
NAVAL POSTGRADUATE SCHOOL
Monterey, California

DTIC
r ELECTESA 0F~ 5 191]

THESIS B
II

A METHODOLOGY FOR HANDLING DATA
ERRORS AND INCONSISTENCIES

IN DATABASE CONVERSIONS

by

Mark Robert Hendrickson

June 1990

Thesis Advisor: Vincent Y. Lum

Approved for public release; distribution is unlimited.

91 2 28 052

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
)a. REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

2b. DECLASSIFICATION/ DOWNGRADING SCHEDULE Approved for public release;
distribution is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If epplicable)

Naval Postgraduate School I Code 37 Naval Postgraduate School
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, California 93943-5000 Monterey, California 93943-5000
Ba. NAME OF FUNDING/SPONSORING l8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)

c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM IPROJECT ITASK IWORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11 TITLE (Include Security Classification)

A METHODOLOGY FOR HANDLING DATA ERRORS AND INCONSISTENCIES IN DATABASE CONVERSIONS
12. PERSONAL AUTHOR(S)
Hendrickson, Mark Robert
13a. TYPE OF REPORT 13b. TIME COVERED 154. DATE OF REPORT (Year,Month,Day) I1S. PAGE COUNT
Master's Thesis I FROM TO 1990 June 1128
16. SUPPLEMENTARY NOTATION
The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
17. CO"ATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)FIELD GROUN SUB-GROUPII

Database conversion; integrity constraints; errors;
inconsistencies; DBMS.

19. ABSTRACT (Continue on reverse if necessary and identify by block number) A database management system (DBMS) can
have numerous errors and inconsistencies in its data. Examples of errors and inconsistencies
that may be contained in a DBMS are: Referential integrity violations, logical inconsisten-
cies, redundancies and out-of-range values. During a conversion of database management
systems, the errors and inconsistencies in the source system must be corrected so the data
entered into the new target DBMS will be accurate. The goal of this thesis is to examine a
source database management system to determine what errors and inconsistencies are possible,
to propose a methodology to detect them, and to cor.:ect such errors and inconsistencies prior
to entering the data into the target DBMS. In applying my proposals, the thesis will examine
the specific systems utilized by the United States Military Academy (USMA) at West Point,
New York. The Academy uses a UNISYS 1100/72 mainframe computer in support of its existing
network model DBMS. West Point proposes to convert from its current network model to a
relational model system. The thesis will also address the general applicability of this
methodology to other database management system conversions.

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
r3UNCLASSFIEDIUNLIMITED 0 SAME AS RPT. 0 DTIC USERS lUnclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) s2c. OFFICE SYMBOL

kincent Y. Lum 408-646-3091 Code 52Lm
DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete .S. 0 Pinting ofim. 1SSS -24.

Unclassified

Approved for public release; distribution is unlimited.

A METHODOLOGY FOR HANDLING DATA
ERRORS AND INCONSISTENCIES

IN DATABASE CONVERSIONS

by

Mark Robert Hendrickson
Captain, United States Army

B.S., Middle Tennessee State University, 1979

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1990

Author: ' bw U(4 " Srv,.

Mark Robert Hendric n

Approved By: Z
Vincent Y. L , Thesi Advisor

C. Thomas Wu, Se o

Robert B. McGhee, Chairman
Department of Computer Science

ii

ABSTRACT

A database management system (DBMS) can have numerous errors and inconsis-

tencies in its data. Examples of errors and inconsistencies that may be contained in a

DBMS are: Referential integrity violations, logical inconsistencies, redundancies and

out-of-range-data values. During a conversion of database management systems, the

errors and inconsistencies in the source system must be corrected so the data entered

into the new target DBMS will be accurate.

The goal of this thesis is to examine a source database management system to

determine what errors and inconsistencies are possible, to propose a methodology to

detect them, and to correct such errors and inconsistencies prior to entering the data

into the target DBMS. In applying my proposals, the thesis will examine the specific

systems utilized by the United States Military Academy (USMA) at West Point, New

York. The Academy uses a UNISYS 1100/72 mainframe computer in support of its

existing network model DBMS. West Point proposes to convert from its current

network model to a relational model system. The thesis will also address the general

applicability of this methodology to other database management system conversions.

Accession Pp_

NTIS GRA&I
DTIC TAB 0
Unannounced
Justifioatlon

By

Distributlon/

Availability Cos
jAvail and/or

Dist I Special

ii3

TABLE OF CONTENTS

I. INTRODUCTION 1

II. COMMON DATA ERRORS AND HOW TO DETECT AND CORRECT THEM 4

A. INTRODUCTION 4

B. CAUSES OF COMMON DATA ERRORS 5

C. HOW TO DETECT COMMON DATA ERRORS 9

D. HOW TO CORRECT COMMON DATA ERRORS 10

E. CONCLUSION 11

III. COMMON INTEGRITY CONSTRAINTS AND INCONSISTENCIES 12

A. INTRODUCTION 12

B. INTEGRITY CONSTRAINTS 13

C. LOGICAL INCONSISTENCIES 17

D. CONCLUSION 19

IV. SPECIFIC APPLICATIONS OF THE WEST POINT SYSTEM 20

A. INTRODUCTION 20

B. BACKGROUND 21

C. DIRECTOR OF ADMISSIONS 22

D. OFFICE OF THE DEAN 24

E. COMMANDANT, UNITED STATES CORPS OF CADETS 25

F. CONCLUSION 27

V. POTENTIAL ERRORS, INTEGRITY CONSTRAINT VIOLATIONS AND
INCONSISTENCIES IN THE WEST POINT SYSTEM 28

A. INTRODUCTION 28

iv

B. COMMON DATA ERRORS 29

1. Out-of-Range Values 29

2. Incompatible Data Types 32

3. Subset-Set Discrepancies 34

4. Redundancies 35

5. Arithmetic Errors 37

C. INTEGRITY CONSTRAINT VIOLATIONS 38

1. Entity Integrity Constraints 38

2. Referential Integrity Constraints 39

D. LOGICAL INCONSISTENCIES 41

E. CONCLUSION 43

VI. PROPOSED METHOD OF RESOLVING THE ISSUES 45

A. INTRODUCTION 45

B. GENERAL METHODOLOGY 45

C. SPECIFIC METHOD 49

D. IMPLEMENTATIONS 51

1. Out-of-Range Values 51

2. Incompatible Data Types 52

3. Redundancies 52

4. Referential Integrity 53

5. Entity Integrity 54

6. Logical Inconsistencies 54

E. CONCLUSION 55

VII. CONCLUSIONS AND RECOMMENDATIONS 56

APPENDIX A: USMA FIELD IDENTIFIERS NOT DESCRIBED IN TEXT 59

APPENDIX B: APPLICATION PROGRAMS 66

v

APPENDIX C: SPECIFIC METHOD FILES 111

LIST OF REFERENCES 118

INITIAL DISTRIBUTION LIST 119

vi

ACKNOWLEDGMENTS

I wish to thank Dr. Vincent Y. Lum for his support and guidance as my advisor

throughout the past year. His helpful assistance during my project has been im-

measurable. Not only is Dr. Lur an internationally known computer scientist, but h-.

is also a great teacher and friend.

I must also thank Mr. Bob Nelson and his DOIM-CSD staff at West Point, New

York. Because of their efforts this project became reality.

Finally, and most importantly, I thank my wife, Kathy, for her patience and support

during our two years at the Naval Postgraduate School. As is always the case, without

her my personal achievements would not be possible.

vii

I. INTRODUCTION

Information is a primary product of our civilization. For business and industry,

information is synonymous with profitability. For service organizations and education-

al institutions, the method in which information is used directly influences efficiency

and quality of service. Whether it concerns finance, personnel, transportation, or

logistics, civilian and military organizations use database management systems to

organize information and power their organizations. Data from these numerous

information applications is created, observed and recorded on a daily basis. The

volume of this data is generally immense; therefore, the storage, maintenance and

retrieval of information is an enormous undertaking, and unmanageable if done

manually.

The benefit gained by organizations using computers to manage information for

various applications is enhanced by today's technology. When computers are used, the

data is entered directly into a database. Multiple users can access common informa-

tion simultaneously through an integrated database management system, improving

the efficiency of the organization and the consistency within its information base.

The United States Military Academy (USMA) at West Point, New York is an

organization that uses a database management system to manage its information.

Since its founding in 1802, the charter of USMA has been to educate, train and prepare

cadets to serve their country as military leaders. Maintaining information for the past

188 years, one can imagine the size to which the USMA database has grown and the

importance of preserving its data correctly. The USMA database is used for, among

1

other things, storing cadet personnel records, scheduling classes, and maintaining a

field force of USMA graduates for recruiting purposes. With the advent of technology

and the ultimate improvements in DBMS software, LSMA decided in 1989 to convert

from a network DBMS model (source system) to a relational DBMS model (target

system). In general, the source system is the one presently in use by an organization

while the target is the system to which the organization is converting. This thesis is not

intended to explain the different existing DBMS models or to address the rationale in

making such a change. Rather, it is intended to discuss error detection and correction

methods as applied to the USMA database management system in the conversion

process. Elmasri and Navathe [Ref. l:pp. 133-352] provides an excellent description

of existing DBMS models.

There are many problems to be faced by the USMA Database Administrator

(DBA) prior to converting to a different database management system. The first is to

ensure that erroneous data is not loaded from the old source system into the new target

system. I contend that numerous errors and inconsistencies potentially exist in any

source database management system. Some of these errors and inconsistencies are

quite simple in nature; for example, an out-of-range-attribute value, like age equal to

200. Others are more complex in that they involve logical inconsistencies in their

implications. In modern database management systems some of the errors can be

detected by the source DBMS. For example, attribute domains can be checked as they

are entered. In general, even modern database management systems do not check

logical inconsistencies and integrity constraint violations. For example, if an object in

one table (say, EMPLOYEE SSN) is referred to elsewhere in another table

(DEPENDENT ESSN), and the particular object being referred to (John Smith

123456789) is deleted, the database management system generally does not check the

2

validity of such an action. This action, however, will create a dangling reference, i.e.,

DEPENDENT ESSN no longer refers to an existing EMPLOYEE SSN with the same

value. More complex logical implications are generally not checked by any database

management system currently in existence. During the DBMS conversion process,

errors and inconsistencies must be detected and resolved prior to entering the data into

the new target system so that the data in the target system is accurate. Such error

detection and correction is the focus of this thesis.

A companion thesis [Ref. 2], written by fellow Naval Postgraduate School students

CPT Daniel Guilmette and CPT Georgette Wilson, centers around designing the

relational database schema for the USMA target system, developing a functioning

database prototype, and loading the prototype with USMA data for selected applica-

tions. Together these two theses mirror the process that any database conversion

should follow.

Following the Introduction to this thesis, Chapter Two describes examples of

common data errors and methods to detect and correct them. Chapter Three provides

an overview of common integrity constraint violations and inconsistencies. Chapter

Four discusses the specific applications of the USMA database management system.

Chapter Five reviews potential errors, integrity constraint violations and inconsisten-

cies contained in the USMA database system. Chapter Six describes a generalized

methodology for error checking and correction, provides a specific method for resolv-

ing the issues at hand, and presents selected examples of the implementation. The

final chapter includes conclusions and recommendations.

3

II. COMMON DATA ERRORS AND HOW TO DETECT AND CORRECT THEM

A. INTRODUCTION

The terms accuracy, validity and correctness, when used in DBMS contexts, relate

to the integrity of the data or information within a database management system.

Experience tells us that some degree of error and inconsistency invariably exists in the

data of a DBMS. This is true because the data contained in any DBMS is only as

accurate as the information entered and the degree of checks and control enforced by

the system. Since no person or system is infallible, errors occur. Consider a bank

statement or the automated personnel records maintained by employers. From time

to time we find errors. As customers we ask, "How is it possible that these errors exist

in what appears to be a sophisticated automated system?" Chapter Two of this thesis

will explore the circumstances that cause common data errors to occur.

To ensure the accuracy of the data in a DBMS, the database manager must

establish safeguards against invalid updates. Invalid updates result from data entry

errors, mistakes by system operators or application programmers, system-induced

errors, or security violations. Regardless of the cause of the error, the result to the

consumer, and often the organization, ranges from inconvenience to significant

monetary loss. Therefore, system managers are obligated to establish strategies for

minimizing data errors.

In this research many examples of common data errors have been found. Com-

mon data errors are normally easy for an individual to identify, but difficult for a

computer to detect. These common errors can be classified into five types: Out-of-

4

range values, incompatible data types, subset-set discrepancies, redundancies and

arithmetic mistakes.

B. CAUSES OF COMMON DATA ERRORS

Out-of-range-value errors occur in a variety of ways. The most frequent cause is

unintentional typographical mistakes. Potential errors of this form could result be-

cause a manager filled out a time card incorrectly or because a secretary could not read

the supervisor's writing. Such an unintentional mistake could !ead to an employee's

height being entered as 90 inches, when the correct value is 70 inches. Or the number

of hours worked entered into the system could be 95 when the actual hours worked by

the employee is only 45. In these examples, one could see how a seven could be

misread as a nine, or a nine mistakenly typed instead of a four. An out-of-range-value

error stays in the system when, during DBMS design, no specification is given to

constrain the range of values within the data type. This allows the system to accept any

entry which fits the particular data type. The value may be wrong, but the system

accepts it. This explains how intentional errors are allowed to occur. In tampering

with the system, an employee could alter his or her annual salary from $10,000 to

$100,000 simply by entering an additional zero. While such breaches occur infrequent-

ly, they are possible as a form of out-of-range-value error. When out-of-range-value

errors are entered and no constraints are specified in the system, the DBMS has no

mechanism for recognizing them as mistakes. As a result, these errors reside in the

system until some source outside the system identifies them for correction.

Incompatible data types may be present in the source system or may be en-

countered during conversion to the target system. They are caused by design

specification choices made by DBMS designers in both the source and target systems,

or through operational data entry errors. During the source DBMS specification,

5

designers may decide that a valid requirement exists to store specified fields in

separate files using different data types. This requirement is perfectly acceptable.

For example, in one file dates are represented by an alphanumeric data type in day,

month, year format (10Mar90), and in another file, the dates are represented by an

integer data type in month, day, year format (031090). Each file is independent of the

other with fields representing identical data. However, potential problems arise

when trying to compare the consistency of redundant fields with different data types.

Like comparing apples and oranges, it is difficult to check whether 10Mar90 and

031090 actually mean the same thing. Or perhaps one file will read 10Mar90 and the

other 031190. The original design decision to duplicate data fields with different data

types may lead to potential redundancy errors. In the previous example, one of the

dates is obviously incorrect. The problem then becomes deciding which value to

transform during conversion. This decision is complicated further when the target

system requires a completely different data type than either of those used in the

source system.

Operational data type errors occur because the data type selected during DBMS

design is subject to error without the user's knowledge. In many cases, the specific data

type may have been selected for a valid reason (it best meets the user's needs). For

example, the DBMS designer has a valid requirement for the social security number

(SSN) to be an 11 position alphanumeric field. This allows dashes to be entered as

separators (123-45-6789). Since dashes are alpha characters, this data type specifica-

tion enables operators to enter other alphabetic characters to the SSN field and

increases the possibility of errors (ABC-DE-FGHI). Such an entry is obviously

invalid, but it, or some more subtle error involving alphabetic characters, could occur

(123-45-678A) because of the data type specified. Additionally, because 11 characters

6

are specified, a SSN value could be way out of range (99999999999) again without the

operator realizing a mistake had been made. If these operational data type errors are

not corrected prior to conversion, they can be carried into the target system if the target

system calls for identical data types.

A third type of common data error is a subset-set discrepancy. These discrepan-

cies occur because the user decides during database design to maintain a shortened

version of a longer field, as well as the longer field. In the military, for example, an

individual's complete social security number is stored in the DBMS. However, in

retrieving data about the service member, the individual is most often asked to provide

only the last four digits of the SSN together with his or her name. The last four, as the

military calls it, is a subset of the larger SSN set. Another example occurs in storing

names in a DBMS. A full or long name, such as John David Smith, is often stored in

one file with a short name, like Smith John D stored in another file. The long name

would be used for formal references, as in diplomas, certificates or awards, while the

short name would be used for other applications, such as the paycheck or a course

roster. Again, the short name is a subset of the long name set. The problem associated

with subset-set discrepancies is that similar data is stored in two places, a duplication

that may lead to potential error. Errors occur when one field is changed or updated,

leaving the other field in an inconsistent state, or when either the set or subset field has

been incorrectly entered into the system.

Redundancy of data, which was alluded to in the previous paragraphs, means the

same data is stored in two or more places. Redundancies lead to several problems:

First, identical data must be entered multiple times, once for each file containing the

redundancy. Second, storage space is wasted because the same information is main-

tained in several locations. The third and most serious problem is that files containing

7

the same information can easily become inconsistent. This inconsistency occurs when

one file is updated and another is not. For example, two files contain names and

addresses for employees. In one file, a change is made to an employee's address, while

the other file remains unchanged. As a result, the address of the employee is inconsis-

tent among the files.

A fifth category of common data errors, arithmetic errors, occur when there are

mistakes in the routine the system follows to compile data for a specific field. For

example, when a graduate student sees that his or her graduate-level grade point

average (GPA) is equal to 3.52, how does the student know whe'her this value is

correct? To check its accuracy, the student could add the graduate level quality points

earned and divide by the total graduate hours passed. This exercise could be ac-

complished with a hand-held calculator in less then ten minutes. One would expect

this calculation to be a simple process for a database system. Yet, if the DBMS

mistakenly adds in undergraduate-level course grades, the graduate GPA value will be

in error. This error would also occur if individual grades are changed but the grade

point average is not recomputed.

The area of military logistics provides a second example of the importance of

maintaining accurate arithmetic fields. If the Army supply DBMS reflects that there

are 10,000 tanks in the active Army, how does the logistician know whether this value

is correct? Only by physically looking up each unit to determine how many tanks it has

on hand. This task would be monumental given the number of Army units with tanks

and the quantity of machinery assigned to each. The key to avoiding arithmetic errors

in a system is to ensure that the routine used to fill in a DBMS field is accurately

capturing the required data and that any change in the component data is followed by

recalculation of the arithmetic.

8

C. HOW TO DETECT COMMON DATA ERRORS

How are the common data errors mentioned above detected? Normally, data

errors are detected when someone complains, like the employee whose height is listed

as 90 inches instead of 70, or the senior logistician who states he is positive the correct

number of Army tanks is 12,000. It stands -o reason that most errors will be identified

by the person on whom the data is maintained or by the manager for a particular field

or record. But prior to DBMS conversion, procedures must be established to detect

errors not identified by a user or manager. Potential out-of-range-value fields can be

checked for accuracy upon entry in the source DBMS through the use of restrictive

data types and range constraints, if the system is so designed. For example, using

restrictive data types and range constraints, the computer could recognize a height of

100 inches or a grade of Z as an incorrect entry. However, most systems are not set up

initially to accomplish that function. In such cases these fields can be compared against

a target value range. For example, a GPA must range between 0.00 and 4.33. (A grade

of A + at the Military Academy earns a numerical value of 4.33 quality points.) A

comparison of the GPA field against the GPA range would be accomplished with the

aid of an application program written to perform this specific function. Out-of-range-

value errors would then be marked for correction.

A similar application program would be run on the fields where possible incom-

patible data types are found. In the source system, this program would be required to

convert redundant fields with different data types so that the data could be compared

for consistency. Data with different data types must be converted into a common

format for comparison and checking. Also, this program would check the SSN to

ensure that it contained nine integer digits with dashes in the correct positions. If

9

required by the target DBMS, it could then remove these dashes for loading into an

intermediate file. Again, errors would be marked for correction.

The subset-set discrepancy can be checked, again through an application routine,

to ensure that each subset mirrors a like part of the set. For example, the last four

subset would be checked to ensure it matches exactly the corresponding positions in

the complete SSN set. Errors would be corrected prior to conversion.

Redundancies can be checked through the use of an application program to see

that all redundant fields contain identical information. The application program

would read each file that contained duplicate fields and compare the fields of cor-

responding records for accuracy. Errors would be marked for validation and correc-

tion.

Arithmetic fields would be checked to ensure the method used to calculate the

field is accurate. In the GPA example, a program could be run that actually calculates

the GPA based on the student's grades and then compares that value against the

DBMS calculated field. This program could confirm the DBMS calculation to be

correct.

D. HOW TO CORRECT COMMON DATA ERRORS

Once the common data errors have been detected and the information validated,

what means exist to correct them? Manual correction is the most common method for

rectifying errors. Manual correction is used when the end user complains of a mistake

in the DBMS. This seems to be the most immediate and least costly way to achieve

DBMS accuracy, and most of the time this may be the only way.

A second method for error correction is called the "majority rules" method. In this

method, the DBMS is asked to determine whether there may be other fields that store

the same information. If there are, the DBMS corrects the field with the error to

10

be consistent with the data in the majority fields. For example, three fields contain the

SSN. One SSN field is detected to have an error, so it is updated with the data from

one of the majority fields. This method saves operator time but does not allow for cases

where the minority field houses the correct value. This entire issue is resolved if tl-e

DBMS is designed so that only one field contains the SSN. In this case redundancies

cannot occur. Guilmette and Wilson's target database design [Ref. 2] supports the

redundancy issue by not allowing duplicate fields.

A final error correcting mecharn ,m would be to build a generic knowledge-based

expert system that would essentially do all the correcting work for the user. This expert

system would be built on a set of facts. If it encountered an out-of-range-value error,

it could analyze the problem, see how it handled the problem previously, and take

corrective action. This type of system sounds quite pleasing but would be very expen-

sive. Its drawback being that it would be designed for a specific DBMS conversion,

used one time, and then discarded. Additionally, the expert system does not guarantee

accurate data in all cases. For example, two files contain identical first and last names,

SSN and addresses. Obviously the individuals in the records are the same person. But

the names have different middle initials. The expert system would not be able to tell

which record was the correct one. At best, it would have to guess.

E. CONCLUSION

The preceding paragraphs have offered several examples of common data errors

that may exist in a DBMS. This is only a brief list of potential errors. There are many

more. The key point is that any DBMS has a potential for errors. The database

manager must implement methods to detect and correct them prior to conversion to

the target system.

