the design variables clearly have

a more significant impact on performance than others. Local memory or unshared

cache by themselves both provide significant performance improvements over a single

shared memory (B vs. A: 80%, C vs. A: 7 1%). Local memory is 31% faster than an

unshared cache (B vs. C). The combination of local memory and unshared cache

together provides further significant improvement (D vs. B: 32%). However,

caching of shared data provides a rather small improvement (E vs. C: 4%, F vs. D:

13%), which may not warrant the additional cost of cache coherency hardware. A

hardware TU provides a significant improvement over software (F-J vs. K: 55%),

although the location of the TU does not make a large difference (F vs. G-J: +5% to

-11%). Design G, which has the TU integrated with the processor, has the highest

performance although it is only slightly faster than a coprocessor (G vs. F: 5%).
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tma 29.4
10.0

9.0 8.48
8.018.0 -7.7

7.0
5.8

6.0

5.0
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Figure 5-15: Baseline performance comparison (tma)

Table 5-7: Baseline performance comparison (tma)
Candidate Designs

Variation A B C DI E FIGIH J K
Baseline 129.4 588. 3.9 8.1 3.4 = 778 .7
%Improvement 5 8o0= -- T 321 4 1 T -6W -1I1-25relative to I I A I7U A- IC IT # __

In order to compare the shared memory access time of this approach to other

approaches (§4.2.3), the average memory access time shown in Figure 5-15 can be

broken down into shared data access time and unshared data access time. For Design

F and Design K, these component times are shown in Table 5-8. Although the

hardware TU is 35 times faster than the software transformation (Table 5-3), the

transformation time is a relatively small part of average memory access time. As a

result, the average shared data access time for Design F is only 3.4 times faster than

Design K (Table 5-8 - 46.4+13.7) because of the other times shown in the

performance models such as queueing, cache coherency, cache miss, etc.

Furthermore, since they both have the same access time for unshared data, the average
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memory access time for Design F is only 2.26 times faster than Design K (Figure 5-

15). Nevertheless, the ability to cut average memory access time in half is still quite

significant.

Table 5-8: Components of memory access time for Design F and Design K

2 ent . Frequency (p1) Design F Times ( si imes )
IShared data I 0.13 [ 13.7I 46.4 I

Unshared data 0.87 1 1.9 1.9

5.3.2. Variations from Baseline

The values for some of the key parameters can be varied from the baseline to

determine the effect on the performance of the ten designs. The baseline value for the

interconnection network latency time (tnet=2) is representative of a bus. One possible

variation on this is a multistage interconnection network (MIN), in which the latency

varies with the number of stages and is proportional to log2N, where N is the number

of source nodes and the in-degree=2 [LiMa87]. The results for a non-blocking

network with tnet=8 are shown in Figure 5-16 and Table 5-9. The effect of using a

non-blocking network is that there i. no queueing for the network, only for the shared

memory. The queue now forms between the network and shared memory instead of

between the processors and network. This is modeled by removing tnet from the

service time (95.2.3.). Even though the network latency is greater, the reduction in

service time is enough to offset that additional latency for Designs A, C, and E. For

Designs A, C, and E the shared memory is saturated (Table B-I, po--O), so any

reduction in service time has a good potential for decreasing average memory access

time.
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9.0
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7.0

6.0
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Figure 5-16: Performance (tma) of a non-blocking multistage interconnection
network (tne=8) relative to the baseline (Design A off scale, see Table 5-9)

Table 5-9: Performance (tma) of a non-blocking multistage interconnection network
(tnet=8) or a slower transformation unit (tot--4)

SCandidate Designs
IVaniation A D E G H J
Baseline 2. 5.8 84 3.3 36 3.8 7.7MI =2 .4 5.91_ 8.11 4.0I  7.7 -.1 .1 3 3.91 7.8I
Slo~wnj= = 98 62 8.8g1 4.31 .5 .1 .6-°1 4.7771

Similarly, the impact of a slower TU can be determined by increasing the

transformation time by a factor of four (ttut=4). This change does not have a

significant effect on overall performance, which indicates that the performance

advantage of a hardware TU is relatively insensitive to its speed (Table 5-9 and Figure

5-17). The slower TU still provides around a 45% improvement over software.
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tma 29.3
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Figure 5-17: Performance (tma) of slow Transformation Unit (ttut=4)

The final parameter considered here is the probability of shared memory

references (Psm). The performance for 05psm<1 4 % is shown in Figure 5-18 (Design

A is off this scale - it is a nearly horizontal line at 29.2). The benefit of a hardware

transformation unit is proportional to the frequency of shared memory accesses. If,

for example, only one or two percent of the memory references are to shared memory,

hardware TUs do not provide a significant performance improvement over software

transformations (Design K). The Y-intercept, which corresponds with Psm=0, is the

access time for non-shared memory. The difference in the Y-intercept between

Designs B and C/E reflects the advantage of a cache over local memory. The

difference between Designs C/E and F/G/J/K reflects the advantage of adding local

memory to a cache. The difference between Design H and F/G/J/K reflects the null

transformation time (ten) for the in-line TU. The slope of the lines approximates the

cost of a shared memory access. The steepness of Design K reflects the cost of doing

the transformations in software.
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Figure S-18: Performance for O <Psm<514% (A off scale at 29.2, F between G and
H)

The curve in the lines in Figure 5-18 is caused by the increase in queueing

time as Psm increases. As Psm approaches 1.0, queueing time asymptotically

approaches the value [(N-1)*Es-Et] (see Figure 5-19). If all memory references are to

shared memory, each processor must get back in the queue and wait while the other

N-I processors are serviced [(N-1)*Es]. That time is reduced by the time between

requests, Et, since the processor does some processing before its next shared memory

request.
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Figure 5-19: Queueing time (tq) as a function of psm (Design F)

5.4. Conclusions on Performance Models

Analytical performance models allow a designer to quickly estimate the relative

performance of different designs. Since exact parameter values can be difficult to

predict, they can easily be varied to determine the sensitivity of a design to changes in

a particular parameter. The models presented in this chapter show that significant

performance advantages are provided by hardware transformation units, caching of

unshared data, and local memory. Caching of shared data and the location of the

transformation units have a less significant effect on performance.

For a situation similar to the baseline defined in this chapter, Design D, which

has a coprocessor TU, local memory and unshared cache, provides good performance

with very little additional hardware. The unshared cache avoids the cache coherency
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problem, while the coprocessor TU can be easily added to an existing system design.

