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ABSTRACT

The possible cross equatorial influences of the Northern Hemisphere on the zonal
wind along 10° S in the Indonesia-Arafura Sea region are studied by using a 14-vear data
set. Composites of time series of individual circulation parameters and surface flow
charts reveal a correlation between the northeastern monsoon of the Northern Hemi-
sphere and the Southern Hemisphere summer monsoon. The correlation is significantly
stronger during the middle season compared to late season. During the late season dis-
tinct patterns of changes are found in the Australian monsoon trough and upper
tropospheric flow. This reflects a stronger connection between summer monsoon and
midlatitude baroclinic systems within the Southern Hemisphere. Thus the mid-season
events of the southern monsoon wind strengthening are more influenced by surges in the
northeast monsoon in the Northern Hemisphere, while the late-season events may be

due to mudlatitude baroclinic effects in the Southern Hemisphere rather than the north-
ern cold surges.
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I. INTRODUCTION

The importance of the monsoons in the North Hemisphere, as one of the most en-
ergetic heat engines in driving the earth’s atmosphere, has attracted a large number of
tropical meteorologists. While, on the contrary, the monsoons of the South Hemisphere
have received much less attention except by scientists in the region directly influenced
by them. One main reason for scientists to neglect the South Hemisphere summer
monsoon subject is due to lack of data over the South Hemisphere summer monsoon
region until the 1970’s (Murakami and Sumi 1982a).

As a consequence of the Monsoon Experiment (Winter Monex) during 1978-1979,
which is designed to study several important questions of the winter monsoon, many
new findings on the monsoon are revealed. Besides Monex, southern oscillation phe-
nomena. known as EL Niro, have for many vears drawn many researchers to investigate
the relationships between the Southern Hemisphere monsoon and the southern oscil-
lation. Holland and Nicholls (1985) have shown that EL Nino coincides with an early
onset of the Australian monsoon in the preceding year, nearly 12 months earlier.
Hereupon, there has been renewed interest in the world meteorological community on
the Southern Hemisphere summer monsoon.

The first detailed studies of the time variations and three dimensional structure of
summer circulation over northern Australia were performed by Troup and Berson
(Berson 1961; Troup 1961; Berson and Troup 1961). Their studies demonstrate that the
strength of the low-level monsoon westerlies is related to that of the upper-tropospheric
easterly current (Troup 1961).

The equatorial trough (or intertropical convergence zone , ITCZ) is one of the most
prominent features of the global atmospheric circulation in the tropics. Whenever the
ITCZ is well removed from the equator, it is a zone of low pressure which separates
Northern Hemispheric easterly trade wind flow on the northern side of it from the low-
level westerly flow which is on the southern side of ITCZ. This type of ITCZ is referred
to as “monsoon trough” (Gray 1968), and the westerly winds are called “monsoon
westerlies”. These monsoon westerlies will result in a high magnitude of rainfall along
this zone of westerlies.

Broadly speaking, the summer monsoon of the Southern Hemisphere has many

similarities with the northern summer monsoon over Southeast Asia and India. Bjerknes




(1969) and Krishnamurti et. al. (1973) showed the existence of strong east-west circu-
lations in equatorial latitudes in addition to the Hadley-type circulations during North-
ern Hemisphere winter monsoon. The strongest of these circulations has rising motions
over the maritime continents of Indonesia and Borneo, connected meridionally by sink-
ing motions over Siberia and South Australia, and longitudinally by subsidence over the
equatorial central Pacific and eastern Africa. Sumi and Murakami (1981) used a defi-
nition based on the low-level westerlies at 10° S. Applying this to the mean 850-mb wind
field, they concluded that the Southern Hemisphere monsoon extended from the Indian
Ocean (80°E) to the Central South Pacific (170°E). Furthermore, they concluded that
the coupling of the upper-level easterlies / low-level westerlies characterizes the rota-
tional wind component of the monsoon circulation, giving rise to a double Hadley cell
structure over the monsoon longitudes. with the updraft center (ITCZ) lving along ap-
proximately 7° S. In addition , the latitudinal extent of the southern monsoon is more
constrained than either the northern summer monsoon or the northern winter monsoon,
extending poleward only along the Indonesian Islands, over Northern Australia and into
the Solomon Sea with a large equatorward slope from the surface to the 850 mb level
(Holland ct.al. , 1984). The longitudinal extent is denoted by a band of strong westerlies
along about 10° S from the northeastern Indian Ocean (100°E), across the Indonesian
Seas and New Guinea, to the western South Pacific Ocean (180°E). The exact ge-
ographical extent is still unresolved vet. Furthermore, the southern summer monsoon
also features active and break phases in monsoonal flow and convection. The suddeness
of the change in the monsoon winds has been extensively investigated by Murakami and
Sumi. et.al. (1982b). Inspection of their works indicates that a step - like change took
place in the atmospheric circulation over the ‘Southern Hemisphere monsoon region.
The lower tropospheric westerlies and upper-level easterlies between the equator and
10° S can increase dramatically in strength. The events start when the Southern Hemi-
sphere subtropical jet moves southward by more than 10°, followed by an intensification
of the Northern Hemisphere subtropical jet several days later. The equatorial maximum
cloud zone moves south by several degrees, and there is a large-scale increase in the ex-
tent and intensity of tropical convection. Also the geostationary meteorological satellite
(GMS) cloud images reveal that the monsoon onset corresponds to a sudden transition
from scattered random convection to spatially organized convection. Troup (1961) and
Holland et al. (1984) indicate that the sudden increase in the monsoon winds is typical
and that a sharp monsoon onset can be defined in most vears.




As pointed out above, the zone of westerlies is typically one of high summer rainfall.
Consequently, the definition of summer monsoon’s onset is of interest to this study since
an objective criterion of determining the onset is required in this context. The criterion
used to describe monsoon onset are basically based on two categories: 1) enhanced ac-
tivity in the winds , and 2) precipitation. Based on the observed rainfall at six stations
within 300 km of Darwin ( 12° 26'S , 130°52°E), Troup noted a general association be-
-tween rain events and westerly winds. The results of Troup’s research show that the
monsoon onset is related to a sudden increase in the upper-level easterly wind compo-
nent at Darwin. Troup’s (1961) rain criterion for monsoon onset based on daily obser-
vation at six stations close to Darwin, is defined as the first occasion after 1 November
on which four or more stations record rainfall and the area-averaged rainfall over N\ days
exceeds 0.75(N\ + 1) inches for a time interval (N + 1) days. By his wind criteria, the onset
date is the begining of the first spell of moderate west wind at the gradient level (3000
ft). A spell of moderate west wind which lasts for N days is defined as a period when
the cumulative zonal components exceed 5.153 m s~! for a time interval (\\ + 1) days, and
the monsoon onset event is concluded when this component is less than 2.58m s-! on
two consecutive davs. Besides the criteria for onset mentioned above, Davidson et.al.
(1983) determined the onset date by analyzing satellite imagery and Holland et.al. (1984)
objectively defined onset by using the direction, strength and constancy of the low-level
wind field over northern Australia.

Despite the monsoon onset defined as either the first rain event or the first wind
spell, the fact that no definition is universally accepted is due to marked regional difler-
ences in the behavior and timing of the onset over the region of the South Hemisphere's
summer monsoon. However, it is worthwhile to note, Southern summer monsoon onset
tvpically occurs between mid-December and mid-January. Many theories and hypoth-
eses have been proposed to explain the triggering mechanisms for the onset of an action
monsoon period in the Indonesia-Arafura Sea region. Some of the proposed
mechamisms are described as follows.

e Cold Surge in the South China Sea. During the northern winter, the east Asia
continent is domincted by a strong surface high over northern China and Siberia.
A strong baroclinic zone exists between this cold, continental air mass and the
warm tropical air mass to its south. As the pressure gradient across the East China
tightens, cold air bursts out of the continent toward the South China Sea and a
cold surge is initiated. Correspondingly. in the equatorial region, south of East
Asia lies the maritime continent of Indonesia and Malaysia. During winter, ex-
tensive deep cumulus convection over this region supplies a large amount of latent
heat to the atmosphere (Ramage 1971). From the results of a series of observa-




tional studies, Chang et al. (1979) and Chang and Lau (1980) noted that prior to
the occurrence of a cold surge, the cooling due to advection over northern China
strengthens the eastern Asia local Hadley cell. As a cold surge arrives at the
equatorial South China Sea, the convection associated with pre-existing synoptic-
scale disturbances flare up and warm the tropical atmosphere by release of latent
heat. The upper-level outflow from the South China Sea convection region spreads
mainly east and west, driving two Walker Circulation. Their main findings suggest
that the winter monsoon cold surge is basically a phenomenon controlled by the
northern midlatitude and its influences penetrate significantly egatorward into
tropics, and this equatorial convective heat source mav interact with the cold
surges. resulting in modifications of both synoptic and planetary scale motion.
Through these complicated chains of midlatitude tropical and equatorial east-west
interactions, the effect of an intense baroclinic development over the east Asia
continent is spread deep across a wide equatorial belt ranging from East Africa to
the mid-Pacific Ocean. Lun and Chang (1981) used linearized shallow water
equations on an equatorial § plane to demonstrate the dvnamic response of the
tropical atmosphere to northern winter cold surges. Their studies were also sup-
ported by Davidson et al. (1983) who presented some data that suggested a possible
relation between cold surges and the onset of the Australian monsoon. Williams
(1981) also described a case of such cross-equatorial influence. He observed a slow
pressure rise over Western Indonesia about three days after a surge crossed the
South China Sea. In a composite of the surface flow patterns for the southern
summers of 1974 to 1983. Shield (1985) used a 9-vear data set and showed that the
onset of the monsoon westerlies along 10° S in the Indonesian region is preceded
by a significant strengthening of northeasterly monsoon winds that persist for three
to four davs. Once again, this result suggests that cold surges in the South China
Sea may play an important role inbetween the midlatitude and tropics.

