
IN FILE COPY

GL-TR-89-0307

POLAR User's Manual

cv)
John R. Lilley, Jr.
David L. Cooke
Gary A. Jongeward

N4 Ira Katz

0 Maxwell Laboratories, Inc.
S-CUBED Division
P. 0. Box 1620
La Jolla, CA 92038-1620 DTIC

ELECTE
October 1989

Scientific Report No. 9

Approved for public release; distribution unlimited

Geophysics Laboratory
Air Force Systems Command
United States Air Force
Hanscom Air Force base, Massachusetts 01731-5000

91 2 11 174

Ts technical report has been reviewed and is approved for publication

DAVID L COOKE CHARLES P. PIKE
Contract Mge Branch Chief

FOR THE CO M ER

RITA C. SAGALYN
Division Director

This report has been reviewed by the END Public Affairs Office (PA) and is
releasable to the National Technical Informaxtion Service (NTIS).

Qualified requestors may obtain additional copies from the Defense Technical
Information Center. AU others should apply to the National Technical Information
ServicaL

If your addres has changed, or if you wish to be removed from the mailing
list, or if the addresee is no longer employed by your organization, please
notify AFUGDAA, Hanscom AFB, MA 01731. This will asiW. us in maintaining
a current mailing list.

Do not return copies of this report unm contractual obligations or notices
on a specific document requirm that it be returned.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

Form Apoe

REPORT DOCUMENTATION PAGE oMBNo. 0o-08

Ia. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
Unclassified

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTIONAVAILABILITY OF REPORT

Approved for public release;
2b. OECLASSIFICATION/iDOWNGRADING SCHEDULE distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

SSS-R-86-7563/R2 GL-TR-89-0307

Sa. NAME OF PERFORMING ORGANIZATION S. OFFICE SYMBOL 7. NAME OF MONITORING ORGANIZATION
S-CUBED Division ('#' e Geophysics Laboratory
Maxwell Laboratories, Inc. G

6c. ADDRESS (City Sta, andZlP Cod.) 7b. ADDRESS (City, Stal, and ZIP Code)

P. 0. Box 1620 Hanscom AFB
La Jolla, CA 92038-1620 MA 01731-5000

Ba. NAME OF FUNDINGSPONSORING 8b. OFFICE SYMBOL 9. Pi ICUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If p/cabe)

F19628-86-C-0056
8c. ADDRESS (Cit% Stat, and ZIP Coda) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

62101F 7601 30 AA
11. TITLE (Include Secuity Clasacabon)

POLAR USERS MANUAL

I Z PERSONAL AUTHOR(S)
John R. Lilley, Jr.; David L. Cooke; Gary A. Jongeward; Ira Katz

138. TYPE OF REPORT 13b. TIME COVERED 114. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
Scientific #9 FROM TO 1989 October 474

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Spacecraft charging Finite elements

Auroral ionosphere Poisson solution
3-D POLAR computer code

19. ABSTRACT (Contnue on revem ineceasary and identiy by block number)

This report documents the physical principles and computational algorithms of the POLAR code. POLAR models in three
dimensions the interactions of large spacecraft with the plasma environment in low polar orbit. It includes models of
space charge limited particle collection, satellite wakes, the polar auroral environment, magnetic field effects, spacecraft
surface charging, particle beam effects, and sheath ionization.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
n UNCLASSIFIEDUNLIMITED] SAME AS RPT. [3 DTIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIDUAL 22b. TELEPHONE (include Arm Coda) 22c. OFFICE SYMBOL
David L Cooke (617) 377-2931 PHK

DD FORM 1473, JUN 86 Prviou editions ae obsolete. SECURITY CLASSIFICATION OF THIS PAGE

Unclassified

TABLE OF CONTENTS

Chapter Page

LIST OF ILLUSTRATIONS iii

LIST OF TABLES xii

1. INTRODUCTION 1.1-1

1.10 CODE STRUCTURE 1.1-1

1.20 DOCUMENTATION 1.2-1

2. THE PHYSICS OF LARGE STRUCTURES IN THE POLAR
IONOSPHERE 2.0-1

3. PHYSICAL MODELS EMPLOYED IN THE POLAR CODE 3.1-1

3.10 THE POLAR PLASMA ENVIRONMENT 3.1-1

3.20 PLASMA POTENTIALS 3.1-2

3.30 PARTICLE DENSITIES 3.3-1

3.31 STRUCTURE OF THE PLASMA WAKE 3.3-4

3.32 SHEATH DENSITIES 3.3-8

3.40 SURFACE CURRENTS 3.4-1

3.41 ANALYTICAL ELECTRON SURFACE CURRENTS.. 3.4-2

3.42 ATTRACTED PARTICLE SURFACE CURRENTS... 3.4-4

3.43 INITIAL SHEATH PARTICLE VELOCITY
DISTRIBUTIONS 3.4-6

3.50 ELECTRICAL CHARGING 3.5-1

3.60 THE POLAR SHEATH MODEL 3.6-1

REFERENCES, CHAPTER 3 3.6-3

4. COMPUTATIONAL TECHNIQUES 4.1-1

4.10 GRIDS - DISCRETIZATION OF SPACE 4.1-1

4.11 STAGGERED MESH 4.1-1

4.12 OBJECT GRID 4.1-2

4.20 POTENTIAL CALCULATIONS- 4.2-1
21 ~~~ ~ 0 FIIEEEENSlJ'odes

4.21 FINITE ELEMENTS.....................,o " 4.2-1
ix,) /orii.r

TABLE OF CONTENTS (CONTINUED)

Chapter Page

4.21.1 GENERAL 4.2-1

4.21.2 SPECIAL CELLS 4.2-5

4.21.21 INTERPOLATION FUNCTIONS FOR
FACE-CENTERED SURFACE NODES
(FCSN'S) 4.2-6

4.21.22 THE EMPTY CUBE (TYPE 0)
ELEMENT WITH NO FCSN'S 4.2-7

4.21.23 THE EMPTY CUBE (TYPE 0)

ELEMENT WITH SIX FCSN'S 4.2-8

4.21.24 THE WEDGE ELEMENT (TYPE 1)... 4.2-13

4.21.25 THE TYPE 2 ELEMENT 4.2-17

4.21.26 THE TETRAHEDRON ELEMENT 4.2-21

4.21.27 THE TRUNCATED CUBE ELEME14T
(TYPE 4) 4.2-24

4.21.28 THE SLANTED THIN PLATE ELEMENT
(TYPE 5) 4.2-27

4.22 BOUNDARY CONDITIONS 4.2-27

4.30 MATRIX SOLVERS 4.3-1

4.31 CONJUGATE GRADIENT METHOD 4.3-1

4.32 ICCG, THE INCOMPLETE CHOLESKY
CONJUGATE GRADIENT METHOD 4.3-3

4.40 SPACE CHARGE AND CURRENT
COMPUTATION 4.4-1

4.41 WEAK FIELD IONS, PRESHEATH AND WAKE... 4.4-1

4.42 THE POLAR SHEATH MODEL(TECHNICAL) 4.4-2

4.42.1 SHEATH EDGE ALGORITHM
(SHEATH) 4.4-2

4.42.2 CURRENTS TO THE SHEATH
SURFACE 4.4-2

4.42.3 SHEATH PARTICLE ASSIGNMENT... 4.4-8

4.42.4 TRAJECTORY TRACKING 4.4-9

iv

TABLE OF CONTENTS (CONTINUED)

Chapter Page

4.42.5 SHEATH ION DENSITIES 4.4-11

4.43 CHARGE DENSITY 4.4-12

4.43.1 ELECTRONS 4.4-13

4.43.2 ION CHARGE DENSITY 4.4-13

4.44 THE CHARGE STABILIZED POISSON
ITERATION 4.4-15

4.44.1 SHEATH IONIZATION EFFECTS
ON SPACE CHARGE 4.4-18

4.44.2 ANALYSIS OF THE CHARGE
STABILIZED POISSON METHOD . 4.4-22

4.44.3 PARTICLE BEAM SPACE
CHARGE EFFECTS 4.4-27

4.44.4 ANALYTIC FORMULATION FOR
SHEATH CONVERGENCE 4.4-27

4.50 CHARGING MODEL 4.5-1

4.51 CONDUCTOR CURRENTS AND CURRENT
DERIVATIVES 4.5-3

4.52 ELF-TRON CURRENTS,PRIMARY,
SECONDARY 4.5-6

4.52.1 SECONDARY ELECTRONS 4.5-6

4.52.2 BACKSCATTER ELECTRONS 4.5-12

4.52.3 INTEGRAL OF THE MAXWELLIAN
DISTRIBUTION 4.5-13

4.52.4 INTEGRAL OF THE POWER
LAW DISTRIBUTION 4.5-15

4.52.5 INTEGRAL OF THE GAUSSIAN

DISTRIBUTION ELECTRONS 4.5-17

4.52.6 PHOTOEMISSION 4.5-19

4.52.7 SHEATH TO OBJECT ELECTRON
CURRENTS 4.5-20

4.53 ION SURFACE CURRENTS 4.5-22

V

TABLE OF CONTENTS (CONTINUED)

Chapter Page

4.53.10 THERMAL ION SURFACE
CURRENTS 4.5-23

4.53.20 SHEATH TO OBJECT ION

CURRENTS 4.5-25

4.53.30 ION CURRENT DERIVATIVE 4.5-30

4.54 SURFACE INTERACTIONS 4.5-32

4.54.10 SURFACE CONDUCTIVITY 4.5-32

4.54.20 PHOTOCONDUCTION/HOPPING
SECONDARIES 4.5-33

4.54.30 SURFACE TO PLASMA
CAPACITANCE 4.5-34

4.54.40 SURFACE TO CONDUCTOR

CAPACITANCE 4.5-34

4.55 CIRCUIT MODEL 4.5-36

4.56 CHARGING ALGORITHM 4.5-39

4.56.10 CHARGING NOTATION 4.5-39

4.56.20 DETAILS OF THE CHARGING
ALGORITHM 4.5-42

4.56.30 PARTICLE BEAM CHARGING
EFFECTS 4.5-46

4.57 CHARGING MATRIX FORMULATIONS 4.5-47

4.57.10 AN EXAMPLE OF MATRIX

FORMULATION 4.5-50

REFERENCES, CHAPTER 4 4.5-57

5. POLAR CODE STRUCTURE 5.1-1

5.10 TOP DOWN VIEW OF THE POLAR PACKAGE... 5.1-1

5.11 VEHICL 5.1-3

5.12 ORIENT 5.1-5

5.13 NTERAK 5.1-6

5.14 SHONTL 5.1-8

vi

TABLE OF CONTENTS (CONTINUED)

Chapter Page

5.15 UTILITIES 5.1-8

5.20 SLICE GRID SYSTEM 5.2-1

5.21 SLICE MACHINERY 5.2-4

5.22 VOLUME ELEMENT MACHINERY 5.2-7

5.23 ELEMENT TABLE, LTBL 5.2-9

5.24 SURFACE CELLS 5.2-11

5.24.1 SURFACE CELL LIST, KSURF 5.2-11

5.25 LCEL, CONNECTIVITY 5.2-14

5.30 FILE SYSTEM 5.3-1

5.31 MASS STORAGE FILE MANAGEMENT 5.3-2

5.32 MRBUF PLUS BUFSET PLUS FRIENDS 5.3-4

5.33 MRBUF VARIABLE LIST 5.3-7

5.40 OBJECT DEFINITION 5.4-1

5.50 POTENTIALS 5.5-1

5.60 PARTICLE DENSITIES 5.6-1

5.61 PRESHEATH SPACE CHARGE DENSITIES 5.6-1

5.61.10 NEUTRAL ION APPROXIMATION
(NEUDEN) 5.6-1

5.61.15 SHADO APPROACH 5.6-6

5.61.16 SHADO STRUCTURE 5.6-10

5.61.20 ELECTRIC FIELD CORRECTION
FOR NEUTRAL IONS 5.6-17

5.62 SHEATH PARTICLES 5.6-19

5.62.10 SHEATH EDGE 5.6-20

5.62.11 THE PARTICLE LIST
STRUCTURE 5.6-22

5.62.12 PARTICLE PUSHING UNITS 5.6-25

5.62.20 SHEATH CURRENT 5.6-26

vii

TABLE OF CONTENTS (CONTINUED)

Chapter Page

5.62.21 CURPEP (CURRENT PREPARER)... 5.6-27

5.62.22 PUSHER (PARTICLE PUSHING)... 5.6-28

5.62.23 SHEATH PARTICLE DENSITY 5.6-32

5.62.24 CUEXIT (CURRENT EXIT
ROUTINE) 5.6-32

5.70 SURFACE CHARGING 5.7-1

5.71 PUSHED PARTICLE SURFACE CURRENTS 5.7-1

5.72 CHARGE MODES 5.7 -3

5.73 CHARGE (SURFACE CHARGING CONTROL) 5.7-3

5.73.1 SURCHG (SURFACE CHARGER) 5.7-5

5.73.2 CHARGING MATRIX AND VECTOR
FORMULATION 5.7-11

5.80 OUTPUT 5.8-1

5.81 GENERAL 5.8-1

5.82 GRAPHICAL CODE STRUCTURE 5.8-1

5.82.10 AN OVERVIEW OF SHONTL 5.8-1

5.82.11 SHONTL 5.8-3

5.82.12 SHODEF (PLOT
INITIALIZATION) 5.8-3

5.82.13 SHOINP (SHONTL INPUT) 5.8-4

5.82.14 GENPLT (GENERATE PLOTS) 5.8-4

5.82.15 SHOXIT (SHONTL EXIT) 5.8-4

REFERENCES, CHAPTER 5 5.8-5

6. OPERATING INSTRUCTIONS 6.1-0

6.10 OBJECTS 6.1-1

6.10.10 BUILDING BLOCKS 6.1-4

6.10.11 COMMANDS (OR HOW 00 I
ACTUALLY DEFINE AN OBJECT 6.1-4

viii

TABLE OF CONTENTS (CONTINUED)

Chapter Page

6.10.12 PLATES AND PATCHES 6.1-7

6.10.13 SPECIAL SHAPES 6.1-9

6.10.14 BUILDING BLOCK PARAMETERS
(OR WHO'S ON NEXT) 6.1-9

6.10.15 RECTAN 6.1-11

6.10.16 PATCHR 6.1-13

6.10.17 WEDGE 6.1-13

6.10.18 PATCHW 6.1-17

6.10.19 TETRAH 6.1-17

6.10.20 OCTAGON 6.1-19

6.10.21 QSPHERE 6.10-24

6.10.22 FILl11 6.1-26

6.10.23 PLATE 6.1-28

6.10.24 SLANT 6.1-30

6.10.25 MORE OBJECT DEFINITION
KEYWORDS 6.1-30

6.11 DEFINING AN OBJECT: AN EXAMPLE 6.1-34

6.11.10 LIMITATIONS IN OBJECT
DEFINITION 6.1-37

6.11.11 DOUBLE POINTS 6.1-37

6.11.12 TRIPLE POINTS 6.1-39

6.12 SURFACE MATERIALS 6.1-41

6.12.10 MATERIAL PROPERTIES 6.1-41

6.12.11 DEFINING MATERIALS 6.1-46

6.12.12 DEFAULT MATERIALS 6.1-49

6.13 THE OBJECT DEFINITION FILE -
ANOTHER EXAMPLE 6.1-57

6.14. OBJECTS WITHIN OBJECTS:
VARIEGATED SURFACES 6.1-60

ix

TABLE OF CONTENTS (CONTINUED)

Chapter Pago

6.20 VEHICL 6.2-1

6.21 VEHICL KEYWORDS 6.2-1

6.22 VEHICL DIAGNOSTIC KEYWORDS 6.2-10

6.23 AN EXAMPLE OF A VEHICL RUN 6.2-12

6.24 TROUBLESHOOTING VEHICL 6.2-13

6.30 ORIENT 6.3-1

6.31 ORIENT KEYWORDS 6.3-1

6.32 RUNNING ORIENT 6.3-4

6.40 NTERAK 6.4-1

6.41 NTERAK CONTROL KEYWORDS 6.4-2

6.42 KEYWORDS TO SET UP NTERAK 6.4-10

6.42.10 PLASMA ENVIRONMENT 6.4-10

6.42.20 MAGNETIC FIELDS 6.4-18

6.42.30 NEUTRAL ION DENSITY 6.4-19

6.42.40 INITIAL VOLTAGES AND
ELECTRIC MODEL 6.4-26

6.42.50 GRID SIZE CONTROL 6.4-33

6.42.60 PARTICLE BEAMS 6.4-35

6.42.70 SHEATH IONIZATION 6.4-38

6.43 NTERAK SUBSECTION CONTROL 6.4-39

6.43.10 PWASON (POISSON POTENTIAL
SOLVER 6.4-40

6.43.20 CURREN (ION CURRENT CAL-
CULATION) 6.4-46

6.43.30 CHARGE (SURFACE CHARGER) 6.4-50

6.44 NTERAK OUTPUT CONTROL 6.4-59

6.44.10 CALCULATION MONITORING 6.4-60

6.44.20 DIAGNOSTIC OUTPUT 6.4-65

x

TABLE OF CONTENTS (CONCLUDED)

Chapter Page

6.45 SUMMARY OF NTERAK KEYWORDS 6.4-75

6.45.10 NTERAK DIAGNOSTICS AND
OUTPUT CONTROL 6.4-86

6.50 OPERATING SHONTL 6.5-1

6.51 STEP BY STEP INSTRUCTIONS FOR
SHONTL 6.5-3

6.52 SHONTL KEYWORDS 6.5-4

6.53 SPECTRUM KEYWORDS AND OPERATING
INSTRUCTIONS 6.5-12

6.54 SHONTL DEFAULTS 6.5-13

6.55 SPECIAL SHONTL OPTIONS 6.5-13

6.60 PLOTTING UTILITIES 6.6.1

6.70 SURFACE CHANGING UTILITY 6.7-1

6.80 TRMTLK-NTERAK RUN ANALYSIS TOOL 6.8-1

6.81 PROGRAM STRUCTURE 6.8-2

6.82 CELL SPECIFICATIONS 6.8-2

6.83 CHARGING HISTORY 6.8-2

6.84 INSTRUCTIONS FOR USE 6.8-3

6.85 SAMPLE RUN 6.8-3

6.86 INTERNAL DOCUMENTATION 6.8-8

6.90 SOURCE CODE MAINTENANCE 6.9-1

6.91 INSTALLING THE SOURCE CODE 6.9-2

6.92 GENERAL INFORMATION FOR THE MAIN
SOURCE CODE VERSION 6.9-5

6.93 INFORMATION FOR MAKING LOCAL OR
USER MODIFIED VERSIONS OF POLAR 6.9-10

6.94 A QUICK SUMMARY OF MAKEFILE SYSTEM... 6.9-15

xi

LIST OF ILLUSTRATIONS

Figure No. Page

3.30/1 The central dimensionless ,tential
(0 = eV/kT) of a cylindrical ion void of
radius R ... 3.3-2

3.31/1 Different wake code interest regions 3.3-4

3.41/1 Pitch angle and the spherical polar angles 3.4-3

4.11/1 (A) Cube moving to left. (B) Rising quasi-
sphere. (C) Falling quasisphere 4.1-3

4.21.23/1 Cubical finite elements with six face-centered
surface nodes (FCSNs) 4.2-8

4.21.23/2 Interpolation functions for the cubical
element of Figure 4.21.23/1 4.2-9

4.42/1 Coordinate systems 4.4-3

4.44/1 Plots of space charge 4.4-25

4.44/2 Plot of space charge cutoff potential 4.4-26

4.52/la Energy deposition profiles 4.5-8

4.52/lb Generalized yield curve 4.5-8

4.52/2 Secondary emission be aluminum 4.5-11

4.53/1 Current sharing on a quasisphere 4.5-26

4.53/2 Bilinear weighting of triangular surfaces 4.5-26

4.53/3 Bilinear weight (wbsa) of a rectangular
surface .. 4.5-27

4.55/1 Legend of circuit elements 4.5-37

4.55/2 Circuit representation of a single insulating
surface .. 4.5-38

4.55/3 Circuit representation of a single exposed
conductor surface 4.5-38

4.55/4 Circuit representation of two insulating sur-

faces with a common underlying conductor 4.5-38

4.56/1 A multiple crossover I-V curve 4.5-44

4.57/1 General circuit model used to study matrix
construction 4.5-50

xii

LIST OF ILLUSTRATIONS (CONTINUED)

Figure No. Page

5.11/1 VEHICL structure 5.1-3

5.12/1 ORIENT structure 5.1-5

5.13/1 Structure of NTERAK module 5.1-6

5.20/1 An x-z cut of a typical NTERAK computational
mesh ... 5 .2-2

5.24/1 KSURF surface cell list bit code 5.2-13

5.50/1 PWASON structure 5.5-1

5.50/2 CONGRD structure 5.5-2

5.61/1 Neutral approximation phase space map of a
flying brick blocking ram direction 5.6-3

5.61/2 Neutral approximation phase space map of a
flying brick at right angles to ram direction 5.6-4

5.61/3 Flying brick in anti-ram direction 5.6-5

5.61/4 SHADO structure program 5.6-11

5.61/5 SHDSET structure diagram 5.6-12

5.61/6 Structure diagram for the SHADO subroutine 5.6-16

5.62.20/1 Structure diagram of subroutine CURREN 5.6-26

5.71.1 Structure diagram of IONCUR segment 5.7-1

5.73/1 Structure diagram of CHARGE module 5.7-4

5.73/2 Structure diagram of routine SURCHG 5.7-5

5.82/1 A general structure diagram of SHONTL 5.8-3

6/1 Cuboid made by filling in twenty-four volume
elements ... 6.1-2

6/2 Four shapes of volume cells considered by the
POLAR code 6.1-3

6/3 Eight building block types 6.1-5

6/4a A FILl11 building block 6.1-10

6/4b 'Steps* along grid lines 6.1-10

6/4c "Steps" along 456/4c 6.1-10

xiii

LIST OF ILLUSTRATIONS (CONCLUDED)

Figure No. Page

6/5 RECTAN ... 6.1-12

6/6 Wedge defined with surface normal 110 and
corner 0,0,0 .. 6.1-16

6/7 Tetrahedron defined with its "corner" at 000
and a surface normal 111 6.1-20

6/8 Top of an OCTAGON 6.1-22

6/9 OCTAGON .. 6.1-23

6/10 QSPHERE .. 6.1-25

6/11 FIL l ... 6.1-27

6/12 PLATE .. 6.1-29

6/13 Object definition example 6.1-35

6/14 Three views of object defined by input of
Figure 6/13 6.1-36

6/15 Profile of two cuboids sharing a common edge
and resultant double points 6.1-38

6/16 Examples of plates intersecting objects 6.1-40

6/17 General form of the object definition file 6.1-48

6/18 Object definition file 6.1-58

6/19 3-D view of object produced by HIDCEL (hidden
lines) ... 6 .1-59

6/20 A variegated surface definition 6.1-61

6.2/1 VEHICL runstream 6.2-12

6.3/1 Sample ORIENT runstream 6.3-4

6.4/1 Comparison of POLAR spectrum and DMSP data 6.4-15

xiv

LIST OF TABLES

Table No. Page

5.62.11/1 Example of Particle List Data Structure 5.6-23

6/1 POLAR Building Blocks and Their Keywords 6.1-6

6/2 Object Definition - File 20 6.1-8

6/3 Directions of Surface Normals Associated with
Allowed Wedge Orientation 6.1-15

6/4 Directions of Surface Normals Associated with
Allowed Tetrahedron Orientations 6.1-18

6/5 Material Properties 6.1-42

6/6 Material Properties 6.1-50

6.21/1 Summary of VEHICL keywords 6.2-9

6.31/1 Summary of ORIENT keywords 6.3-2

6.42/la Beam Characteristics - Keyword Definition 6.4-36

6.42/lb Beam Characteristics - Input Syntax 6.4-36

6.44/1 Flag Settings for Subsections by Quantity
Level .. 6.4-66

6.70/1 Orbit limited collection 6.7-1

6.70/2 Space charge limited collection 6.7-2

xv

I1.1-I1

1. INTRODUCTION

POLAR is a set of computer programs designed to predict the

electrical interactions between the natural environment and a large

spacecraft in polar earth orbit. POLAR consists of many complex

physical models which have been converted to algorithms and connected by

an executive structure. Since there are a wide variety of spacecraft

and environments, POLAR has been written with maximum flexibility and

applicability in mind. However, to allow for when a model may prove

inadequate, POLAR has been designed with a high degree of modularity to

enable changes in the physical models and algorithms to be made quickly

and reliably. The documentation is also designed modularly so that code

modifications can be documented immediately. Thus this manual is

intended to be a living document, accurately reflecting the most current

status of the POLAR code. This modularity does make for difficult

reading, but we feel that the total information content is enhanced and

that it is a valuable compromise. Since the models in POLAR are subject

to change and replacement, it is important to have matched editions of

the manual and the computer code. The edition date for this manual is

September 1989, and it describes the POLAR 1.3 version delivered to AFGL

in September 1989.

1.10 CODE STRUCTURE

POLAR is written in ASCII standard fortran using top down,

structured programming principles and is in general accordance with Air

Force coding standards. It consists of four main programs and several

attending utility programs. Program one, called VEHICL, handles object

definition. Program two, called ORIENT, is used to reorient an object

and its grid. Program three, called NTERAK, actually calculates the

spacecraft-plasma interaction and most of the physical models are

contained in NTERAK. The fourth program is called SHONTL, and it

controls plotting and information retrieval. The utility programs

provide the means to translate machine independent output of SHONTL to

local hardware graphics commands, perform quick one dimension

calculations, and post-process NTERAK runs.

1.2-1

1.20 DOCUMENTATION

This document is structured hierarchically. The description of

POLAR goes from basic physics, to physical models, to algorithms, to

coding structure, and finally, to operating instructions.

2.0-1

2. THE PHYSICS OF LARGE STRUCTURES IN THE POLAR IONOSPHERE

A good source for information on the physics of large structures

in the polar ionosphere is the POLAR Code Validation final report SSS-

DFR-89-10708.

3.1-1

3. PHYSICAL MODELS EMPLOYED IN THE POLAR CODE

The POLAR code makes various assumptions which enable it to

perform three-dimensional charge calculations in relatively short Debye

length plasmas. In this section we examine the component physical

models and discuss their validity. While each is addressed separately,

the code achieves a self-consistent solution by various levels of

iteration. These are described more fully in Chapter 4, Computational

Techniques. This chapter provides an executive summary of the models as

if the numerics were arbitrarily accurate. Numerical techniques are

discussed in greater detail in Chapter 4.

One major, overriding assumption should be identified before the

component by component description, which is that all time dependence on

the scale of particle dynamics is ignored. This means that particles

see spatially dependent but time independent fields for the period they

are near the orbiting vehicle. As such, all plasma oscillations,

including electron and ion modes are precluded. Thus, oscillations in

the wake or at leading edges will not be predicted by the POLAR code.

3.10 THE POLAR PLASMA ENVIRONMENT

POLAR can model a wide variety of plasma environments from

reasonable combinations of the following populations:

Ions:

Cool Maxwellian ions (input AMU).

Cool Maxwellian protons.

Both the protons and ions are assumed to be isotropic in the plasma

frame. The relative densities are controlled by inputing the density

ratio with the total constrained to equal the ambient electron density.

Both populations have temperatures equal to the temperature of the

3.1-2

cool electrons, (temperature 1). During wake calculations the ion

temperature can be defined to be different than the electron

temperature.

Electrons:

Cool ambient Maxwellian, temperature 1, density 1.

Suprathermal, power law distribution of energies.

Hot Maxwellian, temperature 2, density 2.

Energetic, Gaussian distribution of energies.

The cool Maxwellian population is considered isotropic in the

plasma frame. The other, more energetic populations may be given field-

aligned and loss-cone distributions in the future but are presently

considered isotropic only.

3.20 PLASMA POTENTIALS

The other major assumption is that the only fields of major

importance are the static electric fields obtainable from Poisson's

equation and the earth's magnetic field. The only velocity related

field included is that induced by X x § on conducting surfaces. The

frame of reference is chosen to be the stationary plasma, so that

X x @ effects appear on the vehicle as boundary conditions. The plasma

at infinity is defined to be at zero potential.

Plasma potentials are obtained from Poisson's equation

V20 = X-2P

where 0 = eV/kT is the dimensionless potential, A is the Debye length

(X2 = C° kT/Ne 2), and p is the sum of the appropriate ion and electron

charge densities (p=Ni + ne). Contributions from hot auroral electrons

and

3.3-1

particles backscattered from the vehicle are neglected except for

electron secondaries generated during electron collection. Poisson's

equation is solved using either fixed potential or fixed normal electric

field boundary conditions on a surface by surface basis, as appropriate.

Solution techniques for the Poisson equation are presented in Section

4.20, and the overall space charge iteration in Section 4.44.

3.30 PARTICLE DENSITIES

The electron density within ion collecting sheaths is assumed to

be Maxwellian without any excluded orbits;

n = n e /kT
e e0

where neo is the unperturbed cold component plasma density. The

absence of excluded orbits implies neglecting potential barriers for

electrons in the wake. The validity of this approximation has been

studied using as an extreme case a disk moving infinitely fast with

respect to thermal ions, but very slowly with respect to the electron

thermal velocity. Such an object has rigorously no ion charge density

in the wake and thus has the maximum negative space charge physically

possible. Solving Poisson's equation for this case gives the maximum

possible negative plasma potential. The central wake potential as a

function of disk radius over Debye length is shown in Figure 3.30/1. We

see that even for shuttle size objects that the peak space charge

potential is less than 20 kT, or about 2 volts. If the surface boundary

conditions are more negative than this wake space charge maximum, the

potential in the wake will be monotonic and no electron orbits will be

shadowed. This will clearly be the case for any case with substantial

negative charging.

3.3-2

4-
C- 0

0

U

(-v
E

C E

L4)

cq 00

1) ~ ~ ~ ~ ~ ~ ~ ~ .rlV * l0dr dINL

3.3-3

Within an electron sheath, the electron densities use a sheath

electron model similar to the ion sheath model. The ion density term is

determined using one of two models, depending upon the local potential.

At large distances from the object, where the potential is near plasma

ground (substantially less than the ram energy of the ions), ion orbits

are assumed to be unperturbed by electric fields. In this presheath

region, ion densities are determined for both ions and protons, by the

*neutral ion model" described next. A sheath edge is assumed to

separate the presheath from a sheath region wherein electric fields

dominate thermal effects. In the sheath region, ion densities are

determined by sheath ion model (3.32, 3.60).

It is important to note that the densities that result from the

combined use of the neutral and sheath models are subject to certain

limitations and shortcomings.

There is a low density or Laplace limit where the sheath edge is

no longer sharply defined and electric fields extend far into the

plasma. In this limit, the neutral ion approximation would fail, and

thermal ion motion would be incorrectly ignored inside the sheath edge.

This limit is characterized by a Debye screening length that is

comparable to, or larger than, the object size. This does not mean

POLAR cannot provide useful results in the long Debye length limit,

since the space charge coupling to the potentials is reduced by X2

The user should, however, understand that ion densities and sheath ion

currents (3.60) can be in error. There is also a short Debye length

limitation that occurs when the Debye length is very much less than a

zone size and object potentials are low. This combination can result in

an object to sheath-edge distance that should be less than a zone, which

is, of course, impossible to model accurately. This limitation is

further discussed in Section 4.44.

3.3-4

3.31 STRUCTURE OF THE PLASMA WAKE

The model of the wake structure used by POLAR depends on the

position relative to the so-called ion front. This ion front marks the

boundary where electron density begins to change on a scale commensurate

with the Debye length and the ion density takes a sudden and dramatic

drop. Several authors have discussed the relationship between the wake

fill process and the theoretical problem of the expansion of a plasma

into a vacuum. In particular, problems applicable to ionospheric

conditions have been treated by Gurevich et al. (Ref. 3-8), Gurevich and

Pitaevskii (Ref. 3-9), and Schunk (Ref. 3-10), to name a few.

The solution to the Vlassov-Poisson equation system is in general

quite difficult to obtain, but for the expansion of a plasma into the

void it can be solved explicitly [Gurevich et al., 1969] (Ref. 3-10).

Ahead of the ion front the plasma is treated as rarefied: its motion is

controlled by the thermal spread in ion velocities. Behind the front

the motion is controlled by the electron temperature and ion mass.

Figure 3.31/1 illustrates these regimes and defines the coordinate

systems used.
"POLAR" WAKE MODEL

-z

UNOISTURBEO NGLE
REGION

SELF-SIMILAR

PLASMA FLOW 0x sot3

REGION . . (ACCELERATED..:.'?.".:NEUTRAL'. ''. .BY CFID)'"

APPROXIMATION::

Figure 3.31/1. The POLAR wake code distinguishes three regions of
interest. The ambient plasma, the region of self-similar
model, and the neutral approximation spaces are bounded
by the Mach cone Z = -S t and ion front, respectively.
The coordinate system uted is consistent with equations
(1) through (10).

3.3-5

The governing equations in the region behind the front,

considering that electrons are more mobile than ions and that they

maintain equilibrium with a local potential, are

The Boltzman relation

ne = n0 exp (eO/kTe) (1)

Continuity

8n. a(niY)+ 0 (2)
atz

Equation of motion
av vav -eaO

at + az - M8z (3)

Poissons equation

4we(n - ni) (4)az 2 e

where

n ambient density:

n. ion density:

n e electron density:
Te electron temperature:

e electron charge:

0 local potential:

k Boltzman's constant.

and where z is a variable representing distance parallel to the front

velocity or, in this case, perpendicular to the orbital velocity.

3.3-6

Crow et al. [1975] (Ref. 3-12) have numerically solved (1) through

(4) to predict the position of the ion front. Katz et al. [1985] (Ref.

3-13) developed an analytical fit to the Crow results:

ZF(t) = 2Xd{[wt + !jIn(1 + awt)- t- [1 - 0 "42 9 (t - 1n(1 + awt)} (5)

where

(4 no2) 1/2 (kT 1/2

M Xd 2

are the ion plasma frequency and Debye lengt,, -espectively, and a is a

free parameter determined to be =1.6.

Katz et al. [1985) showed that this form-1la agrees well with

laboratory data from Wright et al. [1985] (Ref. 3-14) and incorporated

it in POLAR. Ahead of this front ZF, the plasma is assumed to expand

owing to thermal motion, the so-called Wneutral approximation." Behind

ZF the plasma evolves into a state which is self-similar [Chan et al.,

1984 (Ref. 3-15)]. The self-similar solution of (1)-(4) for z > -S0t is

n n exp S~t (6)

where SO = (kTe/M)/ 2 is the ion acoustic speed.

The time variable is defined as

t =(7)
0

where x is the distance behind the object (perpendicular to z) and V0 is

the orbital velocity. We define the self-similar variable C as

= z(8)
0

3.3-7

Thus the self-similar solution essentially states that between the

region bounded in positive z by the front ZF and in negative z by the

line z - -S0t, the density rises exponentially to be equal to the

ambient value along z = -Sot. This is an intuitively reasonable result.

In summary, the wake routines in POLAR employ two limiting cases.

(1) Ahead of the ion front the electric field is negligible and the

motion of ions is identical to neutrals. (2) Behind the ion front,

whose position is determined by (5), the quasi-neutral self-similar

solution of (6) is implemented.

POLAR has routines which model accurately the geometry of the

object, and the "neutral ion" trajectories are calculated from

fi(x, v) = g(x, O)fi 0 (v) (g)

where fio (v) is the unperturbed distribution function for a drifting

Maxwellian, and g(x, 0) has value "0" if a ray starting from x and going

in the direction 0 would strike the vehicle and f1" if it would not.

The local density is given by

ni(x) = ffi(x, v) = fg(x, O){ffio(v, g)V 2dv}dO (10)

This initial density calculated in three dimensions for neutral

particles is compared with density calculated assuming the complex

geometric object is replaced by a flat plate at a position where the

dominant source appears at the object edge. This ratio provides a

"geometric correction factor," which is applied to the quasi-neutral

one-dimensional solution discussed earlier for positions behind ZF. In

this way, POLAR can calculate quite rapidly an approximate value for the

ion and electron densities in the wakes of complex objects.

Note that the assumptions behind the front are (1) that the

electron temperature and ion mass govern the equation of motion, (2)

that the plasma is quasi-neutral, (3) that the magnetic field does not

3.3-8

affect the ion or electron motion, (4) that equation (5) serves as a

good approximation for determining the boundary of the ion front, and

(5) that the geometric correction factor calculated in detail with the

three-dimensional neutral model can be approximately applied to correct

the plasma densities as well. Therefore the algorithm can address

complex geometries but takes advantage of the smooth wake structure

characteristic of ionospheric plasmas where Ti/Te - 1. Additionally,

the model ignores fields existing in a sheath near the body surface,

which should not be of concern in cases where the spacecraft is near

plasma potential. This implies that ion acceleration calculate by POLAR

is dominated by electric fields due to space charge separation in the

wake. (Ref. 3-16)

3.32 SHEATH DENSITIES

Section 3.60 discusses the POLAR sheath model and the sharp edged

sheath concept. The derivation of densities from trajectories within

the sheath is explained in 4.42.5. What follows here is a brief

outline.

Given a sheath edge, currents from "infinity" to the sheath edge

are calculated analytically using orbit-limited theory. These currents

are assigned to a set of "super particles" (Reference 3-5) that are

tracked inwards from the sheath edge to the vehicle surface. Pushed

particle densities are determined from the product of the particle

current and the time that a particle spends in an element.

3.4-1

3.40 SURFACE CURRENTS

POLAR models a number of charged particle sources as responsible

for surface and vehicle charging. These are ambient ions and electrons,

energetic electrons, ion and electron generated secondary electrons,

backscatter electrons, photoelectrons, and particle beams.

The comments of Section 3.30 concerning potential barriers apply

here when the vehicle is negatively charging. We assume the ambient

electrons to be repelled with no excluded orbits within the hemisphere

of velocities impinging upon a surface. When these conditions are met,

the velocity space integrals over a Maxwellian distribution decouple

from the surface potential and we may write

j (V) = j eo eeV/kT

For the energetic electron sources, the current integrals are more

involved. These are discussed further in Section 3.41 and presented in

Sections 4.52.3 - 4.52.5.

The calculation of attracted specie currents is discussed in

Section 3.42.

3.4-2

3.41 ANALYTICAL ELECTRON SURFACE CURRENTS

A statistical study (Ref. 3-1) of high latitude precipitating

electrons has shown that these fluxes can be well represented by the

following parametric expression

0 (E) = AE-a + Cn E e-E/kT +EB-[(E-E0)/6 12 (3.41-1)
(kT) 3 / 2

These are the power law, hot Maxwellian and Gaussian distributions
mentioned in Section 3.10, where C = (2 m e)1/2 0-3/2 and A, a, n, T,

B, E0 and 6 are parameters determined by the particular shape of a

spectrum. Here, O(E) has units of #/m a s * str e keV. To apply these

distributions to the charging of a surface, it is necessary to formulate

the distribution function, f, at the surface. We start by dissecting

Eqs. (3.41-1). Equation (3.41-1) appears to assume a zero space

potential because a factor of E (total energy) rather than K (kinetic

energy) is used for the velocity or energy space differential volume

unit. We next invoke the Vlasov equation to allow a mapping of f along

a trajectory connecting the surface to "infinity". In doing so, we

replace the one factor of E with K, while elsewhere setting E = K + qV

where q is the particle charge, and V is the surface voltage. Thus, we

write,

f(K,V,) = A() * (K + qV) (a+ l)

2 Fe(#)
"Z: ek" 2 exp(-(qV + K)/k Te)e=l (kT e) i

" B(f) exp(-(K - K0) 2/A 2)

where the index e covers both hot and cold electrons and

3.4-3

where the index e covers both hot and cold electrons and

Fe() = g (#)*ne* kT/2wm

is the thermal flux multiplied by a function of the pitch angle. The

net electron current density at a surface is, of course,

lr/2 fj

J = q fr do dO r k dk f(k,V,#) cosO sinO
0 0L

L = max(O, -qV)

The relation between the pitch angle t, and the spherical polar angles

of the surface normal is:

#(0,7,0) = cos - ' [cos 7 cosO + sin7 sinO coso]

where 7 is the angle between the surface normal and the magnetic field.

These angles are illustrated in Figure 3.41/1.
A

n

V

S(9,7,O) = cob-- Lcos7 cosO + sin 7 sina cgj

Figure 3.41/1.

3.4-4

It is important to note that in composing f at a surface from f at

infinity, the angular factor in f, A(#), g(#), and B(#), may evolve

dramatically. Ultimately, POLAR may estimate the angular evolution of

the electron distribution function, as this may be important for some

narrow high energy distributions as well as necessary for the prediction

of magnetic field effects. However, since the usual tendency is for the

repelled specie distribution to broaden our first guess will be to

assume f to be isotropic at all surfaces.

The energy integration limits, U and L, are 0 and a for the

Gaussian and Maxwellian distributions, but a lower cutoff must be

imposed on the power law distribution. This cutoff is physical in its

origin as the electron currents are finite, but determining it

accurately is not always possible. POLAR uses a 100 eV default cutoff

which may be changed, or alternatively the total current for these

electrons may be specified and a reasonable cutoff will be deduced by

POLAR.

POLAR integrates each population separately. These integrations

are described in Section 4.52.

3.42 ATTRACTED PARTICLE SURFACE CURRENTS

POLAR presently considers two positively charged particle sources;

one specie of ion (singly charged with a variable mass), and protons.

As the attracted species, the calculation of the ion current density at

a surface is a non-local problem which often depends critically upon the

shape of the orbits that bring ions to the surface (Ref. 3-2). That is,

the problem is generally numerical with few exceptions that yield to

analytic evaluation. POLAR calculates these currents as part of its

sheath model, so the reader is referred to Section 3.60 for further

information, and a brief discussion follows here.

3.4-5

External to a sheath edge "orbit-limited" (Ref. 3-2 and Section

3.60) conditions may be assumed which will allow a flowing Maxwellian

velocity distribution to be analytically integrated to find the ion

currents to the sheath edge. These currents are assigned to

representative particles that are traced inwards to the object surface

to yield ion surface currents. This calculation is performed as a

portion of the POLAR sheath model which is executed as the CURREN module

of NTERAK (see Chapter 5 for POLAR code structure).

When electrons are the attracted specie, the same procedure as

above is followed, except that external to the sheath the electrons are

assumed to be thermally distributed and at the sheath edge the one-sided

thermal flux through the boundary is used to define the electron sheath

flux.

In addition to the space charge limited surface current model, two

other methods can be used to calculate the attracted specie current.

The first method applies the analytical expression for orbited

limited current to a spherical probe, using the local surface potential

for the sphere potential,

J=Jth x (1+)

for the attracted species. The effective temperature, 8, takes into

account the orbital velocity for ions. This is the same approximation

used in the NASCAP/GEO spacecraft charging code.

The second method uses the analytical convergence formula to

obtain a potential and a sheath boundary surface. The total sheath

current is distributed among the surface cells according to their

surface potentials, just as in the orbit limited case. The only

difference is the currents are normalized so their sum equals the total

sheath current.

3.4-6

3.43 INITIAL SHEATH PARTICLE VELOCITY DISTRIBUTION

In this section we diszuss the distribution of the initial

particle velocities to be tracked from the sheath. Much of this is

based on the results of Section 4.42.2 which discusses the effect of

attractive potentials on a flowing plasma. In that section the one

component of the first moment was computed, namely,

Where <) refers to averaging of the distribution function at a surface

whose normal is 4n (see figure 4.42/1).

The distribution of initial velocities is selected to produce the

same mean and variance of the actual distribution function. This is to

simulate the thermal spread of the initial velocities and produce orbit

limited effects. That is

V = <v> and,

aij = <(vi - V.) (v. - V.))>

Where the subscripts refer to the directions perpendicular to the

surface normal. For convenience we choose i=1 to be in the plane

defined by the surface normal and the mach vector, and i=2 to be in the

direction normal to both the surface normal and the i=1 direction. For

a cold plasma, t--O, a = 0 and the initial velocities have no thermal

spread. The results of section 4.42.2 were extended to allow the

calculation of the a.. The initial particle distribution consists of 5

particles,

{u 1, u 2P u 3, u 40 u0,

where

4 4
= V, and

4 4
U 1,2 = 11
4 4

=V 3- 22

3.5-1

This distribution reproduces the mean and variance of the original

distribution.

3.50 ELECTRICAL CHARGING

The electrical charging of the spacecraft is modeled using a

circuit analogy. The plasma around the craft becomes a current source

with a capacitance between the plasma and the object's surface. The

spacecraft is modeled as a network of capacitors, resistors, and voltage

sources. The basic charging equation is

I(t) = C V(t) + oV(t) (3.50-1)

where I is current, C capacitance, o conductance, and V is voltage.

Each surface (the smallest mesh unit sized square, triangular and

rectangular building block) contributes a component to the current and

voltage vectors.

Surface voltages are updated (integrated) by timestepping a finite

difference approximation to Eq. (3.50-1) (Section 4.51). This

integration frequently proves to be difficult because of the wide range

of capacitance that can occur in the C matrix. For instance, a surface

to plasma capacitance might be

C. 2
A = R- 10 pf/m 2

where A is the surface area and R is an effective radius, whereas the

surface to conductor capacitance of a dielectric might be

Cb C 2

3.5-2

Thus, a driving current of 10-5 A/m2 would produce charging rates of 10
6

volts/sec and 102 volts/sec. Obviously, these two extremes would

require different timesteps for a simple explicit integration.

The stability difference between the explicit and implicit forms

can be demonstrated by a simple scalar analog.

Explicit: C[V(t2) - V(tl)] = I(t) * At

Implicit: C[V(t2) - V(tl)J = I(t 2) * at

Substituting

I(t 2) = ((t1) . (3.50-2)

gives

V~t I(tl) at

v(t2) -V(t1) = C -t

V

If we take a case of C = 10 1 f, I(t1) = 10-6 amp,

At = 1 sec, dI/dV = -10-8 amp/volt we find:

Explicit: AV = 105 volts.

Implicit: AV = 102 volts.

That the explicit answer is unstable is indicated by plugging AV

into Eq. (3.50-2) giving I(t2) = -10-3 amp (explicit) or

I(t2) = 10
-9 amp (implicit).

POLAR utilizes a two stage implicit timestepping algorithm to

allow large timesteps for the large capacitances while maintaining

accuracy and stability for the smaller capacitances. Details of

implementation can be found in Sections 4.51 and 5.70.

3.6-1

3.60 THE POLAR SHEATH MODEL

The concept of a plasma sheath requires definition. In general,

the plasma sheath can be defined to be the region of non-neutral charge

density that shields a charged body from distant plasma. A more precise

definition should distinguish between an "orbit-limited" sheath and a
"space charge-limited" sheath. Investigations into current collection

by Langmuir probes (Ref. 3-2, 3-3) in the long Debye length limit, have

shown that current collection is orbit-limited, i.e., on the surface of

a probe, distribution functions are filled over a hemisphere, and are

related to the distant plasma distribution function by constants of the

motion or "orbits". As the Debye length is shortened, current

collection remains orbit-limited until the charge density is sufficient

to cause the electric potential to decrease faster than the inverse

square of the radial distance. At this point, current collection is

said to be space charge-limited.

An important feature of the orbit-limited sheath is that the

particle currents to a surface are independent of the exact shape of the

potential well, making it possible to derive general expressions for

currents and densities. The opposite is true of the space charge-

limited sheath where currents and densities must be calculated

numerically by following trajectories in potential wells that must be

consistent with the particle densities. The many approaches to this

problem have been reviewed recently by Laframboise (Ref. 3-4).

POLAR models the space charge-limited extreme, which dictates the

use of some trajectory tracing. Efficiency is maintained by recognizing

that orbit-limited conditions exist in the quasi-neutral region outside

the sheath, and that trajectories must be followed only inside the

sheath. POLAR thus makes a sharp sheath edge approximation to divide a

problem into the two regimes. Fluxes from "infinity" to the sheath edge

are calculated analytically using orbit-limited theory (Sections 3.42,

4.42.2). These fluxes are then assigned

3.6-2

(Section 4.42.3) to trajectories that are tracked (Section 4.42.4)

through the sheath to determine particle densities in the sheath

(Section 4.42.5) and surface currents (Section 4.53). Of course, for

the self-consistent probe problem, POLAR must iterate between sheath

density solutions and Poisson solutions, and for a charging problem a

higher levei of iteration updates the surface potentials and iterates

with the sheath-Poisson solution.

The sheath edge is nominally chosen to be the -0.47 kT/e potential

contour for ions and +0.47 kT/e for electrons. For a spherical probe in

a non-flowing plasma, this is consistent with previous investigations

(Refs. 3-5, 3-6). In the presence of net plasma flow, POLAR maintains

the -0.47 kV sheath edge choice, but it is presently not clear what the

best choice for the sheath edge will be for high flow problems (see

Section 4.42 for details on edge definition).

Numerical considerations can also mediate the choice of the sheath

edge. In the limit of high density and short Debye length (with respect

to mesh spacing), a necessary stabilization procedure for the Poisson

solver (Section 4.44.1) will cause an expansion of the sheath. POLAR

compensates for this by choosing the sheath edge at a slightly higher

potential (Section 4.44.2), while defining a "presheath edge" potential

that is still -0.47 kT/e. This presheath edge potential is used to

calculate the orbit limited fluxes to the sheath. This technique

compensates for the sheath expansion by reducing the expanded sheath

area, while keeping the input fluxes constant.

There are two major approximations made in the POLAR sheath model.

The first is the so-called sharp sheath edge approximation. This

assumes that there is a sharp boundary between non-neutral sheath and

the surrounding quasi-neutral presheath region. For large objects in

short Debye length plasmas this is a very good approximation. The other

3.6-3

approximation is that thermal effects within the sheath are small, i.e.,

from a given position on the sheath boundary, a single trajectory is

adequate to represent all particles entering from that position. This

implies that potentials, V, exist in the sheath such that

eV >
T

and that the electric fields near the sheath edge are sufficiently

strong so that a velocity space element is accelerated rapidly and its

thermal spread is small;

"th r << L

where vth is the ion thermal velocity, T is the transit time from the

sheath edge to the vehicle, of characteristic dimension L.

REFERENCES, CHAPTER 3

3-1 Fontheim, E. G., K. Stasiewicz, M. 0. Chandler, R.S.B. Ong and E.
Gombosi, "Statistical Study of Precipitating Electrons,*J.
Geophys. Res., Vol. 87 (AS), 1982. pp. 3469-3480.

3-2 Laframboise, J. G., "Theory of Spherical and Cylindrical Langmuir
Probes in a Collisionless, Maxwellian Plasma at Rest," UTIAS
Report No. 100, 1966.

3-3 Laframboise, J. G. and L. W. Parker, "Probe Design for Orbit-
Limited Current Collection," Phys. of Fluids, Vol. 16, NS, 1973.

3-4 Laframboise, J. G., "Is There a Good Way to Model Spacecraft
Charging in the Presence of Space-Charge Coupling, Flow, and
Magnetic Fields ," in Proceedings of the Air Force Geophysics
Laboratory Workshop on Natural Charging of Large Space Structures
in Near Earth Polar Orbit, AFGL-TR-83-0046, September 1982,
ADA134894.

3-5 Parker, L. W., "Computations of Collisionless Flow Past a Charged
Disk," NASA CR-144159, 1976.

3-6 Parrot, M.J.M., L.R.O. Storey, L. W. Parker and J. G. Laframboise,
"Theory of Cylindrical and Spherical Langmuir Probes in the Limit
of Vanishing Debye Number," Phys. Fluids, Vol. 25(12), December
1982.

3.6-4

3-7 Gurevich, A. V and L. P. Pitayevsky, 'Hypersonic Body Motion
Through Rarefied Plasma," Physical Review Letters, Vol. 15, 8,
August 23, 1965, pp. 346-348.

3-8 Gurevich, A. V., L. P. Pariiskaya and L. P. Pitaevskii, 'Self-
similar Motion of a Rarefied Plasma,' Soy. Phys. JETP (Eng.
Transl.) Vol. 22, 1966, p. 449.

3-9 Gurevich, A. V. and L. P. Pitaevskii, 'Non-linear Dynamics of a
Rarefied Ionized Gas,' Prog. Aerospace Sci., Vol. 16, 1975, p.
227.

3-10 Singh, N. and R. W. Schunk, 'Numerical Calculations Relevant to
the Initial Expansion of the Polar Wind,' J. Geophys. Res., Vol.
87, 1982, p. 9154.

3-11 Gurevich, A. V., L. P. Pitaevskii and V. V. Smirnova, 'Ionospheric
Aerodynamics,' Space Sci. Rev., Vol. 9, 1969, p. 805.

3-12 Crow, J. E., P. J. Aver and J. E. Allen, The Expansion of a Plasma
into a Vacuum,' J. Plasma Phys., Vol. 14, 1975, p. 65.

3-13 Katz, I., D. E. Parks and K. H. Wright, Jr., 'A Model of the
Plasma Wake Generated by a Large Object,' IEEE Transl. Nucl. Sci.,
Vol.. NS-32(6), 1985, p. 4092.

3-14 Wright, K. H., Jr., N. H. Stone and U. Samir, "A Study fo Plasma
Expansion Phenomena in Laboratory-generated Plasma Wakes:
Preliminary Results,' J. Plasma Phys., Vol. 33, 1985, p. 71.

3-15 Chan, C., N. Hershkowitz, A. Ferreria, T. Intrator, B. Nelson and
K. Lonngren, 'Experimental Observations at Self-similar Plasma
Expansion,' Phys. Fluids, Vol. 27, 1984, p. 266.

3-16 Murphy, G. and I. Katz, 'The POLAR Code Wake Model: Comparison
with In Situ Observations, J. Geophys. Res., Vol. 94(A7), 1989,
pp. 9065-9070.

4.1-1

4. COMPUTATIONAL TECHNIQUES

This section describes the algorithms used to implement the

physical model.

4.10 GRIDS - DISCRETIZATION OF SPACE

POLAR is a three-dimensional computer code; that is, its internal

representation of space allows variations in all three coordinate

directions. Since problem set-up can be extremely complex in three-

dimensions, the choice was made to keep the spatial coordinate system as

simple as possible. Space is divided uniformly into cubes. The

computer code stores information about a large set of cubical volumes,

called elements. It also stores values of electric potentials for the

corners of each element. The corners are referred to as nodes.

4.11 STAGGERED MESH

The coordinate system used in POLAR is Cartesian. This greatly

simplifies object definition and converting position vectors into

element locations. However, the types of problems POLAR is designed to

handle are very anisotropic. The density and potential perturbations

are along the wake direction and can extend for several vehicle

diameters. To provide resolution in this wake region but not occupy an

excessive amount of computer storage, a system of staggered meshes has

been implemented. The staggered mesh consists of rectangular layers of

elements that are only one mesh unit deep in the z-direction. They are

stacked upon each other so that the center of each layer is as close to

the wake center as possible and still have the nodes at integer

coordinates. Since this extension always is in the z-direction, the

object coordinates can be transformed by a 90" rotation matrix so that

an arbitrary Mach vector can be accommodated.

4.1-2

The problem space is largest in the z-direction so that viable results

may be obtained for large Mach vectors in lower density plasma.

Examples of grids for two objects are shown in Figure 4.11/1.

4.12 OBJECT GRID

The object grid is the space in which the object is defined. This

subsection of the grid space is non-stepped and is i rectangular prism.

The object must be defined so that it fits entirely within this space

without touching the grid boundary.

The object grid also provides the coordinate reference point for

the entire problem. The lowest point on the x, y and z axis (lowest

leftmost corner) is defined to be the origin and has the coordinate

value of (1,1,1).

LB ,___ ,__________-__ 4.1-3

BA . • • • • . • .

1.90

-1 . 1 .
-I. 4.O l. IL -IL . OL Il.IUO_....

21" 0 V * 0 0 0 0 . . B

WA . L . .
e ..6

V

2.0

4.0.

A e. e l

-3.. 4. 109 19L A M eM

WA "

* . . . 0 0

2.0

.0.

Figures 4.11/1. (A) Cube moving to left. (B) Quasisphere moving to
left and rising. (C) Quasisphere moving to left and
falling.

4.2-1

4.20 POTENTIAL CALCULATIONS

4.21 FINITE ELEMENTS

4.21.1 General

Consider a charged object isolated in space. The potential

everywhere is given by the solution to Poisson's equation

-E V 2 = p (4.1)

Since POLAR considers some portion of the charge density p to be

dependent on the local potential, we can separate the local and non-

local contributions to p, and linearize about some estimate of the local
potential,# o ,q

2-V2= Pne 6 P (0) + Pe(- o) = Po + P '0

where

P" = 80l -

The variational principal associated with this equation is

[fdv (V 2 _ "2

where we integrate over both the object and boundary surfaces (c S, cB).

4.2-2

To simplify things for the purpose of illustration, let us fix the

potentials on these surfaces. L then simplifies to

L = j dv((V) 2 -Po _ ('0 (4.2)

Equation (4.2) involves an integral over the volume of the computational

space. One way to treat this integral is to divide the space up into

finite cubic volume elements. We begin with the first term in Eq.

(4.2).

f dV (VO) 2 CdVeI)2
2e fV e 2Vt

In this approach the potential 0 is defined at each grid point, or node,

defining the vertices of the elements. The potential inside each

element is then trilinearly interpolated from the values of each of its

eight vertices.

#e(x'Y'Z) = 57. NixYz
i~e

where "i" are the nodes of element "e", and the N. are given in Section

4.21.21. We form now,

Voe(xyz) =' VNi 0i

and

4.2-3

I- JV 3- 5 Z We 7VN .#

e I j

where we have defined the quantity,

We f Nxy z Nxy z (43

w" =de = J4.3
gJ e

Note that W.. depends only upon the shape of the element "e" (i.e.,IJ

whether the cube is empty or partially filled). Similarly, for constant

charge in an element, the second term in Eq. (4.2) becomes

fdV 0 o NoR e
EE- Z Z r Ni dV - 2 Z R e

e I e e

Re = fNidd Ve

Treating the last term,

fe dV =AL 0 i Oj fN.N. dV~= Ze >1 Vj~#j

J I j I e , j

V e . = fNiNjdV
,j eJiN e (4.4)

4.2-4

The variational principle therefore becomes:

6 E [z1 (Wi j -LRoo =0 (4.5)
J

Z W-[(wej - - Vi)e - P Rf] = 0 for each i (4.6)
e j

nf

is the equation that POLAR solves element by element, under the

condition of fixed boundary and object potentials. POLAR (or more

correctly NTERAK) solves Eq. (4.6) using the conjugate gradient method

that is presented in Section 4.31.

4.2-5

4.21.2 SPECIAL CELLS

The geometry of POLAR objects can be treated in terms of a

relatively small number of volume cells. Each type has a maximum of

eight corner nodes, plus a node at the center of each possible surface

pointing into the element. The most common volume element (designated

type 0) is the empty cube with no surfaces. Other elements are:

a. The empty cube with up to 6 surfaces (also type 0);

b. The wedge element (type 1);

c. The empty element with a diagonal line (produced by a right-

triangle surface or a slanted thin plate) on one face (type 2);

d. The tetrahedron (type 3);

e. The truncated cube (type 4);

f. The slanted thin plate (type 5).

Each element is characterized by (1) a standard orientation;

(2) a set of interpolation functions (see 4.21.21 for treatment of

surface nodes); (3) the matrix W, given by Eq. 4.3, which represents the

operator -V2 in Poisson's equation; and (4) the matrix V, defined by

Eq. (4.4), which handles the screening part of Poisson's equation.

4.2-6

4.21.21 INTERPOLATION FUNCTIONS FOR FACE-CENTERED SURFACE NODES

(FCSN'S)

In constructing the matrices W and V for volume cells with FCSN's

it is convenient to work with the vector = J , where, for corner

nodes, j has identical entries to the potential vector J, but for an

FCSN the j entry is the difference between its electrostatic potential

and the average of that of its corners. In terms of J, corner node

interpolation functions are constructed neglecting the FCSN's, and FCSN

interpolation functions are unity at the FCSN and zero on all other

faces. In terms of these interpolation functions, the matrices W and V

are defined by

f lV0l2 d3 r Tw T A

f02 d3= TT V T

where the integrals are over the element volume, and we have defined A

and B, which are readily shown to be given by

A.. = JVNi • VNj d3r

Bij = fNi Nj d3r

Finally,

W TT AT

V=TTBT

The matrices T, W and V are given for each element type in the

succeeding sections.

4.2-7
4.21.22 THE EMPTY CUBE (TYPE 0) ELEMENT WITH NO FCSN'S

Standard Cell 0

Empty trilinear cube

Orientation: Arbitrary

Potential Function:

i N
i

1 (l-x)(1-y)(1-z)

2 (l-z)(1-y)x

3 (1-x)y(1-z)

4 (1-z)yx

5 z(l-y)(l-x)

6 x(1-y)(z)

7 zy(1-x)

8 xyz

W

113

0 1/3

0 -1112 1/3

-1112 0 0 1/3

0 -1112 -1/12 -1112 1/3
-1/12 0 -1112 -1/12 0 1/3
-1/12 -1/12 0 -1112 0 -1112 1/3
-1/12 -1112 -1/12 0 -1/12 0 0 1/3

V.,vij

1/27

1/54 1127

1/54 1/108 1/27

1/108 1/54 1/54 1/27
1/54 1/108 1/108 1/216 1/27

1/108 1/54 1/216 1/108 1/54 1/27
1/108 1/216 1/54 1/108 1/54 1/108 1/27
1/216 1/108 1/108 1/54 1/108 1/54 1/54 1/27

4.2-8

4.21.23 THE EMPTY CUBE (TYPE 0) ELEMENT WITH SIX FCSN'S

8

014

-3

'II

z1

X

Figure 4.21.23/1. Cubical finite elements with six face-centered
surface nodes (FCSNs). The FCSNs are located on
the ;x, Ty, Tz faces respectively.

4.2-9

E().=TN i 0 < x < X; T !-X

o < < 1; = -y

O < z < z; I. z

i N1

1 9 16 x-y z T
2 xz 10 ix yy z

4 x y T 12 16 x ,Ty z 7

5Y z 13 1i x x y y
6 xyz 14 16 x xy z

7 xyz

a xyz

Figure 4.21.23/2. Interpolation functions for the cubical element of
Figure 4.21.23/1.