11

III. COMMON INTEGRITY CONSTRAINTS AND INCONSISTENCIES

A. INTRODUCTION

A database management system is designed to depict relationships that exist in the

real world. For example, in a business application, relationships exist between

employees and the departments to which they are assigned, between departments and

the projects they administer, and between departments and their specific locations. In

many cases, however, there are conditions that exist in the real world that cannot be

stated explicitly in a relation as part of the DBMS. These conditions are known as

integrity constraints. The purpose of an integrity constraint is to state the conditions

among the different relations in the DBMS that are necessary due to policy, fact or

logic. Integrity constraints are used in the DBMS to keep inconsistencies from occur-

ring in the data. The importance of integrity constraints cannot be overstated. Date

suggests that the specification of integrity constraints could account for as much as 80

percent of a typical DBMS description [Ref. 3:p. 36].

This chapter discusses the different types of integrity constraints available in most

modern database management systems and reviews several examples of logical im-

plications that cannot be enforced automatically by the DBMS. As was the case in

Chapter Two, these integrity constraints must be checked and the data validated prior

to moving the data from the source to the target DBMS. Since most database manage-

ment systems do not support automatic enforcement of most integrity constraints, it

becomes extremely important that data be checked for consistency before conversion.

12

B. INTEGRITY CONSTRAINTS

Integrity constraints serve a vital purpose within the DBMS. They provide a

means of ensuring that changes made to information in the database will not result in

a loss of data consistency. When the DBMS designer develops schemata for an

application, one of the most important activities is to define the conditions, or integrity

constraints, that must hold on the database. The designer would like to specify as many

of the conditions as possible to the DBMS, and if possible, have the DBMS assume

responsibility for automatically enforcing them. Problems arise, however, because

there exists no automatic enforcement for most types of integrity constraints by the

DBMS.

One type of integrity constraint that normally is considered part of the DBMS is

called an entity integrity constraint. The idea behind the entity integrity constraint is

that a primary key for a relation cannot contain a null value. This is a very important

point. Primary keys perform a unique identification function between the individual

objects in a relation. A primary key is a field (or attribute) whose values uniquely

identfy an object (or tuple), i.e., social security number, employee number, part

number, etc. A primary key value that was null would mean that there was an object

that did not have a unique identification. This object would not be distinguishable

from other objects; and if two objects are not distinguishable from each other, then

there are not two objects but only one [Ref. 4:p. 89]. For example, in the student

relation SSN is designated as the primary key and null values are allowed. Two

students named Smith and Jones are part of the student relation with null values stored

as their SSNs. Because Smith and Jones' primary keys are not distinguishable, a

change to Smith's record would also map to Jones' record.

13

Let us examine entity integrity from another perspective. To allow a primary key

to store null values, or any non-unique (identical) values, violates the basic definition

of a relation. A relation is defined as a set of tuples. Since all elements of a set must

be distinct, all tuples in a relation must also be distinct. This means that no two tuples

can have the same combination of values for all their attributes [Ref. l:p. 141]. More

importantly, for a given relation, a primary key value must uniquely and functionally

determine all the other attribute values in the relation for this tuple. This dependence,

called functional dependence, forms the theoretical foundation of relations and cannot

be violated. If the primary key (e.g., SSN) can contain null values, two distinct tuples,

say John Brown and George Johnson, will mean that a given primary key, namely null

values, map to both John Brown and George Johnson. Such existence totally violates

the functional dependency concept and cannot be allowed.

A second type of integrity constraint that normally is not part of the DBMS is

known as a referential integrity constraint. This constraint is specified between two

relations, whereas entity integrity constraints are specified on an individual relation.

Referential integrity constraints are used to maintain consistency among the tuples of

the relation. In general, the referential integrity constraint states that a tuple in one

relation that refers to another relation must refer to an existing tuple in that relation.

A more formal definition of referential integrity is provided by Date:

Let Ri be a relation with an attribute A that is defined on a primary domain D. At any given
time, each value of A in R1 must be either null or equal to V, where V is the primary key value of
some tuple in another relation R2 (RI and R2 are not necessarily distinct) with primary key defined
on D [Ref. 4:p. 891.

An example of referential integrity constraints is displayed in Figure 1. Referen-

tial integrity constraints can be displayed by drawing an arc from a relation tc the

relation it references (or refers to).

14

In database management systems there can be many referential integrity con-

straints. To specify these constraints, database designers must have a thorough under-

standing of the meaning that each attribute plays in the different schemata of the

database.

STUDENT

NAME SSN BIRTHDAY ADDRESS SEX ADVlSORSSN DNO

DNAME DNME HRMNS ARSAR-D

DEPARTMENT-LOCATIONS

DUNUMBER DLOCATIONS

THESIS

WORKS-ON

DEPENDENTS

SS N DEPENDENT-NAME SEX BIRTHDATE RELATIONSHIP7

Figure 1. Referential Integrity Constraints from the University Database Schema.

Let us look at some examples of referential integrity. Consider the university

database of Figure 1. In the STUDENT relation, the attribute DNO references the

15

DEPARTMENT where a student is assigned (like the Computer Science Depart-

ment). This means the value of DNO in any tuple ti of the STUDENT relation must

match a value of the primary key of the DEPARTMENT relation, the DNUMBER

attribute, in some tuple tj of the DEPARTMENT relation. Or the value of DNO can

be null if the student does not yet belong to an academic department. If tuple ti of the

STUDENT relation has a DNO attribute value equal to 368, one would expect to see

a tuple in the DEPARTMENT relation with a DNUMBER value equal to 368. In this

example, the referential integrity constraint would hold.

The reader may ask "What is the significance of referential integrity constraints?"

Consider a second example, again using Figure 1. In the DEPENDENTS relation, the

attribute SSN refers to the STUDENT SSN that the DEPENDENT is a dependent of.

Let's say that Kathy O'Keefe (with SSN equal to 123456789) was a student at the

university. Her personal information would be contained in the STUDENT relation

of the university database. Let's also assume that Kathy has two dependents named

Mike and Katelyn. These two dependents of Kathy's would be part of the DEPEND-

ENTS relation. Kathy's SSN would be stored in the DEPENDENTS relation as a

reference to her SSN in the STUDENT relation. If Kathy were to leave the university

and her tuple is deleted in the STUDENT relation, but her dependents were still part

of the database, there would be no way to determine whose dependents they were.

This results in a dangling reference because DEPENDENTS SSN no longer references

an existing STUDENT SSN with the same value. The same sort of problem occurs in

the previous example if the department with a DNUMBER equal to 368 were to

disband, but the ti tuple of the STUDENT relation still refers to department 368.

Regardless of whether entity integrity and referential integrity constraints are

provided for by the DBMS, it is imperative to ensure that, prior to DBMS conversion,

16

both of these constraints are checked for consistency, validation as required, and

correction before moving information from the source to the target DBMS.

C. LOGICAL INCONSISTENCIES

The integrity constraints listed above exclude a much larger class of constraints,

known as logical or semantic integrity constraints. Examples of several simple, logical

integrity constraints (simple because they require accessing and checking only one

relation or file) are listed below:

1. Every graduate student must have a bachelors degree.

2. A student's age is non-decreasing.

3. The average annual salary of professors in the Computer Science Department is
between $40,000 and $45,000.

4. The number of female instructors is non-decreasing.

5. No student may graduate if his/her cumulative GPA is below 3.00.

More complex logical inconsistencies would require the access and checking of

two or more relations or files. Examples of complex logical integrity constraints that

require the checking of values in several relations are:

1. An employee's quarterly bonus is based on whether the employee meets his
personal quarterly sales quota, whether his particular department shows a profit
for the quarter, and if the corporation as a whole shows a quarterly profit. If
these conditions are met, then the present bonus can be no less than the bonus
from the corresponding quarter of the previous year.

2. A professor's gross annual earnings are based on a percentage of the monetary
value of research grants he receives for the year and whether this value is more
than the previous year, plus his base salary. For an energetic professor, these
research grants can be quite large. However, no professor may earn more than
the superintendent of the university.

This type of constraint should be specified during DBMS design and enforced

upon implementation. Unfortunately, there are few systems that automatically

17

support and enforce these logical integrity constraints. According to Elmasri and

Navathe, "support and enforcement of integrity constraints in general is a weak point

of many existing database management systems." [Ref. 1:p. 597] A select few systems

may provide some means of logical constraint enforcement through procedurally

coding the constraints, assertions and triggers.

Constraint coding can be accomplished in an efficient manner, but this technique

places a great burden on the programmer who must understand all the constraints a

transaction may violate. A tiny error or omission can lead to an inconsistency. Asser-

tions and triggers are appealing to users and programmers because of their simplicity

and flexibility. Unfortunately, both have proved to be difficult to implement due to

inefficient and complex integrity control subsystems. A more complete review of

constraint coding, assertions and triggers can be found in [Ref. l:pp. 599-602].

It should be apparent from the above discussion that due to the difficulty in

enforcing logical inconsistencies, an effort must be made prior to DBMS conversion to

first identify the logical integrity constraints that must hold on the system, and then to

develop application programs to support checking the potential logical inconsistencies.

As was the case with common data errors, logical inconsistencies can be marked for

validation and correction.

The task to identify the logical integrity constrairnts is in itself a complicated and

arduous undertaking. In any organization there may be a myriad of regulations and

rules of operation that are related to these constraints. In many cases, an

organization's rules are not explicitly stated; in fact, many times they are unwritten.

The mission of specifying the constraints the organization wishes to hold is a sig-

nificant task, and identifying the relations affected by the constraints is an even larger

one.

18

D. CONCLUSION

The paragraphs above have reviewed the ideas of integrity constraints and possible

logical inconsistencies that may occur in the DBMS. Significant numbers of potential

errors exist in this area. It is imperative, then, that the database manager review the

integrity constraints and logical implications that must hold on the database and take

steps to check them prior to moving the data to the target system.

19

IV. SPECIFIC APPLICATIONS OF THE WEST POINT SYSTEM

A. INTRODUCTION

The charter of the United States Military Academy is to prepare young men and

women to serve their country in uniform. Prior to acceptance into West Point, and

during the cadet's four years there, USMA maintains a multitude of data on every

student. The West Point database that maintains this information is called the Cadet

Information Database (CIDB). The purpose of this chapter is to .resent selected

specific applications from the CIDB. This information will establish the foundations

for Chapter Five's discussion of potential errors and inconsistencies contained in the

data from the CIDB. A complete application of the West Point system can be found

in Guilmette and Wilson's companion thesis [Ref. 2]. The task to develop the com-

plete USMA application was a joint effort (Hendrickson, Guilmette and Wilson). This

was a time and labor intensive endeavor given the amount of preliminary data gather-

ing, research and analysis requisite to developing the application. We estimate that at

a minimum, three months were spent trying to gain a thorough understanding of the

CIDB using the documents provided to us. This task was made especially challenging

by the absence of a USMA organizational manual to describe the functions of the

DBMS users, data dictionaries with cryptic, confusing or nonexistent comments, data

fields that were named in such a way that it was not obvious what the data field

represented, and in general, conflicting and inconsistent information contained in the

USMA reference documents.

20

B. BACKGROUND

The Computer Systems Division (CSD) of the Directorate of Information

Management (DOIM) is responsible for all USMA data processing. Included in this

broad mission statement is the responsibility to operate and maintain the CIDB. Three

organizations at USMA play a major role in updating the CIDB and are also

proponents for their specific areas of the CIDB. These three organizations are: The

Director of Admissions (DAD), responsible for recruiting future cadets to USMA;

The Office of the Dean (Dean), responsible for the normal registrar duties, like

scheduling courses, posting grades, and issuing transcripts; and the Commandant,

United States Corps of Cadets (USCC), responsible for military-related information,

such as personal data, military training received, leadership scores, athletic and

physical abilities, and disciplinary records. The Computer Systems Division works in

a direct support role with all three proponents to ensure that the CIDB is maintained

properly.

The recruiting mission of USMA and the Director of Admissions involves a

lengthy process that begins a year and a half before the class start date. In February of

each year DAD mails inquiries to approximately 60,000 potential applicants. From

April through March, application packets are returned to West Point. The number of

application packets is normally near 14,000. In December, a USMA admissions

committee meets to rank order the applicant packages received to date. In January

and February approximately 6,000 nominations are received from congress. Of the

6,000 applicants nominated, USMA selects approximately 1,800 as qualified applicants

and sends them offers to attend West Point. Normally around 1,300 of the qualified

applicants accept the offer and actually arrive at USMA in June for the first day of

training. In late May, over 100 of the data fields from the DAD's portion of the CIDB

21

are copied to fields maintained by the Dean and USCC. The data copied is the cadet

candidate information that relates to the 1,300 cadets expected to report for the first

day of school. At any given time there are approximately 4,400 cadets attending

USMA with records maintained in the CIDB. Let us examine some of the specific

responsibilities and applications of the DAD, Dean and USCC.

C. DIRECTOR OF ADMISSIONS

The Director of Admissions is responsible for recruiting, testing and appointing

applicants to USMA. As application packets are received from potential cadets, the

process of entering applicant data into the CIDB begins.

Once the data has been entered, the applicant is known as a cadet candidate. In

addition to maintaining information on each cadet candidate, the DAD maintains data

on its recruiters, also known as the field force. The field force is composed of two

groups of individuals, the admission participants and the educators. The Director of

Admissions also keeps information about high schools, as the high school is the primary

source for recruiting cadets to attend USMA. Data on physical aptitude examination

(PAE) test sites is also kept by the DAD. Finally, the DAD maintains information on

the individuals (senators and congressmen) who have nomination authority of USMA

applicants.

The information entered into the CIDB on a candidate includes the social security

number, name, address, telephone number, sex, height, weight, race and birthdate.

The projected USMA graduation year and several test scores are also maintained

(ACT, SAT and PAE). High school information about the candidate, to include the

school's Princeton identification number is maintained. The CIDB also stores the

admission participant's identifier for the candidate as well as the test site identifier of

22

where the candidate took the PAE. Finally, NCAA athletic information is maintained

if the candidate has the desire and ability to participate in intercollegiate sports.

Admission Participants (AP) or liaison officers, make up the first group of the field

force. An AP is a graduate of USMA and is retired or in a reserve status. The AP's job

is to recruit qualified young men and women to attend USMA. The data to be entered

on the AP includes a unique AP identifier, name, SSN, address, telephone number,

rank, branch of service, USMA graduation year, and the month and year the AP joined

the field force program.

Educators constitute the second group of the field force. Normally, educators are

instructors or guidance counselors from junior and senior high schools, but other

interested individuals may also participate as educators in the USMA recruitment

process (for example, local news media). Educator information consists of a SSN,

name, address, month and year joining the field force, the AP identifier of the

admission participant who is responsible for working with the educator, and the test

site identifier to which the educator's applicants will be assigned for PAE testing.

The Director of Admissions uses the high school as one of its primary means of

recruiting. The USMA mails information packets, catalogs and other promotional

materials to high schools in an effort to recruit quality personnel. The data maintained

on high schools includes the Princeton identifying number, school name, address, AP

identifier for the field force representative who handles the admissions interests at the

school, and the test site identifier that applicants from that school would be assigned

when taking the PAE.

Applicants must take the PAE before submitting an application packet to USMA.

Locations where the PAE is given are called test sites. Normally, armories, gym-

nasiums, or high schools are used as test sites. The information entered to the CIDB

23

about test sites includes the unique test site identifier, the test site name, name of the

individual responsible for the site, address of the site, its capacity, telephone number,

and dates and times of the PAE.

The Director of Admissions also maintains data on those individuals who have the

authority to nominate applicants to attend West Point. The nomination of an applicant

normally comes from a senator or congressman. The information stored on these

individuals (nominating authority) includes a unique identifying number, title, name,

address, telephone number, and data concerning the number of nominations

authorized, filled and vacant.

Finally, the Director of Admissions keeps a record of AP identifiers and test site

identifiers that coincide with a particular zip code. This listing makes a convenient

cross reference to determine the AP and test site for each zip code.

D. OFFICE OF THE DEAN

The major responsibilities of the Office of the Dean are to oversee the academic

education received by cadets, to schedule classes, and to maintain cadet grades. The

Dean keeps information on courses to be taught, classrooms available for each course

(for example, ensuring a chemistry lab is not scheduled in an English classroom), books

to be used for each class, course schedules for students, and grades received.

All USMA cadets take the same courses during their first two years at West Point.

These include core courses such as math, English, and chemistry. Many cadets also

have identical course schedules during their last two years. Prior to the end of the

sophomore year, cadets must select a field of study (similar to a major). At that time

they must forecast the remaining courses they wish to take and when they wish to take

them during the last two years. The cadet's graduation year determines the total

number of classes the cadet must take. Currently, 40 academic and eight physical

24

education courses are required for graduation. The 40 academic courses are broken

into 31 core courses and nine field of study courses.

To facilitate course enrollment, the following data is maintained on each course

USMA offers: Course name and number, the year and terms the course is offered,

credit hours for the course, labs (if required), number of students enrolled, and any

prerequisites for the course. Information concerning the required texts is also stored

in the CIDB. This data includes a unique identifying number and issue code for each

book, title, author, price, number of books on hand, number of books ordered, and an

estimated delivery date. Finally, classroom information is maintained to assist the

scheduling process. This data includes building name, room number, room capacity,

classroom type (lecture or lab), and the department usually associated with the class-

room.

The final course grades received by each cadet are entered to the CIDB by the

instructors at the end of the term. In addition to course grades, the Dean maintains

quality points, credit hours and QPA for each cadet on a term, yearly and cumulative

basis. At West Point the grade point average is called QPA for quality point average.

The CIDB stores a distinguished cadet indicator as well as a probation flag to indicate

superior or problematic performance, as appropriate.

E. COMMANDANT, UNITED STATES CORPS OF CADETS

The United States Corps of Cadets (USCC) has primary responsibility for the

military training received by cadets, as well as leadership, discipline, physical, and

athletic training. In addition to many of the CIDB fields copied from the DAD prior

to enrollment (like name, SSN, sex and blood type), USCC maintains individual

information, such as a specific cadet number (composed of the graduation year and five

digit alpha number), as well as current height and weight, permanent company and

25

regiment, and physical fitness test results. Many personal data fields are stored, such

as cadet long name (up to 60 characters in length), and parents' rank/title, name,

address and phone number.

The United States Corps of Cadets stores prior college, prior service and gradua-

tion information in the CIDB. Prior college information is maintained on all colleges

attended and includes the name and address of the college and the number of months

in attendance there. Prior service data includes whether the cadet attended a prep

school, the prior service component, number of months of service, and military occupa-

tional specialty. The graduation information is entered during the lqst term prior to

graduation and includes graduation date, commissioning date, basic and detail

branches, and Graduate Record Exam scores.

The United States Corps of Cadets is responsible for maintaining cadet illness and

injury records. Data maintained includes the time a cadet went on sick call, the time

returned, and the date and disposition of the illness. Injury information includes the

date of the injury, activity the cadet was participating in when injured, and the nature

of the injury.

Leadership development is vital to a cadet's success upon graduation. Leadership

records are maintained to document leadership positions held, ratings received in

those positions, and summer assignments that reflect where the cadet served and the

dates of the summer assignment. Summer assignments may include regular Army-

type training like Ranger, Airborne, and Air Assault Schools, as well as Cadet Troop

Leadership Training (CTLT), where cadets go to active Army units to train and lead

platoons for six weeks.

Disciplinary records are also stored and reflect the number of demerits and

disciplinary actions taken against the cadet as punishment. Demerit data is maintained

26

on a daily, monthly and yearly basis and includes an offense code and number to

delineate between occurrences of an infraction.

A final area of responsibility for USCC is to track the athletic and extra-curricular

activities in which cadets may participate (for example, varsity football, intramural

basketball, debate team, glee club, etc.). The activity start date, number of trips taken

while a member of the activity, number of days in the activity and the type of award

received are data fields for which USCC has oversight. Additionally, extra-curricular

trip information is charted by cadet on a weekly basis and includes an identifying code

for each trip taken. Other information stored is the city, state, and zip code of the

location of the trip and the individuals in charge of the trip.

F. CONCLUSION

The preceding paragraphs are intended to provide an overview of the applications

of the Cadet Information Database. The discussions above are purposely not all

inclusive, but rather are meant to provide the reader with a clear and concise picture

of the types of information maintained in the CIDB and an understanding of which

office is responsible for maintaining the data. Although certain parts of the database

may be difficult to understand and some attributes quite cryptic, the West Point

database management system is very similar to the DBMS of any civilian university.

Social security numbers, names, addresses, classes taken, grades, and quality point

averages are just a few of the similarities between the CIDB and a university DBMS.

This chapter was developed from USMA Regulation 25-5 [Ref. 5] and the USMA

Cadet Information Database Dictionary [Ref. 6].

27

V. POTENTIAL ERRORS, INTEGRITY CONSTRAINT VIOLATIONS AND
INCONSISTENCIES IN THE WEST POINT SYSTEM

A. INTRODUCTION

Chapters Two and Three of this thesis provided examples of potential errors and

inconsistencies that may be found in any database management system. The purpose

of this chapter is twofold: First, and most importantly, to outline specific examples

where possible errors, integrity constraint violations and inconsistencies can occur in

the present USMA system. This listing is not all-inclusive, but is intended to be

comprehensive enough to assist the DOIM CSD staff in its data validation efforts prior

to system conversion. Painstaking work of a tedious nature was involved in formulating

the listing that follows. The process required delving into a data dictionary in excess

of 400 pages, that in many cases was not well commented, searching for and document-

ing all the instances where a particular field contained a potential out-of-range value

(like SSN), and then starting over and looking for all the instances of the next out-of-

range field (like height and weight). This procedure was repeated numerous times in

search of as many potential errors as possible. The process of dissecting the data

dictionary and compiling lists of potential errors is analogous to that of a detective

hunting for clues to solve a mystery. Secondly, this chapter is intended to provide the

backdrop for proposing a methodology to solve the issues at hand. The examples

described will be accompanied, when applicable, by figures to illustrate the potential

problem. Where appropriate, field names will include the unique three character

USMA identifier for reference. The Military Academy uses these three character

identifiers to designate field names or attributes. For example, the cadet candidate

28

social security number field is identified by the code AAB, aPd the cadet SSN field is

identified by the code CAA. See Appendix A for a glossary of USMA field identifier

codes not defined in the text that potentially contain errors and inconsistencies.

B. COMMON DATA ERRORS

1. Out-of-Range Values

a. Throughout the entire database, with the exception of the Educator-ID field

(FPA), social security numbers have the potential to contain out-of-range values

(99999999999).

b. In the cadet candidate portion of the database, the following fields may

store out-of-range values:

(1) Several Julian dates are used that allow the numerical day entry to

reach 999, though the maximum Julian date is 366.