Southern Hemisphere's Tropical-Midlatitude Interactions. Davidson et al. (1983)
hypothesized that the onset of convection is strongly influenced by synoptic events
in the Southern Hemisphere subtropics. Their observations shows that the sub-
tropical ridge is interrupted over the southwestern corner of Australia by a trough,
which extends westward into the low latitudes (approximately to 10° S). Besides
affecting the continuity of the subtropical ridge, the trough also brings about a
discontinuity in the monsoon shear line. Subsequently, during the following davs
the westerly trough drifts eastward and anticvclogenesis takes place over south-
western and south-central Australia. The anticyclogenesis persists until the sudden
blowup of tropical convection occurs at onset. Thus, these observations show that
the vear-to-vear similarity in the synoptic sequence constitutes evidence that the
tropical convection is influenced by high- and low-pressure system movement and
development in the Southern Hemisphere subtropics. Nevertheless, as hypothe-
sized by Davidson et al. (1983), this subtropical synoptic sequence is not being
proposed as the primary forcing mechanism for the onset of the monsoon. The
primary forcing for monsoonal circulation is from differential heating of land and
ocean regions due to seasonally changing solar radiation inputs (Webster 1981).
Once the planetary scale temperature gradients have developed to a stage where the
troposphere is in a state of readiness for the monsoon onset, thus, the point of all
of this is, that the shorter-time-scale subtropical high-low pressure sequence be-
comes an important trigger (Davidson 1981). McBride (1983b) also shows that
there are additional interactions between tropical convection and the mudlatitude /
subtropics of the Southern Hemisphere. By performing synoptic case studies of




41 tropical heavy-rain events, he found only 15% of the tropical svstems had a link
at the surface to a midlatitude westerly trough.

o Surge of Low-Level Southerly Winds along the Western Australian Coast. Davidson
et al. (1983) observed that.prior to onset, a surge of low-level southerly winds par-
allels the western Australian coast. These surges have been linked physically to the
intensity of Indian Ocean anticyclones and the passage of frontal svstems past the
southwest corner of the Australia. The intesity of the surge can be quantified in
terms of the southerly component of geostrophic wind calculat. 1 at 20° S over the
100° - 120°E longitude band. Results from Davidson et al. (1983) research shows
that a southerly geostrophic surge greater than 7.2 ms™! was present within the five
dayvs preceding the onset. Thus. their significance in triggering monsoon con-
vection may be an important component in the South Hemispherc midlatitude
interaction with the tropics.

o Westward Expansion of Monsoon Westerlies. Using data collected during the
Winter Monsoon Experiment (WMONEX) of December 1978 to Februarv 1979,
Murakami and Sumi (1982b) suggested that the monsoonal onset was initiated by
events occurring away from the Indonesia-Arafura Sea region. Due to
northeasterly trade wind intensification over the tropical North Pacific Ocean, cross
equatorial northwesterlies result near 170° E. This induces a zone of strong
westerlies which expand westward into the Indonesia-Arafura Sea region and es-
tablish the monsoon.

The purpose of this study is to extend Shield’s (1985) study and investigate the
possible influences of the northeast monsoon in the Northern Hemisphere on the south
Hemisphere’'s summer monsoon, using a 14-vear data set: 1974-1988 winter data. These
data are the most recently available operationally analyzed data for the global wind field
from 60" N to 40" S. To study the interhemispheric interactions, a fourteen-vear monthly
mean wind fields at the surface, 700 mb and 200 mb levels are constructed. As in Shield
(1985). we will use the change of the equatorial zonal wind along 10° S as the main pa-
rameter to represent the onset of the southern monsoon. The reason for us not to choose
the conventional definition of onset, for instance, rainfall or satellite imagery, is: first,
that, as a vigorous surge reaches the South China Sea, a belt of strong northeasterly
winds forms within 24 h off the South China coast. As a result, the variation of the
northern winter monsoon is best represented by the surface northeast winds and it is
anticipated that the signal of its possible influences may be more apparent in the surface
winds of the southern summer monsoon. Second, the low-level equatorial westerlies are
the closest to the equator, and, therefore, it should be the first indicator to reveal any
response from the Northern Hemisphere. As defined by Troup (1961) and Davidson et
al. (1983), the significance of equatorial zonal wind to be the key parameter lies in the
fact that monsoonal westerlies are the prelude to monsoonal rainfall over northern
Australia.




The outline of this paper is as follows. We describe the data in section 11, and dis-
cuss the time mean circulation of wind, velocity potential and streamfunction in detail
in section I11. Section IV is devoted to the discussion of time variations of the events
associated with the monsoonal circulations. Finally , the conclusions are given in sec-

tion V.




II. DATA AND PROCEDURE

The basic data used in this study are the 200 mb, 700 mb and surface winds for
fourteen years (from 1974 to 1988) from the United States Navy's Fleet Numerical
Oceanography Center's (FNOC) Operational Numerical Variational Analysis. These
data are analyzed twice daily on a tropical global band from 40° S to 60°\ by objective
procedures on a 49 x 144 Mercator grid having a grid resolution of approximately 2.5°
N x 2.5 N . the Mercator secant projection results in a change in the actual distance
between grid points from 140 km at 60° N to a maximum value of 280 km at the equator.
Unlike many operational objective analysis products, numerical weather prediction is
not used to provide first guess. Rather, the six-hour persistence field is used as the first
guess. The analysis is a successive corrections technique based on Cressman’s (1959)
method. The analyzed horizontal fields are also adjusted by a set of numerical variation
analysis equations which incorporate the dynamic constraints of the momentum
equations, with friction included in the surface layer (Lewis and Grayson, 1972).

The period of study is the 14 Northern Hemisphere winter monsoons (November-
Februarv) of 1974-1988. Our attention will be directed to the twice-daily zonal (u) and
meridional (v) wind components at the surface, 700 mb, 400 mb and 200 mb. These

components are subsequently divided into a rotational part and a divergent part, i.e. ,
V=Vy+KxVy, (1)

where the streamfunction y and the velocity potential y are obtained by solution of the

Poisson equations
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Here, { is the relative vorticity
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and ¢ is the divergence

N
cu ov

_— = 5
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where the horizontal coordinates in the Mercator projection are taken as

l+sin¢>> ©)

x=al , y=aln( cos

Here, ais the radius of the earth, and 1 and ¢ are longitude and latitude, respectively.
Both { and § were approximated using centered differences on the GBA Mercator grid.

As boundary conditions for (2) we assume ¢ =0 at 40° S and 60° N. The technique
used to calculate ¢ is essentially method I1 of Shukla and Saha (1974). This method uses
the previously computed y field to compute boundary conditions for ¥ . The values of
Y are displayved above 50° N\ although the solution for ¥ encountered at this boundary
is difficult due to this region being meteorologically active. We assume that the y and
¢ field in the equatorial regions are sufficiently remote from the boundaries such that
the values of ¢ , y are not affected by the choice of boundary conditions.

The data base was carefully reviewed to identify missing or errorneous fields. The
end result vielded few data gaps. The significant blocks of missing data run from 1) 1200
GMT 06 December 1976 to 1200 GMT 16 December 1976 , 2) 0000 GMT 20 No-
vember 1984 to 0000 GMT 31 December 1984. However, for the sake of completeness,
we replace those inconsistent or missing data by linearly interpolated values based on the
closest adjacent data.

Since most of our discussion will focus on the possible relationship between the
northern winter monsoon winds and the southern equatorial monsoon winds, the fol-
lowing data were computed:

¢ Monthly means of the observed winds, streamfunction, and velocity potential for
the surface , 700 mb and 200 mb levels for the fourteen winters

¢ Area averaged parameters of wind and vorticity whose time variation represents
certain circulation features of the monsoons.

¢ Composited area averaged parameters and composited surface wind field for period
of pre- and post- onset of the acceleration of the Indonesian equatorial zonal
winds.