Although the in-processor TU in Design G provides the highest performance, it may

not be the most efficient use of silicon area for a general purpose microprocessor

which only has a small percentage of its applications in heterogeneous systems.



Chapter 6

Required System Software

In order to use hardware transformation units in an untagged heterogeneous

multiprocessor, additional system software is needed at compile time. This system

software must (1) communicate the addresses and data types of shared data between

processors and (2) insert instructions for the TU into the compiled code. These two

functions can be accomplished with a heterogeneous linker and a post-processor for

the compiled code.

6.1. Heterogeneous Linker

In a heterogeneous system, the compiler for each processor must create a

symbol table containing the following information for shared data:

-processor type and ID

-shared variable name

-data type

-source processor

-destination processor(s)

-value

-address

The compiler must provide the first three of these items; some of the remaining

items may not be known and will be added to the table by the heterogeneous linker.

The linker performs this function by 1) gathering all information on shared data from

the individual symbol tables and then 2) combining this information in a master

94
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symbol table (Figure 6-1). The linker will normally assign shared data an address in

shared memory. Since the linker knows the source and destination data types, it also

specifies the desired transformation. If the linker observes that a particular item of

data is shared only by identical processor types, it can specify a null transformation

and store the data in that processor's native representation. The completed master

symbol table is then used to fill in the unknown information in each of the individual

symbol tables. Finally, the completed individual symbol tables are sent back to the

individual compilers where they are used by the post-processor.

Master Symbol Table
1 2 3 4 5 6

X Float P1 PN 0000

Y Integ. PN P1 0004 7

Symbol Table Symbol Table
Processor 1 Processor 1
1 2 34 56 1 23 45 6
X Float PI ? ? ? 0 40 X Float ? ? ??
Y Integ ? ? ? ? Y Integ PN ? ? 7

1. Shared Variable Name
2. Data type
3. Source processor
4. Destination processor
5. Address
6. Value

Figure 6-1: Symbol table information used by heterogeneous linker
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6.2. Compiler Post-processor

Upon the return of the completed symbol table from the heterogeneous linker,

a post-processor inserts the appropriate instruction for the TU at the proper place in

the code. Alternately, the compiler could be modified to perform this function. A

smart compiler could optimize the location of the setup command based on other

activities of the processor. If the TU is a coprocessor (Designs A-F) or is located

between the cache and shared memory (Design J), a new instruction is required only

if the type of transformation changes (Psd). On the other hand, if the TU is in-line

between the processor and the cache (Design H), it must revert to the null

transformation after each shared memory access so that local memory accesses will

not be transformed. As a result, the in-line location requires a new instruction for

each shared memory access.



Chapter 7

Conclusion

Heterogeneous shared memory computer systems pose additional challenges

not found in homogeneous systems. This research has considered the design issues

involved in sharing primitive data types and has proposed designs which provide

high-speed sharing of data.

As with any cost-performance trdeoff in computer design, the value of

specialized hardware varies with the frequency of its use. In this case, the value of a

hardware TU varies with the probability of shared memory accesses. At low

probabilities, the resulting performance advantage of the hardware TU would be small

and cost considerations would suggest that the transformations be done in software.

However, at higher probabilities, a hardware TU can cut the average memory access

time in half (Figure 5-15).

The primary applications for these type of designs are in special purpose

applications which require maximum performance and tight coupling between

heterogeneous processors. The linking that must be done at compile time makes these

designs less suited for general purpose applications and development work.

The analytical performance models presented in this research demonstrate the

performance advantages of a shared memory heterogeneous multiprocessor. A

coprocessor-type TU (Design F) is 2.26 times faster than a software implementation

and can use standard memory technology for the shared memory (i.e. a tagged

memory is not required). These performance models allow a designer to quickly

estimate the effect of design changes on performance.
97
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The original proposal for this research considered the use of coprocessor-type

transformation units for existing processors. In addition, this research shows that

new processors can improve the performance of a heterogeneous multiprocessor by

augmenting their instruction sets to include transformations. However, the effective

performance of a processor with an augmented instruction set (Design G) is only

slightly faster (+5%) than the coprocessor TU (Design F).

It is difficult to verify the performance of a heterogeneous shared memory

multiprocessor with hardware TUs since none have been built. As with the original

cache papers [Wilk65], verification must await the development of prototypes.

Recent developments such as processor byte reordering and the TI gate array indicate

that some of the necessary transformations are being implemented in hardware.

Similarly, Motorola's recent system design, which combines a general purpose RISC

processor with DSP processors, demonstrates a growing awareness of the benefits of

heterogeneous multiprocessors.

The use of heterogeneous multiprocessors will continue to grow as designers

combine specialized processors to provide high performance solutions to specific

problems. The need for transformations will depend on the mix of processors.

Designs which use incompatible processors must provide transformations in either

hardware or software. This research provides answers to many of the problems that

arise when sharing memory between heterogeneous processors.



Appendix A

Floating Point Transformation (LISP)

;*- Mode:Common-Lisp; Fonts:(MEDFNT); Base: 10 -*-

;;; This LISP program transforms an IEEE Floating Point number to a two's
;;; complement floating point number. It also contains extensive test vectors to
;;; demonstrate the correctness of the transformations for the special cases.

;;; NOTE on bit-vector data structure: Lisp treats all bit-vectors as being
;;; 32 bits long. So, for example, the ieee-exp is actually 32 bits long
;;; even though we only use the lower 8 bits. When we first create ieee-exp,
;;; GET-BITS sets the upper 24 bits to zero. And when we print it, we only
;;; print out the lower 8 bits. One problem with printing out these
;;; bit-vectors is that if Lisp sees a one in bit 31, Lisp thinks the
;;; bit-vector is a negative number and prints it as such. The way around
;;; that problem is to AND the bit-vector with a string of ones before
;;; printing it: (logand #xffffffff bit-vector). This somehow prevents Lisp
;;; from interpreting the bit-vector as a two's complement number.
;;; This only needs to be done when bit 31 could be a one.

;;; GET-BITS: Extracts the bits from bit-vector between start-bit and end-bit,
;;; inclusive. Returns a 32 bit bit-vector in which the lsb is the start-bit
;;; in the original bit-vector. The upper bits are set to zero.
;;; I wrote this function so that, for example, you can get-bits 0 to 22, or
;;; 22 to 0. The arguments can be in either order. They both return the same
;;; string of bits.