(2) The height and weight fields allow entries as low as 00 inches and 000

pounds or as high as 99 inches and 999 pounds, though the lower and upper extremes

represent improbable values.

(3) The birth month and day fields accept entries up to 99, but the maxi-

mum month is 12 and the maximum day is 31.

(4) Fields for physical activity exam and admission scores should range

between 200 and 800, but the system allows entries as low as 000 or as high as 999.

(5) The system accepts ACT scores ranging from 00 to 99 and SAT scores

from 000 to 999, though actual ACT scores must range between 1 and 36 and SAT

scores from 200 to 800.

(6) The value for years of work experience during high school, which

normally should not exceed four, may equal nine.

29

(7) Single character fields such as sex, race, ethnic background, and the

flags indicating whether certain USMA application forms have been received, could

possibly contain values from A to Z, though M or F, or Y or N are the appropriate

values.

(8) The entry for month joined the field force could equal up to 99, while

the actual maximum value is 12.

(9) The system allows values for nomination vacancies allowed, filled, and

authorized for the current academic year to equal up to 999, though no nominating

authority could possibly have this many vacancies.

(10) The nomination record contains a nomination selection score that

could reach 9999, but a score this high is not possible.

(11) The test site record uses a nine character test date that allows day,

month and year to be out of range (99XXX9999), and a four digit test time that would

allow a time of 9999 to be entered to the system, when the maximum allowable time

should be 2359.

c. In the scheduling portion of the CIDB, the following fields could contain

out-of-range values:

(1) Julian dates allow the numerical day entry to reach 999, while the

maximum Julian date is 366.

(2) Book quantity on hand and requested quantity can both equal 99999,

but with 4,400 cadets, it is unlikely USMA would maintain such quantities of a single

book.

(3) The system accepts a classroom capacity entry of 999, but no USMA

classroom accommodates this number.

30

(4) By system constraints, the course population could equal 9999, but the

actual maximum could not exceed the cadet enrollment.

(5) Course enrollment reflects minimum, maximum and desired enroll-

ment per course. System entry could be 999, but no class is this large.

(6) There are numerous flags and single character fields throughout this

application that contain a single character designator, like Y or N; however, characters

from A to Z are accepted.

d. In the cadet record portion of the CIDB out-of-range values could occur in

the following fields:

(1) Height and weight fields can store values as low as 00 inches and 000

pounds or as high as 99 inches and 999 pounds. Both lower and upper extremes

represent improbable values.

(2) The Army physical fitness test maximum score is 300, but the field can

reach 999.

(3) The entrance class size, graduation class size, class size at start of term

and class size at end of term may all, by system standards, be as large as 9999, but no

class will ever be this large.

(4) Graduate Record Exam scores may be stored up to 999, but a value this

high is not possible.

(5) While the system accepts an input of 99 minutes, 99 seconds, the entry

for the 1.5 mile entrance run should not exceed 59 minutes, 59 seconds.

(6) The trip departure and return times cannot be greater than 2359, but

the system allows 9999.

31

(7) The system accepts a cadet illness date and excused to date of 999999,

though if such an entry were used, both the month and day would be out of range.

Illness time in andtime out could be 9999, when the maximum should be 2359.

(8) Cadet days participating in an activity should not exceed 366, but

entries up to 999 are accepted.

(9) Several orders of merit (OM) are found in the grades section of a

cadet's rccord. These OM entries are allowed to be as large as 9999, though a class

size could never be this large.

(10) Quality point averages should be a maximum of J 330, but are ac-

cepted by the system up to 9.999.

2. Incompatible Data Types

a. As was the case for the out-of-range values described above, all social

security numbers stored in the CIDB may contain errors due to the data type selected.

Since the SSN data type is alphanumeric, both characters and integers are acceptable

entries (ABC-45-FGHI or 123-ZZ-6789).

b. Following are two examples of redundant fields using different data types.

From the individual record of cadet candidate, height-of-individual and weight-of-

individual are declared as two and three character alphanumeric fields respectively,

while in the entrance and high school record, the entrance-height and entrance-weight

are declared as two and three digit integer values. Also from the individual record, the

transcript-grad-year is declared as a two character alphanumeric field. In the cadet

class record, the class-graduation-year is declared as a two digit integer value. By

selecting an alphanumeric data type, the cadet candidate height and weight can have

incorrect values like height equal to 7C inches and weight of 18E, while the entrance-

height is equal to 72 inches and entrance-weight is 184. The problem with redundant

32

data fields is that it may be difficult to tell which field holds the correct value.

Obviously a height of 7C inches is incorrect, but there is no way to know if entrance-

height equal to 72 inches is accurate.

c. From the cadet candidate area of the CIDB, the following fields may contain

errors in the data because f incompatible data types:

(1) Several Julian dates are declared as four character alphanumeric fields

-allowing data like ABCD to be entered to the system.

(2) Zip codes and telephone numbers are typed as nine and ten

alphanumeric characters respectively. This enables operators to enter information

such as 93943ABCD for the zip code and 408647ABCD for the phone number.

(3) Height and weight fields allow two or three alphanumeric characters

respectively. The height and weight values could therefore be entered as GB inches

and AHE pounds, for example.

(4) The transcript graduation year is declared as a two character

alphanumeric field. One would expect to see values like 89 or 90, but HI or 10 is

possible.

(5) The entrance senator or district number field is declared as two

alphanumeric characters, but values are always integers.

(6) The source sequence number field is declared as a single alphanumeric

character, but it must contain an integer value.

(7) The percent onto college field is declared as three alphanumeric char-

acters. However, it should be stored as an integer, otherwise values for a percentage

could look like ABC or 9B2.

33

(8) The month and year joining the field force, USMA class year, and

training year fields are typed as two alphanumeric characters, but only integers should

be allowed.

d. From the scheduling portion of the database, the following fields may store

erroneous information due to the data type used:

(1) Telephone numbers are typed as ten alphanumeric characters. This

declaration allows entries like 615DEB5373.

(2) The master course number field always contains a three digit integer

value, but it is declared as three alphanumeric characters.

(3) The permanent regiment is declared as a single alphanumeric charac-

ter but can only hold integer values from one to four.

e. From the cadet record area of the CIDB, the fields listed below may contain

inconsistent data because of the data type declared:

(1) Zip codes and telephone numbers are declared as nine and ten charac-

ter alphanumeric fields. Therefore, entries like 9C9D3E000 for the zip code and

ABC384EFGH for the telephone number are possible.

(2) Course number is declared as storing three alphanumeric characters.

This allows values such as ABC or D3Z to be stored when three integers like 100 or

101 are expected.

3. Subset-Set Discrepancies

In the entire CIDB, only three examples of subset-set discrepancies can be

found. The first two examples come from fields within the database. In the individual

record of the cadet candidate, the preferred-name-individual (ACC) is a ten character

field consisting of as many letters of the full name as possible, starting with the last

name. It is a subset of the 27 character name-individual (ACB) set that is in last, first

34

and middle initial sequence. In the cadet record, cadet-short-name (CBE) is a 27

character field that contains as many letters of the name as possible, again in last, first

and middle initial sequence. Cadet-short-name is a subset of the 60 character cadet-

long-name (CIF) which comes from the cadet personal data record. The cadet-long-

name is in first, middle and last name sequence. A third and more subtle example of

this subset-set discrepancy that must be checked comes from the fact that prior to the

class start date, the DOIM CSD staff copies much of the information from the cadet

candidate individual record (AAA) into the cadet record (CAA), the entrance and

high school record (CEA), and the cadet personal data record (CHA) for the 1,300

cadet candidates that USMA expects to begin school. Once school starts, the 1,300

cadet records which constitute the subset, but may include late arrivals, should be

compared against the larger set of 14,000 cadet candidate individual records to ensure

that every cadet record comes from the larger set of cadet candidate individual

records.

4. Redundancies

Duplication of data fields occurs frequently in the CIDB. As mentioned in

Chapter Four and in the preceding paragraph, the duplication of data fields starts

when many of the cadet candidate fields are copied into the cadet and schedule

portions of the database. A few examples of fields that are copied are SSN, name, sex,

height, weight, ethnic background, race and birthday. The problems associated with

redundant data fields are twofold. First, if the information is accurate in the first file,

it should be accurate when applied to the second file. If an update is made to the

second file and not the first, the two files become inconsistent. Second, if the first file

contained erroneous information and was copied to the second file, the data in the

second file would also be incorrect. If the second file was updated to correct the

35

inaccuracy, the two files would again be inconsistent and the user would not know

which, if either, was correct. These problems are further exacerbated if more than two

files contain identical data. Prior to system conversion, redundant data fields must be

checked for accuracy and corrections must be made to inconsistent fields so the

information moved to the target DBMS will be clean.

To further illustrate the duplication of data in the CIDB, Figures 2 and 3 are

provided. Figure 2 displays the commonality between the CADET RECORD and the

SCHEDULE CADET RECORD. Only the duplicate fields from these two records

are shown. Over 50 percent of the fields from the two records are redundant. Figure

3 shows the similarity between the CADET VALIDATION RECORD and the

SCHEDULE CADET RECORD. Every field from these two records is duplicated.

CADET RECORD SCHEDULE CADET RECORD

CADET-SSAN SCHED-CADET-SSAN

CADET-GRAD-YEAR SCHED-CADET-NAME

CADET-SHORT-NAME SCHED-CADET-GRAD-YEAR

CADET-SEX-FLAG SCHED-CADET-SEX-CODE

CADET-SEPARATION-FLAG SCHED-CADET-PERM-COMPANY

CADET-TURN-COME-BACK-FLAG SCHED-CADET-PERM-REGIMENT

CADET-DEFERRED-TURN-BK-FLAG SCHED-CADET-FIELD-OF-STUDY

CADET-PERM-COMPANY SCHED-CADET-2ND-FELD-OF-STUDY

CADET-PERM-REGIMENT SCHED-CADET-PREREQ-CHECK-FLAG

CADET-FIELD-OF-STUDY SCHED-CADET-GRAD-CHECK-FLAG

CADET-SECOND-FIELD-OF-STUDY SCHED-CADET-FOSCHECK-FLAG

CADET-CRSE-PREREQUISITE-CHECK SCHED-CADET-TURN-COME-BACK-FLAG

CADET-CRSE-GRADUATION-CHECK SCHED-CADET-DEF-TURN-BACK-FLAG

CADET-FIELD-OF-STUDY-CHECK SCHEDCADET-SEPARATION-FLAG

Figure 2. Redundancies Between Cadet Record and Schedule Cadet Record

36

Fields in both figures are displayed vertically to assist in identifying the redundances.

While potentially leaving the system in an inconsistent state, redundancies also re-

quire multiple entries (one for each record containing the duplicate data), and waste

valuable system storage space.

CADET VALIDATION RECORD SCHEDULE CADET VALIDATION RECORD

CADET-VAUDATION-COURSE-DESC SCHED-CADET-VALID-CRSE-DESC

CADET-VALIDATION-COURSE-YEAR SCHED-CADET.VALID-CRSE-YEAR

CADET-VALIDATION-COURSE-TERM SCHED-CADET-VALID-CRSE-TERM

CADET-VALIDATION-COURSE-TYPE SCHED-CADET-VALID-CRSE-TYPE

Figure 3. Redundancies Between Cadet Validation Record and Schedule Validation Cadet Record

5. Arithmetic Errors

Throughout the CIDB there are data fields that are mathematically manipu-

lated to provide a result for another particular field. It is possible that the computed

result stored in that field is inaccurate. Data fields that are computed must be

recalculated and validated prior to data transfer. Examples of computed fields from

the CIDB that could lead to arithmetic errors are:

a. The daily cadet-demerits-awarded (TfF) to a cadet are added together to

input to a monthly total. In turn, the monthly-demerits-received (TPF) are totaled to

input to a yearly-demerits-received (TVH) total. In a similar fashion, the cadet-

demerits-area-tours-awarded (TG) and cadet-demerits-room-tours-awarded (TTH)

are added together to determine a monthly-special-penalty-tour (TPG) total. This

monthly disciplinary tour total is then added to the yearly-special-penalty-tour (TVI)

total to provide a yearly disciplinary tour total.

37

b. In the cadet academic grades record there are several data fields used to

determine information for the cadet academic year and term record. For example, for

each course a cadet takes in a term, the grades-course-credit-hours (DLB) and the

grades-course-letter-grade (DLL) (which is converted to a numerical value), are

multiplied together to provide the quality points for that course. All of the course

quality point values for the term are added together to provide a term-academic-

quality-point (DGF) value. Credit hours for the term are also added together to

provide the term-academic-credit-hour (DGG) value. The term-academic-credit-

hour value is then divided into the term-academic-quality-point vale to provide the

term-academic-quality-point-average (DGH). Similar calculations are made to deter-

mine the year-summary-academic-quality-points (DHF), year-summary-academic-

credit-hours (DHG), year-summary-academic-QPA (DHH) values, cumulative-

academic-quality-points (DIH), cumulative-academic-credit-hours (DIF), and the

cumulative-academic-QPA (DII) values. Several in-depth calculations are used to

determine the term, year and cumulative orders of merit, and the term, year and

cumulative academic percentiles.

C. INTEGRITY CONSTRAINT VIOLATIONS

1. Entity Integrity Constraints

The CIDB contains fields that are designed to store primary keys. Examples

are cadet candidate social security number (AAB), admission participant identifier

(FBA), educator identifier (FPA), test site identifier (FHA), high school Princeton

number (FMA), and cadet social security number (CAA). As primary keys, these

fields must contain unique values. If a primary key was allowed to contain identical

values, the system would have no way to differentiate between the objects that con-

tained the same primary key value. Any non-unique values for the primary key (this

38

includes null values) will cause problems for the system and the user. Because the

USMA system does not support entity integrity, it is imperative that the primary key

fields be checked for uniqueness and that errors be validated prior to system conver-

sion.

2. Referential Integrity Constraints

Two examples of referential integrity are provided in Figures 4 and 5. Figure

4 displays a simple example that shows how the CADET-PERM-COMPANY (CBN)

and CADET-PERM-REGIMENT (CBO) of the CADET RECORD refer to the

PERM-COMPANY (TEB) and the PERM-REGIMENT (TEC) of the PER-

MANENT COMPANY RECORD, respectively. It also shows how the CADET-

GRAD-YEAR (CBC) of the CADET RECORD refers to the CLASS-GRADUA-

TION-YEAR (TCA) of the CADET CLASS RECORD. If the cadet's permanent

company and regiment was equal to G2, we would expect to find a value of G2 in the

PERMANENT COMPANY RECORD. However, since the West Point system does

not check for referential integrity, one would not know if this constraint held.

PERMANENT COMPANY RECORD

[PERM-COMPANY I PERM-REGIMENT

CADET CLASS RECORD

CLASS-GRADUATION-YEAF ERNE-CLASS-SIZEJ GRADUAINCSSIZ

CADET RECORD 77

I CADET-SSN I CADET-GRAD-YEAR iCADET.NAMEI CADET-PERM-COMPAN CADET-PERM-REGIMENT

Figure 4. Referential Integrity Constraints from tie CIDB Schema

Figure 5 displays a more involved example of referential integrity from the

cadet candidate portion of the CIDB. From the INDIVIDUAL RECORD: AP-

39

IDENT (AQF) refers to AP-IDENT (FBA) of the ADMISSION PARTICIPANT

record; HS-ETS-CODE (AHB) refers to the PRINCETON-NO (FMA) of the HIGH

SCHOOL record, and the APPLICANT-TEST-SITE-CODE (AQK) refers to the

SITE CODE (FHA) of the TEST SITE record. From the EDUCATOR record:

EDUCATOR-AP-IDENT (FTn) refers to the AP-IDENT (FBA) of the ADMISSION

PARTICIPANT record, and EDUCATOR-SITE-IDENT (FTJ) refers to the SITE

CODE (FHA) of the TEST SITE record. Finally, from the HIGH SCHOOL record:

HS-AP-IDENT (FOS) refers to the AP-IDENT (FBA) of the ADMISSION PAR-

TICIPANT record, and the HS-SITE-IDENT (FOT) refers to the SIT CODE

(FHA) of the TEST SITE record. As an example of referential integrity, if the

PWOLMDAL FIOR

RSN I NAME I AP.DEN HS-El'S-CD APPUCANTTEST-SnT-COODE

ADMISSION PARTICIANT

P-IO
TS AE TTE AOS

SN NAME ADDRESS EDUCATOR-AP-IENT EDUCATOR-SIE-IDENT

HIGH SCHOOL

Figure 5. Referential Integrity Constraints from the Cadet Candidate Schemna

40

applicant's test site code was equal to TN02, we would expect to find this value in the

SITE CODE field of the TEST SITE record. As was the case in the previous example,

the USMA user would not know whether the referential integrity constraint held

because the USMA system does not check referential integrity constraints.

D. LOGICAL INCONSISTENCIES

As was discussed in Chapter Three, an organization may have significant numbers

of logical constraints that it wishes to hold on the DBMS. With a database as large as

the Military Academy's CIDB, the task of identifying all the semantic integrity con-

straints could be quite time consuming and would require the skills of an extremely

knowledgeable team of individuals. The following is a partial list of logical constraints

that must hold on the CIDB:

1. No cadet shall have a term QPA less than 1.67. If the term QPA falls below 1.67,
place the cadet on academic probation.

2. No freshman cadet (plebe, class year equal to 4) shall have a cumulative QPA
less than 1.70 following the second term of the freshman year. If the cumulative
QPA is below 1.70 after the second term, place the cadet on academic probation.

3. No sophomore cadet (yearling, class year equal to 3) shall have a cumulative
QPA less than 1.80 following the first term of the sophomore year or a cumulative
QPA less than 1.85 following the second term of the sophomore year. If the
cumulative QPA is below 1.80 at the end of the first term or below 1.85 after the
second term, place the cadet on academic probation.

4. No junior cadet (cow, class year equal to 2) shall have a cumulative QPA less
than 1.95 following either term of the junior year. If the cumulative QPA is less
than 1.95 after either term, place the cadet on academic probation.

5. No senior cadet (firstie, class year equal to 1) shall have a cumulative QPA less
than 2.00 following either term of the senior year. If the cumulative QPA is less
than 2.00 after the first term, then place the cadet on academic probation. If the
cumulative QPA is below 2.00 following the second term, do not allow the cadet
to graduate.

6. No cadet shall enter USMA whose age is less than 17 or greater than 22 by the
plebe class start date.

41

7. No cadet shall enter USMA without a high school diploma.

8. No cadet shall receive more than 14 demerits for an offense without being
awarded an area or room disciplinary tour.

9. No cadet shall attend USMA for a period of more than four years without
adjusting the graduation year.

10. To be eligible to underload (take less than the required six classes per term),
cadets must have a cumulative QPA less than 2.00 or be a varsity corps squad
athlete.

11. To be eligible to overload (take more than the required six courses per term),
cadets must be class year 3, 2, or 1 (sophomore, junior or senior) and have made
the dean's list in the preceding term. Or the cadet must be class year 1 (senior)
with a cumulative QPA greater than 2.30.

12. No cadet will graduate from USMA without successfully completing 40 academic
and eight physical education courses. This includes successful completion of 31
core curriculum courses and nine specific field of study (FOS) or major courses.
Again, the cumulative QPA for graduation must be greater than 2.00.

13. No cadet will be considered a Distinguished Cadet unless in the top 5 percent of
the class (from the class order of merit list).

14. No cadet will be considered for the dean's list unless the cadet's term QPA is
greater than 3.00. Cadets are not eligible for the dean's list if they failed a course
during the term, received an I (incomplete) for a course during the term,
withdrew from USMA, are retaking a field of study course, or are underloading
during the term.

15. To be eligible for the Superintendent's Award, a cadet's yearly QPA must be
greater than 3.00, the cadet must be in the top third of the class (OM), and must
pass all P.E. courses and the APFT during the year.

16. The book quantity on hand (QOH) value must be greater than the number of
cadets scheduled for the course planning to use the book.

17. The estimated delivery date for books must be prior to the class start date.

18. If the number of classes taken during a term by a cadet is less than the minimum
allowed for the class (minimum academic load), then alert the cadet's tactical
officer with a message unless the cadet is eligible to underload.

42

19. If the cadet class is equal to 3 and the number of classes completed is less than
12, then alert the tactical officer with a message.

20. If the cadet class is equal to 2 and the number of classes completed is less than
24, then alert the tactical officer with a message.

21. If the cadet class is equal to 1 and the number of classes completed is less than
36, then alert the tactical officer with a message.

22. The classroom capacity must be greater than or equal to the number of cadets
scheduled for the class.

23. Two classes cannot be scheduled for the same classroom at the same time.

24. No cadet will be scheduled for more than one class per hour.

25. No professor will teach more than one class per hour.

26. No male cadet will enter USMA with height less than 60 inches or greater than
80 inches or weight less than 100 pounds or more than 280 pounds.

27. No female cadet will enter USMA with height less than 58 inches or greater than
80 inches or weight less than 90 pounds or greater than 201 pounds.

28. No cadet company will exceed 120 cadets.

29. No cadet company will have less than 20 seniors, 20 juniors, 20 sophomores and
20 freshmen.

30. A cadet who validates a course should not be scheduled to take that course.

31. A cadet's high school class ranking cannot be greater than the total number of
students in the high school class.

32. The test site fill for the PAE cannot be larger than the capacity of the test site.

33. An admission participant must be a USMA graduate.

E. CONCLUSION

This chapter has discussed specific examples of possible common data errors,

integrity constraint violations and logical inconsistencies that may be present in West

Point's CIDB. It was developed from the USMA CIDB Dictionary [Ref. 6] and the

43

USMA Academic Redbook [Ref. 7]. The idea that must be stressed is that any DBMS

has the potential to contain errors in its data. In this regard, the USMA DBMS is not

unique. Now that these potential errors have been identified, the focus shifts to the

task of checking, validating and correcting them prior to transferring the data to the

target system.

44

VI. PROPOSED METHOD OF RESOLVING THE ISSUES

A. INTRODUCTION

Chapter Five outlined specific examples from the CIDB of potential errors,

integrity constraint violations, and logical inconsistencies that may be contained in the

data. It is from these specific examples that this chapter is derived. The purpose of this

chapter is threefold: First, to describe a generalized methodology that any organiza-

tion could follow to identify errors and inconsistencies in its DBMS. Second, to outline

a specific method that the USMA DOIM staff can follow to check the CIDB for

possible errors and inconsistencies that are potentially stored in the database. Third,

to discuss several implementations using the specific method described above as a

guide. These implementations will be done on selected applications from the CIDB.