1II. TIME MEAN CIRCULATION

In this section, we discuss the background features of fourteen-vear (1974-1988)
monthiy mean circulation fields at 200 mb, 700 mb and the surface, which were calcu-
lated for the months of November, December, January and February. The variables are
wind, velocity potential y and steamfunction ¥. In general, the fourteen-year mean
fields are similar to the nine-vear (1974-1983) means examined by Shicld (1985).

A. WIND

Throughout the winter monsoon season, three circulation features are particularly
relevant. They are : 1) the surface northeast monsoonal winds in the South China Sea ,
2) the zonal winds along 10° S from Indonesia-Arafura Sea region extending into West-
ern Pacific, and 3) the Western Australian trough. All can be clearly seen in the monthly
mean surface wind (Fig. .l). In November, the northeast monsoon regime has already
appeared with a maximum ( > 10 m s' ) over the northern region of the South China
Sea. In December, the northeast-southwest oriented isotach maximum becomes more
extended which indicates the strengthenging of the monsoon winds. This maximum
connects the middle and high latitude regions of northeast Asia and Japan with the
equatorial South China Sea. Fig. 1 also portrayvs that the global tropics are covered by
the surface northeast trades equatorward of the subtropical ridge. However, the narrow
band of the east Asian winter monsoon winds over the South China Sea stands out dis-
tinctly as the only regime where the northnortheasterlies extend from middle latitude to
the tropics. This suggests that a midlatitude-tropical interaction occurs over the entire
region. The isotach maximum weakens in January and February , but the pattern still
persists throughout the winter season.

Other features of interest within the Northen hemisphere include the Mongolian
high, the northern subtropical ridge along 25° N, and the South Pacific Ocean easterlies.
The Mongolian anticyclone (50°N, 93°E) has built up by November as a significant fea-
ture and intensifies in December and January. The basic low-level flow in the region of
central China and the east China coast are westerlies north of this high center, becoming
weak northerlies in the East China Sea and northeasterly through the South China Sea
to the Malaysian Peninsula. Within the central North Pacific Ocean, a significant sub-
tropical ridge persists along 25° N, separating the midlatitude westerlies from the north-
east trades on the equatorward side. In November. the equatorial zonal flow along 10°




S is generally weaK in the vicinity of the Indonesia- Arafura Sea region, but develops into
westerlies from December to February. This is an important indicator of the Indonesian
monsoon which we will use for the study of the possible relationship between the
northern winds and the southern summer monsoons. Also Fig. 1 reveals that, in No-
vember and December, the equatorial trough is poorly organized but becomes well de-
fined in January. A confluence zone is centered over the equator in November but
migrates south of the equator ( 5° S - 10° §) in December.

From inspection of the monthly mean wind field of the 700 mb level (Fig. 2), the
following observations can be made: 1) the key features of the surface have either dis-
sipated or reversed at the 700 mb level. The most outstanding feature is the
northeasterly monsoonal flow at the surface has been replaced by predominantly
westerly winds. The westerly subtropical jet stream is strongest off the northeast coast
of China, and the jet stream has its maximum farther west than the maximum at 200
mb (Fig. 3), which is likely due to the upstream topographic influence of the Tibetian
plateau. South of the broad westerly winds are easterlics in the Indonesia-Arafura Sea
region. There is no evidence of the western Australian low-level cvclone that is observed
at the surface, which is consistent with heat low structure. It has been replaced by a
weak anticvclone which becomes stronger from December to February, migrating to
central Australia.

The fourteen-vear mean wind field at 200 mb (Fig. 3) shows that the Northern
Hemisphere is dominated by strong midlatitude westerly flow. It has the well - known
structure of the two jet stream maxima in the Northern Hemisphere between 20" N\ and
40° N\ : the East Asia jet and the North American jet. In particular, the East Asia jet is
obviously the dominant one, with a jet core of 60 ms~! or higher wind centered over
Japan, extending from 90° E to the dateline. For the North American jet the area en-
closed by the 40 ms-! isotach covers only the southeastern United States, about 3(° in
longitude. On the other hand, in November, Southern Hemisphere flow has a wind
maximum (> 30 ms—' ) over central Australia, which extends into the central South
Pacific Ocean. It weakens in December. Furthermore, generally weak easterly flow is
found in the broad region of the Indian Ocean, maritime continent and western
equatorial Pacific Ocean, and South America.

B. VELOCITY POTENTIAL AND STREAMFUNCTION
In this section, we turn our attention to the rotational and divergent components in
tropical - midlatitude interactions by examining the time mean charts of velocity poten-
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tial y and streamfunction ¥. As pointed out by Chang and Lau (1980) and Davidsea
(1984), variations of the divergent wind may cause the changes in convection. According
to the equations described in section I1, it can be seen that maxima (minima) in values
of y correspond to divergence (convergence) centers. Divergent flow emanates from
high y centers to low y values and its strength is proportional to the gradient of y. For
those positive y centers at upper level, one can infer that there is a deep rising motion
in the troposphere; Similarly, one can say that at lower levels, convergence represents
large scale rising motion.

The nondivergent part of wind field can be expressed in terms of the variations in
the streamfunction ¥. The sense of rotational flow for a maximum ¥ center is clockwise
in the Northern Hemisphere; so, maxima (minima) of ¥ correspond to centers of
anticyclonic (cyclonic) flow in Northern Hemisphere (equation 2).

The monthly mean velocity potential y for the surface (Fig. 4) shows a broad area
of tropical convergent flow between 10° S and 10° N centered over the east - west ori-
ented maritime continent, extending longitudinally in both directions. The convergent
area covers an approximate 150° longitudinal span from the central Indian Ocean to the
mid-Pacific Ocean. Another feature in the spatial y distribution worth noting is the zone
of convergence maximum which is centered over the equator in November and Decem-
ber This zone migrates south of the equator to lay over northern Australia and New
Guinea in January and February. .This maximum surface convergent zone is basically
oriented in an east-west direction, which is different from the west-northwest to east-
southeast tilt of the South Pacific Convergence Zone (SPCZ) shown in satellite pictures.
Another area of significant convergent center is found over the northern portion of the
South America.

Fig. 4 also shows the significant divergence zone at the surface is located over China
and Mongolia extending into the East China coast. It has two maxima throughout the
winter season. One is over the east coast of China and the other is over Mongolia , just
southwest of Lake Baikal ( 45° N, 93°E). It should be mentioned that since the artificial -
boundary conditions imposed may influence the region within about 10° from the
northern boundary, this Mongolian divergent maxima may actually be located slightly
to the north by a few degrees. Other areas of significant divergent centers are found in
the eastern areas of the North and South Pacific Oceans and in the southern Indian
Ocean.

In December and January, the north - south component of V yx intensifies between
100° E - 140°E. It is important in the overturning motions. This is indicative of the
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lower branch of the local East Asia Hadley cell. And, we will combine with 200 mb
charts to present an overview of three - dimensional planetary - scale circulation in the
following discussion.

The 700 mb field (Fig. 5) clearly shows that there exists two significant divergent
centers, one is over northeast China and the other one is over equatorial central Pacific
Ocean. In between these two divergent centers, the South Pacific Convergence Zone
(SPCZ) is centered on the equator from the Celebes Sea to the central South Pacific
Ocean with a west-northwest to east-southeast orientation. This convergence zone, al-
though distinctly weaker than at the surface, expands and intensifies throughout the
season. In comparison, the data of Oort (1983) shows a sharp reduction in the magni-
tude of the divergence over the African and South American convection centers when
going from the surface to the 700 mb level but it is not as great as indic *ed by Fig. 5.

For all the winter season, the mean velocity potential y at 200 mb level (Fig. 6)
shows a vast region of tropical divergent flow centered over the east-west oriented mar-
itime continent of Indonesia and Borneo with a small secondary maxima further to the
east (near 180°E) in November. The divergent center extends longitudinally in both di-
rections. To the east-southeast, the central axis extends deeply into the tropical south-
eastern Pacific, representing the outflow of the SPCZ. To the west and west - southwest,
it extends to tropical South Africa covering the equatorial Indian Ocean. Another re-
gion of a significant positive y center is found over the northern part of South America,
extending into the equatornal Atlantic.

As revealed in Fig. 6, the streamlines of divergent {flow emanating from positive y
centers again show that both north - south and east - west components are important.
According to the assumptions described in section 11, these centers indicate large scale
rising motion in the troposphere which is most likely due to the presence of
condensation heating. Coupled with the mean fields of the lower levels, it can be easily
seen that parts of the divergent flow originating from the South China Sea and maritime
continent subside over Eurasia with the maximum 200 mb convergence centered in
northwest China. The ascending motion over the maritime continent, coupled with de-
scending motion over Eurasia, constitutes a strong local Hadley cell which occupies a
longitudinal belt from East Asia to the western Pacific. Also the east - west gradient
of the isopleths shows the divergent flow stretch along the equator in both directions to
form two Walker cells. The eastern Walker cell extends to the equatorial western Pacific
with a descending branch in the equatorial central Pacificc. On the other hand, the
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western Walker cell extends across the Indian Ocean and Arabian Sea with a descending
branch over the east coast of Africa.