4.2-10

*n 0 0 0

0 00 0 0 9

_ 00 0 0

0 0 0 0 0 0 0 c

0 0 0 0 0 0 0n 0D 0

10 C= 0 N

0 0 o0 0 0 0) n IC
0 9 09 09 0 00 0

4.2-11

r% N1 N N N 0 l 0 0 -

fl rrl (4 N N N 0

I' N

In ~ ') r rn rn LC) cc))on ol N 0" n~ e) toN N

fn N) 0 N i) U) U) C1 C-) P)) -1 0

rl 0 l 0l ol ccC ~

W) PI) N- NN 14 N) N N

NI N fl Nl NN)U

0 0fn

~~~( 0C L C * Cro

I IIn
co co0

N t ~ N ~ ~ N ~ - ~ U) 'U) ) U~ '~ r ~ nn
cc 0 N NO-~ N ~ N N ) N 0 V:

coU) U)~
N U) U) U) UIn

I~r FnI'N

In ~

o C C 0 In
0 N N N N N N I~ C ~ C

~~V Cq t 0 N N N
4. -+ ) N ) N U



4.2-12

C' ' ' C ~ -, N N N N

N~C ^q -. ~ ' -W

o 0 0n - w CO14Co

C'M co C' C C o CO C
N N N m' C ' C

01 0

CO~t cc w o C
(M a, -~ 0O N

(D N4 cc -~ (o C' '

c~~4 + +

0 - - mc
fI FIN m v4 CN 1- +N
co QD CO4 CO l ) M C

1.0 0) m N CO cz N1 co N ..

I l (N C 0)l
CO~a 0 o o C (0D C14 O CO C

N ~ ~ ~ ~ ~ t Co N C O Y

0l 9p 0) Pe 0 0n C4 0 I

.
4.r J

C' co
Co 0 O 0 - CO CO CO 4

N~~~~* N O NN ojN
N N - N - N ~ N c' ' C' C

to 0D 0Uo03OCO

(D CO C O cc CD C0 ~ C ' ~ C ~
0I 0 . N CO en CN N- N

O 0 0 9 C 9 N to cc 0 N

0 C11 (N CV 01 (MCo.
M~ -4 N CNN O



7 8 4.2-13

4.21.24 THE WEDGE ELEMENT (TYPE 1)
56

Half Empty Wedge 4

1 < x+y< 2

0<z <1 1 2

Node Location Interpolation Function, N.

1 0 0 0 0

2 1 0 0 yz

3 0 1 0 xz

4 1 1 0 (x-y-)-

5 0 0 1 0

6 1 0 1 yz

7 0 1 1 xz

8 1 1 1 (x-y-)z

9 2/3 2/3 0 27i y 7(x-y)

10 2/3 2/3 1 27i y z(x-y-)
11 1 1/2 1/2 16(x-y)j z z

12 112 1 1/2 16(x-y)i z z

13 1/2 112 1/2 16 z T

where

x = 1-x

y = 1-y
z = 1-z



4.2-14

o o 0 0 0 0 0 0 0 0 0
o o 0 0 0 0 0 0 0 0

o o 0 0 0 0 0 0 0 0 0
o 0 0 0 0 0 0 0 0 0 0 a

o 0 0 0 0 0 0 0 0

oa 0 0 0 0 0)

0 0 0 0 0 0 0 0a

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0n 0 n in



4.2-15

o, r, U, aD In 'n 0 0 K w P

o i r9 P9 s 0 r! P 0 a ~ (
o P 0 0 C; 0 0 N N @

C3 %A to C Vt co C3 at a
I I I I! I I

0~ ~~~ P9 a P 9 0 N

* ~ ~ ~ 1 P9 a u 9 a 0 a 1

C I 1 0!I

C LO a - L a a P
a - in -0 C, co - f"a
a 1 aIt!u a a 09 P

11 CV ln I I I

*D P9 c9a a 4A - C2~

a D a' a' a - - - a 9

fn In 0

-~~~~L w r"na a ~ ~ a' ,

a - ; a' a ' a a o C; p9 -2 a0

an a aD at aw

a a a 0 a p, C, a a a

0 P9 C; P9 a a3 0-a a a P



4.2-16

o NP N c" 0l Nn V% 0 0

o 0 -00 0- N r. N en

o Ch al a a a

, C" In In c n L

10 .0 In I- CallN , I

O 0 0 0 0 0 0 Nv M emW

w CI 0

Oz N 0 at 4m LM 0 , , q

1 C3 ' 1 P

0~~ OCD0 0 4 0 U 0If 0

o2 C2 0 0 a2 C3 C3 N 4

aC6 0 0, 0 a a a

O 0 0 4' ; 0; 0 0 0 0 U, U 0

a. 0 0 a 0 0 0 C3 - N N2 0

a 0 0 0 '

C! C! . a - a CN

o ~~ a a a a a - a a a a -

xI I I t I

102 - - a 0 0 N No
W~ m - 4' CD V ' I

a 0
O em a a am a am a



4.2-17

4.21.25 THE TYPE 2 ELEMENT 6

Cube with Diagonal Line on One Face 1
Orientation: Line from 2 to 3

Node Location Interpolation Function, Ni

1 0 0 0 (x-y)z(--y)

2 1 0 0 [xQ(x-y) + y-e(x-y)]z

3 0 1 0 [ye(i-y) + (x-y)]7

4 1 1 0 (x-y)ze(x-y)

5 0 0 1 xyz

6 1 0 1 xyz

7 0 1 1 xyz

8 1 1 1 xyz

9 0 1/2 1/2 16 x y y z z

10 1 1/2 112 16 x y yzz

11 1/2 0 1/2 16 x x y z z

12 112 1 112 16 x x y z -

13 1/2 1/2 1 16 x xy y z

14 1/3 1/3 0 27 x y ( -y)e( -y)

15 2/3 2/3 0 27 - - -(x-y)e(x-y)

where

x = 1-x

y= 1-y

z = 1-z



4.2-18

co 60 0 0 '0 0 0 a 0 cc 'o

0~ 10 0 0 00 0~

CD C a0 I= 0 0 0 0

8 8 a

C2 o
0 0 a p

0 0 0 8 a. o a
A0

00

-8 8 8 8 a- ae

8 8 8 8 88 8 4 C4



4.2-19

C; -; -; - 0 0 a 0 0 0 0 f"

C C I I ; C;

V! a a a a a a a a a a a e

* eS e 0 0 0 0
C! -! -0 S - f t A

* C; C; 4 C; C; C

a oN wt a K 10ma a a a n

ft 01 No ft 1" f t f f
a.0 0 a ftw ft 10 'Co.a a ft

In wo 0% P, N. Nb NP P) C, 10i n

V! W! S! It

a - a ft N N t ft a a to N a ; S

w wA ol Pa An I A a A

ai ab a a a a a a a a n al 0

ft a - a ft ft N 0 a

io to is Z N . u1 n n a f

a a a a a a a a a aD f a a a; a

9 t N N t o NK A f ft a a

a 0 a2 a t N f N f a a a a2 a;

S ta a a a ;



4.2-20

in P, %n f% f" f" Nn 4 * N U 4

*9 19 C!m a a a * - a

a a a a - - a - - 4 N

C; a a a 0 0D 0 0D 0 0 0; a

f" W. 61.

1-4 P4 4 0 0 N 0 N P

* a a a2 CD a

* I I I I

a~ a aD a a a a a a a a

- ~ ~ ~ ~ O rq 4* i n - n0P 4 N* 0
IA ~ ~ 9 4* 4* In0P * 4 a a aa

P4~ ~~~ C! C! C!P 4 - n 4 4 n
a~~C a a a a a a a a a



4.2-21
4.21.26 THE TETRAHEDRON ELEMENT 8

58

Tetrahedron (Type 3)

2 < x+y+z < 3

Node Location VolumeN

1 0 0 0 0 0
2 1 0 0 0 0
3 0 1 0 0 0
4 1 1 0 .007756 1 -z

5 0 0 1 0 0
6 1 0 1 .007756 1 -y

7 0 1 1 .0307756 1 -x
8 1 1 1 .009542 x +y +z-2
9 1 2/3 2/3 .032101 27 x -Y i(x + y + z -2)

10 2/3 1 2/3 .032101 .97 xy -(x+ y + z -2)
11 2/3 2/3 1 .032101 27 -xY--z(z - - - A
12 2/3 2/3 2/3 .037552 27 -x -Y Z



4.2-22

0 0 0 Q 0 £0 In -7 -n -

La w = 0 I

I"D 10D M m0 0 0 £0 0 l

0 0 0, 0 i U i n

re to - I0

D 4 cm onin 0 0) In

Z7 In M W 0 U' ) e n M (
C4(4 t -d In n 0n Go

0 0 m 0 M0 i0 0 0 In

I I I * - I

In fn rn 0 K0 n 0 £

O~~V 0 0 07 I, 0 I n
0 0 * CD W! r! *

as 4. K w In 0M 0)

E- In 7 0n I" K0 v0 w0
C" CD4 w4 V7 -) 0 n -r

E-4 07 0 17 0 In 0 0n In

I I I

co 0 0 0( a 0 10 0 0 0 0

0 n C N 4 N £0
(n C) w £0 n In In V*

cm0 N £0 n In In 4a
00

raw0



4.2-23

0 CD 0 0 ) P1 Q1 P

o 0 0 0 0 0 0 a -

q) 0 0 0 0 0 0 0 0 0 0

a 0 0 0 0 - 0 0

000000 0 0 0 0 0 0
E V- 0 * CD 0 C2 0 0

cm a 0 0 0



4.2-24

4.?1.27 THE TRUNCATED CUBE ELEMENT (TYPE 4)

5 6

3

Truncat.ed Cube (Type 4)

< < x+z < 3

Node Locat ion Volume Ni

1 0 0 0 0 0
2 1 0 0 -.0380 (2x y - z + 1) K(2 - x - y - z)/3

3 0 i 0 -.0380 (2y - x - z + 1) K(2 - x - y z)/3

4 1 0 .0406 (1 + x + y - 2z) e2 /3. + (1-z)e 3

5 0 0 1 -.0380 (2z - x - y + 1) K(2 - x - y - z)/3

6 1 0 i .0406 (1 + x + z - 2y) e2/3 + (l-y)e 3

7 0 1 1 .0406 (1 + y + z - 2x) e2/3 + (i-x)e 3

,3 1 1 1 -.0709 (x + y + z- 2) e3

9 0 2/3 2/3 .1119 27 x y K(y + z - 1)

i0 1 1/2 1/2 .1499 15 x y y z z(x + y + z - 1)

11 2/3 0 2/3 . L119 27 x y z K(x + z - 1)

12 1/? 1 1/2 .1499 16 x x y z z(x + y + z - 1)

13 2/3 2/3 0 .1119 27 x y z K(x + y - 1)

14 1/2 1/2 1 .1499 16 x -y y z(x + y + z - 1)

15 1/3 1!3 1/3 .1112 K(- x - y + 2z) K(1 - y - z + 2x)

K( - x - z + 2y) K(2 - x - y - z)

K(s) = se (s) x = 1 - x

e2 = (x + y + z - 1) e(2 - x - y - z) y = 1 - y

e3 = (x + y + z - 2)(x +y + z -2) z = 1 - z



4.2-25

* C. . % m

9q ft ft .
In 11 aq n

Va a4 In 01 as a

-~f -Pf I ft W t E

aa "o ooa a f

9 ft . . .9 N ft . . . .9- N

0 ~~ ~ a In *1 PUU M t ft f I f

a ~ ~ ~ " "a -, COSt0 N t - f U f

0 a ao e a in
- a0
ft '9 '9 ft a f U ft * 9 Cf!f

ft - M f w - W
-o vs a t U f f t a, ft f t

* a .9 - a - t ft '9 t ft ft

A Il a a a f

0



4.2-26

4'9 . .a a P - . . P. . . C!

a a 0 Co Q 0 0 a 0 0 P3 0 42 0

10' :! ; a a - - A - --

a 0 In C3 * a i i
Nl N1 . N N 3 N P - U -

9 a 9 9 9 9 9 a

a a 0

-- a a - 04 Mi aq F aa

I I I A -

ft M3 vi K on f In a s 0 . @

a a2 0 0a -0a a 0 0 a 0 vi P

- . . . .3 . . . . . . . . .

. . . . . . . . . . . . . .

0 ~ ~~ ~~ C! .. .n ..a 3v ap .

a a a t a q a V% a in fa i a i
N N a N -0NP3NP

9 C! . . . . 9 9 C9 C 9 *9 9

>4 ~ r In el C M ia
00 00 aO ' -N - N

a a a a a a a a a a a a a a a

a a a a a a a a a a a



4.2-27

4.21.28 THE SLANTED THIN PLATE ELEMENT (TYPE 5)

The type 5 element is treated as two type 1 (4.21.24) elements.

4.22 BOUNDARY CONDITIONS

The potential solver can use either fixed potential or fixed

normal electric field. Usually, fixed potentials are used for all

surfaces, but when hopping secondary currents are present fixed normal

electric field boundaries on insulating surfaces may be necessary.

Conducting surfaces always have fixed potential boundary conditions.

Fixed normal electric field boundary conditions are necessary in

the presence of large photoemission or hopping secondary electron

currents. The relation between the normal and parallel electric fields

in the presence of large secondary electron conductivities is

E Ax = J4<E> E Ax
I II

where Ax is the mesh spacing and <E> is the mean secondary electron

energy (eV).

The condition of local current balance for these surfaces is

0 = Jwfd - V • c

where Jwfd represents the weakly-fielded-dependent current (of electrons

incident on the surface cell) and Jhc is the hopping current across the

edge next to the most relatively positive neighboring cell. Writing

Jhc = 1llE 1

and

4<0J

ll



4.2-28

with J < 0 the low-energy electron emission current, the currente

balance equation becomes

E = 44<e> Y(-A.E )
__ II

where Y is the secondary yield.

If the fixed field condition is used, the surface potential will

be calculated by the potential solver instead of by the surface charging

module, CHARGE. The charging module makes the initial decision of which

boundary condition is appropriate for each surface. If the potential

solver later finds the secondary yield for the insulator with a fixed

field boundary condition, to be less than one, it will change to

constant potential boundary condition and set the surface potential to

s where

V= kgMelectron
s =M. ion



4.3-1

4.30 MATRIX SOLVERS

POLAR (NTERAK) currently uses two methods to solve matrix

equations of the form

MX=d

where M is a given matrix, d is data and X is the solution vector.

These methods are the Conjugate Gradient Method and the Incomplete

Cholesky Conjugate Gradient Method (ICCG).

4.31 CONJUGATE GRADIENT METHOD

This method is used for the Poisson equation solution (4.20, 4.44)

where X = 0 (potential) which can have 10,000 or more components. The

data requirements are made tangible by performing the solution element

by element. This is expressed by Eq. (4.6) of Section 4.21,

= = [ (We _ 2 V[)0 j - R?] = 0 for each iEe (4.6)
e j

To simplify notation we will perform the sum over elements and treat the

problem as a whole, thus,

>Z(We.- -V?.) =M

e e IJ

'o R e

e

and

Oj=A

Thus we have

N i - R = 0 (4.7)



4.3-2

We may solve Eq. (4.7) iteratively. Our initial choice of 0 will

yield a residual r

Mf - =-r

The iterative scheme used is the Conjugate Gradient technique. It is

based on the following equations:

r A

0 0

i i i i i
a = (r ,r )/( , 0

U i+1 =ri+ + i Ui

12 =£ - a1

1. i1 i.1)/£

i+1 i+I~ i i

These equations may be iterated upon until the resultant vector

becomes the solution to Poisson's equation.

The major computational operation in the iterative set of

equations is the evaluation of the matrix-vector product M u. The

vectors J, M, and r all have the same number of grid points. M contains

the square of this number. Such a huge array is impractical to store

all at once and so M u is evaluated using the following implicit

algorithm

e e '



4.3-3

The w matrices are of reasonable dimension, for example, 8 x 8 for anZe

empty cube. The residual r is constructed element by element and then

summed. These "weight" matrices w may be calculated analytically for

each type of empty or partially filled volume element, allowed by POLAR.

There are seven of these. Filled cells are not included in the

potential calculation. This is how POLAR treats filled, partially

filled and empty elements, differently.

4.32 ICCG, THE INCOMPLETE CHOLESKY CONJUGATE GRADIENT METHOD

ICCG is used to solve the charging equations (4.50, 5.70), where

= VS' surface voltages. Components of VS generally number 1000 or

less. This allows the entire problem to be kept in memory at one time

by saving only the non-zero elements of M (5.73.2). ICCG will find

series of approximate inverses for M finding X as

X= M

It is iterative, but iterates on M-1 as well as X. A more complete

description will be found here in future revisions. Reference 4-5:

Kershaw, D. (1978), "The Incomplete Cholesky-Conjugate Gradient Method

for tie Iterative Solution of Systems of Linear Equations," Journal of

Computational Physics, 26, p. 43.



4.4-1

4.40 SPACE CHARGE AND CURRENT COMPUTATION

This section describes the numerical techniques such as

integration, that are used to effect the models described in Chapter 3.

In some cases, the computational requirements are satisfied by the top-

down structuring of simple subroutines. In these cases, the Chapter 4

discussion is deferred to Chapter 5 to avoid repetition.

4.41 WEAK FIELD IONS, PRESHEATH AND WAKE

Initial ion densities are calculated before particle tracking

using geometric shadowing corrected by the electric field effects of the

electrons and ions. As discussed in Section 3.31, the neutral ion

approximation can be used as a starting estimate of the ion density.

The coding which calculates the neutral ion densities is described in

Section 5.61.10. The coding and equations used to model the electric

field correction for neutral ions is presented in Section 5.61.20.



4.4-2

4.42 THE POLAR SHEATH MODEL (TECHNICAL)

Section 3.60 contains a general discussion of the POLAR sheath

model. This section is not designed to be a complete discussion, but to

fill in the technical details of the model.

4.42.1 SHEATH EDGE ALGORITHM (SKATH)

The SHEATH routine takes as input a sheath edge potential and the

eight vertex potentials of a single cubic element, P(2,2,2). It

determines whether the sheath potential contour passes through the

specified element and if it does it generates a number of triangles,

NPART, with areas W(I) and center X(3,I) which approximates the

equipotential surface.

The sheath location proceeds by finding edges whose vertex

potentials bracket the sheath potential. If none do, NPART is set to

zero and control returns to the calling program. For the cases of three

intersections a single triangle is constructed from the intersection

points with the area calculated by the TRiangle AREA routine. For four

or five edge intersections the centroid of the intersection points is

found and triangles constructed using adjacent intersection points and

the centroid. Thus for four edge intersections, four triangles are

formed. SHEATH then would return NPART = 4 and the center coordinates

of each of the four triangles.

4.42.2 CURRENTS TO THE SHEATH SURFACE

Ions

The current density to the sheath edge is calculated by assuming

the sheath to be a perfectly absorbing spherical surface in a flowing

plasma. The potential around the sphere is assumed to be spherically

symmetric and



4.4-3

attracts ions. The coordinate systems utilized are indicated in Figure

4.42/1 belcw (shown twice to reduce clutterin,

z z

V -

0 V
0

n
n f

I ,

! !

!x

xx

Figure 4.42/1.

The following definitions are used:

a = sphere radius

o = satellite velocity

*(r) = potential energy of ion at r

= unit vector at position ir on sphere where normal current

density is to be calculated

nlf = unit vector in final direction Sat r = ) mapped by
particles launched from rt = (a,n) with velocity v

x-z plane = plane determined by i and o



4.4-4

= angle between n and

= polar angle of particle for (n = ®, nf)

= angle between x-z plane and orbital plane

2 (~ -3/2 {e2 ( ) /2v2}

m = ion mass

v 2= kT/mT

For a particle moving in a central potential the conserved quantities

are (e = m = 1):

1 2 1 21v 2 (a) = v2 = E Energy

L = veaosinO Angular Momentum

Azimuth

The normal current density j() at a point r = (a,4n) on the sphere is

given by

j = j(a,n) = f(v.n) fo( 0 ) d3v

2-f e ,1 max [ 1 2 2 2] '

(2v 2 -3/2 dV dO f dG[exp 1 (V -2V v cos fV)/vT2(2,VT) 0 0 -0oo V

3
x v cosO sinO

where

coslf = cost cosO. - sinC sin9® coso

O*(vo,6) = a sinO " 1 - -a2 sin20 +(a)-
a r r 2v ° - *(a)0 J



4.4-5

Performing the # integration, which can be done analytically, and using

energy conservation,

j = (2rv2)-3/ 2 : v°(v - 20(a)) e- T F(v) dv

V) = ( ) 2 2

F~ ~(v' 0si=2n ax0e sinV0G OCCOOs/VTeVo/v

0V0 sin sinO S sinp sinO dO
V T

where I is the modified Bessel function of zero order.

For numerical calculations, define t = x/3.75 and approximate I

by

I(x) = 1 + 3.5156229 t2 + 3.0899424 t
4 + 1.2067492 t6

+ 0.2659732 t8 + 0.0360768 t10  + 0.0045813 t12 + E

c < 1.6 x10
-7

for -3.75 < x < 3.75

xl/2e-x Io(X) = .39894228 + .01328592 t-1

* .00225319 t 2 - .00157565 t-

-4 -* .00916281 t - .02057705 t

+ .02635537 t 6 - .01647633 t

+ .00392377 t-8 + e

e < 1.9 x O
-7

for 3.75 < x <

For an inversw square potential, Omax = v/2, and the change in

polar angle can be found analytically



4.4-6

sinO . -1 sin20 - b211/2  s
2s (sin2 - b2)1/2  1 2 J ; sin 2  - 0

sine sinh - 1 [b2 - sin21 /2 sin2- b 0

(b2 _ sin2 )1/2 1 - b2 J

where

b 2 _ I(a) l < 1 (0 < E < oo)

E + I¢(a) l-

E = v2
2 o0

sinh-x = + x + 1]

Note for 1 - b2 << 1, 0s may be >2y, i.e., the particles may execute a

spiralling orbit. Accuracy may require that 6vo, 60 not produce large

60

The above computation is used to calculate the flux through a

portion of the sheath edge found using the algorithm discussed in

Section 4.42.1. This allows the current through the sheath to be broken

into small, flat triangles. These triangles are the "particles" which

are pushed by the particle pushing routines in CURREN.

The particles are defined to be located at the triangle's centroid

and to have an initial velocity into the sheath. The initial velocity

of the ions accounts for contributions from the Mach and thermal

velocity. Particle pushing is done in the spacecraft reference frame so

the plasma appears to be flowing with the Mach velocity. Since portions

of the sheath will have surface normals in the downstream direction,

shadowing by the sheath needs to be taken into account for both the

current and initial velocity associated with a given particle. The



4.4-7

particle currents were discussed above. The initial velocity needs to

be found so that the mean particle velocity through a surface is well

represented and varies continuously from the upstream to downstream

portions of the sheath. The velocity should also approach the thermal

velocity at low Mach velocities. POLAR uses the following to initialize

particle velocit'es:

For spacecraft velocities less than 0.1 * vth, where vth is the

ion thermal velocity, the initial velocity, v, is

v 0 Vth E

E is the direction of the inward electric field at the sheath. When

the Mach vector is greater than 0.1 * Vth, the following is used:

I(E x V4 ) x E + v E E < 0 (downstream)
m th m

V =
0

IE x l 
m VthE E 0 (upstream)"m v t m

m

with m being the Mach velocity of theflwnpas.

An unfortunate side effect of starting particles with a velocity

strongly dependent on the surface normal is that the angular

distribution of thermal velocities is not modeled. Particularly

symmetric problems (e.g., long, cylindrical wakes at high Mach

velocities) tend to experience excessive focusing where particle

trajectories are trapped. To combat this problem, particles can be

broken into a number of smaller particles. Each particle is started

with a different initial velocity to generate an angular distribution of

thermal velocities. See Section 3.43 for more information on how the

particles are spread.



4.4-8

Electrons

When the attracted species are electrons, the initial currents and

velocities are calculated differently. The sheath electron flux is the

one-sided thermal flux from the presheath, quasi-neutral plasma. The

orbit limited ion density at the sheath is found using the same

techniques as described in Section 3.31. (See also Section 4.52.7.)

The initial velocity is defined to be the average thermal velocity

through the sheath in the direction of the inward electric field.

In the presence of magnetic fields, the electron sheath fluxes are

restricted by the magnetic flux tube. This is modeled by the following

factor

A

Se- = ie (0.1 + 0.9 1 B B I)

where j e is the restricted flux, je is the nonmagnetic limited flux, in
is the electron sheath surface normal, and B is the direction of the

magnetic field. (See also Section 6.43.20.)

4.42.3 SHEATH PARTICLE ASSIGNMENT

Each volume element of a problem is inspected for the presence of

the sheath edge equipotential as described in Section 4.42.1. Each

triangular subsurface of the sheath is a potential sheath particle;

however, many times a portion of an equipotential is not really a source

of current. This is assumed to occur when there exists just "outside"

the sheath (in the direction opposite of t) a portion of the object, or

a high potential region of the opposite sign. Both of these conditions

are checked by calculating the inward initial velocity for the particle

as per Section 4.42.2, reversing it, and tracking the particle backwards

through two volume elements. If no "obstacles" are found, the particle

is assigned a current or weight and placed in a particle list. This

list is later read and the trajectories advanced as described in

Sections 4.42.4 and 5.62. Finally, the sheath currents are not

calculated fir each particle but interpolated from a pre-calculated

table of values (Section 4.42.2).



4.4-9

4.42.4 TRAJECTORY TRACKING

Trajectory tracking can be an expensive endeavor, and a source of

unpredictable error. To combat these problems, POLAR uses two different

methods to follow ion and electron trajectories.

When pushing ions, the full step method is used in empty elements

(those which do not touch the object) where complex t fields are not

anticipated. For these elements, t at the cell center is used for the

entire cell, and a single steo parabolic trajectory is calculated for

the element. This is accomplished by analyzing independently the three

components of the equation

-+ + -I t  1 _q t t 2  1
x. = x + V I-1t + 2 m

for the shortest time, t, that a particle needs to reach an element

face. Negative, imaginary and zero times are rejected. A number of

spczial conditions may occur involving round-off errors and the

traversal of exceedingly small paths in the corner of elements. The

treatment of these problems are discussed in detail in Section 5.62.22.

Following the choice of the shortest valid time, the trajectory is

advanced to another (or possibly the same) element face and the new

velocity vector is calculated at x and is

4 dvv i = v i_1 + Tt t

where

dt = m c

with AG being the magnetic field vector in gauss. The magnetic field

effects on the particle velocity are implemented as a rotation of the

velocity vector after the acceleration due to the average electric field

is added. (This is discussed in more detail in 5.62.22.)



4.4-10

The total energy is checked at the new position against the

original value. The new total energy is 1/2 m02 + eV(4), where V(x) is

the bilinear potential calculated for the exit location on the exit face

of the element. The energy is renormalized by adjusting the magnitude

of i without modifying its direction.

For volume elements that border the object, more complex E fields

are anticipated so POLAR uses a slower, but more accurte, step-push

method where Eq. (1) is integrated using timesteps estimated to be

approximately 0.1 of the element traversal time. At each step, f is

determined by analytically differentiating the trilinear potential

function (Section 4.20). The step-push method and the routines that

affect it are discussed in greater detail in Section 5.62.22.

The pushing of electrons requires two different pushing routines.

The electrons use the equivalent of MOVER, EMOVE to move to the face of

an element and ESTEP to make short steps within an element much the way

ions are small stepped by STPPSH. Because the gyroradius of electrons

can be comparable to or even smaller than a mesh spacing, electrons use

ESTEP when the Larmor radius is large. EMOVE is used when the guiding

center approximation of the electron trajectory is appropriate

(5.62.22).

POLAR's sliced grid system (Section 4.11) forces additional

computational considerations on the trajectory tracking because only a

small set of potentials are stored in core at any one time. Potentials

are paged in and out in slices at nodes of a constant z value. As a

result, trajectory tracking is controlled by a "pusher" that sweeps back

and forth in z, advancing all trajectories through the space between z

and z+1. Trajectories moving opposite the pusher are written out to

disk and picked up on the return pass (Section 5.62.22). Although this

complicates the coding somewhat, there is a gain in efficiency, and a

bonus in that trapped orbits can be simply controlled by limiting the

passes of the pusher.



4.4-11

4.42.5 SHEATH ION DENSITIES

Once a sheath edge surface has been located and subdivided

(Section 4.42.1), the input current, Ji, calculated (Section 4.42.2) and

that current assigned to a representative particle, g, (Section 4.42.3),

the particle trajectory is followed inward as described in Section

4.42.4. Ion densities, n, are determined in each cell by observing

that if each trajectory, j, represents a constant current

Jij = dqij/dt, each trajectory makes a contribution to the overall

element density of

J.. At
An.. - 1

ij element volume

where At is the time required to cross the volume element. The total

density is just

n i = Z . Anij
J

This has been dubbed the method of weighted deposition (Ref. 3-5). It

can be seen that acceleration effects and convergence effects are

accounted for by the At, and the E. respectively.
J

This method demands a large number of particles for good

statistics and we have found that the three to six particles per sheath

volume element, chosen by the sheath edge algorithm (Section 4.42.1),

work quite well. Problems in accuracy can still be anticipated when

there exists repulsive regions within a sheath, or when the method is

being incorrectly applied to an orbit-limited problem where particles

might numerically diffuse into allowed trapped orbits. In this case

repeated orbits would give erroneously high densities. Even in strongly

space charge-.limited sheaths, unusual geometry could lead to trapped

orbits, so POLAR sets a user controlled limit on the number of front-to-

back pushing sweeps (Section 6.43.20) to control this problem.



4.4-12

Finally, these sheath ion densities are known as RHOI's in POLAR

and are calculated by the CURREN segment of NTERAK. The ultimate use of

these densities in the Poisson solution are discussed in Section 4.43.2.

4.43 CHARGE DENSITY

POLAR iterates between calculating the potential for fixed charge

densities, and calculating charge densities for fixed potentials. The

potentials are calculated iteratively, starting from the last potential

used to calculate the charge densities. While the calculated charge

densities are physically consistent with the first potential iterate,

there is no guarantee that they remain that way during the iteration

process. Equilibrium plasmas respond to potentials by shielding; that

is the plasma spacecharge has the opposite sign as the applied

potential. The QSCRN algorithm examines the potentials and densities

element by element, and ensures that the charge density used in each

iteration is physically reasonable. Unphysical conditions arise when

the sheath boundary moves during an iteration. When this occurs, QSCRN

substitutes a charge density based on Debye shielding for the out of

date particle pushed density.

QSCRN also restricts the magnitude of the charge density used in a

particular element to that consistent with the zone size. Since the

plasma is shielding, the charge density is restricted to be less than

that which will change the sign of the potential in the zone. In

practice, this restriction is relaxed, and the charge limited to SQALPH

times the maximum charge, where SQALPH is typically chosen to be about

3. Too large a value for SQALPH leads to oscillations at the sheath

edge.



4.4-13

4.43.1 ELECTRONS

Two different methods of finding the electron space charge

densities are used; one for positive potential regions within the sheath

and one for the other cases. When electrons are repelled, the charge

density is approximated by an isotropic Boltzmann equilibrium

distribution, i.e.,

n = n exp(eV(X)/kT)ne o

This approximation may be invalid near weakly repelling surfaces, space

potential barriers, and in magnetically insulated regions. Other

conditions may arise where the electron distribution will not be

isotropic and a Boltzmann distribution would not be justified. When

space potentials are positive enough to define an electron collecting

sheath, the electron space charge is calculated by pushing particles.

These densities are found much the way pushed ion space charge densities

are computed (see Ion Charge Density, 4.43.2). The pushed electron

current is called RHOE in the POLAR code.

4.43.2 ION CHARGE DENSITY

Ions are generally considered to be the attracted specie in POLAR.

This, plus an allowance for possibly high Mach numbers, means that ion

densities may not be determined by any local approximation. Thus ion

densities are currently determined by two methods: Weak field ions

(Section 4.41) known in the POLAR coding as GI's (geometric ions) and

GH's (geometric hydrogen); and sheath ion densities (Section 4.42) known

in the coding as RHOI's.



4.4-14

GI's and GH's are determined at the onset of a calculation and

remain unchanged thereafter. The RHOI's and RHOE's are calculated

whenever a CURREN step (the sheath ion tracking process) is called for.

Immediately following a CURREN step, POLAR creates from these two data

sets, an ultimate ion density list, the DION's that are used in the

Poisson calculation. This is done by choosing RHOI's for elements

inside the sheath, and GI's for points outside. For elements containing

a portion of the sheath surface, the %I value is used instead of the

RHOI. Similarly, the electron density list, DELC, is created using the

pushed electron densities, RHOE, inside of the electron sheath and

quasineutral electron densities outside.



4.4-15

4.44 THE CHARGE STABILIZED POISSON ITERATION

The Poisson equation can be written dimensionlessly as

-A = L- 2 (ni -ne) (1)

where

= eV/kT, L
2 =E kT/No e2 h2 

= X2/A 2

is the dimensionless Debye length, N0 is the ambient density, n. =

Ni/No, ne = Ne/No, and the Laplacian is also normalized by h2 . The

calculation of n. and ne is discussed in Section 4.43. POLAR solves

this equation on its discrete mesh of uniform spacing h, using the

finite element method described in Section 4.21.

The traditional approach to the solution of equation (1) has been

an explicit iteration of the form

-A 2 V = L-2-[nii(-1) - ne(o -1 (2)

where Y is the iteration index, and the charge density is determined

using the potentials of the previous iteration. This method can be

shown to be unstable (ref. 4-2) when the Debye length, X, becomes small

with respect to other scale lengths of the problem. This can be

understood by considering that a smooth potential variation over a

distance of, say, 1000 X, would require a smooth A 2 (the 'second

derivative') which is in turn given everywhere by the charge density.

But, maintaining a smooth charge density distribution is difficult when
-2any errors in determining (ne - ni) are multiplied by a huge L . There

is one effective remedy to this dilemma due to Parker (ref. 4-2), but

the process reported here appears to be more efficient in the short

Debye length limit. This method involves the combination of two

concepts. One uses a partial implicitization of the repelled density

(ne, here) (ref. 4-3). The other simply reduces the charge density to
an acceptable level whenever the first method is inadequate.



4.4-16

Suppose a plasma of ambient density N and temperature T consists of
0

Boltzmann electrons, Ne () = N exp(O(r)) and ions of known density

Ni(4 ) = No ni(0 ) . The normalized charge density is then given by

q( ,O"(r)) = L-2 [ni(4r) - exp ( ) ) 1 (3)

Equation (3) may be linearized about the previous potential iterate

q(OV) = q(o-1 ) + q(0 V-1) * ( V - 1 )

where q" = Bq/80, and the 4 dependence has been dropped for clarity.

With this expression we may write the implicit Poisson iteration scheme

_V2 V - q(' L- 1) * OV = q(O V-1 ) - q'U(O- 1) * 0h-1 (4)

Though it is not immediately obvious, the implicit character of

(4) makes it more stable than scheme (2). This can be understood by

realizing that in equation (3) the electron density was treated as an

independent variable, whereas in (4) the electron density is determined

simultaneously with the potential, both being consistent with the ion

density.

The finite element approximation (Section 4.21) to (4) produces

the matrix equation

. (1(e) _ g.(e) V(e)) •I = S- .(e) * OV-1 (5)
e

where S is derived from q by the following analysis:

For L ! 1, S is simply the total charge associated with each node,

q. However, for L << 1, numerical noise and features like a sheath edge

which may span only a few X, become incorrectly amplified when the q

determined at a point becomes multiplied by the entire nodal volume.

When it is not possible to reduce the zone size, stability can be

preserved by replacing Q (and Q') with a reduced value S (S') which is
calculated to be the maximum allowable charge for the element.



4.4-17

Because of the artificial amplification argument, S is often the more

realistic total for an element. Befoie deriving S, we define the

barometric potential Ob = R.n(ni) potential for which Q = 0 and note that

it is important that S 4 Q as 0 + Ob if quasineutral regions are to be

modeled correctly. To determine S, consider a capacitor with potential

difference (#b - 0), area h2 and a separation of h. The charge qc on

this capacitor is given by

qc =CAV =he (Ob- )kT

In the units of our previous q, qc becomes

qL = a(Ob - 0) = a(Ob - ) (6)

which is the maximum allowable charge per element, with the parameter a,

adjusted to insure that qL is maximized. Thus at each node, we choose

for the charge

ISI = min (lq LI Iql)

with

-a for S = qL

L expo for S = q

Actually, S and S' are smoothed in POLAk to decrease numerical

noise and spatial potential oscillations. This involves forming the

linear screening term

SCRN = S'(#) + S')/2

where

S' = Z V(I) • S(O(I))
I



4.4-18

where I indexes the nodes of an element and V(I) is a nodal volume

normalized by a cubic element volume of one; similarly for 0. Also

smoothed is the nodal charge Q(I),
1

QM 1 (S(= ) +

Additionally, POLAR can output the value S(0) centered charge actually

chosen by this algorithm.

Finally, the Q(I), and SCRN are used for S and S,(e) in Eq. (5).

The effect of this algorithm is this: If a problem has been

specified where a boundary potential would be screened in less than a

zone or two (the limit of any code's resolution), sufficient sheath

charge will be redistributed so as to allow the potential to be screened

over the minimum number of zones that are consistent with stability.

The charge stabilization algorithm is effected by the subroutine,

QSELT and QSCRN which are further described in Section 5.50.

4.44.1 SHEATH IONIZATION EFFECTS ON SPACE CHARGE

A secondary effect arising from the collection of electrons is the

ionization of neutrals within the sheath. The electrons are immediately

collected by the positive surfaces. The ions however, owing to their

greater mass, migrate more slowly out of the sheath. These ions produce

space charge which cancels part of the space charge due to the attracted

electrons. The effect is to reduce the screening of the positive

surfaces resulting in a larger sheath. The degree to which sheath

ionization enlarges the sheath depends on the generation rate of ions

within the sheath. This in turn depends on the ionization cross-section

of the neutrals, the incident flux of electrons, and the path length for

ionization. The enlargement of the sheath due to ionization can be

characterized by the ratio of the flux of ions out of the sheath to the

flux of electrons incident on the sheath. Increasing this ratio

increases the size of the sheath up to a limiting ratio after which the



4.4-19

sheath becomes unstable. At this point the sheath grows with time and

the static ideas of a sheath break down.

The sheath instability point can be determined in one-dimension by

writing Poisson's equation including both the electrons and generated

ions

E0A2 = (J ion /2e(V-)/mion) 1/2 (Jelec / (2eo/melec 1/2

Integrating both sides from 0 to the sheath boundary, and using the

boundary condition that the electric field at the boundaries is zero,

gives

Jion /elec = (melec /mion)1/2

and that

Je =1.85 jo

where Jo refers to the one species diode. For the case of electron

collection the ion current in Eq. (1) is an upper bound. If the ion

current were greater, the electric field would be unable to extract all

of them and a quasi-neutral pool of plasma would develop near the

object. The behavior and properties of such a plasma are not within the

scope of this discussion. The goal here is to define a bound such that

we can be certain that such a plasma is not created.

The two species diode provides a lower bound -n the maximum ion

current that can be supported by a given voltage o, r a given distance.

This is because the positive charge is in the anode-cathode gap for the

maximum possible time, and the accelerating field is minimum at the

anode (E = 0 boundary conditions are specified). Therefore, the case of

ions being created throughout the diode volume can support more ion

current than that allowed by Eq. (1). Indeed numerical calculations by

D. L. Cooke have shown that almost an order of magnitude more ion

current can be supported if it is generated uniformly throughout the



4.4-20

volume. The inclusion of convex geometry when considering electron

collection by a spherical probe modifies this result somewhat, but for

small convergence ratios the same argument holds. For larger

convergence ratios almost all the path length for ion generation occurs

while the convergence is small.

For convex cases, Eq. (1) can be integrated over a surface and be

expressed in terms of total current.

i , [me(2)
Ie  Imi

where the inequality comes from recognizing that Eq. (1) is an upper

bound. In this form, the ion generation rate can be bounded by assuming

that ionization can occur over the entire path length of a collected

electron. This is an upper bound on the ion current since the threshold

energy for collisional ionization is assumed to be zero. The total ion

generation rate is

I < I .n a
i e o

where L is the electron sheath length, n0 is the background density of

neutrals and c is the maximum cross-section for collisional ionization

by electrons.

To close this system of equations it is necessary to obtain a

bound on the electron sheath length. This can be obtained by

recognizing that the electron current density at the sheath boundary is

less than 1.5 times the one-sided thermal flux. This result was

obtained by Storey et al. for spherical and cylindrical probes. The

sheath potential is bounded by beam voltage

V <V
sh beam

Finally, since for convergent geometries the charge inside the sheath is

enhanced when compared to the planar case, the planar Child-Langmuir

diode formula sets an upper bound on the sheath distance



4.4-21

2.32.10 -6 (Vbeam) 3 / 2

< 1.5 b (4)

thermal

Combining Eqs. (2), (3) and then (4) a bound on the sheath

neutralization can be obtained.

kn <[me,

0 Jmi

n< i 1 (5)

jIm 2.32 x - 6 v beam3/2 1/2

0 1.5 Jth 1
When this inequality is satisfied, ions generated within the sheath can

easily be extracted by the sheath electric field. This permits the

existence of a quasistatic non-neutral sheath. From the results of the

double diode, the effective sheath distance for a fixed sheath potential

is increased by less than 40 percent. Since the inequality was obtained

as an upper bound, ionization will be a small perturbation on the

electron collecting sheath, if it is satisfied.

For atomic oxygen, the peak cross-section for ionization is about

10-16 cm2 and the square root of the mass ratio is 1/200. Putting in

these values for a 1 keV electron beam and a ne = 10 = 0.1 eV plasma,

sheath ionization will not be important if

n < 2 x 1010 cm
-3

0

or 10-6 torr.

This conservative bound on the maximum neutral density is

satisfied for most orbiting satellites. Only through the neutral

release from the satellite will this condition be violated. Numerical



4.4-22

studies have shown that even close to the critical density the sheath

remains very nearly a Child-Langmuir diode with the sheath only

fractionally larger than without ionization. In summary, sheath

ionization enlarges the sheath by a small factor up to neutral densities

very near (within a factor of two) the sheath breakdown density.

The inclusion of sheath ionization into the POLAR code is

primarily for diagnostic purposes. The fractional ionization is

computed using the tracked electron's fluxes to determine the proximity

to the point where a stable sheath is ,iot possible. Near the critical

point, where the sheath size should change slightly, the plasma density

within the electron attracting sheath is reduced to simulate this

effect. This information is tabulated along with the total ionization

within the sheath, the approximate dimensionality of the sheath (planar

to spherical), and the charge reduction needed to enlarge the sheath to

the proper size.

4.44.2 ANALYSIS OF THE CHARGE STABILIZED POISSON METHOD

The Charge Stabilized Poisson Method calculates for each node the

maximum allowable charge that is consistent with the stability of a

linearly interpolating Poisson solver. The method is developed in

Section 4.44, but a further analysis is presented here to help the user

interpret its impact.

POLAR's charge stabilization is accomplished through the process

of charge limiting, illustrated in Figure 4.44/1 This figure shows two

charge versus potential curves given by Eq. (4.44-3), rewritten here as

q = a exp(-0m) (exp #b - exp 0)

where # = n(aX2/h 2), XD is the Debye length, h is the mesh spacing,

and Ob is the barometric potential, Ob = Rn (ni). For curve qj, #b =

-3.0 (n. = 0.05); for curve q2 ' Ob = 0.0 (ni = 1.0); and for both

curves, #m = -2.2, and a = 1. For each curve, also shown is the

limiting charge given by Eq. (4.44-6) rewritten here as



4.4-23

q= (b -

which intersects the "natural" charge curve at 0c and Ob" The charge

stabilization method would reduce thn charge to the limiting value when

0) ,C and use the natural charge for 0 < 0c" The parameter m provides

a good measure of limiting process. From Figure 4.44/1 it can be seen

that #m is the point at which the slope of the natural charge curve

equals that of the limiting charge line. Figure 4.44/2 shows a family

of curves giving the dependence of the cutoff potential c on the

barometric potential for various values of 0m" These curves were

obtained by numerically solving for the zeros of the difference between

q and qL' This difference equation always has two solutions, one at 0c

and one at Ob' with the exception of a degeneracy at Oc = Ob 
= Om' which

is indicated in the figure. This figure shov that the charge limiting

is minimal for #m > -1, and quite severe for 0m < -6 or so.

Consider the first zone of a sheath to satisfy the laws of Child

and Langmuir (planar space charge limiting). At the sheath edge [z=O]

and one zone in [z=AxJ the potential and electric field are

Position z=O z=Ax

Potential 0 K(Ax)413

Electric Field 0 (4/3)K(Ax)1/2

By Gauss's Law, the charge per unit area in this zone is

Q/ 0A= (4/3) K (Ax) 1/3

Polar computes the charge density to be (SQALPH/(Ax)2 ) times the

mean potential (assuming linear interpolation), and so gets

Q/0oA=Ax x (SQALPH/(Ax) 
2)xl/2(0+K(Ax) 4/3).

Equating these two expressions gives SQALPH = 8/3



4.4-24

Because of the economics of running a three-dimensional code,

POLAR is frequently operated at high #m values, i.e., a coarse mesh with

respect to the Debye length. In these cases charge is removed at almost

all points. Ideally, the charge that was removed was excess charge

generated by the coarse griding. This is the artificial charge

amplification argument made in Section 4.44.1. However, since POLAR

must be reliably stable, the result is that too much charge is often

removed. This will result in an enlarged sheath thickness for high

negative #m problems. A possible cure for this would be to add a

measure of charge redistribution to the stabilization algorithms.

The results of testing indicate that !.:eath enlargement is

generally less than a zone for #m > -8. For an a, or SQALPH = 3, this

corresponds to h/XD = 100. POLAR presently makes a modest compensation

for the sheath enlargement problem by placing the sheath edge at V5 =

omkT/e. This is discussed further in Section 4.42.1.



4.4-25

CHARGE DENSITIES

C

IXM

0 .0 ..

-10.0 6.0 4.0 -4.0 -2.0 0.0 1.0
-PHI

Figure 4.44/1. Plots of space charge (curves ql and q2) as a function
of potential as given by Eq. (4.44-3). The straight
lines represent the maximum allowable charge for non-
oscillatory potentials. The "natural" space charge, ql
or q2 , is acceptable for which slopes of the curve and
the corresponding line are equal.



4.4-26

CUTOFF POTENTIALS

00

c-

4,0..60 6. . Ii.0

O-b

Figure 4.44/2. Plot of the space charge cutoff potential,
Oc' versus barometric potential (Ob = Zn ni)
for a series of 0m values (-0.2, -0.5, -1.0,

-2.0, -3.0, -4.0, ... -11.0). The point at
which Om = Ob = Oc is also indicated.



4.4-27

4.44.3 PARTICLE BEAM SPACE CHARGE EFFECTS

Currently the space charge effects of particle beams are not

included in POLAR.

4.44.4 ANALYTIC FORMULATION FOR SHEATH CONVERGENCE

An analytic method is available to compute space charge densities

while solving Poisson's equation. This model treats space charge

density as a local function of potential using a nonlinear, analytic

formula appropriate to a planar or "thin" sheath. The convergence

factor is computed in terms of local information and problem parameters.

The Langmuir-Blodgett problem of collection be a high-voltage sphere was

numerically solved and then fitted to an analytic form. An excellent

fit was found with

(R/r) 2 = 2.29 (EXD/6) 1. 2 6 2 (V(r)/)-" 5 0 9  (1)

The model also includes the effect of spacecraft motion and a

magnetic field on the convergence factor. It is assumed that the

routine used to describe the effect of spacecraft motion on electron

current in the wake can also be used for wake ions and ram electrons and

ions. The convergence factor in a magnetic field is computed using a

factor f computed from the sheath distance. The sheath distance Dsh is

computed using the minimum of Child-Langmuir distance and that computed

with a Laplacian potential. f is given by

f= I - exp(-O.5(rL/Dsh)
2 )

The convergence factor is then f times that given by Equation (1) plus
1 - f.



4.5-1

4.50 CHARGING MODEL

The charging equations used by POLAR were introduced in Section

3.50. In the following sections the various models employed in the

solution of the charging equations are described in detail.

The general form of the charging equation that was introduced in

Section 3.50 is

d
I(t) = C L V(t) + a V(t) (3.50-1)

dt

where is the current wvector*, C the capacitance matrix, o

conductance, and V is surface voltage. Placing the equation in a

differenced form, evaluating the conductance term at the advanced time

(implicit) and the current at the retarded (explicit) time, it becomes

((t2) - V )
t 2 - t I  + YN(t) = INt )

or

t2 t *(( 2) - V(tl)) =(IN )  YN(t)
2 1 M1J

Section 3.50 explored the difficulties associated with the above,

explicit current dependence. The implicit approach replaces I(tj) with

the following approximation for I(t2) for each surface:

I(V(t 2 )) = I(V(tl)) + dl * (V(t 2 ) - V(tl))



4.5-2

Substituting to find the implicit formulation

C dI
+ V or - t2 " ('J ( - a V(tl) (4.50-1)

At1  V-(~2 -VY ~I

where At1 = t2 -t 1.

The most difficult term to evaluate in Eq. (4.50-1) is the current

derivative dI/dV. A predictor-corrector type of approach is used to

estimate the final voltage (V(t2)) in order to calculate the derivative.

Two cycles with Eq. (4.50-1) are used for each timestep iteration of the

algorithm. A reasonable guess is used for the derivative in the first

stage. The results from the first stage are used to find a better

estimate for the final stage.

The current derivative term stabilizes the problem by increasing

the diagonal matrix terms. Physically, the BI (surface i)/OV(surface i)

will be nonpositive for surfaces approaching a stable equilibrium.

Since no surface to surface interactions are included in the current

derivative matrix, dI/dV is diagonal. The current derivative is

discussed in in detail in Section 4.56 along with the entire charging

algorithm. The current derivative for conductors is described in detail

in Section 4.51.



4.5-3

4.51 CONDUCTOR CURRENTS AND CURRENT DERIVATIVES

With beams and sheath conduction the charging algorithm has to be

applied to the exposed conductors with care. Each current source needs

to be considered separately. In an attempt to describe the different

situations systematically, each specific case of currents and potentials

will be addressed. First, the definitions of variables to be used in

the following narration.

I b  beam current

I - sheath currentp
I sec - secondary currents

Iph - photoelectron current

Iraw - total of all currents to conductor assuming all the low

energy currents (I sec and Zph ) escape

Ihi - total of all currents to the conductor excluding Iph and
I
sec

Icond - conduction current

I - total current to conductor

dI - total current derivative

kT - plasma temperature

Esec - electron secondary energy, typically about 2 volts

positive

Vc - initial conductor voltage

AVc - estimated conductor voltage change made before charging

calculation

VB - beam energy

Enorm - average normal electric field over conductor

dx - mesh or surface size



4.5-4

Case 1 - Conductor Voltage ESec

The currents are checked in the following order until the

conductor fits a category. When the first check is satisfied, the rest

are ignored. After the appropriate current check is found, the total

current and the current derivative can be deduced.

Ihi > 0

Then I = Ihi + Ib

dIB = nain[O, IB/(VC-VB)J

dl = -(III/AV) + dIB

I >0raw
Then =1 ra

dIph = 0

dIb = 0

dI = -(II - Iph - IbI/AV)

Ira w > 0 and Ihi <0

Then the total current is

VC > Esec then I = Ihi

VC 5 Esec then I = Iraw

and the current derivative is

VC 0 Esec then dI = I/(VC - E)

VC = Esec then dI = III/-kT

Case 2 - Conductor Voltage < Esec

Ihi > 0

Then I =ra w  sec ph - b

dIB = min(O, (Ib/(VC - VB)))

dIph = Iph/(VC - Ese)

dIsec = Isec/(VC - E)sec

dI = -(III/AV) + dIB + dIph + dIsec



4.5-5

Z <0
raw

Then I = Iraw - Iph - Ib

dI = -(III/AV)

Ihi <0 and Ira w > 0

Then

This is the tricky case. If this conductor were an insulator, it

would have a fixed normal electric field boundary condition and

PWASON would find the surface potential. We will use an average

normal electric field for a crude, but sufficient boundary

condition. Charging is dominated by the behavior of the

secondaries here.

To find the total current

Enorm * dx > Esec

Then I = Ihi
E * dx Enorm sec

Then I = Iraw
and for the total current derivative

E * dx = Enorm sec

Then dI = I/(E norm * dx - Esec)
E - dx 0 Enorm sec

Then di = IIl/-kT

The above conditions handle the complete variety of situations for

exposed conductors. If the conductor is one which is not exposed at any

point, then the current derivative is found by studying the derivative

of the beam current. If the beam is off, then dl = 0. Otherwise,

dl = IB/(VC - VB).



4.5-6

4.52 ELECTRON CURRENTS, PRIMARY, SECONDARY

The POLAR electron environment is described in Sections 3.15 and

3.31. This section explains the integration procedures used to obtain

the net electron currents to a surface due to primary, secondary, and

backscatter electrons when pushed electron currents are not appropr" be

(Section 4.52.7). Before the integrations are presented, we develop the

secondary and backscatter yield coefficients. These yield models were

developed for NASCAP (Reference 4-1) and are well proven and thoroughly

tested. Further information concerning the code mechanics and

subroutine relations can be found in Section 5.70.

4.52.1 SECONDARY ELECTRONS

Secondary electrons are defined as those emitted from the surface

due to particle impact with energies below 50 eV. Their energy

distribution is usually peaked below 10 eV. We define the secondary

yield Y as the ratio of primary to secondary electron current.

y = emitted secondary current due to electron impact
primary electron current

POLAR (NTERAK) calculates the secondary electron emission yield,

Y, using the empirical formula (Reference 4-6):

R dE' -ax coso dxY() =C f xx Ie d
0 d

where x is the path length of penetration of a primary electron beam

into the material, R is the "Range," or maximum penetration length, and

9 is the angle of incidence of the primary electron.

This equation is based upon a simple physical model (Reference 4-

7):

a. The number of secondary electrons produced by the primary team at

a distance x is proportional to the energy loss of the beam or

"stopping power" of the material, IdE/dxl.



4.5-7

b. The fraction of the secondaries that migrate to the surface and

escape decreases exponentially with depth (f = eax cos6). Thus

only those produced within a few multiples of the distance 1/a

(the depth of escape) from the surface contribute significantly to

the observed yield.

The range increases with the initial energy, Eo, of the incident

electrons in a way that approximates a simple "power law" (Reference 4-

8):

R = b En
0

where 1.0 < n < 2.0. This equation implies a simple form for the

stopping power S(E):

S(E) IdEl I dR-1 El- n

dx dE I nb

Because the primary beam loses energy as it passes through the material,

both E, and hence S(Eox), depend on the path length x. Integrating:

En(x) = En xo b

S(x) =

The stopping power S(E ox) depends upon both the initial electron energy

Eo 1via R, and the path length x. Figure 4.52/1 shows schematically

S(Eo,x) plotted against x for several values of E° . Inspection of

Figure 4.52/1 and the equation for S(x) illustrates the following

points:

1. S(Eox) increases with x, slowly at first, before reaching a

singularity as x approaches R.

2. The initial value of S(Eox) decreases with increasing initial

energy E0 '



Power Law
E-Dependence

Linearized
E-Dependence

E-0-< E 0 <E < E4

1 2 3 4

0

0

0

E0

R1 IR 2I RI 3 R NU

-/ -- Depth

"Depth of
Escape"

Figure 4.52/la. Energy deposition profiles of normally incident pri-
mary electrons for incident energies Eo

E0E2

max

E~ 0

41) 4

Emax Incident Energy Ea

Figure 4.52/It. Generalized yield curve.



4.5-9

Both of these observations are due to the decrease in electron-atom

collision cross-section with increasing energy.

The yield is only sensitive to the details of the stopping-power

depth-dependence for initial energies with ranges of the same order as

the escape depth, R - 1/a (i.e., about the maximum of the yield curve).

For lower energies, R << 1/a, and essentially all of the primary energy

is available for detectable secondary production, leading to a linear

increase in yield with increasing Eo. At higher energies, where

R >> 1/a, S(E ,x) remains almost constant, at its initial value, over

the depth of escape and so, along with S(EoX) the yield decreases as E°

increases.

POLAR takes this into account and approximates the stopping power

by a linear expansion in x, about x = 0.

dE dR 1- -1 d2 R dR 1-3
x = tdE J 2d] 1 dE J

0dE

POARalow fr b-epoenia rng lw

POLAR allows for a hi-exponential range law:

R = bI E° no

involving four parameters b1m b2, nl, n2. The parameters are fit to

reproduce range data as accurately as possible. For materials where no

suitable data is available, a mono-exponential form is generated using

Feldman's empirical relationships (Reference 4-8), connecting b and n to

atomic data.

b = 250 A/pZn/
2

n = 1.2/(1 - 0.29 log 10Z)

where A is the atomic or molecular weight of the material, Z is the

atomic number, and p is the density. The stopping power is then



4.5-10

obtained indirectly via the equation above. Recently good theoretical

estimates of the stopping power for number of materials have become

available (Reference 4-9). Comparison of these values with those

implied by the range data showed significant discrepancies, particularly

for those materials fit using Feldman's formula. A better approach is

to fit the four parameters in the equation for R directly to the

stopping power data.

n 1-1 n2-1-1

S = (n1b1E + n 2 b2 E n2 ]

Secondary emission of electrons due to ion impact is treated in a

way similar to that for electron impact. The yield A us given by

A (0) = C dx sin 0 dx
0

The angular dependence is assumed to be a simple sine form, and the

stopping power is assumed to be independent of path length x over the

thickness t of the sample.

dE

I-I = E1/2/(1 + E/Emax)
dx

Emax is the energy at the maximum in the yield curve. This is -50 keV

for most materials. A typical yield curve is shown for aluminum in

Figure 4.52/2.



IU

ul %C

0

E

03O.- u 0RJO x0PL
0 w 4L

__ *1*



4.5-12

4.52.2 BACKSCATTER ELECTRONS

Backscattered electrons are those emitted from the surface with

energies above 50 eV. Their energy distribution is usually peaked close

to the primary incident energy and they may be considered as reflected

electrons.

The large-angle scattering theory, together with Monte Carlo data

and experiments by Darlington and Cosslett (Reference 4-10), indicate

that the angular dependence of backscattering is well described by

n(0) = n(0) exp(7 1 (1 - cosO)]

where the value of 11 is, within the uncertainty in the data, what would

be obtained by assuming total backscattering at glancing incidence, viz.

n1 = -log no, n0 = n(o). The net albedo for an isotropic flux is then

2
Y = 211 - 70(1 - log n )]/(Iog no)

As the energy is decreased below 10 keV the backscattering

increases. Data cited by Shimizu (Reference 4-11) indicated an

increase of about 0.1, almost independent of Z. POLAR approximates this

component of backscattering by

d 0 = 0.1 exp[-E/5 keV]

At very low energies the backscattering coefficient becomes very small

and, below 50 eV, backscattering and secondary emission are

indistinguishable. POLAR takes account of this by a factor of

[(E - 50 eV)/Iog 20] log(E/50 eV)



4.5-13

The formula for energy-dependent backscattering, incorporating these

assumptions, is then

10 = {[log(E/0.05)8(E - 0.05)8(1.0 - E)/lIog(20)

+ S(E - 1.0)} x (0.1 axp(-E/5) + 1 - (2/e)037Z

where energies are measured in keV.

4.52.3 INTEGRAL OF THE MAXWELLIAN DISTRIBUTION

In Section 3.41, the current JM of electrons of charge q to a

surface at voltage V due to the Maxwellian portion of the spectrum was

given as

21r d /2
M = sinO cos6 dO g(E, # (0,0))
(kT) 2r 0 d 0

* f. K dK exp[-(qV + K)/kTJ
L

L = max(-qV, 0)

The lower kinetic energy limit L is chosen to exclude orbits that

cannot energetically connect to infinity. The function g is a function

of the pitch angle #, and total particle energy E. POLAR is presently

approximating all distributions as isotropic, so the angle integrals are

performed assuming g to be a constant of value unity.



4.b-14

The flux of electron generated secondary and backscatter electrons

is obtained by adding a yield function Y(K, 0, 0) to the above integrals

(Section 3.33). POL\R presently replaces Y with an angle averaged y(K)

for the isotropic case. Thus

MS F e-qV/kT K e-K/kT * Y (K) * dK
(kT) 2  L

where the primary current J, is obtained by setting Y = 1.

For arbitrary Y, the integral must be performed numerically. It

is also desirable to divide up the spectrum in a manner that covers the

larger fluxes at low energies without ignoring the high energy tail of

the Maxwellian spectrum. A logarithmic spacing is accomplished by the

substitution

K = -kT ln(x)

Thus we have

fxu? K()
JMS = qF fXUSY(K(x)) ln(x) dx

xl

where xu e-L/kT , and xl =0. Since ln(x) is singular at x = 0, the

lower limit is set to xl = 0.01 * xu and the omitted portion of the

spectrum approximated by xl * ln(x). The summation is performed using

Simpson's rule and 20 points.



4.5-15

4.52.4 INTEGRAL OF THE POWER LAW DISTRIBUTION

The discussions of angular dependence in the flux integral given

in Section 3.31 and 4.52.3 also apply here, so we will limit this

treatment to the energy integral
KU_'1

(A) J = aq Y(k) - (J + qV) - a +'' K dK
KL

where J is current, Y is secondary or backscatter yield, K is kinetic

energy, a is a constant (a = YA for isotropy), q is charge, and V is

surface potential. For the limits we choose

KL = MAX (0, EL - qV)

KU = MAX (EU, EU - qV)

where EL is a physical cutoff (default = 100 eV) and EU is imposed

sufficiently high as to avoid significant error (default = 1 x 109 eV).

The first step is the transformation

X = K + qV

which gives

J = aq fXU Y(K(X)) - [X- a - qV X- (a+ 1) ] dX
XL

where XL = max(qV, EL) and XU = max(EU + qV, EU).

Since a can be as large as 3.0, this spectrum is strongly peaked

towards lower energies, which implies that a nonuniform spacing of

integration points is desirable. This is easily accomplished by the

substitutions,



4.5-16

x = y-1/(a-i), for the first term, and

x = z- 1/ , for the second term

of the previous integral, which leads directly to

J = aq [ J Y dy + fzf z dz

where yl = xl - , etc. Notice that these choices produce integration

weights of value unity. The numerical integration is done over 20

points spaced evenly in y and z. These transformations are very

strongly biased towards the lower energies thus the upper cutoff was

chosen quite high (1 x 109 eV) to force good coverage of intermediate

energies where Y might be peaked.

A method with variable bias was also investigated. This utilized

for Eq. (A), the substitution

K = x - S

dK x-(1.l/p) dx = w(x) dx

This method has the ability to adjust the bias with P, and center the

integration points about an energy related to S. This method is

inherently slower due to the calculation of the weights w(x), and

appeared to offer no great advantage over the previous method. It is

not presently used by POLAR, but remains an option.



4.5-17

4.52.5 INTEGRATION OF GAUSSIAN DISTRIBUTION ELECTRONS

This treatment is limited to the energy integral of the Gaussian

electron distribution. The angular dependence has been integrated

assuming isotropy as discussed in Section 3.41 and 4.52.3. From Section

3.41, the integral of interest is

Js = rB KL Y(K) exp[-(K-K 0) 2 /6 2 ]k dK . (1)

where KL = max(O, -qV).

As in the previous Section 4.52.1 and 4.52.2, the inclusion of the

angle averaged yield function Y(K) will make J the current of

backscatter or secondary electrons (see Section 3.43); with the emission

of 7, J becomes the incoming primary flux.

This integral is performed numerically by an 8 point Hermit

integration scheme (Reference 4-12).

The weights and abscissa are:

xi  w(xi )

1,5 *0.38119 6.61147 x 10-1

2,6 *1.15719 2.07802 x 10-1

3,7 *1.98166 1.70780 x 10 2

4,8 *2.93064 1.99604 x 10-4



4.5-18

Equation (1) can thus be approximated by

8
S= rB w(xi) * Y(Ki) * exp[-AKi/6

2J * K. S 8(Ki-KL) (2)

where

K.=K +X.*6
I 0 I

I I

and

O(Ki -K) 1 r K. - KL > 0

0 for K -KL ( 0

KL is chosen as max(O, -qV) which excludes energetically trapped orbits.

JS as given by Eq. (2) has the undesirable property of being

discontinuous with respect to K due to the B function. This feature can

be removed by calculating J with the same scheme (omitting Y). J will

be discontinuous at exactly the same values of K as JS" We can then

form a smooth JS as

, JsSi
JS T ° a

where J a is the analytic solution to the primary flux integral derived

below:

Ja = qB f exp 1-1 6 0)]K dKJaL



4.5-19

set

X = (K - Ko)/6, K = X6 + K

so

J a rB exp(-X2) (X6 + Ko) dX

where

KL - KZ 0

Integrating

J 5r2 [exp(-z2) e+ ((Ko + IKIl erf(lZl))J

4.52.6 PHOTOEMISSION

The photoemission electron currents are calculated using material

properties and the area of the surface lit by the sun. The material

property (6.12.10) used is the yield (Y), or the number of electrons

emitted for a surface normal exposed to the solar spectrum, an "earth

distance' from the sun. POLAR calculates the photocurrent from a

surface exposed to the sun at an angle 0, according to

iphot = (Area exposed) o Y * coso

where the exposed area takes into account any shadowing by other

surfaces of the object. This formula assumes that the yield per photon

is, on the average, independent of 0.



4.5-20

4.52.7 SHEATH TO OBJECT ELECTRON CURRENTS

When the attracted species are electrons, the initial currents and

velocities are different than for ions. This discussion applies to

attracted electrons whose collection is space charge limited; the orbit

limited case follows. To account for sheath shadowing in the

quasineutral presheath the sheath flux is

Jsheath = Ne JkT/2wm

where N is the ion density in the presheath. For a nonflowing plasma N

= N0 , the unperturbed density; however, for a flowing plasma in the wake

direction, N is reduced over the ambient value, by geometric shadowing

effects of the sheath. (Section 3.31.)

The initial velocity for electrons used in the particle pusher

routines is average velocity of an electron crossing the sheath

boundary. This is

V = (2 kT/im) E

The unit vector E is opposite to the direction of the electric field at

the sheath boundary.

The electron tracking is broken into two categories. When the

cyclotron radius is large (greater than a mesh size) step pushing is

used as for ions. If the cyclotron radius is smaller than a mesh size,

a drift approximation is used (the actual keyword/variable used is

RDMAX2). The cyclotron radius is found by

rcyc =meV'/eB



4.5-21

where v" is the velocity in the drift frame. The drift frame is the

frame in which the perpendicular electric field is zero. The drift

approximation ignores electric field gradients and that is consistent

with the finite element approximation. The drift velocity is given by

D B2

Writing the initial velocity and electric field in components parallel

to B (E11 and V,,) and normal to B (E, and V,) the drift approximation

is

dVii

dt --

and

V- B2

The procession V = V - V about B is computed in the drift frame when

dt

when

eB
m

In orbit limited electron collection, the surface fluxes are defined by

Jsurface = Jsheath (1 + Vsurface/kT)

For more information, see the NASCAP Programmer's Reference Manual (Ref.

4-1).



