¢/

AD-A232 113

NAVAL POSTGRADUATE SCHOOL
Monterey, California

A ELECTEC '_
THESIS $5*D

A METHODOLOGY FOR HANDLING DATA
ERRORS AND INCONSISTENCIES
IN DATABASE CONVERSIONS
by
Mark Robert Hendrickson

June 1990

Thesis Advisor: Vincent Y. Lum

Approved for public release; distribution is unlimited.

91 2 28 052

la

Jlga.dﬁﬁ_iﬁsd
SECURITY CLASSIFICATION OF TH!'S PAGE

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION 1b RESTRICTIVE MARKINGS
Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE Approved for public release;
distribution is unlimited.
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION
(If applicable)
| Naval Postgraduate School Code 37 Naval Postgraduate School
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and 2IP Code)
Monterey, California 93943-5000 Monterey, California 93943-5000
8a. NAME OF FUNDING /SPONSORING 8b. OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)
B¢. ADORESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11 TITLE (Include Security Classification)

| A METHODOLOGY FOR HANDLING DATA ERRORS AND INCONSISTENCIES IN DATABASE CONVERSIONS

12. PERSONAL AUTHORI(S)
Hendrickson, Mark Robert

13a. TYPE OF REPORT 13b. TIME COVERED 18. DATE OF REPORT (Year, Month, Day) |15. PAGE COUNT
Master's Thesis FROM 70 1990 June 128

16. SUPPLEMENTARY NOTATION
The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROU" SUB-GROUP)

Database conversion; integrity .constraints; errors;
inconsistencies; DBMS.

19. ABSTRACT (Continue on reverse if necessary and identify by block number) A database management system (ngs) can
have numerous errors and inconsistencies in its data. Examples of errors and inconsistencies
that may be contained in a DBMS are: Referential integrity violations, logical inconsisten-
cies, redundancies and out-of-range values. During a conversion of database management
systems, the errors and inconsistencies in the source system must be corrected so the data
entered into the new target DBMS will be accurate. The goal of this thesis is to examine a
source database management system to determine what errors and inconsistencies are possible,
to propose a methodology to detect them, and to cor-ect such errors and inconsistencies prior
to entering the data into the target DBMS. In applying my proposals, the thesis will examine
the specific systems utilized by the United States Military Academy (USMA) at West Point,

New York. The Academy uses a UNISYS 1100/72 mainframe computer in support of its existing
etwork model DBMS. West Point proposes to convert from its current network model to a
relational model system. The thesis will also address the general applicability of this
frethodology to other database management system conversions.

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
3 uncuasstrieorunumites O same aS RPT. [Jomic users | Unclassified
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code) | <2c. OFFICE SYMBOL
ﬁ;gcent Y. Lum N 408-646-3091 Code 52Lm
DD FORM 1473, samar 83 APR edition may be used until exhausted.

SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete

® U.S. Gevernment Printing Offies: 190 0408-24.

Unclassified

Author:

Approved By:

Approved for public release; distribution is unlimited.

A METHODOLOGY FOR HANDLING DATA
ERRORS AND INCONSISTENCIES
IN DATABASE CONVERSIONS

by
Mark Robert Hendrickson

Captain, United States Army
B.S., Middle Tennessee State University, 1979

Submitted in partial fulfillment of the
requirements for the degree of
MASTER OF SCIENCE IN COMPUTER SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL
June 1990

ML Nopudt L\»«Qwﬁ G

Mark Robert Hendrickson

P
Vincent Y. Ldm, Thesig Advisor

C. Thomas V&Sem

Robert B. McGl;ee, Chairman
Department of Computer Science

ii

ALY

ABSTRACT

A database management system (DBMS) can have numerous errors and inconsis-
tencies in its data. Examples of errors and inconsistencies that may be contained in a
DBMS are: Referential integrity violations, logical inconsistencies, redundancies and
out-of-range-data values. During a conversion of database management systems, the
errors and inconsistencies in the source system must be corrected so the data entered
into the new target DBMS will be accurate.

The goal of this thesis is to examine a source database management system to
determine what errors and inconsistencies are possible, to propose a methodology to
detect them, and to correct such errors and inconsistencies prior to entering the data
into the target DBMS. In applying my proposals, the thesis will examine the specific
systems utilized by the United States Military Academy (USMA) at West Point, New
York. The Academy uses a UNISYS 1100/72 mainframe computer in support of its
existing network model DBMS. West Point proposes to convert from its current
network model to a relational model system. The thesis will also address the general

applicability of this methodology to other database management system conversions.

e
Accession For
| NTIS GRA&I 4
DTIC TAB o
Unannounced Q
Justification 3
By
Distribution/
Avallability Codes
Avail and/or
Dist Special
3 ‘ '
i P(’ l

TABLE OF CONTENTS

1. INTRODUCTION

II. COMMON DATA ERRORS AND HOW TO DETECT AND CORRECT THEM
A.INTRODUCTION ottt st et e e e e e e e e
B. CAUSESOFCOMMONDATAERRORS
C. HOWTO DETECT COMMONDATAERRORS
D. HOWTO CORRECT COMMONDATAERRORS
E.CONCLUSION e i et e e e e e e e

III. COMMON INTEGRITY CONSTRAINTS AND INCONSISTENCIES
A INTRODUCTION oL o e e s e e e e e e e e e
B. INTEGRITYCONSTRAINTS v i i v it v e v e
C. LOGICALINCONSISTENCIES o v v v v v vt v v v v v
D.CONCLUSION it e e e e e e e e e e e e e

IV. SPECIFIC APPLICATIONS OF THE WEST POINT SYSTEM
A.INTRODUCTION o e e e e e e e e s e e e
B.BACKGROUND i it ittt is i ie e
C. DIRECTOROFADMISSIONSo
‘'D.OFFICEOFTHEDEAN it i i ittt
E. COMMANDANT, UNITED STATES CORPSOFCADETS
F.CONCLUSION it e i e e e e e e e e e e s

V. POTENTIAL ERRORS, INTEGRITY CONSTRAINT VIOLATIONS AND
INCONSISTENCIES IN THE WEST POINT SYSTEM

A.INTRODUCTION ittt i it e e e e

iv

12

17
19

21

24

27

B. COMMONDATAERRORS
1. Out-of-RangeValues
2. Incompatible DataTypes
3. Subset-Set Discrepancies 0.0 L. o oL

4. Redundancies v v v v i e e e e e e e

1. Entity IntegrityConstraints
2. Referential Integrity Constraints
D. LOGICALINCONSISTENCIES
E.CONCLUSION ittt i it st

C.SPECIFICMETHOD v it v ..
D. IMPLEMENTATIONS,
1. Out-of-RangeValues
2. Incompatible DataTypes
3. Redundancies,
4. ReferentialIntegrity
S. EntityIntegrity 0.
6. Logical Inconsistencies
E.CONCLUSION it i it e ei e

VII. CONCLUSIONS AND RECOMMENDATIONS

APPENDIX A: USMA FIELD IDENTIFIERS NOT DESCRIBED IN TEXT

APPENDIX B: APPLICATION PROGRAMS

59

APPENDIX C: SPECIFIC METHOD FILES

LIST OF REFERENCES

INITIAL DISTRIBUTION LIST

1351

118

119

ACKNOWLEDGMENTS

I wish to thank Dr. Vincent Y. Lum for his support and guidance as my advisor
throughout the past year. His helpful assistance during my project has been im-
measurable. Not only is Dr. Lum an internationally known computer scientist, but h=
is also a great teacher and friend.

I must also thank Mr. Bob Nelson and his DOIM-CSD staff at West Point, New
York. Because of their efforts this project became reality.

Finally, and most importantly, I thank my wife, Kathy, for her patience and support
during our two years at the Naval Postgraduate School. As is always the case, without

her my personal achievements would not be possible.

vii

I. INTRODUCTION

Information is a primary product of our civilization. For business and industry,
information is synonymous with profitability. For service organizations and education-
al institutions, the method in which information is used directly influences efficiency
and quality of service. Whether it concerns finance, personnel, transportation, or
logistics, civilian and military organizations use database management systems to
organize information and power their organizations. Data from these numerous
information applications is created, observed and recorded on a daily basis. The
volume of this data is generally immense; therefore, the storage, maintenance and
retrieval of information is an enormous undertaking, and unmanageable if done
manually.

The benefit gained by organizations using computers to manage information for
various applications is enhanced by today’s technology. When computers are used, the
data is entered directly into a database. Multiple users can access common informa-
tion simultaneously through an integrated database management system, improving
the efficiency of the organization and the consistency within its information base.

The United States Military Academy (USMA) at West Point, New York is an
organization that uses a database management system to manage its information.
Since its founding in 1802, the charter of USMA has been to educate, train and prepare
cadets to serve their country as military leaders. Maintaining information for the past
188 years, one can imagine the size to which the USMA database has grown and the

importance of preserving its data correctly. The USMA database is used for, among

other things, storing cadet personnel records, scheduling classes, and maintaining a
field force of USMA graduates for recruiting purposes. With the advent of technology
and the ultimate improvements in DBMS software, USMA decided ir: 1989 to convert
from a network DBMS model (source system) to a relational DBMS model (target
system). In general, the source system is the one presently in use by an organization
while the target is the system to which the organization is converting. This thesis is not
intended to explain the different existing DBMS models or to address the rationale in
making such a change. Rather, it is intended to discuss error detection and correction
methods as applied to the USMA database management system in the conversion
process. Elmasri and Navathe [Ref. 1:pp. 133-352] provides an excellent description
of existing DBMS models.

There are many problems to be faced by the USMA Database Administrator
(DBA) prior to converting to a different database management system. The first is to
ensure that erroneous data is not loaded from the old source system into the new target
system. I contend that numerous errors and inconsistencies potentially exist in any
source database management system. Some of these errors and inconsistencies are
quite simple in nature; for example, an out-of-range-attribute value, like age equal to
200. Others are more complex in that they involve logical inconsistencies in their
implications. In modern database management systems some of the errors can be
detected by the source DBMS. For example, attribute domains can be checked as they
are entered. In general, even modern database management systems do not check
logical inconsistencies and integrity constraint violations. For example, if an object in
one table (say, EMPLOYEE SSN) is referred to elsewhere in another table
(DEPENDENT ESSN), and the particular object being referred to (John Smith

123456789) is deleted, the database management system generally does not check the

validity of such an action. This action, however, will create a dangling reference, i.e.,
DEPENDENT ESSN no longer refers to an existing EMPLOYEE SSN with the same
value. More complex logical implications are generally not checked by any database
management system currently in existence. During the DBMS conversion process,
errors and inconsistencies must be detected and resolved prior to entering the data into
the new target system so that the data in the target system is accurate. Such error
“detection and correction is the focus of this thesis.

A companion thesis [Ref. 2], written by fellow Naval Postgraduate School students
CPT Daniel Guilmette and CPT Georgette Wilson, centers around designing the
relational database schema for the USMA target system, developing a functioning
database prototype, and loading the prototype with USMA data for selected applica-
tions. Together these two theses mirror the process that any database conversion
should follow.

Following the Introduction to this thesis, Chapter Two describes examples of
common data errors and methods to detect and correct them. Chapter Three provides
an overview of common integrity constraint violations and inconsistencies. Chapter
Four discusses the specific applications of the USMA database management system.
Chapter Five reviews potential errors, integrity constraint violations and inconsisten-
cies contained in the USMA database system. Chapter Six describes a generalized
methodology for error checking and correction, provides a specific method for resolv-
ing the issues at hand, and presents selected examples of the implementation. The

final chapter includes conclusions and recommendations.

II. COMMON DATA ERRORS AND HOW TO DETECT AND CORRECT THEM

A. INTRODUCTION

The terms accuracy, validity and correctness, when used in DBMS contexts, relate
to the integrity of the data or information within a database management system.
Experience tells us that some degree of error and inconsistency invariably exists in the
data of a DBMS. This is true because the data contained in any DBMS is only as
accurate as the information entered and the degree of checks and control enforced by
the system. Since no person or system is infallible, errors occur. Consider a bank
statement or the automated personnel records maintained by employers. From time
to time we find errors. As customers we ask, “How is it possible that these errors exist
in what appears to be a sophisticated automated system?” Chapter Two of this thesis
will explore the circumstances that cause common data errors to occur.

To ensure the accuracy of the data in a DBMS, the database manager must
establish safeguards against invalid updates. Invalid updates result from data entry
errors, mistakes by system operators or application programmers, system-induced
errors, or security violations. Regardless of the cause of the error, the result to the
consumer, and often the organization, ranges from inconvenience to significant
monetary loss. Therefore, system managers are obligated to establish strategies for
minimizing data errors.

In this research many examples of common data errors have been found. Com-
mon data errors are normally easy for an individual to identify, but difficult for a

computer to detect. These common errors can be classified into five types: Out-of-

range values, incompatible data types, subset-set discrepancies, redundancies and

arithmetic mistakes.

B. CAUSES OF COMMON DATA ERRORS

Out-of-range-value errors occur in a variety of ways. The most frequent cause is
unintentional typographical mistakes. Potential errors of this form could result be-
cause a manager filled out a time card incorrectly or because a secretary could not read
the supervisor’s writing. Such an unintentional mistake could lead to an employee’s
height being entered as 90 inches, when the correct value is 70 inches. Or the number
of hours worked entered into the system could be 95 when the actual hours worked by
the employee is only 45. In these examples, one could see how a seven could be
misread as a nine, or a nine mistakenly typed instead of a four. An out-of-range-value
error stays in the system when, during DBMS design, no specification is given to
constrain the range of values within the data type. This allows the system to accept any
entry which fits the particular data type. The value may be wrong, but the system
accepts it. This explains how intentional errors are allowed to occur. In tampering
with the system, an employee could alter his or her annual salary from $10,000 to
$100,000 simply by entering an additional zero. While such breaches occur infrequent-
ly, they are possible as a form of out-of-range-value error. When out-of-range-value
errors are entered and no constraints are specified in the system, the DBMS has no
mechanism for recognizing them as mistakes. As a result, these errors reside in the
system until some source outside the system identifies them for correction.

Incompatible data types may be present in the source system or may be en-
countered during conversion to the target system. They are caused by design
specification choices made by DBMS designers in both the source and target systems,

or through operational data entry errors. During the source DBMS specification,

designers may decide that a valid requirement exists to store specified fields in
separate files using different data types. This requirement is perfectly acceptable.
For example, in one file dates are represented by an alphanumeric data type in day,
month, year format (10Mar90), and in another file, the dates are represented by an
integer data type in month, day, year format (031090). Each file is independent of the
other with fields representing identical data. However, potential problems arise
when trying to compare the consistency of redundant fields with different data types.
Like comparing apples and oranges, it is difficult to check whether 10Mar90 and
031090 actually mean the same thing. Or perhaps one file will read 10Mar90 and the
other 031190. The original design decision to duplicate data fields with different data
types may lead to potential redundancy errors. In the previous example, one of the
dates is obviously incorrect. The problem then becomes deciding which value to
transform during conversion. This decision is complicated further when the target
system requires a completely different data type than either of those used in the
source system.

Operational data type errors occur because the data type selected during DBMS
design is subject to error without the user’s knowledge. In many cases, the specific data
type may have been selected for a valid reason (it best meets the user’s needs). For
example, the DBMS designer has a valid requirement for the social security number
(SSN) to be an 11 position alphanumeric field. This allows dashes to be entered as
separators (123-45-6789). Since dashes are alpha characters, this data type specifica-
tion enables operators to enter other alphabetic characters to the SSN field and
increases the possibility of errors (ABC-DE-FGHI). Such an entry is obviously
invalid, but it, or some more subtle error involving alphabetic characters, could occur

(123-45-678A) because of the data type specified. Additionally, because 11 characters

are specified, a SSN value could be way out of range (99999999999) again without the
operator realizing a mistake had been made. If these operational data type errors are
not corrected prior to conversion, they can be carried into the target system if the target
system calls for identical data types.

A third type of common data error is a subset-set discrepancy. These discrepan-
cies occur because the user decides during database design to maintain a shortened
version of a longer field, as well as the longer field. In the military, for example, an
individual’s complete social security number is stored in the DBMS. However, in
retrieving data about the service member, the individual is most often asked to provide
only the last four digits of the SSN together with his or her name. The last four, as the
military calls it, is a subset of the larger SSN set. Another example occurs in storing
names in a DBMS. A full or long name, such as John David Smith, is often stored in
one file with a short name, like Smith John D stored in another file. The long name
would be used for formal references, as in diplomas, certificates or awards, while the
short name would be used for other applications, such as the paycheck or a course
roster. Again, the short name is a subset of the long name set. The problem associated
with subset-set discrepancies is that similar data is stored in two places, a duplication
that may lead to potential error. Errors occur when one field is changed or updated,
leaving the other field in an inconsistent state, or when either the set or subset field has
been incorrectly entered into the system.

Redundancy of data, which was alluded to in the previous paragraphs, means the
same data is stored in two or more places. Redundancies lead to several problems:
First, identical data must be entered multiple times, once for each file containing the
redundancy. Second, storage space is wasted because the same information is main-

tained in several locations. The third and most serious problem is that files containing

the same information can easily become inconsistent. This inconsistency occurs when
one file is updated and another is not. For example, two files contain names and
addresses for employees. In one file, a change is made to an employee’s address, while
the other file remains unchanged. As a result, the address of the employee is inconsis-
tent among the files.

A fifth category of common data errors, arithmetic errors, occur when there are
mistakes in the routine the system follows to compile data for a specific field. For
example, when a graduate student sees that his or her graduate-level grade point
average (GPA) is equal to 3.52, how does the student know whether this value is
correct? To check its accuracy, the student could add the graduate level quality points
earned and divide by the total graduate hours passed. This exercise could be ac-
complished with a hand-held calculator in less then ten minutes. One would expect
this calculation to be a simple process for a database system. Yet, if the DBMS
mistakenly adds in undergraduate-level course grades, the graduate GPA value will be
in error. This error would also occur if individual grades are changed but the grade
point average is not recomputed.

The area of military logistics provides a second example of the importance of
maintaining accurate arithmetic fields. If the Army supply DBMS reflects that there
are 10,000 tanks in the active Army, how does the logistician know whether this value
is correct? Only by physically looking up each unit to determine how many tanks it has
on hand. This task would be monumental given the number of Army units with tanks
and the quantity of machinery assigned to each. The key to avoiding arithmetic errors
in a system is to ensure that the routine used to fill in a DBMS field is accurately
capturing the required data and that any change in the component data is followed by

recalculation of the arithmetic.

C. HOW TO DETECT COMMON DATA ERRORS

How are the common data errors mentioned above detected? Normally, data
errors are detected when someone complains, like the employee whose height is listed
as 90 inches instead of 70, or the senior logistician who states he is positive the correct
number of Army tanks is 12,000. It stands o reason that most errors will be identified
by the person on whom the data is maintained or by the manager for a particular field

“or record. But prior to DBMS conversion, procedures must be established to detect
errors not identified by a user or manager. Potential out-of-range-value fields can be
checked for accuracy upon entry in the source DBMS through the use of restrictive
data types and range constraints, if the system is so designed. For example, using
restrictive data types and range constraints, the computer could recognize a height of
100 inches or a grade of Z as an incorrect entry. However, most systems are not set up
initially to accomplish that function. In such cases these fields can be compared against
a target value range. For example, a GPA must range between 0.00 and 4.33. (A grade
of A+ at the Military Academy earns a numerical value of 4.33 quality points.) A
comparison of the GPA field against the GPA range would be accomplished with the
aid of an application program written to perform this specific function. Out-of-range-
value errors would then be marked for correction.

A similar application program would be run on the fields where possible incom-
patible data types are found. In the source system, this program would be required to
convert redundant fields with different data types so that the data could be compared
for consistency. Data with different data types must be converted into a common
format for comparison and checking. Also, this program would check the SSN to

ensure that it contained nine integer digits with dashes in the correct positions. If

required by the target DBMS, it could then remove these dashes for loading into an
intermediate file. Again, errors would be marked for correction.

The subset-set discrepancy can be checked, again through an application routine,
to ensure that each subset mirrors a like part of the set. For example, the last four
subset would be checked to ensure it matches exactly the corresponding positions in
the complete SSN set. Errors would be corrected prior to conversion.

Redundancies can be checked through the use of an application program to see
that all redundant fields contain identical information. The application program
would read each file that contained duplicate fields and compare the fields of cor-
responding records for accuracy. Errors would be marked for validation and correc-
tion.

Arithmetic fields would be checked to ensure the method used to calculate the
field is accurate. In the GPA example, a program could be run that actually calculates
the GPA based on the student’s grades and then compares that value against the
DBMS calculated field. This program could confirm the DBMS calculation to be

correct.

D. HOW TO CORRECT COMMON DATA ERRORS

Once the common data errors have been detected and the information validated,
what means exist to correct them? Manual correction is the most common method for
rectifying errors. Manual correction is used when the end user complains of a mistake
in the DBMS. This seems to be the most immediate and least costly way to achieve
DBMS accuracy, and most of the time this may be the only way.

A second method for error correction is called the “majority rules” method. In this
method, the DBMS is asked to determine whether there may be other fields that store

the same information. If there are, the DBMS corrects the field with the error to

10

be consistent with the data in the majority fields. For example, three fields contain the
SSN. One SSN field is detected to have an error, so it is updated with the data from
one of the majority fields. This method saves operator time but does not allow for cases
where the minority field houses the correct value. This entire issue is resolved if the
DBMS is designed so that only one field contains the SSN. In this case redundancies
cannot occur. Guilmette and Wilson’s target database design [Ref. 2] supports the
redundancy issue by not allowing duplicate fields.

A final error correcting mechan .m would be to build a generic knowledge-based
expert system that would essentially do all the correcting work for the user. This expert
system would be built on a set of facts. If it encountered an out-of-range-value error,
it could analyze the problem, see how it handled the problem previously, and take
corrective action. This type of system sounds quite pleasing but would be very expen-
sive. Its drawback being that it would be designed for a specific DBMS conversion,
used one time, and then discarded. Additionally, the expert system does not guarantee
accurate data in all cases. For example, two files contain identical first and last names,
SSN and addresses. Obviously the individuals in the records are the same person. But
the names have different middle initials. The expert system would not be able to tell

which record was the correct one. At best, it would have to guess.

E. CONCLUSION

The preceding paragraphs have offered several examples of common data errors
that may exist in a DBMS. This is only a brief list of potential errors. There are many
more. The key point is that any DBMS has a potential for errors. The database
manager must implement methods to detect and correct them prior to conversion to

the target system.