In the monthly mean ¢ field for the surface (Fig. 7), the most outstanding feature
is the presence of a strong subtropical ridge with an east-west orientation, centered at
approximately 30° N to 40° N. The subtropical ridge, with one maximum center over
northwest China and the other two centers over the central North Pacific and North
Atlantic Oceans, separates the lower tropospheric midlatitude westerly regime and the
tropical easterly regime. Another feature in the streamfunction distribution at the sur-
face worth noting is the presence of the Mongolian high with a maximum ¥ center over
northwest of China. The Mongolian high, with its obviously defined northwest to
southeast orientation, intensifies through the winter, indicating a penetration of
midlatitude air into the tropics along the east coast of China. This implies the increased
northeasterly winds are primarily due to the rotational part of the wind as pointed out
in the previous scection. During the same period, the western Australian low intensifies
and the vorticity trough expands, migrating southward toward the equator until it en-
corapasses the maritime continent region.

Fig. 8 and 9 show the monthly mean ¢ fields for 700 mb and 200 mb. A prominent
anticyclone to the northeast of the South China Sea in the western North Pacific south
of Japan is observed. It is centered at approximately 25° N, 162° E, and exhibits a
somewhat east-west orientation extending eastward into north-central Pacific and west-
ward to eastern Africa. North of this anticyclone is a cyclonic center north of Japan
which is separated from the anticyclonic center by a westerly subtropical jet stream ex-
tending from northwestern Tibet to the north central Pacific at 200 mb. Note that
maxima (minima) in the North (South) Hemisphere arc indicated by solid (dashed) lines.
South of this anticyclonic center is another anticyclone center ( Southern Hemisphere,
¥ minimum) with an easterly zonal flow over the maritime continent separating the two
centers. Similar north-south distributions of cyclonic and anticvclonic centers, although
less prominent, are found over the continents of North and South America, and Europe
and Africa. At 700 mb, the 200 mb features west of 120°E are replaced by the ridge over
the Tibetian area which is likely due to the result of topographic effects. Fig. 8 also de-
picts an anticyclonic center over northern Australia with an easterly zonal flow as at 200

mb.

13




K J "0t " 00 L] M on L] 3,00 3,00 i on 1,08 0
n.o' ry v - P o T S 0 W e [ H i A l‘-ﬁ
T8 vie o e ................". RS 4 Y N )
) 1} 1 1} [}
[ X.T4 SXR R RETEER FERS Ay C S T A »nus...u:-uuu-,wnarnn.n.c-u&couonc.nn Fretbioteieiadofiso e SRS /-nau..-»nnnn..-.:u (K,
-....."-. 't.lll..:|.a|\lll.llllll.ll:....\\ Iww/ -~ - - —
)
s SRR IS SENCNCARN 4\ B 70 20 it RS = e = e = - B S I A 5ﬁ—vll.lll .c._f.
408 ///.Illlll.ll N EERERILY . e NN SN S [0 \
.IIIIII".IIIII ..-’r e . \
bb.llll.llllll ..... . A
D LIRS A : ledede
A “ 0 e 0 0 ade 4 on . . 0.
R L it R AR B AT 1§ < R AR
.\\\\\\.\\\\\\.\\\\\\-\\ e
' S
’ \\\\\\\\\\\\\\\\\\\.\\\
8 A Al i \ow. .\.“ Za%pd
- e o L H 72/ /s ~ o
i H uo-.".ccl \.\ |_-:\|lu.. ...... ....n.- I 707 2N ote + o o \).l .-..-u
NOC}>=r R e it AT _..-ﬂlq-q.qcn R P Y, .-h.\..uuu-v."..oﬁuJ: L O o i i B oLl Ao
448
B R L .."...\l ..u.~ .Om\\\‘.\“" TSRS .0.\ \.m‘.w ln.....-
ROV}-ethtet ot gt A nin ko sariteictednanibot b YLl ho e R TR ST NN »v‘( b £ VA

P Lox s & crowvr tebaded il
0 e C I\ LIRS 3 a“.../....\\\\\.\\\\\\.llllll.liz WV “r st RIS ‘« /
O Y ) Y (Y bo o v oam sl Y .O.W\T.lllll.ﬂ . u N Y ,rb. N U

!OG.T.\.\‘\:\J\rIJ” p \. |v|.||v|4.b- '."Ilm. iu -\ Jkn.?\c’.'iﬂl.lpwvo .“PI ../- f uﬂtv SPL.ﬂrlrc‘l;cl-\.“ ..
~ R X/ PP ard : - o o ot o

ﬁ ) : . P PP DIV IR RITR =
, \ IR RN 4 AT P \.\\\\\\.\\\\\ ”A..pﬁ
= JIVIS Ole008 = z. AV O (

.0 " ,0c
’qﬂuﬂcﬁ LEg

m 08 M ou m 081 a.0m 3.0m aon 2,08 2,00

$,00 .h;d: SRR AL SR ST 42 3R AR SERR F P XA AR AR LX QX9 35 X -..FFELI.FFIHIH.:CJ -
:

$,0Ct*

BN NN S N N

L3S S D

$,0
5.0
03

AV .::l.llllll.!:-n.‘

N0 : ‘ SRR PR 0 s . PR Vo

EERE AN \\\\\.\\\\\\.\\\\\

\\.\\\\\l.l\ < 7
.- uv..-«sluﬂ mee -, avunhnhuh.UcV..u.)\-..\:\.\-.\n-
\/ Vit \\Ill-|\\\\\.\\

R Lo 404 q-quu.n-aa:.-...-,- merprererese
1

N0t

. BRI B P -|~_..‘~\.‘||||..-“.
1] ] t L]
ZQOQT: RVSPT AV LY By S NE RCAF NL S . .-.nu..-uv.nn.n...-.....q 2%, m\\\nbwﬂﬂ..ﬂa.ﬂ\uu: elebainsaqiadm
.u\\.\\|||v.:,nn\-_ A I K PP e ot e e = ;...—:..Jl:.:-..:
W\ P =l -ﬁ' Yoe e e ." \\\.\\‘\‘\ft“"'.ﬂl S N N R (Y N b
!00‘ - .v.rlrh\.-v-ouounaou v————— .\-\a\.”‘l@lﬂi’]f S nr-rv'-r-'
N e - M ...n.vn \\\\|I‘l - - . ~ -_.-
H/.:/.w..... .: a0 s TR LNPY ‘\.\\\\\\.Qu\\\ .\
N N L ,,/ \\Iﬁ.\\ ~ B s P PPy 7 i R,

- 00l = 3OS d:oom =NOD oW X5 . AON

d vectors

ace win

14

Latitude-Longitude sections of 14-year monthly mean-surf:

and isotachs.

ig. 1.

F




0 m.ot m,0p m,08 m on m,om 1,00 .00 2,00 .08 3.00 3,00 K
IS SR RERE AR RS Lty o SRR LD AR LALLM T AR LA TP Al M I es & R LA A EREMALALELHALL: Sy
[ . - \’ .
.....\Ir....\\l._... ...... . ...... . ...... e e e . -
bobrbelddedade bttt lia —rvn:u-nlu.n-vn.n r:orun-nanvn._..:u..ur-/'.vu.:/.v-.--ucu.nukau(’J..Au l!Jann-t : 1 llVr'm
B R R B e R e R R LS T PP i e w N eyepapbfigiigig ,...\/:
.5\ . _ v) z.zzhﬂ::ic\|un.-cc,,-.,/\lelf.,-{.\.MrA 1A |....y.-..ﬂ.... pflu{
N - - ete = = e 4, v':m.ll.:a/ [P U./I.l!l'\ll.l-«\jp.- vi
1 R lk,\hc-..,::,.. .
P . . - . *

111%2

P

\\\\\\\\.\\\\\\\\\ \amne s b
P cave. cwmecqana

)\.\\\\.\\.\\\\\\.\\\\\\.\\\\ ) ua.\ - -~

IV e i f\\\\.&\\.fu .. =

iy :
Y77\
- Wlu-l'lhvlnh.

cr'pvu.-.u--'v:c’ru'uﬁ‘n

~ At Y O~ « < ool &
M% .\A\,\. . \H.A/klz b:..\

[N
\u.\p\' LT Al wk o RN > o mdla. u\n\p\.ﬂ.\n-\.-.d.-v.ul.dll?.'
\.\\l)..:.,\uw\,\ﬁhn LU P2 - YAV I PP B

