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1.1-1
1. INTRODUCTION

POLAR is a set of computer programs designed to predict the
electrical interactions between the natural environment and a large
spacecraft in polar earth orbit. POLAR consists of many complex
physical models which have been converted to algorithms and connected by
an executive structure. Since there are a wide variety of spacecraft
and environments, POLAR has been written with maximum flexibility and
applicability in mind. However, to allow for when a model may prove
inadequate, POLAR has been designed with a high degree of modularity to
enable changes in the physical models and algorithms to be made quickly
and reliabiy. The documentation is also designed modularly so that code
modifications can be documented immediately. Thus this manual is
intended to be a living document, accurately refiecting the most current
status of the POLAR code. This modularity does make for difficult
reading, but we feel that the total information content is enhanced and
that it is a valuable compromise. Since the models in POLAR are subject
to change and replacement, it is important to have matched editions of
the manual and the computer code. The edition date for this manual is
September 1989, and it describes the POLAR 1.3 version delivered to AFGL
in September 1989.

1.10 CODE STRUCTURE

POLAR is written in ASCII standard fortran using top down,
structured programming principles and is in general accordance with Air
Force coding standards. It consists of four main programs and several
attending utility programs. Program one, called VEHICL, handles object
definition. Program two, called ORIENT, is used to reorient an object
and its grid. Program three, called NTERAK, actually calculates the
spacecraft-plasma interaction and most of the physical models are
contained in NTERAK. The fourth program is called SHONTL, and it
controls plotting and information retrieval. The utility programs
provide the means to translate machine independent output of SHONTL to
local hardware graphics commands, perform quick one dimension

calculations, and post-process NTERAK runs.
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1.20 DOCUMENTATION
This document is structured hierarchically. The description of

POLAR goes from basic physics, to physical models, to algorithms, to

coding structure, and finally, to operating instructions.
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2. THE PHYSICS OF LARGE STRUCTURES IN THE POLAR IONOSPHERE
A good source for information on the physics of large structures

in the polar ionosphere is the POLAR Code Validation final report SSS-
DFR-89-10708.
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3. PHYSICAL MODELS EMPLOYED IN THE POLAR CODE

The POLAR code makes various assumptions which enable it to
perform three-dimensional charge calculations in relatively short Debye
length plasmas. In this section we examine the component physical
models and discuss their validity. While each is addressed separately,
the code achieves a self-consistent solution by various levels of
iteration. These are described more fully in Chapter 4, Computational
Techniques. This chapter provides an executive summary of the models as
if the numerics were arbitrarily accurate. Numerical techniques are

discussed in greater detail in Chapter 4.

One major, overriding assumption should be identified before the
component by component description, which is that all time dependence on
the scale of particle dynamics is ignored. This means that particles
see spatially dependent but time independent fields for the period they
are near the orbiting vehicle. As such, all plasma oscillations,
including electron and ion modes are precluded. Thus, oscillations in

the wake or at leading edges will not be predicted by the POLAR code.

3.10 THE POLAR PLASMA ENVIRONMENT

POLAR can model a wide variety of plasma environments from
reasonable combinations of the following populations:
Ions:
Cool Maxwellian ions (input AMU).
Cool Maxwellian protons.

Both the protons and ions are assumed to be isotropic in the plasma
frame. The relative densities are controlled by inputing the density
ratio with the total constrained to equal the ambient electron density.

Both populations have temperatures equal to the temperature of the
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cool electrons, (temperature 1). During wake calculations the ion
temperature can be defined to be different than the electron

temperature.

Electrons:
Cool ambient Maxwellian, temperature 1, density 1.
Suprathermal, power law distribution of energies.
Hot Maxwellian, temperature 2, density 2.
Energetic, Gaussian distribution of energies.

The cool Maxwellian population is considered isotropic in the
plasma frame. The other, more energetic populations may be given field-
aligned and loss-cone distributions in the future but are presently

considered isotropic only.
3.20 PLASMA POTENTIALS

The other major assumption is that the only fields of major
importance are the static electric fields obtainable from Poisson’s
equation and the earth’s magnetic field. The only velocity related
field included is that induced by y x B on conducting surfaces. The

frame of reference is chosen to be~the~stationary plasma, so that

¥y x B effects appear on the vehicle as boundary conditions. The plasma

at infinity is defined to be at zero potential.
Plasma potentials are obtained from Poisson’s equation
2 =22
where ¢ = eV/kT is the dimensionless potential, A is the Debye length

(Xz =€ kT/Nez), and p is the sum of the appropriate ion and electron
charge densities (p=Ni + "e)' Contributions from hot auroral electrons

and
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particles backscattered from the vehicle are neglected except for
electron secondaries generated during electron collection. Poisson’s
equation is solved using either fixed potential or fixed normal electric
field boundary conditions on a surface by surface basis, as appropriate.
Solution techniques for the Poisson equation are presented in Section

4.20, and the overall space charge iteration in Section 4.44.

3.30 PARTICLE DENSITIES

The electron density within ion collecting sheaths is assumed to

be Maxwellian without any excluded orbits;

ST

(] e
(o]

where neois the unperturbed cold component plasma density. The

absence of excluded orbits implies neglecting potential barriers for
electrons in the wake. The validity of this approximation has been
studied using as an extreme case a disk moving infinitely fast with
respect to thermal ions, but very slowly with respect to the electron
thermal velocity. Such an object has rigorously no ion charge density
in the wake and thus has the maximum negative space charge physically
possible. Solving Poisson’s equation for this case gives the maximum
possible negative plasma potential. The central wake potential as a
function of disk radius over Debye length is shown in Figure 3.30/1. Ve
see that even for shuttle size objects that the peak space charge
potential is less than 20 kT, or about 2 volts. If the surface boundary
conditions are more negative than this wake space charge maximum, the
potential in the wake will be monotonic and no electron orbits will be
shadowed. This will clearly be the case for any case with substantial

negative charging.
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Within an electron sheath, the electron densities use a sheath
electron model similar to the ion sheath model. The ion density term is
determined using one of two models, depending upon the local potential.
At large distances from the object, where the potential is near plasma
ground (substantially less than the ram energy of the ions), ion orbits
are assumed to be unperturbed by electric fields. In this presheath
region, ion densities are determined for both ions and protons, by the
*neutral ion model" described next. A sheath edge is assumed to
separate the presheath from a sheath region wherein electric fields
dominate thermal effects. In the sheath region, ion densities are
determined by sheath ion model (3.32, 3.60).

It is important to note that the densities that result from the
combined use of the neutral and sheath models are subject to certain

limitations and shortcomings.

There is a low density or Laplace |limit where the sheath edge is
no longer sharply defined and electric fields extend far into the
plasma. In this limit, the neutral ion approximation would fail, and
thermal ion motion would be incorrectly ignored inside the sheath edge.
This limit is characterized by a Debye screening length that is
comparable to, or larger than, the object size. This does not mean
POLAR cannot provide useful results in the long Debye length limit,
since the space charge coupling to the potentials is reduced by k-2.

The user should, however, understand that ion densities and sheath ion
currents (3.60) can be in error. There is also a short Debye length
limitation that occurs when the Debye length is very much less than a
zone size and object potentials are low. This combination can result in
an object to sheath-edge distance that should be less than a zone, which
is, of course, impossible to model accurately. This limitation is
further discussed in Section 4.44,
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3.31 STRUCTURE OF THE PLASMA WAKE

The mode! o7 the wake structure used by POLAR depends on the
position relative to the so-called ion front. This ion front marks the
boundary where electron density begins to change on a scale commensurate
with the Debye length and the ion density takes a sudden and dramatic
drop. Several authors have discussed the relationship between the wake
fill process and the theoretical problem of the expansion of a plasma
into a vacuum. In particular, problems applicable to ionospheric
conditions have been treated by Gurevich et al. (Ref. 3-8), Gurevich and
Pitaevskii (Ref. 3-9), and Schunk (Ref. 3-10), to name a few.

The solution to the Vlassov-Poisson equation system is in general
quite difficult to obtain, but for the expansion of a plasma into the
void it can be solved explicitly [Gurevich et al., 1969] (Ref. 3-10).
Ahead of the ion front the plasma is treated as rarefied: its motion is
controlled by the thermal spread in ion velocities. Behind the front
the motion is controlled by the electron temperature and ion mass.
Figure 3.31/1 illustrates these regimes and defines the coordinate
systems used.

“POLAR” WAKE MODEL

-2
UNDISTURBED M CONE
REGION
-x =
N < F-SIMILAR
HoZ ON
R R (Z+55t)

—_— - M 0, exp-
PLASMA FLOW 3

B B St
JION FRONT 1 <&
2 { ACCELERATED . < é

3T NEUTRAL L T By FIELD ) Y
L APPROXIMATION [-o Lo (e e i

Figure 3.31/1. The POLAR wake code distinguishes three regions of
interest. The ambient plasma, the region of self-similar
model, and the neutral approximation spaces are bounded
by the Mach cone Z = -S t and ion front, respectively.
The coordinate system used is consistent with equations
(1) through (10).
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The governing equations in the region behind the front,
considering that electrons are more nobile than ions and that they

maintain equilibrium with a local potential, are

The Boltzman relation

Ng = Ng €xp (e¢/kTe) (1)
Continuity

ani a(niu)

56 * "oz - ° 2

Equation of motion

ov  vov _ -ed¢
3t * 3z - Moz (3)

Poissons equation
QEQ = 4xe(n_ - n.) (4)
az2 - e i

where

n_ambient density:

n. ion density:

electron density:
electron temperature:

n
T

e electron charge:
¢ local potential:
k

Boltzman’s constant.

and where z is a variable representing distance parallel to the front

velocity or, in this case, perpendicular to the orbital velocity.
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Crow et al. [1975] (Ref. 3-12) have numerically solved (1) through
(4) to predict the position of the ion front. Katz et al. [1985] (Ref.
3-13) developed an analytical fit to the Crow results:

2et) = D y{[wt + Yinat + awe) - we - [1 - 2429) 6t - Lingt + awt)} ()

where
(41noe2)1/2 (kTe)I/2
"o
are the ion plasma frequency and Debye lengt!., respectively, and a is a

free parameter determined to be ~1.6.