(defun get-bits(start-bit end-bit bit-vector)
(ldb (byte (+ (abs (- end-bit start-bit)) 1) (min start-bit end-bit))

bit-vector))

;;; GET-BIT is similar to GET-BITS except it just gets one bit.
;;; This bit is returned as the lsb.
;;; The remaining 31 bits are set to zero
;;; EX: (get-bit 22 tc-bit-vector) ;gets bit 22

(defun get-bit (bit-pos bit-vector)
(ldb (byte 1 bit-pos) bit-vector))

;;; PUT-BITS: Deposits new-bits into bit-vector between start-bit and end-bit,
;;; inclusive. Returns a copy of the modified bit-vector. Ignores any extra
;;; bits at the upper end of new-bits.

99
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;;; Another approach is to write it with a setq so it actually
modifies bit-vector.

;;; EX: (setq te-bit-vector (put-bits tc-exp 24 31 tc-bit-vector))

(defun put-bits(new-bits start-bit end-bit bit-vector)
(dpb new-bits (byte (+ (- end-bit start-bit) 1) start-bit) bit-vector))

;;; SET-BIT is similar to PUT-BITS except it just sets one bit to I or 0.
;;; EX: (set-bit 22 1 tc-bit-vector) ;sets bit 22 to 1

(defun set-bit (bit-pos value bit-vector)
(dpb value (byte I bit-pos) bit-vector))

;;; LEFT-SHIFT shifts a bit-vector left by number-of-bits
;;; It's a little bit more mneumonic than Ish, and the number-of-bits is the
;;; first argument which is easier to read.

(defun left-shift (number-of-bits bit-vector)
(ash bit-vector number-of-bits)

)

;;; RIGHT-SHIFT shifts a bit-vector right by number-of-bits
;;; It's a lot more clear than lsh by a negative amount, and the number-of-bits
;;; is the first argument which is easier to read.

(defun right-shift (number-of-bits bit-vector)
(ash bit-vector (- number-of-bits))

)

;;; COMPLEMENT-BITS is used for complementing the fraction portion of a
;;; bit-vector. Returns a copy of the bit-vector with the fraction bits
;;; complemented.
;;; Ex: (setq tc-bit-vector (complement-bits 0 23 tc-bit-vector))

(defun complement-bits (start-bit end-bit bit-vector)
(put-bits
(+ 1 (lognot (get-bits start-bit end-bit bit-vector)))
start-bit end-bit bit-vector))

;;; IEEE-TO-TC is the function to call on an ieee bit-vector to make a
;;; two's complement bit-vector. The hardware transformation unit would perform
;;; this function. It assumes a hidden bit and a +127-biased exponent.
;;; Exceptions (special cases) are corrected later by check-flags.

(defun ieee-to-tc(bv)
; Declares don't prevent lisp from interpreting leading ones as meaning a
; negative number. I'm leaving this here (preceded by a semi-colon to make
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it a comment) to remind me it doesn't help any.

;(declare (type (unsigned-byte 32) bv))

;declare all these variables special to avoid compiler warnings.
(declare (special ieee-frac))
(declare (special iee-exp))
(declare. (special ieee-sign))
(declare (special pos-frac))
(declare (special tc-frac))
(declare (special tc-bit-vector))
(declare (special tc-exp))
(declare (special zero-flag))
(setq ieee-frac (get-bits 0 22 bv))
(setq ieee-exp (get-bits 23 30 bv))
(setq ieee-sign (get-bits 31 31 bv))
(set-flags ieee-sign ieee-exp ieee-frac) ;Set flags for special cases.

;; logical shift right one bit and add hidden bit

(setq pos-frac (set-bit 22 1 (right-shift I ieee-frac)))

;; For negative numbers, complement the shifted mantissa which puts the
;; mantissa into two's complement form. The mantissa is complemented by
,, inverting all bits in the bit-vector and then adding I to the inverted bv.
;; In two's complement form, bit 23 is needed because it is the sign bit.
;; Bit 23 is already zero in pos-frac. And for negative numbers it gets set
;; to one.

(setq tc-frac (if (= ieee-sign 0) pos-frac
(get-bits 0 23(+ (lognot pos-frac) 1))))

;; Subtract 127 from the ieee biased exponent, and
;; add 1 to the exponent for shifting the mantissa to the right
;; (since we shifted the mantissa from, say, 1.11 to 0.111).
;; (minus 127 plus 1 = -126)

(setq tc-exp (get-bits 0 7 (- ieee-exp 126)))

;combine tc-frac and tc-exp into tc-bit-vector

(setq tc-bit-vector (get-bits 0 23 tc-frac)) ;could just set it to tc-frac
(setq tc-bit-vctor (put-bits tc-exp 24 31 tc-bit-vector))

;; The following code prints the results of the transformation on the screen,
;; along with various intermediate values.
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(princ" MSB LSB")
(terpri)
(princ '"he bit positions are :
(princ "3322222222221111111111")
(terpri)
(princ" 10987654321098765432109876543210")
(terpe)
(terpri)
(ieee-bv-to-dec ieee-sign ieee-exp ieee-frac)
(princ "The IEEE bit-vector is : ")
(princ (format nil "-32,'Ob"(logand #xffffffff by)))
(terpri)
(princ "The IEEE fraction field is: ")
(princ (format nil" -23,'Ob" ieee-frac))
(terpri)
(princ '"he IEEE exponent field is: ")
(princ (format nil "-8,'Ob"ieee-exp))
(terpri)
(princ "The MEE sign field is :
(princ ieee-sign)
(terpri)
(princ "The positive fraction is :
(princ (format nil" -24,'Ob" pos-frac))
(terpri)
(princ '"he TC fraction field is :
(Princ (format nil" -24,'Ob" tc-frac))
(terpri)
(princ 'The TC exponent field is :
(princ (format nil "-8,'Ob" tc-exp))
(terpri)
(princ '"he TC bit-vector is :
(princ (format nil "-32,'Ob" (logand #xffffffff tc-bit-vector)))
(terpri)
(check-flags) ;if flags are set, print out override value
(tc-bv-to-dec tc-bit-vector)
(terpri))

;;; SET-FLAGS sets the appropriate flags out of the following seven flags:
;;; 1. Exponent overflow
;;; 2. Exponent underflow
;;; 3. Infinity

4. Unnormalized number or zero (exponent all zeroes)
5. Zero (exponent and fraction all zeroes)
6. lsb=l to track loss of precision
7. Sign negative (bit 31 = 1)

;;; Overflow, infinity, and exp=O are mutually exclusive. If the exp=O,
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;;; we go on to check if the fraction=O or if we have underflow. The
;;; lsb= -flag and sign-neg-flag could be set anytime, regardless of the
;;; other flags. The zero flag and underflow flag are mutually exclusive.
;;; If the fraction is zero, we exit the cond and don't set the
;;; exp-underflow-flag. The unnormalized-number-or-zero-flag and the
;;; zero-flag are not mutually exclusive. They can both be set. If the
;;; zero-flag is set, we know the unnormalized-number-or-zero-flag is set.