\.\\I'«@.’F,,. 3 ....nz\?\/\\\. \\\nc.ucl//. /.
:.D-rv\..? hed et o e o AR .sML./..v(\?( . ;f.».?.r»rk.fur-vncn- [EP2FRY :
\\\.«\\/1//—.,, FEA " O VNS N A A RS A N B A__..\Jll\\ \\\\......“....\\.
Ul_\ \na //. lv-ml/f.. ..... nol/ .// ...n\\@@.\.\\\\lu\~ \\lr\au K\.\“\\\\.\\....“.. \1\#
. .',,.r...‘,\..n.f,// DAL o et P L etV ] i e ...\\\\..\\\...To\. o
00l = 3vaS ._or.OOm = NCO DAV 235 -EE]
m 00 "m,08 m,ou m 08 3.0m 2,0m 300 3,08 3,00 3.0t K
$O [T [SERRT NL e e e NS P A S A R R EF U PR AR AR RS o) 2EEERAL RENTAS AR LS AP Ere s o nspry s T ———— e
I ..:lo.\.J,.....,,.......... . »\.ﬁm}( L S S
fostufie i ldaatteiese varnats elaboa?dTate P --ucnnnnnunuunu(u‘.. n 233 §ofeFe o e R o B e e 4 e B DL
$.0t -»\s .h,\T,/.lllunr.t\\|||mlltﬁ”\l}}lv.s\ ~ I.’///l.ﬂll .l.h.”ﬂl J-u /’4//..m
s.0 S e B AT m e - . blo;nk,/l.lllllhlcv NS TR
oz h LR T iyl PO - 2 rord

Cle N

Q. : |.. " : . - ..-..--

unc—%fl... . ' .. ” \\J.../.cn.
02 w.w.v...n .:.u-...u..r.f.t.- Lt T 2N > 1%, .- ALY b YRR UL
I H 7 R A B -, :“. [N Il(.h..
Ll \\\\\\l\/B (L e P N o o i T . £
conea ge .l Ll l Tl 00 \Ql-"n lllllllllllllll LT M g e L A S i, o |\r
»,0 \\.\\\\\\\l..M\\_ \\Av\\.v\\\\\\.\\\\\\.w\\\\\\.\\\ VA2 /‘xix \.\\\\e\dhm
Py \\.\\\\\\.\ﬂ\ﬂ&\JN\IVI ' >\.\\\\\|| \.\\\\\.&\,\.VI/M::\ LA \\.\\\\\l
EMIMIM.V:VIU vvvvvvvvvvv = -~ g ~|l|,.o nnnnnnn [ - \ﬂR’ﬂlﬁ“l:Allﬂlllebx e
S g IR PR S \u\/*tu)f.:.... . PN .
n0¢ .|»-c<04|aaouv.ln..|.||\u\\\cwt-valll.u. ||||| U fresrersrezesay Towes ‘;'v#.v\wcuv/h.ﬁ!;-\-\lk?ﬂu; v~tv~w :
/ .

.\ v\.\\“f‘l‘ll" ’.I ( 4] - mis
B cavu..lln...ltrvn\onol... \c\). V\ [ \.O .
IL LN A s ev sty \\\.\\\\n.||lllllin.r [Y ._ﬁ.,\ TN
\\\\.\\\V.ff.ﬂ.w,\\ e~ \\\\\O-I-/I/A«\ 100 \Q.,er b,n\\ IR
g,ﬁ(\ll\:\n\u\u\r\o\;uﬁﬂubur-.-.-;Jo-oﬂ""\fﬂu‘.n-.?g. l-,'-'\lcv.v:rn/).ra.r.#)'#.:(-‘-v(nro'kp.“\..-Nl.\ul. e e s be b de oo e

\x“w\\\\.\\\\l/.r;Lc,. v ..c../,/—_~ : ' L\su/ )\(d‘ 4nn\.\.\\\\h s e e e A

-

$ v - RS I,_f,l’vl 7 5 0 AN e AT st v vir s
RS PR A N | Lo .;A S SR s x&.?.ﬁ.l,v.\‘\

.\\\\)\

- 00 =03 oUreQUT = NID DAV o35 NVI

DR
Y e T

Fig. 1. (Continued)
15




=FErle (TS IE LT R R W e S
R I
.

NOY

Y S e i e o et BN

Lot N NNKSAN N = e S 2 - ZL ST

o 0T ANE N RS \.w\.\\”.. T

e v i (T i A l/Lf/».V.//../'\wﬂ Wl .

R \ .,._s%: ANty
e e s S AL N

o~

- 00l = FIVOS

//n./i/x

S 3 N <2t o

. M
e

$,00 L — = s
Tﬁi‘rllh

m-ﬁﬂ.g.leyg:qﬂl\v\n.rlnﬂ.nlno -
.. A ot o i |\v-. .

Al
: :

I R
13

L ST A A

L LA Y TV

o

NI

R

oo A

au....“.u. s /..n......n....~;..-\...‘.f ' .Qon.‘.\\.“.-w

— _p———— ¢ - AR A I T S P R T TR T Je e 4 4 n VNN . e s v - L e Ut .—:wic P
Py

e SRR it Ay .Tcll...bm_.mrwﬂv..ﬂﬁlld« -

RN T

A o s s e wm e 4 . e 2 e e o ww’ —- - oo e - - - - - *
Ot oo u i iy SR Y
= NS rarprii o S Yttt it

b o~ ~—\ ' H '

H
}
R

0}
Y ! 2w w mgm .

- o h— .

T O WS S o

el iy

ST ——=

ek U T A

)

DT -
OV - . -¢ .
N0t ,.-,J...J.l.\.c\\:..a\}vw eorer ..1-.././-!0#.1l§[..1-51!

N Sdadad ' — JHN.J\....VII‘ S o G

-y ? [ 3
b = o S ey SN N N i Y \\O.ﬂ..‘ PR
e R T S N N RN SR 2

4

IW\/
YN

NOSER~ byl = Tvor e e - &
,.l.lnl..{.l\\.\t.\.\.\.\.\ e S R N i AY S S g e o i N N T NI N\ TN

NN

NN S

- 00, = 31v0S

00

Ot =NCO DAV

oV QUL AON

1, except for 700 mb level.

As in Fig

2.

Fig.

16




- va—— o 1e "
—
- ot e m o - - = -t e .+ o
Odb~ecnaonn Ty SR A
e ., - - TITIS
=7 N

| UL S W -

N0 B ST D s G

N

LA i

—

v~
-~
v

S AL M M N -

-mm”ﬁ.n\u-.ﬂw;.h... ............ cewenne \an.D.T-!.-.-.\ov-cL
d : I e O I Tl
o 1l ..itnlenl\"\“Nl\|unnul|/\mm,

o — s - =
£33 WDV AN s
4

Paprayy < VN

N
Do

- llll:\\\o\.\\w.j MDA . eve

\ . . - ey vt
I.././r,n\a._.,l_un.\\\%\ Sk //
-~ _'/-”[/ - 'N\-\Q\.\\\u A i

I

N~ G s
¢ ()
o e NS e NP - S v x
m.ux : AT Y W SR (U CLNENG ¥ NC N S N, !
\.v ‘: NYIA /u//.llrl.l.l.l(lmu.l}lllv": e
I LY P Y r..//l.lclll‘ll'-l'."l,(llnl

7
SN\ ///«.'\4.\ s\-\mV\.\. - -

ol

P et ALY
.

-

y.v.o..%.u.u-..... \.n“.u :
/./V/Ip I.ﬁ& -l \vf\ i -

AN Nt o SO EL UL L N
: ; ;

AL .

mou m o0 3,08 2,08 E 1,06 3.0 3

- .

N S T T L T S vy

s=cm-————ooee=—p e

——

by

R T [ R N N N R T
. Ae .
.

wd .h&.hthll‘ - ﬂTdfﬁlFlrllthlvl-nll.ll.!l.llf.f.ll:llﬁlﬁlhl

Y "
D IR TN

i
D

KRS

ROt

> . oege

z.bn_

NOPF e T S e

fam S~ o BT g

S

- ela
’

..
oz

= n s alm = mam e~ o b

et terens senersmany.

. e mle aomw oo
.

.
et
Ak T

R Rt L DR T =g R 56~ S 1?

~

s et iy .

ST S
s

Az Gt LN
Za——r 4,..o.u/.-|/4,1

e A -

RN O

~

= o .

e "
l//Tl\/«\\\: .\_i.....,...\p.”.f..
R S et WA Y]

S A Shy

e e Vol dgy e vtm e s v n almmen e a e el
t

.
Juimyx Sl
— W - " — - - wm e e ., e -
: e - : N vt R T

R L L Ry R A RS YRR v

. vl o0 e . o
P NN IS SN R WS N N
N .u..r(.ﬁ/ll.l":/d\lll" . m\.\ N -
i N —— . 3 ’ -

N ~

T

~

v .

\-.nilnw\o'lv..lvicovnlv\

-

T4 I R LR (Y Y o

TRASSAL ,f/...//;/f.w/ Ia.O.h A o e
XN .

LR

1. N .2 . . .
e S I eIttt T 1 e adh IR SLUE N o~ o g g o oy o i oo, ol emd

e !