11

IIIl. COMMON INTEGRITY CONSTRAINTS AND INCONSISTENCIES

A. INTRODUCTION

A database management system is designed to depict relationships that exist in the
real world. For example, in a business application, relationships exist between
employees and the departments to which they are assigned, between departments and
the projects they administer, and between departments and their specific locations. In
many cases, however, there are conditions that exist in the real world that cannot be
stated explicitly in a relation as part of the DBMS. These conditions are known as
integrity constraints. The purpose of an integrity constraint is to state the conditions
among the different relations in the DBMS that are necessary due to policy, fact or
logic. Integrity constraints are used in the DBMS to keep inconsistencies from occur-
ring in the data. The importance of integrity constraints cannot be overstated. Date
suggests that the specification of integrity constraints could account for as much as 80
percent of a typical DBMS description [Ref. 3:p. 36).

This chapter discusses the different types of integrity constraints available in most
modern database management systems and reviews several examples of logical im-
plications that cannot be enforced automatically by the DBMS. As was the case in
Chapter Two, these integrity constraints must be checked and the data validated prior
to moving the data from the source to the target DBMS. Since most database manage-
ment systems do not support automatic enforcement of most integrity constraints, it

becomes extremely important that data be checked for consistency before conversion.

12

B. INTEGRITY CONSTRAINTS
Integrity constraints serve a vital purpose within the DBMS. They provide a

means of ensuring that changes made to information in the database will not result in
a loss of data consistency. When the DBMS designer develops schemata for an
application, one of the most important activities is to define the conditions, or integrity
constraints, that must hold on the database. The designer would like to specify as many
of the conditions as possible to the DBMS, and if possible, have the DBMS assume
responsibility for automatically enforcing them. Problems arise, however, because
there exists no automatic enforcement for most types of integrity constraints by the
DBMS.

One type of integrity constraint that normally is considered part of the DBMS is
called an entity integrity constraint. The idea behind the entity integrity constraint is
that a primary key for a relation cannot contain a null value. This is a very important
point. Primary keys perform a unique identification function between the individual
objects in a relation. A primary key is a field (or attribute) whose values uniquely
identfy an object (or tuple), i.e., social security number, employee number, part
number, etc. A primary key value that was null would mean that there was an object
that did not have a unique identification. This object would not be distinguishable
from other objects; and if two objects are not distinguishable from each other, then
there are not two objects but only one [Ref. 4:p. 89]. For example, in the student
relation SSN is designated as the primary key and null values are allowed. Two
students named Smith and Jones are part of the student relation with null values stored
as their SSNs. Because Smith and Jones’ primary keys are not distinguishable, a

change to Smith’s record would also map to Jones’ record.

13

Let us examine entity integrity from another perspective. To allow a primary key
to store null values, or any non-unique (identical) values, violates the basic definition
of a relation. A relation is defined as a set of tuples. Since all elements of a set must
be distinct, all tuples in a relation must also be distinct. This means that no two tuples
can have the same combination of values for all their attributes [Ref. 1:p. 141]. More
importantly, for a given relation, a primary key value must uniquely and functionally
determine all the other attribute values in the relation for this tuple. This dependence,
called functional dependence, forms the theoretical foundation of relations and cannot
be violated. If the primary key (e.g., SSN) can contain null values, tv'o distinct tuples,
say John Brown and George Johnson, will mean that a given primary key, namely null
values, map to both John Brown and George Johnson. Such existence totally violates
the functional dependency concept and cannot be allowed.

A second type of integrity constraint that normally is not part of the DBMS is
known as a referential integrity constraint. This constraint is specified between two
relations, whereas entity integrity constraints are specified on an individual relation.
Referential integrity constraints are used to maintain consistency among the tuples of
the relation. In general, the referential integrity constraint states that a tuple in one
relation that refers to another relation must refer to an existing tuple in that relation.

A more formal definition of referential integrity is provided by Date:

Let R1 be a relation with an attribute A that is defined on a primary domain D. At any given
time, each value of 4 in R1 must be either null or equal to ¥, where V is the primary key value of
some tuple in another relation R2 (R1 and R2 are not necessarily distinct) with primary key defined
on D [Ref. 4:p. 89].

An example of referential integrity constraints is displayed in Figure 1. Referen-
tial integrity constraints can be displayed by drawing an arc from a relation tc the

relation it references (or refers to).

14

In database management systems there can be many referential integrity con-

straints. To specify these constraints, database designers must have a thorough under-

standing of the meaning that each attribute plays in the different schemata of the

database.

STUDENT

[owe

SSN | BIRTHDAY

ADDRESS SEX ADVISORSSN DNO

DEPARTMENT

| oname

DNUMBER l CHAIRMAN-SSN

CHAIRMAN-START-DATE

DEPARTMENT-LOCATIONS

DUNUMBER DLOCATION

THESIS

TNAME

TNUMBER DNUM

WORKS-ON

SSN

THESISNO HOURS

DEPENDENTS

SSN

DEPENDENT-NAME SEX

BIRTHDATE RELATIONSHIP]

I?igure 1. Referential Integrity Constraints from the University Database Schema.

Let us look at some examples of referential integrity. Consider the university

database of Figure 1. In the STUDENT relation, the attribute DNO references the

15

DEPARTMENT where a student is assigned (like the Computer Science Depart-
ment). This means the value of DNO in any tuple ti of the STUDENT relation must
match a value of the primary key of the DEPARTMENT relation, the DNUMBER
attribute, in some tuple tj of the DEPARTMENT relation. Or the value of DNO can
be null if the student does not yet belong to an academic department. If tuple t1 of the
STUDENT relation has a DNO attribute value equal to 368, one would expect to see
a tuple in the DEPARTMENT relation with a DNUMBER value equal to 368. In this
example, the referential integrity constraint would hold.

The reader may ask “What is the significance of referential integrity constraints?”
Consider a second example, again using Figure 1. In the DEPENDENTS relation, the
attribute SSN refers to the STUDENT SSN that the DEPENDENT is a dependent of.
Let’s say that Kathy O’Keefe (with SSN equal to 123456789) was a student at the
university. Her personal information would be contained in the STUDENT relation
of the university database. Let’s also assume that Kathy has two dependents named
Mike and Katelyn. These two dependents of Kathy’s would be part of the DEPEND-
ENTS relation. Kathy’s SSN would be stored in the DEPENDENTS relation as a
reference to her SSN in the STUDENT relation. If Kathy were to leave the university
and her tuple is deleted in the STUDENT relation, but her dependents were still part
of the database, there would be no way to determine whose dependents they were.
This results in a dangling reference because DEPENDENTS SSN no longer references
an existing STUDENT SSN with the same value. The same sort of problem occurs in
the previous example if the department with a DNUMBER equal to 368 were to
disband, but the t1 tuple of the STUDENT relation still refers to department 368.

Regardless of whether entity integrity and referential integrity constraints are

provided for by the DBMS, it is imperative to ensure that, prior to DBMS conversion,

16

both of these constraints are checked for consistency, validation as required, and

correction before moving information from the source to the target DBMS.

C. LOGICAL INCONSISTENCIES

The integrity constraints listed above exclude a much larger class of constraints,
known as logical or semantic integrity constraints. Examples of several simple, logical
integrity constraints (simple because they require accessing and checking only one
relation or file) are listed below:

1. Every graduate student must have a bachelors degree.
2. Astudent’s age is non-decreasing.

3. The average annual salary of professors in the Computer Science Department is
between $40,000 and $45,000.

4. The number of female instructors is non-decreasing.
5. No student may graduate if his/her cumulative GPA is below 3.00.

More complex logical inconsistencies would require the access and checking of
two or more relations or files. Examples of complex logical integrity constraints that
require the checking of values in several relations are:

1. An employee’s quarterly bonus is based on whether the employee meets his
personal quarterly sales quota, whether his particular department shows a profit
for the quarter, and if the corporation as a whole shows a quarterly profit. If
these conditions are met, then the present bonus can be no less than the bonus
from the corresponding quarter of the previous year.

2. A professor’s gross annual earnings are based on a percentage of the monetary
value of research grants he receives for the year and whether this value is more
than the previous year, plus his base salary. For an energetic professor, these
research grants can be quite large. However, no professor may earn more than
the superintendent of the university.

This type of constraint should be specified during DBMS design and enforced

upon implementation. Unfortunately, there are few systems that automatically

17

support and enforce these logical integrity constraints. According to Elmasri and
Navathe, “support and enforcement of integrity constraints in general is a weak point
of many existing database management systems.” [Ref. 1:p. 597] A select few systems
may provide some means of logical constraint enforcement through procedurally
coding the constraints, assertions and triggers.

Constraint coding can be accomplished in an efficient manner, but this technique
places a great burden on the programmer who must understand all the constraints a
transaction may violate. A tiny error or omission can lcad to an inconsistency. Asser-
tions and triggers are appealing to users and programmers because of their simplicity
and flexibility. Unfortunately, both have proved to be difficult to implement due to
inefficient and complex integrity control subsystems. A more complete review of
constraint coding, assertions and triggers can be found in [Ref. 1:pp. 599-602].

It should be apparent from the above discussion that due to the difficulty in
enforcing logical inconsistencies, an effort must be made prior to DBMS conversion to
first identify the logical integrity constraints that must hold on the system, and then to
develop application programs to support checking the potential logical inconsistencies.
As was the case with common data errors, logical inconsistencies can be marked for
validation and correction.

The task to identify the logical integrity constrairts is in itself a complicated and
arduous undertaking. In any organization there may be a myriad of regulations and
rules of operation that are related to these constraints. In many cases, an
organization’s rules are not explicitly stated; in fact, many times they are unwritten.
The mission of specifying the constraints the organization wishes to hold is a sig-
nificant task, and identifying the relations affected by the constraints is an even larger

one.

18

D. CONCLUSION

The paragraphs above have reviewed the ideas of integrity constraints and possible
logical inconsistencies that may occur in the DBMS. Significant numbers of potential
errors exist in this area. It is imperative, then, that the database manager review the
integrity constraints and logical implications that must hold on the database and take

steps to check them prior to moving the data to the target system.

19

IV. SPECIFIC APPLICATIONS OF THE WEST POINT SYSTEM

A. INTRODUCTION
The charter of the United States Military Academy is to prepare young men and

women to serve their country in uniform. Prior to acceptance into West Point, and
during the cadet’s four years there, USMA maintains a multitude of data on every
student. The West Point database that maintains this information is called the Cadet
Information Database (CIDB). The purpose of this chapter is to , resent selected
specific applications from the CIDB. This information will establish the foundations
for Chapter Five’s discussion of potential errors and inconsistencies contained in the
data from the CIDB. A complete application of the West Point system can be found
in Guilmette and Wilson’s companion thesis [Ref. 2]. The task to develop the com-
plete USMA application was a joint effort (Hendrickson, Guilmette and Wilson). This
was a time and labor intensive endeavor given the amount of preliminary data gather-
ing, research and analysis requisite to developing the application. We estimate that at
a minimum, three months were spent trying to gain a thorough understanding of the
CIDB using the documents provided to us. This task was made especially challenging
by the absence of a USMA organizational manual to describe the functions of the
DBMS users, data dictionaries with cryptic, confusing or nonexistent comments, data
fields that were named in such a way that it was not obvious what the data field
represented, and in general, conflicting and inconsistent information contained in the

USMA reference documents.

20

B. BACKGROUND

The Computer Systems Division (CSD) of the Directorate of Information
Management (DOIM) is responsible for all USMA data processing. Included in this
broad mission statement is the responsibility to operate and maintain the CIDB. Three
organizations at USMA play a major role in updating the CIDB and are also
proponents for their specific areas of the CIDB. These three organizations are: The
‘Director of Admissions (DAD), responsible for recruiting future cadets to USMA;
The Office of the Dean (Dean), responsible for the normal registrar duties, like
scheduling courses, posting grades, and issuing transcripts; and the Commandant,
United States Corps of Cadets (USCC), responsible for military-related information,
such as personal data, military training received, leadership scores, athletic and
physical abilities, and disciplinary records. The Computer Systems Division works in
a direct support role with all three proponents to ensure that the CIDB is maintained
properly.

The recruiting mission of USMA and the Director of Admissions involves a
lengthy process that begins a year and a half before the class start date. In February of
each year DAD mails inquiries to approximately 60,000 potential applicants. From
April through March, application packets are returned to West Point. The number of
application packets is normally near 14,000. In December, a USMA admissions
committee meets to rank order the applicant packages received to date. In January
and February approximately 6,000 nominations are received from congress. Of the
6,000 applicants nominated, USMA selects approximately 1,800 as qualified applicants
and sends them offers to attend West Point. Normally around 1,300 of the qualified
applicants accept the offer and actually arrive at USMA in June for the first day of

training. In late May, over 100 of the data fields from the DAD’s portion of the CIDB

21

are copied to fields maintained by the Dean and USCC. The data copied is the cadet
candidate information that relates to the 1,300 cadets expected to report for the first
day of school. At any given time there are approximately 4,400 cadets attending
USMA with records maintained in the CIDB. Let us examine some of the specific

responsibilities and applications of the DAD, Dean and USCC.

C. DIRECTOR OF ADMISSIONS

The Director of Admissions is responsible for recruiting, testing and appointing
applicants to USMA. As application packets are received from potential cadets, the
process of entering applicant data into the CIDB begins.

Once the data has been entered, the applicant is known as a cadet candidate. In
addition to maintaining information on each cadet candidate, the DAD maintains data
on its recruiters, also known as the field force. The field force is composed of two
groups of individuals, the admission participants and the educators. The Director of
Admissions also keeps information about high schools, as the high school is the primary
source for recruiting cadets to attend USMA. Data on physical aptitude examination
(PAE) test sites is also kept by the DAD. Finally, the DAD maintains information on
the individuals (senators and congressmen) who have nomination authority of USMA
applicants.

The information entered into the CIDB on a candidate includes the social security
number, name, address, telephone number, sex, height, weight, race and birthdate.
The projected USMA graduation year and several test scores are also maintained
(ACT, SAT and PAE). High school information about the candidate, to include the
school’s Princeton identification number is maintained. The CIDB also stores the

admission participant’s identifier for the candidate as well as the test site identifier of

22

where the candidate took the PAE. Finally, NCAA athletic information is maintained
if the candidate has the desire and ability to participate in intercollegiate sports.

Admission Participants (AP) or liaison officers, make up the first group of the field
force. An AP is a graduate of USMA and is retired or in a reserve status. The AP’s job
is to recruit qualified young men and women to attend USMA. The data to be entered
on the AP includes a unique AP identifier, name, SSN, address, telephone number,
rank, branch of service, USMA graduation year, and the month and year the AP joined
the field force program.

Educators constitute the second group of the field force. Normally, educators are
instructors or guidance counselors from junior and senior high schools, but other
interested individuals may also participate as educators in the USMA recruitment
process (for example, local news media). Educator information consists of a SSN,
name, address, month and year joining the field force, the AP identifier of the
admission participant who is responsible for working with the educator, and the test
site identifier to which the educator’s applicants will be assigned for PAE testing.

The Director of Admissions uses the high school as one of its primary means of
recruiting. The USMA mails information packets, catalogs and other promotional
materials to high schools in an effort to recruit quality personnel. The data maintained
on high schools includes the Princeton identifying number, school name, address, AP
identifier for the field force representative who handles the admissions interests at the
school, and the test site identifier that applicants from that school would be assigned
when taking the PAE.

Applicants must take the PAE before submitting an application packet to USMA.
Locations where the PAE is given are called test sites. Normally, armories, gym-

nasiums, or high schools are used as test sites. The information entered to the CIDB

23

about test sites includes the unique test site identifier, the test site name, name of the
individual responsible for the site, address of the site, its capacity, telephone number,
and dates and times of the PAE.

The Director of Admissions also maintains data on those individuals who have the
authority to nominate applicants to attend West Point. The nomination of an applicant
normally comes from a senator or congressman. The information stored on these
individuals (nominating authority) includes a unique identifying number, title, name,
address, telephone number, and data concerning the number of nominations
authorized, filled and vacant.

Finally, the Director of Admissions keeps a record of AP identifiers and test site
identifiers that coincide with a particular 2ip code. This listing makes a convenient

cross reference to determine the AP and test site for each zip code.

D. OFFICE OF THE DEAN

The major responsibilities of the Office of the Dean are to oversee the academic
education received by cadets, to schedule classes, and to maintain cadet grades. The
Dean keeps information on courses to be taught, classrooms available for each course
(for example, ensuring a chemistry lab is not scheduled in an English classroom), books
to be used for each class, course schedules for students, and grades received.

All USMA cadets take the same courses during their first two years at West Point.
These include core courses such as math, English, and chemistry. Many cadets also
have identical course schedules during their last two years. Prior to the end of the
sophomore year, cadets must select a field of study (similar to a major). At that time
they must forecast the remaining courses they wish to take and when they wish to take
them during the last two years. The cadet’s graduation year determines the total

number of classes the cadet must take. Currently, 40 academic and eight physical

24

education courses are required for graduation. The 40 academic courses are broken
into 31 core courses and nine field of study courses.

To facilitate course enrollment, the following data is maintained on each course
USMA offers: Course name and number, the year and terms the course is offered,
credit hours for the course, labs (if required), number of students enrolled, and any
prerequisites for the course. Information concerning the required texts is also stored
in the CIDB. This data includes a unique identifying number and issue code for each
book, title, author, price, number of books on hand, number of books ordered, and an
estimated delivery date. Finally, classroom information is maintained to assist the
scheduling process. This data includes building name, room number, room capacity,
classroom type (lecture or lab), and the department usually associated with the class-
room.

The final course grades received by each cadet are entered to the CIDB by the
instructors at the end of the term. In addition to course grades, the Dean maintains
quality points, credit hours and QPA for each cadet on a term, yearly and cumulative
basis. At West Point the grade point average is called QPA for quality point average.
The CIDB stores a distinguished cadet indicator as well as a probation flag to indicate

superior or problematic performance, as appropriate.

E. COMMANDANT, UNITED STATES CORPS OF CADETS
The United States Corps of Cadets (USCC) has primary responsibility for the

military training received by cadets, as well as leadership, discipline, physical, and
athletic training. In addition to many of the CIDB fields copied from the DAD prior
to enrollment (like name, SSN, sex and blood type), USCC maintains individual
information, such as a specific cadet number (composed of the graduation year and five

digit alpha number), as well as current height and weight, permanent company and

25

regiment, and physical fitness test results. Many personal data fields are stored, such
as cadet long name (up to 60 characters in length), and parents’ rank/title, name,
address and phone number.

The United States Corps of Cadets stores prior college, prior service and gradua-
tion information in the CIDB. Prior college information is maintained on all colleges
attended and includes the name and address of the college and the number of months
in attendance there. Prior service data includes whether the cadet attended a prep
school, the prior service component, number of months of service, and military occupa-
tional specialty. The graduation information is entered during the 'ast term prior to
graduation and includes graduation date, commissioning date, basic and detail
branches, and Graduate Record Exam scores.

The United States Corps of Cadets is responsible for maintaining cadet illness and
injury records. Data maintained includes the time a cadet went on sick call, the time
returned, and the date and disposition of the illness. Injury information includes the
date of the injury, activity the cadet was participating in when injured, and the nature
of the injury.

Leadership development is vital to a cadet’s success upon graduation. Leadership
records are maintained to document leadership positions held, ratings received in
those positions, and summer assignments that reflect where the cadet served and the
dates of the summer assignment. Summer assignments may include regular Army-
type training like Ranger, Airborne, and Air Assault Schools, as well as Cadet Troop
Leadership Training (CTLT), where cadets go to active Army units to train and lead
platoons for six weeks.

Disciplinary records are also stored and reflect the number of demerits and

disciplinary actions taken against the cadet as punishment. Demerit data is maintained

26

on a daily, monthly and yearly basis and includes an offense code and number to
delineate between occurrences of an infraction.

A final area of responsibility for USCC is to track the athletic and extra-curricular
activities in which cadets may participate (for example, varsity football, intramural
basketball, debate team, glee club, etc.). The activity start date, number of trips taken
while a member of the activity, number of days in the activity and the type of award
‘received are data fields for which USCC has oversight. Additionally, extra-curricular
trip information is charted by cadet on a weekly basis and includes an identifying code
for each trip taken. Other information stored is the city, state, and zip code of the

location of the trip and the individuals in charge of the trip.

F. CONCLUSION

The preceding paragraphs are intended to provide an overview of the applications
of the Cadet Information Database. The discussions above are purposely not all
inclusive, but rather are meant to provide the reader with a clear and concise picture
of the types of information maintained in the CIDB and an understanding of which
office is responsible for maintaining the data. Although certain parts of the database
may be difficult to understand and some attributes quite cryptic, the West Point
database management system is very similar to the DBMS of any civilian university.
Social security numbers, names, addresses, classes taken, grades, and quality point
averages are just a few of the similarities between the CIDB and a university DBMS.

This chapter was developed from USMA Regulation 25-5 [Ref. 5] and the USMA
Cadet Information Database Dictionary [Ref. 6).

27

V. POTENTIAL ERROCRS, INTEGRITY CONSTRAINT VIOLATIONS AND
INCONSISTENCIES IN THE WEST POINT SYSTEM

A. INTRODUCTION

Chapters Two and Three of this thesis provided examples of potential errors and
inconsistencies that may be found in any database management system. The purpose
of this chapter is twofold: First, and most importantly, to outline specific examples
where possible errors, integrity constraint violations and inconsistencies can occur in
the present USMA system. This listing is not all-inclusive, but is intended to be
comprehensive enough to assist the DOIM CSD staff in its data validation efforts prior
to system conversion. Painstaking work of a tedious nature was involved in formulating
the listing that follows. The process required delving into a data dictionary in excess
of 400 pages, that in many cases was not well commented, searching for and document-
ing all the instances where a particular field contained a potential out-of-range value
(like SSN), and then starting over and looking for all the instances of the next out-of-
range field (like height and weight). This procedure was repeated numerous times in
search of as many potential errors as possible. The process of dissecting the data
dictionary and compiling lists of potential errors is analogous to that of a detective
hunting for clues to solve a mystery. Secondly, this chapter is intended to provide the
backdrop for proposing a methodology to solve the issues at hand. The examples
described will be accompanied, when applicable, by figures to illustrate the potential
problem. Where appropriate, field names will include the unique three character
USMA identifier for reference. The Military Academy uses these three character

identifiers to designate field names or attributes. For example, the cadet candidate

28

social security number field is identified by the code AAB, ar.d the cadet SSN field is
identified by the code CAA. See Appendix A for a glossary of USMA field identifier

codes not defined in the text that potentially contain errors and inconsistencies.

B. COMMON DATA ERRORS
1. Out-of-Range Values

a. Throughout the entire database, with the exception of the Educator-ID field
(FPA), social security numbers have the potential to contain out-of-range values
(99999999999).

b. In the cadet candidate portion of the database, the following fields may
store out-of-range values:

(1) Several Julian dates are used that allow the numerical day entry to
reach 999, though the maximum Julian date is 366.

(2) The height and weight fields allow entries as low as 00 inches and 000
pounds or as high as 99 inches and 999 pounds, though the lower and upper extremes
represent improbable values.

(3) The birth month and day fields accept entries up to 99, but the maxi-
mum month is 12 and the maximum day is 31.