(defun set-flags (ieee-sign ieee-exp ieee-frac)
(declare (special exp-overflow-flag))
(declare (special exp-underflow-flag))
(declare (special infinity-flag))
(declare (special unnorm-or-zero-flag))
(declare (special zero-flag))
(declare (special lsb=l-flag))
(declare (special sign-neg-flag))
(setq exp-overflow-flag nil)
(setq exp-underflow-flag nil)
(setq infinity-flag nil)
(setq unnorm-or-zero-flag nil)
(setq zero-flag nil)
(setq lsb= 1-flag nil)
(setq sign-neg-flag nil)
(terpri)

;; The following cond checks for 3 mutually exclusive conditions:
;; exp = +127 - overflow
;; exp = +128 - infinity
;; exp = zero

;; The largest number transformable is 1.11 ... I * 2**126
;; (biased exponent = 253 = 11111101)
;; When we transform this number to tc, we get: 0.11 ...I * 2**127
;; If the exponent equals +127 (biased exponent equals 254 = 111111110),
;; we get exponent overflow when we attempt the transformation.

(cond ((= ieee-exp #b 111 I10) ;exp = +127
(setq exp-overflow-flag t)
(princ "Exponent overflow flag set.")
(terpri))

;; If the exponent equals +128 we have infinity.
(biased exponent equals 255 = 11111111)

((= ieee-exp #bll1111111) ;exp = +128 which is infinity
(setq infinity-flag t)
(princ "Infinity flag set.")
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(terpri))

;Xf it's an unnormalized number make sure it is not too small to
;transform.
The smallest tc pos # is 0.5 * 2**-128. This mantissa in binary

; is equal to 0.1 * 2**-128 = 0.001 * 2**-126
; Note: this last representation is illegal in tc since the
mantissa is not normalized.
The next smaller number (ltoo-small) is 0.0001111... * 2**-126.
So if we have three zeros to the right of the decimal point
(bits 22; 21, and 20) we know the positive fraction is too small
to be transformed.

The negative case is slightly different than the positive case.
; The smallest tc neg # is -0.5000001 * 2**-128. The magnitude of the
mantissa has to
be just above 1/2. This mantissa in binary sign-magnitude is equal to

0.100000...01 * 2**-128 = 0.0100000...001? * 2"*-127
= 0.00100000...0001? * 2**-126

The next smaller number (neg-unnrm- ltoo-sma.l) is
-0.00100...00 * 2**-126 = -0.125 * 2**-126

((zerop ieee-exp) (setq unnorm-or-zero-flag t)
(princ "Unnormalized-number-or-zero-flag set.")

(terpri)
(cond ((zerop ieee-frac) ;if zero, set zero-flag

(setq zero-flag t)
(princ "Zero-flag set.")
(terpri)
)

0.OO0xxx... * 2**-126 is too small to be
transformed, whether positive or negative.

((zerop (get-bits 20 22 ieee-frac)) ;0.0001
(setq exp-underflow-flag t)
(princ "Exponent underfiow flag set.")
(terpri)
)

((and ;-0.00100...0
(= ieee-sign 1)

; The order of the bits makes this confusing.
; Actually, we don't need to check bit 20=1

since if bit 20 was 0 it would have been
; caught by the previous conditon.

(= (get-bits 20 22 ieee-ftac) #bOOl)
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(zerop (get-bits 0 19 ieee-frac)))
(setq exp-underflow-flag t)
(princ "Exponent underflow flag set (neg sp).")
; Negative smallest special case
(terpri)))))

;alternately ((and
(= ieee-sign 1)

;; #x800...00 = 1000...00 = 0.1000...00 = 1/2
(<= ieee-frac #x80000)

;; If the sign bit is one, it's a negative number.
;; This works because the upper 30 bits in ieee-sign were set to zero by
;; GET-BITS.

(cond ((= ieee-sign 1)
(setq sign-neg-flag t)))

;; If lsb=l, we lose 1 bit of precision. There's no way around
;; this loss of precision since the IEEE format has 1 more bit
;; of precision than the TC format. However, this is not true
;; for unnormalized numbers. Since they don't have a hidden
;; bit, we don't need to lose any precision (as long as they are
;; not too small to be transformed).

(cond (logbitp 0 ieee-frac) ;If bit 0=-1
(setq Isb=l-flag t)
(princ "lsb=l-flag set.")
(terpi)
(cond ((not unnorm-or-zero-flag)

(princ "One bit of precision lost.")
(terpri)))))

;;; CHECK-FLAGS could be done in software by the destination processor.
;;; It checks to see if any of the special case flags are set, and modifies the
;;; output of the hardware. It prints out a flag override bit-vector,
;;; and updates the global variable tc-bit-vector. It doesn't return anything
;;; in particular. A more descriptive name might be CHECK-FLAGS-AND-
OVERRIDE.

(defun check-flagsO ;no input arg., uses global var.
(declare (special exp-overflow-flag))
(declare (special exp-underflow-flag))
(declare (special infinity-flag))
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(declare (special unnorm-or-zero-flag))
(declare (special zero-flag))
(declare (special Isb=l-flag))
(declare (special tc-bit-vector))
(declare (special tc-exp))
(declare (special tc-frac))
(declare (special sign-neg-flag))
(declare (special pos-zero))
(declare (special tc-pos-biggest))
(declare (special tc-pos-smallest))
(declare (special tc-neg-biggest))
(declare (special tc-neg-smallest))

;; If none of the flags are set, exit this function.
;; Don't bother checking the lsb=l-flag since there is no
;; flag override bv for that case. We just lose one bit of precision.
;; Don't check the sign-neg-flag either since a negative number by itself
;; is not a special case requiring an override. Although note that if one
;; of the other five flags is set, the sign-neg-flag is sometimes used to
;; determine which override bv to use.