The code that supports these implementations is written in PASCAL and can be found

in Appendix B. It is not the intent of this thesis to exhaustively test every possible

application from the CIDB, but to select examples to demonstrate what is done and

how it is done to ensure that the information contained in a particular application is

clean. The implementations selected come from a representative set of examples of

potential errors contained in the CIDB, including an out-of-range value check, an

incompatible data type check, and a referential integrity check.

B. GENERAL METHODOLOGY

There are many possible alternatives to choose from when deciding upon a general

methodology for error detection and correction. Four methods to check the informa-

tion stored in any DBMS are described below. Realistically, one of these methods, or

45

some other similar method, must be followed on every potential inconsistency in the

database. Only through checking each possible error can the organization confirm that

the data is without fault. Let's look at these four general methods:

The first method involves checking the data directly in the source system. After

errors are detected, validated and corrected, the data can be moved to the target

system. If one has a thorough understanding of the source system and the program-

ming language that supports it, this method might be quite attractive. For the USMA

DOIM staff, fluent in the inner workings of the system, making checks directly in the

source system could be the best means for error detection. The disadvantage to this

method is that to apply it a programmer must be completely familiar with the program-

rning language of the system: COBOL in the case of West Point. Additionally, one

must have easy access to the source system. For these reasons, i.e., proficiency in

COBOL and distance from West Point, using this first general method is not well

suited to our needs.

A second method follows these general steps:

1. For a given application, unload the required information from the source system
into intermediate files. An intermediate file will be generated for the ap-
propriate corresponding file in the source system. For example, the database
has N files where the social security number is stored. This means that N
intermediate files would be generated. To check that the SSN field contains
integer values, the intermediate files would store SSNs ir. positions one through
eleven in a long column.

2. Run a specific application program on each intermediate file to check for and
identify potential errors. The application program may require reading in and
checking against more than one intermediate file. For example, in checking a
potential subset-set error, at least two intermediate files must be read by the
application program. In this case, the subset intermediate file and the set
intermediate file are read by the application program and each record from the
subset is checked against a like record from the set.

46

3. As errors are identified, mark the record containing the error in the intermediate
file with an integer (1, 2, 3,.. .), and generate two files. The first file, known as
the error record file, will list the records that contain errors. (Again marked with
corresponding integer values.) Records are marked with unique values because
the primary key may contain an error and therefore must be corrected. If the
primary key is the SSN and it is changed, we must be able to find the correspond-
ing record in the intermediate file. In the example above, the error record file
would contain those SSNs that did not have exactly nine integers. For example,
the error record file would possibly contain a column of values similar to the
following: 1 12345678A, 2 394* *9826, etc. The second file, known as the erre,
message file, will identify the specific errors contained in the error record file.
From the example, the error message file would store information like the
following: Record number 1, position nine of the SSN contains the 'etter A.
Record number 2, positions four aud five of the SSN contain a *, etc.

4. Using the error message file in conjunction with the error record file, validate
the records that contain errors. This may require using an external source to find
the correct data.

5. Once the correct information has been located, make corrections to the error
re, rd file. Once all corrections have been made, the error record file becomes
the corrected error record file.

6. Overwrite the corrected error record file into the intermediate file.

7. The intermediate file is now ready for loading into the target system.

An advantage to generating these two files is that the error messages are separated

from the records with the errors. This enables an operator to validate the errors and

correct the mistakes directly in the error record file, thereby turning the error record

file into a corrected error record file. The operator can then overwrite the corrected

error record file into the intermediate file simply by locating the records with the same

integer values. A second advantage to using an intermediate file method is that the

application programs can be written in any programming language. In our case

PASCAL. This means that the individual writing the applications does not have to

learn a new programming language. Being able to work with a language with which

one is familiar is a significant advantage.

47

A third method, which is a variation of the two methods previously described

allows an operator to make on-line corrections to errors that are detected. This means

that errors would be printed to the screen, and then an operator could access the

necessary file to make corrections with an editor. An on-line correction method would

be beneficial if the number of corrections to be made were minimal. However, this

method would be most cumbersome if the number of errors per application exceeded

three or four. Imagine trying to write down 100 errors that printed to the screen.

Operator frustration with this method would quickly occur. Another disadvantage to

this method would be trying to make on-line corrections to errors that were difficult to

validate. An operator might sit idly waiting for a telephone call from a source capable

of validating the information, unable to continue until the validated data is provided.

Finally, this on-line method would be the most time-consuming of the four general

methods discussed.

A fourth method is a variation of the second method described above. This

method has two differences when compared with the second general method. The first

difference is that three files are generated instead of two. These three files are known

as the good data file, the error record file and the error message file. The second

difference is that rather than overwriting the corrected error record file into the

intermediate file, this method merges the corrected error record file with the good data

file. The advantages of this methodology are similar to the advantages for method two.

The general methods described above can have many different variations. Many

combinations are possible. These examples illustrate some simple means to detect and

correct database errors. There are many others. It is not the scope of this thesis to

study and report on all the methods available, nor is it my intent to provide statistical

48

data on the most cost effective, fast, or efficient method. I have selected a method for

accomplishing the error detection task in a manner that best fits the needs of this thesis.

C. SPECIFIC METHOD

In terms of this thesis, the best methodology for checking the information con-

tained in the CIDB follows closely to the last general method previously discussed

above. This method's advantages are:

1. Application programs supporting the method can be written in the PASCAL
programming language.

2. Error records are separated from the error messages. This will enable operators
to validate the error records in any order, thus making the error correction
process quite flexible. As validated information is provided, error records can
be corrected.

3. The merging of the good data file and the corrected error record file is
straightforward and easy to follow.

4. This method can be performed here in Monterey as easily as in New York.
Intermediate data files are readily transferred through the ARPANET's file
transfer protocol.

5. Record correction can be accomplished using a familiar text editor.

Figure 6 is provided as a means to help understand the specific methodology.

Appendix C contains examples of the intermediate file, good data file, error record file,

error message file and the corrected good data file from the application programs. Let

us review the steps to be followed:

1. Unload all required information from the source system into intermediate files.
One intermediate file will be generated for each corresponding file in the source
system.

2. Run the specific applicati6n program on each intermediate file to check for and
identify errors. Count the number of intermediate file records read by the
application program.

49

THE APPUCATION PROGRAM GENERATES 3 FILES

FROM THE INTERMEDIATE FILE

3945298261 394529826 3 12345678A Record 3 Position 9 of the SSN

310708602 2 310708602 5 5550*1212 contains the letter A

12345678A 4 987654321 Record 5 Positions 4 and 5

987654321 of the SSN contain a

555*"1212

Intermediate File Good Data File Error Record File Error Message File

1 394529826 Merge the Good Data File with the
Corrected Error Record File

2 310708602

3 123456789

4 987654321

5 555001212

Corrected Good Data File Ready
For Loading To Target System

Figure 6. Files Created By The Specific Method

3. As records are read by the application program, three files are generated. The
first file contains the records that are clean and is called the good data file. Each
record is marked with an appropriate integer value (1, 2, 4,. . .). The second
file contains those records with errors and is called the error record file. The
records in error are also marked by the appropriate integer value (3, 5,...).
Finally, an error message file is generated to assist the operator in the error
validation process.

50

4. Using the error message file in conjunction with the error record file, validate
the records that contain errors. This may require using an external source to
obtain the correct data.

5. Once the correct information has been located, make corrections to the error
record file. Once all corrections have been made, the error record file becomes
the corrected error record file.

6. Merge the corrected error record file with the good data file and count the total
number of records in the corrected good data file.

7. Ensure the number of records in the corrected good data file is equal to the
number of records stored in the intermediate file.

8. The corrected good data file is ready for loading into the target system.

D. IMPLEMENTATIONS

1. Out-of-Range Values

The purpose of this implementation is to perform range checks on the sex,

height, weight and birthdate fields of the individual record from the cadet candidate

portion of the CIDB. The following algorithm will be used:

a. By class, load the SSN, name, height, weight, sex, and birthdate into an

intermediate file. This check must be accomplished by class because the range check

on the birthdate field will change depending on the entrance year. Following the

format of the source system, positions one through eleven of the intermediate file will

store the SSN, positions 12 through 38 the name, positions 39 and 40 the height,

positions 41 through 43 the weight, position, 44 the sex, and positions 45 through 50 will

contain the birthdate.

b. An application program will be run on the intermediate file to identify

out-of-range values for the four fields mentioned above.

Steps c through h are identical to steps 3 through 8 of the specific methcd

above and are not repeated.

51

2. Incompatible Data Types

The purpose of this implementation is to ensure that the social security num-

ber has nine integers contained in it for each file storing the SSN. The following

algorithm will be used:

a. For each file containing the SSN field, load the SSN into a separate inter-

mediate file. The SSN will be stored in positions one through eleven of the inter-

mediate files. For this application, the check will be made on the SSN from the

individual record of the cadet candidate.

b. An application program will be run on the intermediate f" -. to identify any

incompatible data types it may contain. Because West Point normally only uses the

first nine positions of the SSN field in its source system, this check will look for either

nine integers in positions one through nine, with blanks in positions ten and eleven, or

if dashes are used for separators, will look for dashes in positions four and seven with

integers stored in the other nine positions.

Steps c through h are identical to steps 3 through 8 of the specific method

above and are not repeated.

3. Redundancies

The purpose of this implementation is to ensr-e that redundant fields con-

tained in the CIDB store the same information for a given cadet. This check will look

at a cadet's entrance height and weight from the entrance and high school record to

ensure that they are the same as the cadet's height and weight from the individual

record. This check will be accomplished by class. The following algorithm will be

used:

a. By class, load the SSN, name, height and weight from the individual record

and the SSN, name, height and weight from the entrance and high school record into

52

intermediate files. Both files will store the SSN in positions one through eleven, the

name in positions 12 through 38, the height in positions 39 and 40, and the weight in

positions 41 through 43.

b. Run an application program on the intermediate files to ensure that for

each cadet the height and weight stored in the entrance and high school record

intermediate file has identical entries in the individual record intermediate file. Those

SSNs that do not have identical heights and weights will be identified, as well as those

records found in the entrance and high school record but not in the individual record.

Steps c through h are identical to steps 3 through 8 of the specific method

above and are not repeated.

4. Referential Integrity

The purpose of this implementation is to ensure that referential integrity holds

for the company and regiment to which a cadet is assigned. This check will look at a

cadet's company and regiment from the cadet record to ensure that the company and

regiment are contained in the permanent company record. This check will be ac-

complished by class. The following algorithm will be used:

a. By class, load the SSN, name, company and regiment from the cadet record

and the companies and regiments from the permanent company record into inter-

mediate files. The cadet record file will store the SSN in positions one through eleven,

the name in positions 12 through 38, and the company and regiment in positions 39

through 40, while the permanent company file will contain the company and regiment

data in positions one and two.

b. Run an application program on the intermediate files to ensure that for

each cadet the company and regiment stored in the cadet record intermediate file has

an identical entry in the permanent company intermediate file. A null value is allowed

53

for the cadet's company and regiment values. Those SSNs that do not have a company

and regiment that is referenced will be identified.

Steps c through h are identical to steps 3 through 8 of the specific method

above and are not repeated.

5. Entity Integrity

The purpose of this implementation is to ensure that entity integrity holds for

the SSN field of the cadet candidate individual record. This check will look at a cadet's

SSN from the individual record to ensure that there are no duplicate SSNs contained

in the individual record. This check will be accomplished by class. The following

algorithm will be used:

a. By class, load the SSN from the individual record into an intermediate file.

The individual record file will store the SSN in positions one through eleven.

b. Run an application program on the intermediate file to ensure that for each

SSN there are no duplications stored in the individual record intermediate file. Those

SSNs that are duplicated will be identified. Null values are not allowed in the primary

key field.

Steps c through h are identical to steps 3 through 8 of the specific method

above and are not repeated.

6. Logical Inconsistencies

The purpose of this implementation is to ensure the validity of the logical

implication that a cadet's high school ranking cannot be greater than the number of

students in the cadet's high school class. This check will look at the value of a cadet's

high school ranking from the entrance and high school record to ensure that it is not

larger than the value of the number of students in the cadet's high school graduating

54

class. This check will be accomplished by USMA class. The following algorithm will

be used:

a. By class, load the SSN, name, high school ranking and the high school

number in class from the entrance and high school record into an intermediate file.

The intermediate file will store the SSN in positions one through elever, the name in

positions 12 through 38, the high school ranking in positions 39 through 42, and the

high school number in class in positions 43 through 46.

b. Run an application program on the intermediate file to ensure that for each

cadet the high school ranking is less than the high school number in class in the

intermediate file. Those SSNs that have a high school ranking that is larger than their

high school number in class will be identified.

Steps c through h are identical to steps 3 through 8 of the specific method

above and are not repeated.

E. CONCLUSION

The implementations described in this chapter represent examples of algorithms

designed to identify potential errors that may be present in the CIDB. These im-

plementations are not by any means an all-inclusive set. Rather, they are designed to

demonstrate selected applications where possible errors and inconsistencies exist in

the CIDB. Appendix B contains the PASCAL programs written to support these

applications. Sample output from each of the programs can be found in Appendix C.

A discussion of the results of these sample program runs can be found in Chapter Seven

of this thesis.

55

VII. CONCLUSIONS AND RECOMMENDATIONS

The specific programs of this thesis were developed to run on selected data

provided by the USMA DOIM staff. These programs identified three errors that were

contained in the data. The errors were: A cadet's height value equal to 30 inches (an

out-of-range value), a cadet's sex with no value entered, and a cadet's birthdate that

was left blank. While a total of three errors may seem a negligible amount, when

multiplied across a database as large as the CIDB, this number becomes significant.

These three errors support the basic premise of this thesis: In any database there are

potentially many errors that must be checked for and corrected prior to system

conversion. Overall, the data that was checked by the thesis' programs looked accept-

able, the three errors notwithstanding. However, the DOIM staff should beware that

many more errors are possible. This statement is based on the fact that only a small

portion of CIDB data was actually checked.

This thesis, together with the companion work of Guilmette and Wilson [Ref. 2],

was part of a project to design and convert the existing source database in network form

to a target relational database management system for the United States Military

Academy at West Point. The three of us worked together closely for the USMA

project, but then split apart to develop two separate theses. This thesis has shown that

many potential errors and inconsistencies are possible in any DBMS and in particular

the current USMA system. These potential errors must be checked before the system

is converted. Additionally, once the data has been checked and ultimately moved into

the new target system, it stands to reason that the same type of errors and

56

inconsistencies may occur in the target system as in the source if steps are not taken by

the DOIM staff to strictly enforce the ideas discussed in Chapters Two and Three of

this thesis. The target DBMS must have constraints implemented to keep the data

clean.

In summation, the following recommendations are made. These recommenda-

tions apply not only to West Point, but to any organization contemplating system

conversion.

1. All DBMS potentially contain many errors in the data the system stores. Steps
must be taken prior to system conversion to check the information stored in the
DBMS to ensure that it is without error. If there is "garbage" in the source
system, there will be "garbage" in the target system when the data is converted.

2. Most modern systems do not support automatic enforcement of integrity con-
straints. Consequently, the new target system, when it is fielded by West Point,
must have range checks developed, restrictive data types specified, integrity
constraints built with triggers or procedural coding, and other defensive
measures taken that will decrease the opportunity for errors in the system.
Without the development of an error checking package in the target system,
efforts to clean the data prior to system conversion will be for naught.

The process of database management system conversion can yield significant

improvements to an organization's system and benefits to its users. To arrive at a target

system that ensures integrity and minimal opportunity for error requires planning and

communication between the database manager and system users. The process of

designing and developing integrity constraints and applying them to the source and

target systems is as important to DBMS conversion as is developing the code to

implement the new system.

A team approach such as the one used by Hendrickson, Guil tette and Wilson

appears to be an ideal way to approach the conversion task. By designating team

members to oversee particular functions, such as system design, coding and integrity

57

maintenance, each operates as a specialist yet understands the overall goals for the

conversion.

Before any conversion can take place, the data in the source system must be

checked for validity and accuracy. If this task is done properly, and adequate planning

and communication are in place, the database manager can be confident of a smooth

transition toward an enhanced and error free target DBMS.

58

APPEDI A

tSKA FIELD IDETIFIER3 NT4(DESCRIED IN TEXT

I. WFr-OF-RANGE VALUES3

A. Cadet Candidate

1. SSN
a. AAB/Individual-SSAN-Service-Number
b. FBH/AP-L-SSAN
c. NHA/Nmination-Candidate-SSAN

2. Julian Dates
a. ABF/Individual-Status-Date
b. ABG/Offer-of -Admiss ion-Date
c. ABH/Status-Elaboration-Date
d. AFC/Record-Creation-Date
e. AF/Record-Last-Update-Date
f. AS/Academic-Status-Date
g. ASD/Physical-Aptitude-Status-Date

ASE/Medical-Status-Date
i. ASF/Leadership- Status-Date
j. ASG/Second-Step-Kit-Sent-Date
k. ASH/5-413-Date-5-480-Date
1. ASI/Special-Letter-On-e-Date
mn. AS,;J/Special-L~e.tter-Two-Date-

3. Height and Weight
a. ADD/Height-of-Individual
b. ADEWeight-of-Individual

4. Birth month and day
a. ADI/Birth-lMonth
b. AXI/Birth-Day

5. Physical Activity Exam and Admissions Scores
a. AGG/hysical-Activity-Exam-Score
b. AGH/PAE-Score2
c. AGI/PAE-Sccore3
d. AG/Leadership-Potential-Score
e. AMB/PAE-Event-One-Score
f. AMC/PAE-Event-Two- Score
g. AMD/PAE-Event-Three- Score
h. AME/PAE-Event-Four-Score
i. AIIF/PAE-Event-Five-Score

59

j. APB/Extracurricular-Activities-Score
k. APC/Athletic-Activities-Score
1. AFD/Faculty-Appraisal-Score
mn. APE/High-School-Class--Rank-Score.

6. ACT and SAT Scores
a. AJB/SAT-Math
b. AJC/SAT-Verbal
c. AJI/Second-SAT-llath
d. AJE,'Second-SAT-Verbal
e. AJFSAT-Math-Average
f. AJG/SAT-Verbal-Average
g. AKB/ACT-Math-Score
h. ARC/ACT-English-Score
i. AKD/ACT-atural-Science-Score
I. AKE/ACT-Social-Science-Score
k. AKF/Second-Math-Score
1. AKG/Second-English-Score
mn. AKI/Second-Natural-Science-Score-
n. AKI/Second-Social-Science-Score
o. AKJ/ACT-Math-Average
p. ARK/AT-English-Average
q. AKL/ACT-Nturl-Science-Average
r. ARMACT-Social-Science-Average

7. Work Experience
ACX3A'Work-Exprerice-Years

8. Single Character Fields
a. ADC/Sex-of-Individual
b. ADF/Individual-Ethnic-Backgroand
c. AIG/Race-of-Individual
d. ARB/Interview-on-File-Flag
e. ARC/Candidate-Personal-Statement-Code
f. ARD/Employers-Evaluation-Code
g. ARE/Activities-Becord-DD- 1868-Flag
hi. ARF/Personal-Data-Record-DD- 1867-Flag

9. Month Joined the Field Force
a. FEF/AP-llonth- Joined
b. FTB/ED-Month-Joined.

10. Nomination Vacancies
a. NEG/NA-Vacancies-Allowed
b. NE/NA-Vacancies-Filled
c. NEI/NA-Nominations-Authorized-Current-AY

11. Nomination Record
NIC/Nomination-Selection-Score

60

12. Tel-t Sitze Record
a. FJI/Test-Date-1
b. FJJ/Test-Date-2
c. FJK,'Test-Date-3
d. FJL/rest-Date-4
e. FJM/Test-Datze-5
f. F.JN/Test-Date-6
g. FJO/1Test-Date-7
h. FJ/Test-Time-i
i. FJQTest-Time-2
j. FJR/Test-Tiie-3
k. FJS/Test-Tizie-4
1. FOT/Test-Time-5
mi. F-JI/Test-Timre-6
rn. FJV/Test-Time-7

B. Schedule

1. SSN
a. HPA/Sched-Cadet-SSAN
b. HTA/Sc-hed-Term-Plari-Cadet-SSAN

2. Julian Dates
a. KCF/Sched-Book-Trarsactio-I-Date.
b. KC/Sed-Boo-Est-Delivery-IDate

3. Rook Quantities
a. KC/S;hed-Bc~ok-Qua-ntity-O-Hand
b. KCN/Sc-hed-Boo-k-Request-Qukantity

4. Classroom Capacity
HOE/Sched-Room-Capacity

5. Cburse Population
a.- HKS/Scw-hed-Master-Crse-Popuilatiori
b. KWBj/Sched-Trm-Ipd-Crse-Count,

6. Course Enrollment
a. KED/Sched-Trm-Ipd-liax-Enrollemnt
b. KBE/Sched-Trm-Ipd-Min-Enrollmerit
c. KBF/Sched-Trm-Deired-Enrollment

7. Flags
a. HQY/Sched-Cadet-Flag-Qhange
b. HRA-HR/Sched-Cadet-Group-Flags
c. HOF/Sched-Room-Type
d. HOG/Sched- Instruct-Period-Hour

61

C. Cdft

1. SSN
a. CAA/Cadet-SSAN
b. TJA/rrip-SSAN
c. TVA/Yearly-Demerit-SSAN
d. TPA/Monthiy-Demerit-SSAN
e. TKB/Coirurandant-SSAN
f. DFB/Academic-SSAN

2. Height and Weight
a. CAD/Cadet-Current-Height
b. CAE/Cadet-Current-Weight
c. CEH/Cadet-Entrance-Height
d. CEI/Cadet-Entrance-Weight
e. TKC/Cadet-Profle-Height
f. ThP/Cadet-Profile-Weight

3. Physical Fitness Test
CO)N/Cadet-Assign-APFT-Score

4. Class Size
a. TCC/Matranece-Class-Size
b. TCD/Graduation-Class- Size
c. THF/Class-Size-Start-of-Tem
d. THG/Class-Size-Erid-of-Term

5. Graduate-Record-Exam-Scores
a. DEP/GRE-Verbal
b. DEQ/GRE-Quantitative
c. DER/GRE-Analytical

6. Entrance Runs
a. CE1/Entrance-Run- 1
b. CEN/Entrance-Run-2
c. CCX/Cadet-Assign-Run-Tim'e

7. Trip Departure and]Return Times
a. TGQ/Irip-Departure-Time
b. TGV/Trip-Return-Time

8. Cadet Illness
a. T'fB/Cadet-Illness-Date
b. TYG/Cadet-I llxess-Excused- to-Date
c. TYC/Cadet-Ilinese-Time-Out
d. TYD/Cadet- Illness-Time-In