(4) Fields for physical activity exam and admission scores should range
between 200 and 800, but the system allows entries as low as 000 or as high as 999.

(5) The system accepts ACT scores ranging from 00 to 99 and SAT scores
from 000 to 999, though actual ACT scores must range between 1 and 36 and SAT
scores from 200 to 800.

(6) The value for years of work experience during high school, which

normally should not exceed four, may equal nine.

29

(7) Single character fields such as sex, race, ethnic background, and the
flags indicating whether certain USMA application forms have been received, could
possibly contain values from A to Z, though M or F, or Y or N are the appropriate
values.

(8) The entry for month joined the field force could equal up to 99, while
the actual maximum value is 12.

(9) The system allows values for nomination vacancies allowed, filled, and
authorized for the current academic year to equal up to 999, though no nominating
authority could possibly have this many vacancies.

(10) The nomination record contains a nomination selection score that
could reach 9999, but a score this high is not possible.

(11) The test site record uses a nine character test date that allows day,
month and year to be out of range (99XXX9999), and a four digit test time that would
allow a time of 9999 to be entered to the system, when the maximum allowable time
should be 2359.

c. In the scheduling portion of the CIDB, the following fields could contain
out-of-range values:

(1) Julian dates allow the numerical day entry to reach 999, while the
maximum Julian date is 366.

(2) Book quantity on hand and requested quantity can both equal 99999,
but with 4,400 cadets, it is unlikely USMA would maintain such quantities of a single
book.

(3) The system accepts a classroom capacity entry of 999, but no USMA

classroom accommodates this number.

30

(4) By system constraints, the course population could equal 9999, but the
actual maximum could not exceed the cadet enrollment.

(5) Course enrollment reflects minimum, maximum and desired enroll-
ment per course. System entry could be 999, but no class is this large.

(6) There are numerous flags and single character fields throughout this
application that contain a single character designator, like Y or N; however, characters
from A to Z are accepted.

d. In the cadet record portion of the CIDB out-of-range values could occur in
the following fields:

(1) Height and weight fields can store values as low as 00 inches and 000
pounds or as high as 99 inches and 999 pounds. Both lower and upper extremes
represent improbable values.

(2) The Army physical fitness test maximum score is 300, but the field can
reach 999.

(3) The entrance class size, graduation class size, class size at start of term
and class size at end of term may all, by system standards, be as large as 9999, but no
class will ever be this large.

(4) Graduate Record Exam scores may be stored up to 999, but a value this
high is not possible.

(5) While the system accepts an input of 99 minutes, 99 seconds, the entry
for the 1.5 mile entrance run should not exceed 59 minutes, 59 seconds.

(6) The trip departure and return times cannot be greater than 2359, but

the system allows 9999.

31

(7) The system accepts a cadet illness date and excused to date of 999999,
though if such an entry were used, both the month and day would be out of range.
Illness time in and time out could be 9999, when the maximum should be 2359.

(8) Cadet days participating in an activity should not exceed 366, but
entries up to 999 are accepted.

(9) Several orders of merit (OM) are found in the grades section of a
cadet’s record. These OM entries are allowed to be as large as 9999, though a class
size could never be this large.

(10) Quality point averages should be a maximum of 4 330, but are ac-
cepted by the system up to 9.999.

2. Incompatible Data Types

a. As was the case for the out-of-range values described above, all social
security numbers stored in the CIDB may contain errors due to the data type selected.
Since the SSN data type is alphanumeric, both characters and integers are acceptable
entries (ABC-45-FGHI or 123-ZZ-6789).

b. Following are two examples of redundant fields using different data types.
From the individual record of cadet candidate, height-of-individual and weight-of-
individual are declared as two and three character alphanumeric fields respectively,
while in the entrance and high school record, the entrance-height and entrance-weight
are declared as two and three digit integer values. Also from the individual record, the
transcript-grad-year is declared as a two character alphanumeric field. In the cadet
class record, the class-graduation-year is declared as a two digit integer value. By
selecting an alphanumeric data type, the cadet candidate height and weight can have
incorrect values like height equal to 7C inches and weight of 18E, while the entrance-

height is equal to 72 inches and entrance-weight is 184. The problem with redundant

32

data fields is that it may be difficult to tell which field holds the correct value.
Obviously a height of 7C inches is incorrect, but there is no way to know if entrance-
height equal to 72 inches is accurate.

c. From the cadet candidate area of the CIDB, the following fields may contain
errors in the data because >f incompatible data types:

(1) Several Julian dates are declared as four character alphanumeric fields

-allowing data like ABCD to be entered to the system.

(2) Zip codes and telephone numbers are typed as nine and ten
alphanumeric characters respectively. This enables operators to enter information
such as 93943ABCD for the zip code and 408647ABCD for the phone number.

(3) Height and weight fields allow two or three alphanumeric characters
respectively. The height and weight values could therefore be entered as GB inches
and AHE pounds, for example.

(4) The transcript graduation year is declared as a two character
alphanumeric field. One would expect to see values like 89 or 90, but HI or 10 is
possible.

(5) The entrance senator or district number field is declared as two
alphanumeric characters, but values are always integers.

(6) The source sequence number field is declared as a single alphanumeric
character, but it must contain an integer value.

(7) The percent onto college field is declared as three alphanumeric char-
acters. However, it should be stored as an integer, otherwise values for a percentage

could look like ABC or 9B2.

33

(8) The month and year joining the field force, USMA class year, and
training year fields are typed as two alphanumeric characters, but only integers should
be allowed.

d. From the scheduling portion of the database, the following fields may store
erroneous information due to the data type used:

(1) Telephone numbers are typed as ten alphanumeric characters. This
declaration allows entries like 61SDEBS5373.

(2) The master course number field always contains a three digit integer
value, but it is declared as three alphanumeric characters.

(3) The permanent regiment is declared as a single alphanumeric charac-
ter but can only hold integer values from one to four.

e. From the cadet record area of the CIDB, the fields listed below may contain
inconsistent data because of the data type declared:

(1) Zip codes and telephone numbers are declared as nine and ten charac-
ter alphanumeric fields. Therefore, entries like 9CID3EQQ0 for the zip code and
ABC384EFGH for the telephone number are .possible.

(2) Course number is declared as storing three alphanumeric characters.
This allows values such as ABC or D3Z to be stored when three integers like 100 or
101 are expected.

3. Subset-Set Discrepancies
In the entire CIDB, only three examples of subset-set discrepancies can be
found. The first two examples come from fields within the database. In the individual
record of the cadet candidate, the preferred-name-individual (ACC) is a ten character
field consisting of as many letters of the full name as possible, starting with the last

name. It is a subset of the 27 character name-individual (ACB) set that is in last, first

34

and middle initial sequence. In the cadet record, cadet-short-name (CBE) is a 27
character field that contains as many letters of the name as possible, again in last, first
and middle initial sequence. Cadet-short-name is a subset of the 60 character cadet-
long-name (CIF) which comes from the cadet personal data record. The cadet-long-
name is in first, middle and last name sequence. A third and more subtle example of
this subset-set discrepancy that must be checked comes from the fact that prior to the
class start date, the DOIM CSD staff copies much of the information from the cadet
candidate individual record (AAA) into the cadet record (CAA), the entrance and
high school record (CEA), and the cadet personal data record (CHA) for the 1,300
cadet candidates that USMA expects to begin school. Once school starts, the 1,300
cadet records which constitute the subset, but may include late arrivals, should be
compared against the larger set of 14,000 cadet candidate individual records to ensure
that every cadet record comes from the larger set of cadet candidate individual
records.
4. Redundancies

Duplication of data fields occurs frequently in the CIDB. As mentioned in
Chapter Four and in the preceding paragraph, the duplication of data fields starts
when many of the cadet candidate fields are copied into the cadet and schedule
portions of the database. A few examples of fields that are copied are SSN, name, sex,
height, weight, ethnic background, race and birthday. The problems associated with
redundant data fields are twofold. First, if the information is accurate in the first file,
it should be accurate when applied to the second file. If an update is made to the
second file and not the first, the two files become inconsistent. Second, if the first file
contained erroneous information and was copied to the second file, the data in the

second file would also be incorrect. If the second file was updated to correct the

35

inaccuracy, the two files would again be inconsistent and the user would not know
which, if either, was correct. These problems are further exacerbated if more than two
files contain identical data. Prior to system conversion, redundant data fields must be
checked for accuracy and corrections must be made to inconsistent fields so the
information moved to the target DBMS will be clean.

To further illustrate the duplication of data in the CIDB, Figures 2 and 3 are
provided. Figure 2 displays the commonality between the CADET RECORD and the
SCHEDULE CADET RECORD. Only the duplicate fields from these two records
are shown. Over 50 percent of the fields from the two records are redundant. Figure
3 shows the similarity between the CADET VALIDATION RECORD and the
SCHEDULE CADET RECORD. Every field from these two records is duplicated.

CADET RECORD SCHEDULE CADET RECORD
CADET-SSAN SCHED-CADET-SSAN
CADET-GRAD-YEAR SCHED-CADET-NAME
CADET-SHORT-NAME SCHED-CADET-GRAD-YEAR
CADET-SEX-FLAG SCHED-CADET-SEX-CODE
CADET-SEPARATION-FLAG SCHED-CADET-PERM-COMPANY
CADET-TURN-COME-BACK-FLAG SCHED-CADET-PERM-REGIMENT
CADET-DEFERRED-TURN-BK-FLAG SCHED-CADET-FIELD-OF-STUDY
CADET-PERM-COMPANY SCHED-CADET-2ND-FIELD-OF-STUDY
CADET-PERM-REGIMENT SCHED-CADET-PREREQ-CHECK-FLAG
CADET-FIELD-OF-STUDY SCHED-CADET-GRAD-CHECK-FLAG
CADET-SECOND-FIELD-OF-STUDY SCHED-CADET-FOS-CHECK-FLAG
CADET-CRSE-PREREQUISITE-CHECK SCHED-CADET-TURN-COME-BACK-FLAG
CADET-CRSE-GRADUATION-CHECK SCHED-CADET-DEF-TURN-BACK-FLAG
CADET-FIELD-OF-STUDY-CHECK SCHED-CADET-SEPARATION-FLAG

Figure 2. Redundancies Between Cadet Record and Schedule Cadet Record

36

Fields in both figures are displayed vertically to assist in identifying the redundances.
While potentially leaving the system in an inconsistent state, redundancies also re-
quire multiple entries (one for each record containing the duplicate data), and waste

valuable system storage space.

CADET VALIDATION RECORD SCHEDULE CADET VALIDATION RECORD
CADET-VALIDATION-COURSE-DESC SCHED-CADET-VALID-CRSE-DESC
CADET-VALIDATION-COURSE-YEAR SCHED-CADET-VALID-CRSE-YEAR
CADET-VALIDATION-COURSE-TERM SCHED-CADET-VALID-CRSE-TERM
CADET-VALIDATION-COURSE-TYPE SCHED-CADET-VALID-CRSE-TYPE

Figure 3. Redundancies Between Cadet Validation Record and Schedule Validation Cadet Record
5. Arithmetic Errors

Throughout the CIDB there are data fields that are mathematically manipu-
lated to provide a result for another particular field. It is possible that the computed
result stored in that field is inaccurate. Data fields that are computed must be
recalculated and validated prior to data transfer. Examples of computed fields from
the CIDB that could lead to arithmetic errors are:

a. The daily cadet-demerits-awarded (TTF) to a cadet are added together to
input to a monthly total. In turn, the monthly-demerits-received (TPF) are totaled to
input to a yearly-demerits-received (TVH) total. In a similar fashion, the cadet-
demerits-area-tours-awarded (TTG) and cadet-demerits-room-tours-awarded (TTH)
are added together to determine a monthly-special-penalty-tour (TPG) total. This
monthly disciplinary tour total is then added to the yearly-special-penalty-tour (TVI)

total to provide a yearly disciplinary tour total.

37

b. In the cadet academic grades record there are several data fields used to
determine information for the cadet academic year and term record. For example, for
each course a cadet takes in a term, the grades-course-credit-hours (DLB) and the
grades-course-letter-grade (DLL) (which is converted to a numerical value), are
multiplied together to provide the quality points for that course. All of the course
quality point values for the term are added together to provide a term-academic-
quality-point (DGF) value. Credit hours for the term are also added together to
provide the term-academic-credit-hour (DGG) value. The term-academic-credit-
hour value is then divided into the term-academic-quality-point vale to provide the
term-academic-quality-point-average (DGH). Similar calculations are made to deter-
mine the year-summary-academic-quality-points (DHF), year-summary-academic-
credit-hours (DHG), year-summary-academic-QPA (DHH) values, cumulative-
academic-quality-points (DIH), cumulative-academic-credit-hours (DIF), and the
cumulative-academic-QPA (DII) values. Several in-depth calculations are used to
determine the term, year and cumulative orders of merit, and the term, year and

cumulative academic percentiles.

C. INTEGRITY CONSTRAINT VIOLATIONS
1. Entity Integrity Constraints

The CIDB contains fields that are designed to store primary keys. Examples
are cadet candidate social security number (AAB), admission participant identifier
(FBA), educator identifier (FPA), test site identifier (FHA), high school Princeton
number (FMA), and cadet social security number (CAA). As primary keys, these
fields must contain unique values. If a primary key was allowed to contain identical
values, the system would have no way to differentiate between the objects that con-

tained the same primary key value. Any non-unique values for the primary key (this

38

includes null values) will cause problems for the system and the user. Because the
USMA system does not support entity integrity, it is imperative that the primary key
fields be checked for uniqueness and that errors be validated prior to system conver-
sion.
2. Referential Integrity Constraints

Two examples of referential integrity are provided in Figures 4 and 5. Figure
-4 displays a simple example that shows how the CADET-PERM-COMPANY (CBN)
and CADET-PERM-REGIMENT (CBO) of the CADET RECORD refer to the
PERM-COMPANY (TEB) and the PERM-REGIMENT (TEC) of the PER-
MANENT COMPANY RECORD, respectively. It also shows how the CADET-
GRAD-YEAR (CBC) of the CADET RECORD refers to the CLASS-GRADUA-
TION-YEAR (TCA) of the CADET CLASS RECORD. If the cadet’s permanent
company and regiment was equal to G2, we would expect to find a value of G2 in the
PERMANENT COMPANY RECORD. However, since the West Point system does

not check for referential integrity, one would not know if this constraint held.

PERMANENT COMPANY RECORD

| PERM-COMPANY | PERM-REGIMENT |

CADET CLASS RECORD

| CLASS-GRADUATION-YEAR ENTRANCE-CLASS-SIZE] GRADUATION-CLASS-SIZE|

CADET RECORD

[cADET-sSN] CADET-GRAD-YEAR]CADETNAME[cmewsnucowmvjcmewsmnsemem

Figure 4. Referential Integrity Constraints from tiie CIDB Schema

Figure 5 displays a more involved example of referential integrity from the

cadet candidate portion of the CIDB. From the INDIVIDUAL RECORD: AP-

39

IDENT (AQF) refers to AP-IDENT (FBA) of the ADMISSION PARTICIPANT
record; HS-ETS-CODE (AHB) refers to the PRINCETON-NO (FMA) of the HIGH
SCHOOL record, and the APPLICANT-TEST-SITE-CODE (AQK) refers to the
SITE CODE (FHA) of the TEST SITE record. From the EDUCATOR record:
EDUCATOR-AP-IDENT (FTI) refers to the AP-IDENT (FBA) of the ADMISSION
PARTICIPANT record, and EDUCATOR-SITE-IDENT (FTJ) refers to the SITE
CODE (FHA) of the TEST SITE record. Finally, from the HIGH SCHOOL record:
HS-AP-IDENT (FOS) refers to the AP-IDENT (FBA) of the ADMISSION PAR-
TICIPANT record, and the HS-SITE-IDENT (FOT) refers to the SITE CODE
(FHA) of the TEST SITE record. As an example of referential integrity, if the

INDVIDUAL RECORD

LS_S_N_] NAME [AP-IDENT HS-ETS-CODE l APPLICANT-TEST-SITE-CODE j

{i‘S_N I NAME [Amss] EDUCATOR-AP-DENT EDUCATOR-SITE-IDENT
HIGH SCHOOL
{LFINOETCN-NO IHS-NAME]NS-MSS] HS-AP-IDENT l HS-SITE-IDENT l

__ /
LJ!E.@%IMIGCMlm]/

Figure 5. Referential Integrity Constraints from the Cadet Candidate Schema

40

applicant’s test site code was equal to TN02, we would expect to find this value in the
SITE CODE field of the TEST SITE record. As was the case in the previous example,
the USMA user would not know whether the referential integrity constraint held

because the USMA system does not check referential integrity constraints.

D. LOGICAL INCONSISTENCIES

As was discussed in Chapter Three, an organization may have significant numbers
of logical constraints that it wishes to hold on the DBMS. With a database as large as
the Military Academy’s CIDB, the task of identifying all the semantic integrity con-
straints could be quite time consuming and would require the skills of an extremely
knowledgeable team of individuals. The following is a partial list of logical constraints
that must hold on the CIDB:

1. No cadet shall have aterm QPA less than 1.67. If the term QPA falls below 1.67,
place the cadet on academic probation.

2. No freshman cadet (plebe, class year equal to 4) shall have a cumulative QPA
less than 1.70 following the second term of the freshman year. If the cumulative
QPA is below 1.70 after the second term, place the cadet on academic probation.

3. No sophomore cadet (yearling, class year equal to 3) shall have a cumulative
QPA less than 1.80 following the first term of the sophomore year or a cumulative
QPA less than 1.85 following the second term of the sophomore year. If the
cumulative QPA is below 1.80 at the end of the first term or below 1.85 after the
second term, place the cadet on academic probation.

4. No junior cadet (cow, class year equal to 2) shall have a cumulative QPA less
than 1.95 following either term of the junior year. If the cumulative QPA is less
than 1.95 after either term, place the cadet on academic probation.

5. No senior cadet (firstie, class year equal to 1) shall have a cumulative QPA less
than 2.00 following either term of the senior year. If the cumulative QPA is less
than 2.00 after the first term, then place the cadet on academic probation. If the
cumulative QPA is below 2.00 following the second term, do not allow the cadet
to graduate.

6. No cadet shall enter USMA whose age is less than 17 or greater than 22 by the
plebe class start date.

41

7. No cadet shall enter USMA without a high school diploma.

8. No cadet shall receive more than 14 demerits for an offense without being
awarded an area or room disciplinary tour.

9. No cadet shall attend USMA for a period of more than four years without
adjusting the graduation year.

10. To be eligible to underload (take less than the required six classes per term),
cadets must have a cumulative QPA less than 2.00 or be a varsity corps squad
athlete.

11. To be eligible to overload (take more than the required six courses per term),
cadets must be class year 3, 2, or 1 (sophomore, junior or senior) and have made
the dean’s list in the preceding term. Or the cadet must be class year 1 (senior)
with a cumulative QPA greater than 2.30.

12. No cadet will graduate from USMA without successfully completing 40 academic
and eight physical education courses. This includes successful completion of 31
core curriculum courses and nine specific field of study (FOS) or major courses.
Again, the cumulative QPA for graduation must be greater than 2.00.

13. No cadet will be considered a Distinguished Cadet unless in the top 5 percent of
the class (from the class order of merit list).

14. No cadet will be considered for the dean’s list unless the cadet’s term QPA is
greater than 3.00. Cadets are not eligible for the dean’s list if they failed a course
during the term, received an I (incomplete) for a course during the term,
withdrew from USMA, are retaking a field of study course, or are underloading
during the term.

15. To be eligible for the Superintendent’s Award, a cadet’s yearly QPA must be
greater than 3.00, the cadet must be in the top third of the class (OM), and must
pass all P.E. courses and the APFT during the year.

16. The book quantity on hand (QOH) value must be greater than the number of
cadets scheduled for the course planning to use the book.

17. The estimated delivery date for books must be prior to the class start date.

18. If the number of classes taken during a term by a cadet is less than the minimum
allowed for the class (minimum academic load), then alert the cadet’s tactical
officer with a message unless the cadet is eligible to underload.

42

19. If the cadet class is equal to 3 and the number of classes completed is less than
12, then alert the tactical officer with a message.

20. If the cadet class is equal to 2 and the number of classes completed is less than
24, then alert the tactical officer with a message.

21. If the cadet class is equal to 1 and the number of classes completed is less than
36, then alert the tactical officer with a message.

22. The classroom capacity must be greater than or equal to the number of cadets
scheduled for the class.

23. Two classes cannot be scheduled for the same classroom at the same time.
24. No cadet will be scheduled for more than one class per hour.
25. No professor will teach more than one class per hour.

26. No male cadet will enter USMA with height less than 60 inches or greater than
80 inches or weight less than 100 pounds or more than 280 pounds.

27. No female cadet will enter USMA with height less than 58 inches or greater than
80 inches or weight less than 90 pounds or greater than 201 pounds.

28. No cadet company will exceed 120 cadets.

29. No cadet company will have less than 20 seniors, 20 juniors, 20 sophomores and
20 freshmen.

30. A cadet who validates a course should not be scheduled to take that course.

31. A cadet’s high school class ranking cannot be greater than the total number of
students in the high school class.

32. The test site fill for the PAE cannot be larger than the capacity of the test site.

33. An admission participant must be a USMA graduate.

E. CONCLUSION

This chapter has discussed specific examples of possible common data errors,

integrity constraint violations and logical inconsistencies that may be present in West

Point’s CIDB. It was developed from the USMA CIDB Dictionary [Ref. 6] and the

43

USMA Academic Redbook [Ref. 7]. The idea that must be stressed is that any DBMS
has the potential to contain errors in its data. In this regard, the USMA DBMS is not
unique. Now that these potential errors have been identified, the focus shifts to the
task of checking, validating and correcting them prior to transferring the data to the

target system.

VI. PROPOSED METHOD OF RESOLVING THE ISSUES

A. INTRODUCTION

Chapter Five outlined specific examples from the CIDB of potential errors,
integrity constraint violations, and logical inconsistencies that may be contained in the
| data. It is from these specific examples that this chapter is derived. The purpose of this
chapter is threefold: First, to describe a generalized methodology that any organiza-
tion could follow to identify errors and inconsistencies in its DBMS. Second, to outline
a specific method that the USMA DOIM staff can follow to check the CIDB for
possible errors and inconsistencies that are potentially stored in the database. Third,
to discuss several implementations using the specific method described above as a
guide. These implementations will be done on selected applications from the CIDB.
The code that supports these implementations is written in PASCAL and can be found
in Appendix B. It is not the intent of this thesis to exhaustively test every possible
application from the CIDB, but to select examples to demonstrate what is done and
how it is done to ensure that the information contained in a particular application is
clean. The implementations selected come from a representative set of examples of
potential errors contained in the CIDB, including an out-of-range value check, an

incompatible data type check, and a referential integrity check.