4.5-22

4.53 ION SURFACE CURRENTS

The ion currents used in POLAR are found using one of two methods.

When surfaces have potentials which are not high enough to be enclosed

by the sheath, the random ion current (Section 4.53.10) is used. These

currents are also used as default currents when the CURREN module has

not been utilized previously during the run (for an example see PRECHG

in Section 6.42.40).

The second method uses the particles pushed by the CURREN module

(Sections 4.40 and 5.60) to the object's surface. These pushed currents

are combined with the random ion currents to provide ion currents with a

voltage dependence. Section 4.53.20 describes the second method.

The ion current contribution to the current derivative (dI/dV in

Eq. (4.50-1) is discussed in Section 4.53.30.

The above pertains to attracted ion currents whose collection is

space charge limited. For a discussion of orbit limited ion currents,

please see the NASCAP Programmer's Reference Manual (Reference 4-1).



4.5-23

4.53.10 THERMAL ION SURFACE CURRENTS

POLAR must have a default model for ion currents for surfaces that

are not included inside the sheath, or have not yet had an ion current

calculated.

For an uncharged surface in a non-flowing plasma, its "random"

thermal ion current density would be

Jth = e kT

Nh 0 121m.

For the case of a flowing plasma the current should be properly

derived by integrals over the ion distribution function. We have thus

far found it adequate to approximate the current by blending the

following approximation. For a surface facing the flow

JNe(-On * a)

where is the surface normal, and V is the flow or Mach velocity,
n

normalized to the ion acoustic speed

Vc = ,

For a surface on the wake side, we presume that a neutral ion density,

ng, has been calculated, and approximate that
J ~t n 9 J th

Am g ah

These approximations are combined into the expression



4.5-24

~j t n. [1hflg2Y VDN.+A]

Where

VDN = max(O.O, - V M * a)

A = min (2.0, n )1



4.5-25

4.53.20 SHEATH TO OBJECT ION CURRENTS

For the space charge collection limited, attracted ion currents,

POLAR tracks particles from a sheath surface to an object surface.

Experience has shown that if surface currents are simply accumulated

from incident particles, the currents are noisy and lead to non-physical

charging behavior. Numerous reasons exist for this noise: tracking

errors, potential field irregularities, too few trajectories, etc.

While these problems have all been studied, it remains desirable to have

a smoothing algorithm for the ion surface currents.

The ion currents to be smoothed are derived from the "dead-list"

of particles produced from the particle pushing module CURREN (4.40).

This dead-list contains the particle's weight, final position, final

velocity, and initial energy and the surface the particle landed on. To

speed up the surface current calculation and to reduce noise, the dead-

list is condensed to the SRFC list, ordered by surface number. The

particle weights are added since they represent the ion current. The

particle weights are also used to weight the averages of spatial and

energy information. An average position on the cell, angle of

incidence, and particle energy are calculated as follows:

N
wk Xik

- k=1
i N

> wk
k=1

where wk is the weight (current contribution) of particle k, N is the
.th

number of particles striking the surface, and X. is the i component of
the position vector. The average velocity and energy are found

similarly.



4.5-26

The adopted smoothing algorithm is a two-step process wherein the

raw surface currents are distributed to nodes, and then re-

distributed back to surfaces. This simple algorithm is illustrated in

Figure 4.53/1. Given an averaged particle at the point P, on surface a,

its current is shared in a bilinear fashion to the vertices (nodes) of

the surface, r!vr4.'ino a node current T.

a T

b L - .. . l R

Higure 4.53/1.

Since two different types of surface occur, triangles and

rectangles, two different methods are used. For triangles, the bilinear

weight of a corner is area of the triangle opposite the corner over the

total surface area (see Figure 4.53/2).

wb =area asa area of triangle ABC

A or

w - xbsa=i(-)x(-)

C B where wsn is the bilinear weight, X is the

particle position, and s and a refer to

surface and node.

Figure 4.53/2. Bilinear weighting of triangular surfaces.



4.5-27

For rectangular surfaces, the particle position divides the

rectangle into four smaller rectangles. Then the weight is found by

dividing the area of the opposite small rectangle by the area of the

surface (see Figure 4.53/3).

C D

I " I wbsa.area of a
so area of ABCD

A B

Figure 4.53/3. Bilinear weight (wbsa) of a rectangular surface.

Thus we have for Figure 4.53/1

Ai = wbai * SRFC(a)

where the A indicates that this is a current increment. The complete Ii

is never formed.

The next step is to share the node current back to the surfaces.

We may derive a simple sharing formula by forming a nodal current

density, AJi, as

AJi = AIi/Ai

where Ai is the area associated with node i;

mU.

Ai = 7 Aj/n.
j=1

where the Aj are areas of the m surface cells adjoining node i, and nj

is the number of vertices of each adjoining surface cell. Ai is bounded

by the dashed line in Figure 4.53/1.



4.5-28

The AJ. is redistributed to surfecE adjoining node i in

proportion to the area each contributed to the node area. Thus, surface

b would receive a final surface current increment AIb,

Ab
Ib n b JI

Finally, we may combir,. t- three previous equations into a node

to surface weight factor wsij. Thus the final surface current, AIb, is

obtained from the intermediate node current AI. as

AIb =wsib AIb

Abnb

Wsib = m.

77 A./n.
j=1 /nj

This process is performed for each surface adjoining the i nodes

of surface a. The final smoothed surface currents are accumulated as

this overall process is repeated for all the surfaces of the object.

An important feature of this algorithm is that a uniform flux to

an irregular object will produce surface currents exactly proportional

to the surface areas as would be expected. To see this, consider the

quasisphere of Figure 4.53/1. This object has three types of surfaces,

with areas S, R, and T; and only one type of node. A uniform flux of

particles, if tracked accuratel-, will produce uniform node currents.

Summing wi. * I. around the vertices of a surface, we see that the
IJ I

resulting surface current will be proportional to the surface area, and

inversely proportional to the factor in the denominator of the

expression for wsij , which is constant for our example. The wsij are

properly normalized. This can be easily seen in our example by summing

the ws.. around a node;



4.5-29

n. A k/n k 1.
A.n = 1.0

j= j]

since the indices k and j range over the same surfaces.

At our present stage of development, we are simply dividing and

redistributing the node currents according to the relative areas of

adjacent cell, but provisions have been made for a more comprehensive

treatment. For example, spatial and electrical information could be

used to avoid non-physical sharing of surface currents; such as

redistributing ion currents to a surface with a large positive

potential, or around corners.

After the sheath to object ion currents have been calculated, they

need to be combined with the ambient or random ion currents (see Section

4.53.10) since some surfaces may not be within the sheath. The two sets

of currents are blended by taking the maximum of the two as the surface

current.



4.5-30

4.53.30 ION CURRENT DERIVATIVE

In order to increase the utility of the ion currents in the

charging algorithm, an approximate voltage dependence needs to be

defined. The algorithm used by NTERAK chooses a model depending on

current voltage and the last voltage change (or estimated voltage

change).

The derivative is calculated to estimate I(V1), where

I(V1) = I(Vo) + AV

For V1 less than -10 kT, an ion attracting surface,

dI 31(Vo) (V1 - Vo)

T V 2(IV0 1 + DVLIM)

where DVLIM is used to limit the voltage change in a charging single

step. This is a Child's law (I : - IV1-3/2) dependence which

compensates for overcorrection of the voltage dependence for small

sheaths.

When V1 is greater than -10 kT and the surface is charging

positively (V1 - V0 > 0), then the current derivative is

dl l(Vo) (kT - Vo)

TV V = - (IV01 + kT)

and if it is charging negative,

dV



4.5-31

These ion current derivatives have been found to produce stable results

when only one CHARGE iteration is performed between PWASON/CURREN

CYCLES. It is recommended only one CHARGE iteration be done without

recalculating space potentials and surface ion currents when the

current balance on a surface is affected more by ion currents than by

electron secondaries. When secondaries are dominant, the ion current

derivative becomes insignificant and multiple CHARGE iterations are

possible and recommended.

The value of 11 is limited in later portions of the surface

charging calculation (Section 4.56.20). The total current due to all

current sources is constrained in order to force the problem to smoothly

converge on a solution. This allows the slower portions of the

calculation, PWASON and CURREN, to execute more quickly. The

constraints discussed in Section 4.56.20 may result in the re-evaluation

of 11 at a different V1.



4.5-32

4.54 SURFACE INTERACTIONS

Surfaces interact with each other via conduction, electrical or

photocurrents. Insulating surfaces interact with other insulating

surfaces by surface conduction and their underlying conductor by bulk

conductivity (Section 4.54.10). When normal electric field boundary

conditions are in effect, a hopping current carries low energy electrons

to the most positive conductor in the area. For the purposes of

discussion, this current is called photoconduction although it may be

caused by phenomena other than photons (such as positively biased,

exposed conductors) and is described in Section 4.54.20.

Surface to plasma and to conductor capacitances are discussed in

4.54.30 and 4.54.40, respectively.

4.54.10 SURFACE CONDUCTIVITY

POLAR breaks the surface of the satellite into smaller surfaces

using the grid, so that each portion of the surface is completely

contained in a single element. Because these surfaces are not really

disjoint, the surface to surface conduction current is taken into

account when both surfaces are insulators. Normally the current due to

surface conductance is several orders of magnitude less than the bulk

conductance, the conductance from the insulator surface to the

underlying conductor.

The bulk conductance is found by using the material properties

(Section 6.12.10) defining oB, bulk conductivity (0-1 m- , property 3)

and d, the dielectric thickness (m, property 2). So

Bulk Conductivity = A B

0

where A is the surface area in m2 and c is permittivity of free space

(8.85 x 10-12 farad/m).



4.5-33

The surface to surface conductivity is calculated by assuming each

surface is a square then using the surface resistivity. Or for a

surface i,

R= i
Ri 2 Pi

Where p is the surface resistivity (0 edge-1, property 14). The surface

conductivity along the edge between surface i and j would be

1
Surface Condcutivity = R. + R.

I j

This approximation is accurate enough since surface charging is

dominated by other effects.

4.54.20 PHOTOCONDUCTION/HOPPING SECONDARIES

An electron current through space above a surface can exist when

secondaries are emitted but trapped by a positive surface potential.

These secondaries can be generated by photons or by high electron fluxes

inside electron collecting sheaths. The hopping secondary electron

currents appear to be highly voltage sensitive surface currents. The

currents move along parallel electric fields until they are absorbed by

a conductor.

The presence of the parallel electric and hopping current informs

CHARGE it will not be able to calculate surface potentials for these

surfaces. So it fixes their surface potentials. But their contribution

to the current of the exposed conductor where they end up must be

considered.

The current to the exposed conductor can be found by



4.5-34

IV * J dA
conductor

I =J 1 dP
boundary of
conductor

r 4<0>

I boundary -E- Je ElldR.

where Je is the incident electron current (see Section 4.22 for more

detail).

This is done in the code by adding the incident current to

insulating surfaces (times a multiplying factor) adjacent to an exposed

conductor to the exposed conductor's current. In this manner,

photoconduction, or hopping secondary currents, are modeled.

4.54.30 SURFACE TO PLASMA CAPACITANCE

The small surface to plasma capacitance is currently modeled using

E A
C -0
sm h

where f is the permittivity of free space, A is the area of the surface

and h is the mesh length. This approximation appears to be accurate

enough for modeling purposes.

4.54.40 SURFACE TO CONDUCTOR CAPACITANCE

The surface to conductor capacitance determines the charging or

differential charging rates for many problems. NTERAK calculates the

capacitance using the following material properties (Section 6.12.10):

relative dielectric constant (e r, property 1) and dielectric



4.5-35

thickness (d, property 2). So the large capacitance in charging

problems is

e A
C ig rd

where A is the surface area.



4.5-36

4.55 CIRCUIT MODEL

POLAR represents the spacecraft in the charging algorithm with a

circuit model using the plasma as a voltage dependent current source.

Insulating surfaces are represented by circuits of the form shown in

Figure 4.55/2. (Figure 4.55/1 defines the circuit elements used in

Figures 4.55/2-4.) Exposed conductors follow the example of Figure

4.55/3. Additional connections appear between surfaces a:,d between

conductors. Insulating surfaces are connected as shown in Figure

4.55/4. Underlying conductors are connected to each other via a

resistor and a capacitor in parallel. The exposed conductor surfaces

are lumped together for each of the underlying conductors. An example

of a general circuit and its charging equations has been worked out in

detail in Section 4.57.



4.5-37

VG

F0plasma ground

.. ,-. .~- voltage on insulating surface
V2  (surface 1, surface 2)

VC underlying conductor reference voltage

voltage due to magnetic field

current source, from plasma to surface

R resistance (1/conductance)

C capacitor (those with a subscript G
----- are plasma to surface capacitances)

Figure 4.5511. Legend of circuit elements shown in Figures 4.55/2 -

4.55/4.



4.5-38

It RIC

VG VV

CIG C1c V15

Figure 4.55/2. Circuit representation of a single insulating surface
(see Figure 4.55/1 for a legend of the circuit
elements).

IC

VC
CI +1l +Vc9

Figure 4.55/3. Circuit representation of a single exposed conductor
surface (see Figure 4.55/1 for a legend of the circuit
elements).

II RIC R2C 12

R 2

Figure 4.55/4. Circuit representation of two insulating surfaces with
a common underlying conductor (see Figure 4.55/1 for a
legend of the circuit elements).



4.5-39

4.56 CHARGING ALGORITHM

This section discusses the details of the charging algorithm.

Section 5.7 describes the actual coding used for the surface charging

module. Here the physical models are presented in an order which

parallels the sequence followed by the coding.

4.56.10 CHARGING NOTATION

The two stage iteration over the implicit charging equation (4.50-

1) requires the careful use of a notation to prevent confusion.

Subscripts shall be used to indicate timestep iterations of the

variables. A superscript prime marks a result found during the first

stage. And a superscript double prime indicates the voltage limited

result from the first stage. So the first stage, first iteration

charging equation would be

tl~ -* - to  W (tj) - v(t0)) = 1(to) - Vto)

or perhaps more simply,

dj

#- 1.1J(y- - Vo 10 ev

Note the convention of using (to) to define the initial values.

The second stage, first iteration equation which finds V (the

initial voltage for the next iteration) would be



4.5-40

t - - J (Yj - Yo) = 10- Yo
•th tetosae eoe

Generalizing for i iteration, the two stages become,

dL1

S- d, I(i+1- i) = .- i (4.56-2)
L t i  W i

where dj/dy has yet to be defined.

For the first stage, the current derivative is estimated using the

initial values described in the next section. The derivative used by

the second stage is found by using the results of the first stage. It

is defined by

- 1i 1-i (4.56-3)

V,where is the surface current evaluated using ,the voltage
eI,+~1'th otg

limited surface voltages from the first stage, or

Although there are two stages for each iteration, only the current

derivative changes from stage to stage. Eqs. (4.56-1) and (4.56-2) can

be simplified somewhat more to



4.5-41

i A = li(4.56-4)

for the first stage and the second stage equation,

M. -vI = (4.56-5)

where

=i =i -d'

= i -d

SAti  .I

i= y i. -

i 1-

The above abbreviated notation will prove useful during general

algorithm and code discussions.



4.5-42

4.56.20 DETAILS OF THE CHARGING ALGORITHM

The formulations of the charging equations defined in Section

4.56.10 will be used to describe the quantities used by NTERAK to model

surface charging.

The conductance matrix, £, contains the bulk, surface to surface,

and conductor to conductor conductivity terms. The capacitance matrix,

, is constructed from the interconductor, bulk and surface to infinity

capacitance terms. Currently the capacitance from the surface to

infinity uses a distance to the sheath of 1 meter.

The total surface currents, 1, are calculated using the surface

voltages, V. The models for the ion and electron currents to the

surface have been discussed in Sections 4.53 and 4.52, respectively.

The voltage change during a stage, AV. and AV., is found by

solving Eqs. (4.56-4) and (4.56-5), respectively, using the Incomplete

Cholesky Conjugate Gradient (ICCG) method described in Section 4.30.

The ICCG matrix solver solves the charging equations quickly and

efficiently even for large satellites.

The crucial portion of the implicit charging equation is the

current derivative, dI/dV. Each of two stages has a different method of

calculating the derivative.

The first stage attempts to make an intelligent guess based on

user defined constants and results from previous iterations. Two

possible derivatives may be calculated for each surface. The final

matrix, which is diagonal, is built of these independent terms. The

first defines the crossover or equilibrium voltage, where the total

current is zero, to be XDVFAC*DVLIM volts away (XDVFAC and DVLIM are

input parameters discussed in Section 6.43.30). Or as it is computed on

a surface by surface basis using



4.5-43

i = - XDVFAC*DVLIM

The other calculation method is used when previous iteration

information indicates the crossover voltage has been overshot.

Obviously this method cannot be used for the first iteration. The

second method is

2*1 i
dV V. - V.
'i2 I-1

which predicts equilibrium to be reachable with half the voltage change

of the previous timestep iteration. When both forms are applicable

(i.e., after an overshot by a surface in at least the second iteration),

the more negative current derivative is used.

The voltage change, AV'i, found by ICCG using the first stage

current derivative can then be solved to find the new predicted surface

voltage list, V'i+1 . This result is used to find the second stage

current derivative after a voltage limiting process.

Finding the most useful voltage, V" i+1' for the second implicit

stage current derivative requires two steps. First, the voltage change

estimated during the first stage may need to be modified to correct

obvious problems, like voltage overshooting or destabilizing voltage

changes due to the influence of other surfaces.

Figure 4.56/1 shows a hypothetical I-V curve possessing multiple

crossovers. Upper and lower boundaries enclose the crossover voltages

and are used to limit the initial voltage approximation. This keeps the

surface voltage from straying too far from the appropriate



4.5-44

crossover. This feature also stabilizes the surface charging by

reducing the voltage changes in regions where the I-V curve has a

rapidly varying slope. It also allows the user to exercise his

knowledge to produce a more efficient charging sequence by choosing the

boundary voltages. If a surface voltage is outside the bounded region

and moving away from the nearest equilibrium point, the estimated

voltage change is limited to a maximum of DVLIM (Section 6.43.30).

Since the potential is leaving the vicinity of the crossover point,

slowing the movement helps to stabilize the problem. Usually this event

is due to the influence of another capacitively coupled surface.

-V

Figure 4.56/1. A multipi c.-s-ver i-V curve. Voltages Va and Vb mark

the upper ar,6 lower boundaries of the region known to

enclose both the stable equilibrium points, V1 and V2 .

Another problem caused by a second surface is a surface potential

being driven in the direction opposite to the one expected due to the

environmental fluxes. It is presumed that during the second stage the

external influence (usually the underlying conductor) will be

constrained and greatly reduced. Thus, the sign of the voltage

increment is changed to counteract this effect to establish a more

reasonable dI/dV.



4.5-45

The next step is to calculate a current for the voltage found

above. If the new current has the same sign as the initial current, the

crossover has not been reached yet and a derivative can be calculated

using the two points. If the sign of the current has changed, the

surface potential overshot the crossover point. In this case, another

current point is found between the first two voltages. The third

voltage used to find the current point is the initial voltage, V'~ i+l'

plus the minimum of the voltage change calculated during the previous

timestep (the keyword DVTEST, Section 6.43.30, is used during the first

iteration) and half of the difference between the limited voltage, found

during the first step, and the initial voltage. A parabola is fitted

through the three points and used to interpolate an estimated

equilibrium potential where the total current will be defined to be

zero. This method successfully dampens oscillating voltages and forces

the problem to converge to a steady state solution. If the limited

voltage is actually equal to V'. a small perturbation factor (VWIGGL,

Section 6.43.30) is added to prevent numerical problems when the second

stage derivative is calculated.

The set of surface voltages at the conclusion of this limiting

process, V" i+1' is used to calculate the second stage current

derivative. The second stage derivative actually used to solve the

second stage charging equation is defined to be the minimum (most

negative) of the second stage derivative found using Eq. (4.56-3) and

the derivative used during the first stage. Or

= i n -V ' V"~TV dy i, - ]
M I ftM -V1

The second stage may now be solved using ICCG to find V the new

surface voltage list.



4.5-46

4.56.30 PARTICLE BEAM CHARGING EFFECTS

Particle beam effects are accounted for in the surface charging

model. Presently, particle beams are only seen as a current source (or

drain) on the conductors. The interaction of returning beams with the

object surfaces are not taken into account.

The beam's current contribution is added to the conductor to which

it is attached until the conductor voltage is greater than the beam

energy. The dI/dV term for the particle beam is discussed in detail in

Section 4.51.



4.5-47

4.57 CHARGING MATRIX FORMULATIONS

To discuss the solution to Eq. (4.50-1), the notation of Section

4.56.10 is used to write

M AV = R (4.57-1)

where M includes the capacitance, conductance and current derivative

matrices. When the number of vector components is not too great

((1000), the Incomplete Cholesky Conjugate Gradient (ICCG) method is

found to be an efficient means of solving Eq. (4.57-1) (see Section

4.30).

Experience has shown that ICCG is most effective when M is

diagonal or nearly diagonal (diagonal elements >> off diagonal

elements). To see how M may be improved, write (4.57-1) as

(MlM --- M)AV = R

If surface 1 connects to infinity (subscript G) and conductor C, and

considering only the capacitance,

I-C 1G -CliCj ~ C C

1 = Jand M =

C c 1C -C CG)

where C. > CIG, CCG. (That this is a legitimate example, see the

complete sample problem worked in 4.57.10.) It is the off diagonal

entries of CIC that need to be removed. This is accomplished by

transforming (4.57-2) to



4.5-48

AV1 -AVC,

(M1  M2' -) M 1) V - = A

A column transformation for each surface will "clean up" the upper right

triangle of M, while producing a transformed potential vector where

surface potentials have been replaced by the potential difference

between the surface and the underlying conductor. The lower left

triangle of M is diagonalized and symmetrized to the upper by similar

row additions with corresponding transforms of R on the right hand side.

Currents (in R) to surfaces remain unchanged, but currents to conductors

are replaced as

IC - IC - S' Is

where the sum is over all surfaces connected by capacitance or

conductance to the main conductor, C and over the surfaces connected to

their own underlying conductors; other conductors are treated as

surfaces and referenced to C. The a and V on the right hand side are

treated identically to a, C and V on the left. Finally, the current

derivative has terms in the same elements as the capacitance to infinity

terms and is manipulated the same way.

Another feature of POLAR's charging model will change the previous

transformations. This will occur when the routine computing the surface

currents during the first stage (MAKJ1) finds the total current's sign

is determined by the size of the electron secondary currents. In this

circumstance the surface potential is controlled by the normal electric

field. This may occur when a secondary or photoelectron spacu charge

density becomes large enough to form a small barrier to the low energy

portion of L'ie emitted spectrum. Such a surface will be flagged and get

its potential floated in the Poisson



4.5-49

solution according to the d/dt ( 6 ) = 0 condition, while being held

fixed during the circuit solution.

This fixing is not compatible with the V transformation, so POLAR

is forced to solve the circuit model with the original equations.

Accuracy does not suffer, but ICCG will require more time for the same

level of convergence.

Other conditions may also arise that will require a surface cell

to be held at a fixed potential.



4.5-50

4.57.10 AN EXAMPLE OF MATRIX FORMULATION

Figure 4.57/1 shows the circuit diagram of an object which can

be used to demonstrate the various matrix formulations. This object

could be a 2 x 1 flat plate with two insulating surfaces (nodes 1 and

2) and two exposed conductors (nodes 3 and 4). By convention, the
ground conductor is defined to be first named conductor, or in this

problem, node 3. In the following example, the current derivative

terms are left out. Since they would have appeared everywhere there

was a capacitance to infinity term, they need not be carried through

the example.

+ 212

ICI2

C13 R13  C24 R24

V38  C V4B
C34

Figure 4.57/1. General circuit model used to study the matrix con-
struction (see Figure 4.55/1 for a legend of circuit
elements).



4.5-51

Using Kirchhoff's rules, the equations describing the current

balance at each of the nodes can be written as

1 cdt (OV1) + ('13 C1 3  d ) 1V1 - (V3 + ViB)]

_ (a 12  C 12 dt) [(V2 V2B) - (V-V1B)]

12 _C 2G d (OV2) + ( 2 4 + C2 4 d) (V2 _(V4 + V2B) ]

* (12+ C12 dt) [(V2 - V2 B) - (V1 - V1B) ]

I __Cd [0_(V d _ L3 3G dt (V3  V3 B)3 - + C1 3 d) [V1 - (V3  V11)]

-(034+ C3 4  O (V4 - V3 )

i4 C4G d [0 N + V4B)] - (a24 + C24 dt (V2 - (V4 + V2B)]

+ (O3 4 + C3 4 dt) (V4 - V3)

where

1

If the indicated time derivative is performed, the magnetic field
voltages across capacitors disappear (the various VB terms). Writing

the above equation in matrix form and using V. in place of dV./dt,



4.5-52

11, ICIA+C12+C13 -C12 -C13 0 1

12 = -C12  C2G+C12 +C24  0 -C24  V2

13 -C13 0 C3G+C 13+C34  -C34  V3

I14 0 -C24  -C34  C4G +C2 4 +C 34 4

012+o13 -a12 -a13 0 VI'

-o12 a12 +24 0 24 V 2

-013 0 o13 +o34 34 V3

0 -a24 34 a24 +34 4

o12-o13 12 0 0VIB

12 - 12-24 0 0V2B

013 0 0 0 V3B

0 024 0 0V4B

This is the fixed form of the matrices. When any node other than

the ground conductor is fixed, the above matrix formulation is used.

Note that the conductor magnetic field terms have dropped out of the

matrices, thus the magnetic contribution vector can be changed.

V V1B' V1B,
V 2B V2B

V 3B 01
V4BJ 0 ]

in order to simplify its appearance. The currents to the conductors,

though, still depend upon surface voltage which includes the magnetic

field voltage contribution.



4.5-53

As previously discussed in Section 4.57, it is desirable to

diagonalize the matrix by moving the larger bulk capacities to the

diagonal. To diagonalize the matrices, the rows and columns of the

insulators are added to their underlying conductors. Then the

conductors need to be added to the spacecraft ground conductor. As an

example of the linear algebra involved, a simple case is worked out. A

two variable linear equation is defined as

21 2 1 C

To add columns of a matrix without changing the equations,

11 81 [1 1] [10 -1 [b2J C 1'i
2 1 a2 2J 1 0 1 b2 C2,

a21 a21 + 22) b 2 2.

or adding rows,

(1 0) [:11 :12 (ij=[ 0

a 11  12 1 [b1

C +a 2 1 1 2 a 2 2 J b +

and combining the results,

I a11  1 1 +a1 2  1 [bl-b 2] C1

a1 1 a 2 1  1 1 .a 1 2 a 2 1 a 22] b 2  = C1+C2 1

Applying the above result to the fixed matrix form, the

diagonalized or unfixed form can be written as



a
4.5-54

I1 CG+C12 +C13 -C12 CIG -C12 1- 3

12 -C12 C 2G+C12+C24 C C 2G+C12 2- 4

I1+I2+I3+I4 C10  C20  CIG+C2G+C3G+C4G C2 +C40  V3
*

12+1 4  -C12  C2G+C 12  C2G+C4G C2G+C4G+C 12+C 34  V4- 3.

a 12+a13 -C12 0 -a 1 2  V 1-V3

-12  12 +24 0 12 V2-V 4
4I

0 0 0 0 V3

-a12  a12  0 a1 2 +a3 4  V4-V3

-a12-a13  a12  - 13  a12 VIB-v3B"

a12  - 1 2 -a2 4  -24 -a 12-a24 V2B-V4B

0 0 -a12 -a24  - 24  V3B

a12 -012 -a24  -a 12-a ;4  V4B-V3B

Again, if the magnetic portion is multiplied out, the V3B and V4B cancel

or

VB- V3B] IV 1B,
V 2B - V 4 8  V2 8

V3B 0

V4B - V 3B 0

In other words, the magnetic field contribution to the circuit model is

constant in both the fixed and unfixed forms.

Two more matrix formulations are possible with the inclusion of

the biasing of two conductors to one another. They are the biased/fixed

and biased/unfixed forms. Biasing reduces the four



4.5-55

variable problems to three by adding the equation V4 = V3 + Vbias* So

if the substitution is made and the two conductor equations are added,

the set of equations becomes

I AC 1  (o-V1) + ('13+C1 3 d I(V + vI)]

(or 1 C L V 3 V B)

- (o12 12 [(V2 - V2B) - (V1 - VIB)]

2 2G dt -v2) + (24 + C24 d) IV2 - ( + Vbias + V2B)1

+ (a +c C d-
12 12 d) [(V2 - V2B) - (V1 - VIB)]

I.I= -C [0-(V+VC -
3 4 3G dt 3V31)] - ('13 C13 dt [V1  (V3  VIB)]

d

4G (V3  Vbias + V4B)

S( 24 + C24 dt) [V2 _ (V3 + Vbias + V2B)]

Note that the a34 and C34 terms are lost upon addition. Or in matrix

form, these become

1 1 ICA +C 1 +C 13 -C 12-C13,

13 +14 , -C 13 -C 24 C G+C 13 +C 4G+C 24, V 3o12 13 - 12 -a13 V1

-o12 +a24  -C24  V 2

-o13 -C24  a13+o24, V31 -2 1 3 o r 1 2 'V 1 3

+ 12 -a12-a24 V2

U13 o2 4  0 24
1 l0l 0 01 V0B

00- 01V
* 024 Vbias

0 a24



4.5-56

where the magnetic field has disappeared from the matrix again. This is

the biased/fixed formulation of the circuit equations.

To find the biased/unfixed formulation, the linear algebra

techniques are applied as before to find

PC A Cl2 +C13 -C12 CIG 43
1 = -C12  C2G+C12 +C24 C2G 2- 3

[1 +12 +13 +14) C1A C 2G C1A +C2G+C3G+C4 G) 3

o12 +13 -o12 0 [V-V3'
+ -o12 '12 +24 0 1V2-v 3

lo oo vj
-o 12-o 13 ao 12 -13 ' [v iB

0 0 0

+ 0 -24 0 V ias

0 0 0

It should be pointed out that when these forms are used by the

code, the magnetic field and bias (if appropriate) contributions are

computed to become vectors then added to the current vector and the sum

is manipulated into the appropriate form.



4.5-57

REFERENCES

4-1 Mandell, M. J. and I. Katz, "NASCAP Programmers' Reference
Manual," S-CUBED Report SSS-R-84-6638, March 1984.

4-2 Parker, L. W. and E. C. Sullivan, NASA Report No. TN-D-7409, 1974.

4-3 Parker, L. W., "Calculation of Sheath and Wake Structure About a
Pillbox-Shaped Spacecraft in a Flowing Plasma," Proceedings of the
Spacecraft Charging Technology Conference, AFGL-TR-77-0051, NASA
TMX-73567, 1977, ADA045459.

4-4 Laframboise, J. G. and L. W. Parker, "Probe Design for Orbit-
Limited Current Collection,* Phys. of Fluids, 16, N5, 1973.

4-5 Kershaw, D., "The Incomplete Cholesky-Conjugage Gradient Method
for the Iterative Solution of Systems of Linear Equations," J.
Comp. Phys., 26, p. 43, 1978.

4-6 Katz, I., D. E. Parks, M. J. Mandell, J. M. Harvey,
D. H. Brownell, Jr., S. S. Wang and M. Rotenberg, "A Three
Dimensional Dynamic Study of Electrostatic Charging in Materials,'
NASA CR-135256, August 1977.

4-7 Hackenberg, 0. and W. Bauer, Advances in Electronics and Electron
Physics, 16, p. 145, 1962.

4-8 Feldman, C., Physical Review, 117, p. 455, 1960.

4-9 Ashley, J. C., C. J. Tung, V. E. Anderson and R. H. Ritchie,
(i) AFCRL-TR-75-0583, ADA019507; (ii) RADC-TR-76-220, ADA029449;
(iii) RADC-TR-76-125, ADA025488; (iv) IEEE Transactions on Nuclear
Science, NS-25(6), p. 1566, 1978.

4-10 Darlington, E. H. and V. E. Cosslett, "Backscattering of 0.5-10
keV Electrons from Solid Targets," J. Phys., D5, p. 1969, 1972.

4-11 Shimizu, R., "Secondary Electron Yield with Primary Electron Beam
of Kilo-electron-volts,' J. AppI. Phys., 45, p. 2107, 1974.

4-12 Handbook of Mathematical Functions, U.S. Department of Commerce,
National Bureau of Standards, Applied Math Series, 5S, p. 924,
1964.



4.5-58

REFERENCES

(continued)

4-13 Cousinie, P., N. Colombie, C. Fert and R. Simon, "Variation du
coefficient e'emission electronique secondaire de quelques metaux
avec Iengergie des ion incidents,* Comptes Rendus 249, p. 387,
1959.

4-14 Hill, A. G., W.W. Buechner, J.S. Clark and J.B. Fisk, OThe
Emission of Secondary Electrons Under High-Energy Positive Ion
Bombardment," Phys. Rev., 55, p. 463, 1939.

4-15 Foti, G., R. Potenza and A. Triglia, "Secondary-Electron Emission
from Various Materials Bombarded with Protons at Ep < 2.5 MeV,
"Lett. al Nuovo Cim., 11, p. 659, 1974.

4-16 Aarset, B., R.W. Cloud and J.G. Trump, "Electron Emission from
Metals Under High-Energy Hydrogen Ion Bombardment," J. Appl.
Physics., 25 p. 1365, 1954.



5.1-1

5. POLAR CODE STRUCTURE

This chapter is designed to provide insight into the internal

workings of POLAR. Whenever possible, actual subroutine names and

variable names will be used.

5.10 TOP DOWN VIEW OF THR POLAR PACKAGE

POLAR is actually four standalone programs, and several utility

programs, that communicate through a minimum number of files. This

approach allows a high degree of flexibility in model building while

minimizing the amount of unnecessary computing. These programs are

VEHICL, ORIENT, NTERAK, and SHONTL. Their functions are described

below. Whenever scratch files are used, they are assigned and disposed

of automatically. In general, only two fiies are needed to allow

communication between the four modules.

VEHICL is the object definition program. It utilizes much of the

user-oriented object definition procedures developed at S-CUBED for

NASCAP. With VEHICL, one uses a variety of basic building blocks to

define the vehicle to be modeled on a yariable sized 3-D grid. One also

defines all of the surface properties and underlying conductors. VEHICL

then completes the vehicle electrical model and creates a number of
"connectivity" tables to accelerate NTERAK execution. This information

is written on two files, 11. and 19., which carry this information to

the other modules.

ORIENT is the attitude control program. U er input is simply the
dominant plasma flow direction viewed from the vehicle. If necessary,

ORIENT will rotate the vehicle and object grid so as to keep the wake

direction predominantly in the +Z direction. ORIENT will also

restructure most of file 11 in order to organize the slices properly. A

set of six ORIENT runs could catalog all of the possible coordinate

orientations, and allow for all Mach vectors.



5.1-2

NTERAK is the biggie that actually calculates the vehicle-plasma

interaction. The internal workings and I/0 are the subject of most of

this document, but it should be emphasized that once a Mach vector has

been defined, the extended computational grid will be "burned" into file

11. The file retains a complete restart-continue capability, but a

fresh file should be used if the Mach vector or the grid dimensions are

to be changed.

SHONTL is the machine independent plotting package. It is

designed to be run semi-interactively. By this we mean that plotting

directives are entered by a "keyword" input system that functions in

both batch and interactive environments, but nothing is plotted until

the session is concluded and the appropriate plotting utility is

executed. This somewhat cumbersome procedure is necessary to maintain

the machine independence of SHONTL. SHONTL can be used after any of the

previous three modules to graphically check the work progress at any

given stage. SHONTL reads from file 11, and communicates with the

device drivers through file 2. The file 2 contains the generic pen-move

and vector commands written on file 2 by SHONTL which are later

translated to a specific graphics display device.

SHONTL is also a powerful debugging and diagnostic tool. It can

be used to produce hidden line plots, print data stored using the

buffered I/O routines and can be used to see up diagnostic or test runs.

Two utilities are provided for pre- and post-processing POLAR

calculation, SUCHGR and TRMTLK. Several device dependent graphics

programs which display the contents of file 2 are included. There are

also support tools available to handle job control tasks and software

maintenance of the source code.



5.1-3

5.11 VEHICL

Figure 5.11/1. VEHICL structure.

The vehicle or object definition phase of POLAR is done once for

each object by the use of VEHICL. Figure 5.11/1 depicts the

organization of VEHICL. The subroutine tree is traversed from left to

right.

The first step is to set local VEHICL default parameters. The

default values to be used later during NTERAK are set by VEHICL. This

is also done during the default setting phase.

After setting defaults, the routine VEHDEF solicits input from

standard input (unit 5 in standard Fortran) in either a batch or

interactive mode.

When the end of the keyword input portion has been completed,

the OBJDEF subroutine is called to read the object description from

file 20 and initialize the element and surface lists.

Upon successful completion of satellite definition, PLTSAT

generates plots of the satellite if desired. Hidden line perspective

plots and/or axial material plots can be generated.



5.1-4

During the initial object definition, general tables and lists are

created. The final phase of VEHICL is preprocessing these lists to

generate the various tables used by NTERAK to speed up the calculations.

The generation of these detailed lists imposes a strict set of object

validity tests and frequently errors in object definitions are found in

this part of VEHICL.



5.1-5

5.12 ORIENT

Figure 5.12/1. ORIENT structure.

Because the modeling of plasma flow is facilitated by the use of a

preferred direction during computations, the plasma flow is defined to

be in the Z direction in NTERAK. This is not always the most

convenient way to define an object. ORIENT provides the means to rotate

an object to a preferred orientation from the arbitrary orientation used

during definition.

The first step is to solicit input from standard input in either a

batch or interactive mode. After command input is complete, the lists

generated by VEHICL are permuted to the new set of axis.

ORIENT can be called several times in sequence to perform many

permutations. The final lists are in the same form as those generated

by VEHICL. The ORIENT can, of course, be skipped altogether if the

object is already properly oriented or no flow is going to be used.



5.1-6

5.13 NTERAK

InitializeJ

Probleme

Initial Potentil Psrtlurf
Wakes Potenti lver Puer Charging

Figure 5.13/1. Structure of NTERAK module.

NTERAK has two major divisions, the initialization processes and

the time integration sections. Figure 5.13/1 depicts these portions

of NTERAK.

The first calculations needed are those which define the wake

structure and the initial surface and space potentials. The details

of the problem determine the complexity, or even the necessity of

these computations.

The majority of interest in most cases is upon the results of

the time integration portion of NTERAK. NTERAK iterates between the

potential solver, particle pusher, and surface charger to find a

quasistatic solution for a problem.



5.1-7

The potential solver, PWASON, uses the space charge densities and

the surface potentials to compute space potentials. The particle

pusher, CURREN, uses the space potentials to calculate a particle sheath

and to compute electric fields to push the attracted specie of particles

from the sheath to the object surface. The particle pusher computes new

space charge densities within the sheath and iiew particle currents to

the object's surfaces. The surface charger, CHARGE, uses the particle

currents to compute new surface potentials. The new surface potentials

and space charge densities are then used again by the potential solver

to continue the iteration.

Each of the three modules are independent of one another and if

one of them is not necessary for a calculation, it can be left out of

the iteration cycle.

NTERAK can be stopped at any point during initialization or the

time integration using the keyword input. Input is accepted in either a

batch or interactive mode from the standard input file. The input is

used differently than in VEHICL or ORIENT. Keywords are read until one

of the calculations pictured in Figure 5.13/1 is requested. At that

point input is suspended and the computation is performed. At the

completion of the calculation, input is resumed. In this manner, input

parameters can be changed from iteration to iteration.

After any calculation, NTERAK can be stopped and the intermediate

results viewed using SHONTL or whatever. The run can be continued by

starting NTERAK again with the appropriate instructions.



5.1-8

5.14 SHONTL

The SHONTL module is described in detail in Section 5.82. The

SHONTL module is used to produce plots, print grid and list data stored

on the buffered I/0 files 11 and 19, make hidden line perspective

pictures of the object, and serve as a diagnostic, debugging, and

general all purpose driver.

5.15 UTILITIES

In addition to the four main POLAR executables, there are several

specialized utilities to aid the analysis of spacecraft/environment

interactions. The utilities provide the means to perform quick

calculations before beginning NTERAK jobs, the ability to study the

charging of the individual spacecraft surfaces, interfaces to two

different standard graphics packages, a method of NTERAK batch job

control, and some tools to maintain and modify the source code for the

POLAR package.

SUCHGR performs quick analysis of the interaction between

materials and POLAR environments. This utility contains both orbit

limited and space charge limited algorithms for calculating the

equilibrium surface potential, surface currents and sheath radii.

Typically SUCHGR calculations are used to anticipate the charging

behavior of surfaces, ignoring geometric and surface/surface interaction

effects, before beginning NTERAK computations.

After NTERAK charging calculations, TRMTLK can be used to provide

information on the charging history of individual surfaces and

conductors. The surface voltage charging history, current breakdowns for

each insulating surface, and other items are taken from file 16 and

displayed in both table and plot formats. Tools are available to select

groups of surfaces or individual surfaces with out requiring surface

numbers.



5.1-9

Two types of standard display device plots are supported by this

version of POLAR. Plot files are translated to Tektronix 4014 graphics

commands by T4014. Postscript versions of file 2 can be created by

PSTPLT. For 'computing environments where the calculations are performed

on one machine and graphics are viewed on another incompatible machine

(for example NTERAK is run on a batch oriented CRAY and plots are viewed

on a VAX system), a pair of routines can be used to transfer plotting

data in an ASCII format. READ02 converts the contents of file 2 (an

unformatted file) to a text file, file 4. The text file can then be

moved to a second machine and displayed in Tektronix 4014 graphics

commands with PLOT04.

Since NTERAK calculations can take a fair amount of time,

sometimes it is desirable to.,stop a running batch gracefully and then

restart it again later. At convenient intervals, NTERAK checks for job

control input files (.JCI files). STOPRUN sets a flag to indicate the

desire for a graceful termination of the current run. KILLJOB sets a

flag to kill the run immediately upon detection.

The source code for POLAR is normally organized in a directory

tree, where each library and executable have their own subdirectories of

source code. A shell script, MAKEPI, is used to compile and load the

POLAR executables. A specially tailored version of MAKEP1 is available

for making modifications of POLAR without incorporating them into the

main version of the POLAR package.



5.2-1

5.20 SLICE GRID SYSTEM

The displaced slice grid system is designed to provide the

computational space in which to solve Poisson's equation for the shuttle

orbiter, including a wake extending many spacecraft lengths. Hence the

grid must continue for an arbitrary length in the plasma flow direction.

To facilitate this, the grid is composed of a variable number of

XY slices, stacked along the Z axis, rather like a loaf of sliced bread.

Figure 5.20/1 illustrates a displaced grid system along with a number of

important parameters. Objects are defined on a rectangular NXOB x NYOB

x NZOB grid (5.11, 6.20). In all cases, the object grid will have been

rotated by ORIENT such that the dominant component of the plasma flow

vector VMACH is oriented along the.+Z direction. As shown in the

figure, the grid follows VMACH by stepping ,1 unit in the X and Y

direction every IDELX and IDELY mesh units along the Z direction (the *1

step follows the sign of IDELX or IDELY). These step intervals are

calculated in the routine SPACE according to the relation (FORTRAN)

IDELX = VMACH(Z)/VMACH(X) • 0.5

IDELY = VMACH (Z)/VMACH (Y) * 0.5

where the * follows the sign of VMACH(X). Since IDELX is an integer,

the 0.5 centers the velocity ratio between integral increments.

The computational grid must enclose the object grid with a minimal

amount of wasted space. To accomplish this, the routine SPACE

references the two grids at the point shown in Figure 5.20/1, then

calculates the NXGRTH(NYGRTH) necessary to fit the grids together. When

the user anticipates the need for additional work space, the INPUT

parameters NXADNT, NXADNB, NYADNT, and NYADNB can increase the



5.2-2

VIRTUAL NODE
BOUNDARY

18.0

16.0 I LAST REAL NODE
BOUNDARY

14.0

12.0

10.0 NXGRTH

6.0

4. kjIt T GRID

. 4. . **1
I I

-2.0 . . .i-

-6.01 I - _ _ _ _ _ _ _ _ _ _ _

-2.0 .0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

z

Figure 5.20/1. A X-Z cut of a typical NTERAK computational mesh

showing the object definition grid and the computed
(NXGRTH, IDELX) and user-specified (NXADNT, NXADNB,
NZADON, NZTAIL) grid parameters.



5.2-3

X-Y grids without requiring a redefinition of the object space. The

GRTH and ADON parameters are includeu into the final NX x NY dimensions.

The computational space is characterized by the following

parameters:

NXOB,NYOBNZOB = The real node dimension of the

object grid along the X, Y, and

Z directions.

NX = NXOB + NXGRTH + 2 x NXADON

= the real node dimension of a

slice along the X direction.

NY = NYOB + NYGRTH + 2 x NYADON

NZ = NZOB+NZTAIL + NZADON

The NZADON and NZTAIL are also inputs to NTERAK and are currently

limited to total a Z node count of 100. This limit could be extended

indefinitely subject to available disk storage and budget limitations.

This last feature is the intended result of NTERAK's data management

system. This system allows models to be constructed primarily on disk

with the computer "core' used to perform arithmetic on small volumes of

space.



5.2-4

5.21 SLICE MACHINERY

The grid machinery consists of routines designed to move or page

grid information between disk and core. In both media, information for

each of the vectors ('p', 'r', 'u', etc. (4.21.1) are called vectors

even though they are scalars at a particular grid point) involved in a

calculation is organized into individual one-dimensional arrays

corresponding to each X-Y slice.

NTERAK distinguishes between two types of nodes, real and virtual.

At real nodes a problem's variables are truly variables. Virtual nodes

exist as the outer boundary of the problem, where values are generated

according to the boundary conditions. There may be one or two virtual

nodes beyond the edge of a slice (see Figure 5.20/1) depending on the

proximity of a step. Only real nodes are paged in and out. Each vector

slice has a real node length NX * NY with the assumed convention that

the X coordinate varies the fastest.

In order to relate the slices to one another and perform

arithmetic with minimal confusion, it is necessary to adopt a standard

coordinate system. There are two possible choices; object and slice

coordinates. We have chosen object coordinates as the primary system,

but slice coordinates are sometimes required by lower level routines.

Object coordinates reference the *least" real node of the object grid as

(1,1,1) (see Figure 5.20/1). By *least* we mean the node for which

NX * NY * (Z-1) + NX * (Y-1) + X is a minimum. Thus the least real

node object coordinates of some slices may be less than zero, while the

slice coordinates of the least node will be (1,1,ZSLICE) where ZSLICE

numbers from 1 to NZ. The relationship of the slices to each other is

written in the common block MESHY by the routine GRID. This block

contains the object coordinates of the least real node of each slice.

For further detail concerning subroutines and common blocks see

Appendices A and B.



5.2-5

NTERAK's grid machinery exchanges information between disk and a

special common block called CBUF. The core location of CBUF is such

that its addresses are the highest of all other data and instructions.

On many machines this allows the CBUF length to be extended or reduced

dynamically during execution to precisely match storage requirements.

The allocation and addressing of data space in CBUF is controlled by

three routines (see Section 5.30), MRBUF, BUFCLR, and BUFSET. MRBUF is

called only once from the level 2 routine SPACE and initializes the

array VPROPS which contains all of the individual vector properties that

affect the vector's handling storage requirement in CBUF and on disk.

Subsequently, any computational process requiring vector slice

transfers to/from disk will first call BUFCLR. BUFCLR clears the ADDRES

common block which contains the CBUF addresses, releases any dynamical

requested core, and resets other storage control variables.

The next step is to call the routine BUFSET, passing it a list of

up to four vector names and the number of slices that will be needed in

core. BUFSET will assign each vector a region in CBUF, and list this

addressee in the common ADDRES. BUFSET may be called repeatedly for a

total of 12 vectors. For example, in an operation requiring three

slices of 'R', 'R' would be assigned the address sequence; A, B, C, A,

B, C, A, B, ... , for all 1-NZ slices. The actual transfers are

effected by PAGER, which can read, write, or read-write slices. Suppose

that 2, 3 and 4 were in core starting at the CBUF address B, C and A,

respectively. If PAGER were called to read-write 'R', for slices 3-5,

'R' slice 2 at B would be written on disk, and slice 5 would be read

into CBUF at B. The R slices 3 and 4 would remain untouched.



5.2-6

Some other routines that are commonly used with this grid

machinery should be mentioned. One is XYGRID, which looks in the MESHY

common block and returns the X and Y limits of a slice in object

coordinates. The others are XBNDRY, YBNDRY, and ZBNDRY. These routines

will take an element index (equal to the least index of its eight nodes)

and determine which of the element's eight nodes are real or virtual

(boundary nodes). This information is kept in the array MBXYZ(8). To

form an element on the staggering grid, VERTIO is called to pick four

nodes from each of the two bordering slices totaling eight vertices.

Individual words of a vector at a node are located in CBUF by the

statement function (or integer function on some machines) IPUFAD.

In retrieving these words, the MBXYZ array is consulted to

determine if a node is virtual. If so, the boundary value (currently

zero) will be used for that node.

The routine GETSCR is a cousin to VERTIO. It will 'GET' or 'REP'

the element centered quantities 'GI' or 'SCRN'. 'GI' is the name given

to the normalized ion densities (3.20, 4.41), and 'SCRN' refers to

screening factors (4.43).



5.2-7

5.22 VOLUME ELEMENT MACHINERY

To illustrate NTERAK's volume element machinery we will describe

its use by the subroutine COPROD. COPROD's function is to generate the

M *U product and U • • U inner product (4.30). Once slice

information has been accessed and resides in core (5.21), COPROD must

calculate residuals, element by element, and return the vector so

calculated back to the disk in slices. These operations are complex and

require fairly elaborate machinery. We begin by offering a brief

overview.

COPROD begins by reading in the relevant slice information,

establishing a section of the computational space in core. This volume

is swept, element by element. Each element is characterized by the

coordinates of its lowest indexed vertex. The potentials, and other

vector information, for each of the eight vertices of a particular

element are extracted from the main /CBUF/ array by VERTIO. VERTIO also

replaces or augments array entries with calculated vertex information.

The potentials at the boundary of the computational space are

assumed to be fixed and known (presently set to zero). Hence they are

not stored explicitly in CBUF. Instead, COPROD examines each vertex of

each volume element and determines if any be an implicit boundary.

Those that do are fixed at the boundary potential. VERTIO (5.21,

Appendix B) takes the X-Y displacement of the slices into account in

picking out the vertices. Having set the potentials at the vertices of

a particular element with VERTIO, COPROD calls ELEMNT to look up its

characteristics in the list 'LTBL'. LTBL is an array with an entry for

each element in the object grid, 'LTBL'. LTBL is an array with an entry

for each element in the object grid, containing the following bit coded

information (5.23): the element type, the number of surface cells

sharing one or more nodes with the element (NCELLS), the element

orientation, and the top/bottom flag.



5.2-8

The number of surface cells (NCELLS) sharing nodes with the

element is used to refer to a second list, LCEL. If NCELLS is non-zero,

DCVCEL is called to decode the next (NCELLS + 1) entries in the LCEL

(5.25) list. The first word of this group will be an element I.D.

number used merely as a check. The remaining words are also bit coded

with: the surface cell number, the NODCOD telling which nodes are

shared with the surface, and the FCN number (4.21) telling which element

face, if any, the surface occupies.

If a vertex or node is shared by a surface cell, its potential is

replaced with the surface potential for that cell, stored in the array

SVRFV, sequentially by cell number. In the same way the contribution to

the residual derived from the shared vertex is returned to the list

SVRFR rather than the residual vector. Hence the surface potentials

play the part of additional grid points, or variables in the matrix

conjugate gradient equations. If a vertex is shared by fiure Liai une

surface cell, the adjoining cell potentials are averaged by FORFIL

(4.21) and assigned temporarily to the vertex. Once the vertice

potentials have been collected, the residuals (4.30) are calculated by

either PCUBES or ECUBES (4.20) and shared back to surface cells SRFR

entry.



5.2-9

5.23 ELEMENT TABLE, LTBL

The element table, LTBL, is a list with one entry for every

element in the grid. An element's LTBL entry can be accessed by

calculating its relative addres i. if it were a 3-D array LTBL (X,Y,Z)

where the Z range starts wit -.- ; ,rst slice in core (5.21).

Each word is coded n thE >.njlowing manner:

31 10 9 8117 6 5 4 3£2 1 ') 9118 7 6 5 4 3112 1 01

D ( B A

where:

A - The element-type number.

B - The number of surface cells sharing nodes with the element

(up to 15) (NCELLS).

C - The orientation of the cell. This is only significant for

partially filled cells and is explained below.

D - Top/Bottom flag for elements above or below a thin plate.

D = 1 - bottom

= 2 - top

= 3 - both top and bottom, type 5

The following element types are allowed:

Type Number Bits Descriptien

0 000 Empty cube
1 001 Half-empty wedge
2 010 Cube with diagonal on

one face
3 011 Tetrahedron
4 100 Truncated cube
5 101 Empty cell bisected by

a diagonal thin plate
6 110 Unused
7 111 Filled cube

These volume elements are described in 4.21.



5.2-10

The orientation code is a nine-bit (three octal digit) code

describing how a non-symmetric element may be transformed into its
"standard" orientation. The transformation (consisting of rotations,

inversions, and translations) to the "standard" orientation is that

transformation

which takes vector r into vector s, where

E = (xyz)
s = (q(il), q(i2), q(i3))

iI is the octal digit in bits 14-12

'2 is the octal digit in bits 11-19

i3 is the octal digit in bits 8-6

q(1) = x q(5) = 1-x

q(2) = y q(6) = 1-y

q(") = z q(7) = 1-z

For example, the octal code 365 implies the transformation

= 0 1-0 r + 1
" -1 0 0 - 1



5.2-11

5.24 SURFACE CELLS

5.24.1 SURFACE CELL LIST, KSURF

One of the lists produced by VEHICL and stored on file 11 (see

Chapter 5.30 on file 11) is the stirface cell list, KSURF. This list

consists of bit packed word cAirs for each surface cell. The

information content is explained below, and the bit coding convention is

illustrated in Figure 5.24/1. The bit ordering notation used here

assigns each bit the exponent of 2 required to move an integer 1 to that

location by multiplicatioa.

COND Conductor number, 1 to 15.

NORM Surface normal in Miller indices, two
bits for each index. The lowest bit
representing 1 or 0, ar the highest
set for minus, off for plus.

XIYI,ZI = Lowest coordinates of the volume
element with which the surface cell is
associated (the element that the cell
norma! points in to).

MAT Material number, assigned by order of
definition.

B Set for all right-triangular surface
cells (100,010, etc.) and for all
equilateral (111) triangles whose
enclosing volume element is mostly
empty.

H Orientation code for right-triangle
surface cells. The two bits define
the location of the right-angled
corner in the plane of the triangle,
i, j. The greatest bit refers to j.
The j and i are related to the normal
direction as follows:

NORM i

z X Y
X Y Z
Y Z X



5.2-12

XOYOZO Volume element that the surface normal

points out of.

TB 0 - not applicable

1 - bottom surface of a thin plate

2 - top

The KSURF list is written on file 11 by either subroutine VESURF

or ORSURF. Prior to output it is 'Z' ordered to produce sliceability in

the chosen orientation. It is written on file 11 in a series of records

with each record containing all the word pairs with a given ZI

coordinate. These records are indexed by the NWSURF(Z) list in record 1

of file 11. For each ZI of the object grid there is a NWSURF entry set

equal to the number of KSURF words in the record for that ZI. If an

NWSURF entry is zero, their corresponding null ZI record of KSURF is

skipped.



5.2-13

BIT KSURF(1,N) KSURF(2,N)

0
1
2

COND MAT
3
4
5

6
7 ZN B
8

NORM YN

10 XN H
11

12
13
14

XI XO
15
16
17

18
19
20

YI YO
21
22
23

24
25
26

ZI ZO
27
28
29

30

31 TB

Figure 5.24/1. KSURF surface cell list bit code.



5.2-14

5.25 LCEL, CONNECTIVITY

The LCEL list is used in the potential solving segment to connect

node point to surface cells (4.20, 5.22). This is a bit packed list

with the following structure:

ELT#

CODED WORD

CODED WORD

ELT#

The ELT# is a coded element identifier,

ELT# = 4096 x (I + 64 * J + 4096 * K)

which serves as a check for correct addressing in the list. Addressing

is accomplished by accumulating the NCELLS word count from the element

table LTBL (5.22, 5.23).

The coded words are bit packed as follows:



5.2-15

31 0 19 8 7116 5 4 3 2 1 0 9 8 7 6 5 4 3 2111 0 9118 17 6 54 3 2 1 01

D C B A

where:

A - Bits 0-7 are set if the corresponding vertex is shared

with the surface cell. The vertices are numberd with X

changing faster than Y which changes faster tl s Z, e.g.,

for element 1, 1, 1

Coordinates

Number X Y Z

1 1 1 1

2 2 1 1

3 1 2 1

4 2 2 1

5 1 1 2

6 2 1 2

7 1 2 2

8 2 2 2

B - Is the standard orientation surface node number (see 4.21)

that the surface will have when forming the elmnt into

which this surface points.

C - Is the surface number.

D - Is a code for surfaces that are on the top or httom of a

thin plate (4.21.1). The code is the same as ie one used

by the KSURF entries (5.24.1).

0 - not applicable

1 - bottom surface

2 - top surface



5.3-1

5.30 FILE SYSTEM

One of the most outstanding features of POLAR is its file

management system. This system, combined with the sliced grid system

(5.20) allows POLAR to model variably large 3-D problems (20,000 grid

points is common), with fewer than 100,000 words of core. The modules

VEHICL, ORIENT, NTERAK, and SHONTL communicate through the mass storage

files 11 and 19 (see 5.31). Internal to each module, other files of

differing types are used as scratch files. VEHICL uses the NASCAP

object definition coding and thus a variety of NASCAP files are used

initially in VEHICL as scratch files (Reference 1). Two files (11 and

19) are used instead of just one, so that one may be indexed with

literal name keys (19), and the other (11), with number type index keys.

Additional charging information is kept on file 16. This file can be

interpreted after NTERAK runs using the TRMTLK utility.



5.3-2

5.31 MASS STORAGE FILE MANAGEMENT

Data stored on the permanent file 11 and 19, and the scratch file

9 and 10, is written and retrieved using the CDC MSIO system (mass-

storage-input-output). On non-CDC machines, the MSIO routines OPENMS,

WRITMS, READMS, and CLOSMS are provided by POLAR FORTRAN routines which

mimic the CDC versions to provide a machine independent interface to the

host system. We now describe these four routines as they are used in

POLAR.

OPENMS:

Example: DIMENSION IND (NUM)

CALL OPENMS (LUN, IND, NUM, t)

LUN - The logical unit number of the file.

IND - Space provided for a working copy of the file index.

NUM - Length (words) of IND

t - type of index

= 0, number type index

= 1, name type index

To index XR records, a t = 0 file requires NUM > XR + 1;

for t = 1, NUM > 2*XR + 1.

READMS:

Example: DIMENSION BUFR(1000)

CALL READMS (LUN, BUFR(100),NWDS,KEY)

LUN - Logical unit number

BUFR([BO) - Starting address to which data is to be read

NWDS - Number of words to be read

KEY - The index key under which the data record was stored.



5.3-3

WRITl S:

Example: CALL WRITMS (LUN,BUFR,NWDS,KEY, r)

LUN, NWDS, and KEY are as for READMS; data is read from

BUFR. r = -1, always for POLAR. This specifies that a

record may be overwritten only if the new record length

does not exceed the old length. When this occurs, a new

record is written and a link stored in the old location.

CLOSMS:

Example: CALL CLOSMS (LUN)

This routine writes the working index from core to the

file copy. It is called frequently to maintain an up to

date file copy of the index to protect data against

unexpected crashes and stops.



5.3-4

5.32 MRBUF PLUS BUFSET PLUS FRIENDS

To enhance the efficiency of both the execution and development of

POLAR, a formalized system of variable characterization and

identification is used. This begins with the array VPROPS(20,70)

wherein 20 different properties of 70 different variables are

initialized by MRBUF. To set up a work space for a variable (or a slice

of a variable) in the general purpose buffer CBUF, a call is made to

BUFSET using the literal name of a variable (5.33). BUFSET will move

the vector properties from VPROPS to a working array (IAVECS(20,I)) and

the index I will be written into the MELAD common block in the variable

pseudonym. For example

CALL BUFSET(5, 'POT', ... )

would result in space for five Z slices of potential to be allocated in

CBUF with all essential information stored in IAVECS (20,IPOT) with IPOT

being found in the MELAD common block.

The IAVECS properties are listed below, with a V indicating a non-

variable property that is placed in VPROPS by MRBUF.

V IAVECS(1,I) = Name

IAVECS(2,I) = Start address in CBUF

IAVECS(3,I) : Number of slices

V IAVECS(4,I) = Vector length of a slice

V IAVECS(5,I) = Words per vector

(The number of words in a slice is IAVECS(4,I) * IAVECS(5,I).)



5.3-5