9. Cadet Activity Record
TMH/Cadet-Days- in-Act ivity

62

10. Order-, of Merit
a. TQN/Military-Der-v- Iride-x-Oi-M
b. DBE/Cou.rse-Max-OM
c. 1GB/Term-Academic-OM
d. IXGC/Terir-General-Ot1
e. DHB/Year-Sunmriary-AOM
f. DHC/Year-Summiry-GOM'

h. DIC/Ouuative-"t
i. DLA/Gradez--Oourse-OM

11. Quality Poin-t Averages
a. EG/TFerm-Acad-QPA
b. DGI/Term-Ger--QPA
c. DHH~ear-Saujary-Acad-PA
d. DHI/Year-Swr~rary-Gen-QPA
e. DII/Cuiollative-Acad-QPA
f. DIJ/Gm~ilative-Ge-QFA

II. ItNOWATIBLE DATA TYPE

A. Okdet Cmrxlidate

1. S.SN
a. AAB/Individuial-SSAN-Servi-e.-Nuimber
b. F.BH/AP-LQ-SSAN
c. FPA/Educitor-ID
d. NHA/Nomination-Candidate-SSAN

2. Julian Dates
a. ABF/Individual-Stattus-Date
b. AB/tatAu-Elboratio-n-Dat~e
c. AFC/Record-Creation-Date
d. AFC/Record-Last-Update-Date
e. ASC/Acadeic-Status-Date
f. ASD/Physical-Aptitude-Stattus-I)ate
g. ASE/Medical-Status-Date
h. ASF/Leadership-Status-Date
i. ASG/Second-Step-Kit-Sent-Date
j. ASH/5-413-Date-5-480-Date
k. ASI/Special-Letter-One.-Date
1. ASJ/Special-Loetter-Two-Date

3. Zip Codes and Telephone Numbers
a. ACJ/Address-Zip-Code-Individua l
b. ACK/Telephone-Number
c. FCJ/AP-Zip-Code
d. FCL/Hom-,Pnone-Area-Code
e. FG?/Home-Phone-Number
f. FCN/Business-Area-Code

63

g. FCXO/usfiess-Phone-Number
h. FCP/Busixiess-Phorie-Ext
i. FWAaxtovon-Rurrber
j. FCRAutoyori/ExtenB ion
K FD/Ed-Adress-Zip-Oode
1. FNF/High-Schooi-Zip
m. NiCI/NA-Address-Zip-Code
n. NCJ/HA-Teilephane
o. NDH/NA-Asst -Address-Zip--Coude
p. NDI /NA-Ast-Te leptlorie
q. FIJ/Test-Site-Zip-Code
r. FIM/I'est-Site-Telphone-Number
s. FIN/Test-Site-Telephone-FExteisiorI
t. FIO/Test-Site-Autovon-Number
u. FIP/est-SiteAutvfl-Extenscjion
v. FIU/Test-Site-QIC-Zip

4. Height arnd Weight
a. ADD/Height-of-Iridivibual
b. ADE/Weight-of-Iridiviclual

5. Graduation Year
AEB/Transcript-Grad-Year

6. District Number
AEE/Et-Senator-or-Distriet-No

7. Sequence Number
AEF/Ent-Source- Sequence-No

8. Percent onto College
AHH/Ind-ercent-onto-College

9. Month and Year Joined, Class Year and Training Year
a. FEF/AP-Ilonth-Joined
b. FEX/AP-Year-Joined
c. FEH/UKA-Class-Year
d. FEK/Training-Year
e. FTB/Ed-Month-Joined
f. F1TC/Ed-Year-Joined

B. Schedkile

1. Telephone number
HQI/Sched-Cadet-FOS-Advisor-Thone

2. Master Course Number
HAD/Scbed-I'aster-Cree-Number

3. Permanent Regijnent
HHC/Sched-Perm-Regt

64

C. Cadet

1. Zip Codes and Telephone Number.-
a. CFE/Cadet-HS-Zip-Code
b. CHI/Parent-Zip--Code
c. CHQ/Second-Parent-Zipo-Gode
d. CJF/Prior-College.-Zip-Gode
e. TGF/IripD-Address-Zipcode
f. TGlG/TrUp-Address-FPhone

2. Course Number
a . DAD/Course-Number
b. DKC/Grades-Course-Number

65

APPDIX B

APPhICATION PROGRAMS

The following computer programs were written in TURBO PASCAL Version 4.0,

using a Leading Edge Model D2 (80286) personal compxter (IBM compatible).

(t The purpose of this application program is to perform range checks on the*)
(* height, weight, sex and birthdate fields for each cadet candidate indi- t)
(* vidual record. Upon entry to USMA, male cadet's must be between 60 and 4)

(* 80 inches tall and weigh between 100 and 280 pounds. For females, their 4)

(* height must be between 58 and 80 inches and their weight must be. between *)
(4 90 and 201 pounds. Sex must be entered as either M for male or F for 4)

(4 female. A cadet's age must be. not less than 17 and not older than 22 by 4)

(4 the class start date. (t-of-range-value errors will cause two files to *)
(4 be generated - an error record file and an error mezsage file. Records *)
(4 that are clean are written to a good data file. Corrections are to be 4)
(4 made to the error record file, and then it is to be merged with the good 4)

(4 data file. The corrected good data file is to be stored for future load-*)
(4 ing into the target system. Use the program RangMerg to merge the good t)
(4 data file and the corrected error record file. 4)

Program (UtOfRangeValueCheck;
Uses CRT;

Const
filenamel = 'file.dat'; (*cadet record file*)
filel = 'goodpl.dat'; (*good data file*)
file2 = 'badpl.dat'; (*error record file*)
file3 = 'emesagpl.dat'; (*error message file*)
maxca&4 ts = 99; (*maximum number of cadet records*)
one = 1; (tminimum number of cadet records*)
blank (*blank character*)
oldage = '680701'; (*oldest birthadate allowable*)
youngage '730701"; (*youngest birthdate allowable*)

Type
numsn string[11]; (*cadet SSN*)
personname = string[27]; (*cadet name*)
inches = string[2J; (*cadet height*)
pounds = string[3]; (toadet weight*)
morf = string(l]; (*male or female*)
birthdate = string[6]; (*cadet birthdate*)

66

cadet = record (*cadet. record*)
esr : nufirser;
nae : persoriLame;
height : inches;
weight : prouds;
sex : morf;
date - birthdate;

end;

cadetrec - array[one..-maxcadets] of cadet; (*array of cadet records*)

Var
filei- ! text; (*filee to tic read by the progranm*)
person : cadetrec; (*variable of type cadetrec*)
count, error : integer; (*counters*)
gooddata : text,; (*file to be. written by the program*)
baddata, emessage text; (*file to be. written by the program*)
ok boolean; (*true or false*)

Procedure ReadCadet(var filein - text; var count : integer);

(* This procedure reads the necessary data from the cadet candidate *)
(* individual record into an intermediate file to be. processed. *)

Var
i : integer; (-* counter *)

begin () ReadCadet *)
assign(filein, filenamel);
reset(filein); (*reset the file*)
i := 1; (*initialize variable*)
count := 0; (*initialize variable*)

while not eof(filein) do
begin (*read cadet records into the file*)

count count + 1; (*increment the cadet record courit*)
read(filein, person[i].ssn, person[i] .name, person[i].heig-,t);
readln(filein, person[i] .weight, person[i].sex, person[i].date);
i := i + 1; (*increment counter*)

end;
cloee(filein); (*close the file*)

end; (* ReadCadet *)

Procedure RangeCheck(var filein - text.; var "..unt, error , integer;
var ok : boolean; var goxidata, baddata, emessage ! text);

(* This procedure checks to insure that the height, weight, sex and birthdate*)
(* of a cadet are within an acceptable range. *)

67

Var
i:integer; (*counters*)

begin (* 1RangeCheck *)I
error 0; (*initialize variable*)
for i 1 to count do

begin
ok :=true; (*set boolean flag to true*)
if not((person[i].sex =IIW) or (Persori[i].sex ='F')) then

begin (*write records with sex out-of-range errors to a file*)
(*named badpl .dat and error messages to file ezmesagp . dat.*)

ok :=fals~e; (*set boolear flag to false.*)
writ~e(baddata,i:2,person[i]I. sen, peron[i].niame,peremo[il.heigh-t);
writeln(baddata,person[i].weight ,person[ii. se-x,personi[i] .date);
write (emessage, -Sex value out-of-range! Check sex for record')
writeln(emessage, i, '.');
write).n(einessage,persoin[i] .ssn, person[i] .name,person[i] .sex);
writeiln Cemessage);
error := error + 1; (*count the records with errors*)

end
else if ((person[i].sex = WH) or (person~i].sex ='F')) then

begin (*check height and weight*)
if ((person[i].sex = 'H) arid

((Person[i].height <'60') or (personli).height '80'))) or
((person[i].sex = 'F') and
((person[iiI.height < '58') or (rerson[i1.hedght '80V))) then

begin (*write records with height ouit-of-range error,- to) a f ile *)
(*named badpl .dat and error messages to file emeszvpl.dat.*1)

ok :=false; (*set boolean flag to false*)
write(baddatag,i:2,person[i].ssn, pe-reon[i.narie);
write(baddata,person[ii.height ,personli] .weigh tt, pere-c'i[i] .ex);

writeln(baddata,person[i] .date);
write(emessage, 'Height value out-of-range! Check height for 1
writeln(emessage,'record ,'.)
writeln(emessage,person-[i] .ssni, person~i) .nairi,pereon[i .h-eight);
write In (emessage);
error := error + 1; (*count the records with errors*)

end;
if ((person[i].sex = WI) and

((Person[i].weight <'100') or (Personi[iil.weight, > '280')) or
((person[i].sex = 'F') and
((person[i].weight < '090') or (person[i].weight > '201'))) then

begin (*write records with weight out-of-range errors to) a file *)
(*named badpl .dat and error messages to file einesagpl .dat.)

if ok =false then
begin (*a previous error in the record exists*)

write (emessage, 'Weight value out-of-range! Check weight')
writeln(emessage, 'for record',,')
write(emessage,person[i] .ssni,person[i].name);
write(emessae,person[i].weisght);

68

writ,-,in (emrssage);
end

else if ok = true then
begin (*no Previous errors exist in the record*)

ok :=false; (*set boolean flag to false*)
write(baiddata,1:2, person[i]. sn, 'erson[i].name);
write(baddatac,person[i] .height,person[i] .weight);
writeln(baddata ,person[i] sex,personl].date);
write.(emessage, 'Weight value ait-of-range I Check weight)

writeln(emessage,'for record-,i,)

write(emessage ,person[ii.sen , person[i] .name.);
writ.e(emessa4ge,person[il .weight);
writeln(eme-ssage.);
error : = error + 1; (*count the records with errors*)

end;
end;

end;
if (person[i].date < oldage) or (personii.cate > ycvngage.) then

begin (*write records with birthdate out-of-range errors to a file*)
(*named badpl .dat and error messagese to file enesagpl .da-t. *)

if ok false then
begin (*a previous error exists in the record*)

write Cemessage, Birthdate value out-of-range! Check 4
writeln(emessage.,'birthdate for record ,

writeln(emessage , pere~on[i] .ssn,person[i].namre,per[ii .date);
writeln (emessage.);

end
else if oR true then

begin (*no Previous errors exist in the record'+)
ok := false; (*set boolean flag to false*)
write(baddata, i -2,person[i] .ssn, person[i] .name.);
writAe(baddata,person[i] .heighit,personi[i] .weighit,pereonr[i].sex);
writeln(baddata,person[i] .date);
write(esnessage, Birthdate value out-of-range! Check';
writeln(emessage, 'birthdate for record-,
writein (emessage, person[1] .sen, ,Person[1].name ,person[i 1. date);
writein(emessage);
error : = error + 1; (*ount the records with errors*)

end;
end;

if oR = true then
begin (*o errors exist in the record*)
ok := true;
write(gooddata, i :2 ,person[i] . sn, pereon[i] .name,personir[i] .height);
writekn(gooddata,person[i] .weight,person[i] .sex,personi[1].dkte);

end;
end;

end; (* RangeCheck *

69

begin (K main application - Ox~fRangeValueCheck 0)
clrscr; (*clear tht screenj*)
assigrdgooddata, filet);
rewrite(gooddata); (*write to a file*)
assigrdbaddata, file2);
rewrite(baddata); (*write to a file&)
assigi(ezez&ge, file3)
rewrite(emesage); (*write to a file*)
writeli(Txt of Range Value Check For Height, Wight, Sex and Birthdate :72);
ReadCadet(filein, count);
RangeCheck (filein ,count, error, ok ,gooddata ,baddata ,emessage);
writelnU(-There are ': 36, error, ' errors detected.');
if error > 0 then
begin
writeln(T'heck files badpl .dat and emesagpl .dat to make corrections.' :69):

end;
writeln(The number of records read from the input file wa- :5cun,.)
writeln('This Application Program is Now Finished V :60);
close(gooddata); (*close the file*)
close(baddata); (*close the file*)
close(emessage); (*close the file*)

end. (Q main application - Cut(fRangeValueCheck *

70

(* The purpose of this program is to merge the two data files created by the*)
(* Out-Of-Range Value Program into one corrected file for future loading *)
(* into the target system. Execute this program after rini-g Programl. *)

Program CkitkfRangeValueMergel)ata;
Uses CT;

Const
filenamel = 'goodpl.dat'; (*good data file*)
filename2 = 'badpl.dat'; (*error record file*)
filename.3 = 'corectpl.dat'; (-*corrected and merged data file*)
maxcadets = 99; (*mximum number of cadet records*)
one = 1; (*minimum number of cadet records*)
blank ; (*blank character*)

Type
count = string[2]; (*record count number*)
numssn = string[i1]; (*cadet SSN*)
personname = string[27]; (*cadet name*)
inches = string[2]; (Mcadet height*)
pounds = string[3] ; (*cadet weight*)
morf = string[1]; (*male or female*)
birthdate = string[6] ; (.cadet birthday*)

cadet = record (*cadet recordl)
kI count;
ssn numssn;
name personname;
height inches;
weight pounds;
sex morf;
date. birt]hdate;

end;

cadetrc = array[one.. maxcadets] of cadet; (*array of cadet records*)

Var
filel, file2 text; (*files to be read by the program*)
master . text; (*file to be written by the program*)
bufferl, buffer2 cadetrec; (*variable of type cadetrec*)

Procedure GoodData(var countl, i - integer; var tbifferl : cadetrec;
var master, flel : text);

(* This procedure writes the records from the good data file to the *)
(* corrected data file. *)

71

begin (* GrodData *
counit - counti + 1; (*increment thie record countrAl
write(master,bufferil[i].k,' ',bufferl[i].sesn,buifferl[iJ.niame.);
write (master,ufferl [i] heigh t,tbufferl [i] .weight,l:&ufferl1i. sex);
writeln(master,liifferl[i] .date); (*writ. to file*)
i : = i + 1; (*increment counter-*)
read (f iel, ,uffer [i] k, ,bufferl [i1] ssn,ttuffer1i. .name, ,tufferl i I.height);

end; (* GoodData *)

Procedure BacData4(var Jon2 : integer; var buiffer29 cadetrec;
var master, fiile2 :text);

(*This procedure writes the records f rom the corrected error re--coxrd f ile*)
(to the corrected data file. *

begin (* BadData *)
count2 := count2 + 1; (*increment the record count,*)
write (master, buffer2[J]. k, '',buffer2[J].ssn,buiffer2 '[J).namge.);
write (master, buffer2[J].height, bsffer2[J 1.weight, buffer2[i 1.sex);
writeln(master,buffer2[j] .date); (*write to file*)
j := j + 1; (*incremnent counter-*)
read (file2,tIxiffer2[J 1.k, buffer2 J]. sen, bufferi2[Cj] 1.name, buffer2-[j 1.height)
readln(file2,buffer2[j].weight,b~iffer2 [j].sex,buffer2[j].dat'e);

end; (* BadData *

Procedure Merge (var filel, file'., master :text);

(*This procedure merges the good data file and the corrected error record .*
(*file into a correcte-d goodi datak file in the correct numeric sequence-

Var
i, J, counti, count2, count3 integer; (*counters*)
bufferi, liiffer2 cedetrec; (*vzariable of type cadetrec-*)

begin (* Merge *)
counti 0; (*nitialize variable*)
count2 0; (*initialize variable*)
count3 C0; (*initialize variable*)
1 1; (*initialize variable*)
j 1; (*initialize variable*)
read(filel ,tufferl[i] .k,bufferl[i] .ssn,bufferl[i] .nae,tufferl[i] .height);
readln(filel,bufferl[i].welght,bufferl~i .isex,bufferl~i] .date-);
read(file2 ,lbuffer2[J] .k,bu'ffer2[J] .ssn~buffer2[Jl .name,tuffer2[J] .height);
readln(file2,lbuffer2[Jl .weight,buffer2lJ) .sex,buffer2[J] .dacte);
repeat
begin (*loop to merge two files-*)
if (bufferl[i].k = blank) and (buffer2[J].k =blank) then

72

begin
writeln("Both files are empty' :50);

end
else if (buffer2[j].k = blank) then

begin (*all records are in the good data file*)
Goxodata(countl, i, b xfferl, master, filel);

end
else if (t&ufferl[i].k = blank) then

begin (*all records are. in the error record file*)
BadData(count2, j, buffer2, master, file2);

end
else if (bufferl[i].k < buffer2[j].k) then
begin (*record in bufferl goes into correct file*)

GoodData(countl, i, bufferl, master, filel);
end

else if (tiufferl[i].k > buffer2[j].k) then
begin (*record in buffer2 goes into correct file*)

BadData(count2, J, buffer2, master, file2);
end

end;
count3 := countl + count2; (*records read should equal value froj hit. file*)
until (bufferl[i].k = blank) and (buffer2[J.k blak); (*oth files empty*)
writein('Number of Records Read Equals ":55, count3);

end; (* Merge *)

begin (* main application - OuitOfRangeValuemergeData *)
clrscr; (*clear the screen*)
assign(filel, filenamel);
reset(filel); (*reset the file*)
assign(file2, filename2) ;
reset(file2); (*reset the file*)
assign(master, filename3);
rewrite(master); (*write to a file*)
writelnl(lerging Started' :48);
Merge(filel,file2,master);
writeln("END of AFFLICATION' :50);
close(filel); (*close the file*)
close(file2); (*close the file*)
close(master); (*close the file*)

end. (* main application - CbtifRangeValueeergeData *)

73

(M Te purpose of this application program is to insure that the Scial .4)
(* Security Number field has itegers contained in it. Either nine
(* consecutive digits or nine digits with daehes ini positions four and *)
(4 seven are allowed for the SSN value. Incompatible data type checking is *)
(4 required because the USMA system allows any character value to be *)
(4 entered for a SN. Incompatible data type violations will cau.e two 4)
(* files to be. generated - an error record file and an error message file. 4)
(4 Records that are clean are. written to a good data file. Corrections are 4)

(4 to be made to the error record file, and then it is to be merged with the*)
(4 good data file. The corrected good data file is to be stored for fufture)
(4 loading into the target system. Use the program ItTMerge to merge the)
(4 good data file and the corrected error record file.)