B. GENERAL METHODOLOGY
There are many possible alternatives to choose from when deciding upon a general
methodology for error detection and correction. Four methods to check the informa-

tion stored in any DBMS are described below. Realistically, one of these methods, or

45

some other similar method, must be followed on every potential inconsistency in the
database. Only through checking each possible error can the organization confirm that
the data is without fault. Let’s look at these four general methods:

The first method involves checking the data directly in the source system. After
errors are detected, validated and corrected, the data can be moved to the target
system. If one has a thorough understanding of the source system and the program-
ming language that supports it, this method might be quite attractive. For the USMA
DOIM staff, fluent in the inner workings of the system, making checks directly in the
source system could be the best means for error detection. The disadvantage to this
method is that to apply it a programmer must be completely familiar with the program-
ming language of the system: COBOL in the case of West Point. Additionally, one
must have easy access to the source system. For these reasons, i.e., proficiency in
COBOL and distance from West Point, using this first general method is not well
suited to our needs.

A second method follows these general steps:

1. For agiven application, unload the required information from the source system
into intermediate files. An intermediate file will be generated for the ap-
propriate corresponding file in the source system. For example, the database
has N files where the social security number is stored. This means that N
intermediate files would be generated. To check that the SSN field contains
integer values, the intermediate files would store SSNs ir. positions one through
eleven in a long column.

2. Run a specific application program on each intermediate file to check for and
identify potential errors. The application program may require reading in and
checking against more than one intermediate file. For example, in checking a
potential subset-set error, at least two intermediate files must be read by the
application program. In this case, the subset intermediate file and the set
intermediate file are read by the application program and each record from the
subset is checked against a like record from the set.

6.
7.

Aserrors are identified, mark the record containing the error in the intermediate
file with an integer (1, 2, 3,. . .), and generate two files. The first file, known as
the error record file, will list the records that contain errors. (Again marked with
corresponding integer values.) Records are marked with unique values because
the primary key may contain an error and therefore must be corrected. If the
primary key is the SSN and it is changed, we must be able to find the correspond-
ing record in the intermediate file. In the example above, the error record file
would contain those SSNs that did not have exactly nine integers. For example,
the error record file would possibly contain a column of values similar to the
following: 112345678A, 2 394**9826, etc. The second file, known as the errc:
message file, will identify the specific errors contained in the error record file.
From the example, the error message file would store information like the
following: Record number 1, position nine of the SSN contains the letter A.
Record number 2, positions four aud five of the SSN contain a *, etc.

Using the error message file in conjunction with the error record file, validate
the records that contain errors. This may require using an external source to find
the correct data.

Once the correct information has been located, make corrections to the error
rec td file. Once all corrections have been made, the error record file becomes
the corrected error record file.

Overwrite the corrected error record file into the intermediate file.

The intermediate file is now ready for loading into the target system.

An advantage to generating these two files is that the error messages are separated

from the records with the errors. This enables an operator to validate the errors and

correct the mistakes directly in the error record file, thereby turning the error record

file into a corrected error record file. The operator can then overwrite the corrected

error record file into the intermediate file simply by locating the records with the same

integer values. A second advantage to using an intermediate file method is that the

application programs can be written in any programming language. In our case

PASCAL. This means that the individual writing the applications does not have to

learn a new programming language. Being able to work with a language with which

one is familiar is a significant advantage.

47

A third method, which is a variation of the two methods previously describec
allows an operator to make on-line corrections to errors that are detected. This means
that errors would be printed to the screen, and then an operator could access the
necessary file to make corrections with an editor. An on-line correction method would
be beneficial if the number of corrections to be made were minimal. However, this
method would be most cumbersome if the number of errors per application exceeded
three or four. Imagine trying to write down 100 errors that printed to the screen.
Operator frustration with this method would quickly occur. Another disadvantage to
this method would be trying to make on-line corrections to errors that were difficult to
validate. An operator might sit idly waiting for a telephone call from a source capable
of validating the information, unable to continue until the validated data is provided.
Finally, this on-line method would be the most time-consuming of the four general
methods discussed.

A fourth method is a variation of the second method described above. This
method has two differences when compared with the second general method. The first
difference is that three files are generated instead of two. These three files are known
as the good data file, the error record file and the error message file. The second
difference is that rather than overwriting the corrected error record file into the
intermediate file, this method merges the corrected error record file with the good data
file. The advantages of this methodology are similar to the advantages for method two.

The general methods described above can have many different variations. Many
combinations are possible. These examples illustrate some simple means to deiect and
correct database errors. There are many others. It is not the scope of this thesis to

study and report on all the methods available, nor is it my intent to provide statistical

48

data on the most cost effective, fast, or efficient method. I have selected a method for

accomplishing the error detection task in a manner that best fits the needs of this thesis.

C. SPECIFIC METHOD .

In terms of this thesis, the best methodology for checking the information con-

tained in the CIDB follows closely to the last general method previously discussed

above. This method’s advantages are:

L

Application programs supporting the method can be written in the PASCAL
programming language.

Error records are separated from the error messages. This will enable operators
to validate the error records in any order, ihus making the error correction
process quite flexible. As validated information is provided, error records can
be corrected.

The merging of the good data file and the corrected error record file is
straightforward and easy to follow.

. This method can be performed here in Monterey as easily as in New York.

Intermediate data files are readily transferred through the ARPANETs file
transfer protocol.

Record correction can be accomplished using a familiar text editor.

Figure 6 is provided as a means to help understand the specific methodology.

Appendix C contains examples of the intermediate file, good data file, error record file,

error message file and the corrected good data file from the application programs. Let

us review the steps to be followed:

1.

Unload all required information from the source system into intermediate files.
One intermediate file will be generated for each corresponding file in the source
system.

Run the specific application program on each intermediate file to check for and
identify errors. Count the number of intermediate file records read by the
application program.

49

THE APPLICATION PROGRAM GENERATES 3 FILES
FROM THE INTERMEDIATE FILE
394529826 1 394529826 3 12345678A Record 3 Position 9 of the SSN
310708602 2 310708602 5 555**1212 contains the letter A
12345678A 4 987654321 , Record 5 Positions 4 and 5
987654321 . . of the SSN contain a *
555**1212
Intermediate File Good Data File Error Record File Error Message File
1 394520826 Merge the Good Data File with the
S Corrected Error Record File
2 310708602
3 123456789
4 987654321
5§ 555001212
Corrected Good Data File Ready
For Loading To Target System

Figure 6. Files Created By The Specific Method

3. Asrecords are read by the application program, three files are generated. The
first file contains the records that are clean and is called the good data file. Each
record is marked with an appropriate integer value (1,2, 4,. . .). The second
file contains those records with errors and is called the error record file. The
records in error are also marked by the appropriate integer value (3, S, . . .).
Finally, an error message file is generated to assist the operator in the error
validation process.

50

4. Using the error message file in conjunction with the error record file, validate
the records that contain errors. This may require using an external source to
obtain the correct data.

5. Once the correct information has been located, make corrections to the error
record file. Once all corrections have been made, the error record file becomes
the corrected error record file.

6. Merge the corrected errbr record file with the good data file and count the total
number of records in the corrected good data file.

7. Ensure the number of records in the corrected good data file is equal to the
number of records stored in the intermediate file.

8. The corrected good data file is ready for loading into the target system.
D. IMPLEMENTATIONS
1. Out-of-Range Values

The purpose of this implementation is to perform range checks on the sex,
height, weight and birthdate fields of the individual record from the cadet candidate
portion of the CIDB. The following algorithm will be used:

a. By class, load the SSN, name, height, weight, sex, and birthdate into an
intermediate file. This check must be accomplished by class because the range check
on the birthdate field will change depending on the entrance year. Following the
format of the source system, positions one through eleven of the intermediate file will
store the SSN, positions 12 through 38 the name, positions 39 and 40 the height,
positions 41 through 43 the weight, positio. 44 the sex, and positions 45 through 50 will
contain the birthdate.

b. An application program will be run on the intermediate file to identify
out-of-range values for the four fields mentioned above.

Steps ¢ through h are identical to steps 3 through 8 of the specific methed

above and are not repeated.

51

2. Incompatible Data Types

The purpose of this implementation is to ensure that the social security num-
ber has nine integers contained in it for each file storing the SSN. The following
algorithm will be used:

a. For each file containing the SSN field, load the SSN into a separate inter-
mediate file. The SSN will be stored in positions one through eleven of the inter-
mediate files. For this application, the check will be made on the SSN from the
individual record of the cadet candidate.

b. An application program will be run on the intermediate { "~ to identify any
incompatible data types it may contain. Because West Point normally only uses the
first nine positions of the SSN field in its source system, this check will look for either
nine integers in positions one through nine, with blanks in positions ten and eleven, or
if dashes are used for separators, will look for dashes in positions four and seven with
integers stored in the other nine positions.

Steps ¢ through h are identical to steps 3 through 8 of the specific method
above and are not repeated.

3. Redundancies

The purpose of this implementation is to ensure that redundant fields con-
tained in the CIDB store the same information for a given cadet. This check will look
at a cadet’s entrance height and weight from the entrance and high school record to
ensure that they are the same as the cadet’s height and weight from the individual
record. This check will be accomplished by class. The following algorithm will be
used:

a. By class, load the SSN, name, height and weight from the individual record

and the SSN, name, height and weight from the entrance and high school record into

52

intermediate files. Both files will store the SSN in positions one through eleven, the
name in positions 12 through 38, the height in positions 39 and 40, and the weight in
positions 41 through 43.

b. Run an application program on the intermediate files to ensure that for
each cadet the height and weight stored in the entrance and high school record
intermediate file has identical entries in the individual record intermediate file. Those
"SSNs that do not have identical heights and weights will be identified, as well as those
records found in the entrance and high school record but not in the individual record.

Steps ¢ through h are identical to steps 3 through 8 of the specific method
above and are not repeated.

4. Referential Integrity

The purpose of this implementation is to ensure that referential integrity holds
for the company and regiment to which a cadet is assigned. This check will look at a
cadet’s company and regiment from the cadet record to ensure that the company and
regiment are contained in the permanent company record. This check will be ac-
complished by class. The following algorithm will be used:

a. By class, load the SSN, name, company and regiment from the cadet record
and the companies and regiments from the permanent company record into inter-
mediate files. The cadet record file will store the SSN in positions one through eleven,
the name in positions 12 through 38, and the company and regiment in positions 39
through 40, while the permanent company file will contain the company and regiment
data in positions one and two.

b. Run an application program on the intermediate files to ensure that for
each cadet the company and regiment stored in the cadet record intermediate file has

an identical entry in the permanent company intermediate file. A null value is allowed

53

for the cadet’s company and regiment values. Those SSNs that do not have a company
and regiment that is referenced will be identified.

Steps ¢ through h are identical to steps 3 through 8 of the specific method
above and are not repeated.

S. Entity Integrity

The purpose of this implementation is to ensure that entity integrity holds for
the SSN field of the cadet candidate individual record. This check will look at a cadet’s
SSN from the individual record to ensure that there are no duplicate SSNs contained
in the individual record. This check will be accomplished by class. The following
algorithm will be used:

a. By class, load the SSN from the individual record into an intermediate file.
The individual record file will store the SSN in positions one through eleven.

b. Run an application program on the intermediate file to ensure that for each
SSN there are no duplications stored in the individual record intermediate file. Those
SSNs that are duplicated will be identified. Null values are not allowed in the primary
key field.

Steps ¢ through h are identical to steps 3 through 8 of the specific method
above and are not repeated.

6. Logical Inconsistencies

The purpose of this implementation is to ensure the validity of the logical
implication that a cadet’s high school ranking cannot be greater than the number of
students in the cadet’s high school class. This check will look at the value of a cadet’s
high school ranking from the entrance and high school record to ensure that it is not

larger than the value of the number of students in the cadet’s high school graduating

54

class. This check will be accomplished by USMA class. The following algorithm will
be used:

a. By class, load the SSN, name, high school ranking and the high school
number in class from the entrance and high school record into an intermediate file.
The intermediate file will store the SSN in positions one through elever, the name in
positions 12 through 38, the high school ranking in positions 39 through 42, and the
high school number in class in positions 43 through 46.

b. Run an application program on the intermediate file to ensure that for each
cadet the high school ranking is less than the high school number in class in the
intermediate file. Those SSNs that have a high school ranking that is larger than their
high school number in class will be identified.

Steps ¢ through h are identical to steps 3 through 8 of the specific method

above and are not repeated.

E. CONCLUSION

The implementations described in this chapter represent examples of algorithms
designed to identify potential errors that may be present in the CIDB. These im-
plementations are not by any means an all-inclusive set. Rather, they are designed to
demonstrate selected applications where possible errors and inconsistencies exist in
the CIDB. Appendix B contains the PASCAL programs written to support these
applications. Sample output from each of the programs can be found in Appendix C.
A discussion of the results of these sample program runs can be found in Chapter Seven

of this thesis.

55

VII. CONCLUSIONS AND RECOMMENDATIONS

The specific programs of this thesis were developed to run on selected data
provided by the USMA DOIM staff. These programs identified three errors that were
contained in the data. The errors were: A cadet’s height value equal to 30 inches (an
out-of-range value), a cadet’s sex with no value entered, and a cadet’s birthdate that
was left blank. While a total of three errors may seem a negligible amount, when
multiplied across a database as large as the CIDB, this number becomes significant.
These three errors support the basic premise of this thesis: In any database there are
potentially many errors that must be checked for and corrected prior to system
conversion. Overall, the data that was checked by the thesis’ programs looked accept-
able, the three errors notwithstanding. However, the DOIM staff should beware that
many more errors are possible. This statement is based on the fact that only a small
portion of CIDB data was actually checked.

This thesis, together with the companion work of Guilmette and Wilson [Ref. 2],
was part of a project to design and convert the existing source database in network form
to a target relational database management system for the United States Military
Academy at West Point. The three of us worked together closely for the USMA
project, but then split apart to develop two separate theses. This thesis has shown that
many potential errors and inconsistencies are possible in any DBMS and in particular
the current USMA system. These potential errors must be checked before the system
is converted. Additionally, once the data has been checked and ultimately moved into

the new target system, it stands to reason that the same type of errors and

56

inconsistencies may occur in the target system as in the source if steps are not taken by
the DOIM staff to strictly enforce the ideas discussed in Chapters Two and Three of
this thesis. The target DBMS must have constraints implemented to keep the data
clean.

In summation, the following recommendations are made. These recommenda-
tions apply not only to West Point, but to any organization contemplating system
conversion.

1. All DBMS potentially contain many errors in the data the system stores. Steps
must be taken prior to system conversion to check the information stored in the
DBMS to ensure that it is without error. If there is “garbage” in the source
system, there will be “garbage” in the target system when the data is converted.

2. Most modern systems do not support automatic enforcement of integrity con-
straints. Consequently, the new target system, when it is fielded by West Point,
must have range checks developed, restrictive data types specified, integrity
constraints built with triggers or procedural coding, and other defensive
measures taken that will decrease the opportunity for errors in the system.
Without the development of an error checking package in the target system,
efforts to clean the data prior to system conversion will be for naught.

The process of database management system conversion can yield significant
improvements to an organization’s system and benefits to its users. To arrive at a target
system that ensures integrity and minimal opportunity for error requires planning and
communication between the database manager and system users. The process of
designing and developing integrity constraints and applying them to the source and
target systems is as important to DBMS conversion as is developing the code to
implement the new system.

A team approach such as the one used by Hendrickson, Guilniette and Wilson
appears to be an ideal way to approach the conversion task. By designating team

members to oversee particular functions, such as system design, coding and integrity

57

maintenance, each operates as a specialist yet understands the overall goals for the
conversion.

Before any conversion can take place, the data in the source system must be
checked for validity and accuracy. If this task is done properly, and adequate planning
and communication are in place, the database manager can be confident of a smooth

transition toward an enhanced and error free target DBMS.

58

APPENDIX A
USMA FIELD IDENTIFIERS NOT DESCRIBED IN TEXT

I. OUT-OF-RANGE VALUES
A. Cadet Candidate

1. 88N
a. AAB/Individual-SSAN-Service-Number
b. FBH/AP-L(O-55AN
c. NHA/Nomination-Candidate-SSAN

2. Julian Dates
ABF/Individual-Status-Date
ABG/Offer-of-Admission-Date
ABH/Status-Elaboration-Date
AFC/Record-Creation-Date
AFD/Record-Last-Update-Date
ASC/Academic-Status-Date
ASD/Physical-Aptitude-Status-Date
ASE/Medical-Status-Date

ASF /leadership-Status-Date
ASG/Second-Step-Kit-Sent-Date
ASH/5-413-Date-5-480-Date
ASI/Special-letter-One-Date
ASJ/Special-Letter-Two-Date

TR Q0o

— N

=

3. Height and Weight
a. ADD/Height-of-Individual
b. ADE/Weight-of-Individual

4, Birth month and day
a. ADI/Birth-Month
b. ADJ/Birth-Day

5. Physical Activity Exam and Admissions Scores
AGG/Physical-Activity-Exam-Score
AGH/PAE~Score2

AGI/PAE-Score3
AGK/Leadership-Potential-Score
AMB/PAE-Event-(ne-Score
AMC/PAE-Event-Two-Score
AMD/PAE-~Event-Three-Score
AME/PAE-Event-Four-Score

AMF /PAE-Event-Five-Score

HOR KOO O

59

10.

11.

APB/Extracurricular-Activities-Score
APC/Athletic-Activities-Score
APD/Faculty-Appraisal-Score
APE/High-School-Clase~Rank-Score

8 - wo.

3

and SAT Scores

AJB/SAT-Math

AJC/SAT-Verbal
AJD/Second-SAT-Math
AJE/Second-SAT-Verbal

AJF /SAT-Math-Average
AJG/SAT-Verbal-Average
AKB/ACT-Math-Score
ARC/ACT-English-Score
AKD/ACT-Natural-sScience-5core
AREB/ACT-Social-Science-Score
ARF /Second-Math-Score
ARG/Second-English-Score
ARH/Second-Natural-Science-5Score
AKI/Second-Social-Science-Score
ARJ/ACT-Math-Average
ARK/ACT-English-Average
AKL/ACT~Natural-Science-Average
ARM/ACT~Social-Science-Average

HOTOBBHEFRoHETRHO Q0T

Work Experience
AOG/Work-Experience-Years

Single Character Fields
ADC/Sex~of-Individual
ADF/Individual-Ethnic-Background
ADG/Race-cof-Individual
ARB/Interview-on-File-Flag
ARC/Candidate-Personal-Statement-Code
ARD/Employers-Evaluation-Code
ARE/Activities-Record-DD-1868-Flag
ARF /Personal-Data-Record-DD-1867-Flag

TR Me 0o

Month Joined the Field Force
a. FEF/AP-Month-Joined
b. FTB/ED-Month-Joined

Nomination Vacancies

a. NBEG/NA-Vacancies-Allowed

b. NEH/NA-Vacancies-Filled

c. NEI/MNA-Nominations-Authorized-Current-AY

Nomination Record
NIC/Nomination-Selection-Score

60

12. Test Site Record

a. FJII/Test-Date-1
b. FJJ/Test-Date-2
c¢. FJK/Test-Date-3
d. FJL/Test-Date-4
e. FM/Test-Date-5
f. FJN/Test-Date-6
g. FJO/Test-Date-7
h. FJP/Test-Time-1
1. FJQ/Test-Time-2
J. FIR/Test-Time-3
k. FEJ3/Test-Time-4
1. BFJT/Test-Time-5
n. BFJU/Test-Time-6
n. FJV/Test-Time-7

Schedule

1. SSN

a. HPA/Sched-Cadet-SSAN
b. HTA/Sched-Term-Plan-Cadet-SSAN

2. Julian Dates
a. KCF/Sched-Book-Transaction-Date
b. KCK/Sched-Book-Est-Delivery-Date

3. DBook Quantities
a. KCJ/Sched-Book-Quantity~On-Hand
b. KCN/Sched-Book-Request-Quantity

4. Classroom Capacity
HOE/Sched-Room-Capacity

5. Course Population
a. HKS/Sched-Master-Crse-Population
b. EKBG/Sched-Trm-Ipd-Crse-Count

6. Course Enrollment
a. FKBD/Sched-Trm-Ipd-Max-Enrollemnt
b. EKBE/Sched-Trm-Ipd-Min-Enrollment
¢. EKBF/Sched-Trm-Desired-Enrollment

7. Flags
a. HQY/Sched-Cadet-Flag-Change
b. HRA-HRK/Sched-Cadet-Group-Flags
c¢. HOF/Sched-Room-Type
d. HOG/Sched-Instruct-Period-Hour

61

a. CAA/Cadet-SS5AN

b. TJA/Trip-SSAN

c. TVA/Yearly-Demerit-SSAN
d. TPA/Monthly-Demerit-SSAN
e. TEB/Commandant-5SSAN

f. DFB/Academic-SSAN

Height and Weight

a. CAD/Cadet-Current-Height
b. CAE/Cadet-Current-Weight
c. CEH/Cadet-Entrance-Height
d. CEl/Cadet-Entrance-Weight
e. TRO/Cadet-Profile-Height
f. TKP/Cadet-Profile-Weight

Physical Fitness Test
CON/Cadet-Assign-APFT-Score

Class Size

a. TCC/Entrance-Class-S5ize

b. TCD/Graduation-Class-Size

c. THF/Class-Size-Start-of-Term
d. THG/Class-Size-End-of-Term

Graduate-Record-Exam-Scores
a. DEP/GRE-Verbal

b. DBEQ/GRE-Quantitative

¢. DER/GRE-Analytical

Entrance Runs

a. CEM/Entrance-Run-1

b. CEN/Entrance-Run-2

c. CO0O/Cadet-Assign-Run-Time

Trip Departure and Return Times
a. TGQ/Trip-Departure-Time
b. TGV/Trip-Returm-Time

Cadet Illness

a. TYB/Cadet-Illness-Date

b. TYG/Cadet-Illness-Excused-to-Date
¢c. TYC/Cadet-Illness-Time-Out

d. TYD/Cadet-Illness-Time-In

Cadet Activity Record
TMH/Cadet-Dayas-in-Activity

62

10, Orders of Merit

11.

FERME Q0 TE

TeN/Military-Dev-Index-Cann-OM
DBE/Course-Max-0M
DGB/Term-Academic-OM
DGC/Term-General-OM
DHB/Year-Sumnary-AOM

DHC /Year-Sumnery-GOM
DIB/Cummalative-AOM
DIC/Cumalative-GOM
DIM/Grades-Conrse-OM

uality Point Aversges

hmo Qo oE

DGH/Term-Acad-QPA

DGI /Term-Gen-QPA

DHH/ Yesr-Summueary-Acad-QPA
DHI /Yesr-Surmery-Gen—QPA
DII/Cummalative-Acad-QPA
DIJ/CQumalat.ive-Gen-QPA

II. INOOMPATIBLE DATA TYPES

A. Cadet Candidate

1.