Ease s as TN RS 2~ B nsm A i3 ]
N ST L ST

- N ; > PN v it - R Y S R VG ot v v o g s, o S, ]

o e : v ' s - ry ]

PSSt N Ay o sl i T A LA e ST s 3o Sasie s : (it
PNt iyioptgi g =5 : Y Yt R n

.,- ,///ll,.rL\ ' o & L .\.\lqﬂq-|b..9'

<
PN -

CITYRR S

\ .
et N e 2 M mim w4 o e

Soeetrenetel el T e TS e e L 0T
T A‘.‘lu'dldﬂlll, - ,\I"\vrnll'" J

\”,. ~y s “f\- =~ ‘uni\dl. e et u
T S S,

)":\\uuv'%a

AT N o v o A e o i o
.y N ~ . q

..

VAR Zl“‘\‘u\\‘\\lnll”l

N O\ NNt oo oot ot oo oo o o e fom @ - el
e

e s -

ool

= ZIv0S

Gie00C =N

cw OAY &N 00L

NVl

2. (Continued)

Fig.

17




—— e -

v =eae ol .ucnncnllnonr.anun.ltnlo Mo ety -3

" ’7’."\\\\)

”, . ~v. QQ-..’////"\ \n\<\ ‘e
..... <

\ v'v\rllvtnullu‘ .

. e oa s R Ty NN g o . - RN
P ..::Tlllnw.‘.:l(\rf H '
nnnnnnnnnnnnnnnnnnnnnnnnnn P
- s e e it .
' >

q.l.hl.ll/.

g . -
R NG S R G Nl

AR ; ; i)

SN N S S e N

R T re tometrrrrevan i
o) o Agw— BN Lo P-4

NO0RES .- ~ - R L e - = N N
ST R v /:W.'////’IJ«:\.Q?\\\\\\\\\\.S\_.\:.“ll///dhr\ﬂAﬂN - Il/V.D
.lrﬂ(..l-"\t\.\ \\\\"P// > v///lV\'r\.\\.\ PN 1\\ . NN AN NS - —~ S ]
| P PRt S R L RS PP AT St e

- c0Z = JIVDS 0leQ01 =NOO DAV 8W 00C <3d

0 M ot M 08 M08 m ot M08 308 3,0m 3.on 3,08 3,00 3.0t 0
$.0% s ”
i = N —
'
! * s X *
uocn-\‘h/’ |« v ol =T Iﬁuin > =
s.02 U..uh..u.ﬂ.ﬂ.\..\i\.-..--....I.. iyt

i ]S

T i e et e DD S [y
-~ ///I_lr\ T _“. - )-I !n\ AR A S —.n.l, . P ; d
Ly /r...qdl(..f......._.: IIIIII’:T‘....“.A...v/.ltt,l‘;\l:'. . [T S DO N
o3 b d E o 2 . o
T D PRy

SRS Gl AN SR

-“, [ .“..-nﬂ\nlﬁl 3T u: :«-.z/z-..!ﬂbr\i\hh&..«

U oo

=
200« Ao v sz f) (V5 mmm—
tas =
NEt :
z.on s i ALY PR H
—,
O S e 3 - r sy e = = E SRR I
) - P - {ﬂ\.\‘l — > < IA\'.I\JIC. !.hv
— - 1<n.o\,. et g o - \v\i} : e R— |nc/
o L~y .\(. ~ DI '//’-’~l|'||\qc,|’|d\ll‘\l\l.”flvu
ot — =3 S~ 3 e e
-~ s ... ’l." \|,I..I|\“\°.°N v == l/lﬂ“-/\v S s o s e o . S ey S B
,i\f\_\-\.\v\\\\. = \\\.\“\\\\\\\\\_\\‘lll///v///””"”""l'I.I\A._.fl._
| = \\\\\llvlu'll” Isl"‘-ltl\\ h‘a\\ P S g ey me W NN ./I//”qlll’{””.’.l"ll»l.
i S T

- 00z = SIWoS \Oe00+ = NSO DAV e CGZ AGN

1R

As in Fig. 1, except for 200 mb level.

Fig. 3.



0 M o m 00 L3
L | 3 ommanene——aoumeme

|

e ,

$,0C P ETTT T T - FTUTYRL R DS T
Ay = . - :
—Illo.Or -ie P A Y
-~ . | . .
el . + “ are .
[ W73 S S S S A A gy s e NI . .l
R ERIEENTTE ceeNL " R r .
o . sle 1 e S e I 4
SOt screcnee \II..:».M..:-I hM- -------------------- et LT T g piphgP gy Bk -y
a. R s e YA R} ' 3.//////’/’,\\} e - .o - ;- : .
. = J -~ N
“-——_—— . D m e NN N e v s e L L A

: X [ S . I
ey e e n Ry I . iy P+ Eiviiolpulion
— \\\\\\\ - - “ ' ﬂ. .—\\\\"”,”".nlﬂl‘ ~ Illlllﬂ/.QV\-/ Ml.llalll,\llu\”..’;«.v. -
loerr s : T A N SO D L LY S R A D
ol T SSETTITIVRS AL R fbptgiarigririnp sl reoretatatal SO ARSI AIRY) ; :
P 2 e L A / \\\\v\\l‘ld.‘l».’”('qq Pl N .A.\ d
! T ; o 54 3

—~— B T e TR

D e e NN S ® v ~
!cﬂn_l.‘ < el (-’-\J!f”!ﬂ.ﬂlcﬂ,%“ o e i e e _ 1. -~
dmml\\ e e Te /.rn'//-/;,fvllﬂv..\\\\“\ 7w O - A Y N L TURr _Vs\l_l
J.ﬁ.l\.\\w\\\\.\\v,\\.ln?lr///f/,r NN i o IV e ..\. CNN A NN N - - - l\l\ﬂUl\:(\.:nn.V
,#‘\\\.r\.\.\.\ .\\VA\:"//MPI, (:,HIILX\\"k\nl [ RYEL N DL - vl“UII//’/”/’,”'“',"I/‘&RCI—\’

- 00z = 3vo Die00T =NCJ DAV BN 002 e

Fig. 3. (Continued)

it

PNV N mmalof OF VNN = = N .0;01’”[4’,‘\\ L
RIS e ata A A I L R ettt i e e g

Sy - T
HOU T e v e mpmie g s g

RO NN N
NOFY rn.h..’v.v‘nlg\g. ot -
famid S Crtemr e 1yt ool

¥e /1\ h\“?l\b\\ .4 - -
N0 e - .\—\.O..ﬁr\lh\. = 3 v e e B B g k@.ﬂ\.\ci-\r"\i‘l\(\l.\u"’, i
-11...{...«.\\0.\.\k.\..“.\-hlf/./&.w/..//../llﬁ AR R e B O ////,‘II""I"H’IIIV\M
PV e e e NN, N NN o 1 1P 8 T 00 0 T e SN NN S e e e o e e e e e
= e S R R S AT SR o e e R R N S SN I N B I I R N -l S]]
5 T == = = =
- 02 = 1¥23 LG0T =N30 DAV s OC0 NWI

19




3 ' :

N i o
NQ/ X —t . 1

. \ . °
P Y \.‘\O

000} =NCD DWW O35

m ARV
1Y O=d

Latitude-longitude sections of 14-year monthly mean surface velocity poten-

Fig. 4.

tial. Positive (zero) values are solid.

20




a

Py

SRS TS g
-y

M

R Py =
C \\ol\l./ PRTC]

(P

L
wh

h)

[2s

0
B o - O A

: i< no
S R

/II\W& \\\\\\\
Cm i W

)

'
- .

Fig. 4. (Continued)




LY

0007 =NOD DAV

~8WN O0L

lllllll

AT

voral ]
"0..&\4‘)“

Tn001 =NOS DAV

&N OOL

irS AON

22

As in Fig. 4, except for 700 mb level.
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1V. TIME VARIATION OVER THE MONSOON REGION
A. COMPOSITE TIME SERIES

To examine in detail the possible interaction between the northeast monsoon in the
Northern Hemisphere and the South Hemisphere’s summer monsoon, the time series of
eleven surface large-scale circulation parameters averaged over selected regions for the
entire winter season are constructed. Selected horizontal motions in these regions, con-
sidered to have a possible relation with the development of the equatorial monsoon
winds along 10° S, are defined as the circulation parameters. The selected regions and
parameters are shown in Fig. 10. Here in regions NEM1, NEM2 and NEM3 the pa-
rameters representing winter monsoon surges are the surface meridional wind over
northern part of South China Sea (includes Taiwan, Philippine Islands and Guam) ; in
regions XEI'l, XEF2 and XEF3 the parameters representing cross equatorial flow are
the surface meridional winds over the maritime continent and equatorial Pacific Ocean;
in regions SSM1, SSM2 and SSM3 the parameters representing equatorial monsoonal
flow over Indonesia-Arafura Sea region are the surface zonal wind; in region WAT the
parameter is the surface vorticity over northwestern Australia, and in region SHM the
parameter is the 400 mb vorticity over southwestern Australia. Table 1 lists these pa-
rameters, circulation components, as well as their respective areas. The choice of these
parameters is based on the monthly mean flow patterns described in the preceding
sections. In order to examine the time variation of these eleven parameters, we calculate
arca averages for each of these parameters twice daily.