Program Incompatible:DataTypeheck ;
Uses CRT;

Const
fil eame = 'cadet.dat'; (tcadet record file*)
filel = "goodp2.dat'; (*good data file')
file2 = "badp2.dat'; (*error record file*)
file3 = "emesagp2.dat'; (*error message file*)
blank = ; (*blank character*)
dash - - ; (*dash character*)

Type
row = array[l..80] of char; (*max 80 characters per row*)
numssn = array[l..I11 of char; (*cadet SSN*)
person = array[l..27] of char; (.tcadet name*)

Var
filein text; (*aile to be read by the program*)
line row; (*variable of type row*)
ssn n ssn; (*variable of type numssn*)
name person; (*variable of type person*)
i, count, error integer; (*counters*)
gooddata text; (*file to be written by the program*)
baddata, emessage text; (*file to be. written by the program*)
ok - boolean; (*true or false*)

Procedure Errortiessagel(var ok boolean; var i, count, error , integer;
var son numssn; var name , person;
var baddata, emessage : text);

(4 This procedure writes the records with one error to the error record and *)
(4 error message files. 4)

74

begin (*Errx)rt4e.--Pagce1 *)
ok false; (*set bxiear, f lag to false-*)

write(e-message, 'Ertror in SSN - poFsiticorl ,i, -. Check S'SN for 1
write lri(eufiee&agce, rm-eord , crout);

wrie bi(mesageC~m, nme40);
writ en (ernssge
error : = error + 1; (*count the records with errors*)

end; (* Erroriessagel1 *)

Procedure Errortiessage. (var 1, count - integer; var sen niuriesn;
var name , person; var ezxessage :text) ;

(This procedure writes the rec-ords with more than one error t/o the error ~
(* message file only. *

begini (.* Error~lessage.2 *
write(emessage,'Error in SSN - position ',,. Check SSN for ;
write.ln (emessage, ' record ',count);
writeln (emessage , san, naiiw: 40);
write in (emessage);

end; (* Errortlessage2 *

Procediure SISCheck (var count, error - iteger; var sen - mm,ss
var name :-person; var cxxiddati, teddata, rmessaze ,text);

(This pro-edure- checks the validity of the data type for the SON~ field and *
(insures that nine digits- for SSN are contained in the re--cord. *

Var
i :integer; (*counter*)
ok : oolean; (*Mrue or false*)

beg in (* SNCheck *)
ok true; (*set boolean flag to,- true.*)
for i := 1 to 31 do

begin (*check first thr-ee digits of SSN*)
if not (sen[i] in V' 9)then
begin

Errortiessagel (ok, i, count, error, son, name., baddatat, emessage);
end;

end;
for i : 4 to 4 do

begin (*check fourth digit of SSN*)
if not((sen[4] dash) or (san[4] in L'C)'.. '9'])) then
begin
if ok false then

75

begin
Errortlessage2(i, count, sen, name, emezsage);

end
else if ok = true then

begin
ErrorMessagel (ok, i, cout, error, sen, name, baddat.a, emessage);

end;
end;

end;
for i = 5 to 6 do

begin (*check fifth and sixth digits of qSN*)
if not(ssn[i] in ['C"..'9']) then

begin
if ok = false then

begin
ErrorMessage2 (i, cmt, ssn, name, emessage);

end
else if ok = true then

begin
Errortessage1(ok, i, count, error, san, name, baddatat, enmeege);

end;
end;

end;
for i := 7 to 7 do

begin (*check seventh digit of qSN*)
if not((ssn[7] = dash) or (ssn[7] in ['0'..'9'])) then

begin
if ok = false then

begin
ErrorMessage2(i, unmt, ssn, name, emessage);

end
else if ok = true then

begir
ErrorMessagel(ok, i, count, error, san, name., baddata, emessage);

end;
end;

end;
for i := 8 to) 11 do

begin (*check last four digits of SSN*)
if (ssn[4] = dash) and (ssn[7] = dash) then

begin (*fourth and seventh digits are dashes*)
if not(ssn[i] in ['0'..'9']) then
begin

if ok = false then
begin

Errorflessage2(I, count, ssn, name, emessage);
end

else if ok = true then
begin

ErrorMessagel1 (ok, i, count, error, ssn, name, baddata , emessage);
end;

76

end;
end

else if (ssn[4] in ['C)..'9']) and (ssn[7] in [.. '9"]) then
begin (*fourth and seventh digits are not dashes*)

for i := 8 to 9 do
begin

if not(ssn[i] in ['0'..'9']) then
begin

if ok = false then
begin

ErrorMessage2(i, count, ssn, nme, eessage);
end

else if ok = true then
begin

ErrorMess.agel (ok, i, cout, error, ssn, nm, baddata, eessage);
end;

end;
end;

for i := 10 to 11 do
begin (*digits ten and eleven must be. blank*)

if not(ssn[i] = blank) then
begin

if ok = false then
begin

ErrorMessage2(i, count, ssn, name, emessage);
end

else if ok = true then
begin

ErrorMessage 1 (ok, i,count, error, ssn, name, bddata, enssge);
end;

end;
end;

end;
end;

if ok = true then
begin (*SSN has no errors*)

ok := true; (*set boolean flag to true*)
writeln (goddata, count: 2, ssn, name);

end;
end; (* SSNCheck *)

Procedure :roxc.ssLine(var line : row; var ssn : numsen; var nme: person);

(*This procedure picks off the values for the ssn and the name.*)

Var
i, J : integer; (*coumters*)

begin (4 ProcessLine *)
j : 1; (*initialize variable*)

77

for i: = 1 to 11 do
begin (*assign values to the cadet SSN*)

ssn~ij]: line[i];
j := J + 1; (*increment counter*)

end;
j : 1; (*nitialize variable,*)
for i :=12 to 38 do

begin (*assign values to the cadet name*)
name[j] :=line[i];
J j= J 1; (*increment counter*)

end;
end; Q* ProcessLine Q)

Procedure ReadPerson(var filein :text; var count, error integer;
var line :row);

(V This procedure reads the datas from the cadet'se record one character at a)

(* time into an intermediate file to be processed. Q)

Var
i :integer; (*counter*)

begin (* ReadPerson *)
assign(filein, filename);
reset(filein); (*reset the file*)
count 0 C; (.initialize variable*)
error 0; (*initialize variable*)

while not eof(filein) do
begin (*read the characters into a file*)

count :=count + 1; (*increment the record count*)
i :=1; (*initialize variable*)
while not eoln(filein) do

begin
read(filein, line[iJ);
i i + 1; (*increment the counte-r*)

end;
readln(filein); -

ProcessLine(llne, son, name);
SStNCheck (count, error, son, name, gooddata, baddata, emessage);
if (countl50) or (count=300) or (count=450) or (count=600) then
writeln(UPRCRAM IS W)MING - STANDBY' :53);

end;
close(filein); (*close the file*)

end; V* ReadPerson *

78

beg in (* mn application - Iricropattibl-DataType-4hck k)

clrscr; (*clear the screerj*)
assign(gcxldata, fuel);
rewrite-(gooddata); (*write- to) a file*)
assigri(baddata, file2);
rewrite(baddata); (*write- to a file*)
assign(effeseagej ile3);
rewritxe(evjpseagFe); (*write to a file*)
writelrii 'Data Type Check for SSN :50);
ReadPerson(fileii, coumt, error, line);
write lr(Thbere are- :28, error, 'reords with SC3N e-rrrs detected.')
if errojr > 0 then
begin
writeln(' Check files badp2 .dat mid emt-&%gp2 .datt txo juake corretions. '70);

end;
writein ('The nmber of records read from the input f ile wa.- 64, count,'.)
writeln('This Application Pmiwram is Now Finished! -61);

close (gooddata); (*close the file*)
close Rxiddata); (*close the file*)
close.(emessage); (.*c-los-e the file*)

end. (* main application - IncompatibleDataTypp-Check *

79

(* The purpoise of this program is to merge the two data files created by the*)
(4 Incompatible Data Type. Program into one corr-cted file for future loading*)
(* into the target system. Execute this program after nn-iing Frogram2. *)

Program IncompatibleDataType1ergeData;
Uses CRT;

Const
filenamel = goip2.dat'; (-*gcd data file*)
fileame2 = 'badp2 .dat'; (*error record file*)
filename3 = 'corct-p2, dat' ; (*corrected and merged data file*)
maxcadets = 99; (*maximum number of cadet records*)
one = 1; (.*minimum number of cadet records*)
blank ; (*blank character')

Type
count = string[2]; (*record count number*)
numesn = string[ll]; (-*cadet SSN*)
personname = string[27]; (*cadet name*)

cadet = record (*cadet record*)
kI count;
ssn numssn;
name personname;

end;

cadetrec = array[one..maxcadets] of cadet; (*array of cadet records*)

Var
filel, file2 text; (*files to be read by the program*)
master text.; (*file to be. written by the program*)
tufferl, uffer2 cadetrec; (*variable of type cadetr:*)

Procedure GoodData(var coumtI, i , integer; var ufferl , cadetrec;
var master, filel : text);

(* This procedure writes the records from the good data file to the 4)

(* corrected data file. 4)

begin (* GoodData *)
countl := countl + 1; (*increment the record coumt*)
writeln(master,bufferl[i] .k,' ',bufferl[i] .sn,b ifferl[i] .na.e);
i = i + 1; (*increment counter*)
readln(filel,bufferl[i].k,bufferl[i] .san,bufferl[i] .nvae);

end; (* GoodData 4)

80

rxocedure BadData(var oy rit2, i integer; var bWffer2 - cadetrec;
var master, f ile? : text);

(This procedure writes the records fromj the correcte-_d error record.J file *
(to the corrected data file. *

begini (* BadData& *)
coiunt : = coxunt?2 + 1; (*i~ncrement the record count.*)
writeliinkmster,buiffer2[j].k,' - ,buffer2-[J].tsnr,*iffer? [j].nane);
j :=j + 1; (*increment counter*)
readln (file-, buffer2[]k, aifferO.[ssn.Ituffer[j].name.);

end; ('4* BadData *)

Pro-edure Merge (var file 1, file?, master :text);

(This pro-edue merges the ood data file and the corxrect&ed error record.)
(file initk a corrected good data file ini the correct nume--riC- sequence..4

Var
i, j, count 1, cotunt?2, count3 : integer;
ttuffer1, ixiffer? cadetrec.;

begin (* Merge *)
counti 0; (*iitialize variable*)
count." 0zC; (*initialize variable*)
count3 :0; (*initlalize variable*)

i :=1; (*initialize .ariable*)

reaidln(filel,btufferl[i] .k~bkifferl[i] .essn,t'ufferl[il .nam);'.
readln (file-", bffer2[J 1.k, Iiffer?[J 1. en, txtffer?[J] 1.name);
repeat

begin (.*loop to- merge two files*)
if (bufferl[i] .k =blank) and (1xuffer2[J].k =blank) then
begin

writelnV'Both files are empty' :50);
end

else if (ttiffer?[jjj.k = blank) then
begin (*all records are in the good data file*)

Goodffat.a(ccxntl, i, bufferi, master, filel);
end

else if (bufferl[i].k = blank) then
begin (*all -ecords are in the error record file*)

BadData(count2, J1 tffer?, master, file2);
end

else if (bufferl[il.k <tuffer?'[J].k) then
begin (*record in tufferi goes into correct file*)

GoociData~counti, i, hxifferi, master, fulel);
end

else if (kafferl[i].k > baffer2[j].k) then
begin, (*.rtecorcl in biffer2 goes6 into correct file-*)

BadData&(curit2, j, tbxffer2, vbzstzer, file-2);
endc

end;
count3 : = counti + count.); (*records read should equal value from Jlt file*)
until (tufferl[i].k =blank) anid (buffer2[J].k = blaink); (*beth files empty*)
writeln('Number of Records Read Equals ':.55, count3);

end; (* Merge *)

begin (* main application - IncompatibleattType1e.rgeData 4
clrscr;
assign(filel ,filenamel);
reset(filel); (*reset the file*)
assign(file2,filename-2);
reset(file2); (*reset the file.*)
assign(mater, filename-3);
rewrite master); (*write to- a file*)
writeln('Merging Started' :48);
Merge Cfulel , ile2,master);
writeln('EN) of APPLICATION' :50);
close(filel); M*lose the file*)
close(file2); (*close the file*)
close(master); (*close the file*)

end. (* main application - IncompatibleIatType.Mergeata 4

82

(* The purpose of this application program is insure that redundant fields t)

(* contain the same data. This program specifically compares the height *)
(* and weight values contained in the cadet record against the individual t)
(* record from the cadet candidate area of the CIDB. Redundant fields that,)
(* do not contain the same information will cause two files to be generated*)
(* - an error record file and an error message file. Records that are t)
(* clean are written to a good data file. Corrections are made. to tie t)

(* error record file, and then it is to be. merged with the good data file. *)
(* The corrected good data file is to be stored for future loading into the*)
(t target system. Use the program RedMerge to merge the good data file and*)
(t the corrected error record file. 4)

Program RedundancyCheck;
Uses CRT;

Const
filenamel = 'person.dat'; (*cadet record filet)
filename2 = 'cadetc.dat'; (*individual record file*)
filel = 'goodp3.dat'; (*good data file*)
file2 = "badp3.dat'; (*error record file*)
file3 = 'emesagp3.dat'; (*error message filet)
maxcadets = 99; (tmaximm number of cadet records*)
mincadet 1 1; (tmininim number of cadet reco:rds*)

Type
ntr.sn = stringt 11 1; (tcadet SSN*)
personname = string[27]; (*cadet nae*)
inches = string[2]; (tcadet height*)
pounds = string[3]; (tcadet weight*)

cadet = record (*cadet r-cordt)
ssn numssn;
name personname;

height inches;
weight pounds;

end;

cadetrecl = array[mincadet. .maxcadets] of cadet; (*array of cadet recocrds*)
cadetrec2 = array[mincadet. .maxcadets] of cadet; (*array of cadet recordo*)

Var
fileinI, fileir2 text; (*files read by the program*)
person cadetreci; (*variable of type cadetrec.*)
individual cadetrec; (*variable of type cadetrec2*)
error, count, counter integer; (*counters*)
gooddata text; (*file to be written by the program*)
baddata, esessage text; (*file to be written by the program*)

83

Procedure ReardPeron(var fileinil text; var cozt ' integer);

(This pryc-dre rearjs in the data from the cadet recolrd into an 4)
(4 irnter-diate file to be processed. 4)

Var
i : integer; (*counter.*)

begin (* ReadPerson *)
assign(fileinl, filenamel);
reset(fileinl); (*reset the file*)
i := 1; (*initialize variable*)
count := 0; (*itialize vriable*)

while not eof(fileinl) do
begin (*read the cadet records into the file*)

count = count + 1; (*increment the record count*)
read (filein1, person[i]. ssn, person[i]. name, person[i]. height);
readln(fileinl, person[i] .weight);
i := i + 1; (*increment counter*)

end;
close(fileinl); (*close the file*)

end; (* ReadPerson *)

Procedure Readlndividual(var filein2 text; var cauter i integer);

(* This procedure reads in the data from the cadet, candidate individual 4)
(* record into an intermediate file to be processed. *)

Var
j : integer; (*counter*)

begin (* ReadIndividual *)
assign(filein2, filename2);
reset(filein2); (*reset the file*)
j := 1; (*initialize variable*)
counter := 0; (*initialize variable*)
while not eof(filein2) do
begin (*read the cadet candidate records into the file*)

counter := counter + 1; (*increment the record count*)
read(filein2, individual[JI]. ssn, individual[j] .name);
readln(filein2, individial[J].height, individual[J J.weight);
j := j + 1; (*increment counter*)

end;
close(filein2); (*close the file*)

end; (* ReadIndividual 4)

84

Procedure RedundancyChecks(var fileini, filein2 : text;
var count, counter, error : integer;
var gooddata, baddata, emessage : text);

(* This procedure takes a record from the cadet record file and compares its)
(* height and weight values to the values contained in the cadet candidate *
(* individual record,

Var
i, j integer; (*couters*)
ok, found : boolean; (*true or false*)

begin (*RedundancyChecIk*)
error C); (*initialize variable*)
for i I to count do

begin (*loop to compare SSN from cadet record file and find a match in .)
(*the cadet candidate file, if one exists*)

j := 1; (*initialize variable)
found := false; (*set boolean flag to false*)
ok := true; (*set boolean flag to true*)
while not found do
begin

if person[i]. ssn = individual[j] . ssn then
begin (*SSNs are the same*)

found := true; (*set boolean flag to true*)
if (person[i].height = individual[j].height) and

(person[i] .weight = individual [JIi]. weight) then
begin (*heights and weights are the name*)

write(gooddata,i:2,person[i].ssn,person[i] .name);
writeln(gooddata, person[i].height, person [i]. weight);

end;
if (person[i].height <> individual[j].height) then
begin (*heights not the same*)

ok := false; (*set boolean flag to false*)
write(baddata,i:2,person[i].ssn,person[i].name);
writeln(baddata, person[il .height,person[i]. weight);
write(emessage, 'Height values are different! ');
writeln(emessage,'Check data for record ',i:2,'.');
write(emessage, person[i] . ssn, person[i].name);
writeln(emessage,person[i] .height);
write(emessage, 'The cadet candidate height value is equal');
writeln(emessage,' to ',individual[J].height,'.");
writeln (emessage);
error := error + 1; (*increment error countA'

end;
if (person[i].weight <> individual[J].weight) then
begin (*weights not the same*)

if ok = false then
begin (*record contains a previous error*)

85

write(emesshge, Wight values are different! I
writeln(emessage,'Check data for record ',1:2,' .');

write(emessage ,personE i] .ssn ,persont ii name);
writeln(emessage,person[i] .weight);
write (emessage, 'The cadet candidate weight value is ');
writeln(emessage,'equal to ',individual[j] .weight,'.')
writeln(emessage);

end
else if Ak = true then

begin (*no previous error exists*)
Ak : = false; (*set boolean flag to falseQ:
write(baddata, i:2 ,person[i] .sen ,person[i] .name);
writein (baddata. personE ii.height, personl]. weight);
write(emessage, 'Weight, values are different! j
writeln(emessage,'-Check data for record',i2'')
write(eiessage,perscri3i].ssn,person[i] .name);
writeln Cemessage ,person[ii.weight);
write(emessage, 'The cadet candidate weight value is')
writeln(emessage, 'equal to ',individual[J] .weight,'.);
writeln(emessage);
error : = error + 1; (*increment error count*)

end;
end;
:= j + 1; (*increment counter*)

end
else if (person[i].ssn <-> individual[issn) then

begin (*SSNs are not the eam'e*)
found := false; (*set boolean flag to false*)
j := J + 1; (*increment counter*)
if J= counter + 1 then

begin (*SSNs do not match from either file*)
write(baddta,i:2,person[iJ.sn,person[i.name);
writeln (baddata ,personE i].height ,person[i] .weight);

write (emessage, 'No match for record ',i,' found Jin the')
write(emessage,'Cadet Candidate file. ');
writeln(emessage, 'Please validate the 9);
write(emessage, 'height arnd weight for ');
write(emessage ,person[i]. ssn ,person[i . name);
writein (emessage, person[i .height, person [ii .weight);
writeln(emssage);
error :=error + 1; (*increment, error count*t)
found :=true; (*et boolean flag to true*)

end;
end;

end;
end;

end; (Q IedundancyChecks Y)

86

begin (* maiin applicatio~n - RedundrancyCheck *
cir,-ocr; (*clear the screen*)
a s s in(gxAdata, f ilel1) ;
rewrite(gooddata) ; (*'write to a fil~
aspigfL (baddata, f ile2) ;
rewrite Cbaddlata); (*.write- to a file*)
aesigri(emessage, f ile3);
rewrite(emressage); (*write- to a file*)
write ln ('Height and Weight Redunidancy Check':57);
ReadPersor(fileinl, cunt);
Readlndividual(fileirn2, ounzter);
RedundancyChecks Cfileini, filein2, cotuat, counter, error, gox~data, baddata,

emnssage);
writeln-i('The number of recordis read f romj the input file wa.s ' 65, cxut,'.)
writein(M Tere are :30 ,error,' records with errors detected.');
if error > 0) then
begin
writein C Check files badp3. dat and emesagp3 .dat toe make corrections 7 :71);

end;
writeln('This Applicatioi. Program is Now Finishied! ':61);
close (gooddatt); (*close the file*)
clo~se (baddata); (.*close the file*)
close (emessage); (*cloee the file*)

end. (.* maini application - RedundancyCheck *

87

(* Te purpose of this program is to merge the two data files created by thel)
(* Redundancy Program into one corrected file for future loiading intco. the 4)
(* target systmn. Execute this program only after running Prograr3. 4)

Program RedundanicyMergeData;
Uses CRT;

Const
filenamel = 'g dp3.dat'; (*goo data file*)
filename? = 'badp3.dat'; (*error record file*)
filename3 = 'corectp3. dat" ; (*correcteti and merged data file*)
maxcadets = 99; (*maximum number of cadet records*)
one = 1; (*minimum number of cadet records*)
blank = ""; (*blank character*)

Type
count = strjg[2]; (*record count nmb1e:r*)
numssn = string[11]; (*cadet SSN*)
personname = string[27]; (*eadet name*)
inches = string[2]; (*cadet height,*)
pounds = string[3]; (*cadet weight*)

cadet = record (*cadet rcord*)
k : count;
sen : nu nssn;
name : personname;
height inches;
weight pounds;

end;

cadetrec = array[one. .maxcadets] of cadet; (*array of cadet records*)

Var
filel, file'.. text; (*files to be read by the prograf*)
master text.; (*file to be written by the progra m*)
bufferl, uffer? cadetrec; (*variable of type cadetrec*)

Procedure CxKUata(var countl, i - integer; var hifferl cadetrec;
var master, filel : text);

(* This procedure writes the records from the good data file to the t)

(4 corrected data file. 4)

begin (* Goodtata *)
countl = countl + 1; (*increment the record count.*)
write(mastr,bufferl[i].k, " ,bufferlhi] .ssn,bufferl[i].ngme);
writeln(master,bufferl[i) .height ,bufferl[i] .weight);

88

i :=i + 1; (*increment corizter*)read (filel, Wxffer1i[i].k,hixffer I [i]. son, lxifferlL i]. name, bu~fferlI[i I. height);
readln (filel,hixfferI[i]. weight) ;

end; (* xdDta *)

Pro-edure Bad1ktta(var count2, j - integer; var buffer2 : cadetrec;
var mister, file2 : text);

(* This procedure writes the records from the corrected error record file *)
(* to the corrected data file. *)

begin (* BadBata *)
count2 := ccxut2 + 1; (*increment the record comt.*)
write (mastr, uffer2 [j]. k," ',buffer2[J].ssn, tuffer2[jl .nlme);
writeln (master, buffer2 [J. height, buffer2 [J I] weight);
j := j + 1; (*increment counter*)

read (file2,tuhffer2[j] .k,ttffer2[j]. ssn,txffer2[J] .nare.,tiffer2[J I -height);
readiln(file2 ,buffer2[j].weight);

end; (* BadData *)

Procedure Merge(var filel, file2, master , text);

(4 This prxcedure merges the good data file and the corrected erly'r record *)
(* file into a corrected good data file in the correct numeric sequence. 4)

Var
i, j, comtl, cotnt,2, cout,3 integer; (*ccxuters*)
bufferl, buffer2 cadetrec; (*variables of type cadetrec*)

begin (* Merge *)
countl = 0; (*jnitialize variable*)
count2 = 0; (*initialize variable*)
count3 0; (*initialize variable*)
i 1; (*initialize variable*)
j 1; (*initialize variable*)
read(filel,bufferl[i] .k,Ixufferl[i] .ssn,bufferl[il .name,tiufferl[i .hle.igltt);
readln(filel ,bufferl[i] .weight);
read(file2,buffer2[j] .k,buffer2[J I. ssn,buffer2[j] .name--,buffer2[J] .height);
readln(file2,buffer2[j].weight);
repeat

begin (*loop to merge two files*)
if (ufferl[i].k = blank) and (buffer2[Ji].k = blank) then

begin (*both files contain no data*)
writeln('Both files are empty' :50);

end
else if (buffer2U.k = blank) then

begin (*all records are in the good data file*)
GoodData(couLtl, i, hifferl, master, filel);

end

89

else if (tfferl[ilk =blank) then
begin (*all recr.rris, are iri the error record file-*)

BadiData(courit2, J, buffer2, master, file2);
end

else if (bufferl[iI.k <buffer2[j].k) then
begin (*record in bu.fferl goes into correcet file*)

GoodData~counti1, i, h.affer1, master, fulel);
end

else if (tufferl[i].k > btuffer2[l].k) then
begin (*record !n tuffer2 goes-. into correct file*)

BadData(count2, J, buffer2r, master, file.");
end

end;
count3 counti + count2; (.*reo-rds shouild equal value frciim int. filef)
until (bufferl[i].k =blank) and (buffer2[J].k =blank); (*Ixth files empty,*)
writeln (Number of Records Read Equals ',:55, count3);

end; (* Merge *)

begin (* main application - RedundancytlergeData *
clrscr; (*clear the screen*)
assign(filel ,filenamel);
reset(filel); (*reset the file*)
assign(file2 ,filenam-2);

reset(file2); (*reset the file*)
assign (maspter, filename3);
rewrite (master) ; (.*write to a file*)
writeln('Ilerging Started' :48);
llerge(filel ,file2,master);
writeln('END of APPLICATICN' :50);
close(filel); (*close the file*)
close(file2); (*close the file*)
close(nmaster); M*lose the file*)

end. (*~ main application - Redwundancy!4ergeData *

90

(* The pirpose of this application program is to insure that referential *)
(* integrity holds for the company and regiment that a cadet is assigned. *)
(* Companies are lettered A through I, while regiments are numbered I thru *)
(* 4, for a total of 36 companies. Each cadet is to be. assigned to a
(* refereced company (null values are allowed if no company is assigned).
(* Each company must be part of the cadet brigade. Referential integrity *)
(* violations will cause two files to be. generated - an error record file 4)
(* and an error message file. Records that are clean are written to a good *)
(t data file. Corrections are to be. made to the error record file, and then*)
(4 it is to be. merged with the good data file. The corrected good data file*)
(* is to be stored for loading into the target system. Use the program *)
(* RIMerge to merge the good data file and the corrected error record file. 4)