SoN
a.
b.
c.
d.

AAB/Individual-SSAN-Service-Number
FBH/AP-L{0-55AN

FPA/Educator-1ID

NHA /Nomination-Candidate~SSAN

Julian Dates

HO OO N HNWGCERERTODHO QAOCTD

ABF/Individual-Status-Date
APH/Status-Elaboration-Date
AFC/Record-Creation-Date
AFC/Record-Last-Update-Date
ASC/Academic-Status-Date
ASD/Physical-Aptitude-Status-Date
ASE/Medical-Status-Date

ASF /1eadership-Status-Date
ASG/Second-Step~-Kit-Sent-Date
ASH/5-413-Date-5-480-Date
AS1/Special-Letter-(ne-Date
ASJ/Special-letter-Two-Date

Codes and Telephone Numbers
ACJ/Address-Zip-Code-Individual
ACR /Telephone-Number
FCJ/AP-Zip-Code
FCL/Home—Phone-Area-Code
FCM/Home-Phone-Number
FCN/Bugsiness-Area-Code

63

FCO/Bus iness-Phone-Number
FCP/Business-Fhone-Ext
FOR/Autovon-tumber
FCR/Autovon/Extension
FSD/Ed-Address-Zip-Code
FNF/High-5chool-Zip
NCI/NA-Address-Zip-Code
NCJ/NA-Telephone
NDH/NA-Asst-Address-Zip—Code
NDI/NA-Asst-Telephone
F1J/Test-Site-Zip-Code
FIM/Test-Site-Telephone-Number
FIN/Test-Site-Telephone-Extension
FI10/Test-5ite-Autovon-Number
FIP/Test-Site-Autovon-Extension
FIU0/Test~S5ite-0IC-Zip

SEGBNOTONE LR MTE

4. Height =nd Weight.
a. ADD/Height-of-Individusal
b. ADEMeight-of-Individuzl

Gradustion Year
AEB/Transcript-Grad-Year

<

6. District Number
AEE/Ent-Senator-or-District-No

7. Sequence Number
ARF /Ent—-Source-Sequence-No

8. Percent onto College
AHH/Ind-Percent-onto-College

9. Month and Year Joined, Class Year and Training Year
FEF /AP-Month-Joined

FBEG/AP-Year-Joined

FEH/USMA-Class-Year

FER /Training-Year

FTB/Ed-Month-~Joined

FTC/Ed-Year-Joined

HOOOoTD

B. Schedule

1. Telephone number
HQI /Sched-Cadet-FQOS~Advisor-Phone

2. Master Course Number
HJID/Sched-Master-Crse-Number

3. Permanent Regiment
HHC/Sched-Perm-Regt

64

C. Cadet

1. Zip Codes and Telephone NMumbers
CPFE/Cadet-HS-Zip-Code

CHI /Parent-Zip-Code
CHQ/Second-Parent-Zip-Code
CJF /Prior-College-Zip-Code
TGF /Trip-Address-Zipcode
TGG/Trip-Address-Phone

he oo

2. Course Number
a. DAD/Course-Number
b. DRC/Grades-Course-Number

65

APPENDIX B
AFPLICATION PROGRAMS

The following computer programs were written in TURBO PASCAL Version 4.0,
using a Leading Edge Model D2 (80286) personal computer (IBM compatible).

(AR AKICIORAOKAK KRR KR ORI KRR KRR R R HoR R ROk)
(* The purpose of this application program is to perform range checks on the*)
(* height, weight, sex and birthdate fields for each cadet candidate indi- %)
(* vidual record. Upon entry to USMA, male cadet’s must be between 60 and *)
(* 80 inches tall and weigh between 100 and 280 pounds. For females, their *)
(% height must be between 58 and 80 inches and thelr weight must be between *)
(* 80 and 201 pounds. Sex must be entered as either M for male or F for *)
(¥ female. A cadet’'s age must be not less than 17 and not older than 2ZZ by %)
(* the class start date. Out-of-range-value errors will cause two filleg to *)
(* be generated - an error record file and an error mezgage file, Recordes *)
(* that are clean are written to a good data file. Corrections are to be %)
(¥ made to the error record file, and then it is to be merged with the good ¥*)
(¥ data file. The corrected good data file is to be stored for future load-*)
(* ing into the target system. Use the program RangMerg to merge the good *)
(¥ data file and the corrected error record file. *)
(ACRAAAKAAAAAAAAKAAAAAAAAAACKAHAK I AKAAKAAAAAA AR A AR AACICRKACIOR AR AR 6ok)

Program QutOfRangeValueCheck;

Uses CRT;
Conet
filenamel = "file.dat’; (*cadet record filex)
filel = ‘goodpl.dat’; (*good data file¥)
file2 = "badpl.dat’; (*error record filex)
file3 = ‘emesagpl.dat’; (kerror message file#)
raxca’ tes = 99; (*maximum number of cadet recorde*)
one = 1; (minimum number of cadet recorde*)
blank =" (*blank characterx)
oldage = 680701 ; (*0ldest birthadate allowablex)
youngage = “730701°; (*youngest birthdate allowablex)
Type
numssn = string{11]; (*cadet SSNx)
personname = string(27]; (*cadet namex)
inches = stringl{2]; (*cadet height*)
pounds = string(3]; (*cadet welghtx)
morf = string(1]; (*male or femalex)
birthdate = string[6]; (*cadet birthdate*)

66

cadet = record (*cadet, record¥)
ssn ! naIssn ;
neme : PEYrSOnn&me
height : inches;
weight : pounds;

sex : mort;
date : birthdsate;
end;

cadetrec = array[one..maxcadete] of cadet; (#array of cadet recorde#*)

Var
filein t text; (#¥files to be read by the program*)
person : cadetrec; (*variable of type cadetreck)
count, error : integer; (*kcounters¥)
gooddata : text; (¥file to be written by the program*)
bvaddata, emessage : text; (¥file to be written by the program*)
ok : boolean; (*true or false*)

Procedure ReadCadet(var filein : text; var count : integer);:

(* This procedure reads the necessary data from the cadet candidate %)
(* individual record into an Intermediate file to be processed. *)

Var
i : integer; (¥ counter %)

begin (* ReadCadet *)
assign(filein, filenamel);
reset(filein); (*reset the filex)
i := 1; (*initialize variablex)
count := (; (¥initialize variablex)
while not eof(filein) do
begin (*read cadet records into the file#)
count = count + 1; (*increment the cadet record count*)
read(filein, personf[il.ssn, person[i].name, person[i].height);
readln(filein, personl{il.weight, personl[i].sex, person{i].date);
i1 := i+ 1; (*increment counterk)
erd;
close(filein); (*close the filex)
end; (% ReadCadet x)

Procedure RangeCheck(var filein : text; var count, errcor @ integer;
var ok : boolean; var gooddata, baddata, emeesage @ text);

(* This procedure checks to insure that the height, weight, sex and birthdatex)
(* of a cadet are within an acceptable range. *)

67

Var
i1 : integer; (kcounters¥)

begin (* RangeCheck ¥)
error := (; (*¥initialize variablex)
for i := 1 to count do
begin
ok := true; (*set boolean flag to truex*)
if not((personfi}.sex = 'M") or (person[il.sex = 'F’)) then
begin (*write records with sex out-of-range errors to a file¥)
(*named badpl.dat and error messages to file emesagrl.dat¥)
ok := falee; (*set boolean flag to falsex)
write(baddata,i:2,person[i].88n, person{il.name,person[i]. helght);
writeln(baddata,person[i].weight,person{i].eex,personfi].date);
write(emessage, “Sex value out-of-range! Check sex for record 7);
writeln(emessage,i, .);
writeln(emessage,person{i).ssn, personli].name,peraonli].sex);

writeln(emessage);
error := error + 1; (¥count the records with errors+*)
end

elae if ((personf[il.sex = 'M") or (person[i].sex = "F')) then
begin (*check height and weightx)
if (((person[i].sex = "M") and
((person{i]).height < "807) or (person[il.height » "8073)) or
((personfil.sex = "F’) and
((person[i].height < "58°) or (personli].height > "807)))) then
begin (*write records with height out-of-range errors to a file *)
(*named badpl.dat and error messages to file emesagpl.dat.*)
ok := false; (*set boolean flag to falsex)
write(baddata,1i:2,person{1]).8sn, person{i].name);
write(baddata,person{i].height,personfi].weight,person{i].sex);
writeln(baddata,person{i].date);
write(emessage, "Height value out-of-range! Check height for ");
writeln(emessage, ‘'record ",1i,".7);
writeln(emessage,person{i].ssn, person(i].name,person{i}) . height);

writeln(emessage);
error := error + 1; (*count the recorde with errors*)
end;

if (((person[i).sex = 'M") and
((person[i].weight < "100°) or (person[i].weight > "2807))) or
{(person{i]).sex = 'F") and
((person[i].weight < "090°) or (person[i].weight > “2017)))) then
begin (*write records with weight out-of-range errors to a file *)
(*named badpl.dat and error messsges to file emesagpl.dat.*)
if ok = false then
begin (*a previous error in the record existsx*)
write(emessage, Weight value out-of-range! Check weight 7);
writeln(emessage, for record ",i,".7);
write(enessage,person[i].ssn,person[i].name);
write(emessage,person[i].weight);

68

writeln(enessage) ;

end

else if ok = true then

begin (*no previous errors exist in the record*)
ok := false; (*set boolean flag to false*)
write(baddata,1:2,pereonl{i]).sen, person{i].name);
write(baddata,person[i].height,person[i].weight);
writeln(baddata,person[i].sex,person{i].date);
write(emessage, "‘Weight value out-of-range! Check weight “);
writeln(emessage, "for record “,1,".7);
write(emessage,person[i].ssn,person{i].nane);
write(emessage,person{i].weight);

writeln(emessage);
error = error + 1; (kcount the records with errors)
end;

end;
end;
if (personii].date < oldage) or (person{il.date > youngage) then
begin (%write records with birthdate ocut-of-range errors to a filexk)
(*named badpl.dat and error messages to file emesagpl.dat.*)
if ok = false then

begin (*a previous error exists in the record*)
write(emessage, ‘Birthdate value ocut-of-range! Check ");
writeln(emessage, "birthdate for record ",1,7.7);
writeln(emessage,person[i].ssn,person{i].name,pereon{i].date);
writeln(emessage);

end

else if ok = true then

begin (kno previous errors exist in the record*)
ok := false; (#¥set boolemn flag to falsex)
write(baddata,i:2,personfi].aen,perason(i].name);
write(baddata,peraon{i].height,personfi].weight ,peraoni].sex);
writeln(baddata,person{i].date);
write(emessage, ‘Birthdate value out-of-range! Check “);
writeln(emessage, ‘birthdate for record ",1i,.7);
writeln(emessage,person{i].sen,person{i].name,personfi].date);

writeln(emessage);
error := error + 1; (*count the records with errors¥)
end;

end;
if ok = true then

begin (*no errors exist in the recordx)
ok := true;
write(gooddata,i:2,person{i].a8n, person{i].name,person(i]. height);
writeln(gooddata,personfi].weight ,person{i].sex,personfi].date);

end;

end;
end; (* RangeCheck *)

begin (* main spplication - OutOfRangeValueCheck *)
clrecr; (*clear the screernk)
aseign(gooddata, filel);
rewrite(gooddata); (MWrite to a filex)
assign(baddata, file2);
rewrite(baddata); (dwrite to a file*)
aseign(exessage, filel);
revrite(encesnge); (OMwrite to & filex)
writeln(Out, of Range Value Check For Height, Weight,, Sex snd Birthdate™ :72);
ReadCadet(filein, count);
RangeCheck (filein,count,error, ok,gooddata, baddata, emessage) ;
writeln(There are ":36, error, ~ errors detected.’);
if error > (then
begin
writeln(Check files badpl.dat and emesagpl.dat to make correctiong.” :69);
end;
writeln(The number of records read from the input file wa= ":65,comt,”.”);
writeln('This Application Program is Now Finished! :60);
close(gooddata); (*close the filex)
close(baddata); (*close the filek)
close(emessage); (*close the filex)
end. (¥ main application - OutOfRangeValueCheck *)

70

(KA AAAARAAAKA AR AR A A A AAAAAAAAKAK KAAKAA A A A AAAFAAKARAACKA R AAKAKAKAKACAAKK)
(* The purpose of this program is to merge the two data files created by thex)

(* Out-0Of-Range Value Program into one corrected file for future loading
(* into the target system. Execute this program after rnuming Programl.

*)
*)

(RO RO AR RACK KRR AR A A KRR KKK AR SR KA R AR ORR KoKk)

Program (utOfRangeValueMergeData;

Uses CRT;
Const
filenamel = "goodpl.dat’; (*good data filex)
filenameZ = “badpl.dat’; (*¥error record filex)
filenameld = “corectpl.dat’; (¥corrected and merged data filex)
maxcadeta = 99; (*maximum number of cadet recordsx)
one = 1; (*minimum number of cadet recordsk)
blank = "7 (¥blank characterx)
Type
count. = stringf2}; (*record count numberxk)
numssn = string[11]; {*cadet SSNX)
personname = string[27]; (*cadet name¥)
inches = string[2]; (*cadet heightx*)
poundsa = string[3]; (*cadet weight*)
morf = string[1]; (*male or femalexk)
birthdate = string[6]; (*cadet birthday*)
cadet = record (*cadet record+)
k : count;
8sn ! numSssn;
name @ personname;
height : inches;
welght : pounds;
sex : morf;
date : birthdate;
end;
cadetrec = array[one..maxcadete] of cadet; (karray of cadet recorde#)
Var
filel, fileZ : text; (¥filee to be read by the program+)
master : text; (x%file to be written by the program¥)

bufferl, buffer2 : cadetrec; (*variable of type cadetrec¥)

Procedure GoodData(var countl, i : integer; var bufferl : cadetrec;
var master, filel : text);

(* This procedure writes the records from the good data file to the *)
(* corrected data file. %)

71

begin (* GoodDatea *)
countl := countl + 1; (*increment the record count#*)
write(master,bufferi[il.k,” ~,bufferi[i].sen,bufferi[i]. name)};
write(master,bufferl{il.height,bufferiiil}.weight , bufferi[i].eex);
writeln(master,bufferi[i].date); (kwrite to filex)
i =1+ 1; (*increment counterxk)
read(filel,bufferilil.k,bufferii].ssn,bufferifi].name,bafferif{i]. height);
readln(filel,bufferi[i].weight,bufferi{i].sex,bufferi{il.date);

end; (¥ GoodData *)

Procedure BadData(var count2, 3 @ integer: var buffers @ cadetrec;
var master, file2 : text);

(¥ This procedure writes the records from the corrected error record file *)
(* to the corrected data file. X%)

begin (¥ BadData *)
count2 := count2 + 1; (¥increment the record count#)
write(master,buffer2[jil.k,” “,buffer2{j].ssn,pufferz[jl.name);
write(maater,buffer2{ j].height,buffer2[jl.weight,buffer2i].gex);
writeln(master,buffer2{ il.date); (fwrite to filex)
J = j + 1; (kincrement counterx)
read(file2,buffer2{ j].k,bufferz2(j].ssn,buffer2{ j].name, bufferz[il .height);
readln(file2,buffer2[j].weight ,buffer2{j].sex,bufferz{ j].date);

end; (* BadData *)

Procedure Merge(var filel, file2, master :@ text);

(¥ This procedure merges the good data file and the corrected error record *)
(* file into a corrected good data file in the correct mumeric sequence, *)

Var
i, J, countl, count2, count3d : integer; (*countersxk)
bufferli, buffer2 : cadetrec; (*variable of type cadetreck)

begin (¥ Merge %)

contl := 0; (*initialize variablexk)
count2 := (; (*initialize variablex*)
count3 := (}; (*initialize variablex)
i :=1; (*initialize variable¥)
J := 1; (¥initialize variablex)
read(filel,bufferi{i].k,bufferi{i].ssn,bufferifil.name,bufferifi].height);
readin(filel,bufferi{i].weight,bufferi{i].sex,bufferi{i].date);
read(file2,buffer2(j1.k,buffer2{ j].ssn,buffer2[j].name,buffer2{ j].height);
readln(file2,buffer2[j].weight,buffer2[j].sex,buffer2(j].date);
repeat

begin (¥loop to merge two fileex)

if (bufferifil.k = blank) and (buffer2[j].k = blank) then

72

begin
writeln(Both files are empty :50);
end
else if (buffer2{j].k = blank) then
begin (*all records are in the good data filex)
GoodData(countl, i, bufferl, master, filel);
end
else if (bufferi[i].k = blank) then
begin (*all records are in the error record fila=*)
RadData(count2, j, buffer?2, master, filel);
end
else if (bufferi[i].k < buffer2{jl.k) then
begin (*¥record in bufferl goes into correct file¥)
GoodData(countl, i, bufferl, master, filel);
end
elase if (bufferi[il.k > buffer2[j].k) then
begin (*¥record in buffer? goes into correct file¥)
BadData(count2, j, buffer?, master, filel2);
end
end; ‘
count3d := countl + count?; (*records read should equal value from int. file*)
until (bufferi[i].k = blank) and (buffer2[j].k = blank); (¥both files empty*)
writeln(Number of Records Read Equals “:55, count3);
end; (% Merge %)

begin (* main application - QutOfRangeValueMergeData *)
clrscr; (*clear the screenk)
assign(filel,filenamel);
reset(filel); (*reset the file%)
assign(file2,filenamel);
reset(file2); (*reset the file*)
assign(master, filename3);
rewrite(master); (*write to a filex)
writeln(Merging Started” :48);
Merge(filel,file2,master);
writeln(END of APPLICATION :50);
close(filel); (*close the filex)
close(file2); (*close the file*)
close(master); (*%close the filex)

end. (¥ main application - QutOfRangeValueMergeData %)

73

{ AORRAOKIOR AR R AR KR AR KA AR RO R AR KA AR R KRR ok oo o Rk)

(* The purpose of this application program iz to insure that the Social *)
(* Security Number field has integere contained in it. Either nine *)
(% consecutive digits or nine digits with dashes in positionz four and *)
(* seven are allowed for the SSN value. Incompatible data type checking is #)
(% required because the USMA syzstem allowz any character value to be *)
(¥ entered for a SSN. Incompatible data type violations will cause two ¥)

(% files to be generated - an error record file and an error message file, *)
(* Records ‘that are clean are written to a good data file. Correctione are ¥)
(%X to be made to the error record file, and then it is to be merged with thex)
(* good data file. The corrected good data file is to be stored for future *)
(* loading into the target system. Use the program IDTMerge to merse the ¥)
(* good data file and the corrected error record file. %)
(AR KK AR AR RO ACK AR AIOKSRORK A KRR AR ROk ROk ok)

Program IncompatibleDataTypeCheck;

Uses CRT;
Const
filename = “cadet.dat’; (*cadet record filex)
filel = ‘goodp2.dat”; (*good data fillex)
file2 = ‘badp2.dat’; (*error record file*)
file3 = ‘emesagp2.dat’; (*error message file#)
blank =" 7 {(¥blank character*)
dash = -7 (*dash characterx)
Type
row = array(l..80] of char; (*max 80 characters per row#)
numssn = array{l..11] of char; (%cadet SSN*)
pergon = array[l..27] of char; (*cadet name*)
Yar
filein : text; (*¥71l= to be read by the programt)
line ! row; (*variable of type row¥)
a8sn ¢ numasn; (kvariable of type numsank)
name : person; (¥%variable of type person¥)
i, count, error ¢ Integer; (¥countersk*)
gooddata ¢ text; (¥file to e written by the program¥)
baddata, emessage : text; (¥file to be written by the program*)
ok : boolean; (%true or falsek)

Procedure ErrorMessagel(var ok : boolean; var i, count, error : integer;
var ssn @ numssn, var name @ person;
var baddata, emessage @ text);

(* This procedure writes the records with one error to the error record and *)
(¥ error message files. X)

74

begin (¥ ErrorMesszgel *)
ok := false; (¥set boolesn flag to falsex)
writeln(baddeta,count: 2, sen,nzme) ;)
write(emessrnge, Error in S8N - position ",i,”. Check S5N for 7);
writeln(emesssge, record " ,count);
writeln(emesesge, sen,nroe:40) ;
writeln(erxseange) ;
error := error + 1; (¥count the records with errors*)
end; (¥ ErrorMessagel %)

Procedure ErrorMessageZ(var i, count @ integer; var ssn @ numsen;
Var name @ person; var emessage @ text):

(* This procedure writes the records with more than one error to the error *)
(* megsage file only. X)

begin (¥ ErrorMessage? *)
write(emessage, ‘Error in SSN - position ",1, . Check SSN for “);
writeln(emessage, record “,count);
writeln(emessage,ssn,name:40);
writeln(emessage);
end; (¥ ErroiMessage2 %)

Procedure 8SNCheck(var count, error :@ integer; var esn @ numssan:
var name : person; var gooddata, baddata, emessage @ text);

(¥ This procedure checks the validity of the data type for the 85N field and ¥)
(* insures that nine digits for SSN are contained in the record. *)

Yar
i : integer; (*counterx)
ok : boolean; (¥true or falsex)

begin {* SSNCheck *)
ok = true; (*set boolean flag to true¥)
for i1 := 1 to 3 do
begin (*check first three digits of SSN¥)
if not (ssn{il in [70"..79" 1) then
begin
ErrorMessagel(ock, 1, count, error, ssn, name, baddata, emessage);
end;
end;
for 1 := 4 to 4 do
begin (*check fourth digit of SSN%)
if not((senf[4] = dash) or (ssn[4] in [0 .. 9°]1)) then
begin
if ok = false then

75

begin
ErrorMessage2(i, count, san, name, emeszage);

end
else if ok = true then
begin
ErrorMesaagel(ok, i, count, error, ssn, name, baddata, emessage);
end;
end;

end;
for 1 := 65 to 6 do
begin (*check fifth and sixth digits of SSN¥)
if not(sanl{i] in [70°..79°]) then

begin
if ok = false then
begin
ErrorMessage2(1, coumt, esn, name, emesgage);
end
else if ok = true then
begin
ErromMessagel(ok, 1, count, error, sen, name, baddats, emesssage);
end;
end;

end;
for i :=7 t0 7 do
begin (*check seventh digit of SSN*)
if not((ssn[7] = dash) or (3an{7] in ["0".. 87 1)) then

begin
if ok = false then -
begin
ErrorMessage2(i, count, e8n, name, emezzage);
end
elee if ok = true then
begin
ErrorMessagel(ock, i, count, error, ssn, name, baddata, emessage);
end;
end;

end;
for 1 := 8 to 11 do
begin (*check last four digits of SSN¥)
if (san[4] = dash) and (ssn{7) = dash) then
begin (*fourth and seventh digits are dashes*)
if not(ssn[i] in [70"..°9°1) then

begin
if ok = false then
begin
ErrorMessage2(1, count, ssn, name, emesaage);
end
else if ok = true then
begin
ErrorMessagel (ok, 1,count, error, ssn, name, haddata, enesaage) ;
end;