Katz et al. [1985] showed that this formila agrees well with
laboratory data from Wright et al. [1985] (Ref. 3-14) and incorporated
it in POLAR. Ahead of this front ZF‘ the plasma is assumed to expand
owing to thermal motion, the so-called "neutral approximation." Behind
ZF the plasma evolves into a state which is self-similar [Chan et al.,
1984 (Ref. 3-15)]. The self-similar solution of (1)-(4) for z ) -Sot is

(z + Sot)
n=n,expl - ———§EE——' (6)
_ 1/2 . . .
where S0 = (kTe/M) is the ion acoustic speed.

The time variable is defined as
X

b=y (7)
o

where x is the distance behind the object (perpendicular to z) and Vo is
the orbital velocity. We define the self-similar variable § as

5=g§; (8)
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Thus the self-similar solution essentially states that between the
region bounded in positive z by the front ZF and in negative z by the
line z - -Sot, the density rises exponentially to be equal to the

ambient value along z = -Sot. This is an intuitively reasonable result.

In summary, the wake routines in POLAR employ two limiting cases.
(1) Ahead of the ion front the electric field is negligible and the
motion of ions is identical to neutrals. (2) Behind the ion front,
whose position is determined by (5), the quasi-neutral self-similar

solution of (6) is implemented.

POLAR has routines which mode! accurately the geometry of the

object, and the "neutral ion" trzjectories are calculated from

f(x, 1) = glx, DF, (V) ©)

where in (v) is the unperturbed distribution function for a drifting
Maxwellian, and g(x, f) has value "0" if a ray starting from x and going

in the direction fl would strike the vehicle and "1" if it would not.

The local density is given by

0 () = [, (x, ) = Jalx, W{F, (v, DPdr}dn (10)

This initial density calculated in three dimensions for neutral
particles is compared with density calculated assuming the complex
geometric object is replaced by a flat plate at a position where the
dominant source appears at the object edge. This ratio provides a
"geometric correction factor," which is applied to the quasi-neutral
one-dimensional solution discussed earlier for positions behind ZF' In
this way, POLAR can calculate quite rapidly an approximate value for the

ion and electron densities in the wakes of complex objects.

Note that the assumptions behind the front are (1) that the
electron temperature and ion mass govern the equation of motion, (2)

that the plasma is quasi-neutral, (3) that the magnetic field does not
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affect the ion or electron motion, (4) that equation (5) serves as a
good approximation for determining the boundary of the ion front, and
(5) that the geometric correction factor calculated in detail with the
three-dimensional neutral model can be approximately applied to correct
the plasma densities as well. Therefore the algorithm can address
complex geometries but takes advantage of the smooth wake structure
characteristic of ionospheric plasmas where Ti/Te ~ 1. Additionally,
the model ignores fields existing in a sheath near the body surface,
which should not be of concern in cases where the spacecraft is near
plasma potential. This implies that ion acceleration calculate by POLAR
is dominated by electric fields due to space charge separation in the
wake. (Ref. 3-16)

3.32 SHEATH DENSITIES

Section 3.60 discusses the POLAR sheath model and the sharp edged
sheath concept. The derivation of densities from trajectories within
the sheath is explained in 4.42.5. What follows here is a brief

out!ine.

Given a sheath edge, currents from "infinity" to the sheath edge
are calculated analytically using orbit-limited theory. These currents
are assigned to a set of "super particles® (Reference 3-5) that are
tracked inwards from the sheath edge to the vehicle surface. Pushed
particle densities are determined from the product of the particle

current and the time that a particle spends in an element.
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3.40 SURFACE CURRENTS

POLAR models a number of charged particle sources as responsible
for surface and vehicle charging. These are ambient ions and electrons,
energetic electrons, ion and electron generated secondary electrons,

backscatter electrons, photoelectrons, and particle beams.

The comments of Section 3.30 concerning potential barriers apply
here when the vehicle is negatively charging. We assume the ambient
electrons to be repelled with no excluded orbits within the hemisphere
of velocities impinging upon a surface. When these conditions are met,
the velocity space integrals over a Maxwellian distribution decouple

from the surface potential and we may write

: _ . _eV/kT
ieM) =j e

For the energetic electron sources, the current integrals are more
involved. These are discussed further in Section 3.41 and presented in
Sections 4.52.3 - 4.52.5.

The calculation of attracted specie currents is discussed in

Section 3.42.
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3.41 ANALYTICAL ELECTRON SURFACE CURRENTS

A statistical study (Ref. 3-1) of high latitude precipitating
electrons has shown that these fluxes can be well represented by the

following parametric expression

2

-[(E-E_)/6)

® (E) = AE™® + Cn —5—3/5 <ENT g g B/ (3.41-1)
(kT)

These are the power law, hot Maxwellian and Gaussian distributions

mentioned in Section 3.10, where C = (2 me).ll2 or3/2

,and A, a, n, T,
B, Eo and 6 are parameters determined by the particular shape of a
spectrum. Here, ¢(E) has units of {/m2 e s ¢ str * keV. To apply these
distributions to the charging of a surface, it is necessary to formulate
the distribution function, f, at the surface. We start by dissecting
Eqs. (3.41-1). Equation (3.41-1) appears to assume a zero space
potential because a factor of E (total energy) rather than K (kinetic
energy) is used for the velocity or energy space differential volume
unit. We next invoke the Vlasov equation to allow a mapping of f along
a trajectory connecting the surface to "infinity®". In doing so, we
replace the one factor of E with K, while elsewhere setting E = K + qV
where q is the particle charge, and V is the surface voltage. Thus, we

write,

FK,V,9) = A(P) * (K + qv)~ (@)

2 F (¥
£ ———~ * exp(-(aV + K)/k T )
e=1 (kTe) L

+ B(¥) exp(-(K - K )2/0%)

where the index e covers both hot and cold electrons and
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where the index e covers both hot and coid electrons and

Fe(') =g (,)-net {kT/27m
is the thermal flux multiplied by a function of the pitch angle. The

net electron current density at a surface is, of course,

r/2 27 .
J=q J d¢ J do k dk £(k,V,§) cosd sind .
0 0 L

L = max(0, -qV)

The relation between the pitch angle ¥, and the spherical polar angles

of the surface normal is:

¥(6,7,4) = cos™! [cosy cosg + sinT sinf cosg]

where 7 is the angle between the surface normal and the magnetic field.

These angles are illustrated in Figure 3.41/1.

A
n

|

-

9(0,7,4) = cos™ [cosy cost + siny sinv cusyy

Figure 3.41/1.
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It is important to note that in composing f at a surface from f at
infinity, the angular factor in f, A(y), g(y¥), and B(y), may evolve
dramatically. Ultimately, POLAR may estimate the angular evolution of
the electron distribution function, as this may be important for some
narrow high energy distributions as well as necessary for the prediction
of magnetic field effects. However, since the usual tendency is for the
repelled specie distribution to broaden our first guess will be to

assume f to be isotropic at all surfaces.

The energy integration limits, U and L, are O and @ for the
Gaussian and Maxwellian distributions, but a lower cutoff must be
imposed on the power law distribution. This cutoff is physical in its
origin as the electron currents are finite, but determining it
accurately is not always possible. POLAR uses a 100 eV default cutoff
which may be changed, or alternatively the total current for these
electrons may be specified and a reasonable cutoff will be deduced by
POLAR.

POLAR integrates each population separately. These integrations
are described in Section 4.52,

3.42 ATTRACTED PARTICLE SURFACE CURRENTS

POLAR presently considers two positively charged particle sources;
one specie of ion (singly charged with a variable mass), and protons.
As the attracted species, the calculation of the ion current density at
2 surface is a non-local problem which often depends critically upon the
shape of the orbits that bring ions to the surface (Ref. 3-2). That is,
the problem is generally numerical with few exceptions that yield to
snalytic evaluation. POLAR calculates these currents as part of its
sheath model, so the reader is referred to Section 3.60 for further
information, and a brief discussion follows here.
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External to a sheath edge "orbit-limited" (Ref. 3-2 and Section
3.60) conditions may be assumed which will allow a flowing Maxwellian
velocity distribution to be analytically integrated to find the ion
currents to the sheath edge. These currents are assigned to
representative particles that are traced inwards to the object surface
to yield ion surface currents. This calculation is performed as a
portion of the POLAR sheath model which is executed as the CURREN module
of NTERAK (see Chapter 5 for POLAR code structure).

When electrons are the attracted specie, the same procedure as
above is followed, except that external to the sheath the electrons are
assumed to be thermally distributed and at the sheath edge the one-sided
thermal flux through the boundary is used to define the electron sheath

flux.

In addition to the space charge |limited surface current model, two

other methods can be used to calculate the attracted specie current.

The first method applies the analytical! expression for orbited
limited current to a spherical probe, using the local surface potential

for the sphere potential,

for the attracted species. The effective temperature, &, takes into
account the orbital velocity for ions. This is the same approximation

used in the NASCAP/GED spacecraft charging code.

The second method uses the analytical convergence formula to
obtain 2 potential and a sheath boundary surface. The total sheath
current is distributed among the surface cells according to their
surface potentials, just as in the orbit Iimited case. The only
difference is the currents are normalized so their sum equals the total

sheath current.
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3.43 INITIAL SHEATH PARTICLE VELOCITY DISTRIBUTION

In this section we dis:uss the distribution of the initial
particle velocities to be tracked from the sheath. Much of this is
based on the results of Section 4.42.2 which discusses the effect of
attractive potentials on a flowing plasma. In that section the one

component of the first moment was computed, namely,
e b

Where ¢ > refers to averaging of the distribution function at a surface

whose normal is n (see figure 4.42/1).

The distribution of initial velocities is selected to produce the
same mean and variance of the actual distribution function. This is to
simulate the thermal spread of the initial velocities and produce orbit
limited effects. That is

+ +
V = (v) and,
aij = ((Vi - vi)(vj = VJ)>

Where the subscripts refer to the directions perpendicular to the
surface normal. For convenience we choose i=l to be in the plane
defined by the surface normal and the mach vector, and i=2 to be in the
direction normal to both the surface normal and the i=1 direction. For
a cold plasma, t=0, aij = 0 and the initial velocities have no thermal
spread. The results of section 4.42.2 were extended to allow the
calculation of the aij' The initial particle distribution consists of §

particles,

+ + +

+ +
{ul’ u2l u3l u4l us}l

where

+ -+

ug, = V, and
-+ >
g =V 2oy
U, =V g
Uzrg = ¥V 2 %2
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This distribution reproduces the mean and variance of the original
distribution.