In this study the basic parameter used as the index to determine the timing of the
major circulation changes with respect to the change of equatorial westerlv flow is
SSM1. Again, from Table 1 and Fig. 10, SSM1 represents the area-averaged zonal wind
component of the surface winds over the Indonesia-Arafura Sea region (12.5- 7.5° S,
115- 135° E). As hypothesized earlier, as a cold surge reaches the South China Sea, a
belt of strong northeasterly wind will form right off the south China coast. This may
instigate a cross-equatorial flow and influence the surface winds of the southern Hemi-
sphere. Furthermore , the low-level equatorial westerlies are the closest to the equator,
and it should be the first indicator to reveal the forcing from the Northern Hemisphere.
These are the reasons SSM1 is used as the basic index , and from it we can construct the

basic time series which defines the timing of events.
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From inspection of the time series of SSM1 for each of the fourteen vears, the fol-
lowing observations can be made: 1) there are several significant fluctuations in the
zonal winds throughout the winter months. 2) there are also diurnal fluctuation phe-
nomena in the time series. Based on the fact that the onset of the summer monsoon
usually occurs necar the end of December, we focus on the major events occurring after
15 December for each vear. As used by Shield (1983) the condition for an event to be
chosen as an onset event is that there is a period of continuous acceleration of more than
five days which occurs after 15 December. The initiation of the onset event is the rcla-
tive minimum preceding the period of five-day sustained acceleration. Fig. 11 shows the
time scries of SSM1 for 1974-1975. The abscissa represents dates from 1 November to
31 March. As shown in Fig. 11, the two onset events can be readily seen in the zonal
wind series. The first event starts from 07 January 0000 GMT; it will be called the ~
mid-season ” event. There is often another major acceleration event after the mid-season
event which will be called the “ late-season “ event. Fig. 11 shows the late-scason event
that starts from 06 Febr.uar_v 0000 GMT. There is inevitably some subjectivity in
choosing the dates of these events. Since some seasons did not experience a break in
southern monsoonal flow, only nine vears were chosen as having late-season onset
cvents. Besides this, we do not choose the mid-season onset for 1984-85 and 1986-87
simply due to missing data. Thus, only twelve vears were choscen as having mid-season
onsct events. Table 2 gives the specific date and time selected for TAU =0 (onset) for
each vear for both the mid- and the late-season events.

As noted earlier, in this study we use SSM1 as base series to determine the initi-
ations of the onset events. Based on the time of TAU =0 for both mid-season aad late-
scason events for each year (shown in Table 2), each area-averaged circulation
parameter was composited from TAU =-5 days to TAU= +6 davs. For each parame-
ter, the time series for each year are then composited relative to the TAU times. Fig.
12 shows the mid-season composited time series of first eight of the circulation parame-
ters defined in Table 1. The reason for us not to portray the time series of NEM3 is
simply because NEM3 ( 17.5- 25° N, 135- 150° E), in the vicinity of Guam, shows no
distinguishable signal at all. The SSM1 composite shows a period of relatively weak
westerlies prior to TAU =0, followed by a steady increase in the surface zonal wind. In
addition, the notch of SSM1 clearly indicates the initiation of onset event occurs at
TAU =0, which is as expected from our definition of the onset event. Correspondingly,
the same trend can be observed in the surface zonal wind over SSM2 and SSM3, except

the signals are somewhat weaker. This is suggestive of a constraint on the longitudinal
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extent of the change of the equatorial westerly flow, such that the mid-season event is
essentially limited to the vicinity of 115" E to 135°E. From inspection of NEM1 and
NEM2 , the winter monsoon winds within latitudes 17.5-25°N for the region bounded
by 120-135°E and 135-150°L, respectively; the following obscrvations can be made : 1) a
higher speed prior to TAU=0 compared to after TAU =0, 2) the signal of NEM2 is
much stronger and persists longer than NEM1. Inspection of all other circulation pa-
rameters (NEM3, XEF1, XEF2, XEF3) indicates no significant signal, and as a result,
demonstrate no apparent correspondence with the accelerated summer monsoon event.

Consequently, we turn our attention to the time series of NEMI1 and NEM2 for
each individual year for the same period (TAU =-5 days to TAU = + 6 days) based on
the time and data of TAU=0. We sec from the comparison of NEM1 for each vear
from 1974-1988 that the pre-onset surge of northeasterly winds is clearly delincated in
seven of the fourteen vears (1974, 1975, 1976, 1979, 1980, 1982, 1986), weakly delineated
in three vears (1981, 1985, 1987), and shows no signal at all in 1977, 1978 and in 1983.
There is no mid-season event in 1984 due to missing data. For NEM2, except 1982, 1983
and 1987, the signal is much more apparent which correspondes to the result seen in the
composites time series as shown in Fig 12. All of these show that an increased surface
meridional wind in northern South China Sea and east of Taiwan / Philippine Islands
exist prior to the southern summer monsoon onset. Once again, this suggests that there
is a possible influence by the northern winter monsoon surge on the equatorial westerlies
in the Indonesia-Arafura Sea region. In addition, when this influence is evident over the
South China Sea, it is most pronounced in the western Pacific Ocean region east of
Taiwan and the Phillippine Islands. Fig. 13 shows the composited time series of late-
season area averaged parameters. As noted earlier, the late-season acceleration of the
SSMI1 parameter also shows a steady acceleration after TAU = 0, while SSM2 and SSM3
show no significant signal. Again, the late-season time series of SSM1, SSM2, and
SSM3 show the limited longitudinal extent of the equatorial monsoonal flow. Of note,
SSM1 of late-season is on average stronger than SSM1 of mid-season. The comparison
of NEM! and NEM2 indicates that NEM2 has a meridional wind peak prior to
TAU=0, the signal of NEM2 is much more obvious, and suggests that the
northeasterlies strengthens for 2 or 3 days and then weakens prior to the southern sum-
mer monsoon onset. On the basis of these results we would conclude that the cold surge
may influence the South Hemisphere summer monsoon onset.

Fig. 14 shows time series of WAT (surface vorticity over northwestern Australia)
and SHM (Southern Hemisphere’'s midlatitude vorticity at the 400 mb level over
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Southwestern Australia) for both mid-season and late-season. For mid-season . there is
no significant correlation in between WAT and SSM1 ,as well as between SHM and
SSM1. On the other hand. in the late-season event the SIIM parameter is well corre-
lated with the SSM1 parameter in this case. There is a significant increase in SIIM three
days prior to TAU =0 and a steady decrease after TAU =0 as shown in Fig. 14(b). This
may be related to the results pointed out by Davidson et al.(1983). Their observations
reveals that, prior to onset, the major baroclinic development in the South Hemisphere
midlatitude upper level takes place and is a possible forcing mechanism triggering the
monsoonal convection north of Australia. Although the events referred to by Davidson
et al. (1983) usually occur in late December versus the late-season events identified in
this study. There is also an increase in WAT 2 to 3 days prior to the onset. This signal
is not as strong as the SHM parameter. Nevertheless, both studies suggest a possible
role of the Southern Hemisphere midlatitude baroclinic system in influencing tropical
monsoonal circulation. It is probable that these midlatitude activities trigger the surges
west of Australia in a manner similar to the northern winter cold surges.

B. COMPOSITE MAP SEQUENCE

To obtain a two-dimensional perspective of the relationship between the northeast
monsoon surge and the downstream flow changes in the equatorial region and the
Southern Hemisphere, maps of surface horizontal wind are composited according to the
development of the mid-scasons events. Fig. 15 shows the composite maps at 24 hours
intervals from TAU=-120 hours (TAU =-5 days) to TAU = + 144 hours (TAU=+6
days). The reason of using 24-hour intervals is to remove the influence of diurnal eflects.
Fig. 15 indicates that the northeasterly monsoonal winds at TAU =-72 hours reach its
maximum prior to a mid-season event. The strongest northeast winds are concentrated
in the South China Sea extending from north of Taiwan southwestward towards the
Malay Penisula and Sumatra. This is in the same area as the maximum mean northeast
winds indicated in the 14-year mean (Fig. 1). Outside of the South China Sea the
northeasterlies spread over a very broad longitudinal domain that covers almost the en-
tire tropical North Pacific, but the latitudinal extent is mostly confined to 5° N- 20° N.
After TAU =0, the surface northeasterlies gradually decreases, and although the regime
of 10 ms~! isotach becomes much smaller, a region of maximum wind (> 10 ms™ ) per-
sists in the South China Sea throughout the period.