76

end;
end
elee if (3anf4) in {°0"..79"]) and (8an[7] in [70".."8" 1) then
begin (*fourth and seventh digits are not dashesx)
for 1 := 8 to 9 do
begin
if not(ssnl[i] in [707.. 97]) then
begin
if ok = false then
begin
ErrorMessage2(i, count, san, name, emessage);
end
else if ok = true then
begin
ErrorMessagel(ok, 1, count, error, sen, name, baddata, emesaags) ;
end;
end;
end;
for 1 := 10 to 11 do
begin (kdigitzs ten and eleven must be blank*)
if not(san[i] = blank) then

begin
if ok = false then
begin
ErrorMessage2(i, count, 8sn, name, emesgsage);
end
else if ok = true then
begin
ErrorMessagel (ok, 1, count, error, ssn, name, baddata, emesasage) ;
end;
end;
end;
end;

end;
if ok = true then
begin (*SSN has no errors¥)
ok := true; (*set boolean flag to truex)
writeln(gooddata,count:2,ssn,name);
eng;
end; (* SSNCheck *)

Procedure FrocessLine(var line : row; var ssn @ nmumasn: var name @ person);

(*This procedwre picks off the values for the ssn and the name.¥)

Var
i, J : integer; (kcountersx)

begin (¥ ProcessLine *)
J = 1; (¥initialize variablex)

77

for i:= 1 to 11 do
begin (¥assign values to the cadet SSN#)
san[j] := line[i];
J =3+ 1; (¥increment counterk*)
end;
J = 1; (¥initialize variablex)
for i = 12 to 38 do
begin (¥assign values to the cadet namex)
name[j] := linelil];
J = 3+ 1; (xincrement counterx)
end;
end; (¥ ProcessLine %)

Procedure ReadPerson(var filein : text; var count, errcr : integer;
var line : row);

(* This procedure reads the data from the cadet’ s record one character at a *)
(* time into an intermediate file to be processed. *)

Var
i : integer; (kcownterk*)

begin (¥ ReadPerson X)
assign(filein, filename);
reset(filein); (*reset the filex)
count := (; (¥initialize variable%)
error := (; (*¥initialize variablex)
while not eof(filein) do
begin (*read the characters into a file¥)
count := count + 1; (¥*increment the record count#)
i :=1; (*initialize variablex)
while not eoln(filein) do
begin
read(filein, lineli}]);
i:=21+1; (¥increment the countert)
end;
readln(filein);
ProcessLine(line, ssn, name);
SSNCheck(count., error, ssn, name, gooddata, baddata, emessage);
if (count=150) or (count=300) or (count=450) or (count=600) then
writeln("PROGRAM IS WORKING - STANDBY :563);
end;
close(filein); (*close the filex)
end; (¥ ReadPerson *)

78

begin (* main spplication - IncompatibleDetaTypeCheck *)
clrscr; (kclear the screenk)
assign(gooddata, filel);
rewrite(gooddata); (kwrite to a filex)
assign(baddata, file2);
rewrite(baddata); (dwrite to = filek)
assign(emessage,filed);
rewrite(emesesge); (kwrite to & filexk)
writeln! "Duta Type Check for SSN™:50);
ResdPerson(filein, count, error, line),
writeln(There are ":28, error, ~ records with 35N errors detected.”);
if error » 0 then
begin
writeln(Check files badpZ.dat and emesagp2.dat to make correctionsa, ":70);
end;
writeln(The number of records read from the input file was ":64,ccunt,”.”);
writeln(This Application Program is Now Finlshed! :61);
close(gooddata); (*cloge the filex)
close(baddata); (*cloge the filex)
cloge(emessage); (*close the filek)
end. (¥ main application - IncompatibleDataTypeCheck *)

79

(KRR AR AR AR IO KR R AR KKK AR AR 00k R R R ook Rk £)
(* The purpose of this program ia to merge the two data files created Ly the#)
(¥ Incompatible Data Type Frogram into one corrected file for future loading®)
(* inteo the target system. Execute this program after ruming FrogramZz, *)

Program IncompatibleDataTypeMergeData;

Uses CRT;
Conat.
filenamel = "goodp2.dat’; (*=good data filex)
filename2 = “badpZ.dat”; (*aerror record filex)
filenam=3 = “corectp2.dat’; (¥corrected and merged data filex)
maxcadets = 99; (*maximum number of cadet recordes)
one =1; (*minimum number of cadet records*)
blank = "7 (¥*blank characterk)
Type
count = string(2]; (¥record count numbers)
nunssn = string{11]; (*kcadet SSN*)
personname = string{27]; (*cadet name¥)
cadet = record (*¥cadet record*)
k ¢ count;
88n ! pumssn;
name ! personname;
end;
cadetrec = array[one..maxcadets] of cadet; (*array of cadet records¥)
Var
filel, file2 : text; (¥files to be read by the programt)
master . text; (¥file to be written by the programt)

bufferl, buffer2 : cadetrec; (%variable of type cadetrect)

Procedure GoodData(var countl, i @ integer; var bufferl : cadetrec;
var master, filel :@ text);

(* This procedure writes the records from the good data file to the *)
(* corrected data file. %)

begin (¥ GoodData *)
countl := countl + 1; (¥increment the record count¥)
writeln(master,bufferifil.k,” “,bufferi{i].ssn,bufferi(i].name);
i:=1+1; (*xIncrement counterk)
readln(filel,bufferifi].k,bufferi[i].san,bufferifi].name};

end; (* GoodData X)

80

Procedure BadDeta(var countZ, j @ integer; var buffer? @ cadetrec;
var master, fileZ : text);

(* This procedure writes the records from the corrected error record file *)
(¥ to the corrected data file. #)

begin (* BadDats *)
comnt2 := countZ + 1; (*increment the record count#)
writeln(master,buffer2{jl.k,” “,buffer2(j].ssn,bufferZ[il.name);
J = J + 1; (*¥increment counterx)
readIn(filel2,buffer2{j].k,buffer2[jl.ssn,buffer2{jl.name);

end; (¥ BadData *)

Procedure Merge(var filel, fileZ, master @ text);

(* Thiza procedure merges the good data file and the corrected error record ¥)
(* file into a corrected good data file in the correct numeric sequence. *)

Var
i, j, coantl, count2, count3 : integer;
ufferl, bufferZ ¢ cadetrec;

begin (¥ Merge ¥)
countl := (; (*initialize variable#*)
count2 := 0; (*¥initialize variablex)
countd := (; (¥initialize variablex)
i := 1; (*initialize variable*)

J = 1; (¥initialize variablex)
readln(filel,bufferi[i].k,bufferifi].ecn, bufferifi].name);
readln(fileZ,buffer2[ji].k,buffer2(j].een, buffer2[j.name);
repeat
begin (¥loop to merge two files¥)
if (bufferifi].k = blank) and (buffer2lil.k = blank) then
begin
writeln(‘Both files are empty :50);
end
else if (buffer2[j].k = blank) then
begin (*all records are in the good data file¥)
GoodData(countl, i, bufferl, master, filel);
end
else if (bufferi[il.k = blank) then
begin (*all records are in the error record filex)
BadData(count2, j buffer2, master, filel2);
end
else if (bufferi[il.k < buffer2[j].k) then
begin (*record in bufferl goes into correct file%*)
GoodData(countl, i, bufferl, master, filel);
end

81

elee if (afferili].k > baffer2{jl.k) then
begin (*record in buffer? goes into correct file#)
BedData(coantz, j, affer2, master, file2);
end .
end;
countd = countl + count2; (¥records read should equal value from int file¥)
until (bufferi[il.k = blark) and (buffer2{jl.k = blank); (*both files empty*)
writeln('Number of Records Read Equals ":556, countd);
end; (¥ Merge %)

begin (¥ main application - IncompatibleDataTypeMerseData *)
clrscr;

assign(filel,filenamel);

reset(filel); (*reset the filek)

assign(fileZ, filename?2);

reset(file2); (*resct the file¥)

assign(master, filename3d);

rewrite(master); (kwrite to a filex)

writeln(Merging Started” :48);

Merge(filel,file2,master);

writeln(END of APPLICATION :50);

close(filel); (*close the file¥)

close(file2); (*close the filex)

close(master); (*close the filex)
end. (* main application - IncompatibleDataTypeMergeData *)

(HRRAARAAAKA A KA KA AAKKAAKAAKICKA AR AR AOK AR AR AR A A AR AAKIRAK AR AR F A AR A KKK)
(* The puarpose of this application program is insure that redundant fielde %)
(* contain the same data. This program specifically compares the height %)
(* and weight values contained in the cadet record againat the individual %)
(* record from the cadet candidate area of the CIDB. Redundant fields that*)
(* do not contain the same information will cause two files to be generated+)
(* - an error record file and an error message file. Records that are *)
(* clean are written to a good data file. Corrections are made to the x)
(* error record file, and then it is to be merged with the good data file, *)
(* The corrected good data file is to be stored for future loading into thex*)
(* target syatem. Use the program RedMerge to merge the good data file and*)
(¥ the corrected error record file. *)
e EX LA R L LR RN RARN L AR NER R AL AR AR LA AR RS R EA LRI LA ST)

Program RedundancyCheck;

Usex CRT;
Const
filenamel = “person.dat’; (*cadet record filex)
filename2 = “cadetc.dat’; (*individual record file¥)
filel = ‘goodp3d.dat”; (*good data file*)
file2 = “badp3d.dat’; (*error record file¥)
filed = ‘emesagp3.dat’; (*error message filex)
maxcadets = 99; (kmaximam number of cadet records*)
mincadet = 1; (Ckminimam number of cadet recorde*)
Type
NUNSEN = stringfl11]; (*cadet SON¥)
personname = string[277; (¥*cadet namexX)
inches = string[2]; (*cadet heightx)
pounda = string[3]; (*cadet weightx*)
cadet = record (*cadet record#*)
88n ! numssan;
name ! personname;
height : inches;
weight : pounds;
end;
cadetrecl = arraylmincadet..maxcadets] of cadet; (*array of cadet records*)
cadetrec? = arrayimincadet..maxcadets] of cadet; (*array of cadet records*)
Var
fileinl, filein? . text; (*files read by the program¥)
person : cadetrecl; (*variable of type cadetreclx)
individual : cadetrec2; (*variable of type cadetrecl¥)
error, count, counter : integer; (*countersk)
gooddata . text; (¥file to be written by the program¥)
baddata, emessage : text; (*file to be written by the program*)

83

Procedure ResdPerson(var fileinl : text; var coant @ integer);

(¥ This procedure resds in the datx from the cedet record into an ¥)
(* intermediste file to be processed. *)

Yar
i : integer; (¥counter*)

begin (% ReadPerson ¥)
assign(fileinl, filenamel);
reset(fileinl); (*reset the filex)
1 :=1; (¥initialize variable*)
count := (; (¥initialize variablex)
while not eof(fileinl) do
begin (*read the cadet records into the file¥)
count := count + 1; (*kincrement the record count#)
read(fileinl,person{i].ssn,person[i].name,person[i].height);
readln(fileinl, person[i].weight);
i:= 1+ 1; (xincrement counter*)
end;
close(fileinl); (*close the filex)
end; (% ReadPerson *)

Procedure Readlndividual(var filein? : text; var counter :@ integer),;

(* This procedure reads in the data from the cadet candidate individual %)
(* record into an intermediate file to be processed. *)

Var
J : integer; (*counterxk)

begin (¥ ReadIndividual %)
assign(filein2, filename2);
reset(filein?); (*reset the file*)
J = 1; (¥initialize variablexk)
counter := (; (*initialize variablex)
while not eof(filein?) do
begin (*read the cadet candidate records into the file*)
caunter := counter + 1; (¥increment the record countx*)
read(filein2, individuall{ j].ssan, individuallj].name);
readln(filein2, individual[j].height, individuallj].weight);
J = § + 1; (*increment counterx)
end;
close(filein2); (*close the filex)
end; (* ReadIndividual %)

84

Procedare RedundsncyChecks(var fileinl, fileinZ @ text;
var count, counter, error : integer;
var gooddata, baddata, emessage @ text);

(¢ This procedure takes s record from the cadet record file =nd compmres its *)
(* height =nd welght values to the values contained in the cadet candidete *)

(* individual record. *)
Var
i, 3 ¢ integer; (*countersk)

ok, found : boolean; (¥true or falsex)

begin (¥RedundancyCheck¥)
error := (4; (*initialize variablex)
for 1 := 1 to count do
begin (¥loop to compare SSN from cadet record file and find a match in %)
{(*the cadet candidate file, if one exists¥)
J = 1; (*initialize variable¥)
found := false; (*aet boolean flag to false¥)

ok := true; (*set boolean flag to truex)
while not found do
begin

if person(il.san = individual[jl.sasn then
begin (¥SSNs are the same¥)
found := true; (*set boolean flag to truex)
if (peraon{il.height = individual{j].height) and
(person[i].weight = individuallj].weight) then
begin (*helghte and weights are the name*)
write(gooddata,i:2,peraonlil.sen,peraon[i]. name);
writeln(gooddata,person[i].height,personli] . weight?;
end;
if (person[i].height <: individual[Jj].height) then
begin (*heights not the same¥)
ok := false; (*3et boolean flag to false*)
write(baddata,i:2,person{i].ssn,person{il.name);
writeln(baddata,person[i].height,person{i].weight);
write(emessage, "Height values are different! 7);
writeln(emessage, Check data for record ",i:2,7.7);
write(emessage,person{i].ssn,person[i].name);
writeln(emessage,person[i].height);
write(emessage, "The cadet candidate height value ia equal’);
writeln(emessage,” to ~,individual[j].height,”. ");

writeln(emessage);
error := error + 1; (¥increment error count*’
end;

if (person{i].weight <> individual[Jj].weight) then
begin (*weights not the samexX)
if ok = false then
begin (*record contains a previous error¥)

85

write(emessage, ‘Welght values are different!)
writeln(emessage, "Check data for record 7,1:2,7.7);
write(emessage,person{i].ssn,person{il. name);
writeln(emessage,peracnii].weight);

write(emessage, "The cadet candidate weight valus is ")
writeln(emesaage, ‘equal to “,individualli].weight, .);
writeln(emessage);

end

else if ok = true then
begin (¥no previous error existsax)

ok := false; (*set boolean flag to falsex)
write(baddata,i:2,perconli].een,personli] . name);
writeln(baddata,person[i].height,person(i].weight);
write(emessage, ‘Weight values are different! 7);
writeln(emessage, Check data for record ",1:2,7.7);
write(emessage,person{i].ssn,peraon[il.name);
writeln(emessage,personfi].weight);
write(emessage, The cadet candidate weight value is "),
writeln(emessage, ‘equal to 7, individual[j].weight, .)

.
bl

writeln(emessage);
error := error + 1; (¥increment error count*)
end;
end;
J = J +1; (¥increment counterk)

end
else if (person[i].ssn <> individuall[jl.san) then
begin (¥SSNs are not the same¥)
found := false; (*¥get boolean flag to falzex)
J = J +1; (¥Xincrement counterx)
if J = counter + 1 then
begin (*8SN= do not match from either file*)
write(baddata,i:2,personf{i].aan,personiil.name);
writeln(baddata,person[i].height,pereon{i]. . weight);
write(emessage, ‘No match for record “,i,” found in the 7);
write(emessage, "Cadet Candidate file. 7);
writeln(emessage, ‘Please validate the 7);
write(emessage, "height and weight for ");
write(emessage,personfi}.ssn,person(i].name);
writeln(emessage,personfi).height,personfi].weight);
writeln(emersage);
error := error + 1; (Xincrement error count*)
found := true; (*get boolean flag to truex)
end;
end;
end;
end;
end; (* RedundancyChecks X)

86

begin (% wain =rplication - Redund=ncyCheck *)

clrscr; (¥clear the screent)

assign(gooddatz, filel);

rewrite(gooddata); (dWrite to =z filex)

aessign(baddata, file2);

rewrite(baddats); (Mwrite to a filex)

assign(enessege, file3);

revrlite(emessege); (kwrite to = filex)

writeln(Height =nd Weight Redand=ncy Check™ :57);

ReadPerson(fileinl, count);

ReadIndividual(filein?, counter);

RedundancyChecks(fileinl, fileinZ, count, counter, error, gooddata, baddata,

emessage);

writeln(The number of records resd from the input file was ":65,count, . ")

writeln(There are “:30,error, records with errors detected.”);

if error > O then

begin
writeln(Check files badp3.dat and emesagp3d.dat to make corrections. :71);
end;

writeln(This Applicatioi: Program is Now Finished! :61);

close(gooddata); (*close the filex)

close(baddata); (*close the filex)

close(emessage); (*close the file#)

end. (¥ main application - RedundancyCheck ¥)

87

(¥ The purpose of this program is to merge the two data files created by thex)

(* Redundancy Program into one corrected file for future loading into the

(¥ target system. Execute this program only after rmnning Frogramd.

*)
*)

(HRAAAAAAAR A A A AR AR KA R AR AR FOR R AR AR A FA R A R R bk)

Program RedundancyMergeData;

Uses CRT;
Const
filenamel = "goodpd.dat’; (*good data filex)
filename?2 = "badp3.dat’; {(%error record file*)
filenamed = “corectpd.dat’; (*corrected and mersged data file®)
maxcadets = 99; (kmaximum number of cadet records*)
one = 1; (kpinimum number of cadet records*)
blank =7 (#blanikk characterx*)
Type
count = atringl21; (*record count numbers)
mmssan = atring(11]; (*cadet SSNx)
personname = string(271; (*cadet namex)
inches = atringl2]; (*cadet heightx)
pounds = string[3]; (*cadet weightX)
cadet = record (¥cadet record*)
k : count;
s&n ! NUMSSN;
name ! personname;
height ¢ inches;
weight : pounds;
end;
cadetrec = array[one..maxcadets] of cadet; (*array of cadet records*)
Var
filel, fileZ T text; (¥fileg to be read by the programt)
master : text; (*file to be written by the programt)

bufferl, buffer? : cadetrec; (¥variable of type cadetreck*)

Procedure GoodData(var countl, 1 : integer; var bafferl : cadetrec;
var master, filel : text);

(* This procedure writes the records from the good data file to the *)
(* corrected data file. %)

begin (¥ GoodData *)
countl := countl + 1; (¥increment the record count*)
write(master,bufferifi].k,” “,bufferlfi].san,bufferi{i].name);
writeln(master,bufferi[i].height,bufferi[i].weight);

88

i = i+ 1; (¥increment. counterk)
read(filel,bufferi[i].k,bufferifi].san,bufferi[i].name,bufferi(i] Jheight),
readln(filel,bufferifi].weight);

end; (¥ GoodData *)

Procedure BadData(var count?, j : integer; var bufferZ : cadetrec;
var master, file2 : text);

(¥ This procedure writes the records from the corrected error record file *)
(* to the corrected data file. ¥)

begin (¥ BadData ¥)
count? := count2 + 1; (¥increment the record count*)
write(master,buffer2[1.k, ~,tufferZlJ].san,bufferZ[j].name);
writeln(master,buffer?[j].height,buffer2[j].weight);
j = j + 1; (¥increment counterx*)
read(file2,buffer2(j1.k,buffer2(j].ssn,buffer2(j1.name, buffer2l i} . height);
readln(file2,buffer2[jl.weight);

end; (¥ BadData %)

Procedure Merge(var filel, fileZ2, master :@ text);

(* This procedure merges the good data file and the corrected error record ¥)
(x file into a corrected good data file in the correct numeric sequence. %)

Var

i, j, countl, countZ, count3d : integer; (kcountere¥)

pufferl, buffer : cadetrec: (#¥variables of type cadetrecs)
begin (¥ Merge *)

countl := (; (¥initialize variable¥)

count2 := 0; (*¥initialize variable¥)

countd := 0; (*initialize variablex)

i = 1; (*¥initialize variablex)
J := 1; (*initialize variablex)
read(filel,bufferi{i].k,bufferi[i].esn, bufferili].name, bufferi{i].height);
readln(filel,bufferifi].weight);
read(file2,buffer2[j].k,buffer2[j].ssn,buffer2f j].name, bufferz{jl.height);
readin(file2,buffer2[j].weight);
repeat
begin (¥loop to merge two filesk)
if (bufferi[il.k = blank) and (buffer2[jl.k = blank) then
begin (*both files contain no datax)
writeln(Both files are empty :50);
end
else if (buffer2[j].k = blank) then
begin (*all records are in the good data file¥)
GoodData(countl, i, tufferl, master, filel);
end

89

else if (afferl[i].k = blank) then
begin (*all records are in the error record filew)
BadData(count2, j, taffer2, master, file2);
end
else if (bufferi{il]l.k < buffer2[jl.k) then
begin (*record in bufferi goes into correct filex)
GoodData(countl, i, bufferl, master, filel);
end
else if (bufferifil.k > buffer2{jl.k) then
begin (¥record in buffer? goes into correct filek)
BadData(count2, Jj, bufferZ, master, file2),
end
end;
count3d := countl + count2; (*records should =qual value from int. file¥)
until (bufferifil.k = blank) and (buffer2[j].k = blank); (*toth files empty*)
writeln(Number of Records Read Equalzs “:55, countd);
end; (% Merge ¥)

begin (% main application - RedundancyMergeData *)
clrscr; (*%clear the screenx)
assign(filel,filenamel);
reset(filel); (*reset the filex)
assign(file2,filename?);
reset(file2); (*reset the filex)
assign(master,filename3);
rewrite(master); (kwrite to a filex)
writeln(Merging Started’ :48);
Merge(filel,file2Z ,master);
writeln(END of AFPPLICATION® :50);
close(filel); (*close the filex)
cloge(file2); (*close the filex)
close(master); (kclose the filek)

end. (¥ main application - RedundancyMergeData ¥)

90

(KA R RO K KRR AR AR R AR K AR R KR AR R IR AR KSR ok ok ok R0k K)

(* The purpose of this application program is to insure that referential %)
(* integrity holds for the company and regiment that a cadet ie assigned. *)
(* Companies are lettered A through I, while regiments are numbered 1 thru *)
(* 4, for a total of 36 companiex. Each cadet iz to be assigned to a *)
(* referenced company (null values are allowed if no compeny s assigned). *)
(* Each company must be part of the cadet brigade. Referential integrity *)
(* violations will cause two files to be generated - an error record file #)
(¥ and an error meszage file. Records that are clean are written to a good *)
(* data file. Corrections are to be made to the error record file, and then*)
(¥ it is to be merged with the good data file. The corrected good data filex)
(*¥ is to be stored for loading into the target system. Uee the program *)

(¥ RIMerge to merge the good data file and the corrected error record file. *)
(RACKR AR AR AK IR ACKIARAACIOICK KKK AR AR SR AR KAORAROIIRORACRIR Kok)