3.50 ELECTRICAL CHARGING

The electrical charging of the spacecraft is modeled using a
circuit analogy. The plasma around the craft becomes a current source
with a capacitance between the plasma and the object’s surface. The
spacecraft is modeled as a network of capacitors, resistors, and voltage

sources. The basic charging equation is

I(t) = ¢ g V(t) + aV(t) (3.50-1)

where I is current, C capacitance, 0 conductance, and V is voltage.
Each surface (the smallest mesh unit sized square, triangular and
rectangular building block) contributes a component to the current and

voltage vectors.

Surface voltages are updated (integrated) by timestepping a finite
difference approximation to Eq. (3.50-1) (Section 4.51). This
integration frequently proves to be difficult because of the wide range
of capacitance that can occur in the g matrix. For instance, a surface

to plasma capacitance might be

€, €
2
'l §2 ~ 10 pf/m

where A is the surface area and R is an effective radius, whereas the

surface to conductor capacitance of a dielectric might be

)lﬁ
o

¢ 2
* 301 uf/m” .
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Thus, a driving current of 10"5 A/m2 would produce charging rates of 106
volts/sec and 102 volts/sec. Obviously, these two extremes would

require different timesteps for a simple explicit integration.

The stability difference between the explicit and implicit forms

can be demonstrated by a simple scalar analog.

Explicit: C[V(t2) - V(tl)] = I(tl) e At
Implicit: C[V(t2) - V(tl)] = I(t2) * At
Substituting
I(t,) = 105) + ' (3.50-2)
1
gives
I(tl) At
V(t2) - V(tl) = — g
C-

1

If we take a case of C = 10”1} f, I(t) = 1076 amp,
At = 1 sec, dI/dV = -10_8 amp/volt we find:

10° volts.
102 volts.

Explicit: AV
Implicit: AV

That the explicit answer is unstable is indicated by plugging AV
into Eq. (3.50-2) giving I(t,) = -107> amp (explicit) or

I(t,) =107 amp (implicit).

POLAR utilizes a two stage implicit timestepping algorithm to
allow large timesteps for the large capacitances while maintaining
accuracy and stability for the smaller capacitances. Details of

implementation can be found in Sections 4.51 and 5.70.
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3.60 THE POLAR SHEATH MODEL

The concept of a plasma sheath requires definition. In general,
the plasma sheath can be defined to be the region of non-neutral charge
density that shields a charged body from distant plasma. A more precise
definition should distinguish between an "orbit-limited" sheath and a
"space charge-limited" sheath. Investigations into current collection
by Langmuir probes (Ref. 3-2, 3-3) in the long Debye length limit, have
shown that current collection is orbit-limited, i.e., on the surface of
a probe, distribution functions are filled over a hemisphere, and are
related to the distant plasma distribution function by constants of the
motion or "orbits™. As the Debye length is shortened, current
collection remains orbit-limited until the charge density is sufficient
to cause the electric potential to decrease faster than the inverse
square of the radial distance. At this point, current collection is

said to be space charge-limited.

An important feature of the orbit-limited sheath is that the
particle currents to a surface are independent of the exact shape of the
potential well, making it possible to derive general expressions for
currents and densities. The opposite is true of the space charge-
limited sheath where currents and densities must be calculated

numerically by following trajectories in potential wells that must be

consistent with the particle densities. The many approaches to this

problem have been reviewed recently by Laframboise (Ref. 3-4).

POLAR models the space charge-limited extreme, which dictates the
use of some trajectory tracing. Efficiency is maintained by recognizing
that orbit-limited conditions exist in the quasi-neutral region outside
the sheath, and that trajectories must be followed only inside the
sheath. POLAR thus makes a sharp sheath edge approximation to divide a
problem into the two regimes. Fluxes from "infinity" to the sheath edge
are calculated analytically using orbit-limited theory (Sections 3.42,
4.42.2). These fluxes are then assigned
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(Section 4.42.3) to trajectories that are tracked (Section 4.42.4)
through the sheath to determine particle densities in the sheath
(Section 4.42.5) and surface currents (Section 4.53). Of course, for
the self-consistent probe problem, POLAR must iterate between sheath
density solutions and Poisson solutions, and for a charging problem a
higher levei of iteration updates the surface potentials and iterates

with the sheath-Poisson solution.

The sheath edge is nominally chosen to be the -0.47 kT/e potential
contour for ions and +0.47 kT/e for electrons. For a spherical probe in
a non-flowing plasma, this is consistent with previous investigations
(Refs. 3-5, 3-6). In the presence of net plasma flow, POLAR maintains
the -0.47 kV sheath edge choice, but it is presently not clear what the
best choice for the sheath edge will be for high flow problems (see

Section 4.42 for details on edge definition).

Numerical considerations can also mediate the choice of the sheath
edge. In the fimit of high density and short Debye length (with respect
to mesh spacing), a necessary stabilization procedure for the Poisson
solver (Section 4.44.1) will cause an expansion of the sheath. POLAR
compensates for this by choosing the sheath edge at a slightly higher
potential (Section 4.44.2), while defining a "presheath edge" potential
that is still -0.47 kT/e. This presheath edge potential is used to
calculate the orbit limited fluxes to the sheath. This technique
compensates for the sheath expansion by reducing the expanded sheath

area, while keeping the input fluxes constant.

There are two major approximations made in the POLAR sheath model.
The first is the so-called sharp sheath edge approximation. This
assumes that there is a sharp boundary between non-neutral sheath and
the surrounding quasi-neutral presheath region. For large objects in

short Debye length plasmas this is a very good approximation. The other
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approximation is that thermal effects within the sheath are small, i.e.,
from a given position on the sheath boundary, a single trajectory is
adequate to represent all particles entering from that position. This
implies that potentials, V, exist in the sheath such that

eV
o M1

and that the electric fields near the sheath edge are sufficiently
strong so that a velocity space element is accelerated rapidly and its

thermal spread is small;
Ve ° T «L

where v,, is the ion thermal velocity, 7 is the transit time from the

th
sheath edge to the vehicle, of characteristic dimension L.
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4. COMPUTATIONAL TECHNIQUES

This section describes the algorithms used to implement the

physical model.
4.10 GRIDS - DISCRETIZATION OF SPACE

POLAR is a three-dimensional computer code; that is, its internal
representation of space allows variations in all three coordinate
directions. Since problem set-up can be extremely complex in three-
dimensions, the choice was made to keep the spatial coordinate system as
simple as possible. Space is divided uniformly into cubes. The
computer code stores information about a large set of cubical volumes,
called elements. It also stores values of electric potentials for the

corners of each element. The corners are referred to as nodes.

4.11 STAGGERED MESH

The coordinate system used in POLAR is Cartesian. This greatly
simplifies object definition and converting position vectors into
element locations. However, the types of problems POLAR is designed to
handle are very anisotropic. The density and potential perturbations
are along the wake direction and can extend for several vehicle
diameters. To provide resolution in this wake region but not occupy an
excessive amount of computer storage, a system of staggered meshes has
been implemented. The staggered mesh consists of rectangular layers of
elements that are only one mesh unit deep in the z-direction. They are
stacked upon each other so that the center of each layer is as close to
the wake center as possible and still have the nodes at integer
coordinates. Since this extension always is in the z-direction, the
object coordinates can be transformed by a 90° rotation matrix so that

an arbitrary Mach vector can be accommodated.
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The problem space is largest in the z-direction so that viable results

may be obtained for large Mach vectors in lower density plasma.

Examples of grids for two objects are shown in Figure 4.11/1.

4.12 0BJECT GRID

The object grid is the space in which the object is defined. This
subsection of the grid space is non-stepped and is - rectangular prism.
The object must be defined so that it fits entirely within this space
without touching the grid boundary.

The object grid also provides the coordinate reference point for
the entire problem. The lowest point on the x, y and z axis (lowest
leftmost corner) is defined to be the origin and has the coordinate
value of (1,1,1).
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4.20 POTENTIAL CALCULATIONS
4.21 FINITE ELEMENTS
4.21.1 General

Consider a charged object isolated in space. The potential ¢

everywhere is given by the solution to Poisson’s equation

€ V% =p (4.1)

Since POLAR considers some portion of the charge density p to be
dependent on the local potential, we can separate the local and non-
local contributions to p, and linearize about some estimate of the local

potentiai,ﬁo,

€ V= gy pg(#) ¢ 0,8 - 9 =Py e PP

where
p- = 0p/oé .

The variational principal associated with this equation is

2l [k ap?- 2t g

€ 2¢

- e 2 g5 - Jeg gopods] =% L=0

where we integrate over both the object and boundary surfaces (cs, cB).
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To simplify things for the purpose of illustration, let us fix the

potentials on these surfaces. L then simplifies to

b g2
L=Jav 3 op? - = - 55 (4.2)

€
Equation (4.2) involves an integral over the volume of the computational
space. 0One way to treat this integral is to divide the space up into
finite cubic volume elements. We begin with the first term in Eq.

(4.2).

ol op?-x Jv v, 1 (v9)?
e
e

In this approach the potential ¢ is defined at each grid point, or node,
defining the vertices of the elements. The potential inside each
element is then trilinearly interpolated from the values of each of its

eight vertices.

$°(x,y,2) =2 N2 4.

ice

where "i" are the nodes of element "e", and the Ni are given in Section
4.21.21. We form now,

V% (x,y,2) =2_ W% 4.
1

and
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1 2 _1 eone
favl g - 7> fav, b3 ,Z INSINSY 4.

X T W

- 1yt

e i J
where we have defined the quantity,
= jdv UNYYZ o gNY2 (4.3)
e i J

Note that wij depends only upon the shape of the element "e" (i.e.,
whether the cube is empty or partially filled). Similarly, for constant

charge in an element, the second term in Eq. (4.2) becomes

p p
D a i R a1
R°=lNidVe

Treating the last term,

J-"—-L V=L > p6; NN AV =T 3T 3T Vg,
e ) J e i J

ve. = N.N.dV
o'l ® (4.4)
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The variational principle therefore becomes:

i (T (2o - & Ve - 2enll =0 @

g ,Z [(wfj -y, - 2 RS] = 0 for each i (4.6)

is the equation that POLAR solves element by element, under the
condition of fixed boundary and object potentials. POLAR (or more
correctly NTERAK) solves Eq. (4.6) using the conjugate gradient method

that is presented in Section 4.31.
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4.21.2 SPECIAL CELLS

The geometry of POLAR objects can be treated in terms of a
relatively small number of volume cells. Each type has a maximum of
eight corner nodes, plus a node at the center of each possible surface
pointing into the element. The most common volume element (designated

type 0) is the empty cube with no surfaces. Other elements are:

a. The empty cube with up to 6 surfaces (also type 0);
The wedge element (type 1);
c. The empty element with a diagonal line (produced by a right-
triangle surface or a slanted thin plate) on one face (type 2);
d. The tetrahedron (type 3);
. The truncated cube (type 4);
f. The slanted thin plate (type 5).