V IAVECS(6,I) = Mass storage file number

IAVECS(7,I) = Low pointer (shifted slice coordinates), see

property 14 and Section 5.21

and

IAVECS(8,I) = High pointer used by the data paging routine

PAGER

IAVECS(9,I) = Lower (object coordinates, 5.21)

and

V IAVECS(1O,I) = Upper object limits, inclusive

IAVECS(11,I) = Starting key number for the number key files.

V IAVECS(12,I) = X dimension of a slice

V IAVECS(13,I) = Type of slice or vector. Choices are:

'VARI' - variable length (example, LCEL)

'SNGL' - single slice (example, SRFV)

'WORK' - work space

'OTHR' - other (e.g., FOTO)

1 - object slice (e.g., LTBL)

2 - real grid (e.g., POT)

3 - outer virtual node (e.g., LCOF)

4 - virtual element grid (e.g., DION)

V IAVECS(14,I) Shift added to slice coordinates to prevent

FORTRAN MOD function of negative or zero s'ice

coordinates

V IAVECS(15,I) = Y dimension of slice



5.3-6

V IAVECS(16,I) = Lower Z limit of the variable range

IAVECS(17,I) = Pointer to relate node data to auxiliary node

data (necessary for double points created by

thin plates)

V IAVECS(18,I) = Word type, 'REAL', 'INTE' (integer), 'OCTL',

'ALPH'



5.3-7

5.33 MRBUF VARIABLE LIST

NAME DESCRIPTION (Section Reference)

AMAT A work space used for calculating RMAT

ASRF Al: of KSURF in CBUF, unsliced

AXDE Auxiliary DELC values

AXDI Auxiliary DION values

AXGH Auxiliary GH values

AXGI Auxiliary GI values

AXQU Auxiliary QUSD values

AXRE Auxiliary RHOE values

AXRI Auxiliary RHOI values

AXSC Auxiliary SCRN values

CLRG Vector list of large capacitances of
insulating surfaces

CSML Vector list of small capacitances to

insulating surfaces and conductors

DD Unused

DELC Electron density array

DION Composite ion density array

EBAK Electron backscattered current to each surface

EHOP Electron hopping current for each surface

ENRM Normal electric field to surface

ESEC Electron secondary current to each surface

EXTV Surface voltages found during first trial step

FOSH Surface shadowing information

FOTO Memory of past charge information (not
implemented yet)

CH Neutral h+ density (with respect to its own
species)



5.3-8

GI Neutral ion densities

ICND Conductor number of each surface

IFIX List indicating surfaces with fixed voltages
in insulator plus conduct list form

IFLT Floating surface list for PWASON

IMAT Material type of each surface

ISEC Ion secondary current to each surface

JFIX Similar to IFIX only for each surface cell

JINE Incident e- to SURFS

JINI Incident ion to each surface

JPRM List per surface of derivative of total
current by surface voltage

JSM Small surface currents for insulators and
conductor list

JSMS Total of "small" currents to each surface

JTOT Total surface current list for insulators
and conductor list

JTSR Total current to each surface

KSURF Surface cell list

LAUX Coordinate list for auxiliary values

LCEL Surface to node connectivity list

LCOF Table to provide direct addressing to the LCEL
list by element address

LIST Defines element location ICCG packed sparse
matrix

LTBL Element table

LTYP Element location with respect to sheath. Also
a calculation saver used by CURREN.

MRKR Marks the starts of new rows in LIST

MU Product of matrix M dot U



5.3-9

NLST A list of insulating surfaces

OLDV Voltage change from previous charge step

OLJT Previous CHARGE cycle total surface currents
from first trial step

OLSV Surface voltages used to find OLJT

OPOT Previous space charge iteration potentials

POT Node potentials

PSGM Pre sigma (conductance) calculated by VEHICL
and ORIP'T. Does not include grid size.

RE Average element electric field

QUSD Stabilized charge density array

R Node residuals

RHOI Sheath ion densities

RHOE Sheath electron densities

RHS Right hand side of charging equation

RMAT The capacitance matrix portion of charging
equation

SCRN Linearized screening term

SCRT Scratch vectors

SEDL Surface edge list

SFAR Area of each surface

SFHC Weighted sum of h+ particles which impacted on
object during CURREN

SGMA Conductivity matrix including grid size

SPAC Work space

SRDT Keeps the voltage of fixed surfaces

SREL List of pointers per surface into the LCEL
list

SRFC Weighted sums of particles which impacted on
object during particle pushing



5.3-10

SRFE Pushed e- currents to surface

SRFH Pushed h. currents to surface

SRFI List of surface ion currents

SRFR Surface residual list

SRF'JI Surface U list

SRFV Surface voltage list

SRFY Surface Y list

SRHA Estimate of ambient h+ surface current

SRIA Estimate of ambient ion surface current

SRTS Surface unpermutation ordering information

SUMM Code history information, summary information
from previous PWASON, CURREN and CHARGE cycles
(not implemented yet)

SUNC Photo current to each surface

TKSR Sets CBUF space to hold all KSURFs at once

TSRV Trial surface voltage list

U Conjugate gradient error vector

VCHG Volume charge associated with each surface

VDT Change in voltage portion of charging
equations (the answer found by ICCG)

VMAP Velocity space map, work space

VMC Voltage vector used to construct RHS (voltage
minus conductor)

VXB V cross B voltage bias for each insulating
surface



5.4-1

5.40 OBJECT DEFINITION

The interpretation of the object definition keywords is done by

VEHICL. The building blocks (Section 6.10) are recognized and used to

define entries in an element table and entries in a surface cell list.

The element table describes the contents of each cube making up the

object definition grid. The surface cell list describes the type of

surfaces which define the object. POLAR models objects using their

surfaces as an inner boundary to the calculation grid. The majority of

computations done by POLAR deal with the space surrounding the object.

Some parts, i.e., CHARGE, look at chvnges which occur on this boundary.

After the object has been translated to element and surface

descriptions, VEHICL can generate the various lists used by the other

modules.



5.5-1

5.50 POTENTIALS

The potential solver, PWASON, finds the space potentials

surrounding the object. The algorithm used is discussed in Section

4.31. This discussion is limited to the coding structure. Figure

5.50/1 illustrates the organization of PWASON. The convergence test

used for the space charge iteration is to find the RMS error between

the two most recent cycles.

CONGRD performs the conjugate gradient calculation test for CGM

convergence (4.21.1). Figure 5.50/2 outlines the structure of CONGRD.

I) PWASON11

corndi space charge final normalcodiiosconverged electric fields

icalculate

electric fields

Figure 5.50/1. PWASON structure.



5.5-2

CONORD]

loop until
M uft

converged

find Initial find for
estimate of Initial
residuals ror

da
p, r, u

f!a ' c L up , 70

Figure 5.50/2. CONGRD structure.



5.6-1

5.60 PARTICLE DENSITIES

The calculation of charge densities is performed in two major

segments. Before any electric field information is available the

straight line thermal ion density is calculated everywhere in the grid.

When potentials have been calculated, the sheath edge is found and

particles are tracked from the sheath edge to the object. Once a sheath

has been defined, the straight line thermal ion densities can be

recalculated. The algorithms for these two calculations are described

in the following sections.

5.61 PRESHEATH SPACE CHARGE DENSITIES

Two algorithms are available to calculate presheath densities. The

difference between the approaches lies in the treatment of the

spacecraft and sheath geometries. The NEUDEN method creates a more

accurate representation of the spacecraft than the SHADO algorithm. The

SHADO algorithm is much faster and is able to include the sheath

generAted wake in its calculations. The presheath electron densities

are defined to be of equal magnitude, but of opposite sign, as the ion

densities since the presheath densities are defined to be quasi-neutral.

5.61.10 NEUTRAL ION APPROXIMATION (NEUDEN)

The presheath ion density calculation consists of determining the

function g(x,) (described in Section 3.31). This function has value

unity when particles can reach point x from angle 0 without hitting the

vehicle, and it has value zero when the particles are prevented from

reaching x because they are blocked by the object. The major routine in

this section of the code is GEMFAC for geometrical factor, and the

results used by NTERAK are GI's for geometrical ions. The GI's are

element centered and defined as

CI(I,J,K) = n {g(4,0) ffio(ru)Li 2 dv dO
0.



5.6-2

For calculation of these geometrical factors we work in a polar

coordinate system whose = 0, ions. In this system, the function fio is

azimuthally symmetric and the integral is reduced to

GI(I,J,K) = ZI f (6) Z~ g(6i'Oi)i]I Aoi

where the function f(O) is normalized so that

S f(O aoi  i = 1o. e.
I I

This function is calculated in FCAL. The calculations are done on a

uniform grid with a default resolution of 1" in 0 and 100 in 0. The

greater resolution in the polar angle 0 is necessary since f changes

rapidly as we move away from the ram direction. The geometrical factor

is calculated by taking the building block surfaces (A2's from HIDCEL)

and projecting them onto the 0, 0 plane. Regions inside of each surface

are then marked as excluded. The major source of error is the

interpolation between vertices in 0, 0 space are not straight lines in

straight line edges in Cartesian space are not straight line edges in

Cartesian space are not straight lines in 0, 0 space. To improve

accuracy, ADVERT adds extra vertices in the middle of edges for each A2

surface. The number of vertices per edge is controlled by NADD, and has

default value of 2. The calculations to determine the points inside the

surfaces are usually done in STICK (for STICK a one into the GEM array).

However, the cases of the ram or anti-ram directions being excluded must

be treated separately. The poles in the 0, space are singular points

and are handled in STKUP and STKDN for the 0 = 0 and 6 = v poles,

respectively.

GEMFAC is called for each surface by NEUDEN (for neutral

approximation density) which also performs the angle summations. The

principle advantage of this geometrical technique is speed, the tens of

millions of g(O, 0) needed for the densities at each grid point can be

calculated in just a few minutes of computer time. A few representative

plots of ram, regular and anti-ram polar angle projections are shown in

Figures 5.61/1-5.61/3.



5.6-3

POLAR PLOT

Figure 5.61/1. Neutral approximation phase space map of a flying brick
blocking the ram direction.



5.6-4

POLAR PLOT
0

Figure 5.61/2. Neutral approximation phase space map of a flying brick
at right angles to the ram direction.



5.6-5

POLAR PLOT
F

Figure 5.61/3. Flying brick in the anti-ram direction.



5.6-6

5.61.15 SHADO APPROACH

SHADO is a new module for use in computing the particle wake

behind an object in Low Earth Orbit (LEO) traveling at mesosonic speeds.

Two simplifying assumptions are made in computing the ion

densities in the wake. The first assumption is the neutral ion

approximation which assumes ions travel in straight lines and are

stopped if they impact the spacecraft. This neglects electric field

effects on ion trajectories. The second assumption is that ion filling

of the wake is due to electric field acceleration. The neutral ion

approximation is expressed by the following equation:

i ( x ' ) = g( ,( )fiov) (1)

where /i(xv) is the ion distribution function at a point x n space for
4

a velocity v and fio(4) is the unperturbed velocity distribution

function for a drifting Maxwellian. The function g(4,O) has a value of

zero if a ray starting from x in direction 0 would strike the

spacecraft; otherwise it is one. The charge density is obtained by

integration over velocities:

n = J f( ,) = f g(,fn)[ J" fio(,0)v2 dv ] dO (2)
0

The object being studied is described by a collection of surface

elements which are referred to as object definition surface element, but

include object and sheath surfaces. In order to determine the charge

density at a point in space, it is necessary to determine the solid

angle which is occupied by the object and performing the integration in
4

equation (2). The problem is reduced to finding g(4,fl) given x due to

the neutral ion approximation.



5.6-7

While the NEUDEN (5.61.10) algorithm is practical for simpie

objects, it becomes clear that complex objects with many surface

elements will be increasingly difficult to handle. This is especially

true when several million x coordinates are required to adequately

compute the particle wake behind a spacecraft. Another application for

which this approach is inadequate is problem of sheath shadowing. The

sheath around the moving object can be described using surface elements

and treated as an object. However, very many surface elements are

required and the old algorithm is too cumbersome to compute both the

particle wake behind the object and the sheath shadowing.

The SHADO approach was developed to simplify the object definition

so that the charge density may be computed much more rapidly. The new

algorithm relies heavily on the fact that the ion distribution, relative

to the spacecraft, is heavily weighted towards the ram direction at

mesosonic velocities. Since it is azimuthally symmetric, equation (2)

can be reduced to:

GI(x) = 0i fcum(Oi) g(Oii) ) 60 1 (3)

where the GI's are called 'geometrical ions' obtained by dividing

equation (2) by the unperturbed ion density (noi). If a point x is

completly blocked by the spacecraft, GI will be zero, while GI will be

unity far from the spacecraft.



5.6-8

The function fcum(O) is obtained by integrating fio(O,Olvl) over 0

since it is azimuthally symmetric, and normalizing it as follows:

fcum(O) = .:io(O i,¢iv)Ii (4)
Oi

Ifcum(9)Ao. = 1 (5)
0.I

fcum is calculated in advance, given v, and is stored internally as an

array which rapidly decreases as 0 increases for mesosonic velocties.

The value of 0 at which fcum drops to 0.01 of its value in the ram

direction (0 = 0) is computed and saved as 099%. As 14l increases, 0g99

decreases indicating that the Maxwellian distribution of ions is shifted

towards the ram direction. Surfaces lying within 0 < 0 < 6 99% from the

perspective of 4 will therefore have a significant effect on the value

of GI (x), while surfaces positioned beyond Ogg% will have a negligible

impact.

Simplification of the object definition is achieved by first

projecting the object onto a surface which is normal to the ram

direction and then overlaying this projection with a new two dimensional

grid. The nodes on this grid are arranged in an equilaterally spaced

staggered array resulting in hexagonal elements. These hexagonal

elements provide greater angular resolution of the object projection

than an equivalent cartesian grid system. Each surface element in the

object definition is then sequentially projected onto this hexagonal

grid and a depth is computed for each grid node which falls inside the

surface element projection.



5.6-9

This depth represents the distance from the projection surface to the

surface element along a ray parallel to the ram direction. The

projection surface is placed so that the forward-most point on the

object corresponds to zero depth. All of these calculations are

performed only once prior to evaluation of any GI's.

The number of nodes making up the hexagonal mesh is controlled by

a parameter mhex. The nodes are distributed uniformly over the

rectangular area on the projection plane which just encompasses the

entire object projection. As each object definition surface is

processed, a table of depths for each node in the hexagonal mesh is

maintained. After all the surfaces are projected, the table for each

node is sorted by increasing depth. Thus, at each node on the hexagonal

grid there is a table of depths representing the intersection of a ray

beginning at the node and any of the object definition surfaces in the

path along the anti-ram direction. Given a x coordinate, it is then

simple to compute its distance from the projection plane and its

location on the hexagonal grid. Comparing the depth of x to the table of

depths of the adjacent hexagonal grid nodes it is quickly determined

whether x is in front of, behind, inside, or adjacent to the object.

If the reference point, x, is in front of the object, then GI (4)

will be unity because all angles 9 pointing to the object definition

surfaces will be much larger than 99%. If the reference point is

sufficiently far away from the object such that the entire object lies

outs.de of the 99% limit, then GI is set to unity as well. If the

reference point is inside the object, then GI is set to zero. Since many

of the points in the object mesh fall into one of these categories,

little computational effort is expended in determining the GI ( )'s.

For the remaining points in the object mesh, it is necessary to

determine where the object is relative to x and determine how much of

the view towards the ram direction is blocked.

Much of the computational speed improvement in the SHADO module is

attributable to the simplification of the object representation already



5.6-10

described. Given an x coordinate, say directly behind the object, a scan

along a number of rays controlled by a parameter Nphi' is initiated.

Each ray begins at x and proceeds along a fixed angle 0 in the plane

of the projection surface. At intervals just less than the hexagonal

mesh element size, the surrounding hexagonal nodes are tested to

determine whether they are over the object or not. If the table of

depths for one or more of these nodes is empty, then this indicates that

the scan has proceeded beyond the projection of the object. A quick

calculation is made which approximates the distance to the object

outline (accurate to half the hexagonal mesh dimension) and the depth to

the object at this point is computed. This gives the angle 0 from x to

the boundary of the object and the contribution to GI (1) along this

value of 6 is determined. Summing for each of the N hi values of 0 gives
4 P

the value the geometrical ion at x.

A number of variations on the scheme outlined above are possible

based on whether the point x is directly behind (the table of depths on
4

all nodes adjacent to x are non-zero), or off to one side of the object.

The same basic procedure is followed however, by scanning in rays along

the projection plane, determining where the object is relative to x on

this plane, and then determining the angles, 0, locating the boundaries

of the object in three dimensions relative to x. The accuracy of the

object description using this algorithm is controlled by the number of

hexagonal grid nodes (Nhex) placed on the hexagonal grid and the number

of scan angles (N phi) used when locating the object relative to x.

5.61.16 SHADO STRUCTURE

The SHADO routines are organized in a highly modular fashion. The

following sections detail the organization of the routines and describes

their function. The overall structure diagram for SHADO is shown in

Figure 5.61/4. The driver is the POLAR code, SHDSET is the routine

which processes the object definition surface elements, and SHADO is the

routine which computes the GI given x.



5.6-11

IDRVERI

Figure 5.61/4: Shado Structure Diagram

SHDSET - Set Up Routine

Initialization for the SHADO routine takes place in SHDSET and

consists of looping over each surface defining an object, projecting

that surface onto the plane perpendicular to the ram direction, and

determining which nodes on a hexagonal grid are shaded by each surface.

For each surface, limits are determined which define a box in the hex

mesh which encloses the projected surface. Only points inside this box

are checked for shadowing by that surface.

At each mesh point in the hexagonal grid, a record is kept of the

height of intersection from the projection surface and the number of

surfaces which shade a given mesh point. An array stores the z values of

each surface intersection sorted by ascending node number and then by

ascending z value. Given any node, it is then simple to determine if

this node is shaded in the ram direction and to find the entry and exit

z values.

The structure diagram for SHDSET is shown in Figure 5.61/5.



5.6-12

ROTT lad HDE FCoo0P on ANGLES

SPACP A2OADGETSRF INSMIE.

Figure 5.61/5: SHDSET structure diagram

ROTATE

Computes the rotation matrix required to convert any (x,y,z) to

(x',y',z') in which the x'-y' plane is normal to the Mach vector. The x

axis is taken to be in the x-z plane.

SPACEP A2LOAD

Reads in surface element data for the National aerospace plane

using the MSIO library. Alternatively, A2 surfaces may be read using

routines A2LOAD and A2PREP. These routines simply read in data from MSIO

data files and load an array of vertices for each surface. These

routines will also find the minimum and maximum x,y, and z values within

the object to be used in defining the hexagonal mesh. Data selection is

determined by the LUSURF parameter which corresponds to the logical unit

number for the surface data; 19 for the A2's, 9 for the spaceplane data.

Surfaces are defined by coordinates for surface vertices and an outward

pointing normal vector. This form is exactly how A2 surfaces are

defined, for the spaceplane, however, the normal is computed using three

distinct vertices to compute the normal vector assuming clockwise node

numbering.



5.6-13

MSHDEF

MSHDEF fits the projection of the shadowing object (either a

spacecraft and/or the plasma sheath) with a 2-dimensional hex grid. The

constraints are to resolve the object's edge as well as possible while

using less than the maximum number of hex mesh points. To do this, hex

mesh lengths are guessed and then the mesh is checked to see how close

the grid boundary is to the object.

Using the minimum and maximum x,y, and z values, a box is defined

within which the object is lully contained. The eight vertices making up

this box are then projected onto the x'-y' plane and the minimum and

maximum x' and y' values are found. A hexagonal mesh is then

established which has its origin at (xmIn - A, Ymin - A) and extends up

to (smax - A, Ymax + A) where A is the mesh spacing. A is chosen using

iteration such that the number of mesh points is N hex . The mesh is

then skewed 60 degrees to give a square mesh and normalized by A such

that the nodes on the mesh are integer values.

FCAL

Calculates the ion density factor array for a point in space which

is unobstructed in all directions. The ion density factor is computed as

a function of the out of plane angle 0 as follows:

2

f(6) =2Ae(A )- _ (6)

Rhere:

y = IVmach c (7)

2

, 7ey (1 - erf(y)) y53

A 1 1 -2 3 -4 15 -12 105 -16 (8)
y -Y + y- y +-y y>3



5.6-14

The f(O)'s are calculated over a uniform grid with a resolution of 2

degrees in 0 and then integrated over 0 to give:

fcum(9) = fo f(7)d7 (9)

GETSRF

Reads in the surfaces of the object and returns the internal

limits for the hexagonal mesh points which must be checked for

shadowing. Any surface which is perpendicular to the projection surface

is ignored. A loop inside SHDSET reads in the number of surfaces from

this file, and GETSRF gets a valid surface. The return arguments are the

coordinates of up to four vertices making up a surface element which is

not perpendicular to the x',y' plane.

INSIDE

Fills an array which retains all of the surface intersections at

each hexagonal grid point which is shaded by a surface. For each mesh

point whi-ch is blocked by the given surface, the height of the surface

above the projection surface is computed and stored in an array of z's

and the corresponding node number is stored in a companion array. After

all of the surfaces have been processed, these two arrays are sorted by

node in ascending order of z' to obtain the minimum z value (Zentry) and

maximum z value (zexit) for each of the blocked nodes.

ANGLES

In SHADO, the hexagonal mesh is skewed by 60 degrees to become a

cartesian grid system. Scanning to define the object boundary takes

place over a given number of angles in the x'-y' plane, which when

skewed, become lines which are no longer uniformly spaced angularly.

This routine computes the increments in x' and y' to be taken along each

of these lines. The increments are selected to be 99 unskewed mesh:



5.6-15

Ex' = o.99(43sino. - cosi) (10)

Ay'i = 0.99 cosoi (11)

Where 0 is the angle in the x',y' plane measured from the y' axis

and incremented by: Oi = i - ; is the number of scan angles to

be used in the x',y' plane.

SHADO - Calculate Geometrical Ion Density

SHADO calculates the presheath ion density using the neutral ion

approximation. This approximation assumes that ion motion is perturbed

only by collisions with an absorbing object. The ion density accounts

fully for ion thermal velocities, but neglects trajectory bending by

electric or magnetic fields. The ion density at a point is obtained by

integrating the ion distribution at that point over the range of ion

velocities:

ni(x ) = J f(,v)dv (12)

The ion distribution is a function of position x and of the ion

velocities v. The ion distribution function is redefined as the product

of the unperturbed velocity distribution function and a geometrical

factor as follows:

A( ,) = g(i) fcum(O)/N (13)Oi = 1

The fcum(O) array was computed in FCAL while the geometrical

factor is determined by scanning along lines of constant 0 in the x',y'

plane and finding the points at which an unblocked position becomes

blocked or a blocked position becomes unblocked. If the given point is

behind the object, a 0 can be found by interpolating for the object

boundary between blocked and unblocked scans and finding the zexit for

this interpolated position. The angle 0 = arctan r where r is
Zexit

the distance from the interpolated boundary position to the given point.



5.6-16

The structure diagram for SHADO is shown in Figure 5.61/6.

I POW an # npdimTal

POMM $Ulm of Tfud mluamm

Figure 5.61/6: Structure Diagram for the SHADO subroutine

The majority of coding in SHADO is devoted to determining the

status of the reference point and the scan points on the hexagonal

projection mesh. The status includes determinations of whether a

particular point is within the hexagonal mesh or off of it; whether it

is in front of the object; whether the point is blocked in the ram

direction, and if blocked, whether the point is inside the object. As

indicated in the structure diagram, the reference point (input) is first

checked. If the point is inside the object, in front of it, or so far

off to the side of the object that it would not be possible to intersect

the object within the 99.9 limit, then the GI value is returned as zero

without further calculation.

Once the reference point status is determined, a loop is entered
which initiates scans along the scan angles 0i calculated in ANGLES. For

each 6i, a transition is sought which marks the outline of the object on

the projection surface. If the reference point is not blocked with

respect to the ram direction, then a transition is sought where the

object first blocks a scan point. If the reference point is blocked,

then a transition to unblocked status is sought.



5.6-17

When a transition is found, the angle 0 is computed which is the

angle from the reference point to the object surface at the transition

point. If the reference point is blocked and behind the object, the

density contribution for 0. is fcum (0)/N 6 . If the reference point is

unblocked, then density contribution is 1.-fcum (01) + fcum (02) where

61 is the angular position of the first transition to blocked status,

and 62 is the transition back to unblocked status.

5.61.20 ELECTRIC FIELD CORRECTION FOR NEUTRAL IONS

An optional multiplying factor has been included in the ion

density calculation of NTERAK to correct for weak electric field

focusing and the expansion front seen in the deep wake. The correction

was implemented in the following manner:

A variable length table of correction factors is produced along

with the associated ion densities during initialization by SETEFC which

is called by NEUSET.

SETEFC calculates the ion densities and their corrections for an

infinite half plane. These values are calculated using the following

set of equations:

For 6 = 0 to Y

Let

Y = Machl cosO

and let

r- ey  (1 - erf(y)) y z

=y-1(1 -1 -2 3 -4 15 -12 105 -16)
2 y + y - y y>z



5.6-18

where

erfCx) = 2 fx e - u du

Using these variables, the ion density before correction as a function

of e is

F(0) = L e-y

The correction factor, C(O), for the electric field effect is

found by the following series of operations:

For

[-loq (0.7)]

a 1 I MachI 2

C(O) = 1.0

and for smaller 0,

0.7 e 2IM4chItan(0 - r/2)
C()= F()

This C(O) is redefined

if C(O) < 1.0 then C(O) = 1.0

and then

if C(0) F(G) > 1.0 C(O) = 1/F(6)

NEUDEN uses the tables created by SETEFC by calling the routine

EFCORV to find the corrected gi (ion density) for an initial ion

density.

EFCORV checks for the special case of I Mach 0 (no correction)

before finding the correction factor. If this is not the case, EFCORV

looks for the range of entries in the F(O) which includes



5.6-19

the neutral wake density sent to it by the calling routine, using a

binary search algorithm. The search is sped up by first checking the

interval which included the ion density found in the previous call to

EFCORV.

When the correct range is found, 0 is found by linear

interpolation. This is then used to find C(O), also using linear

interpolation. The corrected ion density is then found by multiplying

the correction factor and the neutral wake density.

5.62 SHEATH PARTICLES

The space charge density of the attracted specie internal to the

sheath boundary, and currents of the particles to the vehicle surface

must be determined by particle tracking. The concepts involved were

discussed in Section 3.32 and 4.42. This section documents the coding

responsible for these calculations, but a brief overview is in order.

External to the sheath, electric fields are weak enough to allow

for accurate estimates of the flux to any portion of the sheath surface,

including ram effects for ions. Presuming a previous Poisson

calculation, the sheath is currently defined to be an equipotential near

the ambient plasma temperature (this is an input parameter). Once the

sheath is located, it is divided into subareas. These subareas

subsequently become 'particles' which represent a constant current,

rather than constant charge. This current, referred to as current

weights, is the subarea times the input flux density of ions (Section

4.42) to the subarea. The actual particle tracking is done per slice

(4.11) with the particle 'pusher' sweeping the grid alternately in the

+Z (called right) and -Z (left) direction. Trajectories evolve in the X

and Y coordinate directions until they exit a slice whereupon the

trajectory information is stored. The trajectory is picked up in the

next slice or the return pass of the pusher. Ultimately, they leave the

problem or more commonly, hit a surface and are moved to a 'dead-

particle' list, and are later processed into surface currents.



5.6-20

Throughout all of this pushing, the time a particle spends in a

volume element is multiplied by its current to determine the space

charge contributicn to the element.

5.62.10 SHEATH EDGE

The controlling routine for the sheath edge and particle

assignment algorithms is STHCAL. STHCAL uses two boundary potentials,

CURPOT and BNDPOT. These are either defaulted in OPTDEF, input through

OPTIN, or calculated by SETENV depending on user and model requirements.

CURPOT is used to calculate the presheath to sheath fluxes. This is

done only once for NTABLE different angles between the sheath edge

normal and flow vector. Individual sheath subareas (corresponding 1 to

1 with particles) are assigned fluxes by interpolation. BNDPOT is the

potential of the sheath edge and is usually the same as CURPOT, but is

sometimes set to PSIM (4.44.2, 3.60) or a user input value.

Once BNDPOT is known, STHCAL loops through all of the elements,

calling SHEATH to check each element to see if it contains the sheath

potential. If part of a boundary passes through a cell, it divides the

boundary surface into triangular pieces. These pieces represent

potential particles which are assigned a current equal to the piece area

times the sheath flux for that location and normal (interpolated by the

function STHWGT). Their initial position is the centroid of the

triangle and their initial velocity is found using BNDPOT and the method

described in Section 4.42.2.

SHEATH will occasionally find particles that should be eliminated.

This might happen when the sheath edge equipotential lies between two

regions of opposite polarity, different extensions of a complex object,

or otherwise cannot "see infinity". This elimination is affected by

DBLCHK which backtracks the trajectory through about three elements to

look for non-source regions. Statistics from this process are available

in the output by setting KDIAGS(4) to 2 or more (Section 6.44.20).



5.6-21

There are two user-specified options to the process of creating a

particle list. The two correspondii ° keywords are AVEPRTCL for
averaging particles and THRMSPRD for thermal spreading particles.

In the AVEPRTCL option, all particles o- the same type (ion+, h+,
or e-) found at cell (ix,iy,iz) are lumped into a single particle called

an average particle which will have the following properties: flux is
the total fluxes of all contributing particles; initial position and

initial velocity are that of the particle which has the greatest flux;

initial energy is calculated with respect to its new initial position

and velocity. Particle type and QE are the common particle type and
common QE, respectively. All this is done by the routine AVRAGR.

After the particle averaging, if it was requested, each particle

is broken into a number of smaller particle with different initial
velocities. The method used to thermally spread the sheath particles is

described in Section 3.43.

Once all of the particles in a Z-slice (4.11) are defined, they
are written onto file 10 with their current, initial position, initial

velocity, and initial total energy. Then the particle lists are stored
in a linked list data structure (5.62.11) in chunks of 100 or fewer

particles.



5.6-22

5.62.11 THE PARTICLE LIST STRUCTURE

The particle list is kept in a linked list data structure. An

array in the common block /LNKCOM/ contains either -1 or the key of a

particle list. The key is key number of the particle list in file 10 as

it is used by the MSIO package.

To find the key of the first particle list of a certain z-slice,

the /LNKCOM/ array LKPART(i) (LKSCUR(i) for surface currents) is indexed

by the z-coordinate of the slice (4.11, 4.12). The rest of the particle

lists for a given z-coordinate are indexed by the first word from the

preceding list. This is the MSIO key o" t, next slice. When a

particle list does not have another list following it, the key it holds

is a -1. The negative one is a flag signalling the end of a linked

list.

For example, if our problem had a z-coordinate which varied from 0

to 6 and 200 particles in z-slice 0, 730 particles in slice 3 and 1300

particles in slice 4, file 10 would be similar to table 5.62.11/1.

Since the order in which the particles were stored affects the actual

contents of the table, there are a number of possible arrangements.

In the table, 230 particles of the z = 3 slice are in file 10 at

key 1 and 500 are at key 5. Since next key is -1 for key 5, we know

there are no more particles in this slice.

As particles are moved to other slices, space opens up in the

middle of the file (keys 3, 4 and 8 in the example). To conserve space

and to keep the file packed, the emptied keys are also linked. So when

a new particle list needs to be stored on file 10, an emptied key will

be used if there are any available. The key of the first empty location

is stored in the variable IOLDKY.



5.6-23

TABLE 5.L2.11/1

AN EXAMPLE OF THE PARTICLE LIST DATA STRUCTURE

First Key List:

LKPART(i)

IOLDKY i =0 1 2 3 4 5 6

key 4 6 -1 -1 1 2 -1 -1

file 10 contents

Key No. Next Key No. Particles z-slice

1 5 230 3

2 9 300 4

3 -1 0

4 8 0

5 -1 500 3

6 -1 200 0

7 -1 500 -

8 3 0

9 7 500 4

10 empty empty -

Note: This example assumes a maximum page size of 500 particles.



5.6-24

To store the surface currents, another array LKSCUR(i) is used to

hold the key of the first particle list for each z-slice. The linked

lists allow the surface currents to use the empty spaces left by the

particle list used by the sheath particle tracking section, which helps

keep the file packed.



5.6-25

5.62.12 PARTICLE PUSHING UNITS

It is convenient to define special units for the trajectory

calculations. The time is in units of the ion acoustic period, the

distance is in grid lengths, the velocities are in Mach velocities, and

the acceleration is unitless. The quantities are defined by

v (ion acoustic speed)
t(code) = t(sec) * h (grid length in meters)

x(code) = x(meters)/h(grid spacing in meters)

v(code) = v(meters/sec)/vs(ion acoustic speed)

Ev(electric field in volts)

a(code) = QE = Tv(ion temperature in volts)

where the ion acoustic speed is

v= k-Boltzman, T -K, m - kg

For the particle currents we have

I(code) = A(x 2 (code)) • J(code)

J(code) = J(|/m2 sec) 
J

N*e*V
FNORMee*2-r 

s

where N is specie density m (/m3 ), and e is the electron charge.

For electrons, all of the above expressions are the same except

the ion mass is replaced by the electron mass.



5.6-26

5.62.20 SHEATH CURRENT

The routine CURREN controls the process of finding the sheath

current (see Figure 5.62.20/1). CURREN calls the initialization and

exit routines CURPEP and CUEXIT, respectively, and it pushes the

particles alternately to the right (+Z) then left (-Z) until all of the

particles have left the grid or hit the object or the push limit, IPCNT,

is reached (1 left * 1 right = 1 IPCNT). The variable, NPRTCL, is the

number of particles left which have not been pushed to completion.

NPRTCL*=O

PUSHER ('RIGHT )UER CLEF'-

Figure 5.62.20/1. Structure diagram of the subroutine CURREN.



5.6-27

5.62.21 CURPEP (CURRENT PREPARER)

Called by CURREN, CURPEP initializes the particle counters, opens

file 10 and initializes it (5.62.11), clears CBUF with a call to the

routine BUFCLR, and calls STHCAL to find the initial set of particles.

Once the initial particle lists are calculated, CURPEP resets CBUF

for PUSHER with calls to BUFCLR and BUFSET. Then the force table (QE),

the extended element table (LTYP), and the sheath current table (RHOI

and RHOE) are initialized to complete the routine. To speed up the

calculations in XITCEL (5.62.22), the force table (QE) contains the

acceleration. The acceleration is equal to the negative trilinear

electric field divided by the temperature in volts. The units of the

acceleration are grid units (see 5.62.12).



5.6-28

5.62.22 PUSHER (PARTICLE PUSHING)

This routine pushes all the particles to the left or to the right.

PUSHER loops through all of the particles in each z-slice, pushing

particles until they leave that slice. The particles leaving in the

forward direction are pushed again in the next slice and so on. When a

particle's path intersects an object face, the particle is transferred

to the surface current list (5.62.11) and counted as a dead particle.

Particles detected leaving the computational grid are counted and

removed from the problem (although their previous trajectory information

remains in the RHOI and RHOE lists).

The routine which PUSHER calls to push a particle through a cell

is named PUSH.

PUSH decides which of the pushing techniques to use to push a

particle out of its cell. PUSH checks the element table (5.23) to see

if the element is next to the object or in a partially filled cell (both

are labeled 'NEAR' in the LTYP table in CBUF). The routine STPPSH moves

ions which are 'NEAR' the object. If the ion is not close to the

object, PUSH calls XITCEL (exit cell) to find the time the particle

needs to exit the cell, and MOVER to move the particle to its new

location.

Similarly, electron particles use ESTEP and EMOVE in place of

STPPSH and MOVER, respectively. The electrons are checked when magnetic

fields are present to see if the cyclotron radius is larger than the

grid size. If it is, ESTEP is used regardless of how close the particle

is to the object. When the cyclotron radius is smaller than a half of

the mesh size (dxmesh * IRtDMAX2 See Section 4.52.7), as determined by

CHKRAD, a drift approximation is used. In this case the particle's

initial velocity is replaced by a drift velocity, &g. normal to 9 with

the component of velocity parallel to B unchanged. The electric



5.6-29

field is replaced by its parallel componeot to A. The motion is then

computed using EMOVE and EXITCL in a manner similar to MOVER and XITCEL

or ions.

XITCEL solves the following six quadratic equations for the time,

tji, required for the trajec+,i-y to be traced from an entry coordinate

Xoi to an exit coordinate,,"'

0i = X, Z
X.. = X + V .t.. * QE. t2 .J1 0 oi o ij i J =*

where Voi is initial veloc.i.,. QE. is the acceleration calculated from

the electric field at the center of the element. The smallest positive

real t.. is chosen as the time required by the particle to leave theJI
cell. See Section 5.62.12 for a discussion of the special units used

for the particle pushing.

MOVER used the time found by XITCEL to find the new particle

location. First it calculates the new position and velocity using

1 t2
X. = X + V t + i QEt
1 o oi

V. = Voi + QEit

Then it shifts the particle position by one thousandth of the velocity,

moving forward along the :x0' axis, found by XITCEL, and backwards along

the other two. This is necessary because the particle's cell number is

referenced by taking the integer portion of the particle position. If a

particle stopped exactly on the top side of element (ij,k) as it moved

downward, the address found by truncation would be (i,j,k+l). To

prevent this form of faulty addressing, the particle is moved off of the

cell boundaries.



5.6-30

Because the central electric field is used for the entire element,

and the total energy may drift with each move, MOVER renormalizes the

velocity vector to force the particle to conserve energy. After MOVER

pushes the particle out of the element, PUSH increments the RHOI (space

current density) by the time spent in the cell multiplied by the area of

the particle. If the pushed particle was an electron, RHOE is used in

place of RHOI.

When the particle gets closer to the object, MOVER can no longer

be used since the particle could strike an object surface before it left

the cell. To push particles within a grid length of the spacecraft,

PUSH calls STPPSH (step push). STPPSH checks to see if the particle is

inside a filled portion of an element. If it is, the routine finds

which surface it passed through and returns to PUSH. If not, STPPSH

calls STPPAR (step particle) which moves a particle for time t. Time t

is the smaller of the time required for the particle to free fall or

move at a constant velocity a distance of one-tenth of a grid length.

t = smaller of rD/101, 2D 1
(l l/)

where t is the electric field at the particles position, 6 is the plasma

temperature and D is one-tenth of a grid length. When the time step has

been computed, the particle is moved to Xi, (i = x,y,z)

X. =X . * V .t 4 1Ei

i = Voi (Ei/O)t

After the particle is moved, STPPSH increments the RHOI or RHOE

(space current density) by the current weight of the particle times the

time it was moved. Then checks to see if the particle left the cell by

counting how many of the element coordinates of the new position differ

from the old. If the particle did not leave the cell, energy



5.6-31

conservation is checked and the velocity is renormalized if there is

more than a '5 percent error. Then the particle is pushed again.

If the particle did leave the cell, energy conservation and the

number of element coordinates which have changed are checked. If the

number is greater than one or the energy is off, the particle is backed

up until only one element boundary is crossed and the energy is

right. The routine that does this is called MOVBAK (move back). It is

important to keep particles from crossing more than one boundary at a

time, since it is possible for particles to miss corners of objects.

MOVBAK backs up a particle by finding the average velocity of a
4 4 4 * 44

particle during the timestep (vave = (vo 0 v)/2) then solving x =

Vavet for t on all of the sides of a cube. Using the smallest pgsitive

time it finds, it moves the particle from its original point to x'.

40 4 40
x' =X 0  ave tmin

MOVBAK then moves the particle off of the cell boundary by shifting the

position by 0.001 times the velocity in the same manner as MOVER did

previously.

After calling MOVBAK, STPPSH checks energy conservation again.

After renormalizing the velocity, if necessary, and incrementing RHOI

(or RHOE), the particle is checked to see if it hit a surface as it left

the element.

Magnetic field effects for ions are modeled by rotating the

velocity vector, at the end of a push, around the magnetic field (see

Section 4.42.4).



5.6-32

5.62.23 SHEATH PARTICLE DENSITY

The sheath particle densities, known as RHOI's and RHOE's, are

incremented continuously throughout the pushing process. PUSH calls

either the pair XITCEL and MOVER, or STPPSH to move a particle, I,

across a cell and to calculate the time, t, spent in the cell. As

discussed in Section 4.42.5, the density contribution of a particle is

just the particle current multiplied by the time spent in a cell divided

by the volume (one in these units). The density is incremented

RHOI(x,y,z) = RHOI(x,y,z) + CURRENT(I)*t(I)

in NUTERM :f The push was performed by MOVER, or directly in STPPSH.

The abo~a is true for both ions and electrons. (RHOE is used for

electrons in place of RHOI).

5.62.24 CUEXIT (CURRENT EXIT ROUTINE)

This routine takes care of the exit from CURREN. It prints a

tally of what happened to the particles from SHEDGE and it closes file

10, which now contains the surface currents.



5.7-1

5.70 SURFACE CHARGING

The CHARGE module calculates the change in surface potentials.

The attracted species may be modelled in several ways which are

described in section 5.72. The default is to use pushed particle

densities for the attracted particle surface currents (see section

5.71).

5.71 PUSHED PARTICLE SURFACE CURRENTS

The ion and electron surface currents are found in the lists,

SRFI, SRFH, and SRFE, respectively. These lists are created in the

segment headed by the subroutine IONCUR from the dead particle list

(dead-list) created by the CURREN segment. The upper structure of this

segment is illustrated in Figure 5.71/1.

oop ove

Figure 5.71/1. Structure diagram of IONCUR segment.

The creation of the SRFI list occurs in two main steps; step 1

reduces the dead-list to an intermediate SRFC list, and step 2

redistributes the surface currents among the surfaces. The

justification and computational techniques for these steps have been

discussed in Section 4.53.



5.7-2

Step 1 is controlled from IONCUR and performed by INICUR. The

dead-list can be very large with an order that is best described as

chronological. A particular surface will appear as often as it is

struck by a particle. To speed up the surface current calculation, and

to reduce the noise inherent to particle pushing, INICUR reads through

the dead-list sequentially and simultaneously accumulates in the SRFC

list the "average" particle (see 4.53) for each surface.

This average particle has the sum of the contributing current weights

with an average impact location, energy, and velocity. These averages

are weighted by the current weights (4.53).

Step 2 is the redistribution or sharing of the "raw" surface

currents in the SRFC list. This is done to further reduce the "noise"

in the raw ion surface currents (4.53). Thus, IONCUR will next loop

over the surfaces in SRFC and for each surface, S, call SPLATR to

calculate the bilinear weights, SPW (node), which are used to distribute

the SRFC current to the vertices of the surface. These node currents

are to be shared back to all of the surfaces adjoining each node.

IONCUR loops over the surface vertices calling GETWGT to calculate the

CRW (node, ns) where ns indexes neighboring surfaces (4.53). The

surface-node-surface connectivity is provided by the LCEL list (5.25).

Since the LCEL list is designed to be read sequentially and is ordered

by slice and element, direct access to the needed section of LCEL is

provided by an index list, SREL (5.25).

After the CRW have been obtained for a node, SPREAD is called to

perform the summation;

SRFI (ns) = SRFI (ns)

+ UNITS * CRW (node, ns) * SPW (NODE) * SRFC (S)

where ns ranges over the neighboring surfaces including surface S.

UNITS = ECHRG * DXMESH2 * FNORMI * F2w , where ECHRG = 1.6 x 10
- 1 9



5.7-3

Coulombs and DXMESH is the length of a mesh unit in meters. FNORMI is

the unperturbed Maxwellian flux density against which the current

weights are calibrated;

FNORMI = ni4kT/2r m i

where, in MKS, ni is the ion density, k is Boltzmann's constant, T is

temperature and mi is the ion mass. For electrons, the equivalent to

FNORMI, FNORME is used. For hydrogens, SRFH, SFHC, and FNORMH are used

in place of SRFI, SRFC, and FNORMI, respectively.

5.72 CHARGE MODES

Three methods may be used to model the attracted species during

charging calculations. Pushed particle surface currents, the default,

may be used in space charge limited collection cases. Orbit limited

collection currents may be used if appropriate.

An intermediate case is also available. This is the situation

where the total current to the spacecraft is limited by a space charge

limited sheath, but the actual surface currents are essentially orbit

limited. The current through the sheath is calculated and saved.

During the CHARGE cycle, the total orbit limited current to the object

is computed. The two totals are then used to renormalize the orbit

limited to each surface.

The selection of the appropriate charging mode is left to the

expertise of the user. The default action is to assume space charge

limited collection.

5.73 CHARGE (SURFACE CHARGING CONTROL)

CHARGE is the entry level routine into the surface charging

section of POLAR (see Figure 5.73/1). It initializes the charge cycle

by reading in the material properties and calculating the plasma to

surface (routine MAKCSM) and surface to conductor (MAKCLG) capacitances

as well as the conductance matrix (routine MAKSGM).



5.7-4

--CAG
iproedwee Iproee

WURCHG CEXPL8IFM SURCHO (MIUCIT

Figure 5.73/1. Structure diagram of CHARGE module.

After the initialization routines have been called, CHARGE

calculates the surface potentials by finding a first stage solution then

a second and final stage result. For historical reasons, the flags for

the two stages are 'explicit' and 'implicit', respectively CHARGE

loops on the SURCHG sequence until converged or after a fixed number of

iterations as defined by MAXITT (the loop is indicated by the empty

oval). Upon conclusion, the array SURFV contains the new surface

potential which is stored on file 19.

The computational theory for the charging section is discussed in

Section 4.5.



F 7-5

5.73.1 SURCHO (SURFACE CHARGER)

SURCHG calls the routine- needed to set up the equation to be

solved and finds the next set of surface voltages. SURCHG solves the

charging equation in the implicit form (Eq. (5.73-1)).

+ - dlAV = I - a V (5.73-1)

Using a flag sent by CHARGE, SURCHG determines which stage of the

charging equation is being solved (see Figure 5.73/2). When solving the

second stage charging equation (5.73-1), the SURCHO assumes a first

stage solution had been found previously.

STAGE-.FLAG ="EXPLICIT"

T ] (SECOND

(FIRST STAGE) O
STAGE) Any..Fixed-Nodes ~O

Iased-Conductore -OYES/

Figure 5.73/2. Structure diagram of the routine, SURCHG.



5.7-6

SURCHG, called with an "explicit" flag, generates the fixed

surface vector (MAKFIX), V (MAKV), the first stage dI/dV (MAKDJ1), and

I- V (MAKRHS), then calculates V(t+At) for the first stage. When an

implicit flag is received, MAKDJ2 is called to calculate the second

stage dI/dV. MAKDJ2, after the first step in limiting the first stage

voltage solution (Section 4.56.20), will call MAKJ2 which will calculate

the currents to a surface at a given voltage. MAKJ2 will perform the

second step of the voltage limiting process whenever it discovers a

change in the sign of a surface's current from one stage to the next.

At this point, both charging equations can be treated the same

way. The matrix,

is calculated in the correct fixed or unfixed matrix form (Section 4.57)

by MATGEN, setting up M for the ICCG call by SURVLT. SURVLT solves Eq.

(5.73-2)

M Am = B (5.73.2)

where R is the vector found by MAKRHS and AV is the change in the

surface potential.

Using the AV found by SURVLT, SURSET calculates the new surface

potentials and saves them, completing the charging timestep. The

following is a detailed discussion of the above routines.



5.7-7

MAKSGM (MAKE THE a MATRIX)

MAKSGM makes the a matrix by taking conductivity information

created by VEHICL and moving it to the right place in the fixed matrix

form (see 5.72.2) for ICCG after changing the units of the elements to

mks units.

MAKFIX (MAKE THE FIXED SURFACE LIST)

MAKFIX constructs the fixed surface list. This list is used by

ICCG to mark which nodes in the problem will not change, or change by

fixed amounts. The routine MAKFIX also defines the voltage change, if

any, of the fixed nodes.

MAKV (MAKE THE VOLTAGE VECTOR)

MAKV builds the voltage vector in the appropriate form (5.72.2)

using a surface voltage list and the conductor voltage common block.

The LAD number (Section 5.30) of the desired surface voltage list is

passed as an argument to this routine.

MAKDJ1 (MAKE THE FIRST STAGE CURRENT DERIVATIVE)

MAKDJ1 uses the algorithm discussed in Section 4.56.20 to estimate

the first stage current derivative.

MAKRHS (MAKE THE RIGHT HAND SIDE)

MAKRHS makes the right hand side of the vector equation solved by

ICCG. The right hand side is equal to

B = I- 2 Y.



5.7-8

This is done by first calling MAKJ to calculate the current vector.

Then MAKRHS finds the product of oV and subtracts it from the current.

The magnetic field voltage effects and any conductor biasing terms

(see Section 4.57) are calculated and subtracted as well.

The right hand side of the vector equation is the same for both

stages so it only needs to be called once for each iteration.

MAKJ1 and MAKJ2 (MAKE THE CURRENT VECTORS)

These routines find the current vector I given a list of surfaces

voltages. MAKJ1 is used during the first stage and MAKJ2 during the

second. To find the contributions to the current from the various

sources, MAKJ (MAKJ is the generic form of MAKJ1 and MAKJ2) calls the

routines which calculate the incident, secondary, and backscattered

electron fluxes and the incident and secondary ion currents.

Two lists are created by MAKJ, one is the total current, 1. The
other is the sum of the secondary currents, Ism* The secondaries are

used by MAKJ1 to locate surfaces which will need to be fixed.

MAKJ2 is called by MAKDJ2 (below). When this occurs, it checks

for changes in the sign of the total current or more importantly, the

proximity of the current equilibrium point. Then, using the algorithm

described in Section 4.56.20, the surface voltage is further limited and

a parabolic interpolation is done to find the crossover point. The

current at this new voltage is defined to be zero for purposes of

calculating second stage current derivatives.



5.7-9

MAKDJ2 (MAKE THE SECOND STAGE CURRENT DERIVATIVE)

MAKDJ2 is called during the second stage to provide the dI/dV

matrix as described in Section 4.56.20. The second step of the voltage

limiting process, performed prior to calculating the derivative, is done

by MAKJ2 (above). MAKJ2 is also used to provide the currents at the

limited surface potentials.

MATGEN (MATRIX GENERATION)

MATGEN finds the sum of the matrices which multiply the voltage

vector, AV, solved for by ICCG. It performs the sum

M + or£ --
~At - T

If the desired matrix formulation is not the fixed form (Section 4.57),

the a matrix is manipulated to the proper form before the other matrices

are added to it.

SURBIS (VECTOR REFORMULATOR, SURFACE BIAS)

SURBIS is invoked to change the vectors to the formulation

appropriate to the situation (see Section 4.57). The matrix M has

already been reformulated by MATGEN though some additional changes are

made when there is biasing in the problem.

SURVLT (SURFACE VOLTAGE)

SURVLT recovers from storage on file 19, the M matrix and R vector

for use by ICCG. It also calls ICCG (4.32) which returns AV.

Currently, the initial guess for AV is AV = 0.



5.7-10

SURSET (SURFACE VOLTAGE RESET)

SURSET uses the solution found by SURVLT to find the new surface

and conductor voltages after charging.



5.7-11
5.73.2 CHARGING MATRIX AND VECTOR FORMULATION

As discussed in Section 4.57, there are two cases which affect the
charging equation, 5.73-1 , depending on the occurrence or non-
occurrence of fixed potential surfaces. When a surface potential is
fixed, the matrices and vectors of 5.73-2 are constructed exactly as
implied. If a surface has been fixed, (called from SURCHG) SURCH
passes a flag, ANYFIX, to the matrix vector routine, MATGEN, to
construct the diagonalized matrices, C and g. These transformations are
discussed in 4.5, but they are characterized by constructing V(t) from
the potential difference between a surface and the underlying conductor
instead of simply the surface potential. The effect of this is to
reduce the off-diagonal elements and increase the diagonal elements of
the amalgamated matrix M (Eq. (5.73-2)). ICCC likes this and will

generally converge faster.

Since there can be as many as 1200 surfaces or so, it was
necessary to pack all the matrices in the problem (unpacked it could be
1 million words/matrix). Since the matrices are mostly empty, just
saving the nonzero entries and their locations simplifies the problem
greatly. The entry locations are stored in a list (called 'LIST' in
MRBUF) with a second list ('MRKR') being used to indicate the starting
locations of the rows in LIST. The entry locations are stored row by
row with the first entry for a row being the negative row number. For
example, the nonzero locations in the following matrix

a 0 0 0 0

0 a b 0 00 b a • f
0 c a a d
0 0 f d a

I a



5.7-12

would appear in LIST as -1, -2, 3, -3, 2, 4, 5, -4, 2, 3, 5, -5, 3, 4

and MRKR would be 1, 2, 4, 8, 12, 10000 with the 10000 signalling the

end. Since the matrices always have nonzero diagonals, the -2 in LIST

means there is an entry at (2, 2). The 3 following it means (2,3) and

so on. The actual matrix values are stored in lists so that the

locations of the entry in the LIST correspond to the location of the

value. For example, the value b stored at (2, 3) would be the third

value in the value list. For large problems this greatly reduces the

data requirements.



5.8-1

5.80 OUTPUT

5.81 GENERAL

Output is produced throughout the POLAR modules. The various

print statements placed in the code during development were flagged

rather than removed when development was completed. This allows output

to generate at many levels of verbosity. These "diag' flags are

discussed in detail in Sections 6.22, 6.31, 6.44, and 6.45.10.

Utilities have also been created which print only selected Z slices of

the grid data (see Section 6.44, the 'SELECT' keyword).

During VEHICL and NTERAK runs, the two modules write notes to a

file called STATUS.JCO. The notes are date and time stamped and contain

short informative facts. The STATUS.JCO file is opened, added to, and

then closed. Because it is always up to date, it provides a quick,

concise means to follow the progress of a calculation. The file also

summarizes the run history of a POLAR calculation.

Postprocessing diagnostics and graphical output is available from

the SHONTL program. The "PRINT" keyword produces data stored on the

buffered I/O files 11 and 19. SHONTL also generates color or black and

white pictures of space potentials and several types of space charge

densities.

TRMTLK can be used to postprocess the charging calculation data on

file 16.

5.82 GRAPHICAL CODE STRUCTURE

5.82.10 AN OVERVIEW OF SHONTL

SHONTL is a module designed to create the graphics commands for

PLOTTR. It presents cross-sections of data generated by NTERAK as

contour plots. Currently, axial slices of the ion density, the electric

field potential, the sheath boundary, and the particle trajectories can

be plotted (DION, DELC, GI, GH, QUSD, and POT).



5.8-2

The form of the plots can be varied by using keyword commands.

The plot types and slice locations are also defined by keywords. The

keywords and their use are described in Section 6.5.



5.8-3

5.82.11 SHONTL

This is the main routine of the module. SHONTL oversees the order

of operations of the various phases of the plotting process (see Figure

5.82/1). It calls an initialization routine (SHODEF), an exit routine

(SHOXIT) and cycles on the input routine and the plotting routine

(SHOINP and GENPLT, respectively). EOF is a flag from SHOINP signalling

the end of a plotting session.

5.82.12 SHODEF (PLOT INITIALIZATION)

SHODEF is the initialization routine. It opens POLAR data files

11 and 19, sets the faster graphics window, initializes common blocks,

sets the defaults for plot descriptions and prints a welcoming message.

LI UNTIL K L

Figure 5.82/1. A general structure diagram of SHONTL.



5.8-4

5.82.13 SHOINP (SHONTL INPUT)

This routine is the keyword input section of SHONTL. SHOINP

recognizes the various keywords (described in detail in Section 6.5) and

sets the appropriate flag for GENPLT. In addition to keywords for

plotting features and to describe the data for plotting, keywords are

also recognized which direct the data handling, control the SHONTL

exiting and plotting procedure, and provide useful aids for the user.

This includes a 'WHAT' command to see which plotting features have been

selected.

All of the plotting features have default values set in SHOINP so

that no harm will be done if a flag is not set in SHOINP (the default

values are described in Section 6.5 also).

5.82.14 GENPLT (GENERATE PLOTS)

GENPLT calls the routines responsible for generating the pseudo-

graphics calls used by PLOTTR. The flags set by SHODEF and SHOINP are

used to decide which plotting routines to call.

To make a plot, GENPLT sets the constants it will need, reads the

data to be plotted, generates the plot along with any extra features

selected, and then prepares for the next plot.

5.82.15 SHOXIT (SHONTL EXIT)

SHOXIT is the exit routine for SHONTL.



5.8-5

REFERENCE, CHAPTER 5

5-1 "NASCAP Programers' Reference Manual," S-CUBED Report SSS-R-
82-5443 (DRAFT), March 1982.



6.1-0

6.0 OPERATING INSTRUCTIONS

In general, POLAR can be run in either an interactive or batch

computing environment using keyword input. Keyword values are set to

defaults during object definition (VEHICL) and are passed from module to

module and run to run. New input is remembered, so it is not necessary

to re-enter the same keywords constantly. Commands controlling rut,

characteristics, defining environmental constants, and choosti- the

amount of appropriate output are either recognized by the module's input

routine or by a general input routine (POLINP) which processes non-

module specific keywords such as the grid size and diagnostic keywords.

The exception to this general rule is the set of keywords used to

def!..e an object. These keywords are expected to be found within a

definition file separate from the VEHICL runstream. Section 6.1

describes the intricacies of object definition in detail and includes

several helpful examples.

The other sections describe the keywords pertinent to all of the

modules (Section 6.7) or keywords appropriate to a particular module

(Sections 6.2 to 6.5). Some keywords appear in several locations for

the sake of convenience.



6.1-1

6.10 OBJECTS

POLAR objects are defined separately from the VEHICL runstream.

VEHICL will look for the object definition file as unit 20 (Fort.20).

POLAR objects are defined in an object grid of variable

proportions subject to the limitation NX*NY*NZ = 9537; NY,NX 5 17;

NZ 5 33. The keyin language is identical to NASCAP, except for the

addition of slanted thi~n plates and the omission of booms (POLAR does

not do booms), antennas, and thin triangular plates. If 'empty space'

and *object" both coexist in the same computational space, what makes

objects distinguishable? The answer is that POLAR can distinguish

between volume elements that are filled (with object) and those that are

empty (except for ambient plasma of course). Once we have this

distinction it is easy to see how objects can be constructed by filling

in collections of volume elements. For example, a simple cuboid may be

constructed by filling in 2 x 3 x 4 = 24 elements as shown in Figure

6/1.

While arrangements of completely filled and completely empty cubes

can be quite versatile in representing objects of many different shapes,

more sophisticated representations are possible if we allow cubes to be

partially filled (or partially empty). Only three partially filled

cubes are allowed. These are shown in Figure 6/2.

While it is easy to see how objects might be constructed by

filling or partially filling individual volume elements, a command

structure that required the user to specify every element comprising an

object would be very cumbersome to use. So several generalized objects