Program ReferentialIntegrityCheck;
Uses CRT;

Const
filenamel = 'ccc.dat'; (*cadet record file*)
filename2 = "company.'dat'; (*permanent company file*)
filel = 'gxp4.dat'; (*good data file*)
file2 = "badp4.dat'; (*error record file*)
file3 = 'emesagp4.dat'; (terror message file*)
maxcadets = 99; (*maximum number of cadet re.cords)
maxcompany = 36; (*maximum number of cadet companies.*)
one = 1; (*minimm number of cadet/company recorde)
blank = ; (*blank character*)

Type
numssn = string[1i]; (tcadet SSN*)
personname = string[27]; (*cadet name*)
unitname = string[2]; (*cadet company*)

cadet = record (tcadet record*)
socaecnum : numssn;
name : personname;
comp : unitname;

end;

companyrec = record (*company record*)
company : unitname;

end;

cadetrec = array[one..maxcadets] of cadet; (*array of cadet records*)
unitrec array[one..maxcompany]of companyrec; (*array of company records*)

Var
fileinI, filein2 text; (*files to be. read by the program*)
person cadetrec; (*variable of type cadetrec*)
complrame unitrec; (*variable of type. unitrec.*)

91

countYA, crAunter, e-rrr integer; (*corIters*)
gorddata text; (*file to be written by the program*)
baddata, iessage text; (*file to be written by the progrark*)
found booflean; (*tMre or false*)

Procelure ReadPerson(var fileinil - text; var ccxit integer);

(* This procedure reads the necessary data from the cadet record into an *)
(* intermediate file to be procesed. *)

Var
i : integer; (*counter*)

begin (* ReadPerson *)
assign(fileill, filenamel);
reset(fileinl); (*reset the file.*)
i := 1; (*initialize variable*)
count -) ; (*initialize variable*)
while not eof(fileinl) do
begin (*read the cadet records into the file*)
count := count + 1; (*increment the record countA)
readln(fileinl, person[i. socsecnum, person[il -name., person[i].comp);
i := i + 1; (*increment the counter*)

end;
close(fileinl); (*close. the file*)

end; (* ReadPerson *)

Procedure. ReadCompany(var filein2 - text.; var counter * integer);

(* This procedure reads the necessary data from the permanent company record *)
(* into an intermediate file to be processed. *)

Var
i : integer; (*counter*)

begin (* ReadCompany*)
ass gn(filein2, filename2);
reset(filein2); (*reset the file*)
i := 1; (*initialize variable*)
counter := 0; (*initialize variable*)
while not eof(filein2) do

begin (*read company records into the file*)
counter := counter + 1; (*increment the company count*)
readln(filein2,compname[i].company);
i := i + 1; (*increment the counter*)

end;
close(filein2); (*close. the file*)

end; (* ReadCompany *)

92

Procedure RefIntCheck (var count, counter, error : integer; var found : iolean;
var fileinl, filein2, gooddata, baddata, emessage :text);

(* This procedure checks to insure that the company a cadet is assigned to *)
(* is a valid company. *)

Var
i, j : integer; (*counters*)

begin (* RefIntCheck 4)
error :0 0; (*initialize variable*)
for i := 1 to count do

begin (*loop to check cadet company value against permanent company value*)
j := 1; (*initialize variable*)
found := false; (*set boolean flag to false.*)
while not found do

begin
if (person[i].comp = comp name.[j].company) or

(person[i].comp = blank) then
begin (*write records with no errors or null values to a file*)

(*named goodp4.dat*)
found := true; (*set boolean flag to true*)
write (gooddata, 1:2, person[i] socsenum, person[i .name);
writeln(gooddata, person[i] .comp);
J := j + 1; (*increment counter*)

end
else if person[i].comp <> compname[j].company then

begin (*values are not equal so increment and try next value:)
found := false; (*set boolean flag to false*)
J := j + 1; (*increment counter*)
if j = counter + 1 tlen

begin (*write records with errors to a file named badp4.dant*)
(*and error messages to a file named emesagp4.dat4*)

write (baddata, i: 2, person[i].socsecnm, person[i]. nme);
writeln(baddata, person[i]. comp);
writeln(emessage, 'Value for Cadet Company is incorrect! ');
write(emessage, 'Check data for record ', i:2);
write(emessage, person[i] .socsecnum: 16, persoz[i] .name);
writeln(emessage, person[i3 comp);
writeln(emessage);
J := J + 1; (*increment counter*)
error : error + 1; (*increment error counter*)
found := true; (*set booletan flag to true*)

end;
end;

end;
end;

end; (* RefIntCheck *)

93

begli (* main &Pp1irnttori - Ref-f e-ren-tialrLnt:grityChie-k *)
clmicr; (*lear the ecreent*)
aessign(gooddlata, f iel);
rewrite(gooddata) ; (*writ/-e to a file*)
assign(btddata, hile2);
rewrite(baddata); (*write to a file*)
assign(eoesage, file3);
rewrite(emessage) ; (*write to a file*)
writx-elr(Refo erwntia1 Integrity Check For Cadet Company :63);
Readferson(filelril, courii);
ReadCovpay (fileii2, coute-r);
Re-f IntCheck (count, cvznter, error, f ,f ileinl , f ileinr2,

gooddiata,tbaddatia, effr--eeage);
writeln(There- are ':36, error, 'errora detected.)
if error > 0 then,

begin
writei ('Check f iles badp4. dat and emes.agp4 .dat to make corrections, 69);

end;
writeinUC-The number of records read from the input file was 6 c.n,.)
writeln('This Application Program is Now Finished! ':60);
close(gooddata); (*close the file*)
close(baddata); (*close the file*)
close(emessage); (*lose the file*)

end. (* main application - Referet-ntialntegrityCheck *

94

(* The purpose of this program is to merge the two data files created by the*)
(* Referential Integrity Program into one corrected file for future loading *)
(* into the target system. Execute this program after rning Program4. *)

Program Referent ialIntegrityMergeData;
Uses CRT;

Const
filenamel = 'goodp4.dat'; (*good data file*)
filename2 = 'badp4.dat'; (*error record file*)
filename3 = "corectp4.dat' ;M(orrected and merged data file*)
maxcadets = 99; (*maximum number of cadet records*)
one = 1; (*binimum number of cadet records*)
blank = (*blank character*)

Type
count = string[2]; (*record count number*)
numssn = string[ll]; (*cadet SSN*)
personname = string[27]; (*cadet name*)
unitname = string[2] ; (*cadet company*)

cadet = record (*c-adet reco'rd*)
k : count;
ssn : numssn;
name : personname;
company : unitname;

end;

cadetrec = array[one.. maxcadets] of cadet; (*array of cadet ret-vdxs)

Var
filel, file2 text; (*files to be read by the p -ogram*n)
master text; (*file to be written by the progrtmn)
bufferl, uffer2 cadetrec; (*variable of type cadetrec*)

Procedure CoxoIData(var comutl, i - integer; var tufferl cadetrec;
var master, filel , text);

(* This procedure writes the records from the good data file to the *)
(t corrected data file. t)

begin (* GoodData t)
countl = countl + 1; (*increment the record count*)
write(master,bufferl[i] .k," -,bufferl[i].ssn,buifferl[i] .namie);
writeln(master,bufferl[i].company); (*write. to file*)
i : = i + 1; (*increment countert)
readln(filel, bufferl [i]. k, tufferl [i]. ssn, tufferl [i]. name, bufferl [i]. company);

end; (* GoodData t)

95

Procerure BadData(var cuzt2, j : integer; var Wffer2 : cadetrec;
var master, file2 : text);

(* This procelure writes the records from tie correctel error record file *)
(. to the corrected data file. *)

begin (* BadData *)
count2 -= count2 + 1; (*increment the record cout*)
write (master, buffer2[J]. k,' ",buffer2 [J .ssni,bLfffer2 [j].name);
writeln(master,&iffer2[J] .compay); (*write to file*)
j := j + 1; (*increment comte.r*)
readln (file2, buffer2[J]. k, buffer2[J]. ssn,taffer2 [J]. name.,tiffer[J] c.mpany);

end; (* BadData *)

Procedure Merge(var filel, file2, master : text.);

(* This procedure merges the good data file and the correctet error record *)
(* file into a corrected good data file in the correct numeric -equence.

Var
i, j, coLuntl, cotunt2, count3 integer; (*kouMters*)
bufferl, hiffer2 : cadetrec; (*variable of type cadetrec*)

begin (* Merge *)
countl (I; (*initialize variable*)
count2 0; (*initialize variable*)
count3 C; (*initialize variable*)
i :1 1; (*initialize variable*)
j 1; (*initialize variable-*)
readln(filel, ,bfferl [i]. k, hifferl [i]. san, ,tufferl [11. nu, bufferl [11, compary);
readln(file2,tuiffer2[J J .k,a iffer2 [j]. ssn,buiffer2[J]. name, buffer2EJ [.o-,mvpanly);
repeat

begin (*loop to merge two files*)
if (&fferl[i].k = blank) and (buffer2[J.lk = blank) then
begin

writeln('Both files are empty' :50);
end

else if (buffer2[J].k = blank) then
begin (*all records are in the good data file*)
GoodData(countl, i, bufferl, master, filel);

end
else if (bufferl[i].k = blank) then

begin (*all records are in the error record file*)
BadData(count2, J, buffer2, master, file2);

end
else if (bufferl[i].k < buffer2[J].k) then
begin (*record in ttfferl goes into correct file*)
GoodData(countl, i, tufferl, master, filel);

end

96

else if MONACO&[i~ > buffer2[j].) then
begin (*record in MANer goes into correct file*)

BadData~xciunt, j, MANafr, ma~ster, file2);
end

end;
count3 := counti + count2; (*reoords read should equal value from int. file*)
until (hbfferlVi].= blank) and (tufferT[j7[= blank); (*both files empty*)
writeln('Number of Records Read Equals ':55, count3);

end; (Q erge Q)

begin (V main application - Referentiallntegrity~erge~ata.)
cirscr; (*clear the screen*)
assign(filel ,filenamel);
reeet(filel); (*reset the file*)
assign(file2 ,filename2);

reset(file2); (*reset the file*)
assign(master, filename3);
rewrite(master); (*write to a file*)
writeln(-Merging Started'-:48);
llerge(filel ,file2,master);
writeln(END of APPLICATION':50);
close(filel); (*close the file*)
close(file2); (.close the file*)

* close(master); (*close the file*)
end. V* main application - ReferentialntegrityMergeData N)

97

(* The puripoe of this application program is to insure that entity)
(* integrity holds for the primary key field (SSN) of a cadets ineitvidual 4)
(* record. Each SSN must be. unique. This also nt-.;ns that null values for 4)
(* the SSN are not allowed. Entity integrity viola,ions will cause two *)
(* files to be generated - an error record file and an error message file.)
(* Records that are. clean are. written to a good data file. Corrections are 4)
(* to be made to the error record file, and then it is to be merged with the*)
(* good data file. The corrected good data file is to be stored for loading*)
(* into the target system. Use the program EntMerge to merge the good data 4)

(* file and the corrected error record file. *)

Program EntityIntegrityCheck;
Uses CRT;

Const
filenamel = "entity.dat'; (*cadet record file*)
filel = "goodp5.dat'; (*good data file*)
file2 = 'badp5.dat'; (*error record filet)
file3 = "emesagp.dat'; (*error message file*)
maxcadets = 99; (*maxim number of cadet records*)
one = 1; (*minimum nmber of cadet records*)
null = ; (*blank character*)

Type
numssn = string[i1J; (*cadet SSN*)
personname = string[27]; (*cadet. naje*)

cadet = record (*cadet record*)
ssn numssn;
name personname;

end;

cadetrec = array[one.. wxcadets] of cadet; (*array of cadet reco:rds*)

Var
fileinli text; (*files to be read by the pr-ogram*)
person cadetrec; (*variable of type. cadetrect)
count, error integer; (*counters*)
gooddata text; (*file to be written by the program*)
baddata, emessage text; (*file to be written by the program*)

Procedure ReadPerson(var fileini - text; var count : integer);

(* This procedure reads the necessary data from the individual re.cord into)
(* an intermediate file to be processed. 4)

Var
i : integer; (*counter*)

98

begin (* edPersorn *)
assign(fileiil, filenamel);
reset(fileinl); (*reset the file*)
i := 1; (*intitialize variable*)
count := 0; (*initialize variable*)

while not eof(fileinl) do
begin (*read the individual records into the file*)

cournt := cozuit + 1; (*increment the record crAit*)
readln(fileinl, persor[i].ssn, person[i] .nare);
i := i + 1; (*increment the counter*)

end;
close(fileinl); (*close the file*)

end; (* ReadPerson *)

Procedure EntityCleck (var count, error : integer;

var fileinl, gocddata, baddata, emeesage text);

(* This procedure checks to insure that the cadet's SSN is unique. *)

Var
i, j integer; (*counters*)
ok boolean; (*true or false*)

begin (* EntityCheck *)
error := 0; (*initialize variable*)
ok := false; (*set boolean flag to false*)
for i := 1 to count do

begin (*loop to check the cadet's SSN against the other SSNs J-i tb e file*)
j := i + 1; (*initialize variable*)
repeat

if (person[i].ssn = null) and (ok = false) then
begin (*SSN field is null*)

ok = true; (*set boolea-n flag to true*)
writeln(baddata, i: 2,person[i].ssn,person[i] .name);
writeln(emessage,'Cadet SSN is field is null.');
write (emessage, 'Check data for record ',i:2);
writeln(emessage, " ,person[il .ssn,personi] .naine);
writeln(emessage);
error := error + 1; (*increment error counter*)

end;
if (person[i].ssn = person[j].ssn) then

begin (*write records with duplicate. SSNs to a file nned*)
(*badp5.dat and error messages to a file named ejne&sgp5.dat*)

if ok = false then
begin (*first duplicate SSN found*)

ok = true; (*set boolean flag to true*)
writeln(baddata,i: 2,person[i].ssn,person[i].name);
writen(emessage, 'Cadet. SSN is redundant.');
write (emessage, 'Check data for record 1,i:2);

99

writeln (emessage, , person[i] ssn, persc:n[i .name);
write(emessage, 'with record ',J :2, persor[j] sIin);
write.bi (emessage, person [j]. name);
writeln (emessage);
j : j + 1; (*increment counter*)
error : error + 1; (*increment error counter*)

end
else if ok true then

begin (*more than one duplicate SSN has been feui-di')
write.n (emessage, 'Cadet SSN is redundant.');
write(emessage,'Check data for record ',i:2);
writeln(emessage, ',person[i] .se.n,person[i] .nace);
write (emessage, 'with rec.rd ',J:2,' '-person[j].ssn);
writeln (emessae , person[j] .name);
writeln (emessage);
j := j + 1; (*increment counter*)

end;
end

else if person[i]. ssn <> person[j]. sn then
begin (*values are not equal so increment and try next value*)

j := j + 1; (*increment counter*)
if (j >- count + 1) and (ok = false) then

begin (*write records with no redundant SSNs to a file nvamei.)
(*goodp5 .dat*)

writeln(gooddata, i: 2,person[i]. ssn,person[i]l.name);
ok := false; (*set boole a flag to false*)

end;
end;

until j >= count + 1;
ok := false; (*set boolean flag to false*)

end;
end; (* EntityCeck *)

begin (* main application - EntityIntegrity.heck *)
clrscr; (*clear the screen*)
assign(gooddata, filel);
rewrite(gooddata); (.*write to a file*)
assign(baddata, file2);
rewrite(baddata); (*write to a file*)
assign(emessage, file3);
rewrite(emessage); (*write to a file*)
writeln('Entity Integrity Check For Cadet SSN' :58);
ReadPerson(fileinl, count);
EntityCheck (count,error, fileini , gooddata, baddata , emessage);
writeln('There are ':36, error, ' errors detected.');
if error > 0 then
begin

writeln("Check files badp5, .dat and emesagp5 .dat for corrections. :68);
end;

100

write in ('The number of records read from the input file was ':65,c'ount, -);
Writeln('This Application Program is Now Finished! ':60);
close (gooddatat); (*close the file*)
close(baddata); (*close the file*)
close(emessage); (*close the file*)

end. Q* main application - Entitylntegrit(Theck Q)

(M The p oxse of this pro.grmj is to merge the two data files created by the*)
(* Entity Integrity Program into one corrected file for future loading int: *)
(4 the target system. Execute this progrza only after rLuing Program5.)

Program Entity IntegrityMergeData;
Uses CRT;

Const
filenamel = 'goodp5.dat'; (*good data file*)
filename2 = 'badp5.dat'; (*error record file')
filename3 = "corectpS. dat' ; (*corrected and merged data file*)
maxcadets = 99; (*maximum number of cadet records,+)
one = 1; (*minimum number of cadet recorde)
blank = " (*blank character*)

Type
count = string[?]; (*record counit number*)
numssn = string[11]; (*cadet SSN*)
personname = string[27]; (*cadet name*)

cadet = record (*cadet record*)
k : cmnt;
ssn : numssn;
name : personname;

end;

cadetrec = array[one. .maxcadets] of cadet; (*array of cadet records*)

Var
filel, file2 text; (*files to be. read by the prn-arm*)
master text; (*file to be written by the progrcam)
bufferl, buffer2 cadetrec; (*variable of type cadetrec*)

Procedure. GoodData(var counti, i : integer; var tufferl :cadetrec;
var master, filel : text);

(* This procedure writes the records from the good data file to- the 4)
('I corrected data file. 4)

begin (* GoodData *)
count1 = counti + 1; (*increment the record cmnt.*)
wri;ien(master,bufferl[i].k,' ',tiufferl[i).ssn,lxfferl[i].ngme);
i := i + 1; (*increment counter*)
readln(filel,tLufferl[i].k,bLifferl[i].ssn,bufferl[i.name);

end; (* GoodData 4)

102

Procedire Badata(var cuzit2, j : integer; var bxffer2 : cadetrec;
var master, file2 : text);

(* This prcedure write.s the records from the corrected error record file *)
(* to the corrected data file. *)

begin (* BadData *)
count2 := coLnt2 + 1; (*increment the record count,*)
writeln(mster,buffer2[j).k,' ,bLiffer2[j].ssn,bLuffer2[j].name);
j := j + 1; (*increment counter*)
readln(file2,buffer2 [j].k,buffer2[j].ssn,b iffer2[j .n].me);

end; (* BadData *)

Procedure Merge(var filel, file2, master : text);

(* This procedure merges the good data file and the corrected error record *)
(* file into a corrected good data file in the correct numeric seeuen-e. *)

Var
i, j, c untl, comt2, c.out3 integer; (*counters*)
bufferl, uffer2 cadetr&:; (*variables of twixe cadetre.*)

begin (* Merge *)
coumt 0; (*initialize variable*)
cotnt2 = 0; (*initialize variable*)
coint3 = 0; (*initialize variable*.)
i :1 ; (*initialize variable*)
j 1; (*initialize variable*)
readln(filel,btifferl[i].k,uifferl[i].ssn,uifferrl[i].ne);
readln(file2,buiffer2[j].k, buffer2 [j]. ssn,tiuffer2 [J]. name);
repeat
begin (*loop to merge two files*)

if (bufferl[i].k = blank) and (Ruffer2[j].k = blank) then
begin (*both files contain no data*)

writeInUBoth files are empty :50);
end

else if (hWffer2[J].k = blank) then
begin (*all records are i the good data file*)

GoodData(countl, i, bufferl, master, filel);
end

else if (bufferl[i].k = blank) then
begin (*all records are in the error record file*)

BadData(count2, j, buffer21 master, file2);
end

else if (tufferl[i].k < htffer2[j].k) then
begin (*record in hifferl goes into correct file*)

GoodDAta(countl, i, bufferl, master, filel);
end

else. if (bufferl[i].k > buffer2[jl.k) then

103

begin (*rcord in b.uffer2 goes into correctA filee1.)
BadDatta(cuzit2, J, Wffer2, iuaster, file2);

end
end;

count3 :=ounti + count'-'; (*recordz should equal va1lue fromL int. file*)
until (bufferl[i].k =blank) and (lxtffer2[j].k =blank); (*both files empty-*)
writein(C'Number of Records Read Equals - :55, count3);

end; (* Merge *

begin (* main application - Entitylntegrity4ergeData *
clrscr; (*clear the screen.*)
assiagn(filel ,filenamel1);
reset(filel); (*reset the file*)
assign(file2,filename2);
reset(file2); (*rese-t the file*)
assign(master, filename-3);
rewrite (master); (*w~rite to a file*)
writeln(Clerging Started' :48);
Merge(filel ,file2,master);
writelnCEND of APPLICATIO)N' :50);
close(filel); (*close the file*)
close(file2); (*close the file*)
close(master); (*lose the file*)

end. (* main application - Entitylntegrity~ergeDatza*

104

(* The purpose of this application program is to ensure that the logical *)
(* implication holds for the cadet's high school class ranking beig less *)
(* than the number in the high school graduating class. Logical inconsis- *)
(* tency violations will cause two files to be. generated - an error record *)
(* file and an error message file. Records that are clean are written to a *)
(* good data file. Corrections are. to be. made to the error record file, and*)
(* then it is to be merged with the good data file. The corrected good data*)
(* file is to be stored for loading into the target system. Use. the program*)
(* LogMerge to merge the good data file and the corrected error record file.*)

Program LogicalInconsistencyCheck;
Uses CRT;

Const
filenamel = "logic.dat'; (*cadet record file*)
filel = "godp6.dat'; (*good data file*)
file2 -- "badp6.dat'; (*error record file.)
file3 = "emesagp6.dat'; (*error message file*)
maxcadets = 99; (*maximum number of cadet re(.CI(j)
one = i; (*minimum number of cadet records*)
null = ; (*blank character*)