Each element is characterized by (1) a standard orientation;
(2) a set of interpolation functions (see 4.21.21 for treatment of
surface nodes); (3) the matrix W, given by Eq. 4.3, which represents the
operator -V2 in Poisson’s equation; and (4) the matrix !, defined by

Eq. (4.4), which handles the screening part of Poisson’s equation.
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4.21.21 INTERPOLATION FUNCTIONS FOR FACE-CENTERED SURFACE NODES
(FCSN’S)

In constructing the matrices W and ¥ for volume cells with FCSN’s

~
~

it is convenient to work with the vector § = T ¢, where, for corner
nodes, § has identical entries to the potenti;I vector ¢, but for an
FCSN the ¥ entry is the difference between its electrostatic potential
and the average of that of its corners. In terms of §, corner node
interpolation functions are constructed neglecting the FCSN’s, and FCSN
interpolation functions are unity at the FCSN and zero on all other

faces. In terms of these interpolation functions, the matrices W and v

are defined by

[lp2 P =gWe=4 Ay
PP a=d"ve-¢ 814

where the integrals are over the element volume, and we have defined A

and B, which are readily shown to be given by

~

A = JVNi e 9N @3¢
IJ ~ ~ ~

B.. = fNi N g3
IJ ~

Finally,
W=TT AT
V=TIBT

The matrices I, W and V_are given for each element type in the

~

succeeding sections.




4.21.22 THE EMPTY CUBE (TYPE 0) ELEMENT WITH NO FCSN'S

Standard Cell 0
Empty trilinear cube
Orientation: Arbitrary

Potential Functign:
j

i N
1 (1-x)(1-y)(1-2)
2 (1-z)(1-y)x
3 (1-x)y(1-2)
4 (1-z)yx
5 z(1-y)(1-x)
6 x(1-y)(z2)
7 zy(1l-x)
8 «xyz
Wig
1/3
0 1/3
0 -1/12  1/3
-1/12 0 0 1/3
0 ~1/12  -1/12  -1/12  1/3
-1/12 o -1/12 -1/12 ¢ 1/3
-1/12  -1/12 0 -1/12 o -1/12
-1/12 -1712  -1/12 ¢ -1/12 0
Vi
1/27
1/54 1727

1/54 17108 1/27

1/108 1/54 1/54 1/27

1/54 1108 17108 17216 1/27

1/108 1/54 1/216 1/108 1/54 1/27

17108 1/216 1/54 1/108 1/54 1/108
1/216 1/108 1/108 1/54 1/108 1/54

0 1/3

1/3

1727
1/54 1/27
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4.21.23 THE EMPTY CUBE (TYPE 0) ELEMENT WITH SIX FCSN'S
7 8
. ,
} e14
5 ‘ 5

1
!
|
|
‘ °
| 12

° ! °

1

3 } . 10
‘ il
|
i
!

Figure 4.21.23/1. Cubical finite elements with six face-centered
surface nodes (FCSNs). The FCSNs are located on
the *x, ¥y, ¥z faces respectively.
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Figure 4,21.23/2.
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-

b, Ocx<l; X=14-x
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Interpolation functions for the cubical element of
Figure 4.21,23/1.




4.2-10

00’

000

000

000

000

000

000

000

000

000

000

000

000

000

000

001

000

000

000

000

000

000

000

0G0

00°G

000

000

000

000 000
000 000
00lL 000
000 001
000 000
000 000
000 000
000 000
000 000
00’0 000
000 000
000 000
000 000
000 0090

000

GO0

000

000

001

00°0

000

000

000

000

000

000

000

000

000
000
000
000
000
001
000
000
000
00°0

000

000

—.—_

A P A
000 000
GO — GO
000 000
G2 000
000 G4~
001 000
000 001
o0 000
000 000
000 000
00D 000
000 000
000 000
XL e

A
000
000
Sl
Gl -
000
000
000
00t
000
00°0
000
0070

000

o,

000

000

G -

000

G¢ -

000

090

000

00t

000

000

000

000

000

G-

000

000

000

000

000

001

000

000

000

D00

Ga

00°0
000
GZ -
000
00°0
00°0
00°0
00°0
001
000

000

¢G00

G-

000

Lo}
~
|

000

000

000

000

000

000

000

00’l

000

000

000

0049

6o 0

000

000

000

001



4.2-11

vioot'z

0/¢99

Leov e

AXUYA

133Y 4%

ISR VA

IR ¥4

CeELS

.v'

!

i

0(£994 646G+ 6GTGG 1 6GZGG

PZ0BLC 65255 1 6GI6G + 6STHS Y

6526G I

66265+

6G26G

6626G +

€EeLs -

i

CELLS

£eCLG —

eLeLS

t

LeogL”

i

LE0S L

|

LEOSL°

!

LgOoSL

¥Z081'C 0/€99 1 6G76G

0L€99

66G¢6G F

64766t

(808L -

LEOS L~

£LeLs -

£EeELG -

LE0EL~

(808~

£e€LG -

£e8LG -

vL081'¢ 6GC6Y

6GC66° 1

IR WA

IR WA

(€0gL

LeorsL —

FEELG ~

CEELG —

{sogL -

{sogL -

LEOEL

IR WA

IAUYA

|SXVA)

L80CL

$ECLS

{£0EL°

CeLiy

6626654+ vL081'C

0LE99 ¥

|

|

6GL6G +

6G¢H6G+ LL.0YL

6GL6G ¢

08991

L0V L~ (£0FL~ (9080 -
6SC6G F COELG - €E0LS - €00/~
Y A0 VL W AR S A

CECLY — CYVLG - (YOfL -
1£0C7 - ¢E8LG ~ (S05) -

PLOBVE €CCIG — (E08L — €946 -

CECLS

LeosL”

€eeLs™

(5084

CEELS

1£0eL

£eeLs’

Le0CL

!

!

M

8LLGLY vLOGFH vL00b 1

VZOBE Y 9060 OLSLb 4

VLOGr r OLELb E BLL6L Y

OLELE H HLOBY + LOBY Y

bLOGE S OLEIVF OLEIV )

0LCIE Y B/000 4 00091

0Lty 000sE Y /oY 4

000cy't o/t 0/¢Ib

Xt.(ye|y a3y,

(8080

IR N WAHES

CELLG -

(08~

LG -

LY0V L -

(AN R 2]

viogy

vL08F 4

8LL6L Y

0005 b}

0Lelb

0/¢LE

Yoogy

IRAN At

(7000

(€08

IR VAR

(909~

AR WA

vZagE

0/sLy

oLt

000+

BLL6L0)

Leogh s

viogy

0Lty

IR R NA R

(508 -

(5050~

IR R WA

YEYLG -

15081~

eyt

LEAUTE A

000¢ b+

AR

broge

H//G/

0751kt

F/ORE

§CLG - £€8¢LS -

(EOSL - (5050~

CEVLG~ CF6LG ~

LEOV— (L0 —

AR W AR 4 AN

CE8LG - (808 L -

0L 0005k}

COOCE 1+ oLgIb 4

YOBP' 4 O/C1E 4

048V b F OBV Y

bLORE + QLEIb 4

07gLE 4 pLOAK +

BLL6LV pLO8Y+

LLOogv't 974604




4,2-12

1860 ¢t LYZ¥0+ 92650+ 9Z6G0 + 926504+ 9Z6S0 0L9I0— 0L9 - QCI0 - OCI0— 96¢20'~ 96270 — 962C0 - 960T0 -
LPLb0+ 18V60+ 9Z6S0'+ 9Z6S0'+ 9Z6S0+ 9T6G0+ 96270 — 96T20— 96220~ 96ccu~ OL9iU - oeYlo’ - O0L9Lg — OL90—
9Z6G0+ 9Z6SO+ 1860 L¥LV0 + 0TGSO+ 9Z6S0+ 0L910 - 09910°— 96TC0— 9620~ 0LI0 - QL9 — 96220 - 96220 -
976G0 + 97660+ Lb/v0 + 18V60'+ 9Z650+ 9¢6G0+ 96220 — 96TZ0— 0L - 0F90°~ 96220~ 962¢0 - 0LYl0— OLuLO)—
97650} 9Z6G0 + 9Z6GO'+ O9ZESO+ 14¥60+ LPLbO+ OLI0 -~ 96720~ 0€0O— 98¢0~ 0£91L0°— 96C70 — GTNU — 96400 —
976G0'+ 97660+ 9Z6SO'+ 9T6GO+ IYLVO+ 18V60 T 96ZT0 — O0LANO— 96220~ (LII0~ 96220 — 0L910-- 96ZZ0— OLAHQ—
05910 — 96720'— OLYI0 ~ 96220 — 090 - 96270 — 8VZO+ 92600+ 97600+ 07900+ 9L6D0'+ 0L900’ + 0L900 + 9640071
05910 -~ 96220 - OCOO — 96220~ 96270~ 0LIN0 - 9T6E00 + 8FIZO+ 0£900°+ 92600+ 0L900 + 9600 1 96200+ 0900 A
0F910 — 967ZZ( — 967Z0 - 0L9I0'— 0€£910°— 96Z70— 92600 + 0£900'+ 8¥IZO+ 9¢600°+ 0£900°+ 86,00+ 82600+ 0Y9G0O?
0¢910 - 96220~ 96220 — 0C910'— 9620~ 0£910'— 0£Y900'+ 9T600'+ 92600+ BFIZO+ 96£00+ 0£900+ 0€900°F 960G +
96220~ OT90 — 05910 — 967Z0 - 0£910— 96220~ 9Z600 + 0900+ 0L900'+ 96L00'+ B0+ gz600 1 92600+ 0v900°+
96220 - 0910'— 0EI0°'~ 96ZZ0'— 96Z70 - 0£910'~ O0FION -+ 9Z600°+ 9600t 0£900°+ 92600+ gFIZO' ¢t 0€900+ 92600+
96220 — OCO0 — 96220~ 0E90 — 0E90~ 96220 - 0£900'+ 96L00°+ 9Z600'+ 0€900 + 926004 0LH00 Y 8HIZO'4 9¢600 T

96220 - 0§910°'— 96ZC0 — 0€9I0° — 96220’ ~ 0L910'— 9600+ 0900+ 0L900°+ 92600+ 0T900 - 9600 + 92600+ BYICO'Y

A XVTATel a4y,



4.,21.24

where

THE WEDGE ELEMENT (TYPE 1)

Half Empty Wedge

N

Nl <] x|

1 <xty<?