are definable.

It is very important to note that POLAR objects must never touch

the edge of the object grid defined by VEHICL (see Section 6.2).



6.1-2

Figure 6/1. Cuboid made by filling in twenty-four volume elements.



6.1-3

II

a b

C d

Figure 6/2. Four shapes of volume cells considered by the POLAR CODE:
(a) empty cube; (b) wedge-shaped cell with 110 surface;
(c) tetrahedron with 111 surface; (d) truncated cube with
111 surface.



6.1-4

6.10.10 BUILDING BLOCKS

To greatly simplify the user definition of objects, POLAR pre-

defines commonly used shapes built up from individual elements. These

shapes are called POLAR BUILDING BLOCKS. There are eight.

Flat Plate

Slanted Plate

Cuboid

Octagon

Quasisphere

Tetrahedron

Wedge

FILl11

These are shown in Figure 6/3. These basic shapes can be defined to be

any size (within the inner grid). POLAR automatically includes the

correct number of individual elements for the size of building block

chosen by the user.

6.10.11 COMMANDS (OR HOW DO I ACTUALLY DEFINE AN OBJECT?)

The POLAR module VEHICL is responsible for recognizing and

understanding the object defi,-'d by the user in the object definition

file.

Each building block has its own keyword. For example, the quasi-

sphere is associated with the word QSPHERE, and the cuboid (rectangular

parallelepiped) with the word RECTAN. The building blocks and their

keywords are summarized in Table 6/1.

Once VEHICL has read a building block keyword from the object

definition file, it then expects to find several more lines (or cards)

setting the block parameters. These might include the dimensions of



6.1-5

Figure 6/3. The eight building block types are shown here. The
uppermost object shows a FIL111 smoothing a corner.
Below, from left to right are quasi-sphere, octagon
right cylinder, tetrahedron, wedge, and rectangular
paral lelepiped.



6.1-6

TABLE 6/1. POLAR BUILDING BLOCKS AND THEIR KEYWORDS

Keyword Building Block Description

FIL111 Smooth inside of a diagonal corner

OCTAGON Right octagonal cylinder

PATCHR Surface of a rectangle

PATCHW* Diagonal face of a wedge

PLATE Arbitrarily thin plate or cuboid

QSPHERE Quasisphere

RECTAN Cuboid or rectangular parallelepiped

SLANT Thin plate slanted at 45

TETRAH Tetrahedron

WEDGE Wedge derived from half a cube



6.1-7

the building block, its orientation and the materials that cover its

surface. (Surface materials are discussed in Section 6.12.) Finally,

VEHICL expects to find a line 'ENDOBJ' telling it that no more

information referring to the present block is coming and to expect the

next building block keyword. The information to be entered in the

object definition file for each building block is summarized in Table,

6/2. Note that numbers and words may be separated by one or more spaces

on the same line. (Input is free-format.)

The keyword 'ENDSAT' signals the end of the satellite definition

and should be included at the end of all vehicle descriptions.

6.10.12 PLATES AND PATCHES

A careful inspection of Table 6/1 will show that there are some

building blocks that are not derived from cubic volume elements. These

are the PLAI., SLANT, PATCHR and PATCHW.

PLATEs are arbitrarily thin cuboids (RECTANS). They are assumed

to have only a top and a bottom, the sides being of negligible height.

Flat plates always lie in one of the axis planes (XY, XZ, YZ). SLANTed

plates lie along one axis, and at a 45" angle to the other two.

PATCHR and PATCHW are the surfaces only of a cuboid and wedge,

respectively. They are used to change the surface material patterns of

existing building blocks and should never be defined in spaces not

already occupied by solid objects. (Objects defined to occupy the same

space are explained in Section 6.14.)



6.1-8

TABLE 6/2. OBJECT DEFINITION - FILE 20

OBJECT DEFINITION OBJECT DEFINITION OBJECT DEFINITION OBJECT DEFINITION
SYNTAX EXAMPLES SYNTAX EXAMPLES
RECTAN RECTAN FILIII FILI 11
CORNER xy z CORNER 3 - 28 CORNERLINEx y z xyz' CORNER 3.2.6. -54. 6
DELTAS ax ay AZ DELTAS 1 2 4 FACE materiainame normal FACE SOLAR - 1-1-
(UP TO 6 SURFACE CARDS1 SURFACE + X ALUMINUM (type I111) ENDOWJ
ENDOWJ SURFACE - X ALUMINUM ENDOWJ

SURFACE . Y ALUMINUM
SURFACE -YV ALUMINUM PLATE PLATE
SURFACE +Z ALUMINUM CORNER x yz CORNER -I -1 -10
SURFACE - Z ALUMINUM DELTAS ax ay AZ DELTAS 2 2 0
ENDOBJ TOP t materiainame TOP + Z CPAINT

WEDGE WEDGE (1ZI BOTTOM - Z CPAINT
CORNER xy z CORNER -3 2 1 BOTTOM ±- 0) materiamname ENDOBJ
FACE materiainame normal FACE S102 - I - 1 0 ENDOBJ

(type 110) LENGTH 1 1 3 PATCHR PATCHR
LENGTH Ax ay AZ SURFACE + X S102 CORNER x y z CORNER 3 -2 8
(UP TO 4 SURFACE CARDS) SURFACE. + S102 DELTAS ax ay Az DELTAS 1 0 1
ENDO&) SURFACE .+.Z GOLD (UP TO 6 SURFACE CARDS) SURFACE - Y SCREEN

SURFACE - Z S102 ENDOBJ ENDOBJ
ENDOWJ

PATCHW PATCHW

TIETRAm TIPTAH CORNER x y z CORNER - 3 2 7
COREAx zCONE - - 8FACE matertiname normal FACE AOUADG - 1 -1 0

FACE materianame normal FACE KAPTON 1 1 -1 ("10 LENGTH Ax AY AIED
(type lIt) LENGTA 2LEGHa yAzNDB

LENGTH ax SURFACE - X TEFLON (UP TO 4 SURFACE CARDS)
(UP TO 3 SURFACE CARDS) SURFACE - Y KAPTON ENDOEIJ
ENDOWJ SURFACE + Z TEFLON

ENDOW. NOTES *normal* is three values.

OCTAGON OCTAGON . each either + 1. 0. or - 1.
AXIS x y z x' y'Z' AXIS 3. 2. -6 3. 2.-9 SURFACE CARD has the following format:
WIDTH w WIDTH 3
SIDE s SIDE 1 SURFACE materlalname
(UP TO 3 SPECIAL SURFACE SURFACE + SILVER 0

CARDS -+ *. . SURFACE - SILVER SPECIAL SURFACE CARD is:
or -C-) SURFACE C MAGNES

ENOOBJ ENDOWJ SURFACE ()materialniame

OSPI4ERE OSPHERE
CENTER x yz CENTER 0. 0. 0
DiAMETER d DIAMETER 4
SIDE s SIDE 2 OHROJC EIIINCM ADMATERIAL matergalname MATERIAL NPAINT OHROJC EIIINCM AD

..ENDO8j ENDOBj ENOSAT Must be last card in file
COMMENT No effect.

SLANT SLANT OFFSETo'Jk Moves coordinate origin
COR.NER x y CORNER -1 -1 0 CONDUCTOR n Sets number of underlying Conducior
TOP materialnormal TOP TEFLON 1 1 0 DELETE tIlk levn emn cell)

BOTTOM material BOTTOM ICAPTON unrecognized word Assumed to be name of new surface
LENGTH Ax Ay 6: LENGTH 2 2 3 material. Next card scanned for
ENDOBJ ENDOBJ parameters



6.1-9

6.10.13 SPECIAL SHAPES

FIL11 is a special shape designed to fill in "steps" whose corner

line runs at 45" to the grid lines in any axis plane (i.e., XZ, ZY, XZ)

(Figure 6/4a). There are two kind of *steps' that can occur between

POLAR building blocks. For example, a small cuboid on top of another

creates four "steps" that lie along grid lines (Figure 6/4b). These may

be "filled in" or smoothed by defining a WEDGE to lie along the corner

line of the step. A second type of step is possible however when, for

example, a tetrahedron or octagon is defined to sit on top of another

building block. These steps have corner lines that run at 45" between

grid lines. This is shown in Figure 6/4c. Such steps can be smoothed

or filled in by a combination of tetrahedra and truncated cubes. This

combination is supplied as the building block FILl11.

6.10.14 BUILDING BLOCK PARAMETERS (OR WHO'S ON NEXT?)

The very center of the object grid is assumed to be the origin of

the coordinate system 0, 0, 0. Hence the grid itself extends from -8 to

+8 in the X and Y directions and from -16 to +16 in the Z direction.

This coordinate system is used to specify the position and size of the

building blocks in the parameter *cards' or lines following the building

block keyword. Let us examine the definition of each building block in

detail to see how this works.



6.1-10

Figure 6/4a. A FIL111 building block all by itself.

Figure 6/4b. "Steps" along grid lines.

'Steps*1 aOng

Figure 6/4c. "Steps" along 45- angle lines.



6.1-11

6.10.15 RECTAN

The following cards define a cuboid or rectangular parallelepiped:

RECTAN

CORNER x y z

DELTAS Ax, Ay, Az

SURFACE +X GOiLD

SURFACE -Y KAPTON

(Four more SURFACE cards for -X, +Y, +Z, -Z)

ENDOBJ

Notes:

1. RECTAN: is the building block keyword.

2. CORNER x y z: defines the coordinate of the lowest indexed corner
of the cuboid (the one so that if you added up x + y + z it would

give the lowest (least positive) number).

3. DELTAS Ax, Ay, Az: gives the length of sides of the cuboid along
the X, Y and Z axes. (Note that the edges of the cuboid must lie
in the direction of the three axes.)

4. SURFACE X GOLD: assigns the material GOLD (see Chapter 6.12)
to the surface Gf the cuboid whose normal points in the X
direction. There are up to six surfaces that may be assigned
materials (+X, -X, +Y, -Y, +Z, -Z). All surfaces that will
eventually become a surface of the finished object (rather than
become a connection to another building block) must be assigned a
material. (For surfaces that are shared with other building

blocks the material assigned is ignored.)



6.1-12

As an example, the following cards:

RECTAN

CORNER -4 2 -1

DELTAS 3 2 5

SURFACE +X GOLD

SURFACE +Y GOLD

SURFACE +Z GOLD

SURFACE -X GOLD

SURFACE -Y GOLD

SURFACE -Z GOLD

ENDOBJ

define a gold bar extending from -4 to -1 in the X direction, 2 to 4

in the Y direction and -1 to +4 in the Z direction (Figure 6/5).

Figure 6.5. RECTAN.



6.1-13

6.10.16 PATCHR

PATCHR is defined in exactly the same way as RECTAN.

PATCHR

CORNER x y z

DELTAS Ax Ay Az

<SURFACE card(s) (usually just one)j

e.g., SURFACE +X GOLD
ENDOBJ

PATCHR should only be defined within an existing object.(see 6.14).

6.10.17 WEDGE

The following cards define a right angled wedge:

WEDGE

CORNER x y z

FACE KAPTON 1 1 0

LENGTH Ax Ay Az

SURFACE +X TEFLON

<Up to four SURFACE cardsj

ENDOBJ

Notes:

1. WEDGE: is the building block keyword.

2. CORNER x y z: defines the lowest indexed vertex of the right

angled corner of the wedge (see note 2, 6.10.15).

3. FACE KAPTON 110: contains two pieces of information:

a. 'KAPTON' assigns the material KAPTON to the surface of the

face of the wedge. (The face is the sloping surface of the
wedge.)

b. '1 1 0' defines the direction of the normal to the face and
hence the orientation of the wedge itself. The normal may point
in any of the following directions only:



6.1-14

±1, +1, 0

±1, 0, +1

0, +1, +1

(For those of you not familiar with the '1 1 0' notation a '1 1 0'
normal is a vector pointing to the coordinates X = 1, Y = 1 and Z
= 0 from the origin.)

4. LENGTH Ax, hy, Az: gives the lengths of the sides of the wedge
parallel to the X, Y and Z axes. To maintain symmetry two of
these must be equal (i.e., the two right triangle sides).

5. SURFACE +X TEFLON: assigns the material 'TEFLON' (Section 6.12)
to the surface whose normal points in the positive X direction.
There are up to four remaining surfaces that may be assigned
materials (see 6.10.15, note 4). These all have normals pointing
along one of the axis directions. Along which axis direction they
point depends on the orientation of the wedge or the choice of
normal for the face (note 2). The possible combinations of face
directions and remaining surface directions are summarized in
Table 6/3. Cards defining materials for non-existent faces are

ignored.

As an example, the following cards:

WEDGE

CORNER 0 0 0
FACE GOLD 1 1 0

LENGTH 2 2 2

SURFACE -X GOLD
SURFACE -Y GOLD

SURFACE .Z GOLD

SURFACE -Z GOLD

ENDOBJ
define a wedge covered in gold with the origin as one of its corners and
a face whose normal points between the X and Y axes in the XY plane.
This is shown in Figure 6/6.



6.1-15

TABLE 6/3. DIRECTIONS OF SURFACE NORMALS ASSOCIATED WITH

ALLOWED WEDGE ORIENTATION

Normal of WEDGE Face Normals of Four Remaining Surfaces

1 10 -X, -Y, z, -Z

-1 1 0 X, -Y, z, -z

1 -1 0 -X, Y, Z, -z

-1 -1 0 x, Y, Z, -Z

1 01 -X, Y, -Y, -Z

-1 0 1 Xf Y, -Y, -Z

1 0 -1 -x, Y, -Y, z

-1 0 -1 x, Y, -y, z

0 11 x, -x, -Y, -z

0 -1 1 x, -x, Y, -z

0 1-1 x, -x, -Y, z

0 -1 -1 X, -x, -Y, -z



6.1-16

x

2,0,2 Z

(2,0,0),' -

F2,0

IY

0,0,0 0,,

Figure 6/6. Wedge defined with surface normal 110 and corner 0,0,0.



6.1-17

6.10.18 PATCHW

PATCHW is defined in exactly the same way as a wedge.

PATCHW
CORNER x y z
FACE GOLD 1 -1 0
LENGTH Ax Ay Az
<Up to four SURFACE cards (usually just one)j
ENDOBJ

Like PATCHR (6.10.16) it may only be used to define a wedge inside

another building block. This is explained further in Section 6.14.

6.10.19 TETRAH

The following cards define a tetrahedron:

TETRAH
CORNER x y z
FACE ALUMINUM 1 1 -1
LENGTH Ax
SURFACE -X TEFLON
SURFACE -Y TEFLON
SURFACE +Z TEFLON
ENDOBJ

Notes:

1. TETRAH is the building block keyword.

2. CORNER x y z: defines the coordinates of the right angled

corner of the tetrahedron. There is only one of these. (It

corresponds to the corner of the partially filled cubic volume

element that is actually filled.)

3. FACE 1 1 -1: assigns the material ALUMINUM to the unique face

of the tetrahedron opposite the right angled corner.

'1 1 -1' gives the direction of this face's surface normal and

hence the orientation of the tetrahedron. The following

directions only are allowed:

(1, n 1, e61

(This notation is the same as explained in 6.10.17, note 3.)



6.1-1C

4. LENGTH Ax: gives the length of the sides along the X, Y and Z

axis directions. (These must all be equal to preserve symmetry.)

5. SURFACE -X TEFLON: assigns the material teflon to the remaining

surface with surface normal pointing along the negative X axis

direction. Up to three surfaces remain to be assigned materials

(see 6.10.15, note 2). The surface normals of these surfaces

depend on the orientation of the tetrahedron and hence the normal

of the *face". Table 6/4 summarizes these relationships.

Definitions of non-existent surfaces are ignored.

TABLE 6/4. DIRECTIONS OF SURFACE NORMALS ASSOCIATED WITH

ALLOWED TETRAHEDRON ORIENTATIONS

Normal of TETRAHedron Face Normals of Three Remaining Surfaces

1 11 -X, -Y, -Z

-1 1 1 X, -Y, -Z

1-1 1 -X, Y, -Z

1 1 -1 -X, -Y, Z

-1 -1 1 X) Y, -Z

-1 1-1 X, -Y, Z

1-1 -1 -X, Y, Z

-1 -1 -1 X, Y, Z



6.1-19

As an example, the following cards:

TETRAH

CORNER 0 0 0

FACE KAPTON 1 1 1

LENGTH 2

SURFACE -X KAPTON

SURFACE -Y KAPTON

SURFACE -Z KAPTON

ENDOBJ

define a tetrahedron with its right angle corner at the origin and the

normal of the opposite face pointing between the positive X, Y and Z

axes. This is shown in Figure 6/7.

6.10.20 OCTAGON

The following cards define a right octagonal cylinder:

OCTAGON

AXIS x y z x' y' z'

WIDTH w

SIDE s

SURFACE + GOLD

SURFACE - GOLD

SI1'cACE C GOLD

ENDOBJ

Notes:

1. OCTAGON: is the building block keyword.

2. AXIS x y z x' y' z': defines both the direction of the symmetry

axis and the height of the cylinder. The symmetry axis must be

parallel to one of the axis directions. Thus two of the coordinate

pairs (x, x'), (y, y') and (z, z') must be identical. For example,



6.1-20

x

z

200

002.

Vy
000 020

Fiur 67 Ttrhdrn eind ih ts"crer a 00an srfc
noma 11



6.1-21

'AXIS 6 3 -2 7 4 -2'

would define an axis that was no', parallel to the X, Y or Z

directions. However,

'AXIS 6 3 -2 7 3 -2'

defines an axis parallel to the X direction and is acceptable.

The height of the cylinder is given by the difference in

coordinates along the axis direction. (For example, in the case

above, the axis is one mesh unit long.)

3. WIDTH w: gives the width of the octagonal cross-section of the

cylinder as w. If WIDTH is chosen to be odd, the axis must be

moved or the sides of the cylinder will lie halfway across a volume

element. POLAR automatically moves the axis +1/2 a mesh unit in

each direction in the plane perpendicular to it.

4. SIDE s: gives the length of one of the sides of the octagonal

cross-section that lies in an axis direction. The symmetry

relationship between the width and the sides of the cross-section

is shown in Figure 6/8. To maintain this relationship the side

must always be an even number of mesh units less than the width.

This means that they both either must be odd or both even numbers

of mesh units.

5. SURFACE + GOLD: assigns the material GOLD to the top surface of

the cylinder. '-' and 'C' replacing the '+' assign surface

materials to the bottom or side cylindrical surface, respectively.

Only those surfaces that will eventually become surfaces of the

completed object need be assigned a material.

As an example, the following cards:

OCTAGON
AXIS 2 -4 6 2 -4 10
WIDTH 5
SIDE 3
SURFACE + TEFLON
SURFACE - TEFLON
SURFACE C TEFLON
ENDOBJ



6.1-22

defines a right octagonal cylinder covered in teflon. The symmetry axis

lies along the Z direction and the height of the cylinder is four mesh

units. Because the WIDTH is odd the axis is imagined to pass through

the point 2 1/2, -3 1/2 in the X Y plane. Hence the top and bottom

faces run from X = 0 to X = 5 and from Y = -6 to Y = -1. The

coordinates of the top of the cylinder are shown in Figure 6/8. A

three-dimensional view is shown in Figure 6.9.

Y

A1, -1- S- I E - - 4, -1 ( Z =  10

I

I
0, -2 I 5, -2

2;, 3 ,.,
-- "- --z,

WIDTH

0,-5 15,-5

1, -6 - SIpE - 04, -6

Figure 6/8. Top of an OCTAGON.



6.1-23

Figure 6/9. Octagon.



6.1-24

6.10.21 QSPHERE

The following cards define a quasisphere:

QSPHERE
CENTER x y z
DIAMETER d
SIDE s
MATERIAL SiO2
ENDOBJ

Notes:

1. QSPHERE: is the building block keyword.

2. CENTER x y z: defines the center of the sphere to be at

coordinates X, Y, Z.

3. DIAMETER d: defines the diameter of the sphere to be d mesh units.

The quasisphere can be thought of as an octagonal cross-section

(like the top of an OCTAGON (see 6.10.20)) rotated about an axis in

the cross-section plane. The diameter then corresponds to the

WIDTH for a two-dimensional octagonal section. The same

restrictions then apply: An odd value for the DIAMETER causes

POLAR to automatically move the CENTER by +1/2 a mesh unit in the

X, Y and Z directions.

4. SIDE s: sets the length of a side lying in one of the axis planes

(e.g., X Y plane). Like the OCTAGON, the SIDE and DIAMETER must

differ by an even number of mesh units.

5. MATERIAL SI02: assigns the material SI02 to the whole sphere

surface.

As an example, the following cards:

QSPHERE
CENTER 1 -3 5
DIAMETER 7
SIDE 3
MATERIAL SILVER
ENDOBJ



6.1-25

define a silver sphere centered at 1 1/2, -2 112 and 5 1/2. The

sphere extends along the axis direction as follows:

x from -2 to 5

y from -6 to 1

z from 2 to 9

(See Figure 6/10.)

Figure 6/10. QSPHERE.



6.1-26

6.10.22 FIL111

The following cards define a FILl11:
FILl11
CORNERLINE x y z x' y' z'
FACE KAPTON 1 -1 -1
ENDOBJ

Notes:

1. FIL111: is the building block keyword.

2. CORNERLINE x y z x' y' z': defines both the length and the
direction of the "step" FILl11 is to fill. The line must lie in
one of the axis planes (XY, XZ, YZ) and must have a direction lying
45" to two of the axes. This means that one pair of the
coordinates (x', x), (y, y') (z, z') must be identical and the
other two pairs must differ by the same magnitude. For example,

'CORNERLINE 1 2 3 4 5 6'

is unacceptable since all three coordinate pairs change. The
following correct example

'CORNERLINE 1 2 3 -1 4 3'

defines a line in the XY plane (Z is constant) with Ax = -2, and Ay
= +2. Hence the line is 2 2 units in length and runs at 45°between
the positive Y axis and the negative X axis.

3. FACE KAPTON 1 -1 -1: assigns the material KAPTON to the exposed
surfaces of the FIL111 and defines its orientation via the surface
normal of its exposed face: 1 -1 -1. The surface normal can
only be combinations of

+1 +1 +1

Only certain choices of corner line direction are consistent with
each choice of FACE normal. If we subtract the x y z, x' y' z'
coordinates defined in corner line

Ax = x' - x
hy = y' - y
Az = Z' - z

then the surface normal n1 n2 n3 (e.g., 1 1 1) must be orthogonal
to Ax, Ay, Az, i.e.,

Ax n 1 + Ay n2 + Az n3 = O.



6.1-27

With the choice 1 2 3 -1 4 d :or the corner line coordinates

only 1 1 +1 or -1 -1 +1 faces are permissible, e.g.,

-2. -1 + 2. -1 + 0. +1 = 0.

However, with -1 +1 +1

-2. -1 + 2.1 + 0. +1 = 4

the vectors are not orthogonal and so are not allowed.

As an example, the following cards:

FILl11
CORNERLINE 1 4 -6 1 7 -3
FACE GOLD -1 1 -1
ENDOBJ

defines a FIL111 covered with gold smoothing a step with a corner line

running from 1 4 -6 in the YZ plane, between the positive Y and Z axis

to 1 7 -3. The face of the cIL111 points in the negative X and Z

directions and positive Y direction. (See Figure 6/11.)

Figure 6/11. FILlil.



6.1-28

6.10.23 PLATE

The following cards define a PLATE:

PLATE
CORNER x y z
DELTAS Ax Ay Az

TOP [ ALUMIN

BOTTOM +.Y KAPTON

ENDOBJ

Notes:

1. PLATE: is the building block keyword.

2. CORNER x y z: defines the vertex of the thin plate with the

lowest indices (see 6.10.15, note 2).

3. DELTAS Ax Ay Az: defines the length of the plate along the

three axis directions. A PLATE may be thought of as a cuboid (or

RECTAN) (see 6.1C.15) with zero thickness in one direct',n. Hence

Pne of Ax, Ay and Az must be zero. For example, if Ay is chosen

to be zero the PLATE will lie in the xz plane.

TOP + ALUMIN:

assigns the material ALUMIN to the TOP surface of the plate. The
"TOP" surface may be either in a + or - axis direction. This

choice is arbitrary unless a "double point" conflict is possible.

Double point conflicts are explained in Section 6.11.11.

BOTTOM + KAPTON:

assigns the material KAPTON to the other side of the plate. If

"top" were chosen as +X then bottom must be -X, and so on. Note

that the choice of x, y or z must coincide with the Ax, hy or Az

chosen to be zero.



6.1-29

As an example, the cards

PLATE

CORNER 0 0 0

DELTAS 0 2 2

TOP -X TEFLON

BOTTOM +X GOLD

ENDOBJ

defines a 2 x 2 thin plate with gold on the +X side and teflon on the

-X side lying in the YZ plane. (See Figure 6/12.)

Figure 6/12. PLATE.



6.1-30

6.10.24 SLANT

The SLANT object should be thought of as a WEDGE with the 100-type

surfaces left undefined. The FACE card is transformed to a TOP card,

and a BOTTOM card is added. The CORNER is remote from the slanted

plate, and is where the CORNER of a WEDGE would be if we were defining

the FACE of a WEDGE. Similarly, the LENGTH card corresponds to that of

a WEDGE. The syntax is

SLANT

CORNER ix jy kz

TOP matl nx ny nz

BOTTOM matl

LENGTH Ix ly lz

ENDOBJ

6.10.25 MORE OBJECT DEFINITION KEYWORDS

In addition to the building block keywords and their parameter

cards, the object definition of VEHICL also recognizes a few other

keywords. With these and the building blocks, a complete object

definition file can be constructed. Let us examine the remaining

keywords and their effect one by one.

ENDSAT

Just as ENDOBJ terminates a set of building block parameter cards,

so the keyword 'ENDSAT' terminates the whole object definition file.

After reading an 'ENDSAT' card VEHICL stops reading from the object

definition file and begins to process the information it has. Note that

ALL object definition files must end with an 'ENDSAT' card.



6.1-31

COMMENT

VEHICL ignores anything written on the same 80 character line (or

card) that begins with the keyword 'COMMENT'. This allows the user to

include notes or reminders in long and complicated object definition

files, e.g.,

COMMENT DEFINE OCTAGONAL BODY

OCTAGON

AXIS -6 0 2 -8 0 2

0

OFFSET

POLAR uses a coordinate system defined so that the lower, leftmost

corner of the object definition grid has the coordinates (1,1,1). This

is done so that all elements which contain the object will have

addresses which are positive and nonzero for bit packing purposes.

Usually the computational grid coordinates are not convenient for

object definition. The OFFSET card allows the user to shift the

reference point during object definition. By default, the center of the

object grid is labeled (0,0,0) for satellite description. The center of

the grid in calculation coordinates is calculated by

xc = int[(NX+i1)/2]

Yc = int[(NY+l)/2]
zc = int[(NZ+1)/2]

where NX, NY, and NZ are the object grid sizes as defined using the NXYZ

keyword (6.21) in the normal VEHICL input mode. Point



6.1-32

(XC,Yc,Zc) would then become the default (0,0,0) for the duration of

satellite definition.

The card

OFFSET a b c

would shift the coordinate system so that origin for satellite

definition became (xc-a, Yc-b, zc-c) in computational grid coordinates.

The coordinate shift used during input will be the default or the most

recent offset. Each additional OFFSET card will be used as an offset

from the default shift (xc,yc,zc).

CONDUCTOR

POLAR allows for both insulating and conducting materials (Chapter

6.12). It assumes that all surface materials cover an underlying

conductor. Up to 15 separate conductors are allowed. Each building

block is associated with a particular conductor. This association is

made by preceding all building block definitions associated with the

first conductor with the card:

CONDUCTOR 1

Similarly, blocks associated with a second conductor are preceded by the

card

CONDUCTOR 2

and so on. If no CONDUCTOR card is included in the object definition

file all building blocks will be associated with CONDUCTOR 1. In the

same way any building blocks defined before VEHICL encounters a card

CONDUCTOR n (n > 1)

will be associated with conductor 1. All subsequent blocks will be

associated with conductor n, until another conductor card is

encountered.

It is conventional to choose conductor 1 as the satellite ground

conductor. Skipping conductor numbers is not recommended.



6.1-33

DELETE

DELETE allows the user to modify building blocks already defined

by selectively "deleting" filled or partially filled cells (i.e.,

"deleting* them by making them empty).

DELETE x y z

empties the filled cell with the indices of its lowest index vertex

given by x y z. (The lowest index vertex is the one with the sum of its

X, Y and Z coordinates equal to the least positive number.) The

coordinates x, y, z refer to the coordinate system presently active

(i.e., the default system or that associated with the most recent OFFSET

command). The DELETE command requires great care in its use. It does

not assign materials to surfaces that are newly exposed by the removal

of a filled element. The user must do this by defining a new object or

objects with surfaces that coincide with those newly exposed. This is

most easily done by overlaying objects (6.14).

COMPRESS

Since there is a limit of 1250 to the number of surfaces on an

object (the rectangle defined in Figure 6/5 has 62 surfaces), large

complex objects sometimes contain interior surfaces which need to be

removed. Normally these surfaces are removed when the satellite

definition is complete or when the number of surfaces exceeds the

surface limit between building blocks, COMPRESS forces the existing

interior surfaces to be removed immediately. An example of the syntax

is

ENDOBJ

COMPRESS

RECTAN



6.1-34

MARKTB

Sometimes when defining odd objects with unusual geometries,

undefined double points will be found. One way to patch the object is

to use the MARKTB command to define an element and its associated

surfaces to be TOPs or BOTTOMs.

MARKTB 1 2 2 TOP

MARKTB 1 2 1 BOTTOM

The first MARKTB command forces the cell with lowest index

vertices of (1,2,2) to be marked as a TOP element. The second line

marks the element below the first in the Z-direction as a BOTTOM cell.

It should be noted that these index vertices will be affected by

previous OFFSET commands. (See Section 6.11.11 for more hints for

dealing with double points.)

OTHER WORDS

Any other words that VEHICL reads in the object definition file

are assumed to be the names of new materials and VEHICL then expects

three more cards defining the material properties (6.12) to follow

immediately.

6.11 DEFINING AN OBJECT: AN EXAMPLE

The input file of Figure 6/13 defines an object consisting of an

ALUMINUM slab, trimmed with four KAPTON wedges and four TEFLON

tetrahedra, and topped with a GOLD sphere. Three views of the resulting

object are shown in Figure 6/14.



6.1-35

1. CCOMENT ALU!'IKUP SLAE
Ze ~EC CT A Nj
3. Co;.NE -! -4 -1

4. CCLT3S 6 & I CUBOID
5. SURFACE +Z ALU"INU"
6. SURFACE -Z ALUMINU"
7. ENCO P
8. CCMMENT FOUR KAPTCN lECGES
9. aEDGE
10 CORNER -1 -4 -1
110 FACE KAPTON -1 C 1
12. LENGTI- 18 1
13, SURFACE -Z KAPTCN

40ENDE 0O B J
16. CORNER - -. -1
17. FACE KAPT"N C -1 1
18. LENGTI- 6 1 1 FOUR WEDGES

SSURFACE 
-z KAPTCN

1 0 bEOGEIo CORNER 3 -4 -1
23o FACE IAPTON 1 3 1

24o LENGTh 1 8 1
25. SURFACE -Z KAPTCN
26o ENCOBJ
27, 6EUGE
28. CORNER -4 a -190 FACE KAPTON 0 1 1

LEN TI 6 1 1
'IleOSURFACE -Z KAPTCN

'3. CCUMENT FOUR TEFLON TET'AHEDRA
'. TETRAMEORON

35. CORNER -3 -4 -1
!6. FACE TEFLON -1 -1 1
37. LENGTa 1
38. SURFACE -Z TEFLCN
39. ENO0B.
Mo TETRAHEDPON
410 CORNER --4 -1
42. FACE TE LON 1 -1 1 FOUR
43. LENGTh 1
1"4 * SURFACE -Z TEFLCN TETRAHEDRA
45. ENOOBJ
46, TETRAHEDRON
47. CORNER 4 4 -1
48s FACE TEFLON I 1 1
49 LENGTH I
Soo SURFAC7 -Z TEFLC%
51. ENO B
529 TETRAHECqCN
53. CORNER -3 4 -1
!40 FACE TSFLCN -1 4 1
55. LENGTh 1
56. SURFACE -Z TEFLCN
57. ENOOSJ
S8 C0oMENT ALL TOPPEC BY A GOLD SPHERE
59. CSPHERE
60s CENTER , Z 2
61. CZAMETER 4
62. SICE 2 SPHERE
63. PATERIAL GCLC
60. ENCOB.
65i EOSAT d

Figure 6/13. Object definition example.



6.1-36

I "0

I -- C, -"w

II-

I I -|-.-



6.1-37

6.11.10 LIMITATIONS IN OBJECT DEFINITION

It is probably fair to say that you can link building blocks

together and nine times out of ten there will not be a problem.

This section deals with the other one time out of ten, when what

appears to be a perfectly reasonable combination of building blocks

is rejected by VEHICL. We itemize here a rather formidable list of

object definition "don'ts". However, you should remember that it

takes hard work to break more than one or two of these rules

defining any one object if you use a little common sense.

1. All exposed surfaces must be assigned materials.

2. The parameter cards for each building block, discussed in Section
6.10.14, must appear in the order shown, and no other.

3. The object must not touch the object grid boundary planes at any
point.

4. Thin plates sharing the same volume element can do so only if the
TOP face of one shares volume with the TOP of the other, or the
BOTTOM face of one shares volume with the BOTTOM face of the other.
TOP faces may not share volume elements with BOTTOM faces.

5. Thin plates may only intersect each other at the edges or corners.

6. Double points must be assigned TOP and BOTTOM sets (see Section
6.11.11).

(Rules 4 through 6 are all manifestations of conflicts involving double

and triple points.)

6.11.11 DOUBLE POINTS

Thin plates may have different potentials on their two surfaces,

yet they occupy only one plane of grid points. These grid points must

therefore be associated with two distinct sets of potentials. For this

reason they are called double points. The two sets of potentials

associated with each half of the double points are distinguished by

calling one set 'TOP' and one set 'BOTTOM'. Recall (6.10.23) that the



6.1-38

surfaces of a thin plate may be defined as 'TOP' or 'BOTTOM'

regardless of whether their surface normal points along a positive or

negative axis direction: The TOP and BOTTOM definition refers to the

(arbitrary) choice of which set of potentials (TOP or BOTTOM) to

associate with each surface. When double points share a volume

element they must all be of the same type; i.e., all TOP or all

BOTTOM. This is the basis for rule 4 in Section 6.11.10.

Double points also occur when other building blocks touch in

such a way that their single points come together to form a common

vertex of two "disjoint" volume elements. By "disjoint" volume

elements we mean elements physically separated from each other by

solid surfaces. This is shown for two cuboids touching along one edge

only in Figure 6/15. The row of points along the touching edges are

double points and one set must be defined as BOTTOM. This may be done

by defining a thin plate touching the common edge. If the exterior

surface of the plate pointing into one of the disjoint volumes is

'BOTTOM' then the half of the double point associated with the other

disjoint volume becomes 'TOP'.

X

Row of Double Points
Extending in the Z Direction

Disjoint
Volume Elements

Figure 6/15. Profile of two cuboids sharing a common edge and
resultant double points. Heavy lines show possible
orientations for the definition of a thin plate to re-
solve the conflict.



6.1-39

Because of the way surface cell potentials are assigned to grid

points, the edges of thin plates are only single points. However, a

thin plate touching another building block with its edge creates a row

of double points similar to that caused by two cuboids touching at an

edge (Figure 6/16). These double points are automatically assigned TOP

and BOTTOM sets.

Double point ambiguities can also be resolved on an element by

element basis using the MARKTB command discussed in Section 6.10.25.

6.11.12 TRIPLE POINTS

A triple point is said to occur when a vertex is common to three

or more disjoint volume elements. Triple points are illegal! The

easiest way to get a triple point is to define one thin plate passing

through another. This is not allowed (rule 5, Section 6.11.10).



6.1-40

U U E5

O 0o O go

To p Top

Bottom Bottom

VALID INVALID

Top Top

Bat torn Bottom

Bottom Top

Top Bottom

VALID INVALID

0

4J 0

VALID INVALID (Contains
triple point)

Figure 6/16. Examiples of plates intersecting objects.



6.1-41

6.12 SURFACE MATERIALS

6.12.10 MATERIAL PROPERTIES

Each material name (e.g., KAPTON, GOLD, FRED (the name is

arbitrary)) has associated with it a list of material properties. The

name of each material and the values for each material property are

supplied by the user in the object definition file. (This is explained

in Section 6.12.11.) The nineteen material properties are summarized in

Table 6/5. Here we examine each one in more detail.

DIELECTRIC CONSTANT (PROPERTY 1)

Property 1 contains the relative dielectric constant for an

insulating material er

-
r

0

where E is the absolute dielectric constant and eo is the dielectric

constant of free space. er is dimensionless.

THICKNESS (PROPERTY 2)

Property 2 gives the thickness d of a dielectric film covering an

underlying conductor in meters. d is arbitrary and may be chosen to be

more or less than a mesh unit. However, note that POLAR uses thin-film

approximations in many of its calculations involving surfaces (Section

4.52).

BULK CONDUCTIVITY (PROPERTY 3)

Property 3 gives the bulk conductivity o of the surface material

in ohms "1 M-1 . Oo is assumed to be the value appropriate for a sample

not exposed to any radiation and not subject to any internal electric

fields. Field enhancement and radiation enhancement of o are not

currently modeled by POLAR. A value of -1 indicates that the material

is a metallic conductor.



6.1-42

TABLE 6/5. MATERIAL PROPERTIES

(see Section 6.12.10 for notes)

Property No. User Input Units Description

1 None Relative dielectric constant

2 m Dielectric material
thickness

3 ohms-1 m-1  Bulk conductivity (= -1 for
a metallic conductor)

4 None Atomic number

5 None Maximum secondary electron
yield for electron impact

6 keV Primary electron energy that
produces maximum secondary
yield

7 angstroms f Range parameters (4.3)
8 None
9 angstroms R = P7EP8 + PgEPIO
10 None
11 None Secondary electron yield due

to impact of 1 keV protons

12 keY Incident proton energy that
produces maximum secondary
electron yield

13 A m-2  Photoelectron yield for
normally incident sunlight

14 ohms square-1  Surface resistivity (= -1
for non-conducting surface)

15 Volts Maximum (absolute) potential
attainable before a
discharge must occur

16 Volts Maximum potential difference
between surface and
underlying conductor before
a discharge must occur

17 ohIs-1 3m-1 Radiation-induced
(M s-)- conductivity coefficient (k)

18 None Radiation-induced
conductivity power (A)

19 kg m-3 Material density



6.1-43

ATOMIC NUMBER (PROPERTY 4)

Property 4 is the atomic nui-ber for pure elements or the mean

atomic number for chemical compounds; e.g., polyethylene (CH2)n has a

mean atomic number of (6 + 1 + 1)/3 = 2.7.

SECONDARY YIELD (PROPERTIES 5 AND 6)

Properties 5 and 6 are the coordinates of the maximum in the

secondary electron yield curve of the material. The secondary yield

curve is a plot of secondary yield 6

6= current of secondary electrons emitted
incident primary electron current

for normally incident electrons, against the incident energy of the

primary electron E. This is further discussed and illustrated in

Section 4.52. Property 5 contains 6max, and property 6 contains Emax in

keV.

ELECTRON RANGE (PROPERTIES 7, 8, 9 AND 10)

Part of the secondary electron emission formulation requires an

analytical form for the "range" of electrons in the material. The range

is the depth to which the electrons can penetrate the material as they

are continuously slowed down by losing energy to the material lattice.

POLAR uses a biexponential form. If P7 , PS, P9 , and P10 are properties

7-10 respectively, the range R is given by

R = P7 E
P8 + P9 EP10

The four parameters are obtained from fits to stopping power data

(Section 4.52). The range is determined in A (10-10 m). If no



6.1-44

reliable stopping power data or four parameter fits are available, the

range may be estimated from Feldman's formula[4] automatically by

assigning -1 to property 7. In this mode properties 7-10 are assigned

as follows:

P7 = -1

P8 = null

P9 = material density (g cm-3)

P10 = mean atomic weight (AMU)

The mean atomic weight is calculated in the same way as the mean atomic

number (property 4) using atomic masses rather than numbers.

ION INDUCED SECONDARY EMISSION (PROPERTIES 11 AND 12)

Secondary emission of electrons due to ion impact is also treated

using a two parameter theory (4.52). Parameter 11 contains the yield

for 1 keV normally incident protons and parameter 12 the proton energy

that produces the maximum electron yield. The secondary emission

properties due to impact of ions other than protons are assumed to be

identical to the proton values.

PHOTOEMISSION (PROPERTY 13)

Property 13 contains the yield of photoelectrons from the surface

material exposed to the solar spectrum. The intensity is that measured

on earth 93,000,000 miles from the sun. (Earth orbit altitudes are

negligible by comparison and the intensity of the sun close to earth may

be considered constant.)



6.1-45

SURFACE RESISTIVITY (PROPERTY 14)

Property 14 gives the intrinsic surface resistivity in the "ohms

per square". This rather odd unit is used to distinguish the

resistivity coefficient (property 14) from the actual surface

resistance (in ohms) calculated by POLAR. Consider two points in a

plane A and B, a distance LI apart. If L2 is the "width" of the

plane

surface resistance = surface resistivity x 1
L2

dimensionless
i.e. ohms = (ohms per square) x geometrical

factor

L2

A B



6.1-46

POLAR uses the surface resistivity per square, times a geometrical

factor it calculates to determine the surface resistance between two

adjacent materials.

The intrinsic surface conductivity is due to the migration of

electrons along the surface layer aided by adsorbed impurities and

defects.

Surface conductivity may be omitted from the current calculations

completely by choosing property 14 to be negative.

DISCHARGE ANALYSIS (PROPERTIES 17, 18, 19, 20)

Currently under development.

PROPERTIES 17, 18, 19, 20 (RADIATION INDUCED CONDUC-TVITY)

Currently under development.

6.12.11 DEFINING MATERIALS

New materials are defined, and their properties assigned inside

the object definition file (6.10.11). The object definition file is

read by POLAR module VEHICL. VEHICL interprets any word that it does

not recognize as a building block keyword (or their parameter cards

(6.10.25)) as the definition of a new material name. New material names

may not appear inside building block definitions (i.e., between a

building block keyword and an 'ENDOBJ' state;ment).



6.1-47

Following the material name, VEHICL expects to find three

additional cards specifying 20 constants as the material properties to

be associated with the name. The 20 constants correspond to properties

1-20 and are read sequentially; i.e., the first constant read is

interpreted as property 1, the second, property 2, and so on. They are

arranged sequentially, eight per car, , so that cards 1 and 2 each have

eight numbers and card 3, four numbers. Formally each number is written

in a field of up to ten characters, but POLAR will read the cards in

free format. No units need be specified. POLAR will assume the units

given in Table 6/5 and no others. For properties not requiring any

input such as property 20, or properties 17-19 for conductors, some

constant must be entered but its value is arbitrary. (POLAR will not

actually use the values entered but expects to read something.)

Once the three material property cards have been read VEHICL is

ready to accept any other keywords or more material names. POLAR will

recognize up to fifteen different materials.

Materials must be defined before they are referred to in any

building block definition. For example, if I assign the surface of a

sphere to be 'FSTUFF' with the card

MATERIAL FSTUFF

if 'FSTUFF' and its material properties have not been declared earlier

in the object definition file, an error will occur and execution will

stop. For this reason all the materials to be used are usually declared

at the very beginning of the object definition file. This is shown in

Figure 6/17.



6.1-48

COMMENT DEFINITION OF SATELLITE NBIG EARS'

Material Name 1
3 material property cards

Material Name 2
3 material property cards

COMMENT DEFINE MAIN BODY

CONDUCTOR 1

QSPHERE
parameter cards

ENDOBJ

RECTAN
parameter cards

ENDOBJ

* more building blocks

COMMENT DEFINE SOLAR PANEL (SEPARATE CONDUCTOR)

CONDUCTOR 2

PLATE
parameter cards

ENDOBJ

* more building blocks

COMMENT

CONDUCTOR 3

* more conductor segments

ENDSAT

Figure 6/17. General form of the object definition file.



6.1-49

6.12.12 DEFAULT MATERIALS

There is one case where the user can forget to define his or her

materials and get away with it. When VEHICL encounters a material that

hasn't been defined already, before an error occurs, it checks the

following list of default materials:

ALUMIN

AQUADG

CPAINT

COLD

INDOX

MAGNES

SCREEN

KAPTON

NPAINT

S102

SOLAR

TEFLON

SILVER

If the material is included in this list, it becomes one of the up to

fifteen defined materials and its properties, stored internally, are

automatically entered as VEHICL input by the code. The properties of

these materials are shown in Table 6/6. Any further reference to the

material will assign the same set of properties to the surfaces

concerned. If the material is not found in this list, an error will

occur. These material properties are currently a carryover from NASCAP.

New default materials will be included in future revisions.

If two sets of material properties are defined with the same name,

or names with the same first four letters, two of the fifteen possible

materials are used up but only the first set of material properties are

used. For example, if GOLD is referenced before it is defined in the

runstream, the default material properties of gold will be associated

with all gold surfaces in the object definition file.



6.1-50

TABLE 6/6

MATERIAL PROPERTIES

MATERIAL 1: ALUMI10

PROPERTY INPUT VALUE CCOE VALuE
I DIELECTRIC CONSTANT (NONE)~ loc .,;a'cZ (NONE)
2 TRICKESS mEOC!~ TEQS !.iO-COZ "ESh
3 CONDUCTIVITY -I.C'c0oo IQC/M -1.zeo.00 "NO/"
4 ATOMIC NiUMBER 1.30.001 (NONE) L.30#001 (k.0NEj
s DELTA "AN )COcrF 9.70-C31 (NONE) 9.18.000 INONE)
6 E-PAX )oDEPTm**-1 3.00-001 K4EW 3.3Q-002 AeG-Cl
7 RANGE 1.5140C2 8MG. 1.23.002 ANG.
* EXPONENT RANGE 9900-001 (NONE) 3.87.002 ANG.
9 RANGE > EXPONENT 2.20.002 ANG. i.c0-oO1 04aNE)

10 EXPONENT 1.76#COC (NONE) 1.?6oVCC (NONE)
it YIELD FaN 1.EV PROTONS Z.44-CO! (NONE) 2.4'4-ca1 (NONE)
12 MAX OE/OX FOR PROTONS Z.3T*IG2 '4Ev Z.33#C32 N4EW
13 PHOTOCUR'ENT 4.cc-' */P'**Z %.:O-CaS A/'A**

14 SURFACE CESISTIVITY -lj+:C ONOS -S.aS-.,13 V-S/c
is SPACE OISCMAQ5E *OT*L !.0CC VOLTS llZ#C VO.LTS
16 INTERNAL 3ISCHARGEPOT'L 2.:C-C3 VOLTS Z.:CC3 VOLTS
17 ILON IhOuCEDCONo*YCOEFFi' i.-C13 4HCMS3 L.O1 HONS-1
is RAON INOUCEDCONC*YPOAER !.c!*a0o3 (NONE) !..j2'0C (NONE)
19 DENSITY 1.30.0G3 K5/H*J 1.0O.CG3 A46/1*3
20 Z.0.00C1 -1.00.000

PATER!AL 2: ACUA-b

PROPERTY 14PUT VALUE CODE VALUE

L DIELECTRIC CONSTANT 1.3e*COC (NONE) 1-Z0#03C (NONE)
2 THICKNESS 1.ZC-C33 "ETERS !.;;:C-!02 "ESA

I CONDUCTIVITY -1.:CoCCz "C/p -L.Q3.cGc "NC/v
4 ATOMIC NUMBUER O.ac*00O (NCNE) *.;*l INC.NE)
s DELTA '4AN )OEFF 1.450*030 INGNE) 7.'b.~cuc ISMN)
6 E-"Ax )OEPT4*..1 S.ZC-Cj '4EW 2*2-C^4 AN-C!
7 RANGE -i.:coo AMG. 5.3:00C2 ANGf.
a EXPONENT P ANGE .Jc (NONE) ..c A%G.
9 RA?46E > EXPONENT Z~t#a ANG. 1.5#a INONE)

10 EXPONENT I.2C*001 INCNE) l.cZ0i'CO (NONE)
11 YIELD FOR 114EV PROTONS 4..S-CC1 (NCNE) '.55-C01 (NONE)
12 PAX OE/OX FOR PROTONS K 1Ev 1.42**COZ K4EV
13 P.OTCCURGENT 2.10-005 L/'*m 2.LC-rCO5 A/"OUZ
LAS SURFACE CESISTrVITY -1.ZX'rz OHI'S -b.ds-C13 V-SidC
is SPACE GISC04RQE POT*L 1-2'vJ4 VOLTS i.~v~ VCLTS
16 INTERNAL 3ISCeAPvGEPOTVL Z.:O.CO! VOLTS Z.JC.OC3 VOLTS

LT AO% INOuCEoc3o*JYCOEFFT !-.:c-c13 'NHC'4s 1..ZC-c13 WHOMfS.
I# RACN t%0UCE0CO%OYP0.EP I.,;C-CZC INCNE) I.~: NONE)

19 DENSITY 1.Z0O*O03 '4G/P*3 1.C.7 G /me3
20 Z.ZC#Cal 13*c



6.1-51

TABLE 6/6

MATERIAL PROPERTIES (Continued)

"ATE RI AL 3 : C P A ImE

PPOPEOTY INPUT VALUE COOS VALUE
I DIELECTRIC CONSTANT 3.5e#CC' INCNE) 3.SO0010C (NONE)
2 THICKN~ESS 1.ZC-033 M4ETERS !.DCi-'Z2 MqESm
3 COUCTIVITY -L.CaOOcc "NO/" -I.*;a "NO/"

4 ATOMIC NUMeER S.O.*C30 (NCNEJ S.Oa*O0o fNONE)
S DELTA "4AX )COEFF I NCNEI N.,;6*OG1 (NONE)
6 E-fahx )DEPTH**-! 1.SC-C01 KEY a.7N-oaz 5MG-cl
7 RANGE 7.15.ccl ANG@ 4.29.-C' ANG.
a EXPONsENT ) RANGE b.ZC-:-O1 (NONE) 5.SZ-;02 A&G.
9 RANGE > EXPONEN4T 3.12*nOZ AND. b.ce0001 (NONE)
10 EXPONENT 1.7"*ccO INONE) 1.77#CG0 (NONE)
11 YIELD FOR 1MEV PROTONS 4.55-001 (NONE) 4.55-001 (NONE)
12 MAX OC/OX FOR PROTONS 1.4C*C32 KEV 1.-43*bCZ KEY
13 PHOTOCURREf4T 2.30-035 s.'m..z Z.OO-gQS A/P*02
1N SURFACE QESISTIVITY -i.ac*OO(7 OHMS -a.95-01.3 V-S/O
15 SPACE DISCHAPGE POT'). 1.30O.CC VOLTS 1.30*QCC. VOLTS
16 INTEP%AL JISCHARGEPOT'L '_ *; VOLTS Z..0.OD03 VOLTS
17 DAG 1N0tiCEOCONOOYCOEFFT 1.3c-013 "HOMS3 ..33-C.3 MdHOmSZ
I$ PADN INOuCEOCONO~YPOI.q i.;0#003 tNCNE) I.*~ NONE)
19 CENSITY l.ac~cZ3 AG/033 1.ZLc 52! (G/M*
20 .. O

,-ATERIAL 4: GOLD

POOPERTY INPUT VALUE CODE VALUE
I DIELECTRIC CONSTANT 1.^CCC (hNNE lsa3*'"QC (NONE)
2 THICKNESS 1.00-003 METERS 1.30-(302 14ES'
3 CONDUCTIVITY -1.o~C'c0O M14O/m -1.X2*OQC "HC/4
N4 ATOM~IC S.M8ER 7.9'7+O01 (NONE) 7.9-'#fQ1 (NONE)
5 DELTA MAX )COEFF &.60-001 (NONE) 2.43-3,:C (NCNE)
6 E-04AX )OEPTN**-l S.ZO-GO1 KEY Zs. 2-OCZ ANG-Cl
7 0 A%GE 6.81*rOi ANG. 8.17*CO1 AhD.
s EXPGN--NT > RANGE 9..:C-0l INCNE) 9.s~c AND.
9 QANGE > ExPOP4ENT 5.35+Vil ANG. 9.2C-%1 I.NE

10 EXPONENT 1.7!*CGC INONE) 1.7!+C-C (NCNF)
11 YIEL.D FOR 19MEV 09RONS *'.!3-cc (NOCNE) 4 ,7_3- CNCG4E)
12 "AX DC/OX FOR OROTONdS i.3!#032 KEY 11.350ocz NtL
13 PsOTOCURPENT 2.9G-.::5 &.4.: 2.9,:-I5
1N SURFACE PESISTIVITY -L.aC+T:C OHMS -6.aS-CI! V-S/c
is SPACE 31SCHARGE DT'L 1I.0'N:; VOLTS 1.~LVOLTS
16 INTERNAL OISCHARZGEP3T'L Z.C+l3 VOLTS Z.:Z*OCZ VOLTS
17 OAC4s L%3UCEOC0N0*YCOE~rT "6.ZC-313 l~bOMS3 ".ZC3mHoms;
is P*DN INOUVCEDCON0'YPO.EQ 1.~t,0(NONE) l.:Q4 (NONE)
19 3ENS:TY K.CO!'G/M*37 1..2C+C3 KGs/'9S
za Z2,.O~1



6.1-52

TABLE 6/6

MATERIAL PROPERTIES (Continued)

~ATERIAL 5 : INDOt

PROPERTY INPUT VALUE CZOE VALuE
1 DIELECTRIC CONSTANT i.:c~(NONE) 1-CG INO.NE)
2 THICKNESSI 1. .;C-IC3 METERS I..r!-OZZ MStl
3 CONDUCTIVITY -L.7,0OC3 M140/M "1C.G HO/M

4 ATOMIC NUMBER Z.UQ.co1 (NCNEI Z.(4/*CCI (NONE)
5 DELTA MAX )COEFF !.,+a (NONE) 3.Z.#%C (NCNE)
6 EFwAX )DEPT4**1l d.Z'-Cal XEV 1.49-GZ2 ANG-C:
7 RANGE .CODANG. 1.57.COZ ANG.
8 EXPONENT )RANGE .o (NONE) .CCU ANG.
9 RANGE > EXPONENT T.18.CCC ANG. Z.01*C30 (NONE)

10 EXPONENT 5.55.0C1 (NONE) 1.0V.CQO (NONE)
it YIELD FOR 1AEV PaOTONS %.1-3 (NONE) 4.9'2-COI (NONE)
12 MAX DC/OX FOR PROTONS . 23*CZ2 EV 1.23*CZ2 K~EY
13 PHOTOCURREINT ;s.-ccS A/"**.Z 3..zo-2GS A/M**2
14 SURFACE RESISTIVITY -:. Ja.ccc Ohms -. 5~ V-S/Q
is SPACE DISCHARGE POT'L j.LO0a4 VOLTS 1.00#00" VOLTS
16 INTERN4AL DISCHARGEPOTOL Z.IC*OG3 VOLTS 2ZO*O03 VOLTS
17 RADN INOUCEOCOND'YCOEFFT 1.00-013 MHONS3 1.00-013 MHOMS3
i8 RAON IN3UCEOCGND*YPOWER l.36.000 (NONE) 1.CO*000 (NONE)
19 DENSITY 1.OO*00C3 6/lM*3 1.00.*003 KG/M*3
20 2C.21-1.U0#001~

MA4TERIAL 6: "AGNES

PROPERTY 14PUT VALUE CODE VALUE

I DIELECTRIC CONSTA14T 1*ZC#CZ (NONE) I..;:+CC (NONE)
2 THICW14ESS l.GC-C33 METEPS 1.Z3-0'G2 TMESH
3 CONOuCTr WrTY 1j.ZCC30 MHC JM -1.30cc 1410/1'
16 ATOMIC %UM8k.q L.Zf!*C01 (NONE) .Z*1(NON4E)
5 DELTA MAX )COEFF ;.COi(NONE) 7.0Z.CUC (NONE)
6 E-MAX )DEPTH*. Z.5Z"-f7:1 KEY .. 79-C ;2 ANG3-03
7 RANGE -1.3C+C30 ANG. 6.96.DOC AhG..
a EXPONENT )RANGE .is (NONE) .00 ANG.
9 RANGE > EXPONENT 1.7a.0co ANG. 1.75+300 (%ONE)

10 EXPONENT 2.430CZi (NONE) 1.300.000 (NONE)
1.1 YIELD FOR 1MEV P9OTONS 2.VV-cal (NONE) 2.44-001 (NONE)
12 MAX DEiDX FOR PROTCNS Z.3C+OCZ KEYV 2.30+."2 KEYV
1.3 PH 0TO CUR RE %T Z;0-!.Z A/W**2 4 .0'1-OJC A/MU.?
14 SUPFACE cESISTI'.ITY -. c: CxMS -d.85-01! V-S/C
is SPACS DISCHARGE POT'L :.3C; VCLTS !.Zl.COU VOLTS

-6y4TRAL OISCNARGEPOT'L .Z:'003 VOLTS Z...0.CG! VOLTS
17 DACN INOUCEDCONC'YCGEFFT .0ij-C13 MHCMSJ 1.311!013 vHOMSZ

18 QAON INOUCE0C3ND'YPO.EQ W.~0 NNE) !.ZU-.0C INONE)
19 OENSITY i.3C#0i-3 ((GIM=3 1..z0*CL! ((,/MS.

20 2C.i



6.1-53
TABLE 6/6

MATERIAL PROPERTIES (Continued)

14ATERIAL 7 : S CR ESA

PROPERTY INPUT VALUE CCOE VALUE
I CIELEC T RIC CONSTANT (NONE) l.cc~ (NONE)
2 THICKN~ESS .A.:- WETEPS m.E-OZ'E
3 CONCUCTIVIYY -.. O.('z3 P'NO/m -1j~c "hu/
'I ATOM.IC ,4UmEQ l.ZC"f!C (NOCNE) i.3O'C3' INONE)
5 DELTA w&X LfOEFF zac I N C NE J ; ( 4NNE )
6 E-NAX )DEPTH**-'. 1.C*OO KEW 1.38--C1 akl-cl
7 RANGE !.ZjO#CGI ANG. i.53*C ANG.
a EXPONENT )RANGE 1,53*CaO INCNEJ .32 ANG.
9 RANGE > EXPONENT cc0 AP4G. l.SC+.00 INONE)

1a ExPGNENT 1.cco.ao INONE) 1.O0+CUC (NCNE)
11 YIELD FOR IKEV PROTONS . r (NONE) -1c (NONE)
12 0AX OEIOX FOR PROTONS !-;'0Z KEV 1.Zu'O*C KEV
13 P40TOCURRE14T .zc A/fs"w@Z: 4
14 SURFACE RESISTIVITY -j..C.O0 OhMS 8S.B5-01! V-S/O
is SPACE DISCHARGE POT'L 1.ZC+O A VOLTS I.QO'0O'. VOLTS
16 INTERNAL DISCHARGEPOTIL Z.-'0#003 VOLTS 2.JO.003 VOLTS
17 RAGN INDUCEDCONG*YCOEFFT 1.OT-C13 MHCMS3 i.aC-313 "HOMS3
is RADN INDUCEDCON4DOYPOWER 1.ZC*CZ0 INONE) !.OC*O.QC (NONE)
19 DENSITY 1..2C.0C3 96GJm*3 .. l*S3 KG/M*3
ZO Z.:c~fLt-111a1

MATERIAL a: K AP T*

PROPERTY INPUT VALUE CODE VALUE
I DIELECTRIC CONSTANT 3.SO.COO (NONE) 3.50*CD (NONE)
2 T14ICKNESS 1.Z7-CJ4 METERS 1.27-00? MESH
3 CONDUCTIVITY 1.0D-C16 wO/m 1.00-1216 PHOi"

4 ATOMIC NUMBER 5-21*030 (NONE) S.Z0"700 (NONE)
5 DELTA -AX )COEFF 2.10#~cc (NCNE) (NONE)
6 E-PAX )OEPTH.8-L L.SC-CZ~l KEV 8.7'.-1DZ ANG-Cl
7 RANGE T.V*C31 ANG. a4.129*CZ ANG.
a EXPONENT )RANGiE b.,T-Ca (NCNE) S.SZ*IIZ ANG.
9 RANGE > EXPONENT 3.12+C32 ANG. 600-CI (NONE)

10 EXPONENT 1.7'*toC (NCNE) 1.774IOC (NONE)
L1 YIELD FOR 1MEv PROTOCNS 4.S!-CCI (NONE) 4.55-IO21 INON!)
12 MAX OE/OX FOR PROTONS !.41#c.,2 KEW 1.4sI4tfj2 KEy
13 PhOTOCURRENT Z.al-cwS A/"O*Z Z*.!.n-aS A/"**2
L4 SURQFACE ; ESISTrvITy 1.0.016 OHMS 8.8S+003 V-S/C
is SPACE DISCHARGE POT'L I.CD+G0j4 VOLTS 14DONVOLTS
16 INTERNAL DISCHARGEPOT'L 2e.0.02! VOLTS Z.ZC*CC! VOLTS
17 RION INDUCEOND-YCOEFFT i.oac-!13 WNHOMS3 i.03-0!1! MHO"M3
is RAON I%aUCSDCONOYP~jEQ 1.00*CGO (NONE) 1.DD'O.LC (NONE)
19 DENSITY 1.20+.^03 MG/M*3 1.30*02! KG/M*3
20 Z.30.f)O1



6.1-54
TABLE 6/6

MATERIAL PROI-ERTIES (Continued)

M AT'ERIAL 9: NPA W

PROPERTY .NPuT VALUE C3C VALUEI DrELECTDI1C CONSTANT 3.SC*0C0 INONE, 3.3C*occ fNcNrJ2 TpsICxNESS __-.o-Ci5 "ETEQS 5.jc-c' a MESH3 CONDUCTIVITY S.IC-11c MsO,,M 5.7c-Ci'. p"im
4 Tp7cNSE 5.2O.CdC (NCNEI S.X1*' GO 14CNESD ELTA MAX )COEFF zol.'2ca (NCNEI !..5.OGI INONE)6 E-MAX >DEPTH**-, 1.SC-Ca KEW 1.41-m3O2 ANyG-C!7 RANGE ~ -1.JC*CJC ANG. 1.5C A NG.11 EXPONENT R ANGE .:C (NONE) N9 RANGE > EXPONENT I.5*a ANG. :*.5co (NOZE)10 EXPONENT 9.83+0:C (roNhE) ('CNE)it YILDFP 1AEy PROTONS 4..S!-cz2l 14CfNc, 4-55-0,; fhONEJ1.2 MAX DE/OX COP PROTONS 9.CC 'EV ~ . 4 c4 cjz KEV13 0MGTOCU~qET 2.-.2-J5 Alw*w5 Z.-005 A/"**:14 SJRFACE RESISTIVITY .O.1 OHMiS 8.S cV-Slcis SPACE OISCI4ARGE POT-L :.4C#C'. VOLTS VOLTS16 INTERNAL OISCIIARGEPOL 2.JO*0o3vLS .C03 VOLTS17 ~ ONINDUCEDCONO'YCOEFFT 1I--13 MNOMS3 ".D-' N IOmS3is QAQ4 14UCEDCONU*PG.IEQ 1.-30(CUD (NONE) 1.C#OCC INONEj19 DENSITY 1.0*033 KG"*3 1.020 -.'C *S.9C-' G/N*

MATE41AL 10: SIO2

PROPERTY ItPkJT VA~uE CODE VALUEI DIEL.ECTRIC CONSTANT 4.:CC;:C (ONE) ~(0~
CONDCIVITY L.7-flai METERS .Z?-IU! MESH

3 ATO MIC Y V T 1.~ CO14 m M/M I.CC-C1'. MhO/OW
A ATOoCNlC*Oo130 00 (NONE) 1.*Q OcO z (NONE)S DELTA 04AX )ICOEFF 2.40+001 (NONE) .6g1(OE
7 RANGE 4OP~ .. i'.30-001 E.V 2.21-002 ANG-01a EXPN ENR E 116*C02 APE. 9.42 013 j AG.
9 EXPON[PET ) AI NCNE) 3.41#002 ANG.R ANGE > EXPONENT 1.91*002 APE.%.OOG OE10 EXPONEN4T 966C0 NN)1(2'001 (NONE)

12 4I L OP 1E QO O5.5-Cal (NONE) 4.55-CCn (NONE)12 MAX CE/OX FOR PROTON4S 1.4c*00z K~EW ~13 PMOTOCURPENT PEWC5 /. ~ Z..-GSAM.14 SURFACE RESISTIVITY 1.CC#C19 OQmS 8 04 5eC8 V-5/cis SPACE DISCHARGE POT*L 12*Q OT .~Qi OT16 INTERNAL DISCHARSEPOT*L Z'*C.C3 VOLTS Z.ZO-033 VOLTS17 PAON :NOUCCOCOND'YCOEFVT I.c-z MHQMpj "140M WOS 3'a AON INQUCEOCNypOb,.CjE(CN)1;O'0 
(OS

20 O NS T 1.00*OCZ XG /M.*3 :.z~vcCC3 RG / 3202.0.03 1.00-01'.



6.1-55

TABLE 6/6

V~ATRIAL PROPERTIES (Continued)

MATERIAL 11: SOLA*t

PROPERTYf 
IPUT VALUE CODE VALUE

I DIELECTRIC CONSTANT 3.6c.OcO f~hr 3.30*!3c INONE,

2 7mICK4.ESS O.9-H~TOSt"EP

3 CONDUCTIYITY .. 11  NO' .C-L H/P

ATOPIC .%Umi8ER . 1.31*4701 INONE)

S DELTA 14AX >COEFV2.S.F INONE) 3.17-m:2 ANGtJE)

6 E-14AX )DEPTM*l N.IC-CZI KEY I.~C AG'

7 RANGE 7.~0IANG. 3.4Q*l3! ANG3.

a EXPONENT DAG %.SC-0Q1 EPECNE) Z.1C*CLZ ANG.

9 RANGE ) EXPONENT 1.6CZAD .5-~1(NONE)1

10 EXPONENT L.T!#QZ;O iNONE) NOI

it YIELD FOR IKEV pqoroNs 2K.C1IOE ."~1IOE

12 ~AX OE/Dx FORP0TN 2.-COZ1 KEY 2.30'PCZ K~

13 PmOTOCURPPT Z.fLO-VO A/"**' 2 L:-c.Z

16 SURFACE 9ESISrrVrry .;*; OptS 9,391:6 V-S/

15 SPACE CISCmA~aE POTIL 
VOLTS .Z'D VOLTS

16 INTERNAL OISCHARGEPOT'L Z.C-C VOLTS z.:.~3VOLTS

17 RADN INDLCECON'YCEFt i.;C-C13 MHO.4S3T I ..;-CJ3 "HCMS3

is RADN XNOUCEoC0CY~o.E0 
(NONE) (kc%!:)

19 DENSITY 1.3C*cz! K6/'i*
3  i.,0+1? AG/"*S

4ATE.QIAL 12: TEFLo'd

PROPERTY 
INPUT VALuE CCCE VALUE

I DIELECTRIC CONSTANT 2.13..a (NCNE) Z.Za0ZC (NCICIE)

2 THICKNESS 1.,17-G pfETERS 1.27-ZO3 )9ES,

3 CONDUCTIVITY ;.D.0-016 '*0" 1.30-C16 !HO/W

ii ATOMIXC NUmSER 7.03*000 (NONE) 7.0OC(NONE)

5 ETAiK3.0c.Q(: (NONE) Z.27#001 (NONE)

6 E-mAX )OPH*13.C0 C .dS3l ANG-.

7 RANGE 4.S4#0Cj ANG. 3.65*CO AND.

8 EXPONENT )RANGE 4.3c-01 (NONE) .5C2 N.

9 RANGE > EXPO14ENT 2.la.002 ANG. 4.UO-11O1 (NONE)

10 EXPONENT 4.7OO(OE .57'000 (NONE)

11 YIELD FOP 19EV PROTONS N.$S-CCI (NONE) .501(OE

£2 "&X OE/OX FOR PROTONS 1.NO*C02 KEY 1.4
1 ,P002 XEV

13 P,OTOCuRRENT 2.00-005 AI'4**Z 2.00-005 AJP4.SZ

14 SURFACE RESISTIVITY 1.300016 OHmS a.85+003 V-S/0

i5 SPACE DISCOARGE POT*L I.OT#004 VOLTS 1.30CC"4 VOLTS

16 INTERNAL DISCHA2GEPOT*L Z.3V'Ca3 VOLTS 2.30+C33 VOLTS

17 RAO'4 INDUCEDCONDOYCOEFFT i.:C-C13 FMNOMS3 L.,;-(113 '40OMS3

1s RAON INOUCEOCON0'YPOWER 
I.*~ NONE) .. 00CINCNE)

D4 E1SITY 1.0r giG/'4'3 i.;C~~3O3 RG/"*3
z~o:.ac£ .00-C16



6.1-56

TABLE 6/6

MATERIAL PROPERTIES (Concluded)

MATERIAL 13: SILVELR

PROPERTY INPUT VALUE CODE VALUE(
I. DIELECTRIC CONSTANT 1.3c.OCO (NONE) 1.3*c (NONE)

2 TWICMNESS 1.00-003 PETERS 1.00-002 PESo
3 CONDUCTIVITY -1.0.000 "No/," -1.00+oaa HMO/".
4 ATOMIIC muNiBER 4.70*001 (NCNE) 4.73*17t1 (NONE)
s DELTA 'SAX )CoEFF 1*C0*0GO (NOE) 3..'9.C00 tNONE)

6 E-)'AX )DEPTmoo-1 8030-001 KEY 1.58-OG2 ANG-11
7 RANGE 8.415*0C1 WNO b.93*COZ APIG.
8 EXPONENT RANGE 6.-2( Q (NONE) 1.38+OCZ ANG.
9 RANG~E > EXOONI.NT 7.4*Q ANG. 8.21-CGI (NONE)

10 EXPON&4T 4..i'#00C (NONE) 1.?4*CCC INONE)
11 YIELD FOR ZI(EV PROTONS *.*9c-vo1 INCNE) 4.9C2-101 (%ONE)
12 MAX DE/OW FOR PROTONS L.Z3*C02 KEV 1.ZZ.CCZ ftEV
13 PHOTOCURPENT 2.90-DC;S AlwweZ 1.9n-ics I/ua~z

14 SURFACE RESISTIVITY -1*20*00C OHMS s6.65-C13 V-S/O
i5 SPACE DISCHARGE POT'L 1.0004 VOLTS 1-31*04 VOLTS
16 INiTERN~AL DISCHARGEPOT&L Z.CZ*00! VOLTS L.j0+C03 VOLTS
1? RACP4 INOUCEOCO4O'YCOEFFT L.ZC-C13 HOMSi L.m'"3 4S3
Is DADN INDUCEOCOND'YPOwE* th~.CO(chs) 1. 13Occ (NONE)
L.9 DENSITV 1*32*CC3 KG/M*3 KG/Me32o Z.QC*-aC:



6.1-57

If a material called 'GOLD' or 'GOLDPD' or 'GOLDXXXX' is defined later

with different properties the number of materials POLAR thinks it has

will be increased by one, but the new properties will be effectively

ignored. Multiple definition of materials should be avoided. Note,

however, that if any of the default materials are explicitly defined

before they are referred to in building block definitions then POLAR

will make no attempt to find them in the list of default materials and

the materials will not be multiple defined.

6.13 THE OBJECT DEFINITION FILE - ANOTHER EXAMPLE

We are now ready to bring together Sections 6.10-6.12 and examine

the structure of the object definition file. The general form is shown

in Figure 6/17. The materials are defined first, followed by the

building blocks associated with each separate conductor. The use of

COMMENT cards allow the logic of the definition of a complex object to

be followed more easily. Finally the whole file is terminated with an

'ENDSAT' statement. An actual example is shown in Figure 6/18. It

consists of a central RECTANgular body connected to two QSPHERES at the

ends.

A 3D-VIEW (6.20) of the object produced by VEHICL is shown in

Figure 6/19.



6.1-58

LICOMMENT UORICED EXAMPLE (SECTION 8.13)
IiCONMENT MATERIAL DEFINITIONS
3:COMPIENT FOR PRESENT PURPOSES. ALL PROPERTIES ARE 'KAPTOI'
4:CO"MENT EXCEPT THICKER
SsTKAP

73 312 I1 77, .4S,I46-,'98 .1.EI8.1.E*4,a.E+3,
s I.E:15.i. .1E+3,20.

9: COMMENT USE DEFAULT ICAPTOI4 AMD GOLD VALUES
18:COMMENT DEFINE THE MAIN BODY AND TOP SPHERE TO BE 014
11SCONDUCTOR I
12aCOMMENT MAIN CUSOID BODY
13tRECTAN
141CORNER -1 -1 -a
SEIDELTAS 3 3 4
6sSSURFaCE +X GOLD

17sSURFACE -X KAPToII
18ISURFACE -Y KAPTON
199SURFACE *V KAPTOO
26 ISURFACE -Z KAPTOM
IsISURFACE .2 TKAP
228EMDOBJ
23CORKIET TKAP SPHERE ON TOP
24IOSPNERE
aSICENTEE 0 3
a6sDIAMETER 3
a7tSIDE I
MIMATERIAL TKAP
M9ENDODJ
36:cofmmENT PUT THlE Oomm SPHER m6 CONDUTO a
318 CONDUCTOR a
321@SPHERE
338CEmTER 006 -4
34. D1AMETER 3
351SIKE 1
361MATERIAL GOLD
37 IEMDODJ
36 IENOSAT

COF 833
01)

Figure 6/18. Object definition file.



6.1-59

Figure 6/19. 3-D view of object produced by HIDCEL (hidden lines).



6.1-60

6.14 OBJECTS WITHIN OBJECTS: VARIEGATED SURFACES

POLAR makes it easy to define surfaces that are made up of more

than one material. For example, we may want to define one face of a
cube to be mainly KAPTON bu4 with a patch of say GOLD in the center

(Figure 6/20). We begin by defining the cube with a KAPTON face. The

center surface cell is then replaced with GOLD by defining a second

smaller cube inside the first cube. The second cube is defined so that

one of its faces is coincident with the KAPTON face. The surface common

to both cubes is then associated with the material on the face of the

second cube, which in this case is GOLD. This is shown in Figure 6/20.

The object definition file associated with this object has the

form:

COMMENT VARIEGATED CUBE

RECTAN

CORNER -2 -2 -2

DELTAS 3 3 3

SURFACE +x KAPTON

SURFACE -x KAPTON

SURFACE +y KAPTON
SURFACE -y KAPTON

SURFACE +z KAPTON

SURFACE -z KAPTON

ENDOBJ

RECTAN

CORNER -1 -1 -1

DELTA 1 1 1

SURFACE -z GOLD

ENDOBJ

ENISAT



& 6.1-61

GOLD

DKAPTON

Figure 6/20. A variegated surface definition.



6.1-62

The same principle can be applied to any of the building blocks.

Exposed surface cells common to two or more building blocks are assigned

to the material of the most recently defined block.

Two special building blocks are supplied specifically to create

variegated surfaces. PATCHR and PATCHW define a RECTAN (cuboid) and a

WEDGE respectively, that may be used to "patch' other objects without

adding to POLAR's list of filled space. The use of actual RECTAN and

WEDGE blocks inside others is also perfectly legitimate, but adds to the

internally used surface list. The use of PATCHR and PATCHW reduces the

likelihood of a problem occurring due to the list overflowing.

The object shown in Figure 6/20 could also be defined using

PATCHR:

COMMENT VARIEGATED CUBE (PATCHR)

RECTAN

CORNER -2 -2 -2

DELTAS 3 3 3

SURFACE +X KAPTON

SURFACE -X KAPTON

SURFACE .Y KAPTON

SURFACE -Y KAPTON

SURFACE +Z KAPTON

SURFACE -Z KAPTON

ENDOBJ

PATCHR

CORNER -1 -1 -1

DELTAS 1 1 1

SURFACE -Z GOLD

ENDOBJ

ENDSAT



6.2-1

6.20 VEHICL

The VEHICL module is used to interpret the object definition file

(Section 6.10) in order to create the various tables and lists necessary

for the other modules (Sections 5.23-5.25). It also can produce two

separate kinds of object plots. By using appropriate keywords, either

material or perspective plots are produced after the object file passes

through the initial definition processing.

When using keyword inputs, each line (or card) is expected to

contain one keyword followed by its list of parameters. After the

keyword and parameters have been completely defined, the rest of the

line is ignored. Several characters are ignored by the input routines,

namely extra blanks between words (though some type of delimeter is

necessary), equal signs (=), and commas (,). All input is read using

free formatting with lower case characters being converted to upper

case, and real numbers may be entered as integers.

VEHICL will need the following permanent files: 2. (for graphics

output), 11. (MSIO), 19. (MSIO), and 20. (the object definition file,

used as input). The following temporary scratch files will also be

required: 3., 14., 17., 18., 21., and 27.. All of these files should

be assigned with large storage limits. With the exception of file 20

(fort.20), VEHICL will define the files by itself.

6.21 VEHICL KEYWORDS

The specialized VEHICL keywords fall into three general

categories; object definition, graphical output, and diagnostic output

control. (See Table 6.21/1 for a brief summary of the keywords.) The

diagnostic keywords are described in detail in Section 6.22.

Additionally, all of the general POLAR keywords (Section 6.70), except

SELECT, are recognized by the input routines. SELECT cannot be used by

VEHICL because the grid information needed by the subroutine, MRBUF

(5.30), is not necessarily well defined.



6.2-2

If an unrecognized keyword or an invalid use of a keyword is

discovered, VEHICL issues a warning or an error message then terminates

batch runs or reads the next input in the case of interactive runs. By

default, VEHICL believes it is being run interactively. The keyword

BATCH (see Section 6.70) will place VEHICL in its batch input mode.

The recognized keywords which control the object and grid

definition are:

NXYZ

NXYZ defines the size of the object grid. This keyword should be

defined for each execution of VEHICL since the default value for the

grid dimensions may not be reasonable. An example of the use of the

keyword is

NXYZ 6 7 8

This defines an object grid which has six nodes in the X-direction,

seven nodes along the Y axis, and eight on the Z edge of the grid. Note

that these numbers are in nodes, not elements. So a I x 1 x I cube

would require a grid of at least 4 x 4 x 4 since object itself is 2 x 2

x 2 nodes and none of the object's vertices are allowed to touch the

grid boundary. In general, extra space around the object is a good

idea, especially if the object is centered asymmetrically in the grid

and the object may be reoriented within the object grid later using

ORIENT (6.30). These problems can also be avoided if an odd number of

nodes along each axis are used. For more information concerning the

declaration of object grid size, please see Section 6.10. The default

is

NXYZ 17 17 33

DXMESH

DXMESH defines grid size in meters. For example,

DXMESH = 2.0

would define a grid spacing of two meters, while

DXMESH .01



6.2-3

sets the spacing to one centimeter. The default value is one meter.

This size may be easily changed later during NTERAK.

OBJDEF

The OBJDEF keyword is used to change the unit number of the file

containing the object definition file. For example,

OBJDEF 99

would instruct VEHICL to use file 99 as the object definition file. The

default is to use file 20.

The standard use of this keyword is OBJDEF 5. In this case, the

object definition should follow the VEHICL keyword input in the standard

input (fortran file 5) file.

PREFIX

PREFIX is used to declare the object file name for the UNIVAC

version of POLAR. The CYBER version expects the object definition to be

located in file 20, so the PREFIX keyword is not needed. On UNIX

machines, PREFIX is not needed and the object definition should be in

fort.20. The UNIX default is "SSSS".

In the UNIVAC version, VEHICL must know the file's name in order

to be able to find the input. If this keyword is omitted in the UNIVAC

version, VEHICL will terminate with an error message. As an example,

PREFIX MICRO

causes VEHICL to read from the file MICROOBJ. Note the suffix OBJ must

be used in all object file names. There is no default value for this

keyword on the UNIVAC.



6.2-4

GRAPHICAL OUTPUT CONTROL KEYWORDS

MATPLOTS

The keyword MATPLOTS controls the plotting of material plots.

Material plots consist of six views of the object from each direction of

all three axes. The surfaces of the satellite are filled in with

different patterns depending on their material type. It should be noted

only VEHICL can produce material plots, SHONTL is not able to duplicate

them, although it can draw the same views without surface material

patterns.

To control this feature, use

MATPLOTS YES

to turn it on and

MATPLOTS NO

to turn it off. By default, no material plots will be created.

The graphical output created by VEHICL is written on file 2, and

needs to be interpreted by the post-processor graphics package (see

Section 6.6). On the UNIVAC, this can be done automatically by using

the PLOTDEST keyword described below.

MAKEPLOT

MAKEPLOT controls the creation of perspective plots. Perspective

plots are views of the object as seen from infinity along a user defined