Program ReferentiallntegrityCheck;

(*cadet record filex)
(¥permanent. company filex)
(*good data filex)

(*¥error record filex)

(*error message file#)

(maximum number of cadet records*)
(*maximum number of cadet companies*)
(*minimam number of cadet/company records:)
(¥blank character¥*)

(%cadet company¥*)

(*cadet record*)

(*company record¥)

(¥array of cadet records*)

array[one. .maxcompany Jof companyrec; (¥array of company records*)

(*files to be read by the programk)
(kvariable of type cadetrec*)

Uses CRT;
Const
filenamel = “cece.dat’;
filename2 = “company.dat’;
filel = “goodp4.dat’;
file2 = "badp4.dat”;
file3 = “emesagpd.dat’;
maxcadets = 99;
maxcompany = 36;
one = 1;
blank =7
Type
numssn = string{117; (*%cadet SSN*)
personname = string{271; (*kcadet name¥)
unitname = string(2];
cadet = record
socsecnum @ mumssn;
name ! personname;
comp : unithame;
end;
companyrec = record
company : unitname;
end;
cadetrec = array[one..maxcadets] of cadet;
unitrec =
Var
fileini, filein?Z : text;
person : cadetrec;
compname ¢ unitrec;

91

(*variable of type unitrec*)

count,, coanter, error @ integer; (xcomters*)

gooddata T text; (*file to be written by the program+)
baddets, enessoge : text; (*¥flle 1o be written by the programt)
found : boolesn; (¥true or false*)

Procedure ReadPerson(vear fileinl : text; var comt : integer);

(* Thie procedure resds the necessary data from the cadet record into zn *)
(¥ interwedinte file 4o be processed. *)

Var
i : integer; (*counterx)

begin (* ReadPerson x)
assign(fileinl, filenamel);
reset(fileinl); (*reset the file#)
i :=1; (¥initialize variablex)
cont := (; (*initialize variablex)
while not eof(fileinl) do
begin (*read the cadet records inte the filex)
count := count + 1; (¥increment the record count*)
readln(fileinl, person[i].socsecnum, person[il].name, personli].comp);
i:=1i+ 1; (¥increment the counterx*)
end;
close(fileinl); (*close the filex)
end; (% ReadPerson x)

Procedure ReadCompany(var filein?Z : text; var counter @ integer):

(* This procedure reads the necesgary data from the permanent company record %)
(* into an intermediate file to be processed. *)

Var
i : integer; (*counterk)

begin (* ReadCompany)
assign(filein?2, filename2);
reset(filein2); (*reset the filex)
i := 1; (*initialize variablex)
counter := (; (*initialize variablex*)
while not eof(filein2) do
begin (*read company records into the filex)
counter := counter + 1; (*¥increment the company count*)
readln(filein2,compname[i].company);
i:=1+1; (*increment the counterxk)
end;
close(filein2); (*close the filex)
end; (* ReadCompany *)

92

Procedure RefIntCheck(var count, counter, error :@ integer; var found : boolean;
var fileinl, filein2, gooddata, baddata, emessage :text);

(* This procedure checks to insure that the company a cadet is assigned to *)
(* is a valid company. ¥)

Var
i, J : integer; (¥counters#*)

begin (* RefIntCheck %)
error := (; (*¥initialize variable¥)
for 1 := 1 to count do
begin (¥1loop to check cadet company value againet permsnent company value*)
J = 1; (*initialize variable*)
found := false; (*set boolean flag to false#)
while not found do
begin
if (person([i].comp = compname[j].company) or
(person[i].comp = blank) then
begin (*write records with no errors or null values t¢ a file¥)
(*¥named goodp4d.datx)
found := true; (*aet boolean flag to true¥)
write(gooddata, i:2, person[i].socsechum, person[il.name);
writeln(gooddata, personli].comp);
3 = J + 1; (*increment counterx)
end
else if person[i).comp <> compnamel}].company then
begin (*values are not equal so increment and try next value*)
found := false; (*set boolean flag to falsex)
J = 3 + 1; (¥increment counterk)
if j = counter + 1 then
begin (*write records with errors to a file named badpd.dats)
(*and error messages to a file named 3884 . dat¥)
write(baddata, 1:2, person[i].socsecnum, person{il.name);
writeln(baddata, person{i].comp);
writeln(emessage, "Value for Cadet Company is incorrect!’);
write(emessage, "Check data for record °, 1:2);
write(emessage, person[i].socsecnum:16, personlil.name);
writeln(emessage, person(il.comp);
writeln(emessage);

J = J + 1; (¥increment counter*)

error := error + 1; (¥increment error counterk)

found := true; (*set boolean flag to truex)
end;

end;
end;
end;
end; (¥ RefIntCheck %)

93

begin (¢ main spplication - ReferentislintegrityCheck #*)

clrecr; (cleasr the screen¥)

assign(gooddats, filel);

rewrite(gooddata); (write to a file*)

assign(beddats, file2);

revrite(beaddats); (kwrite to = file*)

sesign(emesssge, file3d);

revrite(emessage); (Fwrite to a filex)

writeln(Referential Integrity Check For Cedet Compeny :63);

ReadPerson(fileinl, coani);

ReadConpaniy (filein2, counter);

RefIntCheck (count ,comter, error, fomd, fileinl , filein2,
gooddata, beddats, emessnge) ;

writeln(There are ":36, error, ~ errors detected.”);

if error > 0 then

begin

writeln(Check files badp4.dat and emesagpd.dat to make ~orrections.’

end;

writeln(The number of records read from the input file waz ":65,count,”.”);

writeln(This Application Program is Now Finished! :60);
close(gooddata); (*close the filex)
close(baddata); (*close the filex)
close(emessage); (*close the filex)

end. (¥ main application - ReferentiallntegrityCheck *)

94

169);

(AR AR KA IORAHOIKAOKAAIAORICK AR AOR AR AR KRR R Ko KKK AHOIoR)
(* The purpose of this program is to merge the two data files created by thex)
(X Referential Integrity Program into one corrected file for future loading *)
(¥ into the target system. Execute this program after rurming Programd. *)
(RRACK AR AK KR AR AR AR F KK KKK AR IR AROR AR AR AR Kok R ARk AR KoKk)

Program ReferentiallntegrityMergeData;

Uses CRT;
Const
filenamel = ‘goodpd.dat’; (*%good data filex)
filename2 = "badpd4.dat’; (*%error record file*)
filename3d = “corectpd.dat’; (kcorrected and merged data file¥)
mexcadets = 99; (Ckmzotimam number of cadet recorde*)
one = 1; (*minimum number of cadet records*)
blank = "7 {*blank character*)
Type
count. = stringl2]3; (¥record count number¥)
numssn = string[11]; {*cadet SSN¥)
personname = string(2773; (*cadet name¥)
wnitname = string[2]; (*cadet companyx)
cadet. = record (*cadet record*)
k : count;
8an ! numssn;
name ¢ personname;
company ¢ wanitname;
end;
cadetrec = arraylone..maxcadetz] of cadet; (*array of cadet recorde+)
Var
filel, file2 ¢ text; (*files t0 be read by the program+)
master ¢ text; (*¥file to be written by the program*)

bufferl, buffer2 : cadetrec; (¥variable of type cadetreck)

Procedure GoodData(var countl, i : integer; var bufferl : cadetrec;
var master, filel : text);

(¥ This procedure writes the records from the good data file to the *)
(% corrected data file., ¥)

begin (¥ GoodData *)
countl := countl + 1; (*increment the record count*)
write(master,bufferi[il.k,” °,bufferi[i].ssn,bufferi{il.name);
writeln(master,bufferi[i].company); (¥write to filex)
i:=1+ 1; (*increment counterx)
readin(filel,bufferi[i].k,bufferl{i].ssn,bufferii{i].name,ifferifi].company);
end; (% GoodData ¥)

95

Procedare BedData(var comtZ, J @ integer; var ufferz : cadetrec;
var mester, fileZ : text);

(* This procedure writes the records frowm the corrected error record file *)
(¥ 1o the corrected detan file., *)

begin (¥ BadDatz *)
count2 := count2 + 1; (Xkincrement the record countx)
write(master,buffer2{jl.k,” ~,buffer2(j].san,buffer2{j].name);
writeln(master,buffer2[j].company); (*write to filex¥)
J = J + 1; (*mcrement counterx)
readIn(file2,buffer2l i) .k, buffer2(jl.ssn,buffer2{ 1. name, bufferz[1. compaay):
end; (% BadData x)

Procedure Merge(var filel, file2, master : text);

(* This procedure merges the good data file and the corrected error record *)
(¥ file into a corrected good data file in the correct numeric sequence, *)

Var
i, j, countl, count?, countd : integer; (Fcounters*)
bufferl, buffer2 : cadetrec; (*variable of type cadetreck*)

begin (¥ Merge %)
countl := (0; (*initialize variablex)
count2 := (; (*initialize variable¥)
countd := (; (¥initialize variablex)
1 :=1; (*¥initialize variablex*)
J = 1; (¥initialize variablex)
readin{filel ,bufferifi].k,bufferi{i].ssn,bufferi[i].name. bufferli{i]. company);
readln(file2,buffer2[j].k,buffer2[j].ean,buffer2l il . name, bafferl 1. company) ;
repeat
begin (¥loop to merge two files¥)
if (bufferi[il.k = blank) and (buffer2[il.k = blank) then
begin
writein(Both files are empty :50);
end
elge if (buffer2{j].k = blank) then
begin (*all records are in the good data file¥)
GoodData(countl, i, bufferi, master, filel);
end
else if (bufferi{il.k = blank) then
begin (*all records are in the error record filex*)
BadData(count2, j, buffer2, master, file2);
end
else if (bufferi[il.k < buffer2[j].k) then
begin (¥record in bufferl goes into correct file¥)
GoodData(countl, i, bufferl, master, filel);
end

96

else if (bufferllil].k > buffer2[j].k) then
begin (krecord in affer2 goes into correct filex)
BudData(count2, j, afferZ, master, file2);
end
end;
countd := countl + count2; (¥records read should equal value from int. file¥)
until (bufferi{i].k = blank) and (buffer2[jl.k = blank); (*both files empty*)
writeln(Number of Records Read Equals “:55, count3);
end; (% Merge *)

begin (* main application - ReferentialIntegrityMergeData %)
clracr; (*%clear the screen*)
assign(filel,filenamel);
reset(filel); (*kreset the filex)
assign(file2,filename?);
reset(filel); (kreset the filex)
assign(master,filename3d);
rewrite(master); (*write to a filex)
writeln(Merging Started :48);
Merge(filel,file2,master);
writeln("END of APPLICATION :50);
close(filel); (*close the filex)
close(file2); (*close the filex)
close(master); (*close the filex)
end. (¥ main application - ReferentialIntesrityMergeData *)

97

(RRAIRAAKRKIR A AR RRAKRARAK AR ROk doR kR dokok Kok ok KoK Rk % S KR Rk Rk Rk k%)
(* The purpose of this application program is to insure that entity *)
(¥ integrity holds for the primary key field (S5N) of a cadet s individual *)
(¥ record. Each SSN must be unigque. This also r=ana that null values for %)
(¥ the SSN are not allowed. Entity integrity violavione will cause two %)
(*x files to be generated - an error record file and an error message file, *)
(* Records that are clean are written to a good data file. Corrections are *)
(* to be made to the error record file, and then it is to be merged with the*)
(* good data file. The corrected good data file is to be stored for loading*)
(* into the target system. Use the program EntMerge to merge the good data #)
(* file and the corrected error record file. *)
(AR AR AR K AR OR KA ORR RO R R KK O AR Rk)

Program EntityIntegrityCheck;

Uses CRT;
Const
filenamel = “entity.dat’; (*cadet record filex)
filel = ‘goodpbS.dat”; (*good data filex)
file2 = "badpb.dat’; (¥error record filex)
filed = “emesagpb.dat’; (*error message file¥)
maxcadets = 99; Chmaximam number of cadet records*)
one = 1; (*nminimum number of cadet records*)
null = "y (*blank character%)
Type
numssn = string[11]: (*%cadet SSN*)
personname = string{277; (*cadet namex*)
cadet = record {*cadet record*)
83n : numssn;
name : personname;
end;
cadetrec = arrayl[one..maxcadets] of cadet; (%array of cadet records*)
Var
fileinl ¢ text; (¥files to be read by the programt)
person : cadetrec; (*%variable of type cadetreck)
count, error : integer; (*¥countersxk)
gooddata : text; (%file to be written by the program*)
baddata, emessage : text; (%file to be written by the program¥)

Procedure ReadPerson(var fileinl : text; var count : integer);

(* This procedure reads the necegsary data from the individual record into ¥)
(* an intermediate file to be processed. *)

Var
i : integer; (*counter¥)

98

begin (* ReadPerson *)
assign(fileinl, filenamel);
reset(fileinl); (kreset the filew)
i := 1; (¥initimlize varizblex)
count. := 0; (*initislize variable*)
while not ecf(fileinl) do
begin (¥resd the individual records into the filek)
coant := count + 1; (*increment the record courntt)
readln(fileinl, person{i).ssn, personf[i).name);
i := 1+ 1; (¥increment the counter#)
end;
cloze(fileinl); (kclose the file*)
end; (* ReadPerson %)

Procedure EntityCheck(var count, =rror : integer;
var fileinl, gooddata, baddata, emesssge text);

{* This procedure checks to insure that the cadet’s SSN is unigue. *)

Var
i, J ¢ integer; (kcounters#)
ok : boolean; (¥true or false¥)

begin (% EntityCheck %)
error := (; (*initialize variable¥)
ok := false; (*set boolean flag to falsex)
for 1 := 1 to count do
begin (¥1loop to check the cadet’s S5N against the other S5SN2 in the filex)
J =1+ 1; (*¥*initialize variablex)
repeat
if (person[i].ssn = null) and (ck = false) then
begin (*5SH field is nulls)
ok := true; (*set boolean flag to true)
writeln(baddata,i:2,person[i].ssen,person[il.name);
writeln(emessage, "Cadet SSN is field is null. ");
write(emessage, "Check data for record ",1:2);
writeln(emessage,” ~,peraon[i].ssn,personl(il.name);
writeln(emessage);
error := error + 1; (¥Xincrement error counterk)
end;
if (personf[i].ssn = person[j].ssn) then
begin (*%write records with duplicate SSN= to a file named¥)
(*badpd.dat and error messages to a file named emesagpdb.dat¥)
if ok = false then
begin (¥first duplicate SSN found*)
ok := true; (*3et boolean flag to truexk)
writeln(baddata,i:2,person[i].ssn,person[i].name); |
writeln(emeaaage, "Cadet SSN iz redundant. ”);
write(emessage, "Check data for record “,1i:2);

99

writeln(emessage,” “,person{i].sen,peraon{id.name);
write(emessage, ‘with record 7,3:2,7 “,peraon[j].szsn);
writein(emessage,person{j].name);

writeln(emessage);

J = j+ 1; (*increment counterxk)

error := error + 1; (¥*increment error countert)
end

else if ok = true then
begin (*more than one duplicate SSN has been fowdd)
writeln(emessage, "Cadet SSN is redundant.”);
write(emessage, "Check data for record ",1:2):
writeln(emeseage,” ~,perscn(i].sen,person{il.name);
write(emessage, ‘with record 7,3:2," ",personljl.san);
writeln(emessage,person[j].name);

writeln(emessage);
J = 3+ 1; (*%increment counter*)
end;

end
else if person[i].ssn <> person[j].ssn then
begin (*values are not equal so increment and try next value#)
J = J + 1; (*Xincrement counterx)
if (J >= cont + 1) and (ok = false) then
begin (*write records with no redundant SSN2 to a file named®)
(%goodph . datxk)
writeln(gooddata,i:2,person[i].san,personi].name);
ok := false; (¥set boolean flag to falsex)
end;
end;
until j »= count + 1;
ok := false; (*¥set boolean flag to falsex)
end;
end; (¥ EntityCheck x)

begin (¥ main application - EntityIntegrityCheck %)
clrser; (%clear the acreenk)
assign(gooddata, filel);
rewrite(gooddata); (*write to a filex)
assign(baddata, file2);
rewrite(baddata); (*write to a filex)
assign(emessage, file3);
rewrite(emessage); (¥write to a filex)
writeln(Entity Integrity Check For Cadet SSN”:58);
ReadPerson(fileinl, count);
EntityCheck(count,error, fileinl, gooddata, baddata, emessage) ;
writeln(There are ":36, error, °~ errors detected.’);
if error > 0 then
begin
writeln(Check files badpb.dat and emesagp5.dat for corrections.” :68);
end;

100

writeln(The number of records read from the input file was " :65,count,” .’);
writeln(This Application Program is Now Finished! :60);
close(gooddata); (*close the filex)
close(baddata); (*%close the file¥)
close(emessage); (*close the filex)
end. (¥ main application - EntityIntegrityCheck %)

101

(KRR AAKRIK KK ARARK RKRRR R RO R KRR R R R 1R o R 5 1003)
(¥ The purpose of this program iz to merge the two data files crezted by thet)
(¥ Entity Integrity Program into one corrected file for future loading into *)
(* the target system. Execute this program only after ruming Frogramb. *)
(ARAKAKIKAARRAKRKARR KA KKK R KA SRR K KKK R F R R R R R KR X ko A 4%)

Program EntityIntegrityMergeData;

Uses CRT;
Const
filenamel = "goodpb.dat”; (*good data file#)
filename2 = “badpb.dat”; (*error record file*)
filename3d = “corectp5.dat’”; (¥corrected and merged data file*)
maxcadets = 99; (*m=ocimun number of cadet recorde*)
one = 1; (sminimam number of cadet records*)
blank =" (¥blank character*)
Type
count = atring[2]; (*record count number)
numssn = etring(11]; (*cadet SSN*)
personname = string{27]; (¥cadet namex)
cadet = record (*kcadet record¥)
k : count;
s8n ! numssn;
name ! personname;
end;
cadetrec = arraylone..maxcadets] of cadet; (*array of cadet recordet)
Var
filel, filel : text; (¥files to be read by the program*)
naster : text; (*¥file to be written by the program*)

bufferi, buffer2 : cadetrec; (%variable of type cadetrec*)

Procedure GoodData(var countl, i : integer; var bufferl : cadetrec;
var master, filel : text);

(¥ This procedure writes the records from the good data file to the *)
(* corrected data file., %)

begin (* GoodData *)
countl := countl + 1; (*increment the record count)
wri .eln(master,bufferi[i].k,” ~,bufferi{il.sen,bufferl{i].name);
i := 1+ 1; (*increment counterxk)
readln(filel,bufferi(i].k,bufferifi].ssn,bufferifi].name);

end; (¥ GoodData *)

102

Procedure BadData(var coantZ, j @ integer:; var baffer? : cadetrec;
var master, file2 : text);

(* This procedure writes the records from the corrected error record file ¥)
(¥ o the corrected data file, *)

begin (¥ BadDats ¥)
cont2 := count2 + 1; (Xincrement the record count*)
writeln(master,buffer2[jl.k,” “,bufferZ[jl.ssn,buffer2{j].name);
J = J + 1; (¥increment counter%)
readIn(filel,buffer2[jl.k,buffer2{jl.ssn,buffer2{jl.name);

end; (% BadData *)

Procedure Merge(var filel, file2, master : text);

(* This procedure merges the good data file and the corrected errcr record *)
(¥ file into a corrected good data file in the correct numeric sequence. *)

Var
i, j, countl, count?, countd : integer; (*counters*)
bufferli, buffer2 : cadetrec; (*variables of tyre cadetrect)

begin (¥ Merge ¥)
countl := 0; (*initialize variablex*)
count?2 := (; (*initialize variablex)
coantd := (; (*initialize variable*)
i:=1; (¥initialize variable*)
J = 1; (*¥initialize variable#*)
readIn(filel ,bufferiil.k,bufferifil.ssn,bufferi{i].namc};
readln(fileZ,buffer2[jl.k,buffer2[j].essn, buffer2(il.name);
repeat
begin (¥loop to merge two filesx)
if (bufferifil.k = blank) and (buffer2{jl.k = blank) then
begin (¥both files contain no datax)
writeln("Both files are empty” :50);
end
else if (buffer2[j].k = blank) then
begin (*all records are in the good data filex)
GoodData(countl, 1, bufferl, master, filel);
end
else if (bufferi{il]l.k = blank) then
begin (*all records are in the error record filex)
BadData(count2, j, buffer2; master, file2);
end
else if (bufferi[il.k < buffer2[j].k) then
begin (¥record in bufferl goes into correct filek)
GoodData(countl, i, bufferl, master, filel);
end
else if (bufferi[i].k » buffer2{j]).k) then

103

begin (krecord in boaffer? goes into correct file#)
BadDeta(comt2, J, affer2, mester, file2),;
end
end;
count3 := countl + count2; (¥records should egual value from int., filex)
until (bufferi[i].k = blank) and (buffer2[j]l.k = blank); (*both files empty*)
writeln(Number of Records Read Equals “:55, count3d);
end; (% Merge %)

begin (% main application - EntityIntegrityMergeData *)
clrscr; (*clear the screenk)
assign(filel,filenamel);
reset(filel); (*reset the filex)
assign(file2,filename?2);
reset(file2); (%reset the filex)
assign(master,filename3);
rewrite(master); (kwrite to a filex)
writeIn(Merging Started’ :48);
Merge(filel,file2,master);
writeln("END of APPLICATION™ :50);
close(filel); (*close the filex)
close(file2); (*close the filex)
close(master); (*close the filex)

end. (* main application - EntityIntegrityMergeData %)

104

(R AR AR KA KA AR IR AORACKK A K AR K KK HRAICK AR R AR Aok K ok KRk Rk $ok)
(* The purpose of this application program is to ensure that the logical *)
(* implication hold=s for the cadet’s high school class ranking being less #)
(* than the number in the high achool graduating class. Logical inconsis- %)
(* tency violations will cauze two files to be generated - an error record *)
(¥ file and an error message file. Records that are clean are written to a ¥)
(* good data file. Corrections are to be made to the error record file, and*)
(* then it is to be merged with the good data file. The corrected good data*)
(x file is to be stored for loading into the target system. Use the program*)
(¥ LogMerge to merge the good data file and the corrected error record file.x)
(R AR K AR AR AR AR KRR KKK AR KRR AR AR AR SRR KK SRRk K F)

Program LogicallnconsistencyCheck;