0<z <1
ode Location
1 0 0 0
2 1 0 0
3 0 1 0
4 1 1 0
5 0 0 1
6 1 0 1
7 0 1 1
8 1 1 1
9 2/3 2/3 0
10 2/3 2/3 1
11 1 1/2 172
12 1/72 1 1/2
13 1/2 1/2 1/2 -

1-x

1-y
1-z

7 8 4.,2-13

Interpolation Function, Ni

I <l © o x| <| ©
N N |N|N|
<
N

— X

X-y)z

27X y Z(x-y)
27x y z(x-y)
16(x-y)y z z
16(x-y)x z z
16Xy z Z
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where

THE TYPE 2 ELEMENT

Cube with Diagonal Line on One Face

Orientation: Line from 2 to 3

Node Location
1 0 0 0
2 1 0 0
3 0 1 0
4 1 1 0
5 0 0 1
6 1 0 1
7 0 1 1
8 1 1 1
9 0 1/2 1/2
10 1 172 1/2
11 1/2 0 1/2
12 1/2 1 1/2
13 172 172 1
14 1/3 1/3 0
15 2/3 2/3 0

1-x
1-y
1-2

N <] x|
I

3

4.2-17

Interpolation Function, Ni

(x-y)ze(x-y)
[xe(x-y) + yo(x-y)]z
[ye(x-y) *+ xe(x-y)]z
(x-y)ze(x-y)

Xy z

Xy z

Xyz

Xy z

16 xyyzz

16 xyyzz

16 xxyzz

16 xxyzz

16 x xyyz

27 x y z(x-y)e(x-y)
27 X y Z(x-y)e{x-y)
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4.21.26 THE TETRAHEDRON ELEMENT

Tetrahedron (Type 3

2 ¢ xtytz < 3
Node Location
1 0 0
2 1 0
3 0 1
4 1 1
5 0 0
6 1 0
7 0 1
8 1 1
9 1 273
10 2/3 1
11 2/3 2/3
12 2/3 2/3

)

o= 0O O O O

1
2/3
2/3

1
2/3

Volume

0

0

0
.007756

0
.007756
007756
.009542
.032101
.032101
.032101
037552

1 -y

1 - x
xty+z-2
27 xy Z{x + y+ z - 2)
27Xy zZ{x vt y+ z -2)
27 xy z{z - x - y)

27 x y 2z
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4.21.27 THE TRUNCATED CUBE ELEMENT (TYPE 4)

Truncated Cube {Type 4)

4

1o« xtytz < 3

Node  Location Volure N
1 0 0 0 0 0
2 i 0 0 -.0380 (2x -y-2z+1)K2-x-y-12)/3
3 0 1 0 -.0380 (2y - x -z+1)K(2-x~-y~-12)/3
k! ! 1 0 .0406 {1+ x+y-~ 2z2) 92/3 + (1—2)93
5 0 0 1 -.0380 (22 - x -y+1)K(2-x-y-2)/3
G 1 0 1 .0406 (1 +x+ 2z-2y) 8,/3 * (1—_y)e3
7 0 1 1 .0406 (1 +y+2z- 2x) 92/3 + (1—x)e3
3 1 1 1 -.0709 (x +y+2z-2) 03
9 0 2/3 2/3 L1119 27 Xy zK(y+z-1)

X
19 1 1/2 172 .1499 15xyyzz(x+y+z-1)
11 2/3 0 2/3 L1119 27 x

12 172 1 172 .1499 16 xxyzz{(x+ty+z-1)

13 2/3 2/3 0 119 27Xy ZK(x*y-1)

14 12 1/2 1 1499 16 xXyyz(x +y+z-1)

1s 13 1/3 13 1012 K(l-x-y+2z) K(1 -y-2z+2x)

K(1 - x - z+2y)K(2-x-y-2)

K(s) = se (s) X=1-x
e, = (x+y+z-1)e(2-x-y~2) y=1-y
ey = (x +y+z-2)e(xt+ty*z-2) z=1-2
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4.21.28 THE SLANTED THIN PLATE ELEMENT (TYPE 5)
The type 5 element is treated as two type 1 (4.21.24) elements.
4 .22 BOUNDARY CONDITIONS

The potential solver can use either fixed potential or fixed
normal electric field. Usually, fixed potentials are used for all
surfaces, but when hopping secondary currents are present fixed normal
electric field boundaries on insulating surfaces may be necessary.

Conducting surfaces always have fixed potential boundary conditions.

Fixed normal electric field boundary conditions are necessary in
the presence of large photoemission or hopping secondary electron
currents. The relation between the normal and parallel electric fields

in the presence of large secondary electron conductivities is

E Ax = {4¢e) E Ax
| H

where Ax is the mesh spacing and <€) is the mean secondary electron

energy (eV).
The condition of local current balance for these surfaces is

0=1J -VelJ

wfd he

where wad represents the weakly-fielded-dependent current (of electrons

incident on the surface cell) and JhC is the hopping current across the

edge next to the most relatively positive neighboring cell. Writing
Ihe = 7118y
and
4<¢e>J
e
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with Je ¢ 0 the low-energy electron emission current, the current

balance equation becomes

E = {ace) Y(-A°E )
I

where Y is the secondary yield.

If the fixed field condition is used, the surface potential will
be calculated by the potential solver instead of by the surface charging
module, CHARGE. The charging module makes the initial decision of which
boundary condition is appropriate for each surface. If the potential
solver later finds the secondary yield for the insulator with a fixed
field boundary condition, to be less than one, it will change to

constant potential boundary condition and set the surface potential to
vs where
m
vV = kT ( electron

s 7 '°9 o
ion
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4.30 MATRIX SOLVERS

POLAR (NTERAK) currently uses two methods to solve matrix

equations of the form

MX=4d

where M is a given matrix, d is data and X is the solution vector.
These methods are the Conjugate Gradient Method and the Incomplete
Cholesky Conjugate Gradient Method (ICCG).

4.31 CONJUGATE GRADIENT METHOD

This method is used for the Poisson equation solution (4.20, 4.44)
where X = ¢ (potential) which can have 10,000 or more components. The
data requirements are made tangible by performing the solution element
by element. This is expressed by Eq. (4.6) of Section 4.21,

. p .
Ze ZJ: [(W?j = éL v?j”j - e_o R?] =0 for each ice (4.6)

To simplify notation we will perform the sum over elements and treat the

problem as a whole, thus,

e _Blyey .
2_ M- Vip=y

SS2R =g

e

and

Thus we have

Mg-8=0 4.7)
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We may solve Eq. (4.7) iteratively. Our initial choice of ¢ will

yield a residual r
Mg-8=-r

The iterative scheme used is the Conjugate Gradient technique. It is

based on the following equations:

K
H
L]

Y]
]
~
i |
‘ﬂ
~
S~
~
c
LR
c
Ny

¢i+1 - Qi . ai Hi
£i+1 = Ll -3 M H'

b' = N e hrets o)
ui+1 i+l

These equations may be iterated upon until the resultant ¢ vector

becomes the solution to Poisson’s equation.

The major computational operation in the iterative set of
equations is the evaluation of the matfix—vector product M u. The
vectors ¢, u, and r all have the same number of grid poin;s. M contains
the square of this number. Such a huge array is impractical to store
all at once and so M u is evaluated using the following implicit
algorithm

L= 2 [g~ 2 MM
e ~

e
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The v, matrices are of reasonable dimension, for example, 8 x 8 for an
»

empty cube. The residual r is constructed element by element and then

summed. These "weight" matrices w, may be calculated analytically for

each type of empty or partially filled volume element, allowed by POLAR.
There are seven of these. Filled cells are not included in the
potential calculation. This is how POLAR treats filled, partially
filled and empty elements, differently.

4.32 ICCG, THE INCOMPLETE CHOLESKY CONJUGATE GRADIENT METHOD

ICCG is used to solve the charging equations (4.50, 5.70), where
X = VS, surface voltages. Components of VS generally number 1000 or

less. This allows the entire problem to be kept in memory at one time
by saving only the non-zero elements of M (5.73.2). ICCG will find

series of approximate inverses for M finding X as

~

_lg

X =
~

NI

It is iterative, but iterates on M-l as well as X. A more complete
description will be found here in~future revisions. Reference 4-5:
Kershaw, D. (1978), "The Incomplete Cholesky-Conjugate Gradient Method
for tie Iterative Solution of Systems of Linear Equations," Journal of

Computational Physics, 26, p. 43.
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4.40 SPACE CHARGE AND CURRENT COMPUTATION

This section describes the numerical techniques such as
integration, that are used to effect the models described in Chapter 3.
In some cases, the computational requirements are satisfied by the top-
down structuring of simple subroutines. In these cases, the Chapter 4

discussion is deferred to Chapter 5 to avoid repetition.

4.41 WEAK FIELD IONS, PRESHEATH AND WAKE

Initial ion densities are calculated before particle tracking
using geometric shadowing corrected by the electric field effects of the
electrons and ions. As discussed in Section 3.31, the neutral ion
approximation can be used as a starting estimate of the ion density.

The coding which calculates the neutral ion densities is described in
Section 5.61.10. The coding and equations used to model the electric

field correction for neutral ions is presented in Section 5.61.20.
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4.42 THE POLAR SHEATH MODEL (TECHNICAL)

Section 3.60 contains a general discussion of the POLAR sheath

model. This section is not designed to be a complete discussion, but to
fill in the technical details of the model.
4.42.1 SHEATH EDGE ALGORITHM (SHIATH)

The SHEATH routine takes as input a sheath edge potential and the
eight vertex potentials of a single cubic element, P(2,2,2). It
determines whether the sheath potential contour passes through the
specified element and if it does it generates a number of triangles,
NPART, with areas W(I) and center X(3,I) which approximates the

equipotential surface.