(if (not
(or exp-overflow-flag exp-underflow-flag infinity-flag

unnorm-or-zero-flag zero-flag))
(return-from check-flags nil))

;; Depending on what flag is set, make the appropriate
;; corrections. The following cond checks exponent overflow,
;; infinity, exponent underflow, zero, and unnorm-or-zero-flag.
;; The first four flags are mutually exclusive, but not the last
;; two. If the zero-flag is set, the unnorm-or-zero-flag is
;; also set. But if the zero flag is set, we don't care if the
;; unnorm-or-zero-flag is set.

(cond
(zero-flag
(setq tc-bit-vector pos-zero) ;or set bits 22, 25, and 31 to zero)

(exp-overflow-flag ;If exponent overflow
(if sign-neg-flag

(setq tc-bit-vector tc-neg-biggest)
(setq tc-bit-vector tc-pos-biggest)
))

(exp-underflow-flag
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(if sign-neg-flag
(setq tc-bit-vector tc-neg-smallest)
(setq tc-bit-vector tc-l,s-smallest)
)

)

(infinity-flag ;if plus or minus infinity

(if sign-neg-flag
(setq tc-bit-vector tc-neg-biggest) ;minus infinity
(setq tc-bit-vector tc-pos-biggest) ;plus infinity)

)

;; For unnormalized numbers only:
;; One bit of precision has been lost due to erroneously inserting
;; the hidden bit and then taking it back out (i.e. bit 0 is always 0).
;; Regain the lost bit with the lsb=I-flag.

;; We don't actually need to check that the zero-flag is not
;; set, because if the zero-flag had been set, we would have already
;; exited the cond. But it is included for clarity.

((and unnorm-or-zero-flag
(not zero-flag))

;; for negative unnormalized numbers, complement the mantissa to get it
;; back to the uncomplemented form.
;; There may be a way to do this without uncomplementing negative numbers,
;; but it isn't obvious.

(when sign-neg-flag
(setq tc-bit-vector (complement-bits 0 23 tc-bit-vector)))

;; For all unnormalized numbers:
;; Since a hidden bit was erroneously inserted,left-shift bits 0-21. In
;; the shift, bit 21 overwrites the one that was erroneously inserted
;; into bit 22.

(setq tc-bit-vector
(put-bits

(left-shift I (get-bits 0 21 tc-bit-vector))
0 22 tc-bit-vector))

;; Put back the lsb if there was one in the first place.

(when lsbfl-flag
(setq tc-bit-vector (set-bit 0 1 tc-bit-vector)))



108

;; for negative unnormalized numbers, complement the mantissa to get it
;; back to the complemented form.

(when sign-neg-flag

(setq tc-bit-vector (complement-bits 0 23 tc-bit-vector)))

;; Print the bit-vector with the hidden bit removed.

(princ "Remove the hidden bit : ")
(princ (format nil "-32,'Ob" (logand #xffffffff tc-bit-vector)))
(terpri)

;; IEEE unnormalized numbers have all zeros in the exponent, which in IEEE
;; is considered to have a value of -126. This usually works out pretty
;; well since IEEE-TO-TC subtracts 126 from the exponent so we get:
;; (0-126= - 126). The only
;; problem is, TC doesn't allow unnormalized mantissas. There is a range
;; of unnormalized IEEE numbers with mantissas between 0.011... 1 and
;; 0.0010...0 which are still large enough to be transformed into TC, but
;; which require normalization. The mantissa needs to be left-shifted once
;; or twice and the exponent decremented by one or two.

(when (equal (logbitp 23 tc-bit-vector)
(logbitp 22 tc-bit-vector))

(if (equal (logbitp 23 tc-bit-vector)
(logbitp 21 tc-bit-vector))

(progn (setq tc-exp (+ -2 (get-bits 24 31 tc-bit-vector)))
(setq tc-frac (left-shift 2 (get-bits 0 23 tc-bit-vector))))

(progn (setq tc-exp (+ -1 (get-bits 24 31 tc-bit-vector)))
(setq tc-frac (left-shift 1 (get-bits 0 23 tc-bit-vector)))))

(setq tc-bit-vector tc-frac)
(setq tc-bit-vector (put-bits tc-exp 24 31 tc-bit-vector)))
; end of ((and unnorm-or-zero-flag (not zero-flag))

;end of flag checking cond

;; Print the corrected (override) bit-vector.

(princ "The flag override bv is : ")
(princ (format nil "-32,'Ob" (logand #xfffffff tc-bit-vector)))
(terpri)

;;; IEEE-BV-TO-DEC prints out the value of the ieee bit-vector in decimal.
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;;; It doesn't have anything to do with the transformation.
;;; &aux - declares local variables; used for recursive calls

(defun ieee-bv-to-dec(ieee-sign ieee-exp ieee-frac &aux sum exp)

(declare (special infinity-flag))
(princ "Value of IEEE bitvector is: ")
;if sign-bit is one, print a minus sign
(if (= ieee-sign 1) (princ "-") (princ .))

;if infinity, print infinity and exit
(when infinity-flag

(princ "Infinity")
(terpri)
(return-from ieee-bv-to-dec nil))

(if (zerop ieee-exp)

IF the exp bits are all zero, the number is unnormalized or zero.
In either case, there is no hidden bit.

(progn (setq sum (sum-frac ieee-frac 22 -1 0))
(if (= sum 0)

;IF mantissa bits are all zero, the exp=O

(setq exp 0)

;ELSE the number is unnormalized and the exp=-126 (by def.)

(setq exp -126)))

ELSE add 1.0 to the mantissa for the hidden bit and
subtract 127 from the biased exponent to get the actual exponent.

(progn (setq sum (+ 1 (sum-frac ieee-frac 22 -1 0)))
(setq exp (- ieee-exp 127))))

(princ (format nil "-f' sum))
(princ" * 2**")
(princ exp)
(terpri)

)

;;; SUM-FRAC adds up the weighted values of the bits in the fraction.
;;; This is a recursive function.
;;; The initial call has:
;;; bit-pos = the number of bits in the fraction,
;;; weight = -1 (i.e. 2**-1 = 1/2)
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sum = 0.

(defun sum-frac (bit-vector bit-pos weight sum)
(if (logbitp bit-pos bit-vector) ;If the bit = 1

;add the weighted value of that bit to the sum.

(setq sum (+ sum (expt 2 weight)))
nil) ;otherwise don't add anything to the sum

;Base case of recursion: after adding the lsb(i.e. bit 0),
(if (= bit-pos 0)

sum ;return the sum.