Type
numssn = string[ll]; (*cadet SSN*)
personname= string[27]; (*cadet namet)
number = integer; (*high school rank/nm bier in class*)

cadet = record (*cadet record*)
ssn numssn;
name. personname;
hsrank number;
hsnum number;

end;

cadetrec = array[one.. maxcadets] of cadet; (*array of cadet records*)

Var
fileinl text; (*files to be read by the program*)
person cadetrec; (*variable of type cadetrec*)
count, error integer; (*counters*)
gooddata text; (*file to be. written by the program*)
baddata, emessage text; (*file to be. written by the progr.am*)

Procedure ReadPerson(var fileini - text; var count , integer);

(* This procedure reads the necessary data from the individual record into *)
(* an intermediate file to be processed. *)

105

Var
i : integer; (*counter*)

begin (* ReadPerson *)
assign(fileinl, filenamel):
reset(fileinl); (*reset the file*)
i := 1; (*initialize variable*)
count := C; (*initialize variable*)

while not eof(fileinl) do
begin (*read the individual records into the file*)

count := count + 1; (*increment the record count*)
read(fileinl,person[i].ssn,person[i].name,pereon[i].hsrank);
readln(fileinl,person[i].hsnum);
i := i + 1; (*increment the counter*)

end;
close(fileinl); (*close the file*)

end; (* ReadPerson *)

Procedure LogicCheck (var count, error : integer;
var fileinl, gooddata, baddata, emeesage text.);

(* This procedure checks to insure that the cadet's high school ranking is *)
(*less than the number in their high school class. *)

Var
i : integer; (*counters*)

begin (* LogicCheck *)
error 0; (*initialize variable*)
for i : 1 to count do

begin (*loop to check the cadet's he rank against the he number In class*)
if person[i].hsrank <= person[i].hsnum then
begin (*rank is less than number in class - write records to a *)

(file named goodp6.dat*)
write(gooddata, i: 2, person[i]. esn,person[i]. name, person[i I. hercw: 4);
writeln(gooddata,' ',person[i].hsnum:4);

end
else if person[i] .hsrank > person[i].hsnum then

begin (*write records with he rank greater than number in he class*)
(*to a file named badp6.dat and error messages to a file *)
(*named emesagp6.dat*)

write(baddata,i:2,person[i].ssn,person[i].name);
writeln(baddata,person[i] .hsrank:4,' ',person[i] .hsnum: 4);
write(emessage, 'Cadet HS rank is greater than the number in);
writeln(emessage, "the HS graduating class.');
write(emessage,'Check data for record ',i:2);
write(emessage," ",person[i] .ssn,person[i].name);

106

writeln(emessage,person[i].hsrank:4,' ',person[i].hsnun:4);
writein (emessage);
error := error + 1; (*increment error counter*)

end;
end;

end; V* L,.gicCheck Q)

begin (* main application - k-'gicallnconsistencyCheck 0)
cirser; (*clear the screen*)
assign(gooddata, fulel);
rewrite(gooddata); (*write to a file*)
assign(baddata, file2);
rewrite(baddata); (*write to a f~le*)
assign(emessage, fileM)
rewrite(emessage); (*write to a file*)
writein (-Logical Inconsistency Check For Cadet High School Rank :67);
BeadPerson(fileinl, count);
LogicCheck (out,error, filein , gooddata ,baddata ,emessage);
writeln(There are ':36, error, ' errors detected.');
if error > C) then

begin
writein (Check files badp6 .dat and emesagp6 .dat for correctione.7 68);

end;
writeln('The number of records read from the input file was-:5con,7)
writeln('This Application Program is Now Finished!*:60);
cloee(gooddata); (*close the file*)

* close(baddata); (*close the file*)
close(emessage); (*close the file*)

end. (K main application - LogicallnconsistencyCheck ~

107

(*o ***t*f**l4 l*Z****t*** *tc4* * ****:***** *.****t-t*tt*t t **t*fltr t)

(* The purpose of this program is to merge the two data files created by the*)
(* Logical Inconsistency Program into one corrected file for future lcadlg *)
(* into the target system. Execute this program only after nning Pgram6.*)

Program LogicalInconsistecyMergeData;
Uses CRT;

Const
filenamel = 'goodp6.dat'; (*good data filet)
filenam e2 = 'badp6.dat'; (*error record file*)
filename3 = 'corectp6.dat'; (.orrected and merged data file*)
maxcadets = 99; (*maximum number of cadet recorde*)
one = 1; (*minimum number of cadet recordst)
blank = " (*blank character*)

Type
count = string[2]; (*record count number*)
numssn = string[11]; (*cadet SSN*)
personname = string[27]; (*cadet name*)
number = integer; (*he rankilg/number in he class*)

cadet = record (*cadet record*)
kI count;
sn num en;
name personname;
hsrank number;
hsnum number;

end;

cadetrec = array[one..mxcadets] of cadet; (*array of cadet recordst)

Var
filel, file2 : text; (*files to be read by the prograjt)
master text; (*file to be. written by the program*)
bufferl, buffer2: cadetrec; (*variable of type cadetrec*)

Procedure GoodData(var counti, i : integer; var btefferl . cadetrec;
var master, filel : text);

(* This procedure writes the records from the good data file to the *)
(* corrected data file. *)

begin (* GoodData *)
countl := countl + 1; (*increment the record count*)
write. (master, bufferl[i]. k,' ',bufferl[i] .ssn,bxfferl[i] .name);
writeln(master,bufferl[i].hsrank:4,' ',bufferl[i].hsnum:4);
i : i + 1; (*increment counter*)

108

read (file 1, buffer I [i I. k, buffer 1 [i]. ssn, buffer 1 [i I. name);
readlr(file , bfferl[i]. h Prank, tnffer 1 [i]. Isnuxi);

end; (* GooxdData *)

Procedure BadData (var count.2, j - integer; var buffer2 : cadetrec;
var master, file2 : text);

(* This procedure writes the records from the corrected error record file *)
(* to the corrected data file. *)

begin (* Badlata *)
count2 ,= count2 + 1; (*increment the record count.*)
write (master, buffer2[j]. k,' ", tffer2 [J].ssn,buffer2[J]. nae);
writehl(mster,bLffer2[J].hsrcnk:4,' ',buffer2[j].hsnum.'4);
j :: j + 1; (*increment counter*)
read(file2, hffer2[J].k,buffer2[j]. ssn,buffer2[J].name);
readln(file2,fbuffer2[j].hsrank,buffer2 [j].hsnum);

end; (* BadData *)

Procedure Merge(var filel, file2, master : text);

(* This procedure merges the good data file and the corrected error record *)
(* file into a corrected good data file in the correct numeric sequence. *)

Var
i, J, cctmtl, comt2, comtu3 integer; (*c-ounters*)
bufferl, buffer2 : cadetrec; (*variables of type cadetrec*)

begin (* Merge *)
countl :0 0; (*initialize variable*)
count2 := 0; (*initialize variable*)
count3 0; (*initialize variable*)
i 1; (*initialize variable*)
j : 1; (*initialize variable*)
read (filel, bufferl [11. k, bufferl [i]. ssn, bufferl [i]. name);
readln(filel,bufferl[i].hsrank,buifferl[i].hsnum);
read (file2, buffer2[J]. k, biffer2[J]. ssn, buffer2[J]. name);
readln(file2,buiffer2[j].hsrank,tiuffer2 [jl .hsnum);
repeat

begin (*loop to merge two files*)
if (bufferl[i].k = blank) and (buffer2[j].k = blank) then

begin (*both files corntain no data*)
writeln('Both files are empty :50);

end
else if (buffer2[J].k = blank) then

begin (*all records are. in the good data file*)
GoodData(countl, i, bufferl, master, filel);

end

109

else if (taufferl[i].k = blank) then
begin (*all records are in the error record file*)

BadData(count2, J, buffer2, master, file2);
end

else if (bufferl[i].k < buffer2[j].k) then
begin (*record in bufferl goes into correct file*)

GoodData(countl, i, bufferl, master, ftlel);
end

else if (tufferl[i].k > tuffer2[j].k) then
begin (*record in buffer2 goes into correct file*)
BadData(count2, J, buffer2, master, file2);

end
end;

count3 = om-utl + count2; (*records should equal value from int.. file*)
until (bufferl[i].k = blank) and (buffer2[J].k = blank); (*both files empty'*)
writeln("Number of Records Read Equals ':55, count3);

end; (* Merge *)

begin (* main application - LogicalInconsistenc.yMergeData *)
clrscr; (*clear the screen*)
assign(filel, filenamel);
reset(filel); (*reset the file*)
assign(file2, filename2);
reset(file2); (*reset the file*)
assign(master, filename3);
rewrite(master); (*write to a file*)
writeln("Merging Started' :48);
Merge (filelfile2,master);
writeln("END of APPLICATION' :50);
close(filel); (*close the file*)
close(file2); (*close the file*)
close(master); (*close the file*)

end. (* main application - LogicalInconsistencyMergeData *)

110

APPEDIX C

SPEIFIC MLrHaD FILES

The output that follows was generated by rumning the application

programs from Appendix B on fictitious data files. The mde-up data

files were used for two reasons: First, to ensure the programs

worked properly, and second, to provide representative examples of

errors the programs could detect. The programs were also run on

actual USMA data files. The results from these runs can be found in

Chapter Seven.

A. Out-of-Rage Values

Intermediate File
394529826 HENDRICKSON MARK R 73185M681103
310708602 O'KEEFE KATHLEEN M 67090F6BO515
123456789 PoGSamAN WurFIPONG C 64145M690325
987654321 HENDRICKSON BETE J 65142F710221
555121234 HENDRIKSO ROBERT E 712451M690713
415981243 CONNER RYAN C 63109M730627

Good Data File
3 123456789 PGSWAN WL1TI'FPMN 0 64145M690325
5 555121234 HENDRICKSON ROBER E 71245M690713

Error Record File
1 394529826 HENDRICKSON MARK R 83185M681103
2 310708602 O'KEEFE KATHLEEN M 67090F580515
4 987654321 HENDRICKSON BFr J 65142 710221
6 415981243 CONNER RYAN C 63 99M830627

Error Mesa= File
Height value out-of-range! Check height for record 1.
394529826 HENDRICKSON MARK R 83

Birthdate value out-of-range! Check birthdate for record 2.
310708602 O'KEEFE KATHLEEN M 580515

Sex value out-of-range! Check sex for record 4.
987654321 HENDRICKSON BEI'TE J

ill

Weight value out-of-range! Check weight for record 6.
415981243 CONNER RYAN C 99

Birthdate value out-of-range! Check bii:thdate, for rcc-ord 6.
415981243 CONNER RYAN C 830627

Corrected Good Data File
1 394529826 HENDRICKSON MARK R 73185M681103
2 310708602 O'KEEFE KATHLEEN M 67090F680515
3 123456789 PONGSUWAN WLUTTIRONG 0 64145M690325
4 987654321 HENDRICKSON BETTE J 65142F710221
5 555121234 HENDRICKSON ROBERT E 71245M690713
6 415981243 CONNER RYAN C 63109M830627

B. Incmpatible Data Types

Intermediate File
A90408656 RITTER JACK L
2B9178539 JOHNSON JERRY J
59C503620 BOONE DANIEL A
608D17163 MARTIN FRANK P
1646 9133 DUDEK ROBERT H
46333E439 WIEIER JOHN S
080-50-70ZZCOWBOY CLINT E
343-6W-0455DAVENPORT ALLEN M
480-13-9999NEWMAN TIMOTHY C
455113460 MERRITT RICHARD R
437881234 ANDERSEN JAMES J
50355189 NORMAN BUDDY L

Good Data File
9 480-13-9999NEWMAN TIMOTHY C

10 455113460 MERRITT RICHARD R
11 437881234 ANDERSEN JAMES J

Error Record File
1 A90408656 BITTER JACK L
2 2B9178539 JOHNSON JERRY J
3 59C503620 BOONE DANIEL A
4 608D17163 MARTIN FRANK P
5 1646 9133 D)UDEK ROBERT H
6 46333E439 WIEMER JOHN S
7 080-50-70ZZCOWBOY CLINT E
8 343-6W-0455DAVNPORr ALLEN M
12 50355189 NO1RMAN BUDDY L

Error Message File
Error in SSN - position 1. Check SSN for record 1
A90408656 RITTER JACK L

112

Error in SSN - position 2. Check SSN for record 2
2B9178539 JOHNSON JERRY J

Error im SSN - position 3. Check SSN for record 3
59C503620 BOX)NE DANIEL A

Error in SSN - po ition 4. Check SSN for record 4
608D17163 MARTIN FRANK P

Error in SSN - position 5. Check SSN for record 5
1646 9133 DUDEK ROBERT H

Error in SSN - position 6. Check SSN for record 6
46333E439 WIEMER JOHN S

Error in SSN - position 10. Check SSN for record 7
080-50-70ZZ CO1BY CLINT E

Error in SSN - position 11. Check SSN for record 7
080-50-70ZZ C(4BOY CLINT E

Error in SSN - position 6. Check SSN for record 8
343-6W-0455 DAVENPORT ALLEN M

Error in SSN - position 1. Check SSN for record 12
50355189 NORMAN BUDDY L

Corrected Good Data File
1 290408656 RITTER JACK L
2 239178539 JOHNSON JERRY J
3 599503620 BOENE DANIEL A
4 608217163 MARTIN FRANK P
5 164699133 DUDEK ROBERT H
6 463330439 WIEMER JOHN S
7 080-50-7099COWBOY CLINT E
8 343-65-0455DAVENFORT ALLEN M
9 480-13-9999NEWMAN TIMOTHY C

10 455113460 MERRITT RICHARD R
11 437881234 ANDERSEN JAMES J
12 150355189 NORMAN BLDDY L

C. Pedundanles

Tntermediate File
394529826 HENDRICKSOI MAIM R 73181
310708602 HENDRICKSt KATHLEEN 0 67110
454632123 O'KEEFE SUSAN L 65135
123456789 PONGSUWAN WLTfIPONG C 65150

113

Good Tati File
2 310708602 HENDRICKSON KATHLEEN 0 67110

Error Record File
1 394529826 HENDRICKSON MARK F 73181
3 454632123 O'KEEFE SUSAN L 65135
4 123456789 KONGSUWAN WUI'TIPONG C 6515(0

Error Message File
Weight values are different! Check data for record 1.
394529826 HENDRICKSON MARK R 181
The cadet candidate weight value is equal to 180.

No match for record 3 fowund bi the Cadet Candidate file.
Please validate the height and weight for 454632123
O'KEEFE SUSAN L 65135

No match for record 4 found in the Cadet Candidate file.
Please validate the height and weight for 123456789
PONGSUWAN WUTTIP(ON C 65150

Corrected Good Data File
1 394529826 HENDRICKSON MARK R 73180
2 310708602 HENDRICKSON KATHLEEN C 67110
3 454632123 O'KEEFE SUSAN L 65125
4 123456789 P)NGSULWAN W1UTrIPONG C 65145

D. Referential Integrity

Intermediate File
394529826 HENDRICKSON MARK B 14
312455432 O'KEEFE GLORIA S GG
310708602 O'KEEFE KATHLEEN M A3
123456789 FONGSUWAN WIflTIFONG C HI
987654321 C(NER RYAN C E8
555001212 BADAGNANI DAVID J C2
410453178 O'KEEFE LOUIS J B4
333333333 HENDRICKSON R E
666666666 CLAUS SANTA J Z4
787878787 MCLEAN WILLIAM T 3B

Good Data File
1 394529826 HENDRICKSON MARK R 14
3 310708602 O'KEEFE KATHLEEN M A3
4 123456789 PONGSWAN WUTrIPC*NG C HI
6 555001212 BADAGNANI DAVID J C2
7 410453178 O'KEEFE LO(UIS J B4
8 333333333 HENDRICKSON R E

114

Error Record File
2 312455432 O'KEEFE GLORIA S GG
5 987654321 CONNER RYAN C E8
9 666666666 CLAUS SANTA J Z4

10 787878787 MCLEAN WILLIAM T 3B

Error Message File
Value for Cadet Company is incorrect!
Check data for record 2 312455432 O'KEEFE GLORIA S GG

Value for Cadet Company is incorrect!
Check data for record 5 987654321 CONNER RYAN C E8

Value for Cadet Company is incorrect!
Check data for record 9 666666666 CLAUS SANTA J Z4

Value for Cadet Company is incorrect!
Check data for record 10 787878787 MCLEAN WILLIAM T 3B

Corrected Good Data File
1 394529826 HENDRICKSON MARK R 14
2 312455432 O'KEEFE GLORIA S G1
3 310708602 O'KEEFE KATHLEEN M A3
4 123456789 FONGSUWAN WUTTIPONG) HI
5 987654321 CONNER RYAN C E2
6 555001212 BADAGNANI DAVID J C2
7 410453178 O'KEEFE LOUIS J B4
8 333333333 HENDRICKSON R E
9 666666666 CLAUS SANTA J A4
10 787878787 MCLEAN WILLIAM T B3

E. Entity IEntegrity

Intermediate. File
394529826 HENDRICKSON MARK R

O'.EEFE GLORIA S
310708602 O'KEEFE KATHLEEN M
123456789 P0NGSUWAN WUITIFONG C
987654321 CONNER RYAN C
555001212 BADAGNANI DAVID J
410453178 O'KEEFE LUIS J
394529826 HENDRICKSON R E
111111111 CLAUS SANTA J
787878787 MICLEAN WILLIAM T
394529827 HENDRICKSON TODD R

115

Good Dat!a File
3 310708602 O'KEEFE KATHLEEN N
4 123456789 PONGSJWAN WTJTII,)NG 0
5 987654321 CONNER RYAN C
6 555001212 BADAGNANI DAVID J
7 410453178 O'KEEFE LOUIS J
8 394529826 HENDRICKSON R E
9 111111111 CLAUS SANTA J

10 787878787 MCLEAN WILLIAM T
11 394529827 HENDRICKSON TODD R

Error Reord File
1 394529826 HENDRICKSON MARK R
2 O'KEEFE GLORIA S

Error Message File
Cadet SSN is redundant.
Check data for record 1 394529826 HENDRICKSON MARK R
with record 8 394529826 HENDRICKSON R E

Cadet SSN is field is null.
Check data for record 2 O'KEEFE GLORIA S

Corrected Good Data File
1 394529825 HENDRICKSUN MARK, R
2 301556789 O'KEEFE GLORIA S
3 310708602 O'KEEFE KATHLEEN M
4 123456789 PONGSUWAN W[TIrIPONG 0
5 987654321 CCNRN RYAN C
6 555001212 BADAGNANI DAVID J
7 410453178 O'KEEFE LOUIS J
8 394529826 HENDRICKSON F E
9 111111111 CLAUS SANTA J

10 787878787 MCLEAN WILLIAM T
11 394529827 HENDRICKSON TODD F

F. Logical Inoonsiu mies

Intermediate File
394529826 HENDRICKSON MARK R 26 350
310991234 O'KEEFE GIRIA S 1 47
310708602 O'KEEFE KATHLEEN M 3 400
123456789 PONGSWAN W[TIrIPONG 0 1110 300
987654321 CONNER RYAN C 41 98
555001212 BADAGNANI DAVID J 67 135
410453178 O'KEEFE LOUIS J 8 27
394529829 HENDRICKSON ROBERT E 120 13
111111111 CLAUS SANTA J 1 1
787878787 MCLEAN WILLIAM T 511 575
394529827 HENDRICKSON TODD R 150 295

116

Good Data File
1 394529826 HENDRICKSON MARK R 26 350
2 310991234 O'KEEFE GLORIA S 1 47
3 310708602 O'KEEFE KATHLEEN M 3 400
5 987654321 CONNER RYAN C 41 98
6 555001212 BADAGNANI DAVID J 67 135
7 410453178 O'KEEFE LOUIS J 8 27
9 111111111 CLAUS SANTA J 1 1
10 787878787 MCLEAN WILLIAM T 511 575
11 394529827 HENDRICKSON TODD R 150 295

Error Record File
4 123456789 FONGSUWAN WITTIFONi 0 1110 300
8 39452 9829 HENDRICKSON ROBERT E 12 13

Error Message File
Cadet HS rank is greater than the number in the HS graduating
class. Check data for record 4
123456789 PONGSWAN WLTITIPONG 0 II0 300

Cadet HS rank is greater than the number in the HS graduating
class. Check data for record 8
394529829 HENDRICKSON ROBERT E 120 13

Corrected Good Data File
1 394529826 HENDRICKSON MARK R 26 350
2 310991234 O'KEEFE GLORIA S 1 47
3 310708602 O'KEEFE KATHLEEN M 3 400
4 123456789 FONGSUWAN WUITIFONG 0 300 1300
5 987654321 C(NNER RYAN C 41 98
6 555001212 BADAGNANI DAVID J 67 135
7 410453178 O'KEEFE LOUIS J 8 27
8 394529829 HENDRICKSON ROBERT E 13 120
9 111111111 CLAUS SANTA J 1 1
10 787878787 MCLE WILLIAM T 511 575
11 394529827 HENDRICKSON TODD R 150 295

117

LIST OF REFERENCES

1. Elmasri, R., and Navathe, S. B., Fundamentals of Database Systems, The Ben-
jamin/Cummings Publishing Company, Inc., 1989.

2. Guilmette, D. J., and Wilson, G. P., The West Point Database Conversion Project
From a Network to a Relational DBMS, Master's Thesis, Naval Postgraduate
School, Monterey, California, June 1990.

3. Date, C. J., An Introduction to Database Systems, Volume II, Addison-Wesley
Publishing Company, 1983.

4. Date, C. J.,An Introduction to Database Systems, Third Edition, Addison-Wesley
Publishing Company, 1981.

5. Department of the Army, United States Military Academy Regulation 25-5,
Information Management Systems, West Point, New York, 11 August 1989.

6. Department of the Army, United States Military Academy Cadet Information
Database Dictionary, West Point, New York, 18 December 1989.

7. Department of the Army, United States Military Academy Academic Program
AY 1989-1990, West Point, New York, December 1989.

118

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Chairman, Code CS
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000

4. Dr. Vincent Y. Lum 5
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000

5. Dr. C. Thomas Wu
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000

6. CPT Mark R. Hendrickson 5
P.O. Box 432
Gallatin, Tennessee 37066

7. Mr. Robert W. Nelson 5
United States Military Academy
ATITN: MAIM-CD
West Point, New York 10996-2001

8. CPT Daniel J. Guilmette
Box 2800
Chapel Road
Bennington, Vermont 05201

119

9. CPT Georgette P. Wilson1
98-1881-D Kaahumanu Street
Aiea, Hawaii 96701

120