The sheath location proceeds by finding edges whose vertex
potentials bracket the sheath potential. If none do, NPART is set to
zero and control returns to the calling program. For the cases of three
intersections a single triangle is constructed from the intersection
points with the area calculated by the TRiangle AREA routine. For four
or five edge intersections the centroid of the intersection points is
found and triangles constructed using adjacent intersection points and
the centroid. Thus for four edge intersections, four triangles are
formed. SHEATH then would return NPART = 4 and the center coordinates

of each of the four triangles.
4.42.2 CURRENTS TO THE SHEATH SURFACE

Ions

The current density to the sheath edge is calculated by assuming
the sheath to be a perfectly absorbing spherical surface in a flowing
plasma. The potential around the sphere is assumed to be spherically

symmetric and
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attracts ions. The coordinate systems utilized are indicated in Figure

4.42/1 pelcw (shown twice to reduce clutterina}

Figure 4.42/1.

The following definitions are used:

a = sphere radius

Vo = satellite velocity

¢(r) = potential energy of ion at r

n = unit vector at position ¥ on sphere where normal current
density is to be calculated

ﬁf = unit vector in final direction (at r = ) mapped‘by
particles launched from r = (a,n) with velocity v

x-z plane = plane determined by n and Vo
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-+ >
3 = angle between n and Vo
6, = polar angle of particle for (n = @, nf)
¢ = angle between x-z plane and orbital plane
-3/2
> V4 * * .2 2
£y = @ V) {exp - (0, - V)%242 }
m = ion mass
2 =
VT = kT/m

For a particle moving in a central potential the conserved quantities

are (e=m=1):

1

2 v2 . ¢(a) = % vg =E Energy
L = veaesind Angular Momentum
¢ Azimuth

The normal current density j(:) at a point F= (a,;) on the sphere is

given by
. + _J»-» P + d3+
i=i@n =@ f 6 &
-3/2 & 2x 6
_ 2 max 1.2 2y ,.2
= (21 \D) Jo dv Jo do Io d6exp 3 (vV2-2V_v_cos VD) /2]
x v3 cosf sinf
where

cosy, = cos{ cosf - sinf sinf cos¢

I“ d 2 2, ® oy 7%
6 (v ,0) =asingd | % [1 -4 sin‘g + R - L0
=te 2 r2 r? v - e(a)

N =
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Performing the ¢ integration, which can be done analytically, and using

energy conservation,

2.-3/2 (© 2 'V§/2V$
)= (21vT) Io vo(vo - 20(s)) e F(vo) dvo
0 __(v.) 2 2,,y2
max' o’ -v V_ cosf cosf_/vy -V /2V
F(vo) = o J e ©° s''T e © T

0

.1 [VOVO sinf sinos
o

V2

] sinp sinf df
T

where Io is the modified Bessel function of zero order.

For numerical calculations, define t = x/3.75 and approximate Io
by

2
8

4, 1.2067492 8

10 | 0.0045813 t12 + ¢

I(x) =1 + 3.5156220 t
+ 0.2659732 t
€ ¢1.6 x 10~/

+ 3.0899424 ¢
+ 0.0360768 t

for -3.75 {x<3.75

x1/2e™ 1 (x) = .39804228 + .01328502 ¢}
+ .00225319 t™2 - 00157565 ¢ °
+ .00916281 t™4 - 02057705 ¢~°
+ .02635537 t° - 01647633 ¢’

+ .00392377 t°8 4+ €

€¢1.9 x 10”7

for 3.76 { x ( »

For an invers: square potential, Omax = 7/2, and the change in

polar angle can be found analytically
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. .2, /2
o = s;nG 3172 sin.1 [élﬂ_ﬁ_:EE_] ; sin26 - b2 20
S (sin“d - b°) 1-b
1/2
) 2 . 2
= sinf sinh“1 [9__:_§Lﬂ_§} ; sin29 -b <O
1/2 | 1-02 )

(b2 - sin6)
where

p2 = @ 3 (0<¢E<w
E+ 18(a)] - -

=12
E = 2 Vo

sinh-lx = 2n [x P Ix2 s 1]

Note for 1 - b2 «1, 05 may be >27, i.e., the particles may execute a
spiralling orbit. Accuracy may require that 6v°, 66 not produce large
66 _.

S

The above computation is used to calculate the flux through a
portion of the sheath edge found using the algorithm discussed in
Section 4.42.1. This allows the current through the sheath to be broken
into small, flat triangles. These triangles are the "particles™ which

are pushed by the particle pushing routines in CURREN.

The particles are defined to be located at the triangle’s centroid
and to have an initial velocity into the sheath. The initial velocity
of the ions accounts for contributions from the Mach and thermal
velocity. Particle pushing is done in the spacecraft reference frame so
the plasma appears to be flowing with the Mach velocity. Since portions
of the sheath will have surface normals in the downstream direction,
shadowing by the sheath needs to be taken into account for both the

current and initial velocity associated with a given particle. The
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particle currents were discussed above. The initial velocity needs to
be found so that the mean particle velocity through a surface is well
represented and varies continuously from the upstream to downstream
portions of the sheath. The velocity should also approach the thermal
velocity at low Mach velocities. POLAR uses the following to initialize
particle velocit.es:

is the

For spacecraft velocities less than 0.1 * v where v

th’ th

ion thermal velocity, the initial velocity, Voo is

E is the direction of the inward electric field at the sheath. When

the Mach vector is greater than 0.1 = Veh? the following is used:

[ExV)xE+v E EeV <0 (downstream)
m th m
V°=
. Ex VI -,
Vm + — vthE E o Vm > 0 (upstream)
VI
m

with Vm being the Mach velocity of the flowing plasma.

An unfortunate side effect of starting particles with a velocity
strongly dependent on the surface normal is that the angular
distribution of thermal velocities is not modeled. Particularly
symmetric problems (e.g., long, cylindrical wakes at high Mach
velocities) tend to experience excessive focusing where particle
trajectories are trapped. To combat this problem, particles can be
broken into a number of smaller particles. Each particle is started
with a different initial velocity to generate an angular distribution of
thermal velocities. See Section 3.43 for more information on how the

particles are spread.




4.4-8

Electrons

When the attracted species are electrons, the initial currents and
velocities are calculated differently. The sheath electron flux is the
one-sided thermal flux from the presheath, quasi-neutral plasma. The
orbit limited ion density at the sheath is found using the same
techniques as described in Section 3.31. (See also Section 4.52.7.)
The initial velocity is defined to be the average thermal velocity

through the sheath in the direction of the inward electric field.

In the presence of magnetic fields, the electron sheath fluxes are
restricted by the magnetic flux tube. This is modeled by the following
factor

.. . '/\g

Jg =g (C.1+09 1 ne+BI)
where je’ is the restricted flux, je is the nonmagnetic limited flux, n

A
is the electron sheath surface normal, and B is the direction of the
magnetic field. (See also Section 6.43.20.)

4.42.3 SHEATH PARTICLE ASSIGNMENT

Each volume element of a problem is inspected for the presence of
the sheath edge equipotential as described in Section 4.42.1. Each
triangular subsurface of the sheath is a potential sheath particle;
however, many times a portion of an equipotential is not really a source
of current. This is assumed to occur when there exists just "outside"
the sheath (in the direction opposite of E) a portion of the object, or
a high potential region of the opposite sign. Both of these conditions
are checked by calculating the inward initial velocity for the particle
as per Section 4.42.2, reversing it, and tracking the particle backwards
through two volume elements. If no "obstacles" are found, the particie
is assigned a current or weight and placed in a particle list. This
list is later read and the trajectories advanced as described in
Sections 4.42.4 and 5.62. Finally, the sheath currents are not
calculated for each particle but interpolated from a pre-calculated
table of values (Section 4.42.2).
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4.42.4 TRAJECTORY TRACKING

Trajectory tracking can be an expensive endeavor, and a source of
unpredictable error. To combat these problems, POLAR uses two different

methods to follow ion and electron trajectories.

When pushing ions, the full step method is used in empty elements
(those which do not touch the object) where complex E fields are not
anticipated. For these elements, £ at the cell center is used for the
entire cell, and a single steo parabolic trajectory is calculated for
the element. This is accomplished by aralyzing independentiy the three
components of the equation

+ + +
X. = X. + V. .t +

2
] 1-1 1-1 g E b (1)

N [

for the shortest time, t, that a particle needs to reach an element
face. Negative, imaginary and zero times are rejected. A number of
special conditions may occur involving round-off errors and the
traversal of exceedingly small paths in the corner of elements. The
treatment of these problems are discussed in detail in Section 5.62.22.
Following the choice of the shortest valid time, the trajectory is
advanced to another (or possibly the same) element face and the new

. . » .
velocity vector is calculated at x and is

Y
+ 2 Q_‘i
i T vi-l tdt t
where
4 8
dv _gag, 8
dt ~m c

with éG being the magnetic field vector in gauss. The magnetic field
effects on the particle velocity are implemented as a rotation of the
velocity vector after the acceleration due to the average electric field
is added. (This is discussed in more detail in 5.62.22.)
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The total energy is checked at the new position against the
original value. The new total energy is 1/2 mv2 s eV(;), where V(;) is
the bilinear potential calculated for the exit location on the exit face
of the element. The energy is renormalized by adjusting the magnitude

of V without modifying its direction.

For volume elements that border the object, more complex E fields
are anticipated so POLAR uses a slower, but more accur~te, step-push
method where Eq. (1) is integrated using timesteps estimated to be
approximately 0.1 of the element traversal time. At each step, Eis
determined by analytically differentiating the trilinear potential
function (Section 4.20). The step-push method and the routines that

affect it are discussed in greater detail in Section 5.62.22.

The pushing of electrons requires two different pushing routines.
The electrons use the equivalent of MOVER, EMOVE to move to the face of
an element and ESTEP to make short steps within an element much the way
ions are small stepped by STPPSH. Because the gyroradius of electrons
can be comparable to or even smaller than a mesh spacing, electrons use
ESTEP when the Larmor radius is large. EMOVE is used when the guiding
center approximation of the electron trajectory is appropriate
(5.62.22).