;ELSE recursive call with the next bit position and decrement the weight.

(sum-frac bit-vector(- bit-pos 1) (- weight 1) sum)))

;;; TC-BV-TO-DEC prints out the value of the two's complement bit-vector in
;;; decimal. It doesn't have anything to do with the transformation.
;;; &aux - declares local variables; used for recursion

(defun tc-bv-to-dec(tc-bit-vector &aux sum exp)
(declare (special unnorm-or-zero-flag))
(declare (special infinity-flag))

(princ "Value of TC bitvector is :

;; if mantissa sign-bit is one (i.e. negative), add -I to fraction

(if (logbitp 23 tc-bit-vector)
(setq sum (+ -1 (sum-frac tc-bit-vector 22 -1 0)))
(progn (setq sum (sum-frac tc-bit-vector 22 -1 0))

(princ "o )))

;; If exponent sign bit (bit 31) is I (i.e. negative exponent), add -128 to
;; the exponent. For positive exponents, LISP can figure out the decimal
;; value of the bit vector since it is an integer.

(if (logbitp 31 tc-bit-vector)
(setq exp (+ -128 (get-bits 24 30 tc-bit-vector)))
(setq exp (get-bits 24 30 tc-bit-vector)))

(princ (format nil "-f' sum))
(princ " * 2**")
(princ cxp)
(terpri)

;; The following makes it easier to compare the ieee and tc values.



111

;; It is used for unnormalized numbers with a tc-exp of -127 or -128.

(when unnorm-or-zero-flag
(when (= exp -127)

(princ "Equiv. value of TC by is :")
(if (not (logbitp 23 tc-bit-vector))

(princ" "))
(princ (format nil "-f' ( sum 2)))
(princ " * 2**")
(princ (+ 1 exp))
(terpri))

(when (= exp -128)
(princ "Equiv. value of TC bv is
(if (not (logbitp 23 tc-bit-vector))

(princ" "))

(princ (format nil "-f' (I sum 4)))
(princ " * 2**")
(princ (+ 2 exp))
(terpri)))

;; The following makes it easier to compare the ieee and tc values.
;; It is used for all but unnormalized numbers or infinity.
;; Shift the fraction left one bit (multiply by two),
;; and subtract one from the exponent.
;; Don't do the following for unnormalized numbers or zero.

(if (or infinity-flag unnorm-or-zero-flag)
(return-from tc-bv-to-dec nil))

(princ "Equiv. value of TC bv is
(if (not (logbitp 23 tc-bit-vector)) ;print a space before pos. #s

(princ "))
(princ (format nil "-f' (* 2 sum)))
(princ" * 2**")
(princ (- exp 1))
(terpri))

;;; Misc. test values
;;; The following numbers are represented in the IEEE format
;;; If the suffix "-x" or the phrase "too" appears in the name, that means
;;; the name describes the significance of the number in regards to the
;;; transformation. For example, pos-biggest-x is the largest positive number
;;; that can be correctly transformed, and pos-ltoo-big is a positive number
;;; that is one too big to be correctly transformed. Otherwise, the name
;;; describes the significance of the number in the IEEE format (i.e.
;;; pos-infinity).

(setq pos-infinity #bO111111101010101010101010101011)
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plus infinity - mantissa values don't matter

(setq pos-biggest #b01111111011111111111111111111111)
;1.9999999 * 2**127

(setq pos-lItoo-big #bOl 11111 1000000000000000000000000)
1.0* 2**127
This is 1 larger than the largest positive ieee # that can be transformed

(setq pos-biggest-x #b01111110111111111111111111111111)
;1.9999999* 2**126
;This is the largest positive ieee # that can be transformed

(setq pos-exp-pos #bOlOOOOOOll11000000000000000000000) ; 1.75 *2**2

(setq pos-exp-zero #bOOlllllllllOOOOOOOOOOOOOOOOOOOOO) ; 1.75 *2**0

(setq pos-exp-neg #b00111110111000000000000000000000) ; 1.75 * 2*
2

(setq pos-smallest #bOO000OO010OOOOOOOOOOOOOOOOOOOOOO) ; 1.0 * 2*
126

(setqpos-unnorm-biggest #b00000000011111111111111111111111)
;0.9999999 * 2**- 26
This number happens to be H-/W transformed correctly since the mantissa is all
I's. We erroneously right-shift the mantissa by 1 and add the hidden bit
and get the same number we started with. (The exponent for unnormalized,
numbers is transformed correctly.)

(setq pos-unnormn #bOOOOOOOO01lOOOOOOOOOOOOOOOOOOO1)
;O0.50000012 * 2**..126

(setq pos-unnorm-normn-not-reqd-smallest
#bOOOOOOOO010OOO0OO0OO0OO0O00OO0OO)

0O.5 * 2**- 26

(setq pos-unnorm-norm-reqd-biggest
#b00000000001111111111111111111111)

0.4999999?? * 2**- 126

(setq pos-unnorm-norm-reqd
#bOOOOOOOOOOlOOOOOOOOOOOOOOOOOOO0l)

0O.25000012 * 2**4126

(setq pos-unnorm-smallest-x
#bOOOOOOOOOO0lOO0000OO00000O0OO0OO)

0.125 * 2**-126 - normalization required
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(setq pos-unnim-lItoo-small #bOOOOOOOOOOOO I I I II I 111111111111)
0.12499988 * 2**-126

(setq pos-zero, #bOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO) ; +0 * 2**O

(sctq neg-zero, #bOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO) ;- * 2**0

(setq neg-unnrm- ltoo-snial
#bO000O0OO01000OOOOOOOOOOOOOOOOO)

9-0.1250 ... 0 * 2**-126

(setq neg-unnorm-srnallest-x

,4O12500012 * 2**-126

(setq neg-unnorm-norm-reqd
#blOOOOOOOO0l0000000000000001)

;-0.25000012 * 2**-126

(setq neg-unnorni-norrn-reqd-biggest- 1
#blO00OO00O01111111llllll1llll1lll)

9-0.4999999?? * 2**-126

(setq neg-unnorm-norm--reqd-biggest
#bO000000010000O000OO0OOO000000OO)

-05* 2**-126

(setq neg-unnorm-norm-not-Tcqd-smallest
#blOOOOOO01OO0O0O000OO0O0OOO0OO0l)

;-0.50000?1 * 2**-126

(setqneg-unnorm-biggest #blO0OO0OO0lllllllllllllllllllllll)
;-0.9999999 * 2**-126