vector. Both hidden line and transparent object drawings are produced.

These views can be drawn by VEHICL; SHONTL is also able to generate

them, though the syntax and keywords are different.

The keyword MAKEPLOT tells VEHICL how many views to expect. The

actual viewing directions are defined using the PLOTDIR keyword

described below. To set the number of views, use

MAKEPLOT N

where N is an integer from 0 to 8. A default set of views (two *random"

vectors, from (2,3,5) and (-2,-3,-5)) can be requested using



6.2-5

MAKEPLOT DEFAULT

or just

MAKEPLOT

In both cases, PLOTDIR does not need to be used to define the views.

If no perspective plots are desired,

MAKEPLOT 0

will disable this feature. VEHICL by default will not make perspective

plots.

The graphical output created by this command will be saved on file

2 and can be interpreted by the graphics post-processor described in

Section 6.6. On the UNIVAC this may be done automatically by using the

PLOTDEST command described below.

PLOTDIR

PLOTDIR is used to define viewing vectors for perspective plots.

Each use of PLOTDIR describes one of the views from infinity requested

by the MAKEPLOT keyword described above. To actually produce a plot,

MAKEPLOT must be used. An example of the use of PLOTDIR is

PLOTDIR -2. +1.5 -1.

would be a view along -2.01 + 1.53 - 1.OR from infinity. Default

directions can be defined with the MAKEPLOT keyword.

PLOTDEST

The keyword PLOTDEST is used to draw the plots created using the

MATPLOTS or MAKEPLOT keywords described above immediately after VEHICL

completes its execution. The keyword is only functional in the UNIVAC

version of POLAR. Of course, it is always possible to draw the plots

using the graphics post-processor (Section 6.6).

In the S-CUBED UNIVAC version of POLAR, several plotting devices

are available. They are the electrostatic plotter, the Calcomp and the

Tektronix 4014. To automatically draw plots on the later device, one

must run VEHICL from the Tektronix where the plots are desired. The

general form of the PLOTDEST command is



6.2-6

PLOTDEST destination

where destination can be blank, NONE, CALC (for Calcomp), ELEC (for

electrostatic) and TEKT (for Tektronix 4014). Leaving the destination

blank or using NONE results in no plots being drawn at the conclusion of

VEHICL (again the post-processor still can be used); this is the default

condition.

OTHER VEHICL KEYWORDS

The following keywords are useful, or necessary, when running

VEHICL. They are also described in Section 6.7.

BATCH

This keyword causes the input to be read in a batch mode. The

main effect will be felt when erroneous input is discovered. If this

occurs while in the batch mode, VEHICL will abort with an appropriate

message. The default input mode for VEHICL is interactive (see

description of INTERACT below). An example is

BATCH

which places the input routines in their batch input modes.

COMMENT

See description of REMARK below. The two keywords are equivalent.

DEFAULT

DEFAULT sets the VEHICL default values. In general, the defaults

are for no diagnostic output, no plots, a grid spacing of

1 meter, and an interactive input mode. The keyword DEFAULTS is

equivalent to DEFAULT. An example is

DEFAULT

VEHICL automatically calls the default routine before soliciting input.

This keyword is most useful when using the interactive mode and the

previous input has not been satisfactory, or in error.



6.2-7

END

The keyword END is used to signify the end of input to VEHICL.

This keyword should always be used at the end of a runstream, but if an

EOF (end-of-file) is encountered instead, VEHICL will still function

normally.

An example is

END

No more input will be read at this point and VEHICL will begin

operation.

INTERACT

The INTERACT keyword is used to place the VEHICL input routines in

an interactive mode. This means that any errors encountered in the

input runstream will generate an appropriate error or warning but will

not cause VEHICL to terminate its execution. This is the default mode

of input for VEHICL. To abort on the discovery of bad input, use the

BATCH command described above. An example of the use of the keyword is

INTERACT

which will place VEHICL in an interactive input mode.

REMARK

This keyword is used to insert comments in a runstream. When a

REMARK is encountered, the remainder of the input card will be ignored

and a new card will be read. Any number of REMARKs may be used. An

example of the use of the REMARK keyword is

REMARK THIS IS A REMARK

All of the data on the card following the first REMARK will be ignored.

The keyword COMMENT (mentioned earlier) can be substituted for REMARK

and is completely equivalent, for example,

COMMENT THIS IS A REMARK TOO.

And again, everything on the card which follows COMMENT will be ignored.



6.2-8

WHAT

This keyword prints out the current settings of the VEHICL

options.

CiJ, RIJ

These two keywords define interconductor capacitances and

resistances respectively. They should appear in the keyword input

stream, not the object definition file. For definitions and usage

instructions see Section 6.42.40.



6.2-9

TABLE 6.21/1

SUMMARY OF THE VEHICL KEYWORDS

BATCH Places VEHICL input routines in a batch input
mode. The default mode is interactive. (See
INTERACT.)

COMMENT text Causes text to be ignored by the input routines.
Text may be any set of characters and numbers.

DEFAULT Resets options to default values. Called
DEFAULTS automatically at beginning of VEHICL.

DXMESH length Defines grid spacing. Length is the grid spacing
in meters. Default is 1 meter.

END Makes the end of the VEHICL input. Should be
included at the end of all runstreams.

INTERACT Places VEHICL input routines in their interactive
input modes. This is the default mode. (See also
BATCH.)

MAKEPLOT option Controls number of perspective plots. Valid
options are DEFAULT (produces 2 default viewing
directions) or an integer from 0 to 8. The
default option is 0.

MATPLOTS option Control material plot production. Valid options
are YES and NO. YES produces 6 views of the
object form *x, *y, *z directions. The default is
NO.

NXYZ ix iy iz Defines object grid size, where ix, iy, and iz are
integers defining the number of nodes in the x, y
and z directions, respectively. This keyword must
be included in all VEHICL runstreams.

OBJDEF iunit Take Object Definition from file iunit.

PREFIX name Defines the file name containing the object
definition. If the file name is CUBEOBJ, name
would be replaced by CUBE. (Keyword applies to
UNIVAC only.)

PLOTDEST option Controls where plots are drawn at end of a VEHICL
run (UNIVAC only). Valid options are blanks,
NONE, CALC, ELEC, and TEKT. The default is NONE.

PLOTDIR x y z Describes viewing direction, from infinity, used
to draw a perspective plot.

REMARK text Causes text to be ignored by the input routines.
Text may be any set of characters and numbers.

WHAT Display current VEHICL option settings.



6.2-10

6.22 VEHICL DIAGNOSTIC KEYWORDS

There are several levels of diagnostic output available from

VEHICL by keyword instructions. None of it is of interest to the casual

user and is mainly a remnant of the code development process. But

sometimes errors, code modifications or just idle curiosity will require

some of VEHICL's diagnostic output. By default, all VEHICL output flags

will be turned off or set to the lowest possible values.

The following is a description of the appropriate diagnostic flags

and their settings.

DIAG General VEHICL Output

=0 No output.

=1 A few crucial tidbits from the construction of the A-
2, KSURF, LCEL, and LTBL lists.

=2 More details concerning the construction of the
various lists. KSURF in an unpacked format.

=3 Still more information including octal lists.

=4 Provides a great amount of details concerning VEHICL's
actions.

IDIAGS(1) DCVCEL Information

=0, 1, 2, 3 No output.

=4 Output from DCVCEL during the creation of the SREL
list. Also, information from the various VCUBE
routines.

=5 Additional DCVCEL data.

IDIAGS(2) CBUF Data Management

=0, 1 Nothing.

=2 Output from BUFSET.

=3 Output from PAGER.

=4 All of the information from PAGER and GRIDIO.



6.2-11

JDIAGS(1) SREL Information

=0, 1 No output.

=2 Print out LCEL and SREL lists. Also information from
RECELL, SREL index to LCEL.

=3 Print out preliminary LCEL list.

=4 Detailed output from routines constructing LCEL and
SREL lists.

JDIAGS(5) Double Point Data

=0, 1, 2 Nothing.

=3 Double point locations from SPDPNT.

=4 More double point information from SPDPNT.

JDIAGS(9) MTLGEN Information

=4 No information.

=4 Material properties and final PSGM matrix.

KDIAGS(1) MSIO information (UNIVAC only)

=1 MSIO routines echo calls to themselves.

=2 Perform tracebacks when called.

KDIAGS(8) Edge list generation

=0 None.

=1 Entry and timing information.

=2 Final results.

=3 Intermediate data.

OBJPRT level Output from initial object definition routines.
Acceptable level keywords are NONE, SOME or ALL.

HIDPRT level Output from hidden line routine, HIDCEL. Valid level
keywords are YES and NO. Note that YES will generate
a vast amount of output.

IOCRID level Grid information. Valid level keywords are YES and
NO. Currently, this keyword is deactivated.



6.2-12

Some examples are

DIAG 3

IDIAGS(2) = 4

JDIAGS(9) 3

OBJPRT SOME

HIDPRT NO

This set of keywords would produce a high level of general information

concerning the mechanics of the object definition (DIAG and OBJPRT),

no MTLGEN or HIDCEL data (JDIAGS(9) and HIDPRT), and all of the

available CBUF information (IDIAGS(2)).

6.23 AN EXA.MPLE OF A VEHICL RUN

In Section 6.13, an object was defined (Figure 6.1/18) and a 3-D

view of it was presented (Figure 6.1/19). Assuming the object

definition kept in a file called XMPLOBJ (UNIVAC), or on file 20

(CYBER), and the necessary files have been declared large enough

(6.20), Figure 6.2/1 shows the runstream. (UNIVAC) used to draw Figure

6.1/19. The view used in the figure was the second one defined,

PLOTDIR 1.5 1. .5

IIQXQT kIEHICL
2t2ATCH
31MAKEPLOT 2
4tPLOTDIR 1.S 1. .8
SIPLOTDIR 1.S 1. .S
GIREMIARK PLOIDIR 3. 1. 2.
72REMARK PLOTDIR 3. S. 2.
StREMARK PLOTDIR e. 1. -3.
91REPIARK PLOTDIR e. 3. -1.
ISPLOTDEST HONE
IIIM ATPLOTS NO
12DIAG 1
t32JDIAGS(I) a
14JDIAGS(g) 4
tSIREARK IDIAGS(I) 2
163NXYZ 16 16 16
t7tDX"ESH 1.
1IMFIEIX X"PL
19MEND

0s)

Figure 6.2/1. VEHICL runstream used to draw Figure 6.1/19.



6.2-13

In addition, several diagnostic flags were used which produced

about 2000 lines of unnecessary output.

The grid was chosen to comfortably hold the object. If this

object had been defined to be run later using NTERAK, the grid would

have been defined with more care with respect to the final desired size.

It is best to keep from defining a great deal of extra space in the z-

direction (or in the direction which becomes the z-direction after

reorientation) to prevent the needless 10 of oversized object grid size

tables (Section 5.3).

6.24 TROUBLESHOOTING VEHICL

Usually VEHICL will provide an explanatory error message before it

dies. The most common fatal error which currently has no message or at

least an opaque, user hostile message, is from DCVCEL in SUREAL. The

message, l###-FATAL-FROM DCVCEL - ELEMENT NUMBER ... DOES NOT

CORRESPOND TO LIST ENTRY......, results from the grid being defined too

small or the object being too close to one side.

What has happened is that somewhere the object has touched the

edge of the object grid. The cure is simply to try again with a larger

object grid.

Poorly defined objects or ambiguous double points also create

difficult problems. These errors are typically called SCCYC errors

after the routine which discovers them. Some useful advice can be found

in Section 6.11. If the definition process has proceeded far enough, it

may be possible to produce material or perspective plots as a visual

aide (Sections 6.20 and 6.21). The SHONTL module may also be used to

draw the object or to print out some of the list output which has been

saved in the MSIO files using CBUF storage functions (5.30).



6.2-14

Another restriction of object definition is that an element must

be definable as one type. This mainly affects definitions where empty

elements have more than one face with a diagonal on it. They are also

known as type 2 elements (4.21.25) and come from the right triangle

faces of wedges, tetrahedrons, and truncated cubes and the edges of

slanted plates. Only one of these may touch the edge of an element.



6.3-1

6.30 ORIENT

In order that the object may be defined in an arbitrary direction

or defined once and used in several orientations, it is necessary to be

able to automatically reorient the satellite. The ORIENT module does

this by rotating both the object and the object grid. This is necessary

since NTERAK assumes the largest component of flow vector will be in the

positive Z-direction, forcing a preferred direction on the problem.

This module allows the same object to be studied in any flowing plasma

without redefinition. Of course, if no rotation is necessary, ORIENT

does not need to be used.

After ORIENT rotates the object, the original orientation and

coordinate system is replaced by the new one. So keywords entered later

which require a reference to spatial locations or directions should use

the current reference frame.

ORIENT uses as input files the MSIO output files, 11 and 19,

created by VEHICL. These files are also the output files, so they

should be copied if the VEHICL output is to be preserved.

6.31 ORIENT KEYWORDS

In general, the keywords which were accepted by VEHICL (6.2) can

oe used in ORIENT since the two modules share many routines. Instead of

-edefining VEHICL keywords again, a reference to the section explaining

5he command will be given. The reader is also referred to the general

(eyword input section, 6.7, for more information. Table 6.31/1 contains

a brief summary of ORIENT commands for convenience. The following is a

description of the set of ORIENT keywords.

VMACH

VMACH is the plasm flow direction normalized to the ion acoustic

speed. The entire problem will be rotated so that the largest component



6.3-2

of VMACH will be in the positive z-direction. The rotated VMACH will be

stored and will be the default value for the NTERAK module. But the

Mach vector can be changed later to any value so long as the largest

component is still in the positive direction. An example of the command

is

VMACH 0. 0.' -8.

This would cause the object to be inverted so that the old negative z-

direction ,becomes the positive z-direction. There is no default value

for this command. If it is not defined ORIENT terminates with an error

message. (This implies a default value of (0., 0., 1.), no rotation.)

For a description of the following ORIENT keywords see Table

6.31/1.

TABLE 6.31/1
A SUMMARY OF THE ORIENT KEYWORDS

BATCH Places ORIENT input routines in a batch input
mode. The default mode is interactive. (See
also INTERACT.)

COMMENT text Causes text to be ignored by the input
routines. Text may be any set of characters
and numbers.

END Marks the end of the ORIENT input. Should be
included at the end of all runstreams.

EXPAND x y z Expand the grid x, y, and z dimensions

INTERACT Places ORIENT input routines in their
interactive input modes. This is the default
mode. (See also BATCH.)

REMARK text Causes text to be ignored by the input
routines. Text may be any set of characters
and numbers.

SHIFT x y z Shift the object in x, y, and z direction

VMACH x y z Defines the desired orientation by the sign
and location of largest absolute component. x
y z is the three vector describing the Mach
vector normalized to the ion acoustic speed.
This keyword must be defined for ORIENT to
execute.



6.3-3

WHAT Display current settings of ORIENT options.

Diagnostic output from ORIENT is obtainable by using the VEHICL

diagnostic flags defined by Section 6.22.



6.3-4

6.32 RUNNING ORIENT

After the VEHICL output files (or a copy of them) have been

assigned, the runstream shown in Figure 6.32/1 could be used to rotate

the satellite defined by Figure 6.1/18 and pictured in Figure 6.1/19 so

that neither of the two spheres point in the ram direction. After

execution, the reoriented object can be viewed using the SHONTL module

to see where in the grid the object ended up.

OXQT ORIENT

BATCH

REMARK ROTATE FIGURE 6.1/19 TO BE

REMARK SIDEWAYS

VMACH -1. 0. 0.

REMARK THAT WAS EASYO

END

Figure 6.32/1 Sample ORIENT runstream.

Because the exact center of the grid is not necessarily on a node,

the object may move a grid space in one (or more) directions. This can

cause ORIENT to find an error during the SREL list creating. The error

is due to the object touching the object grid boundary at some point.

As previously mentioned (6.24), this error is cured by expanding the

object grid. Unfortunately, only VEHICL can do this. So object must

first be redefined in a larger grid by VEHICL, then rotated by VEHICL.

It is a good practice to add an extra node on all sides of the grid if

reasonable when an object is to be rotated.



6.3-5

An even better solution is to use an odd number of nodes along

each axis. Then the center of the grid will fall on a node and the

object should not touch the grid boundary in ORIENT if it did not in

VEHICL.

Sometimes, it is not possible to rotate the satellite to the

proper orientation in one call to ORIENT. For example, for plotting

purposes one end of an asymmetric object needs to be in the ,y direction

while another needs to be in the -z direction. In these circumstances

it is best to call ORIENT several times in sequence to rotate the object

to the correct orientation in the grid.



6.4-1

6.40 NTERAK

The NTERAK module models the object-plasma interactions. Using

the vehicle definition produced by VEHICL or ORIENT, NTERAK defines the

plasma environment, the initial spacecraft potential, and then

calculates the interaction of the plasma and the object using three main

groups of subroutines.

The space potentials are calculated by PWASON (Sections 3.2, 4.2

to 4.4, and 5.5), and its associated routines, using the object surface

voltages. These space potentials are then used to push particles to

calculate new space charge densities for the attracted species. The ion

currents to the object are also found in CURREN by pushing particles

from a sheath boundary to the object (Sections 3.42, 3.6, 4.4, 4.53, and

5.6). These ion currents are combined with analytically calculated

electron fluxes (Section 3.40 and 3.41) to electrically charge the

vehicle in the set of subroutines led by CHARGE (Sections 3.5, 4.5, and

5.7). The calculation results can be printed as they are found. Or

SHONTL can be used to print any of the final vectors or table% when the

NTERAK run is complete.

The calculations and output are controlled using keyword input.

Some notes were made concerning the use of the keyword input section in

Section 6.20 and are worth repeating now.

When using keyword inputs, each line (or card) is expected to

contain one keyword followed by its list of parameters. After the

keyword and the anticipated parameters have been read, the rest of the

line is ignored (allowing for personalized comments). Several

characters are ignored by the input routines, namely extra blanks

between words (though some type of delimeter is necessary), equal signs

(=), and commas (,). All input is read using free formatting with lower

case characters being converted to upper case, and real numbers may be

entered as integers.



6.4-2

NTERAK requires MSIO Files 11 and 19 as input. Files 9, 10, 23,

and 24 will all be used as temporary files (see Section 5.3). File 16

is used to save charging information and can be postprocessed by TRMTLK.

The STATUS.JCO file is opened using unit number 8. All of these files

should be assigned with large storage limits, especially File 10 as it

will be used to manage the (trajectory tracking) particle lists. The

UNIX version of POLAR expects files to be named fort 11, fort.19, etc.

but will define the temporary files on its own.

6.41 NTERAK CONTROL KEYWORDS

In general the NTERAK keywords are similar to those recognized by

VEHICL and ORIENT. Differences arise because NTERAK acts before reading

the entire runstream. Input is solicited and interpreted until an

instruction calling for calculation is encountered. When the

computation is completed, input is again read until the next calculation

command. This cycle repeats until the runstream has been exhausted. It

is important that all input parameters be read before a calculation

keyword is encountered, otherwise the calculation will be performed

using possible inappropriate defaults. Moreover, the first encounter

with one of the calculation keywords, PWASON, CURREN, or CHARGE, will

initiate an evaluation of initial conditions. Thus, the bulk of grid

and environmental parameters should be set before the first calculation

keyword is encountered.

The following describes the calculation commands as well as

general input control keywords. Several of these keywords have been

defined elsewhere (Section 6.2) and are repeated here for convenience.

The entire set of NTERAK of keywords have been summarized the Section

6.45.

BATCH

This keyword causes the input to be read in batch mode. The main

effect will be felt when erroneous input is discovered. If this occurs

while in the batch mode, NTERAK will abort with an appropriate message.



6.4-3

The default input mode for NTERAK is interactive (see description of

INTERACT below). An example is

BATCH

which places the input routines in their batch input modes.

CHARGE

This is a calculation keyword invokes the CHARGE subsection of

NTERAK. If this is the first time a calculation keyword has been named,

a full initialization will occur. The CHARGE subsection of NTERAK

calculates surface charging of the object using analytic electron

currents and either the ion currents found by CURREN or the random ion

current to the object, depending on the history and characteristics of

the problem. If CURREN has not been run, the random ion currents will

be used (equivalent to a precharge). If it has, then the appropriate

current will be used depending on the actions of the IONCUR routine (See

Section 5.71).

CHARGE will also attempt to model the ion current as a function of

voltage in order to stretch the usefulness of the CURREN results. At

this point, it is recommended that only one timestep per CHARGE

interaction be performed in most problems because of the difficulties of

modeling the voltage dependence of the attracted, pushed species. For a

description of the keywords which apply directly to the surface charging

subsection of NTERAK, see Section 6.43.30. An example of the use of

this keyword is:

CHARGE

This command would invoke the CHARGE subsection.

COMMENT

See the description of the keyword REMARK (below). The keywords

are equivalent.



6.4-4

CURREN

The appearance of CURREN activates the particle pusher subsection

of NTERAK. This section requires the presence of space potentials in

order to function. Although the potentials are initialized to zero on

the recognition of the first command keyword, it is strongly recommended

that each use of CURREN be preceded at some point by a use of PWASON

(see the following description of PWASON).

An example of the use of this keyword is:

CURREN

This invokes the particle pusher. Keywords which effect the control of

the CURREN subsection of NTERAK are described in Section 6.43.20.

DEFAULT

DEFAULT resets the default NTERAK keyword values. In general,

NTERAK defaults to an oxygen charging environment with no magnetic

field. This environment is described in detail in Section 6.42.10.

Reasonable amounts of useful output will be printed automatically. The

default condition of the ISTART (defined below) is CONT. This was done

to protect restart runs and their associated data from re-

initialization. Please see the various keywords or the summary in

Section 6.45 for individual keyword values.

NTERAK automatically sets the default constants at the start of a

new problem (i.e., - the use of NTERAK after VEHICL or ORIENT). To

reset the default values at any point, simply enter

DEFAULT

This will reset the default values. The keyword DEFAULTS is equivalent

to DEFAULT and may be used if desired.



6.4-5

Since the values of all user input variables are saved at the end

of each NTERAK run, it is best to use the DEFAULT keyword only on the

initial run. Otherwise, all of the variable values different from the

defaults will need to be defined again.

DONE

DONE is an internal keyword used by NTERAK to signal the last

keyword of a run. It is equivalent to the keyword ENDRUN, discussed

below. ENDRUN is the recommended keyword for this function. The two

keywords can be used interchangeably at this point and for a more

detailed description of its use and effects see ENDRUN.

END

This keyword was traditionally used to mark the end of the general

starting or restarting of conditions of an NTERAK run. The input

routines actually just ignore this keyword and will probably continue to

do so in the future. An example is

END

which would be ignored by the NTERAK input routines.

ENDRUN

ENDRUN marks the end of an NTERAK run, and causes a variety of

file indices and contours to be written out. If none of the other

calculation commands (CHARGE, CURREN, and PWASON) have been called and

this is the first use of NTERAK on VEHICL or ORIENT output files, then

the initial conditions of the problem are set and saved before finishing

the NTERAK run. If a calculation command was called or this is a

continued run, NTERAK will end without additional calculations. For

example,

PWASON

ENDRUN

after the PWASON subsection was completed, the ENDRUN keyword would be

read and NTERAK would end normally, without an error.



6.4-6

HELP

HELP keyword features a separate set of "HELP Commands" to display

different groups of NTERAK keyword settings and brief descriptions. For

detailed keyword descriptions, the use of the manual is strongly

recommended. Once entering HELP, only HELP keywords are recognized and

the user must use the keyword QUIT to get back to normal NTERAK input.

Available HELP keywords are:

CHARGE CHARGE keywords and values

CURREN CURREN keywords and values

DIAG Brief description of diagnostic flags

ENVIRON Environment keywords and values

GI Neutral density keywords and values

GRID Grid information keywords and values

HELP This HELP menu

PWASON PWASON keywords and values

QUIT Exit from HELP

WHAT Overall NTERAK settings and diagnostics

IGICAL

IGICAL controls the initialization of the ion densities. By

default, new neutral ion densities are calculated every time ISTART is

set to NEW and then used in place of any existing ion densities. It is

best to only calculate the ion densities once during the first NTERAK

run since the process of calculating the geometric or neutral ion

densities is fairly time consuming and costly. The recommended uses of

this keyword are:

IGICAL YES

the first time NTERAK is executed and

IGICAL OLD

for all the following executions of NTERAK when ISTART is CONT. The

first command calculates neutral ion densities and the second uses the

previously calculated neutral ion densities plus any modifications which

have occurred during the execution of the CURREN subsection. There

other very useful options available for IGICAL, as well as other

keywords affecting the ion density calculation, which are described in

Section 6.42.30.



6.4-7

INTERACT

The INTERACT keyword is used to place the NTERAK input routines in

an interactive mode. Tnis means that any errors encounterd in the

input runstream will generate an appropriate error or warning but will

not cause NTERAK to terminate its execution. This is the default mode

of input for NTERAK. To cause an abort when bad input is discovered,

use the BATCH command described above. An example of the use of the

keyword is

INTERACT

which will place NTERAK in an interactive input mode. The interactive

mode of input will also issue a prompt for the next input card.

ISTART

ISTART controls the initialization of the surface and space

potentials and the ambient ion currents. The first time NTERAK is used

after VEHICL or ORIENT or whenever a problem is to be reinitialized and

started over, the following should be used:

ISTART NEW

This will reset potentials and define the random ion currents. Ion

densities can also be reinitialized or reset depending on the setting of

IGICAL (described above and in Section 6.42.30).

If a previous NTERAK run is being continued, use

ISTART CONT

This will prevent the resetting of previously calculated potentials and

densities. CONT is used as the default ISTART value in order to protect

previously calculated data. It should be noted the keyword controlling

the calculation of the neutral ion densities, IGICAL, is defaulted so

that when ISTART is set to NEW, ion densities are calculated. If new

ion densities are not desired, IGICAL should be reset to use the

appropriate densities.



6.4-8

LOOP

The LOOP keyword provides a convenient method to iterate on a

fixed set of calculation modules. The format of the keyword command is:

LOOP number-iterations module 1 module 2 .... module_13

Where number_iterations is an integer defining the number of times the

listed sequence of modules is to be executed. Up to thirteen modules

may be listed. The acceptable module names are CHARGE, CURREN, and

PWASON. These modules may named in any order and may be repeated.

Different types of problems use the modules in d;fferent orders.

For a floating potential, charging calculation the following LOOP

command may be used to perform six iterations:

LOOP 6 PWASON CURREN CHARGE

While a fixed potential calculation, to find the plasma current

collected by a spacecraft at a specific potential configuration, might

use PWASON CURREN module list. Orbit limited charging calculations can

be done with PWASON CHARGE.

Note that running NTERAK with a large number of iterations may

take a while. If a job is happily running for an extended period of

time and one wants to stop it without destroying the data files, the

STOPRUN program can be used. This program is described in the utilities

section 5.15.

PWASON

The keyword PWASON is used to activate the space potential solver.

If this is the first NTERAK subsection to be executed (and it normally

is), the initial values and constants are set, according to values of

ISTART and IGICAL (see above). To invoke the Poisson solver, enter

PWASON



6.4-9

Then the object surface voltages, ion and electron densities, and

boundary conditions will be used to find the space potentials. The

boundary conditions used by POLAR are that the nodes just outside the

defined grid (the virtual nodes) are at zero volts. This definition of

the boundary needs to be taken into account especially when solving

Laplacian or low density problems. The keywords affecting the PWASON

subsection are described in Section 6.43.10.

REMARK

This keyword is used to insert comments into a runstream. When a

REMARK is encountered, the remainder of the input card will be ignored

and a new card will be read. Any number of REMARKs may be used. An

example of the use of the REMARK keyword is:

REMARK THIS IS A REMARK

All of data on the card following the first REMARK will be ignored. The

keyword COMMENT (described earlier) can be substituted for REMARK and is

completely equivalent, for example:

COMMENT THIS IS A REMARK TOO.

And again, everything on card which follows COMMENT is be ignored.

SAVETEMP

This keyword is used to define the file save status for the

temporary data files. Fortran files 9 and 10 contain intermediate data

which may be useful for post-run analysis.

SAVETEMP ON

would cause the files 9 and 10 to not be deleted after use. The default

is to delete them (SAVETEMP OFF) since they can be quite large.

WHAT

This keyword is used to display tks current settings of various

NTERAK keywords. WHAT produces output identical to HELP WHAT (See

above).



6.4-10

6.42 KEYWORDS TO SET UP NTERAK

New NTERAK runs using object definitions from VEHICL or ORIENT

need to define the environment and computational grid of the object.

The plasma environment NTERAK uses by defauit may not be desirable.

Keywords controlling these parameters are described in Sections 6.42.10

to 6.42.30. Some parts of the object definition also need defining

(namely the initial state of the electrical model) and the keywords

initializing these characteristics are explained in Section 6.42.40.

The calculation grid may need expanding and Section 6.42.50 defines the

pertinent keywords. Particle beams may be defined using the keywords

described in Section 6.42.60.

Once these keywords have been defined, all of the POLAR modules

will remember their values. Of course any keyword can be changed in

later NTERAK runs to simulate changing environments or some other

variable parameter. This feature is true for the keywords recognized by

NTERAK including those in the PWASON, CURREN, and CHARGE subsections.

6.42.10 PLASMA ENVIRONMENT

Currently NTERAK allows the definition of two species of ions (one

must be hydrogen) and hot and cold electron spectrums, as well as a

photon environment.

ION AND COLD ELECTRON ENVIRONMENT

The ion and cold electron populations are assumed to described by

the same Maxwellian distribution.



6.4-11

DENS

DENS (or DEN1, they are equivalent) defines the density of the

cold electrons and the combined density of the two ion species.

DENS 1.OE10

The above example would set DENS equal to 1010 meter"3 . The input is

expected in units of meters "3 .

If a Laplacian problem is desired, the following command may be

used:

DEN1 = 1.E-10

In this case DENS would be set to 10-10 m-3. Setting the density equal

to zero is not recommended. (Note that the equal sign above is ignored

by the input routine and is completely optional for all keywords.)

The default for DENS is 1010 m- 3 .

TEMP

The use of TEMP (or the equivalent keyword, TEMP1) defines the

temperature both of the cold electron and ion populations.

TEMP 1.0

declares the temperature to be 1 eV. The temperature is assumed to be
input in eV. The default temperature for the old species is 0.2 eV.

ESECNRGY

The average electron secondary energy, independent of source and

material, is set using this keyword. For example,

ESECNRGY 2.0

would set the average electron secondary energy to +2.0 volts. This is

also the default value.



6.4-12

AMUION

AMUION is used to input the ion mass in the units of atomic mass

units. For example,

AMUION 14

would be used if nitrogen were the ionic species. The default value for

AMUION is 16 (oxygen).

RATIH

RATIH is the ratio of the ion to hydrogen number densities. A

large value of RATIH such as

RATIH 1.E20

would mean there are 1.0E20 as many ions of mass AMUION as there are of

hydrogen. If the portion of ions or hydrogen drops below a minimum

value (see RATMIN below), then the io., density is defined to be of only

one species. The default value of RATIH is 1.0E20.

RATMIN

To change the value used to set the ion density to a single

species, use the RATMIN keyword.

RATMIN 1.e-10

This would set RATMIN to its default value.



6.4-13

HOT ELECTRON ENVIRONMENT

The high energy electron environment encountered in polar orbits

is represented in NTERAK by

t(E) = AE-a+ Cn2  E /2 -E/kT2 + EBe - E0)6 (3.41-a)

(see Section 3.41), where C = (2y3me) -1/2 and A, a, n2 , T2, B, Eo, and

B, Eo, and 6 are parameters determined by the spectrum shape. The

SHONTL module can be used to both define and draw the hot electron

spectrum. But when NTERAK is run after saving the spectrum parameters

from SHONTL, the keyword DEFAULT should not be used. This is because

the energetic electrons will be redefined.

The following keywords define the hot environment:

POWCO value Power law coefficient (A in Eq. (3.41-a)
above). Value is in units of (m2.sec.str.eV)-1

and the default is 1.4 x 102.

PALPHA value Power law exponent (a in Eq. (3.41-a)). Value

is unitless and defaults to 1.2.

PCUTL value Power law integration low end cutoff. Value is
in eV. The default value is 50 eV.

PCUTH value Power law integration high end cutoff. Value

is in units of eV. Defaults to 1 6x106 .

DEN2 value Energetic Maxwellian density (n2 in Eq.
(3.41-a)). Value is in units of m-3 and
defaults to 4.2xlO 6m-3 .

TEMP2 value Energetic Maxwellion temperature (T2 in (Eq.
3.41-a)). Value is in units of eV and defaults

to 4.3x10 3 eV.



6.4-14

GAUCO value Gaussian coefficient (B in Eq. (3.41-a)). Value

is in units of (m2 .sec.str.eV)-1 . Defaults to

8.8x105 .

ENAUT value Gaussian peak (Eo in Eq. (3.41-a)). Value in

eV. Defaults to 8.2x10 3 eV.

DELTA value e-folding width of Gaussian (6 in Eq.

(3.41-a)). Defaults to 1.8x103 eV..

As an example, the default POLAR spectrum which approximates a

spectrum observed by the DMSP satellite (Hardy, D. H., "The Worst Case

Charging Environment," in Proceedings of the AFGL Workshop on Natural

Charging of Large Space Structures in Near Earth Polar Orbit, 14-15

September 1982, AFGL-TR-83-0046, January 1983) would be defined by the

following set of keywords:

DEN2 4.2E6

TEMP2 4.3E3

POWCO 1.4EI2

PALPHA 1.2

GAUCO 8.8E5

ENAUT 8.2E3

DELTA 1.8E3

PCUTL 50.

PCUTH I.E6

Figure 6.4/I shows the fit of the POLAR spectrum to the experimental

data.



6.4-15

DIFFERENTIAL ELECTRON FLUX

12

SPECTRUM OBSERVED

:0010 BY DMSP SATELLITE

- - - - POLAR SIX PARAMETE
,/ FIT

IU

r 4
2

WI

.'o
.~0

0 2 4 6 8 10 12 14 16 18 20

ENERGY (keV)

Figure 6.4/1. Comparison of the POLAR spectrum and the DMSP data (see
reference in text).



6.4-16

PHOTON ENVIRONMENT

Photoemission and photoconductivity effects are modeled by POLAR.

To control the current contributions from photo effects, the following

keywords can be used to describe the light source:

SUNDIR

The card:

SUNDIR x y z

sets the direction from the spacecraft toward the sun. The vector is

normalized by the code so the magnitude is not relevant. For example,

SUNDIR 2.0 2.0 0.

sets the direction of the sun between the positive X and Y axes on the

XY plane. The default value is 0,1,0.

SUNINT

The card:

SUNINT intens

sets the sun intensity as a fraction or multiple of the natural sun

intensity one earth distance from the sun. For any earth orbit exposed

to the sun this should be 1.0, since orbit altitudes are negligible

compared with the distance from the earth to the sun. Sun intensities

differing from 1.0 (and 0.0) are used mainly for simulations of test

tank environments using artificial UV sources, or for interplanetary

spacecraft. For example

SUNINT 0.6

sets the sun intensity to 0.6 times its natural earth value.

The default is 0.0; in other words, the sun is "turned off* and

the object is in shadow. The SUNINT keyword is used by NTERAK to

control the presence of photo effects. None of the coding relating to

photoemission are executed when the sun intensity is zero.



6.4-17

CONVEX

The card:

CONVEX yes or.no

controls the calculation of surface cell shadowing effects. The keyword

input

CONVEX YES

tells the shadowing algorithms the object is convex and none of the

object surfaces are shadowed by any of the other surfaces. In this

case, the intensity of photoradiation goes as the dot (inner) product of

the surface normal and the sun direction. Surfaces determined to face

away from the sun are considered totally shadowed.

The input

CONVEX NO

is the default value and directs the code to calculate surface-surface

shadowing for all surfaces.



6.4-18

6.42.20 MAGNETIC FIELDS

The magnetic field environment of POLAR is controlled by three

keywords. They are

BDIR Bx By Bz  (Bx, By, Bz) define the direction of

the magnetic field. This vector

will be normalized by the input

routines. Default is (-I, 0, 0).

BFIELD option This is a flag which turns the

magnetic field on and off. Valid

options are ON and OFF. The default

is OFF.

BMAG value Magnitude of the magnetic field.

Value is in gauss. Default is 0.4

gauss.

An example of the definition of a magnetic field is

BFIELD ON

BDIR 1 1.0 0

BMAG 0.25

This would define and turn on a constant magnetic field of

I + j gauss.

The order of the three keywords is not important. The default field is

0.4 1 gauss.



6.4-19

6.42.30 NEUTRAL ION DENSITY

The neutral ion density calculation is controllad by a number of

keywords. Since the calculation requires a rather slow computation for

every element (cell) in the problem, several time saving options are

available for special applications of NTERAK. There are two methods for

the computation of neutral densities, the NEUDEN and the SHADO modules.

No matter which module is used to calculate the initial densities, the

SHADO module is used to calculate sheath wakes, if desired.

VMACH

The VMACH is used to define the plasma flow velocity Mach vector.

For example,

VMACH 0. -3. 4.

would define a Mach vector of -3 + 4 Mach units. Or in MKS units, the

flow velocity would be 4kT/mi (-3j + 4k) m/sec. Note that the z

component of the vector must be positive and larger than the absolute

values of both the x component a: the y component.

To use NTERAK without a flowing plasma, use a small Mach vector,

like

VMACH 0 0 .001

This is effectively a nonflowing plasma.

The default for VMACH is set by VEHICL (8k) or by the Mach vector

used in ORIENT to define the object rotation. (The Mach vector will

have been rotated so that the largest absolute component is in the

positive direction.)

IGICAL

ICICAL controls the calculation of the neutral densities by

choosing between various alternate sets of ion densities. This keyword

is ignored unless ISTART (Section 6.41) is set to NEW.



6.4-20

When IGICAL is not NEW, three basic types of options are

available. They are to calculate neutral ion densities from geometric

shadowing by the object, use previously calculated neutral ion

densities, or to use final composite (sheath tracking plus neutral ions)

from a previous calculation. In addition, an approximate electric field

correction may be applied to a new calculation of neutral ion densities

using the EFLDCOR keyword. It should be pointed out that the ion

densities used by the code are normalized by the cold ion density as

defined by DENS (6.42.10).

To save computation time with problems having low densities or no

flow, one may want to set the combined ion density to 1.0 in each

element. When the CURREN module is invoked, these densities are

modified within the ion sheath to more accurate values. For example,

IGICAL NO

would cause a normalized density of 1.0 to be saved for each element in

the problem.

A more commonly used option is to calculate the neutral ion

densities using the flow vector (VMACH, described above) and several

other keyword options defined below. For example,

IGICAL YES

would tell NTERAK to calculate neutral ion densities at each element.

This is the default for new NTERAK runs (i.e., when ISTART=NEW, see

Section 6.41).

IGICAL SHAD

is similar to IGICAL YES except the geometric shadowing method will be

used to calculate neutral ion densities.

Previously calculated densities can be selected in three manners.

These options presume the grid dimensions and Mach vectors have not been

changed. To use composite (sheath and neutral) ion densities left in

the files 11 and 19 by a previous run, one would enter

IGICAL OLDI

This prevents the ion densities from being changed at the start of a new

or continued run. This is the default for continued runs (ISTART=CONT).



6.4-21

To restart a problem with previously calculated neutral ion

densities, one would enter

IGICAL OLCI

The OLGI option causes the neutral ion densities to be copied over the

ion densities used by PWASON.

The third way to utilize old density calculations should be used

with care. If the following is used

IGICAL COPY

the neutral ion densities from a different set of data files will be

copied over both the neutral ion density and composite ion densities

used by NTERAK in the current files (11 and 19). The set of old

densities are expected to be in files 12 and 20. File 12 is the file 11

produced by the previous run. File 20 corresponds to file 19. This

feature is used to move ion densities for one object to another. The

COPY option will work only if the objects are identical and the grids

and environments to be used in both cases are the same. In other words,

the only differences between the objects can be the surface material

definitions. There is no error checking done when the command is

executed and any errors caused by the misuse of COPY will turn up (if at

all) in strange and mysterious manners. So be careful.

STHWAKE

To include the wake effect of the plasma sheath around the

spacecraft, enter

STHWAKE ON

This will include the sheath wake effects at the end of a CURREN step.

By default, this module is OFF.



6.4-22

EFLDCOR

The use of EFLDCOR will cause the neutral ion densities to be

corrected analytically for electric field effects (see Section 5.6).

EFLDCOR YES

will turn on the electric field correction routines. By default, the

electric field correction will be applied. To turn it off, enter

EFLDCOR NO

and no corrections will be made.

NPHI

NPHI controls the resolution of the zenith angle divisions for the

neutral density calculation. Note that increasing the resolution also

increases tht calculation time.

NPHI 72

The above example would set the number of zenith angle divisions

to 72. The default is 36 and is suitable for most applications. This

keyword applies only to the NEUDEN module.

NTHETA

NTHETA controls the resolution in azimuthal directions during the

neutral ion density calculation. Increasing the resolution will

increase computational time proportionally.

NTHETA 180

would set the number of azimuthal angle divisions to 180. This is also

the default value and has proven satisfactory for most applications.

This keyword applies only to the NEUDEN module.



6.4-23

NADD

NADD is used to add extra vertices to the object shadow in

velocity space during the neutral ion density calculation to increase

resolution of the object. Care should be exercised when changing NADD

since increasing NADD will slow down the calculation.

NADD 2

The above example would set NADD to 2. This is the default and should

be appropriate for most situations. This keyword applies only to the

NEUDEN module.

NHEXSH

NHEXSH controls the number of points used to resolve the object

and the sheath during wake calculations by the SHADO module. To define

the default, enter

NHEXSH 6000

NPHISH

NPHISH sets the number of angular steps to be used to resolve the

object and the sheath during wake calculations by the SHADO module.

NPHISH 16

This would set NPHISH to its default value.



6.4-24

SAVSET

Sometimes neutral ion densities may only be desired in subset of

the entire grid. The SAVSET sets a flag indicating that only a subset

of the ion densities needs to be calculated, and the rest of the

elements may be set to 1.0. This keyword is only used by NTERAK when

IGICAL=YES and ISTART=NEW (see above and Section 6.41).

For example,

SAVSET YES

would inform the geometric ion density calculator to calculate only a

subset of values. The actual subset is defined using GISAVE (described

below). The default for this keyword is NO, which implies that there

are no subsets to be considered.

GISAVE

This keyword is only active when SAVSET YES is also included in

the runstream (see above). GISAVE is used to define a subset of all the

elements in the grid. The elements in the subset will have geometric

ion densities calculated for them while those not in the set will be

initialized to 1.0. The general form of the command is

GISAVE axis coordinate

where axis can be X, Y or Z and coordinate is a location on the axis in

object coordinates and which is also inside the grid. In this manner,

planes of elements may be defined up to a maximum of nine planes on each

axis.

When multiple planes are defined, then the elements in each of the

planes will have densities calculated for them. For example,

GISAVE X 2

GISAVE X 3

GISAVE Y 7

would cause the ion densities for the x=2, x=3 and y=7 planes to be

calculated and all the elements not in these planes to be set to 1.0.



6.4-25

It should be noted that SHONTL requires two adjacent planes of densities

in order to draw correct plots. If only one plane is calculated and

drawn, the densities will be averaged with ones from the uncalculated

plane. A maximum of eight planes on each axis may be defined.

TEMPRAT

During the neutral ion density calculation different ion and

electron temperatures may be desired. For the ion density calculation

only, the two can be defined to be different by using

TEMPRAT 10.

This defines the electron temperature to be ten times the ion

temperature which is assumed to equal to TEMP (6.42.10). In other

words, TEMPRAT is T(electron)/T(ion) or T(electron)/TEMP. The default

temperature ratio is one, both temperatures are equal.



6.4-26

6.42.40 INITIAL VOLTAGES AND ELECTRIC MODEL

After VEHICL (and ORIENT), the electrical model has been

completely defined for the insulators and their conductors, but the

initial voltages and biases, and the conductor-to-conductor resistor and

capacitor connections have not been set. These features are defined at

the start of an NTERAK run or changed during a set of runs to simulate

switching or other processes.

The following keywords are used to initialize and modify the

spacecraft's electrical model:

CONDV

The CONDV keyword is used to set the conductor voltage. The card:

CONDV i v

sets the potential of conductor number i to v volts. All locations of

the conductor are set, including both as an underlying conductor and as

an exposed conductor. For example,

CONDV 2 -1000

sets conductor number 2 to -1000 volts.

The default value for conductors other than the ground conductor

(conductor number 1) is the ground conductor's voltage, if there is no

biasing (BIAS, see below); or the ground conductor's voltage plus the

bias, if there is biasing. The ground conductor defaults to the value,

VLTFIX = -(kT/2e) Jln(mi/me), where VLTFIX is an estimate of the simple

thin sheath, no secondary electron, current equilibrium point. The

value of VLTFIX may be changed by the user (see Section 6.43.30).

CONTCONDV i v

In continued NTERAK runs, CONTCONDV is used in place of CONDV to reset

the potential of conductor number i to v volts. If omitted, values

resulted from the previous NTERAK run will be used.



6.4-27

POTVAL

The POTVAL keyword is used to set the initial surface voltage of

all the insulators. This keyword is used by NTERAK only when ISTART=NEW

(Section 6.41). The card

POTVAL v

defines the initial insulator voltage to be v volts. The potential will

be either the surface potential or the potential difference from the

underlying conductor to the surface of the cell. This choice is

controlled by the keyword INSULPOT (described below). Assuming POTVAL

will define a surface potential,

POTVAL -100

sets the surface voltages of all of the insulating surfaces to -100

volts. The default value of POTVAL and INSULPOT are such that the

insulator surface potentials are equal to the ground conductor voltage.

INSULPOT

INSULPOT is used to define the meaning of POTVAL (described

above). If

INSULPOT DIFF

is used, POTVAL is the differential voltage from the underlying

conductor to the surface of the insulating surface cell. If

INSULPOT CONS

is used instead, POP/AL is defined to be the surface voltage of the

insulator surface cells. This is the default value for INSULPOT. For

example,

INSULPOT DIFF

POTVAL -100

would set all the insulators to the ground conductor voltage less 100

volts. If

POTVAL -100

INSULPOT CONS

were used instead (the order of the keywords is not important), the

insulator surface potentials would be equal to -100 volts.



6.4-28

INPOT

The INPOT keyword defines the method to be used to initialize

surface potentials on the first NTERAK cycle. The form of the command

is

INPOT flag

where the valid flags are CONS, PRE, and FLOAT. The default is CONS

(constant). In this case the surface potential values are simply set

using the other keywords and no special calculations are performed.

Sometimes when starting a new problem, it is desirable to use the

random thermal ion currents to approximate the ion current and then

calculate an initial set of potentials using the CHARGE module before

the first call to PWASON (6.41). This extra step can save computation

time by giving the Poisson solver a distribution of surface potentials

which approximate the final voltages more accurately than constant

potentials.

INPOT PRE

The above example would automatically call CHARGE at the start of a new

run. This is equivalent to using the default, NINPOT CONS', and

executing the CHARGE module first, since the ion currents are initially

set to the thermal values in new runs.

The FLOA (float) option is used when the surface to surface

secondary electron currents are expected to require the use of constant

normal electric field boundary conditions in the spatial potential

solver. Normally, PWASON and CHARGE are capable of choosing the

appropriate boundary conditions, but on the first cycle it is best to

set the flag in order to reduce wasted computation time.



6.4-29

Floating boundary conditions normally arise in situations where the

photoemission currents dominate surface charging, though other

environments exist which may generate large, low energy secondary

currents.

FIXP

The card:

FIXP n v

fixes the potential of conductor number n to v volts. For example

FIXP 4 -6000

sets conductor 4 to a potential of -6000 volts, where it remains, fixed

for all future potential calculations. The most common use of this

option is to ground conductor 1:

FIXP 1 0.

The default behavior is for all conductors to float freely.

Note that fixing the ground conductor when there are biased

conductors (see BIAS below) will have the side effect of fixing all of

the biased conductors, but that it is not allowed to fix the ground

conductor (conductor number 1) by fixing one of the biased conductors.



6.4-30

BIAS

The card:

BIAS i v

causes conductor i to be biased by v volts relative to conductor 1.

Conductor 1 is usually the spacecraft ground. For example, the card

BIAS 3 -1000

causes conductor 3 to always be 1000 volts more negative than conductor

1. If conductor I were floating or fixed at -300 V then conductor 3

would have a floating or fixed potential of -1300 V. The BIAS cards for

each conductor must be entered in ascending order. Thus any card for

conductor 3 will be rejected unless conductor 2 has been biased. Cards

need only be included for those conductors that the user wants to be

biased. The default behavior for a conductor not biased or fixed (see

FIXP above) is to float independently.

FLOAT

The card:

FLOAT i

removes the effect of all previous BIAS's and FIXP's affecting the

specified conductor number i. For example

FLOAT 4

allows a previously biased or fixed conductor 4 to float freely again.

This is necessary because options FIXP and BIAS are remembered from

previous runs. The card:

FLOAT

with no conductor number causes all previous FIXP and BIAS commands to

be cancelled for all conductors; i.e., all conductors float freely.



6.4-31

ciJ

There are two sources of capacitance between conductors. The

stray capacitances that are determined by the throughspace electric

fields are not currently calculated by POLAR. The larger mechanical

capacitances due to conductors being glued together or separated by

dielectric films must be specified by the user. The card:

CIJ k I c

sets this 'mechanical connection" capacitance between conductor number k

and I to c farads. For example the card:

CIJ 2 3 1.E-8

sets the 'mechanicalw capacitance between conductor 2 and 3 to

1 x 10-8 farads. The default interconductor capacitance is zero, so

failure to define this value may cause differential charging between the

two conductors in question to occur unrealistically fast.

When multiple definitions of capacitances are made POLAR includes

implicit as well as explicit connections in its calculation. For

example

CIJ 1 2 1.E-10

CIJ 1 3 2.E-10

CIJ 2 3 3.E-11

defines explicit capacitive connections between conductors 1 and 2, 1

and 3 and 2 and 3. However, 1 is also connected to 3 via 2, and so on.

The circuit diagram used by POLAR has the form:

C23

Conductor 3 Conductor 2

C13  C 1 2

___Conductor 1



6.4-32

RIJ

POLAR has the capability of treating explicitly specified

conduction among the various conducting segments. Otherwise, no

connection is assumed, and an infinite resistance is used as the

default. Since infinity is difficult to represent on a computer, a zero

value is used internally to flag infinity and resistances less than or

equal to 1 ohm are not allowed. Interconductor resistances are

specified in a similar manner to interconductor capacitances by the card

RIJ i j r

where i, j are conductor indices, and r is the direct interconductor

resistance in ohms. Resistances less than 1 ohm will be ignored and the

infinity default will remain in effect. Use of very low resistivities

to effectively short two conductors together is not recommended. The

user should, instead, change one conductor to the other and rerun

VEHICL.



6.4-33

6.42.50 GRID SIZE CONTROL

At the start of a new NTERAK run, the computational grid

extensions need to be defined (Section 5.20). Only the object

definition grid has been defined at this point and usually it is too

small to perform a calculation.

There are two main features which control the grid size: the grid

spacing and the number of grid points. The defaults for these features

are the values left after completion of VEHICL or ORIENT, whichever was

executed last.

DXMESH

The grid spacing is controlled by the DXMESH keyword. The general

form is

DXMESH L

where is the grid length in meters.

DXMESH .5

defines the grid spacing to half a meter. The default value for NTERAK

is the value used by VEHICL or ORIENT. The default for ORIENT is the

value from VEHICL and VEHICL's default is 1.0 meter.

NUMBER OF GRID POINTS

The number of grid points in a problem depends on several factors.

(See Figure 5.20/1 and Section 5.20.) The grid will be at least as

large as the object definition grid. If the Mach vector (6.42.30) is

defined with non-zero x and y components, the grid will grow enough in

the x and y directions to keep the object grid contained in the smallest

stepped grid (NXGRTH in Figure 5.20/1).

The grid can further be expanded in any of the six axial

directions (L+, +, or +2). The following keywords are used to

extend the grid along either direction of the three axes:



6.4-34

NXADNB adds nodes in the -X direction

NXADNT adds nodes in the +X direction

NYADNB adds nodes in the -Y direction

NYADNT adds nodes in the +Y direction

NZADON adds nodes in the -Z direction

NZTAIL adds nodes in the +Z direction

For example, the grid shown by the Figure 5.20/1 would be defined

by

NXADNT 1

NXADNB 1

NZTAIL 7

NZADON 2

The add-ons along the y axis have not been defined since they are not

apparent from the figure.

The only limits on the grid size is that the product of number of

the grid points on the x(NX), y(NY) and z(NZ) axis must satisfy

(NX+2) (NY+2) ( 5000

(NV 2) (NZ+2) < 5000

(NY 2)(NZ+2) < 5000

in order to plot the calculation results and the following limits on the

Z coordinates.

MINZ < -50

MAXZ < 100

MAXZ - MINZ + 1 ( 100

where MINZ and MAXZ are, respectively, the minimum and maximum Z

coordinates of the grid points in object grid coordinates (where the

lowest (xy,z) corner of the object definition grid is defined to be

equal to (1,1,1)).

The size of the data buffer common block, /CBUF/, also limits the

size of the grid but can be easily expanded until machine limits are

reached. The buffer should be able to hold as much as 20*(NX)*(NY)

words of data.



6.4-35

6.42.60 PARTICLE BEAMS

The CHARGE module models the effects of particle beams on the

charging of conductors. Currently, the space charge effects of beams as

well as surface-beam interactions are not modeled. Trajectory plots of

beams can be generated using SHONTL. Although not checked on input, it

is best to define only one particle beam per conductor. When making

plots, this restriction can be ignored. The following describes the

keywords for defining beams and their default values. The words in

upper case characters are keywords and those in lower case represent

sets of keywords. The general forms of beam descriptors are

BEAM ALL on-off

This turns all of the described beams on or off. The keywords on-off

can be replaced by ON or OFF. Or

on-off = {ON, OFF}

A single beam can be turned on or off with

BEAM n on-off

where n is an integer and is the beam number. A maximum of twenty beams

may be definid and saved. If it has not been described, the default

values will be used.

There are two methods which can be used to describe a particle

beam. The first is to turn the beam on using one of the above commands.

Then modify the default values individually until reaching the desired

particle beam definition. The syntax used to modify one feature of a

beam is

BEAM n beam-char char-value

where n is the beam number, beam-char is a beam characteristic, and

char-value is the value of the beam characteristic. The definable beam

characteristics are summarized in Table 6.42/1.



6.4-36

TABLE 6.42/1

BEAM CHARACFERISTICS

(a) Keyword Definition

beam-char Definition

(keyword)

LOCATION spatial location of beam

DIRECTION direction beam aimed

COND number of conductor current

CURRENT beam current

AREA cross-sectional area of beam, assumed to
be circular

ENERGY beam energy

MASS mass of beam particles

CHARGE charge of beam particles

TABLE 6.42/1
BEAM CHARACTERISTICS

(b) Input Syntax

beam-char char-value char-value units default value

(keyword) (syntax) (format)

LOCATION x y z 3 real grid coords 0 0 0

DIRECTION x y z 3 real N/A 1 1 1

COND n integer none 1

CURRENT value real amps -.1

AREA value real m2  4r(.01)2

ENERGY value real KeV 1

MASS value real AMU me/mH*

CHARGE value real electron -1*.
charge

default value 1 if CURRENT ) 0. me is electron mass and mH is
proton mass.

** default value 1 if CURRENT > 0.



6.4-37

The second way to define a beam is enter all of the beam

characteristics on a single input card. This may not be a practical

method in some cases due to the 80 character limit of the input card.

The first method also provides a form of self-documentation which is

easier to read. The order of the beam characteristics is LOCATION,

DIRECTION, COND, CURRENT, AREA, ENERGY, MASS and CHARGE where these

keywords are defined in Table 6.42/la. The syntax of the command is

BEAM n ALL loc-x, loc-y, Ioc-z, dir-x, dir-y, dir-z, cond,

current, area, e:iergy, mass, charge

where Ioc stands for location and dir for direction. Values should be

placed between commas. The commas may be replaced by spaces but values

may be left out between commas if the default is correct. The default

values describe a kilovolt electron beam drawing 100 mAmps from the

ground conductor and having a 2 cm diameter. The location and direction

of the default beam is arbitrary.

A 200 mAmp, 1 KeV hydrogen beam drawing current from conductor 2

is defined by

BEAM 1 ON

BEAM I COND 2

BEAM 1 CURRENT 200.

BEAM 1 CHARGE 1.

The second method could also be used. One way is

BEAM 1 ALL ,,,,,,,2, 200.,,,, 1.

An apparent extra comma is used after the ALL keyword since a delimiter

is needed between ALL and the x coordinate of the beam location vector.

The values between the commas are filled by the defaults summarized in

Table 6.42/lb. Clearly, the first example is easier to read at a

glance.



6.4-38

6.42.70 SHEATH IONIZATION

By checking the total ionization of neutral ions within the

sheath, NTERAK is able to adjust the sheath radius to account for

enhanced ion densities. It is also able to check to the case when

sheath ionization begins to dominate the calculation. The sheath

boundary becomes unstable and will expand quickly to fill the

computational grid. When this occurs a message is printed and the run

is killed. The neutrals are assumed to be defined by AMUION.(6.42.10)

The keywords necessary to turn on sheath ionization effects are:

SHEIONZ turns on/off sheath ionization effects. To turn on

ionization effects

SHEIONZ ON

To turn them off

SHEIONZ OFF

By default, sheath ionization effects are off.

NEUTDEN This keyword sets the neutralized ion density. By

default, the neutral density is 1012/m3. For example,

NEUTDEN 1.E+14

would define the neLral density to be 1014 /m3 .

IONZCROSS This defines a probability cross-section for the

electron/neutral atom interaction. For example

IONZCROSS 1.e-20

would set the interaction cross-section to be 10-20 m2 which is also

the default.



6.4-39

6.43 NTERAK SUBSECTION CONTROL

The calculations performed by NTERAK to model spacecraft charging

can be conveniently separated into three major subsections. They are

the Poisson potential solver PWASON, the particle pusher CURREN used to

find ion currents and densities, and the electrical model of the

spacecraft, CHARGE. The keywords which control these modules are

described in the following three sections.



6.4-40

6.43.10 PWASON (POISSON POTENTIAL SOLVER)

The PWASON subsection of NTERAK is used to calculate space

potentials given a set of surface voltages for an object (Sections

6.42.40, 5.70, 4.50), a computational grid (Sections 6.42.50, 5.20,

4.10), a set of ion densities (Sections 6.42.30, 5.60. 4.40), and a zero

potential boundary condition (Sections 5.50, 4.20) PWASON involves a

double layer of iteration. Innermost is a conjugate gradient potential

solver (Section 4.31) that uses a linearized Boltzmann electron

contribution to the space charge (Section 4.44). This is referred to as