POLAR’s sliced grid system (Section 4.11) forces additional
computational considerations on the trajectory tracking because only a
small set of potentials are stored in core at any one time. Potentials
are paged in and out in slices at nodes of a constant z value. As a
result, trajectory tracking is controlled by a "pusher" that sweeps back
and forth in z, advancing all trajectories through the space between z
and z+1. Trajectories moving opposite the pusher are written out to
disk and picked up on the return pass (Section 5.62.22). Although this
complicates the coding somewhat, there is a gain in efficiency, and a
bonus in that trapped orbits can be simply controlled by limiting the

passes of the pusher.
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4.42.5 SHEATH ION DENSITIES

Once a sheath edge surface has been located and subdivided
(Section 4.42.1), the input current, Ji' calculated (Section 4.42.2) and
that current assigned to a representative particle, g, (Section 4.42.3),
the particle trajectory is followed inward as described in Section
4.42.4. Ton densities, n., are determined in each cell by observing
that if each trajectory, j, represents a constant current
Jij = dqij/dt, each trajectory makes a contribution to the overall

element density of

J.. bt
Bn. . = -

n.. =
ij = element volume

where At is the time required to cross the volume element. The total

density is just

n, = j:;: Anij

This has been dubbed the method of weighted deposition (Ref. 3-5). It
can be seen that acceleration effects and convergence effects are

accounted for by the At, and the Zj respectively.

This method demands a large number of particles for good
statistics and we have found that the three to six particles per sheath
volume element, chosen by the sheath edge algorithm (Section 4.42.1),
work quite well. Problems in accuracy can still be anticipated when
there exists repulsive regions within a sheath, or when the method is
being incorrectly applied to an orbit-limited problem where particles
might numerically diffuse into allowed trapped orbits. In this case
repeated orbits would give erroneously high densities. Even in strongly
space charge-limited sheaths, unusual geometry could lead to trapped
orbits, so POLAR sets a user controlled |imit on the number of front-to-

back pushing sweeps (Section 6.43.20) to control this problem.




4.4-12

Finally, these sheath ion densities are known as RHOI’s in POLAR
and are calculated by the CURREN segment of NTERAK. The ultimate use of

these densities in the Poisson solution are discussed in Section 4.43.2.

4.43  CHARGE DENSITY

POLAR iterates between calculating the potential for fixed charge
densities, and calculating charge densities for fixed potentials. The
potentials are calculated iteratively, starting from the last potential
used to calculate the charge densities. While the calculated charge
densities are physically consistent with the first potential iterate,
there is no guarantee that they remain that way during the iteration
process. Equilibrium plasmas respond to potentials by shielding; that
is the plasma spacecharge has the opposite sign as the applied
potential. The QSCRN algorithm examines the potentials and densities
element by element, and ensures that the charge density used in each
iteration is physically reasonable. Unphysical conditions arise when
the sheath boundary moves during an iteration. When this occurs, QSCRN
substitutes a charge density based on Debye shielding for the out of
date particle pushed density.

QSCRN also restricts the magnitude of the charge density used in a
particular element to that consistent with the zone size. Since the
plasma is shielding, the charge density is restricted to be less than
that which will change the sign of the potential in the zone. In
practice, this restriction is relaxed, and the charge limited to SGALPH
times the maximum charge, where SQALPH is typically chosen to be about
3. Too targe a value for SQALPH leads to oscillations at the sheath
edge.
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4.43.1 ELECTRONS

Two different methods of finding the electron space charge
densities are used; one for positive potential regions within the sheath
and one for the other cases. When electrons are repelled, the charge
density is approximated by an isotropic Boltzmann equilibrium

distribution, i.e.,

ne =Ny exp(eV(;)/kT) .
This approximation may be invalid near weakly repelling surfaces, space
potential barriers, and in magnetically insulated regions. QOther
conditions may arise where the electron distribution will not be
isotropic and a Boltzmann distribution would not be justified. When
space potentials are positive enough to define an electron collecting
sheath, the electron space charge is calculated by pushing particles.
These densities are found much the way pushed ion space charge densities
are computed (see Ion Charge Density, 4.43.2). The pushed electron
current is called RHOE in the POLAR code.

4.43.2 JON CHARGE DENSITY

Ions are generally considered to be the attracted specie in POLAR.
This, plus an allowance for possibly high Mach numbers, means that ion
densities may not be determined by any local approximation. Thus ion
densities are currently determined by two methods: Weak field ions
(Section 4.41) known in the POLAR coding as GI’s (geometric ions) and
GH’s (geometric hydrogen); and sheath ion densities (Section 4.42) known
in the coding as RHOI’s.
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GI’s and GH’s are determined at the onset of a calculation and
remain unchanged thereafter. The RHOI’s and RHOE’s are calculated
whenever a CURREN step (the sheath ion tracking process) is called for.
Immediately following a CURREN step, POLAR creates from these two data
sets, an ultimate ion density list, the DION’s that are used in the
Poisson calculation. This is done by choosing RHOI’s for elements
inside the sheath, and GI’s for points outside. For elements containing
a portion of the sheath surface, the GI value is used instead of the
RHOI. Similarly, the electron density list, DELC, is created using the
pushed electron densities, RHOE, inside of the electron sheath and

quasineutral electron densities outside.
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4.44 THE CHARGE STABILIZED POISSON ITERATION

The Poisson equation can be written dimensionlessly as

4% =12 (n. - n) (1)

| e

where

¢ = VT, L2 = e kTN e2h? = A% /h?

is the dimensionless Debye length, N° is the ambient density, n, =
Ni/No' Ng = Ne/No’ and the Laplacian is also normalized by h2. The
calculation of n. and Ne is discussed in Section 4.43. POLAR solves
this equation on its discrete mesh of uniform spacing h, using the

finite element method described in Section 4.21.

The traditional approach to the solution of equation (1) has been

an explicit iteration of the form
42" = L2 (0, (077 - ng ("D (2)

where v is the iteration index, and the charge density is determined
using the potentials of the previous iteration. This method can be
shown to be unstable (ref. 4-2) when the Debye length, A\, becomes small
with respect to other scale lengths of the problem. This can be
understood by considering that a smooth potential variation over a
distance of, say, 1000 A\, would require a smooth A2¢ (the ’second
derivative’) which is in turn given everywhere by the charge density.
But, maintaining a smooth charge density distribution is difficult when
any errors in determining (ne - ni) are multiplied by a huge L-2. There
is one effective remedy to this dilemma due to Parker (ref. 4-2), but
the process reported here appears to be more efficient in the short
Debye length [imit. This method involves the combination of two
concepts. One uses a partial implicitization of the repelled density

(ne, here) (ref. 4-3). The other simply reduces the charge density to
an acceptable level whenever the first method is inadequate.
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Suppose a plasma of ambient density No and temperature T consists of
Boltzmann electrons, Ne(:) = No exp(¢(?)) and ions of known density
Ni(:) = No ni(:). The normalized charge density is then given by

A" (M) = L2 [n. () - exp (#°())] 3)

Equation (3) may be linearized about the previous potential iterate

1

a@”) * q¢*™ + (¥ « (¢ - ¢ h

where q° = 3q/0¢, and the r dependence has been dropped for clarity.
With this expression we may write the implicit Poisson iteration scheme

V2 - @ ¢ =) - a0 . 4 @

Though it is not immediately obvious, the implicit character of
(4) makes it more stable than scheme (2). This can be understood by
realizing that in equation (3) the electron density was treated as an
independent variable, whereas in (4) the electron density is determined
simultaneously with the potential, both being consistent with the ion

density.

The finite element approximation (Section 4.21) to (4) produces

the matrix equation

:E:: (!(e) - §.(e) x(e)) . tu =5 - S,(e) . Qy-l (5)
e ~ ~

where S is derived from q by the following analysis:

For L Z 1, S is simply the total charge associated with each node,
q. However, for L < 1, numerical noise and features |ike a sheath edge
which may span only a few A\, become incorrectly amplified when the q
determined at a point becomes multiplied by the entire nodal volume.
When it is not possible to reduce the zone size, stability can be
preserved by replacing Q (and Q’) with a reduced value S (S’) which is
calculated to be the maximum allowable charge for the element.
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Because of the artificial amplification argument, S is often the more
realistic total for an element. Befoie deriving S, we define the
barometric potential ¢b = Zn(ni) potential for which Q = 0 and note that
it is important that S + Q as ¢ + ¢b if quasineutral regions are to be
modeled correctly. To determine S, consider a capacitor with potential
difference (¢b - ¢), area h2, and a separation of h. The charge q. on
this capacitor is given by

€ h2

Q. = CAV = P (p), - KT

In the units of our previous q, Q. becomes

q =afy, - ¢) =a(g, - ¢) (6)

which is the maximum allowable charge per element, with the parameter a,
adjusted to insure that qQ is maximized. Thus at each node, we choose

for the charge

ISI = min (|qLI, Iql)
with
-a for S = q
S’ =
2

L™ expp for S =q

Actually, S and S’ are smoothed in POLAR to decrease numerical
noise and spatial potential oscillations. This involves forming the

linear screening term

SCRN = S’ () + S*)/2
where

S’ = ZIV(I) * S(¢(1))
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where I indexes the nodes of an element and V(I) is a nodal volume
normalized by a cubic element volume of one; similarly for ¢. Also

smoothed is the nodal charge Q(I),
UD) =3 @ + SEMD))

Additionally, POLAR can output the value S(§) centered charge actually
chosen by this algorithm.

Finally, the Q(I), and SCRN are used for S and 5°(®) in Eq. (5).

The effect of this algorithm is this: If a problem has been
specified where a boundary potential would be screened in less than a
zone or two (the limit of any code’s resolution), sufficient sheath
charge will be redistributed so as to allow the potential to be screened

over the minimum number of zones that are consistent with stability.

The charge stabilization algorithm is effected by the subroutine,
QSELT and QSCRN which are further described in Section 5.50.

4.44.1 SHEATH IONIZATION EFFECTS ON SPACE CHARGE

A secondary effect arising from the collection of electrons is the
ionization of neutrals within the sheath. The electrons are immediately
collected by the positive surfaces. The ions however, owing to their
greater mass, migrate more slowly out of the sheath. These ions produce
space charge which cancels part of the space charge due to the attracted
electrons. The effect is to reduce the screening of the positive
surfaces resulting in a larger sheath. The degree to which sheath
ionization enlarges the sheath depends on the generation rate of ions
within the sheath. This in turn depends on the ionization cross-section
of the neutrals, the incident flux of electrons, and the path length for
ionization. The enlargement of the sheath due to ionization can be
characterized by the ratio of the flux of ions out of the sheath to the
flux of electrons incident on the sheath. Increasing this ratio
increases the size of the sheath up to a limiting ratio after which the
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sheath becomes unstable. At this point the sheath grows with time and

the static ideas of a sheath break down.