(setq neg-smallest #blOOOOOO0lOOOOOOOOOOOOOOOOOOOOOOO) ;-1.0 **
126

(setq neg-exp-neg #blOlllIOlllOOOOOOOOOOOOOOOOOO00) ;-1.75 **
2

(setq neg-exp-zero #blOlllllllllOOOOOOOOOOOOOOOOOOOOO) ;-1.75 *2**0

(setq neg-exp-pos #bl 100000011100000000000000000000) ;-1.75 * 2**2

(setq neg-biggest-x #bllllllllOOOOOOOOOOOOOOOOOOOOOOOO) ;-1.0 * 2**127
;This is the largest negative ieee # that can be transformed

(setq neg- 1too-big #bllllllllOOOOOOOOOOOO0OOOOOOOOO0l)
,-1.00000012 * 2**127
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;This is 1 larger than the largest negative ieee # that can be transformed

(setq neg-biggest #bllllllll011111111111111111111111)
;-1.9999999 * 2**127
; This is the largest negative ieee #

(setq neg-infinity #bllll 1111 101010101010101010101011)
minus infinity - mantissa values don't matter

;;; The following names refer to the value of these bit vectors in the
;;; two's complement representation.
;;; The two's complement representation requires that all mantissas be
;;; normalized. This means that for positive numbers, bit 22 must be a one,
;;; and for negative numbers, bit 22 must be a zero.
; I don't understand why this is required. There must be some mathematical
;;; reason for this requirement.

(setq tc-pos-biggest #b01111111011111111111111111111111)
; 0.9999999 * 2**127

(setq tc-pos-smallest #blO0OO010(0OOOOOOOOOOOOOIOOOOO)
; 0.5 * 2**-128 = 0.1 * 2**-128 = 0.001 * 2**-126

(setq tc-neg-smallest #b1o000000101111111111111111111111)
-0.5000001 * 2"*-128

(setq tc-neg-smallesterxx #blO0000110000000000000000000000)
-0.5 * 2**-128 ILLEGAL - NOT NORMALIZ=D

(setq tc-neg-smallestestxx #b000000111111111111I11111111111)
-0.00000011920929 * 2**-128 ILLEGAL - NOT NORMALIZED

(setq tc-neg-biggest #b01111111OOOOOOOOOOOOOOOOOOOO) ; -1.0 *
2**127

;;;EXAMPLES-POS performs IEEE-TO-TC on the positive test values above

(defun examples-pos 0
(declare (special pos-infinity))
(declare (special pos-biggest))
(declare (special pos- I too-big))
(declare (special pos-biggest-x))
(declare (special pos-exp-pos))
(declare (special pos-exp-zero))
(declare (special pos-exp-neg))
(declare (special pos-smallest))
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(declare (special pos-unnorin-biggest))
(declare (special pos-unnorm))
(declare (special pos-unnorm-norin-not-reqd-smallest))
(declare (special pos-unno~rm-norm-reqd-biggest))
(declare (special pos-unnorni-norm-reqd))
(declare (special pos-unnorm-smallest-x))
(declare (special pos-unnnm-ltoo-small))
(declare (special pos-zero))
(terpri)
(terpri)
(terpri)
(princ "p06-infinity")
(-pr)
(ieee-to-tc pos-infinity)
(terpri)
(princ "pos-biggest'3
(terpri)
(ieee-to-tc pos-biggest)
(terpri)
(princ "pos- ltoo-big")
(terpri)
(ieee-to-tc pos- iwto-big)
(terpri)
(princ "pos-biggest-x")
(terpri)
(ieee-to-tc pos-biggest-x)
(terpri)
(princ "pos-exp-pos")
(terpri)
(ieee-to-tc pos-exp-pos)
(terpni)
(princ "pos-exp-zero")

(ieee-to-tc pos-exp-zero)
(terpri)
(princ "pos-exp-neg")
(terpri)
(ieee-to-tc pos-exp-neg)
(terpri)
(princ "pos-sniallest")

(ieee-to-tc pos-sinallest)
(terpri)
(princ "pos-unnotn-biggest")
(-pr)
(ieee-to-tc pos-unnorin-biggest)
(terpri)
(princ "pos-unnorin")
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(ieee-to-tc pos-unnorm)
(terpni)
(princ " pos-unnorm-norm-not-reqd-sniallest")
(terpri)
(ieee-to-Ic pos-unnorm-norrn-not-reqd-smallest)
(terpri)
(princ "pos-unnorm-norm-reqd-biggest")
(terpri)
(ieee-to-tc ps-unnorm-norm-reqd-biggest)
(epr)
(Princ "pos-unnorm-norm-reqd")
(terpri)
(ieee-to-tc pos-unnorm-norm-reqd)
(-pr)
(princ "pos-unnorm-sniallest-x")
(terpr1i)
(ieee-to-tc pos-unnorm-smallest-x)
(terpri)
(princ "pos-unnrm- ltoo-small")
(terpri)
(ieee-to-tc pos-unnrm-Itoo-srnall)
(terpri)
(princ: "pos-zero")
(terpri)
(ieee-to-tc pos-zero)
(terpri)

;;;EXAMPLES-NEG performs IEEE-TO-TC on the negative test values above

(defun exaniples-neg 0
(declare (special neg-infinity))
(declare (special neg-biggest))
(declare (special neg-lItoo-big))
(declare (special neg-biggest-x))
(declare (special neg-exp pos))
(declare (special neg-exp-zero))
(declare (special neg-exp-neg))
(declare (special neg-smallest))
(declare (special neg-unnorin-biggest))
(declare (special neg-unnorin))
(declare (special neg-unnorm-normn-reqd))
(declare (special neg-unnorm-norm-reqd-biggest))
(declare (special neg-unnomn-norm-not-reqd?-smalest))
(declare (special neg-unnorm-nonn-not-reqd-snlahest))
(declare (special neg-unnorm-sniallest-x))
(declare (special neg-unnrin-ltoo-small))
(declr (special neg-zero))
(terpri)
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(terpri)
(terpni)
(princ 'neg-infinity")

(terpti)
(princ-t "neg-igest)
(terpri)
(pie-c neg-biggest)
(terpri)