Correspondingly, the zonal wind along 10° S in the Indonesia-Arafura Sea region is
westerly but weak and of little extent before TAU=0. After TAU =0, the westerlies
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strengthen and expand eastward from about 120° E. The western Australian surface low
persists throughout the period. The southerly wind surge along the western Australian
coast shows an enhancement from TAU = + 72 hours on. [t is worthwhile to note that
a regime of southeastly winds present off the northeast of Australia, and increse in
strength at TAU = -24 hours.

The above observation depicts that the northeasterly winds strengthen prior to
summer monsoon onset for the mid-season events. So, the results support Lim and
Chang’s(1981) hypothesis which emphasizes the winter monsoon cold surge may have
such a cross-equatorial influence on Southern Hemisphere's summer monsoon. (The
maps for the late season events are not composited because the signals of correlated

upstream motion are less clear.)
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Table 1. AREA AVERAGED PARAMETERS
Parameter Data anud area Circulation components
represented

NEMI Surface meridional wind in northern Winter monsoon surge
South China Sea (17.3 - 253°N, 105
-120°E)

NEM2 Surface meridional wind east of Taiwan | Winter monsoon surge
: Philippine Islands (17.5 -25°N, 120 -
135°E)

NEM3 Surface meridional wind over Guam and | Winter monsoon surge
vicinity (17.5 -25° N\,135 -150°E)

XEF1 Surface meridional wind over maritime Cross equatorial flow
continent(2.595- 2.5° N\, 90-120°L)

XEI2 Surface meridional wind north of New Cross equatorial flow
Guinea (2.5°S- 2.5° N ,120 -150°E)

XEI3 Surface meridional wind over equatorial | Cross equatorial flow
Pacific Ocean( 2.5° S - 2.5°N ,150°E
-180%)

SSM1 Surface zonal wind over Indonesia- Equatorial monsoonal
Arafura Sea region(12.5- 7.5 § ,115 - flow

3SE)

SSM2 Surface zonal wind over Southern New Equatorial monsoonal
Guinea (12.5- 7.5°S , 135 -135°C) flow

SSM3 Surface zonal wind over Honiara and vi- | Equatorial monsoonal
cimty (12.5 -7.5°S , 155 -173°FE) flow

WAT Surface vorticity over Northwestern Surface heat low
Australia (27.5-17.53° S, 115-125°T2)

SHM 400 mb vorticity over southwestern Midlatitude mid-

Austraha (37.5 - 27.5°S , 115 - 1253°E)

troposphere efTect

NEM = Northeast Monsoon

XEF= Cross-equatorial Flow

SSM = Southern Summer Monsoon

WAT= Western Australia Trough

SHM = Southern Hemisphere Monsoon
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Table 2. SUMMARY OF DATE/TIME OF TAU=0 FOR MID- AND
LATE-SEASON COMPOSITING OF AREA

Season Date and Time (Mid-season) Date and Time (Late-season)

19734-1975 07 Jan - 0OGMT 06 Feb, O0GMT

1975-1976

31 Dec " 00GMT

30 Jan ; 0OGMT

1976-1977

31 Dec  12GMT

29 Jan - 00GMT

1977-1978

31 Dec - OOGMT

13 Jan ' 12GMT

- 1978-1979 21 Dec " 12GMT
1979-1980 28 Dec - 0OGMT 23 Jan ' 0OGMT
1980-1981 30 Dec . O0OGMT

1981-1982

08 Jan - 0OGMT

1982-1983

28 Dec  00GMT

1983-1984

04 Jan ' O0GMT

03 Feb . 00GMT

1984-1985

15 Feb  00GMT

1985-1986

15 Jan ; O0OGMT

19§86-1987

27 Jan ;. QOGMT

1987-1988

1§ Dec - OOGMT

05 Feb . 00GMT
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V. SUMMARY AND CONCLUSIONS

The purpose of tlis research was to extend Shield’s (1985) study on the possible in-
fluences of the northeast monsoon in the Northern I{emisphere on the Southern Hemi-
sphere’s summer monsoon by using a 14-vear data sct. The data used were from the
operational Global Band Analysis of the Fleet Numerical Oceanography Center and
covered the nothern winter seasons of 1974-75 through 1987-88. The main level of study
was the surface, where the Global Band Analysis’s surface marine wind field was based
on a wealth of island station and ship wind reports in the area of study.

Time-mean circulation charts of wind, velocity potential and streamfunction were
compiled. These charts allowed the identilication of major tropical low-level circulations
during the northern winter. Among them, the surface northeast monsoonal winds in the
South and East China Seas region, and the western Australian trough were the most
noticeable features.

The time evolutions of the circulation features were studied using a composite
method. The strengthening of the southern equatorial surface westerlies along 10° S in
the Indonesia-Arafura Sea region was considered a manifestation of the development
of active southern summer monsoon, and was used as the base series in the compositing.
For each of the seasons the development of significant acceleration of the westerlies was
identified, and the timing of these developments was used as the base reference for
compositing other circulation parameters. In most of the seasons the major develop-
ments occur around cither late December-early January, and. or in February. Events
occurred in the former period were called the mid-season events, and those occurred in
the latter period were called the late-season events. The composite of the time series of
the various variables were done separately for the two types of events.

The major circulation features were each represented by one or more area-averaged
variables. The northeasterly surge in the northern subtropics was represented by the
surface meridional wind averaged over three sections across from the South China Sea
to the western Pacific. The cross-equatorial flow was also represented by the surface
meridional wind averaged over three sections along the equator. The surface westerlies
aloﬁg 10° S was represented by surface zonal winds, and also averaged in three sections.

Two Southern Hemispheric circulation systems were included: the western Australian

50




surface trough, and the upper tropospheric midlatitude baroclinic waves. They were re-
presented by area-averaged vorticity at surface and 400 mb, respectively.

The following conclusions are based on an examination of the composited area av-
eraged time series parameters and the composite surface wind analysis:

1) Prior to the onset of the mid-season event of the westerly acceleration in the
southern tropics, the northeasterlies in the South China Sea (NEM1) and in the vicinity
of Taiwan and Philippine Islands (NEM2) show a general tendency of increasing wind
speed. The characteristic of the northeasterly surge in the vicinity of Taiwan and
Philippine Islands is stronger and persists longer than that in the South China Sea.
Immediately after the onset of mid-season event, the northeasterlies in the Taiwan and
Philippines vicinity also decelerate more rapidly.

2) For the late-season event of the southern tropics zonal wind acceleration, there
is no significant signal associated with the change in the northeasterlies in the South
China Sea. IHowever, the northeasterly surge in the vicinity of Taiwan and Philippine
Islands is strengthened dramatically about two days prior to the southern onset, and
then rapidly decelerated.

3) During the mid-season event, the zonal wind acceleration is concentrated in
Indonesia-Arafura Sca region (SSM1 and SSM2) , while in the late-season event the
zonal wind acceleration is limited primarily in the western part of this region (SSM1)
onlv.  This implies that westerlv monsoonal flow acceleration along 10° S is
longitudinally limited.

4) For late-season events, the most proy .nced circulation feature that was corre-
lated to the development of westerly accelerations in the southern tropics is the 400 mb
midlatitude westerlies (SIIM). It enhanced immediately prior to the onset. The vorticity
of the western Australian trough (WAT) also enhanced prior to the late-season onset.
These correlations suggest that a surge of southerly wind parallel to the West Australian
coastline and anticyclogenesis over southwestern and south-central Australia are related
to the westerly acceleration.

5) All the other circulation features, including the northeasterly monsoon winds in
the western Pacific (NEM3), and the cross-equatorial flows along the equator (XEF1,
XEF?2, and XEF3), displayed no significant correlation with the development of the
southern summer monsoon. This indicates that cross-equatorial flow may not be a good
indicator of the eflects of the Northern Hemisphere monsoonal wind on the Southern

Hemisphere summer monsoonal flow.
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Because of the different features of mid-season event and late-season event, we
suggest that mid-season events in the southern summer monsoon is influenced by surges
in the northeast monsoon in the Northern Hemisphere, while the late-season events in
the southern sununer monsoon may be due entirely to midlatitude baroclinic develop-
ment rather than the cold surges from the Northern Hemisphere. However, the cause-
effect relationship of the observed interactions remain somewhat unclear. Some of the
observational works reviewed in the introduction have different results, including sug-
gestions that the northern winter monsoon surges should affect the Southern Hemi-
sphere throughout the seasons, or that the southern summer monsoon is entirely a
Southern Hemisphere phenomena independent of the nortern winter monsoon. These
different results may be partly due to the complexity of the monsoons. Different forcing
mechanisms (c¢.g., South China Sea surges, West Australian surges) may come into play
under different circumstances, and sometime it may not be easy to separately identify
their respective effects. The work conducted here was limited to the surface wind com-
posites. Further observational and theoretical studies are necessary to understand the
interactions between Southern Hemisphere monsoon and the Northern Hemisphere
monsoon systems.
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