the Conjugate Gradient Iteration. This is, in turn, iterated upon to

update the linearized Boltzmann electron space charge derivative (SCRN,

Section 4.44). This outer iteration is known as the space charge

iteration. Both the conjugate gradient and space charge iterations

terminate on either a convergence test or an iteration limit. There is

an analytic formula available to generate space charge densities instead

of pushing particles.

PWASON

The keyword PWASON is used to activate the space potential solver

(also see Section 6.41). For example.

PWASON

would invoke the PWASON subsection. All of the keywords which control

the subsection must be defined before the appearance of PWASON in the

runstream if the various defaults are not appropriate.

ENORMCHK

PWASON will recalculate the space potentials if a surface's

boundary condition has changed as a result of the new space potentials.

This, by default, only happens on the first call to PWASON when there

has been no PRECHG step. If it is desirable to check and recalculate

after every PWASON call, use

ENORMCHK YES

To turn this off, use

ENORMCHK NO

The latter example is the default condition.



6.4-41

This keyword is mainly intended for use with positive potentials

when secondary electrons are influencing charging.

MAXITS

The MAXITS keyword defines the maximum number of space charge

iterations (Section 4.44 and introduction above). For example

MAXITS 3

would set the number of iterations upon space charge to three, the

default. A MAXITS of one should be used for low densities and/or short

Debye lengths where the space charge will have little impact on the

final solution. Higher numbers of iterations, twenty, may be necessary

when factors of density, temperature, object potential, and object size

conspire to make the repelled electron space charge contribution

significant over large regions of the model. If analytic densities are

being used, a larger value should be used.

MAXTIC

The keyword MAXITC controls the maximum number of conjugate

gradient iterations. If none of the convergence criteria have been

reached after MAXITC steps, the potential data is saved and the NTERAK

run is terminated with an error massage. Saving the potentials allows

the run to be restarted if desired.

To define a maximum appropriate for a low density or Laplacian

problem, an input such as

MAXITC 30

would be appropriate. The default is 20 which is enough for most

densities.

MINITC

The MINITC keyword is used to set the minimum number of conjugate

gradient iterations to be performed (see also MAXITC above).



6.4-42

This essentially causes the convergence criteria to be ignored until the

MINITC +1 iteration. To change the default, enter

MINITC 1

This forces at least one conjugate gradient calculation to be performed.

The default value is 2 and will not need to be changed for most

applications.

POTCON

The keyword POTCON is used to determine satisfactory conjugate

gradient convergence. The code uses

RDOTR (1)
lo910 RDOTR(v)

to check convergence, where RDOTR is a measure of the accumulated error

of the potential solver (Sections 4.52, 5.50) found at the first and at

the current (v)on conjugate gradient iteration. The number calculated

above is compared to POTCON and if it is larger than POTCON, the

conjugate gradient iteration terminates.

To set this variable, use a keyword instruction similar to

POTCON 4

This example would require approximately four orders of convergence

during the conjugate gradient loop unless MAXITC (see above) is

exceeded. The default value for POTCON is six which provides a good

compromise between accurate potentials (e.e., more convergence ) and

approximately correct, as when approaching a total problem convergence,

his parameter can be lowered to four or five.

RDRMIN

The keyword RDRMIN is an absolute measure of convergence of the

space potentials (see Sections 4.31, 5.50). RDRMIN defines a value of

RDOTR (a dimensionless measure of the accumulated error in the



6.4-43

potential solution) which is considered a completely converged solution.

If RDOTR is less than RDRMIN, no further conjugate gradient iterations

are required or performed. For example,

RDRMIN 1

would define a total error of 1 volt for the problem. The default is

calculated by multiplying the number of nodes in the problem by 0.0001

volts. This is appropriate for most applications. For most problems,

the conjugate gradient iteration should be terminated by POTCON (defined

above). RDRMIN provides a lower limit to prevent the needless use of

calculation time.

RMSCONV

The space charge iteration loop of PWASON can end by satisfying a

RMS convergence condition. The value of the convergence level is

entered using the RMSCONV keyword. For example,

RMSCONV .01

would cause the space charge loop to continue until the root-mean-square

of the space potentials was less than or equal to .01 volt (or MAXITS

was exceeded). The default is the maximum of TEMP (TEMP is described in

6.42.10) and the absolute value of STHPOT (see 6.43.20).

RMSOFF

The root-mean-squared convergence criteria in the spac charge

loop of PWASON can be turned on and off via this keyword.

RMSOFF OFF

turns off the convergence checking, while

RMSOFF ON

turns it on. By default, the convergence check will be made. The

convergence check will never be made after the first space charge

iteration, so at least two iterations will be made (unless MAXITS = 1).

See also RMSCONV.



6.4-44

SQALPH

SQALPH is the space charge limiting factor. The interaction of

this keyword and the space potentials is complex and the reader is

referred to Section 4.44.2. Example:

SQALPH 4

would define SQALPH to be 4. The default is 2.667. and this value is

appropriate to most charging -:,,s. Larger values of SQALPH increase

charge near the sheath edge, a value of 3 may help stabilize the sheath

location if its position is oscillating. For situations where objects

are discharging, a value of 2 is recommended.

MOTIONDEN

The MOTIONDEN keyword in used to turn on or off the analytic

spatial densities during potential calculations.

MOTIONDEN ON

This would cause PWASON to ignore the neutral and pushed densities

and use the analytic densities. The default is OFF.

MIXDEN

MIXDEN is used to play with the diagonalization of the finite

element density information when pushed particle densities are being

used. Its use is not recommended. The default is .5.

MIXDENMO 0.

MIXDENMO modifies the diagonalization of the finite element

density information when the analytic densities are being used. Its use

is not recommended. The default is 0.



6.4-45

PDIE

The PDIE keyword defines the maximum allowable positive voltage in

the calculation (Sections 4.30, 4.44, 5.50). NTERAK originally had no

model for positive space potentials and PDIE was used to detect this

situation. The keyword remains for debugging purposes.

PDIE 50

The above example sets the PDIE to +50 volts. The default value is

+9999 volts.



6.4-46

6.43.20 CURREN (ION CURRENT CALCULATION)

The CURREN subsection of NTERAK is used to calculate the ion

densities inside of the sheath (Sections 3,60, 4.42, 5.60), and the ion

currents to the surface of the spacecraft (Sections 5.71, 4.53) using

outside-in particle pushing. The module obviously requires a set of

space potentials in order to perform the ion calculations.

CURREN

The appearance of the keyword CURREN in the input runstream causes

the CURREN subsection of NTERAK to be executed (see Sections 4.40, 4.53,

5.60). For example

CURREN

would invoke the ion particle pushing subsection (see also Section

6.41). Since this keyword activates the CURREN module upon its

appearance, all keywords controlling the various features of the module

need to be defined (if the defaults are not appropriate) before it is

read as input.

IPCNT

IPCNT defines the maximum number of -Z (left) and +Z (right)

particle pushing sequences allowed by CURREN. The particle pusher used

by NTERAK moves each particle within a specific z-slice until that

particle leaves the slice, the sheath, the grid, or hits the object.

After all the particles in the slice have been pushed out, the particles

in the next slice are moved. In this manner the entire grid is swept

through, first in the +Z direction, then in the -Z direction. IPCNT is

the maximum number of these right/left pushing sweeps and is necessary

to prevent "stable" particle orbits from causing infinite loops.



6.4-47

IPCNT 2

The above example would limit pushing to two left and two right sweeps

so trajectories would terminate after two or three turns in the

z-direction, depending on the particle's original velocity direction.

The default for IPCNT is 3.

IPQUIT

It is possible for stable, trapped orbits to occur during particle

pushing. To stop trajectories orbiting in the Z plane, the number of

particles still active after each right/left pass through the grid is

compared to the previous pass. If the number of particles is the same

after IPqUIT passes, pushing is halted. For example

IPQUIT 2

would stop pushing after two consecutive passes without a change in the

number of active particles. The default is two.

XYLIMIT

Trapped orbits are also possible in the xy plane. The particles

are limited to moving into a maximum of XYLIMIT elements without leaving

the plane (a change in the integer portion Gf the Z coordinate).

XYLIMIT 100

would limit particles to entering 100 elements before marking the

particle as lost and moving the next particle. The default is 40.

STEPLIM

When step pushing particles, the estimated time used to move may

be too small (for example, due to magnetic fields) for the particle to

cross the element in a reasonable number of steps. So after a certain

number steps, specified using STEPLIM, the timestep is doubled. For

example,



6.4-48

STEPLIM 10

would double the timestep after every ten steps in the same element.

The default is 20. (See also MAXSTPIN.)

MAXSTPIN

The number of timestep doublings caused by STEPLIM (above) is

limited by MAXSTPIN if

MAXSTPIN 3

was used, on the fourth attempt to double the timestep the particle

would be marked as lost and the next particle would be pushed. The

default value is 5.

STHPOT

The keyword STHPOT defines the sheath edge potential where the

initial position and velocity of the particles will be calculated. The

flux represented by the initial particles is defined using CURPOT (see

below). To define a sheath at -2.0 volts, enter

STHPOT -2.

The default sheath "model is

STHPOT PSIM

which causes the sheath edge potential to be the lesser (more negative)

of CURPOT or Om kT/e, where

#m E. n (SQALTP* (XD/DXMESH) 2).

(SEE 3.60, 4.42.1, and 4.44.2 for explanations.)

In general, care should be taken to insure that the sheath

boundary defined by STHPOT is at least a mesh length away from the edge

of the grid boundary. If the sheath comes too close to the grid

boundary, the accuracy of the solution will be adversely affected.



6.4-49

CURPOT

The CURPOT keyword defines the presheath edge potential (3.60,

4.44.2) at which the presheath fluxes are calculated. CURPOT is also

used as an upper limit for the default of STHPOT, described above. To

redefine this variable, use input in the form of

CURPOT -.069

The above example defines the presheath edge potential to be -.069

volts. The default voltage is -.45*TEMP (TEMP is described in Section

6.42.10).

NTABLE

NTABLE controls the number of table entries used by STHCAL

(5.62.21) to calculate the presheath focusing weights.

NTABLE 20

The above example would call for 20 entries to be used for interpolating

the presheath weights. The default is ten which has proven sufficient

for most cases.

MAGSTH

The MAGSTH keyword should be used when collecting magnetically

limited electron presheath fluxes.

MAGSTH ON

This turns magnetic flux tube restricted electron presheath currents ON.

The default is OFF.



6.4-50

6.43.30 CHARGE (SURFACE CHARGER)

The CHARGE module is responsible for computing the response of the

vehicle electrical model (Sections 3.50, 4.50) to the plasma. The ion

and electron currents are either the ambient ion currents (Section

3.43), the currents calculated by CURREN (Section 6.43.20), or orbit

limited currents. The energetic electron currents are calculated

numerically in this module using a parametric representation of the

electron spectrum (Section 3.41; keywords, Section 6.42.10).

CHARGE is able to calculate the change in surface potentials using

orbit limited currents, space charge limited currents, or hybrid

currents. The hybrid currents are surface currents where the total

current to the object is determined by finding the current through the

space charge limited sheath. The proportion of the current to a given

surface is found by dividing the orbit limited current to the surface by

the total orbit limited current to the object.

The charging algorithm (discussed in detail in Sections 5.73 and

4.50) is controlled by the following keywords. The more crucial

keywords are those controlling the allowable voltage change, the

timestep size used by the algorithm, and the ones which define the

charging regime.

CHARGE

The keyword CHARGE is used to invoke the CHARGE module (5.73 and

4.50). For example

CHARGE

would cause the surface charging section of NTERAK to begin execution.

The keywords which are used to control the electrical model should be

defined (if the default values are not appropriate) before this keyword

is entered. See Section 6.41 for a more detailed explanation of this

keyword.



6.4-51

SPCLIM, ORBLIM, and ORBSPC

These keywords define the current module to use for the attracted

species. The default method can be requested with

SPCLIM

The SPCLIM keyword is used for space charge limited (pushed particle)

currents. ORBLIM will turn on the orbit limited current models. For

intermediate charging environments, ORBSPC uses the space charge sheath

current to renormalize the orbit limited surface currents.



6.4-52

DELTAT

The keyword DELTAT (At) defines the size of the timestep to be

taken by the charging algorithm. Long timesteps (a large DELTAT) allow

the algorithm to converge quickly on an equilibrium solution without

regard to the actual charging time history that one would expect or

perhaps measure during an experiment. Short timesteps will require many

more iterations to yield information concerning long timescale charging

effects, like differential charging. To define DELTAT, enter an

instruction like

DELTAT .01

which would be a timestep of 10 msec. The units of the input are

assumed to be seconds and the default is 1 second.

MAXITT

The MAXITT keyword defines the number of iterations to be

performed by the CHARGE modules. Since there are currently no

convergence criteria or any other checks for completed calculation, this

keyword is the sole means of controlling CHARGE. To set the maximum

number of timestep iterations for the charging algorithm, use input of

the form

MAYITT 4

which would set the loop counter to four. The default value is 2.

For situations where current balance is expected to occur due to

the pushed and secondary currents, a value of one for MAXITT should be

used. This is due to the lack of a good model in the code of the

voltage dependence of the pushed specie currents. In cases where

current balance is achieved between analytically calculated incident

currents and their secondaries, multiple iterations of the charging

algorithm may be used.



6.4-53

DVLIM

The DVLIM keyword defines a limit on the change in voltage during

a single timestep. There are two major circumstances where DVLIM limits

the voltage step.

The first is during the first implicit stage when the current

derivative is estimated. The voltage at which the current balances for

a specific surface is estimated to be XDVAFAC*DVLIM away from the

original (at the start of the step) voltage. XDVFAC is described below

and has a default value of two.

The second instance when DVLIM is used to limit the voltage change

is when the sign of the total current to a surface changes and the

surface voltage appears to be moving away from the current balance

voltage limits defined by VLTFIX and VFIXHI (possibly due to the

influence of other surfaces or the underlying conductor). In this case,

the surface voltage is constrained in the second and final stage of a

CHARGE iteration to diverge no more than DVLIM from its initial value at

the start of the step. This is done to stabilize the problem.

An example of the use of the keyword is

DVLIM 100

which defines DVLIM to be 100 volts. The units of DVLIM are volts. The

default value is 1000 volts.



6.4-54

XDVFAC

This keyword is used as a multiplying factor for DVLIM (described

above) when calculating an estimate for the voltage change necessary to

reach an equilibrium voltage during the first implicit stage of the

iteration. For example

XDVFAC 2

would set XDVFAC to two, which is also the default.

If, for example, a satellite initially at -1.0 V was placed in a

strong charging environment with DVLIM = 100 volts and XDVFAC = 2, the

satellite would charge no more than about -200 V during 2 single, long

timestep.

DVTEST

When a surface voltage is near to the voltage which will establish

a current balance, the change in the surface's voltage during the

previous iteration is used like DVLIM to limit the voltage change and to

force convergence on a solution. Of course during the first iteration

this variable is undefined. DVTEST is used instead. For example,

DYTEST 2.0

would limit the surface voltage change to 2.0 volts when the equilibrium

point is passed (found by noticing a change in the sign of the total

current). The default value is 5 volts.

DVMAX1

DVMAX1 v

is the absolute measure of convergence of surface charge. Charge

iterations will be halted if every surface potential changed within v

volts from the previous charge iteration. For example,



6.4-55

DVMAXI 1.

will cause charge iteration to continue until dV of every surface is <=

1. volts (or MAXITT is exceeded or conditions of DVMAX2 is satisfied).

Default value for DVMAX1 is 5.*temp.

DVMAX2

DVMAX2 # is the relative measure of convergence of surface charge.

Charge iterations will be halted when changes in surface voltages are

within # (percentage) of previous voltages. For example,

DVMAX2 .05

will stop the charge iteration when dV/oldV (= .05 or 5% (oldV is

previous iteration V). Of course, MAXITT and DVMAX1 still can cause the

charge iteration to halt. Default for DVMAX2 is .05.

VWIGGL

When a surface voltage is at current equilibrium, it is convenient

to keep the surface voltage charging by a small amount in order to avoid

numerical difficulties. VWIGGL is used to introduce a small amount of

noise to prevent these problems. For example,

VWIGGL .01

would force the voltage to change at least 0.01 volts each iteration.

The default is 0.001 volts and is adequate for most applications.



6.4-56

VLTFIX

The keyword VLTFIX is used to estimate an upper bound on the

surface voltage producing a current balance in noncharging cases.

Currently, this is the value which will be used for all of the material

types in the problem. For example,

VLTFIX -.01

defines the upper boundary to be -0.01 volt. The default is found using

plasma parameters defined in Section 6.42.10 to solve

VLTFIX =- (TEMP/2) * n AMUIN * 67 x 10-27

9.1 x 10
-31)

This default should be appropriate for most problems.

VFIXHI

The keyword VFIXHI is used as an estimte of the lower boundary of

the equilibrium voltage or a charging surface. It is used to prevent

destabilizing voltage swings when at the current balancing voltage. For

example,

VFIXHI -8000

defines VFIXHI to be -8000.0 volts. The default is -10,000.0 volts

which should be adequate for most cases.



6.4-57

FXFORM

The FXFORM keyword allows the code to choose the best matrix

formulation of the charging equations (FXFORM = NO) or forces the CHARGE

module to use the undiagonalized matrix formulation (FXFORM = YES) (see

Section 5.73.2). In general, it is best to use the diagonalized form if

possible since this form has smaller off-diagonal terms which enables

the matrix solver to work more efficiently.

To allow the code to choose the best formulation based on the

charging behavior of the problem, enter

FXFORM NO

To force the code not to diagonalize the charging equations, enter

FXFORM YES

The default is FXFORM set to NO and should not need changing for most

applications.

USELIM

The USELIM keyword controls part of the voltage limiting process

used to find a surface voltage to be used to find the current derivative

term for the second stage implicit step (see Section 5.73). This

keyword will almost never need to be used.

When a surface charges quickly towards one of the estimated

current balance voltages defined by VFIXHI and VLTFIX (see above) at

more than DVLIM (also described above) volts, this flag determines

whether the voltage change should be limited to DVLIM or allowed to

proceed more rapidly towards a solution.

To limit the charging process, enter

USELIM YES



6.4-58

and allow the code to charge rapidly under these special circumstances,

enter

USELIM NO

The default value is NO and shoLld be used for most problems.



6.4-59

6.44 NTERAK OUTPUT CONTROL

Currently the bulk of the NTERAK keywords produce output that is

oriented more towards code diagnostics than for studying calculation

results. As the code develops, keywords are added to provide the user

with increasingly easier methods of accessing calculations. Presently,

the greatest difficulty facing a potential user is sifting through the

output, or output control.

The first section defines keywords which reduce the output by

printing useful subsets of the calculation results. The second section

provides a description of all the available diagnostic controls and

complete definitions and examples of keywords which control both

calculation and diagnostic output. Some keywords appear in both

sections to facilitate convenient referencing.



6.4-60

6.44.10 CALCULATION MONITORING

The output interface with the user has not been fully developed.

But many features do exist to present calculational results that are

adequate for most purposes. Any of the information stored using the

MRBUF (Section 5.33), as well as graphical representations of data, are

available via the SHONTL module (for SHONTL operating instructions see

Section 6.50), for the last cycle of the calculation. If intermediate

results are desired in graphical form, it is advisable to break a

calculation into several steps and save these intermediate files (11 and
19).

NTERAK can also provide information during execution. Originally

designed as diagnostic tools, several keywords can also be used to print

results as they are computed. This section focuses upon these keywords.

OUTPUT

The OUTPUT keyword provides a convenient method of coarsely

controlling the output from several major sections of NTERAK. The

general form of the command is

OUTPUT subsection quantity

where quantity is the desired amount of output from subsection.

Information from the subsections can be printed at three levels of

verbosity: HIGH, LOW, and OFF. The sections of NTERAK which are

controllable via the OUTPUT command are:

TIMER - code speed information

NEUDEN - neutral ion density calculation

PWASON - Poisson potential solver

CURREN - particle pushing module (ion currents and

ion densities within the sheath)

CHARGE - electrical charging model



6.4-61

Some examples of the use of OUTPUT are:
OUTPUT TIMER HIGH

OUTPUT CHARGE OFF

OUTPUT PWASON LOW

The first example causes a continuous monitoring of the execution time

at numerous points within the code, most notably after each mass I/O

operation. The second example stops all of the output from the CHARGE

subsection while the third example produces the minimal amount of

information necessary to following the space potential calculation. The

default quantity of output for all subsections is LOW. The SELECT

(described below) can be used to remove or reduce the amount of

information printed at HIGH levels. The OUTPUT keyword is discussed

further in the next section, 6.44.20.

SELECT

The SELECT keyword can be used to choose a specific set of

Z-slices from grid sized arrays. It can also be used to turn off (or

on) the output of any of the data stored by MRBUF (5.30). This is

useful when working with the output keywords set to high levels.

A variety of options are available with SELECT. The five general

forms of the command are:

SELECT name ALL

SELECT name OFF

SELECT name NONE

SELECT name list ENDLIST

SELECT LIST list-number list ENDLIST

SELECT name LIST list-number

where name is the name used by the buffering system (5.30) to reference

the data, list is a list of Z-slices using object coordinates, and list-

number is an integer from 1 to 5.



6.4-62

The first three examples turn the output of a buffered data set on

(ALL) or off (OFF and NONE). By default, all data sets will be printed

if requested during execution (i.e., set to ALL). The keyword OFF

resets the output selection to the default value. The NONE keyword

causes no information to be printed when NTERAK requests that data set.

Note that the SELECT keyword will not produce any output. It only

controls the output which is produced by other keywords.

The fourth example of SELECT is the basic form used to print only

certain specified slices of sliced, grid sized data sets like POT (space

potentials) or DION (ion densities). When a set of slices for a number

of data sets are desired, the last two examples can be combined to

reduce the effort necessary to print them by defining a list, then

selecting the list-number instead of retyping the list.

When printing out bit packed lists, SELECT can be used to control

whether the data is printed in an unpacked or packed form.

SELECT NICE

will print the information in decoded format and

SELECT OCTL

or

SELECT PACK

will choose a packed format. The default is to print a packed format.

These keyword commands set a switch which affects all bit packed data

types, but currently, only the KSURFOP (surface information list)

recognizes the switch.

Examples:

SELECT TSRV OFF

SELECT SRFV ALL

OUTPUT CHARGE LOW

The above set of keywords would cause the surface voltage list

(SRFV) to be printed at the end of each CHARGE iteration when the CHARGE

module is executed. The trial surface voltage lists calculated during a

CHARGE iteration would not be printed even though the third command

(OUTPUT .... ) would generally produce them.



6.4-63

More examples:

OUTPUT CURREN HIGH

SELECT DION 4 3 2 5 -1 0 ENDLIST

SELECT RHOI -1 0 2 3 4 5 ENDLIST

In this case, when CURREN is activated the same set of slices for

both the composite ion densities (DION) and the ion densities found by

particle pushing (RHOI) would be printed (among other things) by the

OUTPUT command. The set of RHOI slices printed is

Z = -1, 0, 2, 3, 4, 5 . The slices are printed in the same order they

are defined.

SELECT LIST 3 5 4 3 -1 0 2 ENDLIST

SELECT RHOI LIST 3

OUTPUT CURREN HIGH

SELECT DION LIST 3

The same set of slices as in the previous example (but in a

different order) will be printed, and DION now uses the same list.

IGIOUT

The IqIOUT keyword is used to print the neutral ion densities at

the start of a new or continued NTERAK run.

IGIOUT YES

The above example will cause the ion densities to be printed.

IGIOUT NO

The second example will prevent the production of the ion densities. By

default, the ion densities are not printed at the start of each run.

This output can be restricted with SELECT options.

ISPOUT

The ISPOUT keyword controls output of the grid sized arrays, POT,

QUSD, and SCRN (Section 4.44.1), from the space charge calculation of

PWASON, the space potential Poisson solver. The general form of the

command is



6.4-64

ISPOUT option

where the options are

Full - print the arrays on each of the MAXITS

space charge iterations.

Final - print the array after the last space charge

iteration.

No - print nothing.

For example,

ISPOUT FINAL

would print the final potentials at the end of use of PWASON. This is

the default value. The output can be further restricted with SELECT

options.

IOCONG

IOCONG controls output from the conjugate gradient portion of the

Poisson potential solver, PWASON (Section 4.21.1 or 4.31). The general

form of the command is

IOCONG option

where the valid options are FULL, PART, and NO. The FULL option prints

detailed information from the conjugate gradient routine and is intended

to be used mainly as a diagnostic output level. PART generates a

smaller amount of information and NO prints none at all. For example,

IOCONG PART

is the command using the PART option. The NO option is the default

value since this information should be of no interest to most users.



6.4-65

6.44.20 DIAGNOSTIC OUTPUT

During the aevelopment of POLAR, the various print statements used

for debugging were implemented in such a way that they could be turned

on and off via keywords. The capability of diagnostic output from most

areas of NTERAK still remains and has proven useful on occasions when

new bugs are discovered. Most of these debugging print statements are

controlled by the "diag" flags summarized in Section 6.45.10 and which

are discussed here. Other options have been added to improve the

usefulness of the diagnostic flags (for example, SELECT, Section

4.51.10). Since part of the job of debugging involves checking the

correctness of intermediate physical quantities needed to study

spacecraft charging, many of the keywords described in this section and

the previous section on calculation monitoring overlap.

The division between the two sections is intended to separate the

more general use keywords from the more obscure output options. This

section offers additional insight into the calculations performed by

POLAR and NTERAK in particular.

OUTPUT

The OUTPUT keyword is used to interface a single command to a set

of relevant diagnostic flags (described below). Section 6.44.10

discusses the use of OUTPUT in detail. Here the actual output produced

by the command shall be defined.

As before, the general form of the command is

OUTPUT subsection quantity

Each subsection contains an associated set of diagnostic flags. Table

6.44/1 shows the settings of the flags defined by the OUTPUT keyword.

The diagnostic flags and keywords in the table are all discussed later

in this section. These flags can be set individually to customize the

output (see below).



6.4-66

Table 6.44/1. Flag Settings for the Subsections by Quantity Level

Flag Settings at Quantity

Subsection Flags OFF LOW* HIGH

TIMER IDIAGS (4) 0 2 3

NEUDEN JDIAGS (4) 0 1 2

KDIAGS(3) 0 0 2

PWASON ISPOUT NO NO FULL

IDIAGS(1) 0 1 1

KDIAGS(7) 0 1 2

CURREN IDIAGS (6) 0 1 2

IDIAGS(9) 0 1 2

JDIAGS(3) 0 1 2

JDIAGS(6) 0 0 2

JDIAGS(9) 0 0 2

CHARGE IDIAGS(8) 0 1 4

JDIAGS (3) 0 1 2

JDIAGS (8) 0 1 2

*The LOW setting is the default setting for all subsections.



6.4-67

SELECT

The SELECT keyword is used to choose a subset of the slices of the

grid for output or to turn off the output of a data set altogether.

Section 6.44.10 contains a complete discussion of the options and uses

of the keyword.

IGIOUT

The IGIOUT keyword is used to print the ion densities at the start

of a new or continued NTERAK run.

IGIOUT YES

The above example will cause the ion densities to be printed.

IGIOUT NO

The second example will prevent the production of the ion densities. By

default, the ion densities are not printed at the start of each run.

ISPOUT

The ISPOUT keyword controls output from the space charge portion

of the potential calculation (PWASON, see Section 4.44). The general

form of the command is

ISPOUT option

where the valid options are FULL, PART, NO, FINAL and LAST. The FULL

options causes the screening potentials (SCRN), the space charge used

(QUSD), the space potentials (POT) and the surface voltages (SRFV, if

they have changed during PWASON) at the conclusion of each space charge

iteration. The PART option produces the same output as the FULL except

for the omission of the screening potentials. The FINAL and LAST

options are equivalent and print the same data sets as the FULL except

only once at the conclusion of the space charge loop. The NO option

generates no output. The default value for ISPOUT is NO.



6.4-68

The use of SELECT (see Section 6.44.10) is recommended when using

this keyword as a great deal of infornation is produced.

IOCONG

The IOCONG keyword controls output from the conjugate gradient

portion of the potential solver. There are two loops in PWASON, one

upon the space charge and the other over the conjugate gradient. The

conjugate gradient iteration is the inner loop. Therefore it is

possible to generate huge masses of output using this keyword. In

general, it should be of no interest to the user.

Nonetheless, here is a description of it and its options. The

general form is

IOCONG options

where the valid options are FULL, PART, and NO. The FULL option prints

all of the variables associated with the potential solution (see Section

4.21 for the variables used). The PART option prints potentials from

various points during the calculation. The NO option is the default

option and generates no output.

IOGRID

The staggered grid used by POLAR requires the definition of a

coordinate reference point in each z-slice (see Section 5.2). Each of

the different grids and data types (nodal or element centered values)

need a different set of reference points. The IOGRID keyword prints the

offsets used for each of the data types. To print the reference point

offsets, enter

IOGRID YES

To not print them,

IOGRID NO

The latter is the default.



6.4-69

SAVETEMP

This keyword is used to save the temporary files 9 and 10 after an

NTERAK run. SAVETEMP ON enables this feature; and SAVFTEMP OFF, the

default, causes the temporary files to be deleted when the run finishes.

Note: RHOI's and RHOE's are stored in fort.9 and particle lists are

stored in fort.10. So, SAVETEMP must be ON if these data are

to be examined in SHONTL.

DIAGNOSTIC FLAGS

There are currently 25 NTERAK diagnostic flags. In this section

only a terse definition of each flag is given. The specific output

generated by each level of the flags can be found in Section 6.45.10.

The general fcrm of the command is

keyword level

where keyword is the diagnostic flag (see below) and level is the

integer value used to control the amount of information produced. In

general, larger levels produce larger amounts of output. The valid

diagnostic keywords appear below.

IDIAGS(1)

Used by PWASON, this keyword provides conjugate gradient

convergence information at low levels. As the level is increased, more

detailed code mechanics information is printed.

IDIAGS(2)

This flag can be used to monitor the mechanics of the buffered

data system (CBUF, Section 5.30). The lower diagnostic levels are

concerned with which data types are currently in memory. The higher

levels follow the input/output operations of the data.



6.4-70

IDIAGS(3)

This flag is used to check the actions of VERTIO, the subroutine

which handles node data associated with specific elements. For example

PWASON loops over VERTIO, using it to find and replace the potentials at

the nodes of each element in the grid.

IDIAGS(4)

At low levels, this flag checks the time spent in each of the

subsections of NTERAK. The level checks time spent in certain loops of

the modules and at the highest level, input/output speeds are checked.

IDIAGS(5)

This keyword turns on a self-diagnostic package within NTERAK.

Currently, the addressing system used to reference grid stored data and

the core locations of certain addresses are checked.

IDIAGS(6)

Used by the CURREN module, this keyword is used to monitor the

behavior of particles as they are pushed from the sheath to the object.

At low levels, groups of particles are watched. The higher levels watch

the individual particle movements and particle energy conservation.

IDI,%GS(7)

This flag is used to receive information from the QSELT routine

which calculates the charge per node and the screening factor for

elements (a part of the PWASON module).

IDIAGS(8)

This flag controls the output from the CHARGE module. At lower

diagnostic levels, only crucial sets of data are printed. While as the

level increases, more and more of the arrays and lists used by the

charging algorithm are produced. At the highest level the currents to

individual surfaces are listed in detail.



6.4-71

IDIAGS(9)

This flag is used to monitor the calculation of ion currents using

the output of the particle pusher. The lowest level prints the SRFI

computed by IONCUR. As the level is raised, weighting calculation

details then particle lists from CURREN are printed.

JDIAGS(2)

This flag is used to receive information from the presheath

calculation.

JDIAGS(3)

Use this flag to receive information concerning the ambient ion

currents calculated by AMBCUR.

JDIAGS (4)

This flag produces information about the neutral ion densities

calculated by IONDEN. It is used to receive progress notes for speed

checking and for calculated densities for filled and partially filled

elements.

JDIAGS(5)

At low levels, the space potentials calculated for double points

are printed using this flag. At higher levels, the input of the double

point location list and the double point potentials to major modules of

NTERAK can be monitored.

JDIAGS(6)

This flag causes the particle pushed ion densities to be printed

at the conclusion of the CURREN module.



6.4-72

JDIAGS(7)

Sometimes during the code development of CURREN particles would be

lost in the pushing mechanics. This flag controls the actions to be

taken when particle pushing errors occur. At low levels, information is

printed which indicates how a particle has been lost. Higher diagnostic

levels will terminate NTERAK if a certain threshold percentage of

particles are lost.

JDIAGS(8)

This flag provides an alternative to IDIAGS(8) for controlling

output from the CHARGE module. This flag focuses mainly on the surface

voltages and currents calculated by the subsection, not on the general

algorithm as the other keyword does.

JDIAGS(9)

This flag is used to print the ion densities (DION) and real grid

sized element table (LTYP) computed during particle pushing. These are

the final results found after combining the initial densities with the

newly calculated densities.

KDIAGS(1)

This keyword is used to locate and monitor the subroutine calls to

the various mass storage input/output routines.

KDIAGS(3)

This flag is used to print the tables used to make the electric

field correction on the neutral ion densities.



6.4-73

KDIAGS(4)

This flag is used to monitor the portion of the particle sheath

definition call DBLCHK. This routine backtracks along particle

trajectories to verify that the initial particle has not come from a

high potential region or through part of the object.

KDIAGS(5)

Not widely implemented throughout the code, this keyword controls

the diagnostics and actions which occur when an error condition is

detected. At low levels, the offending variables and arguments are

printed in addition to an error message. At higher levels, arrays,

lists, etc.. are printed and at the highest level (only on the UNIVAC

presently) an interactive dump mode is entered.

KDIAGS(6)

This keyword is used to print diagnostic information pertinent to

the shadowing calculation done for photosheath calculations. At low

levels, rotation angles are printed. As the diagnostic level increases,

surface shadow results and intermediate results are produced. At the

highest levels, hidden line plots are generated from the sun direction

(SUNDIR, 6.42.10) and stored on file 2 (fort.2 on UNIX versions of

POLAR). These pictures can be plotted on a graphics terminal by the

TEKPLOT or JUPITER graphics drivers.

KDIACS(7)

KDIAGS(7) controls the output relating to the normal electric

fields on the object surfaces. When set to low levels, the normal

electric fields are printed at the beginning and end of each PWASON

cycle. As the diagnostic level increases, the surface voltage and IFLT

list (5.33) is also printed, then at higher levels the three lists are

printed more frequently during PWASON, after each space charge

iteration. At the highest level of diagnostic output, this keyword

prints the parallel electric fields for each space charge step.



6.4-74

KDIAGS(9)

This keyword is used to produce surface boundary condition data.

PWASON and CHARGE communicate with each other via lists containing the

boundary conditions for each surface. At low levels this flag prints

information from the PWASON side of the interface and as the level of

output is increased more information on the CHARGE perspective is

printed.

LDIAGS(1)

This is used to produce intermediate data during shado sheath and

shado GI calculations. At high settings, two or more, this keyword will

produce lengthy and unfriendly output (which is useful for debugging

purposes).

LDIAGS(2)

This keyword prints out particle trajectory information from

PUSHER.

IBIAGS(1)

This flag controls diagnostics from CURREN concerning the magnetic

field.

IBIAGS(2)

This flag controls magnetic field diagnostics from the CHARGE

module.



6.4-75

6.45. SUMMARY OF NTERAK KEYWORDS

NTERAK is the program that calculates the plasma interaction and

vehicle charging. Its keyword control language has both 'verbs' and

'noun'-options. A run-Imnguage sentence is constructed in the reverse-

Polish sense, i.e., nouns first, verbs last. The NTERAK verbs are:

PWASON - invokes the Poisson solution

CURREN - invokes the sheath particle tracking

CHARGE - invokes the circuit model update of surface potentials

ENDRUN - run finished

The following is a list of the NTERAK keyword options. The first

column is the keyword, the second column lists the possible responses.

Literal options are listed with the default underlined. Numerical

responses are indicated by the default value in parentheses followed by

the variable type I, for integer; F, for floating point real number, E,

for exponent type, i.e., 1.2E12, and L, for literal (no quotes).



6.4-76

OPTION VALUE, FORMAT EXPLANATION

BATCH Keyword only to select
1IrMACT operation mode, turn prompts on or

off, etc. non-critical.

DEFAULTS Set or reset default option.

ISTART NEW New run. Allows for the calculation
of new GI's or the use of old ones if
the computation grids are identical.
Space potentials will be zeroed, and
a precharge step (automatic call to
CHARGE) performed according to CHARGE
options if requested.

CONT Continue a run, use old densities.

IGICAL YES Old style calculation of new GI
(expensive). Default for ISTART=NEW.

SHAD Shado calculation of new GI.
NO No GI calculation (use 1.'s

everywhere).
OLDI Use old DION's (from previous NTERAK

run). Default for ISTART = CONT.
OLGI Use old CI's (from previous NTERAK

run).
COPY Use ion densities from a different

set of data file. This option should
be used with care. (See section
6.42.30 for details.)

SAVSET YES Equivalent of IGICAL = NO overrides
IGICAL = YES with exception noted by
GISAVE.

NO Leave IGICAL = YES alone, SAVSET can
be switched at location indicated by
GISAVE.

GISAVE X,L # , I Two fields following the keyword. X 4
Y,L * , I means that all nodes in the plane at
Z,L # , I X = 4, the value of SAVSET will be

temporarily toggled. Up to nine
planes may be entered.

The combination of IGICAL YES, SAVSET NO, and GISAVE Z -3, GISAVE
Z -4, would cause the neutral ion density calculation (GI's) to be
calculated everywhere except at Z = -3, and Z = -4. IGICAL YES, SAVSET
YES, GISAVE X 4, GISAVE Y 5, GISAVE Z 12, would cause GI values to be
calculated at the point 4 5 12 only.



6.4-77

OPTION VALUE, FORMAT EXPLANATION

SAVETEMP ON Save files g and 10 after NTERAK run
OFF Delete after NTERAK run.

WHAT Display NTERAK option settings.

HELP Activates the NTERAK interactive
help.

EFLDCOR YES Use electric field corrections to the
FW ion density calculations.

IGIOUT NO Output of appropriate densities.YES

INPOT PRE Starting surface potentials from a
precharge step.

FLOA Floating surface potentials for first
step.

CONS Constant surface potentials. Default
for ISTART=NEW.

POTVAL (Vci), Initial insulator potential. Default
is

E,F potential of conductor 1 (or Vcd)-

CONDV N pot Initial conductor voltages where N is
the conductor number (N=1 is ground
conductor) and pot is the initial
potential in volts.

CONTCONDV N pot Used in continuing run to reset
conductor N to (pot> volts (CONDV is
valid to first run only).

INSULPOT DIFF Defines POTVAL to be the initial
CONS DIFFerential voltage from insulator

surfaces to underlying conductor or a
CONStant insulator surface voltage.

FLOAT n Floats conductor n. If n (a
conductor number) is omitted, all
conductors are floated (the default
condition).

FIXP n V Fixes potential of conductor n to V
volts.

BIAS n V Bias potential of conductor n with
respect to conductor 1 by V volts.

RIJ i j r Sets resistance between conductor i
and conductor j to r ohms. For
r ( 1, infinity (also default) will
be used.



6.4-78
OPTION VALUE, FORMAT EXPLANATION

CIJ i j c Sets capacitance between conductor i

and conductor j to c farads.

DXMESH F,E Grid spacing length in meters.

NXADNT (O),I Number of nodes added to the object
grid in the +X direction to set up
the computational space.

NXADNB (0), I Add nodes in -X direction.

NYADNT (0), I Add nodes in +Y direction.

NYADNB (0), I Add nodes in -Y direction.

NZADON (0), I Add nodes in -Z direction.

NZTAIL (0), I Add nodes in +Z direction (wake).

IOGRID NO L Output grid information.

REMARK
COMMENT Comment out. Ignore rest of line.

NPHI (36),I Number of zenith angle divisions for
GI calculation.

NTHETA (180),I Number of azimuthal angle division
for GI calculation.

NADD (2),1 Add extra vertices to object shadow
in velocity space for GI
calculations.

NPHISH (16),1 Angular resolution for SHADO module.

NHEXSH (6000),I Grid points used by SHADO module.

STHWAKE ON L Turn ON or OFF the sheath wake
shadowing algorithm.

OFF

CHRGENVI (DMSP),L Select predefined charge environment
(name>

VMACH VX VY VZF Mach vector units of TkT/m. Default
is set by VEHICL or ORIENT.



6.4-79
OPTION VALUE, FORMAT EXPLANATION

3DENS (1.0E1O),E,F Ambient density in a/rm

TEMP (0.2),E,F Ambient temperature in eV.

TEMPRAT (1.0),E,F T(electron)/TEMP, used only during
neutral ion density calculation.

D3
DEN2 (4.2E6),E,F For energetic Maxwellian in m.

TEMP2 (4.3E3),E,F For energetic Maxwellian in eV.

POWCO (1.4E12),E,F Pow~r law coefficient
#/m .sec.str.eV.

PALPHA (1.2),E,F Power law exponent.

PCUTL (50.),E,F Power law lower cutoff, in eV.

PCUTH (1.6E6),E,F Power law upper cutoff, in eV.

GAUCO (8.8ES),E,F Gausin d*strbution coefficient
#/r .n c sip.;v.

ENAUT (8.2E3),E,F Gaussian peak in eV.

DELTA (1.SE3),EF e-folding width of Gaussian.

ESECNG (2.0),E,F Average electron secondary energy
(eV).

RATIH (1.0E20),E,F Ion to hydrogen ratio.

AMUION (16.0),E,F Ion mass, in AMU

BMAG (.4),E,F Magnitude of B field, gauss.

BDIR (-1 0 0) Vector direction of B field,
normalized by code.

BFIELD OFF L Turn magnetic field effects on and
off.

ON

SUNDIR (0 1 0) Vector direction of light source.

SUNINT (O.O)E,F Light intensity, use 1.0 for normal
solar illumination.

CONVEX NO Used to turn off surface-surface
'7ES shadowing calculation when

unnecessary.



6.4-80

OPTION VALUE, FORMAT EXPLANATION

SHEIONZ ON Turns on (off) sheath ionization
effects.

OFF

NEUTDEN (1.0E12)E,F Defises the neutralized ion density
(j/m ).

IONZCROS (1.OE-20)E, Defines the interaction cposs-section
for ionization effects (m ).

BEAM ALL ON Turns on/off all defined beams.
OFF

n ON Turns on/off beam n.
OFF

beam-char char-value. Sets beam characteristic
of beam n (see 6.42.60).

ALL char-value-list. Sets beam
characteristics (see 6.42.60).

FOR PWASON

MAXITS (8),I Space charge iteration limit.
MAXITC (20),I Potential iteration limit.
MINITC (2),I Potential iteration lower limit.



6.4-81
OPTION VALUE, FORMAT EXPLANATION

RDRMIN E, F Potential convergence test. The
default value is number of nodes •
.0001 volts.

POTCON (6) = log 10 (RDOTR(1)/RDOTR(v)),
potential convergence test.

IOCONG PART L Output control of potential
calculation.

NO
FULL

ISPOUT PART L Output control of space charge
calculation.

FINAL To get final potentials from PWASON.
NO
TULL

PDIE (9999)E,F Maximum allowable positive voltage in
screening calculation (volts).

SQALPH (3),F Space charge limiting factor.

RMSOFF ON Use RMS convergence test to end space
1WF charge iteration.

RMSCONV (TEMP/2)E,F RMS convergence limit for space
charge iteration (volts).

ENORMCHK NO Check surface boundary conditions
after

YES PWASON cycle, redo if any boundary
conditions have changed.

MOTIONDEN ON L Turn ON or OFF the use of the
analytic

OFF space charge density.

MIXDEN (.5),R Adjust the diagonalization of the
finite element charge density. (For
pushed particle densities.)

MIXDENMO (O.),R Adjust the diagonalization of the
finite element charge density. (For
analytic space charge densities.)



6.4-82

OPTION VALUE, FORMAT EXPLANATION

FOR CURREN

CURPOT (-.45*TEMP), The potential at which the presheath
E,F weights are calculated.

STHPOT PSIM E, F Particle sheath boundary potgntial.
PSIM = P-n(SqALPH*(XD/DXMESH) )

WAKSHPOT -TempVmach**2 Sheath wake boundary potential
default = - temp * vmach**2 (volts)

AVEPRTCL ON Average the sheath particles found in
OFF an element to create one macro

paticle.

THRMSPRD ON Generate a thermal velocity
OFF distribution of particles for each

sheath particle.

WGTMIN (1.e-6)E,F Ignores particles having weight
less than WGTMIN.

NTABLE (10),I The number of entries in the table
used by STHCAL to calculate presheath
weights.

IPCNT (3),I The maximum number of left and right
particle pushing sequences allowed.

IPQUIT (2),I Limit of pushing sequences without a
change in the number of moving
particles.

MAGSTH ON Magnetic flux tube restruction of
OFF electron presheath flux.

RDMAX2 (.25) Electron drift approximation cutoff.

XYLIMIT (40),I Limit to number of elements a
particle may enter without leaving Z
slice.

STEPLIM (20),I Timestep doubled after STEPLIM step
pushing steps.

MAXSTPIN (5),I Maximum number of timestep doublings
due to exceeding STEPLIM.



6.4-83

OPTION VALUE, FORMAT EXPLANATION

FOR CHARGE

SPCLIM Use space charge limited currents
(pushed particles) for attracted
species. (Default method)

ORBLIM Use analytic, orbit limited currents
for the attracted species.

ORBSPC Use analytic, orbit limited currents
for the attracted species, normalized
by the space charge limited sheath
current.

MAXITT (2) I Number of timesteps.

DELTAT (1.0)E,F Timestep, -iconds, default is 1. sec.

DVLIM (1000.)E, F Voltage change per step, in volts.

VLTFIX (VF),E,F Estimated potential for non-charging
surfaces (Used as a boundary on
calculation.)
VF = -(TEMP/2) Pn(AMUION*m p/m e).

VFIXHI (-10000),E,F Estimate of upper (charging cases)
crossover potential. Used as a
boundary to try and limit voltage
swings. Volts.

DVTEST (5),E,F Guess used in first CHARGE cycle for
voltage change in previous timestep.
Volts.

VWIGGL (.001),E,F Minimum change forced when a surface
is near its equilibrium.

XDVFAC (2),E,F Multiplies DVLIM to be used in first
trial of a CHARGE cycle to guess the
potential of the crossover point.



6.4-84

OPTION VALUE, FORMAT EXPLANATION

DVMAX1 (5.*temp)E,F Value for absolute convergence check
(CHARGE) (dV).

DVMAX2 (.05)E,F Value for relative convergence check
(CHARGE) (dV/oldV).

FXFORM NO Allow code to choose matrix
formulation.

YES Force code to use undiagonalized
form.

USELIM NO See text. An infrequently used
keyword.

YES



6.4-85

OPTION VALUE, FORMAT EXPLANATION

FOR DIAGNOSTICS

IDIAGS(#) #,I Diagnostic and output controls, see
JDIAGS(#) #,I Section 6.45.10.

KDIAGS(#) #,I
IBIAGS(#) #,I

OUTPUT sec quant Sets a set of DIAG flags appropriate
to subsection (sec) and quantity
(quant). Valid subsections are TIMER
(run time information), PWASON,
CHARGE, CURREN, and NEUDEN (the
neutral ion density calculation).
Valid quantities are HIGH, LOW, and
OFF. Defaults are set to LOW for all
subsections.

SELECT options Used to select specific Z-slices from
large tables for output. Also can be
used to turn output of a data set off
(or on). The various options are
described below.

SELECT name list ENDLIST Name is a buffered name (5.30) which
is sliced, list is a set of integers
separated by blanks which are object
grid Z-slice values (e.g., to get
IZ=2 and 3 of POT say SELECT POT 2 3
ENDLIST)

SELECT name ALL Turns on or off (NONE) output of name
]MF]E (a buffered set of data). Default is
OFF on (ALL). OFF resets to default.

SELECT LIST n list ENDLIST Defines LIST n (1 < n < 5) as list
(see above).

SELECT name LIST n Prints LIST n Z-slices when name data
is printed.

SELECT NICE Prints bit packed lists in a "nice"
format, unpacked.

SELECT OCTL These both cause packed lists to be
SELECT PACK printed as they are stored, packed.



6.4-86

6.45.10 NTERAK DIAGNOSTICS AND OUTPUT CONTROL

The diagnostic keywords recognized by NTERAK are IDIAGS(N) and

JDIAGS(N). For example, a runstream might contain the card

IDIAGS(9) 1

All diagnostics have a default level of zero. Diagnostic flag levels

are usually recognized in a > sense; i.e., larger flag levels include

all the lower levels.

A brief explanation of each keyword can be found in Section

6.44.20. The diagnostic flags are as follows:

IDIAGS(1) used by PWASON

= 1 CONGRD convergence information

= 2 CONGRD output

= 3 COPROD output

= 4 Additional COPROD info, all of the PCUBE routines, and

DCVCEL output

= 6 Additional DCVCEL output

IDIAGS(2) CBUF usage

= 2 Information from DEBUF, GETLAD, BUFSET (MORCOR

calls, IAVECS settings)

= 3 PAGER (TIMER calls on entry and exit)

= 4 All info from PAGER and GRIDIO

IDIAGS(3) VERTIO check

= 4 All VERTIO action

IDIAGS(4) TIMING

= 1 in OPTIN

= 2 in CHARGE, IONDEN, CONGRD

= 3 in PAGER



6.4-87

IDIAGS(5) Self diagnostics

=2 GRIDIO (calls CHKPUF to check the addressing system).

IONDEN plus others possibly in future (calls CHKLOC to

issue warnings if addresses within CBUF are too big to be

passed within a word.)

=3 CHKLOC prints core locates of the all locations passed to

it.

=4 CHKLOC generates non-fatal walkbacks for warning

situations.

=5 CHKLOC generates non-fatal walkbacks for all calls to it.

IDIAGS(6) Trajectory tracing (CURREN)

= 1 Trajectory progress checking

= 2 PRNTSL (particle reading and writing) action, particle

movement at the slice level

= 3 Complete output from PRNTSL, print out the various grids

used by CURREN on exit

= 4 Print individual particle movements

= 5 Energy checking diagnostics

IDIAGS (7) QSELT

= 4 QSELT information

IDIAGS (8) CHARGE

= 0 Echo input

= 1 Control flow info

= 2 Voltage results from ICCG

= 3 Input to ICCG, previous cycle data, material info

= 4 Intermediate subroutine output

= 5 Surface by surface calculations

= 6 FLUXEL and FLUXBK output, CHKIMV surface checking



6.4-88

IDIAGS(9) IONCUR

= 1 Print current totals

= 2 Intermediate lists, SRFI, SRFH lists

= 3 Weight calculation results

= 4 Weight calculations

= 5 Particle lists from CURRENT

JDIAGS (1) SREL (VEHICL)

= 0,1 No output

= 2 Print out LCEL and SREL lists. Also information from

RECELL, SREL index to LCEL.

= 3 Print out preliminary LCEL list

= 4 Detailed output from routines constructing LCEL and SREL

lists.

JDIAGS(2) SHEATH calculation

= 1 Print tables

= 3 Print presheath information for particles

JDIAGS(3) PRECHO

= 2 Print ambient ion currents calculated by AMBCUR

= 3 ASRF from ALSURF

JDIAGS (4) IONDEN

= 1 Print progress notes

= 3 SHFTIT results (for filled or partially filled elements)

JDIACS(5) Double point data

= 2 Potentials from POTSET

= 3 On input to major modules and

double point locations from SPDPNT (vehicl)

= 4 More double point information from SPDPNT (vehicl)

JDIAGS(6) RHOI values

= 2 Print RHOIs after completion of CURREN (in CUEXIT)



6.4-89

JDIAGS(7) Particle pushing error control

= 1 Print info for particle in error

=3

= 4 Kill run if 5 percent of particles are lost to errors

= 5 Die instantly when an error occurs

JDIACS(8) Modified CHARGE output

= 1 Final surface voltage for the cycle, including INISET

= 2 Initial FTOT and FSM used (total current and total

secondary current)

= 3 Components of current for each surface

JDIAGS(9) MTLGEN,GENMTL (in VEHICL)

= 2 ..Print calculated AMAT in MTLGEN

= 3 Print GENMTL's LIST, CMAT

= 4 Print all appropriate information

JDIAGS (9) IONGEN (i n NTERAK)

= 2 IONGEN prints DIONs

= 3 IONGEN prints LTYPs

KDIAGS(1) MSMODS

= 1 Routines echo calls to themselves

KDIAGS (2) CHKSTH, CHKTRJ

= 3 Echo commands

KDIAGS(3) E field correction to geometric ion densities

= 2 Print tables which will be used

= 3 Print E field correction self check

KDIAGS(4) DBLCHK (particle validation)

= 2 Potentials for rejected particles

= 4 Position velocity for all particles



6.4-90

KDIAGS(5) Action on error

= 0 Print simple error message

= 1 Print arguments, variables, etc.

= 2 Print arrays, lists, slices

= 3 Go to interactive dump (FTNPMD on UNIVAC)

KDIAGS(6) Photosheath

= 0 None

= 1 Rotation angle

= 2 Shadowing surface inversion list creation

= 3 Intermediate information

= 4 Produce hidden line plot

KDIAGS(7) E field boundary on surface

= 0 None

= I Start or end of PWASON

= 2 SURFV's and IFLT at start (and end)

= 3 Start and end of each space charge iteration

= 4 Also SURFV's at each step

= 5 E parallel for each step

KDIAGS(8) Edge list calculation

= 0 None

= 1 Welcome and timing

= 2 Results

= 3 Intermediate information.

KDIAGS(9) FIX/FLT surface determination

= 0 None

= 1 PWASON fix/float interface

= 2 CHARGE fix/float calculation overview

= 3 CHARGE fix/float calculation defaults



6.4-91

LDIAGS(1) Shado sheath information

= I Brief hex grid information

= 2 More information of hex grid construction.

Create fort.12(PLOTXY) and fort.50(NPLDIS)

= 3 Detailed hex grid construction (individual nodes)

= 4 Detailed neutral ion densities calculation at each node

LDIAGS(2) Particle trajectory stuff

= 0,1 No output

= 2,3 Particle trajectory information from PUSHER

IBIAGS(1) Magnetic field diagnostics from CURREN

= 0 None

=1 Some

= 2 More

> 2 Lots

IBIAGS(2) Magnetic field information from CHARGE

= 0 None

=1 Some

= 2 More

> 2 Lots



~6.5-1

6.50 OPERATING SHONTL

SHONTL is POLAR's general plotting and information extraction

program. Its primary sources for these functions are the two mass

storage files, 11 and 19. For certain functions, SHONTL will actually

duplicate NTERAK calculations. It should be noted that SHONTL remembers

the settings from previous uses on the current data files. This means

that some care should be taken to check the current flag setting.

SHONTL's primary plotting mode is to construct two-dimensional

contour plots of data slices perpendicular to any of the three

coordinate axes. Currently, the following variables may be viewed in
this fashion: neutral ion densities ('CI's and 'GH's), composite ion

densities ('DION's and 'DELC's), stabilized charg densities ('qUSD'),

and potentials ('POT'). In addition, SHONTL can execute the CURREN

module of NTERAK and superimpose the results on any of the contour

plots. In particular, there are two types of graphical output from

SHONTL-CURREN. The sheath location can be indicated by a contour of X's

using either the sheath potential that was used by NTERAK-CURREN, or

optionally changed with the STHPOT keyword (Section 6.52); also, ion

trajectories may be displayed with the following options: A total

perspective of complete trajectories projected onto the plot's slice

(keyword PERSPC), the portion of all trajectories that pass through the

plot slice, trajectories emanating from a ring of sheath points lying in

selected X-Y plane (X-Y only) (keyword RING) which can also use the

PERSPC option, and in addition to all of the above the WEED option will

throw out about 75 percent of the trajectories to reduce plot cluttering

and computing costs. Finally, a single point trajectory option is also

available (keyword SPOTS).

Other plotting features are limited to a spectrum plot of the

energetic electron environment. Future modifications will allow SHONTL

to reproduce the material plots and the hidden line object perspective

views that are currently available only from VEHICL.



6.5-2

In addition to plotting, SHONTL can output to a printer (or

whatever) the current values of virtually any variable stored on files

11 and 19, through the use of the PRINT NAME keyword where NAME would be

the exact FORTRAN name of any variable known to MRBUF (a subroutine). A

list of these can be found in Section 5.33. The format for this output

is generally identical to that used by VEHICL, ORIENT, and NTERAK when

these variables are output from these modules. A note of warning -

variable aliasing is not always identical between modules. For example,

potentials would be output by NTERAK by the 'card'

ISPOUT FINAL

which would produce potential array output (modified by the SELECT

keyword) at the conclusion of a spacecharge-potential calculation (the

PWASON submodule oi NTERAK). Whereas in SHONTL one would enter the

cards

SELECT - options -

PRINT POT

to get the same output.

Like the other modules, SHONTL keywords fall roughly into two

categories that can be described as verbs and adverbs. For example, a

user might enter the following adverb cards to set up plot parameters:

PLOTS ON

LEVELS 20

LEVELS NOMARK

GRDPTS ON

SHEATH ON

followed by the verb card

POT X

which would trigger the actual production of a potential contour plot of

the slice through the center of the object grid perpendicular to the x

axis with a sheath indicated, no contour markings, approximately 20

contour levels, and all grid points drawn.



6.5-3

Finally, plots (but not output) are generated in a machine

independent fashion on file 2., and a post-processor (usually PLOTREAD)

is used to interface to the local graphics package. Depending upon

installation and requirements, the user might want file 2 to be a

permanent file.

6.51 STEP BY STEP INSTRUCTIONS FOR SHONTL

Step 1: Two data files are needed by SHONTL. They are file 11, and
these files must be named 11 and 19. The best way to do this
on the UNIVAC is to use the OUSE command. Note: If RHOI's and
RHOE's are to be examined, file 9 is also needed (SAVETEMP must
be ON during NTERAK run).

Step 2: Execute SHONTL in an interactive mode.

Step 3: Now you need to enter the information needed to retrieve the
slice you wish to plot. The instructions for the input routine
are in the form of keywords (6.52). Additionally, there are

several commands to help use the keywords to get the desired
plots (6.52).

The first step is to choose the plotting features you wish to
use. These include marking the grid boundaries, showing the
silhouette of the object, marking the grid points, choosing the

axis for the problem and choosing a title for the plot. (There
is a complete list of the keywords in the next section.)

Step 4: When all of the desired features have been chosen, a slice
needs to be defined. At this point a plot is generated. There

are several useful defaults which produce sets of plots (see
6.53). Now one can return to step 4 to produce additional
graphs or continue onto step 5.

Step 5: To leave SHONTL, type EXIT if you want hard copies of the plots

to be generated. Type ESC (for escape) if no hard copies are
desired. The EXIT command will call PLOTRD automatically.

Step 6: Show all of your friends your nifty plots.



6.5-4

6.52 SHONTL KEYWORDS

The following is the current list of SHONTL keywords. All of the

input which cannot be recognized is simply printed on the screen and

then ignored.

The form of a keyword definition is

KEYWORD[, equivalent forms](*default setting*/other settings)

definition

The terms "ON" and "OFF* describe the setting of the option. So if

something is set to "OFF", it will not appear on the plot. For example,

PLOTS OFF

will cause those plots generated while the flag is eff, to not be

printed. Since default value of PLOTS is off, to prevent undesired

plots, the definition of PLOTS looks like

PLOTS (*OFF*,ON) causes the .....

Here is the present keyword list:

ALL (ON/OFF) turns all of the on/off switches to ON or OFF. "ALL
ON' would turn on all of the keywords which can be set to
(ON/OFF).

AXDRAW (,ON*/OFF) controls the printing of the plot axis, scale
values, and axis labels.

A2SURF (*ON*/OFF) controls the printing of the object's
silhouette.

BEAMTRAJ (ON/*OFF*) causes particle beam trajectories to be made
instead of the sheath particle trajectories which are usually
printed when TRAJ is ON.



6.5-5

CHEAT. This keyword sends the user to an input subsection which

can be used to change data in the mass storage files. The changes made

here are permanent, so this should be used with care. A new value can

be entered into the list type buffered data variables (for example

SURFV), but none of the spatial, or sliced, data sets. The general form

is

name entry value

where name is the list name (see 5.33 for a complete list), entry is the
entry to be changed, and value is the number to be placed in the entry

locaticn. The entry is either an integer or the keyword ALL.

SRFI ALL 0.01

This command would set all the entries for SRFI to .01. Only one

command will be accepted, then the user is returned to the normal input
mode. This input is intended for use as a developmental tool and is not
user friendly. There are no array boundary checks. If escape is

desired after the CHEAT keyword, enter

ABORT

and the normal input mode will resume. Be careful when using CHEAT.

COLRLINS. Used to draw colored line plots. An input subsection is

entered where contour lines (CONL), A2 surfaces (A2SU), grid boundaries,