(princ "neg- Itoo-big")
(terpri)
(ieee-to-tc neg- Iltoo-big)
(terpri)
(princ "neg-biggest-x")
(terpii)
(ieee-to-Ic neg-biggest-x)
(terpri)
(princ 'neg-exp-pos")
(terpri)
(ieee-to-Ic neg-exp-pos)
(terpri)
(princ "neg-exp-zero")
(terph)
(ieee-to-tc neg-exp-zero)
(terpri)
(princ "neg-exp-neg")
(terpri)
(ieee-to-Ic neg-exp-neg)
(terpri)
(pninc "neg-sniallest")
(terpfi)
(ieee-to-tc neg-sinallest)
(terpni)
(princ "neg-unnorm-biggest")
(terpri)
(ieee-to-Ic neg-unnorm-biggest)
(terpri)
(princ "neg-unnorni-norin-not-reqd-sniallest")
(terpti)
(ieee-to-tc neg-unnornn-normn-not-reqd-smallest)
(-p)
(princ "neg-unnorin-norm-reqd-biggest")
(trn)
(ieee-to-Ic neg-unnorm-norm-reqd-biggest)
(terpti)
(princ "neg-unnorzn-norni-reqd-biggest- 1I")
(terpni)
(ieee-to-Ic neg-unnormn-norm-reqd-biggest- 1)
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(terpri)
(princ "neg-unnorrn-norm-reqd")
(terpri)
(ieee-to-tc neg-unnorm-norm-reqd)
(terpxi)
(prin "neg-unnorm-sniallest-x")
(terpfi)
(ieee-to-te neg-unnorm-smallest-x)
(terpri)
(princ "neg-unnrm-ltoo-srnal")
(terpri)
(ieee-to-tc neg-unnrm- too-small)
(terpri)
(princ "neg-zero")
(terpri)
(ieee-to-tv neg-zero)
(terpri)



Appendix B

Queueing Models

This appendix lists the queueing models which were used to determine the

queueing time (tq) for the performance models (see §5.2.3.). The values are shown

first, followed by the formulas which are used to calculate those values. The formula

for any value cell can be determined by using the row and column of the value cell to

look up the formula in the tables which follow. For example, the expected service

time (Es) for Design A is in row 4, column AN, and has a value of 6.0 (Table B-1).

The formula for this is shown in Table B-2 in row 4, column AN, and is "=tnet+tm".

In Table B-i, rows 16 to 21 are used to compute the value of p0. The formula for P0

is given in §5.2.3..
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Values

Table B-i: Values for queueing models
AM AN AC I AP I AQ I AR I AS I AT I AUI AV AW

1 Queuein Models - one for eaLh desion
-2

3 A B C D E F G H J K
4 Es 6.0 6.0 7.9 6.0 11.3 11.3 11.3 11.3 11.3 11.3
5 Et 0.9 18.8 6.4 18.8 8.1 47.1 47.1 47.1 42.0 47.1
6 DO 0.0 0.1 0.0 0.1 0.0 0.2 0.2 0.2 0.2 0.2
7 W 29.1 15.3 33.1 15.3 48.2 24.6 24.6 24.6 26.2 24.6
8 tq 23.1 9.3 25.2 9.3 36.9 13.4 13.4 13.4 14.9 13.4

-911
1 0 Misc. calculations 0.2
11 _ 15.0 15.0
1 2 28.1 28.1
1 3 18.8 47.1
1 4
1 5 i

16 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1 7 1 32.3 1.6 6.1 1.6 6.9 1.2 1.2 1.2 1.3 1.2
18 2 832.5 2.0 30.2 2.0 38.6 1.1 1.1 1.1 1.4 1.1
19 3 16112.2 1.9 111.1 1.9 160.8 0.8 0.8 0.8 1.2 0.8
20 4 207900.0 1.2 272.7 1.2 446.6 0.4 0.4 0.4 0.6 0.4
2 1 5 1341290.2 0.4 334.8 0.4 620.31 0.1 0.1 0.1 0.2 0.1
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Formulas

Table B-2: Formulas for queueing models
AN A

3 A B
4 -tnet+tm -tnet+tm

-5 =1/(1/CPI+1/CPD) CDrs
6 1=1/SUM(AN16:AN36) =1/SUM(A016:A036)
7 1=(N-AN4)/(1-AN6)-AN5 NJ204)/26L-AO
8 =-AN7-AN4 A07-A04

Table B-3: Formulas for queueing models (cont.)
AP

3cW
4 =tnet+(psm/AP1 O)tm+((1_-psm)pcqm( +pdL)/API O)11m

-5 -1 /0 /AP1 1+1 /AP1 2+1 /AP13)
-6 =1/SUM AP16:.AP36)
7 =(N-AP4)/If1.AP6)-AP5
8 =AP7-AP4

1 0 =PSM+(1 -PSM)*cm
1 1 =(CPI/PcM)
1 2 =(CPD/((1 -psm)*pcm))
1 3 .=CPD/psm

Table 134: Formulas for queueing models (cont.)
AQ AR

3 D E
4 =tnet+tm -AS4
5 -CPD/psm .1/(1/AR1!+1/AR12+1/AR13)
6 I . / U ( Q 6 A 3 )I S M R A 3 )- ----
7 .(N*AQ4)/(l -AQ6)-A05 =(N*AR4)/(1 -AR6)-AR5
8 =A07-A04 -AR7-AR4

1 1 1_____ _ -(CPu cm)
1 21 __________ (CPD/((1 -DSM)PCM))
1 31 ___________ CPD/(psm~pcms)
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Table B-5: Formulas for queueing models (cont.)
AS AT

3 F G
4 .(1 +pdL)*(tnet+tmL) -AS4
5 =CPD/ s~cms) =AS5
6 1=1/SUM(AS1 6:AS3) = /SUM(AT1 6:A36
7 1=(N-AS4)/(1 -AS6)-AS5 =(N*AT4)/(1 -AT6)-AT5
8 =-AS7-AS4 =-AT7-AT4

Table B-6: Formulas for queueing models (cont.)
AU AV

3 H J
4 =AS4 =AS4
5 =ASS =CPD/(prpsmpcms+pw*psm)
6 1=/U_6l:U 1SMA1:V6

-7 1= NAU4 )/(l -AU6) AU5 = (N*AV4)I(l -AV6) -AV5
8 _ =AU7-AU4 N =AV7-AV4

Table B-7: Formulas for queueing models (cont.)
AW

3 K
4 =AS4
5 =AS5
6 =1/SUM(AWM6AW36)

-7 =.(N-AW4)/(1-AW6)-AW5
8 I=AW7-AW4
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