Uses CRT;
Const
filenamel = “logic.dat”; (*cadet record filex)
filel = ‘goodpb.dat”’; (*good data filexk)
filel2 = "badpf.dat”; (*error record filex)
file3 = ‘emesagpb.dat.”; (*error message filex)
maxcadets = 99; (kpaximum number of cadet records¥)
one = 1; (kminimum number of cadet records*)
nall = 7y (¥*blank character*)
Type
numssn = string[117; {(*cadet SSN¥)
personname = string[27]: (*cadet name*)
number = integer; (*high school rank/mumber in clasa*)
cadet = record (*cadet record+)
Bsn ! numssh;
name ! personname;
hsrank : number;
hsnum : number;
end;
cadetrec = arrayl[one..maxcadets] of cadet; (*array of cadet records*)
Var
fileinl : text; (*files to be read by the program*)
person : cadetrec; (#*variable of type cadetrec#*)
count, error : integer; (*counters¥*)
gooddata ¢ text; (¥file to be written by the program#)
baddata, emessage : text; (*¥file to be written by the programk)

Procedure ReadPerson(var fileinl : text; var count : integer);

(* This procedure reads the necessary data from the individual record into %)
(¥ an intermediate file to be processed. *)

105

Var
i : integer; (*counterx*)

begin (¥ ReadPerson *)
assign(fileinl, filenamel):
reset(fileinl); (*reset the filex)
i := 1; (k%initialize variablex)
count := (}; (*initialize variablex*)
while not eof(fileinl) do
begin (*kread the individual records into the filex)
count := count + 1; (Xincrement the record count#*)
read(fileinl,person[i].esn,person{il.name, personl(i]. herank);
readln(fileinl,percon[i).hanum);
i:= 1+ 1; (*¥increment the counterk)
end;
close(fileinl); (*¢lose the file*)
end; (¥ ReadPerson ¥)

Procedure LogicCheck(var count, error @ integer;
var fileinl, gooddata, taddata, emessags text);

(* This procedure checks to inaure that the cadet’s high schocl ranking is ¥)
(*¥less than the number in their high school clasa. ¥)

Var
i : integer; (*countersk*)

begin (% LogicCheck *)
error := 0; (*initialize variable*)
for 1 := 1 to count do
begin (xloop to check the cadet’'s he rank againet the he nmber in class¥)
if person{i].hsrank <= person{i].hesnum then
begin (*rank iz less than number in class - write records to & %)
(¥file named goodp6.dat*)
write(gooddate,i:2,person{i].sen,pereon{il.name,person{i] . herank:4);
writeln(gooddata,” ~,person{i).hsnum:4);
end
else if person[i].hsrank > person[i].hsnum then
begin (*write records with hs rank greater than number in he clase*)
(*to a file named badp6.dat and error messages to a file *)
(*named emesagpb.dat*)
write(baddata,i:2,person{i].esn,person[i].name);
writeln(baddata,person{i].hesrank:4," ",person[i].hsnum:4);
write(emessage, "Cadet HS rark is greater than the number in 7);
writeln(emessage, “the HS graduating class.’);
write(emessage, Check data for record ",i:2);
write(emessage,” “,person(i].ssn,person[i].name);

106

writeln(emessage,person{i].hsrank:4,” ~,person{i].hsnum:4);

writeln(emessage);
error := error + 1; (¥increment error counter)
end;

end;
end; (¥ LogicCheck *)

begin (¥ main application - LogicallnconsistencyCheck *)
clrscr; (*clear the screent)
assign(gooddata, filel);
rewrite(gooddata); (*write to a filex*)
assign(baddata, filel2);
rewrite(baddata); (*write to a f*lex)
assign(emessage, file3d);
rewrite(emessage); (*write to a file¥)
writeln(Logical Inconsistency Check For Cadet High Schocl Rank”™ :67);
ReadPerson(fileinl, count);
LogicCheck (count, error, fileinl,gooddata, baddata, emessage) ;
writeln(There are ":36, error, ~ errors detected.’);
if error » 0 then
begin
writeln(Check files badp6.dat and emesagpt.dat for corrections. :68);
end;
writeln(The number of records read from the input file was ":65,count, . ");
writeln(This Application Program is Now Finished! :60);
close(gooddata); (*close the filex)
close(baddata); (*close the file¥)
close(emessage); (*¥close the filex)
end. (* main application - LogicallnconsistencyCheck *)

107

(ORRARKRRFARAKIR KA KA AKRAAACKAAK A KA AR RAAAOR AR AR ACRR AR KR R RO E$ %)
(* The purpose of this program is to merge the two data files created by the*)
(* Logical Inconsistency Program into one corrected file for future loading *)
(* into the target system. Execute this program only after ruming Programé.*)
(ARRAKRAAAAAKK AR AR AR AR AR K AOKACK K AR AORK KR KR RO R R R R R $ k)

Program LogicallnconsistencyMergeData;

Uses CRT;
Const
filenamel = "goodpt.dat”; (*good data file#)
filename2 = "badpt.dat”; (*error record filex)
filenamed = "corectp6.dat” ; (*corrected and merged data file*)
maxcadets = 99; (kmaximum number of cadet recorde¥)
one = 1; (*minimum number of cadet records*)
blank =" (¥blank character*)
Type
count. = string[2]; (*record count numbers)
numssn = string[11]; (*cadet SSN*)
personname = string[27]; (*cadet name¥*)
number = integer; (*hs ranking/number in he class*)
cadet. = record (*cadet record#*)
k : count;
ssn ! Numssn;
name ! personname,
herank : number;
hsnum : number;
end;
cadetrec = array[one..maxcadetzs] of cadet; (*array of cadet records*)
Var
filel, file2 : text; (¥files to be read by the program*)
master : text; (%file to be written by the program¥)

bufferl, buffer? : cadetrec; (*variable of type cadetrec*)

Procedure GoodData(var countl, 1 : integer; var bafferl : cadetrec;
var master, filel : text);

(* This procedure writes the records from the good data file to the %)
(* corrected data file. %)

begin (¥ GoodData *)
countl := countl + 1; (¥increment the record count*)
write(master,bufferifil.k,” ~,bufferi[i].ssn,bufferili].name);
writeln(master,bufferi{i].hsrank:4," ",bufferl[i].hsnmuum:4);
i :=1+1; (¥*increment counterk)

108

resd(filel,afferi[i]). .k, mafferii].sen, bafferi{i] . name);
readin(filel, bafferi[i] . horark, afferl{i].hsma);
end; (¥ GoodData *)

Procedure BadData(var count2, j @ integer; var buffer? : cadetrec;
var master, fileZ : text);

(¥ This procedure writes the records from the corrected error record file x)
(* to the corrected data file. *)

begin (¥ BadData %)
countZ = countZ + 1; (*increment the record count#)
write(master,buffer2[jl.k,” ~,affer2[j].ssn,buffer2{jl.name);
writeln(master,buffer2{j].hsrank:4," ~,buffer2{j].hsnum:4);
J = J 4+ 1; (*increment caunterk)
read(fileZ,buffer2{j].k,buffer2[j].ssn,buffer2[j].name);
readln(file2,buffer2{ j].hsrank,buffer2[j].hanum};

end; (% BadData *)

Procedure Merge(var filel, file2, master : text);

(¥ This procedure merges the good data file and the corrected error record ¥)
(x file into a corrected good data file in the correct numeric sequence, *)

Var
i, j, coantl, count2, countld : integer; (*counters*)
bufferl, buffer: : cadetrec; (¥variables of type cadetrec*)

begin (¥ Merge ¥)
countl := 0; (*initialize variable¥)
count2 := (; (*initialize variablex*)
contd := 0; (¥*initialize variable¥)
i :=1; (xinitialize variablex)
J = 1; (¥initialize variablex)
read(filel ,bufferifi].k,bufferi(i].san,bufferi[i].name);
readIn(filel,bufferi(i].hsrank,bufferi{i].hsnum);
read(fileZ,buffer2{ j].k,buffer2{ j].sasn,buffer2[jl.name);
readln(file2,buffer2[j].hsrank,buffer2[j].hsnum);
repeat
begin (*loop to merge two filesx)
if (bufferi{i]}.k = blank) and (buffer2[j].k = blank) then
bagin (*¥both files coritain no datax)
writeln(Both files are empty :50);
end
else if (buffer2[j]l.k = blank) then
begin (*all records are in the good data filex)
GoodData(countl, i, bufferl, master, filel);
end

109

else if (afferifil.k = blsnk) then
begin (¥all records are in the error record filex*)
BadDeta(count2, j, buffer2, muster, file2);
end
else if (bufferi[i]l.k < buffer2{jl.k) then
begin (*record in bufferl goes into correct filex)
GoodData(countl, i, bufferl, master, filel);
end
else if (bufferif{il.k > buffer2{j].k) then
begin (*record in buffer2 goes Into correct filex)
BadData(count2, j, buffer2, master, file2);
end
end;
count3d := countl + countl; (*records should equal value from int. file*)
until (bufferifi].k = blank) and (buffer2[jl.k = blank); (*both filee empty*)
writeln('Number of Records Read Equals ":55, count3);
end; (¥ Merge %)

begin (¥ main application - LogicallnconsistencyMergeData *)
clrscr; (*clear the screenx)
assign(filel,filenamel);
reset(filel); (*reset the filex)
assign(file2,filename?2);
reset(file2); (*reset the filex)
assign(master,filename3);
rewrite(master); (kurite to a file¥)
writeln(Merging Started :48);
Merge(filel,fileZ,master);
writeln("END of APPLICATION" :50);
close(filel); (*close the filex)
close(file2); (*close the filex)
close(master); (¥close the filex)
end. (¥ main application - LogicallnconzistencyMergeData ¥*)

110

APPENDIX C
SPECIFIC METHOD FILES

The output that follows was generated by running the application
program3s from Appendix B on fictitious data files. The made-up data
files were used for two reasons: First, to ensure the programe
worked properly, and second, to provide representative examples of
errors the programs could detect. The programs were alsc nn on
actual USMA data files. The results from these runs can be found in
Chapter Seven.

A. OQut-of-Range Values

Int liate File
394529826 HENDRICKSON MARK R 73185M681103
310708602 O'KEEFE KATHLEEN M 67030F680515
123456789 PONGSUWAN WUTTIPONG O 64145M690325
987654321 HENDRICKSON BETTE J 65142F710221
5565121234 HENDRICKSON ROBERT E T1245M690713
415981243 CONNER RYAN C 63109M730627

3 123456789 PONGSUWAN WUTTIPONG O 64145M690325
5 555121234 HENDRICKSON ROBERT E T1245M690713
Error Record File

1 394529826 HENDRICKSON MARK R 83185M681103
2 310708602 O KEEFE KATHLEEN M 67090F580515
4 987654321 HENDRICKSON BETTE J 65142 710221
6 415981243 CONNER RYAN C 63 99M830627
Exrror Message File
Height value out-of-rangs! Check height for record 1.
394529826 HENDRICKSON MARK R 83

Birthdate value out-of-range! Check birthdate for record 2.
310708602 O KEEFE KATHLEEN M 580515

Sex value out-of-range! Check sex for record 4.
987654321 HENDRICKSON BETTE J

111

Weight value out-of-range! Check weight for record 6.

415981243 CONNER RYAN C a9
Birthgiate value out-of-range! Check birthdate for record
415981243 CONNER RYAN C 830627
Corrected Good Data File

1 394529826 HENDRICKSON MARK R 73185M681103

2 310708602 O KEEFE KATHLEEN M 6T7090F630515

3 123456789 PONGSUWAN WUTTIPONG O 64145ME90325

4 987654321 HENDRICKSON BETTE J 65142F710221

5 555121234 HENDRICKSON ROBERT E 71245M690713

6 415981243 CONNER RYAN C 63109M830627

Incompatible Data Types

AS90408656 RITTER JACK L
2B9178539 JOHNSON JERRY J
59C50362(0 BOONE DANIEL A
608D17163 MARTIN FRANK P
1646 8133 DUDEK ROBERT H
46333E439 WIEMER JCHN S
080-50-7T0ZZCOWBOY CLINT E
343-6W-0455DAVENPORT ALLEN M
480-13-9999NEWMAN TIMOTHY C
455113460 MERRITT RICHARD R
437881234 ANDERSEN JAMES J
50355189 NORMAN BUDDY L

Good Data File

9 480-13-9999NEWMAN TIMOTHY C
10 455113460 MERRITT RICHARD R
11 437881234 ANDERSEN JAMES J

A90408656 RITTER JACK L
2B9178539 JOHNSON JERRY J
59C503620 BOONE DANIEL A
608D17163 MARTIN FRANK P
1646 9133 DUDEX ROBERT H
46333E439 WIEMER JGHN S
080-50-70ZZCONBOY CLINT E
343-6W-0455DAVENPORT ALLEN M
50355189 NORMAN BUDDY L

Error Message File
Error in SSN - position 1. Check SSN for record 1
A90408656 RITTER JACK L

NO-JOONBWN -

[y

112

&I

Error in SSN - position 2. Check SSN for record
2B9178539 JOHNSON JERRY J

[93)

Error in SSN - position 3. Check SSN for record
59C503620 BOONE DANIEL A

N

Error in SSN - position 4. Check SSN for record
608D17163 MARTIN FRAMK P

Error in SSN - position 5. Check 88N for record
1646 9133 DUDEK ROBERT H

©wm

Error in SSN - position 6. Check SSN for record 6
46333E439 WIEMER JOHN S

Error in SSN - position 10. Check SSN for record 7
080-50-70Z22 COWBOY CLINT E

Error in SSN - position 11. Check SSN for record 7
080-50-T7T0Z2 COWBOY CLINT E

Error in SSN - position 6. Check SSN for reccord 8
343-6W-0455 DAVENPORT ALLEN M

Error in SSN - position 1. Check SGN for record 1Z
503565189 NORMAN BUDDY L

Corrected Good Data File
290408656 RITTER JACK L
239178539 JOHNSON JERRY J
599503620 BOONE DANIEL A
608217163 MARTIN FRANK P
164699133 DUDEK ROBERT H
463330439 WIEMER JOHN S
080-50-7099COWBOY CLINT E
343-65-0455DAVENPORT ALLEN M
480-13-9999NEWMAN TIMOTHY C
455113460 MERRITT RICHARD R
437881234 ANDERSEN JAMES J
150355189 NORMAN BUDDY L

-
DO AN B WN -

—
BN =

Redundancies

Intermediate File

394529826 HENDRICKSON MARK R 73181
310708602 HENDRICKSON KATHLEEN O 67110
454632123 OQ'KEEFE SUSAN L 65135
123456789 PONGSUWAN WUTTIPONG O 65150

113

Good Dats File
2 310708602 HENDRICKSON KATHLEEN O 67110

1 394529826 HENDRICKSON MARK R 73181

3 454632123 (O KEEFE SUSAN L 65135

4 123456783 PONGSUWAN WUTTIPONG O 65150

Exrror Message File
Weight values are different! Check data for record 1.
394529826 HENDRICKSON MARK R 181

The cadet candidate weight value iz equal to 180.

No match for record 3 found in the Cadet Candidate file.
Please validate the height and weight for 454632123
O"KEEFE SUSAN L 651356

No match for record 4 found in the Cadet Candidate file,
Please validate the height and weight for 123456782

PONGSUWAN WUTTIPONG O 65150

C ~ted Good D Fil
1 394529826 HENDRICKSON MARK R 73180
2 310708602 HENDRICKSON KATHLEEN O 67110
3 454632123 O’KEEFE SUSAN L 65125
4 123456789 PONGSUWAN WUTTIPONG O 65145

Referential Integrity

Intermediate File
394529826 HENDRICKSON MARK R I4
312455432 O'KEEFE GLORIA S GG
310708602 O 'KEEFE KATHLEEN M A3
123456783 PONGSUWAN WUTTIPONG O H1
987654321 CONNER RYAN C E8
555001212 BADAGNANI DAVID J Cz2
410453178 O'KEEFE LOUIS J B4
333333333 HENDRICKSON R E
666666666 CLAUS SANTA J 24
787878787 MCLEAN WILLIAM T 3B
Good Data File
1 394529826 HENDRICKSON MARK R I4
3 310708602 O'KEEFE KATHLEEN M A3
4 123456789 PONGSUWAN WUTTIPONG O H1
6 555001212 BADAGNANI DAVID J c2
T 410453178 O'KEEFE LOUIS J B4

8 333333333 HENDRICKSON R E

114

Exrror Record File

2 312455432 (O KEEFE GLORIA S GG
5 987654321 CONNER RYAN C E8
9 666666666 CLAUS SANTA J Z4
10 787878787 MCLEAN WILLIAM T 3B
Exror Message File

Value for Cadet Company is incorrect!
Check data for record 2 312455432 (KEEFE GLORIA S

Value for Cadet Company is incorrect!
Check data for record 5 987654321 CONNER RYAN C

Value for Cadet Company is incorrect!
Check data for record 9 666666666 CLAUS SANTA J

Value for Cadet Company is incorrect!
Check data for record 10 787878787 MCLEAN WILLIAM T

394529826 HENDRICKSON MARK R 14

1

2 312455432 O’KEEFE GLORIA S G1
3 310708602 O KEEFE KATHLEEN M A3
4 123456789 PONGSUWAN WUTTIPONG O Hl
5 987654321 CONNER RYAN C E2
6 555001212 BADAGNANI DAVID J cz
7 410453178 O’KEEFE LOUIS J B4
8 333333333 HENDRICKSON R E

9 666666666 CLAUS SANTA J A4
10 787878787 MCLEAN WILLIAM T B3

Entity Integrity

Intermediate File
394529826 HENDRICKSON MARK R
O"KEEFE GLORIA S

310708602
123456789
987654321
5565001212
410453178
394529826
111111111
787878787
394529827

O’KEEFE KATHLEEN M
PONGSUWAN WUTTIPONG O
CONNER RYAN C
BADAGNANI DAVID J
O’RKEEFE LOUIS J
HENDRICKSON R E
CLAUS SANTA J

MCLEAN WILLIAM T
HENDRICKSON TCDD R

116

Good Daty File

310708602 O KEEFE RATHLEEN M
123456789 PONGSUWAN WUTTIPONG O
987654321 CONNER RYAN C
555001212 BADAGNANI DAVID J
410453178 O KEEFE LOUIS J
394529826 HENDRICKSON R E
111111111 CLAUS SANTA J
787878787 MCLEAN WILLIAM T
394529827 HENDRICKSON TODD R

= OWO~TDOMbW

-

Error Record File
1 394529826 HENDRICKSON MARK R

2 O"KEEFE GLORIA S
Error Messnge File

Cadet SSN is redundant.
Check data for record 1 394529826 HENDRICKSON MARE R
with record 8 394529826 HENDRICKSON R E

Cadet SSN is field is null.
Check data for record 2 O REEFE GLORIA 3
Corrected Good Data File

394529825 HENDRICKSON MARK R

3015566782 O°KEEFE GLORIA S

310708602 (O KEEFE KATHLEEN M

123456789 PONGSUWAN WUTTIPONG O

987654321 CONNER RYAN C

55500011212 BADAGNANI DAVID J

410453178 O KEEFE LOUIS J

394529826 HENDRICKSON R E

111111111 CLAUS SANTA J

10 787878787 MCLEAN WILLIAM T

11 394529827 HENDRICKSON TODD R

WO -JOH WM =

Logical Inconsistencies

Intermediate File

394529826 HENDRICKSON MARK R 26 350
310991234 C(O'KEEFE GLORIA S 1 47
310708602 O KEEFE KATHLEEN M 3 400
123456789 PONGSUWAN WUTTIPONG O 1110 300
987654321 CONNER RYAN C 41 98
565001212 BADAGNANI DAVID J 67 135
410453178 OKEEFE LOUVIS J 8 27
394529829 HENDRICKSON ROBERT E 120 13
111111111 CLAUS SANTA J 1 1
787878787 MCLEAN WILLIAM T 511 575
394529827 HENDRICKSON TODD R 150 295

116

Good Dxta File

1 394529826 HENDRICKSON MARK R 26 350
2 310991234 (O’KEEFE GLORIA S 1 47
3 3107uv8602 (O 'KEEFE KATHLEEN M 3 400
5 987654321 CONNER RYAN C 41 8
6 555001212 ~BADAGNANI DAVID J 67 13&
7 410453178 O°KEEFE LOUIS J 8 27
9 111111111 CLAUS SANTA J 1 1
10 787878787 MCLEAN WILLIAM T bi1 575
11 394529827 HENDRICKSON TODD R 150 295
4 123456789 PONGSUWAN WUTTIFONG O 1110 300
8 394529829 HENDRICKSON ROBERT E 120 13

Error Messase File
Cadet HS rank is greater than the number in the HS
class. Check data for record 4
123456732 PONGSUWAN WUTTIPONG O

1110 300

Cadet HS rank is greater than the number in the HS

class. Check data for record 8

394529829 HENDRICKSON ROBERT E 120 13

Corrected Good Data File
1 394529826 HENDRICKSON MARK R 26 350
2 310991234 (Q'KEEFE GLORIA S 1 47
3 310708602 (O KEEFE KATHLEEN M 3 400
4 123456782 PONGSUWAN WUTTIPONG O 300 1300
5 987654321 CONNER RYAN C 41 98
6 5550011212 DPADAGNANI DAVID J 67 135
7 410453178 (Q°KEEFE LOUIS J 8 27
8 394529829 HENDRICKSON ROBERT E 13 120
9 111111111 CLAUS SANTA J 1 1
10 787878787 MCLEAN WILLIAM T 511 57&
11 394529827 HENDRICKSON TODD R 150 295

117

graduating

graduating

LIST OF REFERENCES

. Elmasri, R., and Navathe, S. B., Fundamentals of Database Systems, The Ben-
jamin/Cummings Publishing Company, Inc., 1989.

. Guilmette, D. J., and Wilson, G. P., The West Point Database Conversion Project
From a Network to a Relational DBMS, Master’s Thesis, Naval Postgraduate
School, Monterey, California, June 1990.

. Date, C. J., An Introduction to Database Systems, Volume II, Addison-Wesley
Publishing Company, 1983.

. Date, C.J., An Introduction to Database Systems, Third Edition, Addison-Wesley
Publishing Company, 1981.

. Department of the Army, United States Military Academy Regulation 25-5,
Information Management Systems, West Point, New York, 11 August 1989.

. Department of the Army, United States Military Academy Cadet Information
Database Dictionary, West Point, New York, 18 December 1989.

. Department of the Army, United States Military Academy Academic Program
AY 1989-1990, West Point, New York, December 1989.

118

INITIAL DISTRIBUTION LIST

. Defense Technical Information Center

Cameron Station
Alexandria, Virginia 22304-6145

. Library, Code 0142
Naval Postgraduate School
Monterey, California 93943-5002

. Chairman, Code CS

Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000

. Dr. Vincent Y. Lum

Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000

. Dr. C. Thomas Wu

Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000

. CPT Mark R. Hendrickson

P.O. Box 432
Gallatin, Tennessee 37066

. Mr. Robert W. Nelson

United States Military Academy
ATTN: MAIM-CD
West Point, New York 10996-2001

. CPT Daniel J. Guilmette

Box 2800
Chapel Road
Bennington, Vermont 05201

119

9. CPT Georgette P. Wilson
98-1881-D Kaahumanu Street
Aiea, Hawaii 96701

120