points, and axes (PLOT), the sheath edge (SHEA), and particle

trajectories (TRAJ) can be black (or white depending on the background

color, BLAC), green (GREE), red (RED), or blue (BLUE). For example, if
green particle trajectories the input would be

TRAJ GREEN

The keywords will be truncated to four letters. To leave the subsection

and return to the normal input mode, enter EXIT.

COLOR (ON/*OFF*) turns on color filled features. This may depend on the

use of a Jupiter.

COLORDIV (ON/*OFF*). When ON and COLOR is also ON, this keyword draws
white contour lines between the color levels on the plots.

COMMENT causes the input routine to ignore the rest of the line. Note

that only the first six characters on the line are actually read.



6.5-6

CONLIN (*ON*/OFF) controls the printing of the contour lines on the

plot.

DEBYE causes the scale on the plot to be in Debye lengths. The origin

(0,0) is the object grid origin (see 'GRID'). The normal default is to
grid units.

DION,DENSIT,DEN,D. This is a request for a plot of a slice of ion

density data (DION's). The allowable forms of requests for density

slices are

DENSIT X N
DENSIT X MIDDLE
DENSIT X
DENSIT

where either of the abbreviations may be substituted for DENSIT. Also Y
or Z can be used for X, MID can be used for middle, and N is a positive

integer on the axis (X, Y, or Z) that is in the grid space. The axis is

the axis perpendicular to the plane of the slice. If form 2 or 3 are
used, the middle of the object grid will be plotted. If the last form

is used, the middle X and Y slices will be plotted.

DELC is similar to DION but electron density data is plotted instead.

EDGESTOP (NO/*YES*,. Normally particles are pushed until they hit the
object, exceed an iteration limit, or go outside the sheath boundary.

Sometimes, like when pushing beam particles, this is undesirable and

particles should be allowed to pass the sheath edge (NO option). The
outer boundary on pushing then becomes the grid boundary.

ERASE causes any plots which have been created to be erased and not
produced by PLOTRD.

ESC causes the SHONTL module to be exited immediately without any

additional output and without resetting the previous defaults. (The
keyword ESCAPE is equivalent.)

EXIT signals the end of the input. If no plots have been requested at

this point and 'PLOTS' is 'ON', then four plots will automatically be
produced. They will be plots of the potential and density at the middle

of the X and Y axes.

FILLIN (*OFF*/ON) causes the interior of the object to be filled. The
routine looks for zeros surrounded by relatively big numbers. This

changes the appearance of the contour lines in a way which may be
desirable. (Obsolete.)



6.5-7

FIXOPS. When the default SHONTL values may not be set right, this

allows the user to force the default values to be set again.

FRAME (*PLASma*/CRAFt) - (**/X Y Z). This keyword chooses the reference

frame for viewing potentials. The default is the plasma frame used by

NTERAK, but a spacecraft frame may be chosen where the *vx4B electric

field will appear at 'infinity'. In the spacecraft frame the definition

of plasma ground will appear arbitrary (it is not really) but it may be

shifted from the point chosen by NTERAK.

GETSLC (*ON*/OFF) causes the plot generation routine to read a slice
from the data file.

GI and GH as DION, above, except geometric ion densities and hydrogen

densities are plotted instead.

GRDPTS (ON/*OFF*) causes crosses to be printed at each of the nodes.

GRID causes the scale of the plot axes to be in object grid units. The
reference point in this coordinate system is the lower left corner of
the object definition grid which is defined to be (1,1). This is the

default scaling.

HEADNG (*ON*/OFF) causes the heading to be printed at the top of the

plot.

HIDPLOT (*ON*/OFF) causes a hidden line drawing of the object to be
created. See also VIEWDIR in this section.

IDIAGS(N) is the keyword input section which allows setting of any of
the IDIAGS flags. For information concerning the IDIAGS, see Section

6.70.

INPSPT (*0*). The keyword, INPSPT (INPUT SPOT), is used to trace the
trajectory of a number of particles (SPOTS) which the format for keyword

is *INPSPT N", where N is the number of points to be entered. The
maximum number of points is 20. After the INPSPT keyword, the N
particles are defined by giving their initial position (X,YZ), velocity

(VX,VY,VZ) and the particle (ELEC for electric type and ION for ions).
For example, if we wanted to define two particles, normalized to the

electron acoustic speed, with the position (4.,5.,6.) in grid units and
velocity (-.1,-.1,-4.) normalized to the ion acoustic speed (see
documentation, POLAR Manual, Section 5.62.12), and a second particle, on

electrons, with the position (-1.,3.,-2.5) and a velocity of

(-1.,-.3,.01), normalized to the electron acoustic speed, we would
enter:



6.5-8

INPSPT 2
4. 5. 6. -.1 -.2 -4 ION.
-.1 -.3 -2.5 -1. -.3 .01 ELEC

The default particle type is ION.

IOGRID prints the nuts and bolts mesh grid information printed by NTERAK

using the same keyword (see 6.44.20).

JDIAGS(N). See entry for IDIAGS(N).

KDIAGS(N). See entry for IDIAGS(N).

LEVELS (*10*-AUTO) set the number of contour lines to be drawn and their
selection mode. The keyword LEVELS is also an entry word to the

following contour options:
LEVELS AUTO linearly spaced contours, rounded to nice numbers, for

potentials, the kT and 0.1*kT contour will be added and the

kT level marked.

LEVELS NOMARK turns off all contour marking.

LEVELS MARK VALUE MARKER will mark the contour level at VALUE with
the first character of MARKER. Marking with

a number can be accomplished by fLLL where f

is a number and L is any letter. Only #
will be used, but the LLL is necessary for #

to be recognized as a literal. This command
may be repeated to mark up to nine levels.

LEVELS ADD VALUE, add a contour level
LEVELS SUB VALUE, remove a contour level

LEVELS SELECT VALUE, turn off auto mode and use input levels

LINEAR means the contour lines will be of the unmanipulated data in the

slice. This is the default mode.

LOG causes the contours to be of the natural log of the slice data. The

normal default is 'LINEAR'.

LOGIO causes the contours to be of the base 10 log of the slice data.

The normal default is 'LINEAR'.

METERS causes the units of the scale of the plot axis to be in meters.

The origin (0,0) is the object grid origin (see 'GRID'). The units

default to grid units.



6.5-9

MIDDLEMID. These keywords must follow X, Y, or Z to be meaningful. In

this context, they cause the plot to be of the middle of the object

grid. (For a more exact description of the middle of the grid, see

'DENSITY'.)

MKCHEAT. This is used to generate input for the CHEAT command.

MSINDEX N. This keyword is used to look at the index of the random

access mass storage files created using the MSIO package. N is the file

of interest, there is no default.

NONE. This keyword can be substituted for POTENT or DENSIT. It will

cause plots to be made without potentials or ion densities. It can be

used to look at the output from VEHICL. When plots of sheaths and

trajectories are made, it is also helpful. The syntax for NONE is

exactly the same as for POTENT or DENSIT.

NTEWHAT. Print the current values of NTERAK variables. Equivalent to

saying WHAT while running NTERAK.

NUMBER (ON/*OFF*). NUMBER is used when tracing particles. If it is

used in conjunction with IDIAG(6)=5, the particle pusher will number the

particles for diagnostic output. This is very useful for debugging the

CURREN segment. (See also the notes on IDIAGS.)

OBJCNR (ON/*OFF*) causes four small boxes to be drawn in the corners of

the object grid.

OBJGRD (ON/*OFF*) causes the object grid to be plotted.

OUTREL (*ON*/OFF) causes the outer stepped grid of real nodes to be

plotted.

OUTVIR (*ON*/OFF) causes the outer stepped grid of virtual nodes to be

plotted.



6.5-10

PERSPC (ON/*OFF*). When PERSPC is on, all of the sheath points and

trajectory paths will be plotted. If it is off, then only those points

or paths which are in or cross the slice being drawn will be shown.

PLOTS (ON/*OFF*) causes the plots to be produced. If it is off, the

slices will be read and processed for plotting, but will not be plotted.

PLTGRD causes the scale of the axis to be in plotting grid units. These

are the same size as object grid units but the lower left corner is

defined to (0,0). In object grid units, the reference point on the grid

is the lower left corner of the object definition grid which is defined

to be (1,1). The default is object grid units.

POTENT,POT,P. This is the same as 'DENSIT' except potential slices

instead of density slices will be plotted. Please see 'DENSIT' for more

information.

PRINT NAME causes NAME to be read from the appropriate file. Valid NAME

replacements are any of the buffered data lists mentioned in Section

5.33. For larger data sets, the use of SELECT is recommended (see

below).

QUSD. This is the same as the DION (above) keyword except a plot is

made of the QUSD data (space charge used by PWASON).

RESET. This keyword resets all of the plotting flags to their initial

values.

RESTART is similar to RESET except the previous set of default values

left in SHONTL are reinstated instead of the standard defaults.

RING (ON/*OFF*). Sometimes on large problems, it is desirable to trace

fewer particles. One way to do this is just follow a ring of particles.

Presently the only rings in the XY plane can be made. N is the Z slice

of the ring. If a ring in the Z=22 slice was desired, the keyword would

be "RING 22'. If RING is followed by ON or nothing at all, the middle Z

slice will be used.



6.5-11

SELECT options used to choose particular Z-slices for printing when

using PRINT or a DIAG (or IDIAGS, etc.) flag. Many options are

available and the user is referred to Section 6.44, 6.45 or 6.70.

SHEATH (ON/*OFF*) causes the sheath points to be printed on the plot.

SPOTS (ON/*OFF*). To push a few test particles to see which

trajectories they will take, use the SPOTS flag. To enter these

particles, see INPSPT. It is recommended that PERSPC is ON when SPOTS

is used.

STHPOT N. The SHEATH potential for plotting the sheath can be changed

by resetting STHPOT. The initial value is the same as the value used by

CURREN during NTERAK. N is a real number.

TITLE. Used to define the title to be put on the plot. The default is

"POLAR PLOTS". The desired plot title should start in the ninth column

of the card

1234567890123456
TITLE BIG BIRD

In the above example, the heading appearing on the plot would be 'BIG

BIRD". Currently there is a 16 character maximum.

TRAJ (ON/*OFF*). This flag turns on plotting of particle trajectories.

VIEWDIR. This keyword is used to determine the view direction for a

hidden surface perspective plot. For example,

VIEWDIR 2.0 2.0 0.0

would define a view direction between the positive X and Y axes on the

XY plane. The viewing vector does not need to be nornaalized. This

keyword behaves the same as the NTERAK keyword SUNDIR (6.42.10), except

the default value is the last value of SUNDIR. The pictures produced by

this command will be in color or black and white depending only upon the

device driver (TEKPLOT or JUPITER) used to display them.



6.5-12

WEED (*ON*/OFF). This flag reduces the number of particles usually

found by CURREN by about a factor of 4. This not only speeds up the

plotting process but also makes the plots a little clearer.

WHAT causes all of the print options and their current settings to be

printed at the terminal.

X,YZ the axis perpendicular to the slice to be plotted. If both
potential and density plots are desirable, something like

X8
can be typed. This plots the X = 8 slice of the density and the
potential data. Instead of 8, any integer containing part of grid,
middle or mid, or nothing at all can be used. Nothing at all will
default to a middle slice. Valid forms are

XN
Y MIDDLE
Z MID
X

where X, Y, and Z are interchangeable and N is any integer as described
above. Please see 'DENSIT' for more information.

6.53 SPECTRUM KEYWORDS AND OPERATING INSTRUCTIONS

The spectrum plots are generated by SHONTL using the plasma

characteristics used by a previous NTERAK run or by defining the

environment using the same keywords used in NTERAK.

SHONTL keywords:

(Note that the range of values plotted on the vertical axis is

currently not controllable by the user and is limited to six

orders of magnitude down from the maximum flux while in the LCLINY

LOG mode.)

Default options are marked by surrounding *'s. These *'s are not

part of the keyword.



6.5-13

KEYWORDS

HIGHEN n n is the value of the energy cutoff on the high
end.

INKEV NO y axis always in eV, x axis is variable.
*YES*

LGLINY log a log 10 or linear plot of data on the vertical
*lin* axis.

LCLINX log a log 10 or linear plot of data on the
*lin* horizontal axis.

NPTS n number of points to be calculated and connected
(0 < n < 200).

RLOWEN n n is the value of the low energy cutoff on the
horizontal axis.

SPECTRUM draw a spectrum plot using the previously
entered information.

WRITE write the plasma environment generated so far
during the current run onto files 11 and 19.

6.54 SHONTL DEFAULTS

SHONTL has lots of defaults. All of the plot features have

defaults (6.52). There are also slice default values for which slices

are printed. The current slice defaults are also in Section 6.52 under

the 'DENSIT' definition.

The default values will vary as the plotting requirements change.

The best place to look for default changes will probably be the code

itself. The WHAT command gives the feature defaults.

6.55 SPECIAL SHONTL OPTIONS

In addition to two dimensional line drawings produced on file 2,

some other forms of graphical output are available. To display these

files, it is necessary to use graphics package not usually supplied with

the POLAR package. The supported file formats are compatible with

MOVIE.BYU (Brigham Young University), NPLDIS (S-CUBED in-house code),

and IRMA (AFOL in-house code).



6.5-14

The files are in an ASCII format and straight forward to read. if

one is interested in translating the three dimensional graphics on these

files to some other package, here is the format of the NPLDIS files.

There are two types of files, trajectory files and polygon oriented

files. These files are free format files and should be read with "read

*N (in fortran) or some free format input package.

Trajectory files contain line segments for each step for each

particle pushed. The format is:

xO yO zO area

xl yl z1 area

where xO, yO, and zO are the 3 space coordinates of the particle before

it is moved and xl, yl, and z1 define the final position of the

particle. The area is either the flux associated with the particle or a

number used to identify it (if the SHONTL NUMBER keyword was used).

Polygon oriented files simply contain a list of polygons. Each

polygon follows the following format:

NumCorners Value 1 Value 2 .... Value Num Corners

XCorner_1 YCorner_1 ZCorner 1

X Corner_2 YCorner 2 Z-Corner-2

X Corner Num Corners Y Corner Num Corners ZCornerNum Corners

where the Num Corners is the number of corners on the convex polygon,

Value 1 to Value Num Corners are the values at the corners, and the

following cards define the three dimensional locations of the corners.

The corners are defined counterclockwise with respect to the outward

surface normal. If only the first value is defined, it is assumed to be

the value of all of the corners.



6.5-15

The following is a list of SHONTL keywords and their defaults

which only apply to these enhanced graphic capabilities.

BYU (ON/*OFF*) Print the output in MOVIE.BYU file format.

FACEVALU (ON/*OFF*) Set the surface corner values to the surface center

value.

NPLDIS (ON/*OFF*) Print the output in NPLDIS input format.

SURFPLOT (vprop name) Make a surface plot of the named vector property.

The property must be a surface list item, like material type (IMAT),

surface potential (SRFV), or one of the surface currents.

3DCONT Enter the three dimensional spatial potential contour value

mode. The following keywords are valid while in 3D Contour mode.

QUIT - make output file and return to SHONTL

HELP - this information

WHAT - list current settings

FILENAME - prompts for new output file name

ADD <real> - add contour level

REMOVE <integer> - remove contour number #

ESCAPE - leave without plotting



6.6-1

6.60 PLOTTING UTILITIES

The final step necessary to produce the picture created by any of

the POLAR modules is the use of a plot driver. Presently there 8re two

plot drivers available for the UNIX version. They are T4014 and PSTPLT.

The first, T4014, is the more commonly used since it converts the

general graphics data produced and saved on the file fort.2 by the POLAR

modules to Tektronix 4014 graphics code. Since most graphics devices

can emulate a Tektronix 4014, this will draw pictures on most graphic

terminals.

PSTPLT translates the contents of file 2 to Postscript.

READ02 converts the cortents of file 2 into ASCII. The file 4,

created by READ02, can be turned into Tektronix 4014 code by running

PLOT04.

To draw pictures, move to the directory containing the fort.2 file

you wish to plot. Type

T4014

to execute the tekplot absolute. After each plot, the program will wait

for the return key to be hit before drawing the next picture.

On VMS systems, it is necessary to issue the following command

before attempting to plot.

set term /nowrap



6.7-1

6.70 Surface Charging Utility

A surface charging utility, SUCHGR, is included in the POLAR

package. SUCHGR calculates plasma currents and equilibrium potentials

for surface materials in orbit limited and space charge limited charging

environments. No magnetic field effects, geometric effects or surface

to surface interactions are modeled. The tool can be used before

beginning an NTERAK calculation to determine the dominate charging

mechanism, an estimated equilibrium potential, and the space charge

sheath radius.

SUCHGR searches for a surface voltage where the total current to

the surface is zero. There may be more than one such point, so the

starting potential may be important. Two different algorithms may be

used to calculate the portion of current due to the attracted species,

an orbit limited collection formula or a space charge limited formula.

The physics of these collection mechanisms is shown below in figures

6.70/1 and 6.70/2.

V

Figure 6.70/1. Orbit limited collection of a particle of mass m, charge
q, and initial velocity V is collected by a sphere of
radius b at potential 0. The maximum impact radius, a,
that the particle will be collected is determined by
conservation of angular momentum and energy and is

a = b 1 + where c = -MV 
2 .



6.7-2

Figure 6.70/2. For short Debye lengths space charge shielding dominates
over angular momentum the current collection physics.
As shown in the figure a sheath forms outside of which
the plasma is undisturbed and inside of which the plasma
density is related to the geometry and potentials. For
this case Poisson's equation must be solved self
consistently with the determination of the charge
density. For a planar geometry an analytic solution
exists giving the distance from a plate at potential

to the edge of the sheath, S = 81 " For

spherical geometry a closed form solution is not known;
however, the solution can be written in terms of a
universal function which can be determined numerically.
This universal function, f, can be used to find the

sheath radius through = f

To use SUCHGR, define the material type and the environment.

Surface material types may be defined by using the predefined material

names discussed in section 6.12 or by defining or modif)ing each

material property individually. A complete listing of SUCHGR keywords

and their defaults is included below. Plasma environments are defined

using the same keywords used to define NTERAK environments. These

keywords are discussed in detail in section 6.42.10. Some complete

default environments have also been predefined.



6.7-3

After defining the surface material and environment by hand or by

running VEHICL, define the initial potentials, the magnitude of the Mach

velocity, and the size of the object radius. Finally, select the

desired algorithm for calculating the flux of the attracted species and

enter the CHARGE keyword.

At any time, a list of the available keywords and a short

description of their functions can be printed by entering the HELP

keyword. To leave SUCHGR, enter EXIT. The SHOW keyword can be used to

view the keywords used to define surface materials, environments and the

charging parameters, as well as a short description of the keywords and

their current values.

The following is the result of entering the following keywords as

input to SUCHGR. Input keywords:

HELP

SHOW ALL

QUIT

And the output:

Welcome to SUCHGR 1.3

Default material is KAPT

Default environment is DMSP

SUCHGR command >> HELP



6.7-4

Available Keywords are:

EXIT Exit SUCHGR
DEFA Reset to default setup
SHOW opt Show current settings of 'opt'

(SETUP, ENVI, MATE, or ALL)
TABLE opt Print 'opt', in tabular form

(IV, YIELD, ESEC, EBAK, ISEC, MATE)
PLOT opt Plot 'opt' (same as in TABLE)
SAVE fn Szve environment to file <fn>
READ fn Read environment (saved by SAVE

keyword) from file <fn>
FILE fn Read Keyword input from file (fn>
CHARGE Start charging
CURBRK QN/OFF Print Flux breakdown after charge

Use SHOW 'opt' for more keyword descriptions (e.g. 'SHOW MATE' for
Material ! ywords)
SUCHGR command >> SHOW ALL

Charge Setup Keywords & Current Settings
K rd Description Values Units

Initial Material Potential O.O000e+O0 volts
CNDVLT Initial Conductor Potential O.O000e+O0 volts
SUNINT Solar Intensity O.0000e+O0 (between 0 & 1)
VERROR Fractional Error in Potential 3.00OOe-02 (none)
EPSCUR "Zero" Current 1.00OOe-10 amps
FLOAT Float Cinductor Voltage (none)
VBEGIN Begin Pctantial for IV Table -5.0000e+01 volts
VEND End Potential for IV Table

AVMACH Magnitude VMACH 8.0000e+O0 (none)
ROBJ Radius of Object 1.0OOe+O0 meters
ORBLIM Orbit Limited Regime ON (none)
SPCLIM Space Charge Limited Regime OFF (none)

MATE Selected Material KAPT (none)
ENVI Selected Environment DMSP (none)

Environment Keywords A Current Settings
r Description Values Units

ENVNAM Environment Name NF('none)
AMUION Ion Mass 1.6000e+01 AMU
RATIH Ion to H+ Density Ratio 1.0000e+20 (none)

TEMP1 Ambient temperature 2.00OOe-01 eV
DEN1 Ambient density 1.0000e+11 #/m**3

POWCO Power law coefficient 1.4000e+12 #/m2.sec.str.eV.
PALPHA Power law exponent 1.2000e+00 (none)
PCUTL Power law lower cutoff 5.0000e+01 eV
PCUTH Power law upper cutoff 1.0000e+06 eV



6.7-5

TEMP2 For energetic Maxwellian 4.3000e+03 eV
DEN2 For energetic Maxwellian 4.2000e+06 #/m**3
GAUCO Gaussian distribution coef. 8.8000e+05 #/m2.sec.str.eV.
ENAUT Gaussian peak 8.2000e+03 eV
DELTA e-folding width of Gaussian 1.8000e+03 eV

Material Properties Keywords & Current Settings
Keywr Description Values Units
ATNAM Material Name n-'none)
DIELEC Dielectric Constant 3.5000e+00 (none)
THICK Thickness 1.2700e-04 meters
CONDUCT Conductivity 1.00OOe-16 MHO/M
ATOMNUMB Atomic Number 5.0000e+O0 (none)
DELTAMAX Delta Max 2.1000e+00 (none)
EMAX E-Max 1.5000e-01 keV
RANGE1 Range_1 7.1480e+01 angstroms
EXP1 Exponent_1 6.00OOe-01 (none)
RANGE2 Range_2 3.1210e+02 angstroms
EXP2 Exponent 2 1.7700e+00 (none)
PROYIELD Yield for lkeV Protons 4.5500e-01 (none)
PROMAX Max de/dx for Protons 1.4000e+02 keV
PHOTOCUR Photo Current 2.00OOe-05 amps/meter**2
RESIST Surface Resistivity 1.0000e+16 ohms
SPDISCHR Space Discharge Potential 1.0000e+04 volts
INDISCHR Interal Discharge Potential 2.0000e+03 volts
RICCOEFF Radn-Induced Cond. Coeff 1.00OOe-13 MHOMS3
RICPOWER Radn-Induced Cond. Power 1.0000e+O0 (none)
MATDENS Density 1.0000e+03 kg/m*3

SUCHGR command >> QUIT



6.8-1

6.80 TRMTLK

TRMTLK is an interactive program for retrieving POLAR data. It

accesses POLAR restart files to produce charging history tables and

graphs and a variety of other information. Charging history information

is stored in file 16.

TRMTLK is a menu-style program--the user requests the desired

information rather than answering a series of yes or no questions, "Do

you want such and such? How about such and such? ... As a result, the

user can get any of the types of available output just by typing one or

two comnands, no matter what section of the program is currently

operating.

There are four main program modules, named HISTORY, LATEST,

SINGLE, and SPECIAL.

The HISTORY module outputs for any surface cell the time history

of the user's choice of five qualities: potential, electric flux,

external electric field, internal electric field (stress), or potential

difference between an insulator surface and underlying conductor

(delta). The output comes in the form of a printed table, and/or a

rough plot of quantity versus time. The printed table will show up to

seven surface cells across the page.

The LATEST module gives the user a complete list for all of the

surface cells and conductors of any of the five quantities mentioned

above. They may be printed in sequence or ordered by magnitude.

Partial listings, including only some surface cells, are available.

Module SINGLE prints out information about a single surface cell.

In addition to the five standard quantities, you can get the cell

location, its surface materials, its surface area, its shape, its

normal, and the number of its underlying conductor.

The SPECIAL module lets the user "turn off" all output coming to

the terminal. This unseen output can be printed on a line printer at

the end of the session. SPECIAL also allows the user to change the

POLAR cycle number.



6.8-2

6.81 PROGRAM STRUCTURE

TRMTLK is organized into four modules: LATEST, HISTORY, SINGLE,

and SPECIAL. Each of the modules has its own set of conmands. Each

module also has access to a set of "aid" routines, named HELP, SUBSET,

OUTLINE, LOCATION and EXIT.

The user moves from any module to any other by typing the name of

the new module. "Aid" routines always return to the module from which

they were called.

6.82 CELL SPECIFICATIONS

POLAR assigns a cell number to each surface cell. Each cell can

also be identified with five basic geometrical attributes: location,

material, surface normal, shape, and conductor number. TRMTLK provides

a way for the user to go back and forth between cell numbers and

geometrical attributes.

*SINGLE" takes a cell number and prints out attributes. <it also

prints out charging information.

"SUBSET" takes the user's geometrical specifications, and

determines the set of cells that satisfy these. It is extremely

general. You can easily determine the number of a particular cell, or

you can define a complicated group of cells. For example, you could

define the group of all nonboom cells that are either KAPTON or TEFLON

and lie on conductor #1; or all cells between the planes of X = 1 and

X=5.

6.83 CHARGING HISTORY

TRMTLK can plot surface cell potential as a function of time. It

also prints cell histories in a tabular form. And it gives tables and

plots of other quantities such as electric flux and electric fields.

If you are more interested in final equilibrium values than in

histories, the module "LATEST" gives only the most recent information.



6.8-3

6.84 INSTRUCTIONS FOR USE

The most extensive documentation for TRMTLK is internal to the

program. It is accessed by typing "HELP" at any time. This gives the

user a full-blown explanation of the commands and modes available for

each module.

It is necessary to run POLAR before using TRMTLK. A simple object

definition will initialize enough files to use SUBSET. For instructions

on POLAR use, see the POLAR User's Manual.

To use TRMTLK on a UNIVAC computer, type 'OXQT TRMTLK.ABS'. The

program will ask for the POLAR file prefix and assign all necessary

files.

On CDC machines, the user must attach POLAR files 11, 16, and 19

before running. At the end of each run, file number 3 will contain a

line printer image of the output.

6.85 SAMPLE RUN

The following shows a simple TRMTLK example. Note that near the

end, the mode 'NOTERM' is set. This suppresses terminal printing of

output data. The user will re on line printer output, without having

to wait for terminal printout of the HISTORY graph.



6.8-4

Welcome to POLAR TRMTLK ...
Any AID may be called from any MODULE

MODULES AIDS

HISTORY AGAIN
LATEST HELP
SINGLE LOCATION #
SPECIAL OUTLINE

SUBSET
EXIT
SUBSET (GROUP NAME]

Enter any MODULE/AID name or 'HELP' for help >> single

SINGLE command or MODE set >> 15
------------------------------------------------------------
SURFACE NO. 15 CENTERED AT 4.50 6.50 5.50
MATERIAL IS GOLD

POTENTIAL = -2.3562e+01 VOLTS
SINGLE command or MODE set >> also stress
MODE RESET

SINGLE command or MODE set >> also delta

MODE RESET

SINGLE command or MODE set >> 5

SURFACE NO. 5 CENTERED AT 5.50 5.50 5.00
MATERIAL IS KAPT

POTENTIAL = -5.3642e+00 VOLTS
DELTA V = 1.8198e+01 VOLTS
INTERNAL FIELD STRESS = 1.432ge+05 VOLTS/METER

SINGLE command or MODE set >> every MODE RESET

SINGLE command or MODE set >> 20

SURFACE NO. 20 CENTERED AT 6.33 4.67 6.00
MATERIAL IS KAPT NORMAL IS 0 0 1
SHAPE IS RIGHT TRIANGLE SURFACE AREA = 5.00OOe-01 M**2

POTENTIAL = -1.9123e+01 VOLTS
UNDERLYING CONDUCTOR NUMBER IS 1
UNDERLYING CONDUCTOR POTENTIAL = -2.3562e+01 VOLTS
DELTA V = 4.4383e+00 VOLTS
INTERNAL FIELD STRESS = 3.4947e+04 VOLTS/METER
EXTERNAL ELECTRIC FIELD = -2.0598e+02 VOLTS/METER



6.8-5
FLUXES IN AMPS/METER**2

INCIDENT ELECTRONS -2.0142e-05
RESULTING SECONDARIES 7.0580e-06
RESULTING BACKSCATTER 3.4652e-06

INCIDENT IONS 2.048ge-05
RESULTING SECONDARIES O.O000e+O0

BULK CONDUCTIVITY 3.4947e-12
HOPPING CURRENT O.O000e+O0
PHOTOCURRENT 0.0000e+00

TOTAL FLUX THROUGH SURFACE 1.0870e-05

SINGLE command or MODE set )> latest

LATEST command or MODE set >> list 1 25
POTL IN VOLTS FOR POLAR CYCLE 4 ... TIME = 2.00e+O0 SEC

1-5.91e+00 2-5.67e+00 3-5.91e+00 4-5.26e+00 5-5.36e+00
6-5.26e+00 7-4.63e+00 8-4.83e+00 9-4.63e+00 10-2.36e+01

11-2.36e+01 12-2.36e+01 13-2.36e+01 14-2.36e+01 15-2.36e+01
16-2.36e+01 17-2.36e+01 18-1.91e+01 19-1.92e+01 20-1.91e+01
21-2.08e 01 22-1.91e+01 23-2.08e+01 24-2.27e+01 25-2.28e+01

LATEST command or MODE set >> history

HISTORY command or MODE set >> -1 3 21

POTL in Volts

TIME -1 3 21

#1 #2 #3 #4 #5 #6 #7
5.0e-O1:-1.00e-16-3.06e+01-6.Ole+01
1.0e+00:-1.00e-16-2.07e+1-4.50e+01
1.5e00:-1.00e-16-1.24e+01-3.18e+01
2.0e OO:-1.00e-16-5.gle00-2.08e 01
... Press (CR> to continue ...

POTL versus log(TIME)
0.00e 0+ 1 1 1 1

2
-1.00e+01+ 2

-2.00e+01. 2 3

-3.00e+01+ 2 3

-4.00e+01+
3

-5.00e01+

-6.00e 01 3

-7.OOe+01+ .------ ------------------------------------------
-. 4000 -. 2000 O.Oe+00 .2000 .4000



6.8-6
HISTORY command or MODE set ) graph
MODE RESET

HISTORY command or MODE set >> linear
MODE RESET

HISTORY command or MODE set >> -1 3 21
POTL versus TIME in Seconds

0.OOe+O0+ 1 1 1 1
2

-1.00e+01+ 2

-2.OOe+01+ 2 3

-3.00e+01+ 2 3

-4.00e+01+
3

-5.00e+01+

-6.OOe+01+ 3

-7.OOe+01 +------------------------------------------------ +---------
O.Oe+00 .5000 1.0000 1.500 2.000 2.500 3.000

HISTORY coraoand or MODE set > subset kapt
DEFINITION OF NEW SUBSET NAMED KAPT

27 REMAINING IN GROUP

SUBSET command please >> matl kapton
18 REMAINING IN GROUP

SUBSET command please >> shape square
10 REMAINING IN GROUP

SUBSET command please >> which
MEMBERS OF GROUP KAPT

2 4 5 6 8 19 21 22 23 25
10 REMAINING IN GROUP

SUBSET command please ) done
GROUP KAPT WITH 10 MEMBERS IS NOW DEFINED
RETURNING TO MODULE 'HIST'

HISTORY command or MODE set >> special

SPECIAL command or MODE set >> noterm
MODE RESET

SPECIAL command or MODE set >) history

HISTORY command or MODE set >) group kapton
... Press (CR> to continue ...



6.8-7

HISTORY command or MODE set )) exit
Would you like a Laser Printer Copy? )) yes

-EXIT TRMTLK-



6.8-8

6.86 INTERNAL DOCUMENTATION

This is a computer printout of the actual on-line documentation

available in TRMTLK. First is the complete output of the OUTLINE aid.

Second is a listing of all available help sequences.

Welcome to POLAR TRMTLK ...

Any AID may be called from any MODULE

MODULES AIDS

HISTORY AGAIN
LATEST HELP
SINGLE LOCATION #
SPECIAL OUTLINE

SUBSET
EXIT
SUBSET [GROUP NAME]

Enter any MODULE/AID name or 'HELP' for help > outline

Available OUTLINES:
1) MODULE AND AID NAMES
2) HISTORY
3) LATEST
4) SINGLE
5) SPECIAL
6) SUBSET
7) ALL OF THE ABOVE
8) CURRENT MODULE ONLY

Pick a number or (CR> to return to MAIN >> 7

Any AID may be called from any MODULE

MODULES AIDS

HISTORY AGAIN
LATEST HELP
SINGLE LOCATION #
SPECIAL OUTLINE

SUBSET
EXIT
SUBSET [GROUP NAME]

Press (CR> to continue ...



6.8-9
HISTORY MODULE

---- MODES -- - COMMANDS
FLUX - FIELD - POTL #

- DELTA - STRESS#, #, #, ...
CYCLE # TO # GROUP [GROUP NAME]
TIME # TO #
TABLE - GRAPH - BOTH
LINEAR - LOG - NUMCYCLE

LATEST MODULE

MODES ---- ---- COMMANDS ----
FLUX - FIELD - POTL GROUP [GROUP NAME]

- DELTA - STRESS LIST # TO #
SEQUENTIAL - MAGNITUDE ALL

- ABSMAG
... Press (CR) to continue ...

SINGLE MODULE

MODES ---- ---- COMMANDS
IERYTHING - NOTHING #
(ALSO or NOT) followed by: ( Only comnand for

NUMBER STRESS SINGLE is to enter a
CENTER NORMAL single CELL NUMBER )
MATL SHAPE
POTL CODE
FLUX CNUMB
FIELD CPOTL
DELTA SUMMAR

SPECIAL MODULE

MODES ---- ---- COMMANDS
TERMPT - NOTERM CYCSET #

... Press <CR> to continue ...

SUBSET SPECIFICATIONS

HELP XLIM # TO #
INSULATOR YLIM # TO #
BARE ZLIM # TO #
DIRECTORY NORMAL # # #
WHICH NUMBERS # TO #
DONE INCLUDE #, 9, ...
OMIT CNUMB #

EXCLUDE #, 9, ...
MATL [Material name]
SHAPE (SQUARE, RECTAN, RIGHT, EQUIL]
OR [Group name]
AND [Group name]
COMPL [Group name]
NAME [any word]



6.8-10
Enter any MODULE/AID name or 'HELP' for help >> help

HELP is at hand
(1) BASIC USE (7) ERROR MESSAGES
(2) CURRENT MODULE (8) COORDINATE SYSTEM
(3) NUMBERING CONVENTIONS (9) LINE PRINTER FILE
(4) FLUX,FIELD, POTL, DELTA, STRESS (10) DEFAULT MODES
(5) SUBSET AND GROUPS (11) COMPLAINTS
(6) AIDS

Pick a number or (CR> to return to MAIN >> 1

-- BASIC USE --

TRMTLK consists of a set of MODULES, each giving the user access
to a certain type of POLAR information.
'HISTORY' gives the CHARGING HISTORY of surface cells
'LATEST' gives information only from the LATEST charging cycle
'SINGLE' gives geometrical A other information about an INDIVIDUAL
CELL.
'SPECIAL' performs printout control and cycle resetting.

Whichever MODULE you are in, you have available a set of COMMANDS
and MODES. COMMANDS initiate output. MODES alter the form of succeeding
output.

At any time instead of typing a COMMAND or MODE, you may change
MODULE or call for AID. All together you have 4 choices: type a
COMMAND, a MODE, a MODULE name, or an AID name.

As an example, you are in MODULE SINGLE and you type the number
317. This is a COMMAND. The terminal prints out some information (eg.
potential) about the cell #317. Now you want more. You type
'EVERYTHING' (a MODE) and on the next line '317' again. More
information comes out. To CHANGE to HISTORY module, you type 'HISTORY'.
Now you don't know what to do, so you type 'HELP' and you get the help
menu again.

For any COMMAND, MODE, MODULE, or AID, TRMTLK recognizes an entire
word based on the first FOUR letters only.

... Pick another #, type 'MENU', or <CR> to return to MAIN > 2

-- MAIN --
If you are in module MAIN, you have just entered TRMTLK I am

waiting for you to choose a MODULE. All of the AIDS are available as
well. Here is a list:

Any AID may be called from any MODULE
MODULES AIDS

HISTORY AGAIN
LATEST HELP
SINGLE LOCATION #
SPECIAL OUTLINE

SUBSET
EXIT
SUBSET [GROUP NAME]



6.8-11
... Pick another #, type 'MENU', or (CR> to return to MAIN >> 3

-- NUMBERING CONVENTIONS --
TRMTLK has particular NUMBERING CONVENTIONS for SURFACE CELLS and

CONDUCTORS. A POLAR OBJECT is composed of N surface CELLS and L
CONDUCTORS. NEGATIVE numbers (-L through -1) refer to CONDUCTORS. The
POSITIVE numbers (1 through N) refer to surface CELLS. These are the
small RECTANGLES and triangles covering the spacecraft.

... Pick another #, type 'MENU', or (CR> to return to MAIN >> 4

-- FLUX FIELD POTL DELTA STRESS --
These are the 5 DYNAMIC pieces of information pertaining to any

surface CELL. They CHANGE each TIME CYCLE. Only FLUX and POTL pertain
to CONDUCTORS.
FLUX - TOTAL ELECTRIC FLUX to a CELL or CONDUCTOR due to INCIDENT

PARTICLES, ELECTRON BACKSCATTER, HOPPING CURRENT and and
PHOTOEMISSION. UNITS are AMPS/METER**2.

FIELD - the EXTERNAL ELECTRIC FIELD in the volume immediately above a
surface CELL. UNITS of VOLTS/METER.

POTL - ELECTRIC POTENTIAL on the EXTERNAL surface of a CELL or a
CONDUCTOR. UNITS are VOLTS.

DELTA - DIFFERENCE between surface POTENTIAL of a DIELECTRIC CELL and
POTENTIAL of the UNDERLYING CONDUCTOR. UNITS are VOLTS.

STRESS - INTERNAL ELECTRIC FIELD STRESS for DIELECTRIC CELLS.
Proportional to DELTA and inversely proportional to MATERIAL
THICKNESS. UNITS are VOLTS/METER.

... Pick another #, type 'MENU', or <CR> to return to MAIN >> 5

-- SUBSET and GROUPS --
You can use SUBSET to DEFINE a GROUP of CELLS that are of special

interest to you. For instance, you might want all KAPTON coated
surfaces, or all the cells over conductor #2, or the intersection of
those two sets.

You enter subset by typing 'SUBSET', or 'SUBSET' followed by a
group name. You may define up to 34 different groups, in addition to the
2 default groups ALL and NULL (complete set and empty set).

The SUBSET specs can be classified into NARROW DOWN TYPES,SET
OPERATIONS, INFORMATION REQUESTS,and OTHERS.
... Press <CR> to continue ...

***** NARROW DOWN *****
A new SUBSET consists of all CELLS and CONDUCTORS. The NARROW DOWN
specifications eliminate any cells that don't fit. All of the NARROW
DOWN specifications, except 'NUMBERS', eliminate all CONDUCTORS,-1
through -7.
XLIM # TO # - EXCLUDE cells with CENTERS outside of given X-axis
limits.
YLIM # TO # - similar to XLIM ZLIM * TO # - similar to XLIM
INSULATOR - EXCLUDE CONDUCTING cells
BARE - EXCLUDE INSULATING cells



6.8-12

NORMAL # # # - EXCLUDE any cell with a surface NORMAL other than this.
CNUMB # - EXCLUDE cells with UNDERLYING CONDUCTORS other than this.
MATL [material] - EXCLUDE cells NOT of this MATERIAL
SHAPE [shape] - EXCLUDE any cell NOT in this SHAPE
NUMBERS # TO # - EXCLUDE if CELL NUMBERS are NOT within these LIMITS.

if 1st number < -7, NO CONDUCTORS will be eliminated.

... Press <CR) to continue ...

***** SET OPERATIONS *****
These allow you to COMBINE the CURRENT GROUP with any PREVIOUSLY DEFINED
GROUP. To start over on CURRENT GROUP, 'OR ALL' or 'COMPL NULL' brings
back all members, while 'AND NULL' or 'COMPL ALL' eliminates all. The
GROUP named (except ALL and NULL) must have been defined by the user.
OR [name] - present GROUP is UNION of PRESENT GROUP and NAMED GROUP.
AND [name] - present GROUP is INTERSECTION of PRESENT GROUP and NAMED
GROUP. COMPL [name] - present GROUP is COMPLEMENT of NAMED GROUP.

***** INFORMATION *****
WHICH - prints out CURRENT GROUP MEMBERS
DIRECTORY - gives LIST of PREVIOUSLY DEFINED GROUPS
HELP - this message

***** OTHER SPECS *****
NAME [name] - CHANGE the NAME of CURRENT GROUP to this
INCLUDE [#'s] - up to 14 specified CELLS and CONDUCTORS become GROUP

MEMBERS.
EXCLUDE [#'s] - up to 14 MEMBERS REMOVED from GROUP
DONE - CATALOGUE this GROUP for later use. Return to MODULE.
OMIT - DON'T CATALOGUE this GROUP. Return to MODULE.

Press (CR> to continue ...

SUBSET SPECIFICATIONS

HELP XLIM # TO #
INSULATOR YLIM # TO #
BARE ZLIM # TO #
DIRECTORY NORMAL # # #
WHICH NUMBERS # TO #
DONE INCLUDE , , ...

OMIT CNUMB #
EXCLUDE , ,

MATL [Material name]
SHAPE [SQUARE, RECTAN, RIGHT, EQUIL]
OR [Group name]
AND [Group name]
COMFL [Group name]
NAME [any word]

... Pick another #, type 'MENU', or (CR> to return to MAIN >> 6

-- AIDS --
AIDS are available from any MODULE. You CANNOT generally call one

AID while using another. You CANNOT call 'EXIT' while using HELP for
example.



6.8-13

AGAIN - REPEAT the most recent PROMPT
HELP - prints various informative MESSAGES
LOCAT #- gives the coordinates of the CENTER of the indicated CELL.
OUTLINE- prints a MENU, a LIST of available MODULES, COMMANDS, MODES,
AIDS.
SUBSET - allows user to DEFINE a GROUP of CELLS and CONDUCTORS that are

of particular interest. The entire set of CELLS if NARROWED
DOWN to a desired SUBSET.

SUBSET [group name] - if the GROUP NAME has been previously DEFINED,
permits ALTERATION of the members. If not, a NEW GROUP with that NAME is
then defined.
EXIT - ends TRMTLK use.

.,. Pick another f, type 'MENU', or <CR) to return to MAIN )> 7

-- ERROR MESSAGES --

Let's say you did something I didn't expect, or I just got
confused. I will print out an ERROR MESSAGE. The 1st word of an error
MESSAGE has ASTERISKS around it, and identifies the SUBROUTINE where
the problem occurred, for example '*** SINGLE ***'. What do you do
then? Try it again, or try something else. You can't damage the
program. Or call for 'OUTLIN' or 'HELP'.

... Pick another #, type 'MENU', or <CR> to return to MAIN >> 8

-- COORDINATE SYSTEM --
The COORDINATE SYSTEM used by TRMTLK is in GRID UNITS

... Pick another #, type 'MENU', or <CR> to return to MAIN > 9

-- LINE PRINTER FILE --
TRMTLK creates a LINE PRINTER FILE. At the end of a run, you can

send this FILE to the PRINTER to make a hard copy. If you are using a
slow terminal, you can ask for MODE 'NOTERM' in MODULE 'SPECIAL'. In
this MODE, all output goes to the line printer file only. You can still
get a complete hard copy at the end of the run.

... Pick another #, type 'MENU', or <CR> to return to MAIN >> 10

-- DEFAULTS --
At the beginning of TRMTLK, all MODES are set to a DEFAULT value.

Default MODES for each MODULE are:

HISTORY: POTL, ALL CYCLES, BOTH, LOG
LATEST : POTL, SEQUENTIAL
SINGLE : ALSO NUMBER, CENTER, MATL, POTL

NOT ( everything else )
SPECIAL: TERMPT

... Pick another #, type 'MENU', or <CR> to return to MAIN > 11



6.8-14

-- COMPLAINTS --
TRMTLK was written to be a convenient, user-oriented DATA REDUCTION

tool. If you don't like it, or would like to see some changes, please
write to:

SYSTEMS, SCIENCE, and SOFTWARE
P.O. Box 1620
La Jolla, California 92038.

Mark it 'Attention: John Lilley'.

... Pick another #, type 'MENU', or <CR> to return to MAIN >>
Returning to MODULE MAIN

Enter any MODULE/AID name or 'HELP' for help >> history

HISTORY command or MODE set >> help
HELP is at hand

(1) BASIC USE (7) ERROR MESSAGES
(2) CURRENT MODULE (8) COORDINATE SYSTEM
(3) NUMBERING CONVENTIONS (9) LINE PRINTER FILE
(4) FLUX,FIELD, POTL, DELTA, STRESS (10) DEFAULT MODES
(5) SUBSET AND GROUPS (11) COMPLAINTS
(6) AIDS

Pick a number or <CR> to return to HIST >> 2

The COMMANDS for module HISTORY are CELL NUMBERS. You can type ONE
cell number, or a string of up to 15 numbers on the same line. Conductor
numbers (negative) are also valid. If you have a set of numbers you plan
to use more than once, you can define them as a group using SUBSET.

Your output will be a TABLE and/or a GRAPH of whichever one of the
5 quantities of the current mode. Notice that the HISTORY modes are
distinct from the LATEST modes. If you specify a range of cycles or a
range of times, only those boundaries will be included in the
TABLE/GRAPH. The X-axis of the GRAPH will be the TIME, log base 10 of
TIME, or the CYCLE numbers -- depending on whether the MODE is LINEAR,
LOG, or NUMCYC.

HISTORY MODULE

---- MODES ---- ---- COMMANDS
FLUX - FIELD - POTL #

- DELTA - STRESS #, #, #, ...
CYCLE # TO # GROUP [GROUP NAME]
TIME # TO #
TABLE - GRAPH - BOTH
LINEAR - LOG - NUMCYCLE

... Pick another #, type 'MENU', or <CR> to return to HIST >>

Returning to MODULE HIST

HISTORY command or MODE set >> latest



6.8-15

LATEST command or MODE set > help
HELP is at hand

(1) BASIC USE (7) ERROR MESSAGES
(2) CURRENT MODULE (8) COORDINATE SYSTEM
(3) NUMBERING CONVENTIONS (9) LINE PRINTER FILE
(4) FLUX,FIELD, POTL, DELTA, STRESS (10) DEFAULT MODES
(5) SUBSET AND GROUPS (11) COMPLAINTS
(6) AIDS

Pick a number or <CR> to return to LATE >> 2

LATEST prints information about a GROUP of CELLS and CONDUCTORS.
The 3 COMMANDS are 3 ways to specify a GROUP:
'ALL' will include the full set of CELLS and CONDUCTORS
'GROUP' followed by.a GROUP name prints only those in the defined group
'LIST' followed by 2 numbers will list the intervening cells. The
information printed can be FLUX, FIELD, POTL, DELTA, OR STRESS.

In SEQUENTIAL MODE,. the information will be ordered by CELL number.
In MAGNITUDE MODE, it-:will be ordered by the VALUES being printed.
In ABSMAG MODE, the ordering will be by ABSOLUTE VALUES

LATEST MODULE
************

MODES ---- COMMANDS ----
FLUX - FIELD - POTL GROUP [GROUP NAME]

- DELTA - STRESS LIST # TO f
SEQUENTIAL - MAGNITUDE ALL

- ABSMAG
... Pick another #, type 'MENU', or <CR> to return to LATE >>
Returning to MODULE LATE

LATEST command or MODE set >> single

SINGLE command or MODE set >> help

HELP is at hand
(1) BASIC USE (7) ERROR MESSAGES
(2) CURRENT MODULE (8) COORDINATE SYSTEM
(3) NUMBERING CONVENTIONS (9) LINE PRINTER FILE
(4) FLUX,FIELD, POTL, DELTA, STRESS (10) DEFAULT MODES
(5) SUBSET AND GROUPS (11) COMPLAINTS
(6) AIDS

Pick a number or <CR> to return to SING >> 2



6.8-16

-- SINGLE --
This MODULE gives various information about a SINGLE SURFACE. The

only COMMAND is the CELL NUMBER.
MODES specify which cell PROPERTIES are to be printed. If you want

all of them, set 'EVERYTHING'. To wipe the slate clean, type 'NOTHING'.
If you wart to INCLUDE a cell property, type 'ALSO' and the property
name, eg. 'ALSO POTL'. To EXCLUDE a property, use 'NOT' in place of
'ALSO'.

The DYNAMIC PROPERTIES, which change from one cycle to the next,
are 'FLUX', 'FIELD', 'POTL', 'DELTA', 'SUMMAR' and 'STRESS'.

The STATIC PROPERTIES are:
NUMBER - the cell number
CENTER - coordinates of the cell center.
MATL - material name of this surface.
NORMAL - normal vector pointing out of this surface cell.
SHAPE - surface shape. (SQUAre, RIGHt triangle,

RECTangle, or EQUIlateral triangle).
CNUMB - conductor number of the underlying conductor
CPOTL - potential of the underlying conductor
... Press (CR> to continue ...

SINGLE MODULE

---- MODES ---- ---- COMMANDS ----
EVERYTHING - NOTHING #
(ALSO or NOT) followed by: ( Only command for

NUMBER STRESS SINGLE is to enter a
CENTER NORMAL single CELL NUMBER )
MATL SHAPE
POTL CODE
FLUX CNUMB
FIELD CPOTL
DELTA SUMMAR

... Pick another #, type 'MENU', or <CR> to return to SING >>
Returning to MODULE SING

SINGLE command or MODE set >> special

SPECIAL command or MODE set >> help

HELP is at hand
(1) BASIC USE (7) ERROR MESSAGES
(2) CURRENT MODULE (8) COORDINATE SYSTEM
(3) NUMBERING CONVENTIONS (9) LINE PRINTER FILE
(4) FLUX,FIELD, POTL, DELTA, STRESS (10) DEFAULT MODES
(5) SUBSET AND GROUPS (11) COMPLAINTS
(6) AIDS

Pick a number or (CR> to return to SPEC >> 2



6.8-17

-- SPECIAL --
This could be called MODULE miscellaneous. Presently, it has only 2

functions: PRINT CONTROL and CYCLE RESETTING.
By default, all printout goes BOTH to the terminal and to file 3.

If you are generating a lot of printout and don't want to wait for it at
the the terminal, use mode 'NOTERM'. Then the output will go only to
file 3, which can be sent to the line printer upon exiting TRMTLK.
You use CYCLE RESET if you are going to make further POLAR RESTART
runs, but have no further use for the data already generated. In
SPECIAL, if you type 'CYCSET 0', all old data will be discarded from
the HISTORY files. LATEST and SINGLE will remain unchanged.

SPECIAL MODULE

MODES - ---- COMMANDS ----
TERMPT - NOTERM CYCSET #

... Pick another f, type 'MENU', or <CR> to return to SPEC >>
Returning to MODULE SPEC

SPECIAL command or MODE set >> exit
Would you like a Laser Printer Copy? >> yes
-EXIT TRMTLK-



6.9-1

6.90 Source Code Maintenance

The source code for POLAR is normally divided up into separate

directories. Each directory contains the source code needed to create

the library or executable it is named after. Currently, the main

development effort for the POLAR package takes place in an UNIX

environment. A specialized shell script (a file containing operating

system commands) is used to set up, then execute the utility program,

make. The instructions used by make to put together libraries and

executable programs reside in each directory and are called "Makefile".

The sections which follow contain information on various aspects

of the compilation process. These files can also be found in the key

locations in the POLAR source code directory structure, as described .in

the text below. Additional, more specific information can be found in

the Makepl and all of the Makefile files.



6.9-2

6.91 Installing the Source Code

This file is called "Install.notes" and can be found in the top

POLAR source code directory (if it has been installed already).

---Install.notes

Here are some useful commands for installing Polar 1.3.

(UNIX couands are indicated by a leading ")

Moving polar 1.3 to a new machine.

From a tar format tape.

a) Create a directory to be used as the top of the polar

tree, a good name might be Opoll.30. There should be

enough disk space for about 25 to 30 Megabytes of data.

This can be reduced after installation.

b) Go to the top of the polar tree.

>cd poll.3



6.9-3

c) Read the tape, replace TAPEDEV with the name of the

tape device containing the tape.

>tar xvfo - . < TAPE DEV

d) Edit the Makepl file and change CPU TYPE to the new cpu

type and P1_NODE the full path name to the directory

name used in step (a).

e) Now make a version of Polar 1.3 for the new machine.

To make a new version of Polar 1.3, type:

>Makepl

Between networked UNIX machines, but no NFS mounts.

a) Log into the machine which presently has Polar 1.3.

b) Go to the top of the polar tree.

>cd poll.3

c) Use tar to send the old copy to the new location. In

the command below, replace TARGET HOST with the name

of the machine receiving Polar 1.3 and WHERE with the

name of the directory on TARGET HOST which will contain

the new Polar 1.3.

on Ridge 3200's

)tar cf - ./poll.3 I rshell TARGETHOST "cd WHERE; tar xfo -g

on other UNIX systems

>tar cf - ./poll.3 I rsh TARGETHOST Ocd WHERE; tar xfo _'

d) Now log into the receiving machine and go to the new

poll.3 directory. Edit the Makepl file and change

CPU-TYPE to the new cpu type and P1_NODE the full path

name to the new poll.3 directory.



6.9-4

e) Now make a version of Polar 1.3 for the new machine. To

make a new version of Polar 1.3, type:

>Makepl

Cleaning up intermediate files after installation.

Go the top of the polar tree and enter

> MakepI clean

To get rid of everything create uy the make'ing process

(but no source code), enter

> Makepl clobber



6.9-5

6.92 General Information for the Main Source Code Version

This file is called "READMEw and can be found in the top POLAR

source code directory.

---README

README file for Polar 1.3 Main node make structure 4/21/89

Overview

The goal of the current compilation structure is to create a

system independent method of keeping the POLAR executables up

to date. The UNIX utility, make, is used to check the various

subdirectories to ensure the target library or executable is

current with respect to any modifications in the parts which

are used to build it. There are two separate structures in

POLAR, one is called the Main node and the second is called the

User node. The Main node is the structure which is distributed

to new sites. It is the version which is maintained off site

and is considered to be constant. If bugs are found or when

improvements are made, the changes are made assuming everyone

has the same Main version of Polar 1.3. The User node is

designed to be used as the area where changes can be made by

the local users. This file discusses the use of the Main node

make structure. For a discussion of the User node make



6.9-6

structure, please look in the User subdirectory in the README file found

there.

Getting Started

The first step is to install POLAR. Instructions for

installing Polar are found in the file, Install.notes. The

contents of this file can also be found in the Polar User's

Manual.

Make Structure

The Polar package is organized as a self-contained directory

structure. At the top directory or main node, are several

documentation files (README, Install.notes, and Make.info), the

source code directories (genlib, pollib, nterak, orient,

vehicl, vellib, shontl and utils), the include file directory

(inc), the directory containing the object code libraries and

executable files (archives and bin, respectively), a directory

structure designed for development work (User), a file whose

name represents the current version of Polar (presently,

PVER1.3.0), and finally the files and scripts used to check

and maintain the source code (Makefile and Makepi).

The Make structure is controlled by the Makepl script. This

script defines shell environment variables and machine

dependency flags which are sent to the make utility. Each of

the source code directories contain a Makefile which instruct

make which and how items need to made in that directory. There

is also a Makefile in the top directory which knows the order

in which to make each directory. The Makefile files contain

instructions that behave like command keywords.



6.9-7

These commands are defined in the top node Makefile and in each

source code node Makefile. For more information on the main

node make structure, please see the comments in the main node

"Makepl" file.

The User subtree should be used to create modified versions of

Polar. In addition to the instructions contained in the main

node make structure, the user make structure knows how to get

versions of source code from the appropriate location in the

main version and how to use as much compiled code from themain

version. For more information on the user node make structure,

see the "README.User" file in the top User node directory

(named "User' in the main node directory).

Making Changes

Any supported changes to the main version of Polar will

accompanied with instructions. Of course, no one is watching

so you can still change the Polar source code in the main

version. It is not a good idea. If changes are desired, a

better place to do it is in a User node.

The exception to this would be if an include file needs to be

changed. For example, if the NTERAK module which calculates

sheath wakes runs out of space because its data arrays are too

small, the Shado.h file needs to be modified. To do this, go

to the 'inc" directory. Edit the file, Shado.h and increase

the parameter, msurf, to the desired number. When the file is

saved, the date of last modification is changed. Now return to

the main directory and type "Makepl check". This command

directs make to traverse through the entire Polar source code

structure and update any files, libraries, or executables

affected by the change. Unfortunately, anyone using the User

node structure must also update their versions of Polar.



6.9-8

The necessary instructions are discussed in the README in the

User directory.

In any case, if the main version of Polar is modified, the

version variable in Makepl should be changed to something

appropriate.

Porting to Different Machines and Other Ugly Tasks

Currently, Polar 1.3 is able to run on a Sun 3 and on a Ridge

3200. The previous versions of Polar has been ported to

VAX/VMS, CRAY/COS, and other even more obscure operating

environments (UNIVAC/EXEC 8, CYBER). The coding standards used

developing the Polar package prevent porting troubles, i.e.

built in system dependencies.

Moving Polar to other UNIX should be fairly straightforward.

If the new machine is not a Ridge 3200 (running RX/V) or a

Sun 3, try the Sun 3 flags first. The Sun 3 flags favor more

standardish Fortran and UNIX usages. The file "Install.notes"

contains some useful hints on moving the source code. The

usual routines which may require modification are found in

genlib. The different, system dependent routines are

identified by flags added to the source code name. For

example, uflset.c SUN3 is the Sun 3 version of uflset.c and

uflset.cR3200 is the Ridge 3200 version.

The routines which may require attention when moving to a UNIX

environment are segkil.c (floating point error handling),

uflset.c (floating point underflow error handling), iclock.c

(time and date information), and mclock.c (run timing

information).



6.9-9

When porting to operating systems other than UNIX, setchr.f

(word size, byte size, and character size information) may need

modification and all of the c routines may need to be replaced

with Fortran equivalents (see the _VAX routines).

The Makepl .tructure is designed to be used in an NFS

environment with different types of CPUs using the same disk

storage. It is possible to use the same set of source to

maintain current versions of the executables in order to reduce

disk usage and time spent maintaining different versions of the

source.

Tidbits about Makefiles

See the file, Make. info. There should be online information

available on all UNIX systems via the "man make" command.

Additional information car be found in the system manual titled

Programming Tools or Programming Utilities.

Useful References

Makepl (the file with the UNIX commands used to run make) Polar

1.3 User's Manual

Helpful People

David Cooke AFGL, (617) 377-2931

John Lilley S-CUBED, (619) 453-0060

emil =)lilleyOscubed.scubed.com



6.9-10

6.93 Information for Making Local or User Modified Versions of POLAR

This file is called OREADME" and is found in the subdirectory,

"User" beneath the top POLAR source code directory. The directory,

User, contains the Makepl and Makefile files necessary to create

versions of POLAR which are independent of the Main version.

---README.User

README file for Polar 1.3 User node make structure 4/21/89

Overview

The User make structure should be used to. test modifications to

the Polar source code. By keeping the distributed source code

and the local modifications separated, it will be easier to

update the Polar package while retaining any desired changes.

Getting Started

(UNIX commands are indicated by a leading ">')

The frst step is to copy the prototypical User directory found

in the main node to a working directory location. After

creating and changing directories to the new user node

directory (called USERNODE from now on), enter the following

command to copy the User structure. Replace WHERE with the

name of the top of the main Polar source directory.

>(cd WHERE; tar cf - . ) I tar xfo -



6.9-11

Cool, now the whole Polar directory structure complete with

customized Makefile files and Makepl script has been copied to

your working area. To complete the installation, two variables

need to'be modified in the Makepl file. This is a shell script

which sets machine dependent flags and defines directory

locations.

Find the line which begins with "P1_NODE=". Place the complete

path name to the main node directory (same as WHERE above)

immediately after the "=" without any spaces. This is used to

find the main versions of z=urce and object code and archive

libraries.

Now find the line "NODE=". Put the name of the top user

directory (same as USERNODE above) immediately after the "=".

This defines the locations of your modification directories.

One more thing to check. Find the line beginning with

"CPU TYPE=". This defines a flag which is used to make machine

dependent decisions. Currently supported Polar versions are

defined for the CPULIST variable.

Some more options and flags can be set, take a look at the

comments at the top of the Makepl file find out more about

them.

After making the desired changes in Makepl, it is necessary to

complete the initialization of the user area. If most or all

of the directories will be changed, from the USERNODE

directory enter "Makepl installuser". If only a few

directories are going to be modified, the install-user command

can be issued in just those directories.



6.9-12

If the USERMODE flag is changed after a user node has been

installed, it will need to be reinstalled. The best way is to

enter:

>Makepl clobber

)Makepl install user

This will replace the old make products and flags with the new

ones.

Making Changes

Here are some quick notes for doing some of the standard

things to a User version.

1) Grabbing source code from main version

To grab the main version of the source, just call Makepl

with the name of the source code desired. For example,

to change the optin.f routine in nterak, enter "../Makepl

optin.f" from the nterak directory.

2) Things which will may need to be modified

a) Makepi

Modify Makepi if a new directory is added, a new

USER-MODE or CPUTYPE is added, or a different Polar

library is desired.

b) main Makefile

The top Makefile should be modified if a new

executable or library is added or a new make option is

added to all or some of the subdirectories.

c) changing Polar libraries to be used

The Polar libraries used for linking the executables

can be set in two places. If a library is to be used

for all of the executables in the structure, change

the Makepl. If a library is desired for just one

executable, modify the Makefile in that execu-.able's

directory.



6.9-13

d) where do executables go?

This is determined in the Makepl file by the BINDIR

flag. The default is in NODE/bin. There is a similar

variable for the location of the user versions of

archive libraries (ARCDIR) in Makepi. The particular

Makefile for the executable can also be modified.

3) Modified routines

Start by grabbing the main version of the source. For

example, to change the optin.f routine in nterak, enter

"../Makepl optin.f" from the nterak directory. When

you're ready to compile and link the new version, modify

the Makefile (note 5 below) so that it will use the

local version.

4) New routines

Just add the name of the routine to the appropriate local

source code list.

5) modify Makefiles in directories with changes

There are some notes in the Makefile files which explain

the basic changes needed to use the modified version of a

routine. Basically, all source code files in a given

directory are listed by name. The _FSRC kinds of

variables contain the list of Fortran routines. There are

two lists for each type of source code. One is the list

of routines which are taken from the main Polar node. The

other is the list of local routines. A subroutine name

can only appear in one list. So the standard thing to do

is to move the modified routine from the main node list to

the local list. If any new include file dependencies are

added (or removed), the individual dependency instructions

at the end of the Makefile should be updated too.

6) Moving routines from one directory to another

Take the name of the routine out of the source code

list in the Makefile and put it in the equivalent list

in the new directory.



6.9-14

If there are any applicable Makefile instructions for file

dependencies or special handling instructions, move them

too. Oh, and don't forget to move the routine.

7) include files

Only change include files in the inc directory, otherwise

bugs may arise when object code from the different

directories is linked together. When modifying include

files, it is a good idea to use the OLDWAY flag for

USER-MODE in Makepl. This may require re-installuser'ing

the desired directories.

Useful References

README and Make.info in Polar 1.3 Home directory

Makepl

Polar 1.3 User's Manual

Helpful People

David Cooke AFCL, (617) 377-2931

John Lilley S-CUBED, (619) 453-0060

email =>lilley~scubed.scubed.com



6.9-15

6.94 A Quick Summary of Makefile Syntax

The make utility utilizes its own language to define the

relationships between files and the methods to create necessary files.

The following file is called "Make.infog and can be found in the top

POLAR directory. For futher information, on line help is available via

"man make" and the documentation for most UNIX systems contains a

helpful document in the "Programming Utilities" reference under the

topic, make.

---Make. info

Here are some helpful, hopefully, notes on Makefile syntax.

Makefile instruct make how to check the currentness of the parts

needed to make the target item.

To use make with these Makefiles, first edit ../Makepl to make sure it

set up properly for this machine. Then instead of typing
"make (options>", type "../Makepl (options>". This will define the

necessary variables and then automatically call "make (options".

How to add a new routine the Makefile in the appropriate directory:

Add the name of the new routine to the CSRC or FSRC list. If it

contains an include file, add a dependency line at the bottom

of the file.

Some notes on make syntax:

Variables are defined using VARIABLENAME = stuff

Rules are defined using TARGET: DEPENDENCIES

The first rule whose target does not start with a 0.0 is the

default action. (*check' in this file.)

Commands which start with 009 are not printed when executed.

Errors on commands starting with "-" are ignored.

Variables are of the form $(VARIABLE NAME). If the variable name is

a single character, such as H (for HERE), it can be written as $H.

make will figure out some useful wildcards. The ones used in these

Makefiles are:



6.9-16

S* = the file part of the target with the suffix removed.

SQ = the full file name of the target being evaluated.

$(OF) = the full file name with the directory portion removed.

S(OD) = the directory portion of the full file name.

S(FSRC:.f=.o) = The suffices of items listed in FSRC are changed

from "fJ to ".o".

(See also the UNIX manual entry for make. Some manuals also have a

helpful paper on make in the Programming Tools or Utilities manual

which is not online.)

setting MAKE variable to make allows the make -n option to traverse

the entire make tree. So if a rule used to create something calls

make, that make is also tested. The -n option is used to print out

the commands make will generate without executing them.

* U. 9. GOVERM " PRIWIPG OPPICE: 1990--300-000/20023