The sheath instability point can be determined in one-dimension by
writing Poisson’s equation including both the electrons and generated

ions

ed® = - onf2e0-0)/m 12 o (0, S (20timy P

ion ion elec

Integrating both sides from O to the sheath boundary, and using the

boundary condition that the electric field at the boundaries is zero,

gives

Jion/JeIec = (mtelec/mion)ll2
and that

ig =1.85 iy

where jo refers to the one species diode. For the case of electron
collection the ion current in Eq. (1) is an upper bound. If the ion
current were greater, the electric field would be unable to extract all
of them and a quasi-neutral pool of plasma would develop near the
object. The behavior and properties of such a plasma are not within the
scope of this discussion. The goal here is to define a bound such that

we can be certain that such a plasma is not created.

The two species diode provides a lower bound ~n the maximum ion
current that can be supported by a given voltage o.:r a given distance.
This is because the positive charge is in the anode-cathode gap for the
maximum possible time, and the accelerating field is minimum at the
anode (E = O boundary conditions are specified). Therefore, the case of
ions being created throughout the diode volume can support more ion
current than that allowed by Eq. (1). Indeed numerical calculations by
D. L. Cooke have shown that almost an order of magnitude more ion

current can be supported if it is generated uniformly throughout the
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volume. The inclusion of convex geometry when considering electron
collection by a spherical probe modifies this result somewhat, but for
small convergence ratios the same argument holds. For larger
convergence ratios almost all the path length for ion generation occurs

while the convergence is small.

For convex cases, Eq. (1) can be integrated over a surface and be

expressed in terms of total current.

Ii m,
— < i= (2)
I lm.

e ]
where the inequality comes from recognizing that Eq. (1) is an upper
bound. In this form, the ion generation rate can be bounded by assuming
that iontzation can occur over the entire path length of a collected
electron. This is an upper bound on the ion current since the threshold
energy for collisional ionization is assumed to be zero. The total ion
generation rate is

I ¢(I &no
i e O

where £ is the electron sheath length, n, is the background density of
neutrals and ¢ i1s the maximum cross-section for collisional ionization

by electrons.

To close this system of equations it is necessary to obtain a
bound on the electron sheath length. This can be obtained by
recognizing that the electron current density at the sheath boundary is
less than 1.5 times the one-sided thermal flux. This result was
obtained by Storey et al. for spherical and cylindrical probes. The
sheath potential is bounded by beam voltage

V KV
sh beam

Finally, since for convergent geometries the charge inside the sheath is
enhanced when compared to the planar case, the planar Child-Langmuir
diode formula sets an upper bound on the sheath distance
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6 y3/2

2.32.107
beam . (4)

2" < 1.5 j

(v

thermal

Combining Eqs. (2), (3) and then (4) a bound on the sheath

neutralization can be obtained.

Lon ¢ 12,

{5; 1 . (5)

n ¢ I—
o m. 1/2
" , [2.32 x 108y 32
o

beam
1.5y,

When this inequality is satisfied, ions generated within the sheath can
easily be extracted by the sheath electric field. This permits the
existence of a quasistatic non-neutral sheath. From the results of the
double diode, the effective sheath distance for a fixed sheath potential
is increased by less than 40 percent. Since the inequality was obtained
as an upper bound, ionization will be a small perturbation on the

electron collecting sheath, if it is satisfied.

For atomic oxygen, the peak cross-section for jonization is about

10"16 cm2 and the square root of the mass ratio is 1/200. Putting in
these values for a 1 keV electron beam and a ng = 104, = 0.1 eV plasma,
sheath ionization will not be imporvant if

n ¢2x 100 cn3

o
or 10_6 torr.

This conservative bound on the maximum neutral density is
satisfied for most orbiting satellites. Only through the neutral

release from the satellite will this condition be violated. Numerical
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studies have shown that even close to the critical density the sheath
remains very nearly a Child-Langmuir diode with the sheath only
fractionally larger than without ionization. In summary, sheath
ionization enlarges the sheath by a small factor up to neutral densities

very near (within a factor of two) the sheath breakdown density.

The inclusion of sheath ionization into the POLAR code is
primarily for diagnostic purposes. The fractional ionization is
computed using the tracked electron’s fluxes to determine the proximity
to the point where a stable sheath is wot possible. Near the critical
point, where the sheath size should change slightly, the plasma density
within the electron attracting sheath is reduced to simulate this
effect. This information is tabulated along with the total ionization
within the sheath, the approximate dimensionality of the sheath (planar
to spherical), and the charge reduction needed to enlarge the sheath to

the proper size.
4.44 .2 ANALYSIS OF THE CHARGE STABILIZED POISSON METHOD

The Charge Stabilized Poisson Method calculates for each node the
maximum allowable charge that is consistent with the stability of a
linearly interpolating Poisson solver. The method is developed in
Section 4.44, but a further analysis is presented here to help the user

interpret its impact.

POLAR’s charge stabilization is accomplished through the process
of charge limiting, illustrated in Figure 4.44/1 This figure shows two

charge versus potential curves given by Eq. (4.44-3), rewritten here as

q=aexp(-¢_) (exp § - exp ¢)

where ¢m = Qn(akglhz), XD is the Debye length, h is the mesh spacing,
and ’b is the barometric potential, ¢b = £n (ni). For curve 9 ¢b =
-3.0 (ni = 0.05); for curve LY ¢b = 0.0 (ni = 1.0); and for both
curves, ¢m = -2.2, and a = 1. For each curve, also shown is the

limiting charge given by Eq. (4.44-6) rewritten here as
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o = alg, - 9

which intersects the "natural®™ charge curve at ¢c and ¢ . The charge
stabilization method would reduce th» charge to the limiting value when
¢ > ¢c' and use the natural charge for ¢ < ¢C. The parameter m provides
a good measure of limiting process. From Figure 4.44/1 it can be seen
that ¢m s the point at which the siope of the natural charge curve
equals that of the limiting charge line. Figure 4.44/2 shows a family
of curves giving the dependence of the cutoff potential c on the
barometric potential for various values of ¢m' These curves were
obtained by numerically solving for the zeros of the difference between

q and q - This difference equation always has two solutions, one at ¢c

and one at ¢b’ with the exception of a degeneracy at ¢c = ¢b = ¢m’ which
is indicated in the figure. This figure shovs that the charge limiting

is minimal for ¢m > -1, and quite severe for ¢m ¢ -6 or so.

Consider the first zone of a sheath to satisfy the laws of Child
and Langmuir (planar space charge limiting). At the sheath edge [z=0]

and one zone in [z=Ax] the potential and electric field are

Position z=0 z=Ax
Potential 0 K(Ax)4/3
Electric Field 0 (4/3)K (bx) 172

By Gauss’s Law, the charge per unit area in this zone is

Wegh=(4/3)K(a0) /3

Polar computes the charge density to be (SQALPH/(Ax)z) t:mes the

mean potential (assuming |linear interpolation), and so gets
= 2 4/3
Q/eOA-Ax x (SQALPH/ (Ax)“)x1/2(0+K(Ax) '7).

Fquating these two expressions gives SQALPH = 8/3
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Because of the economics of running a three-dimensional code,
POLAR is frequently operated at high ¢m values, i.e., a coarse mesh with
respect to the Debye length. In these cases charge is removed at almost
all points. Ideally, the charge that was removed was excess charge
generated by the coarse griding. This is the artificial charge
amplification argument made in Section 4.44.1. However, since POLAR
must be reliably stable, the result is that too much charge is often
removed. This will result in an enlarged sheath thickness for high
negative ¢m problems. A possible cure for this would be to add a

measure of charge redistribution to the stabilization algorithms.

The results of testing indicate that s:eath enlargement is
generally less than a zone for ¢m > -8. For an a, or SQALPH = 3, this
corresponds to h/kD ~ 100. POLAR presently makes a modest compensation
for the sheath enlargement problem by placing the sheath edge at VS =
¢ kT/e. This is discussed further in Section 4.42.1.
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CHARGE BENSITIES
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Figure 4.44/1.

Plots of space charge (curves q; and qp) as a function
of potential as given by Eq. (4.44-3). The straight
lines represent the maximum allowable charge for non-
oscillatory potentials. The "natural® space charge, q;
or qp, is acceptable for which slopes of the curve and
the corresponding line are equal.
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CUTOFF POTENTIALS

Figure 4.44/2.

Plot of the space charge cutoff potential,
¢c’ versus barometric potential (¢b = Zn ni)

for a series of ¢m values (-0.2, -0.5, -1.0,
-2.0, -3.0, -4.0, ... -11.0). The point at
which ¢ = $, = . is also indicated.
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4.44 .3 PARTICLE BEAM SPACE CHARGE EFFECTS

Currently the space charge effects of particlé beams are not
included in POLAR.

4.44 .4 ANALYTIC FORMULATION FOR SHEATH CONVERGENCE

An analytic method is available to compute space charge densities
while solving Poisson’s equation. This model treats space charge
density as a local function of potential using a nonlinear, analytic
formula appropriate to a planar or "thin" sheath. The convergence
factor is computed in terms of local information and problem parameters.
The Langmuir-Blodgett problem of collection be a high-voltage sphere was
numerically solved and then fitted to an analytic form. An excellent
fit was found with

R/I1)? = 2.20 Ery/6)! 222 (v(r) 16) - 5%° (1)

The modet also includes the effect of spacecraft motion and a
magnetic field on the convergence factor. It is assumed that the
routine used to describe the effect of spacecraft motion on electron
current in the wake can also be used for wake ions and ram electrons and
ions. The convergence factor in a magnetic field is computed using a
factor f computed from the sheath distance. The sheath distance Dsh is
computed using the minimum of Child-Langmuir distance and that computed

with a Laplacian potential. f is given by
2
f=1- exp(-O.S(rL/Dsh) )

The convergence factor is then f times that given by Equation (1) plus
1-f.
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4.50 CHARGING MODEL

The charging equations used by POLAR were introduced in Section
3.50. In the following sections the various models employed in the

solution of the charging equations are described in detail.

The general form of the charging equation that was introduced in
Section 3.50 is

I(t) = C < V()

29

!(t) (3.50-1)

n.|n.
ct

where g is the current "vector", C the capacitance matrix, ¢

conductance, and V is surface voltage. Placing the equation in a

differenced form, evaluating the conductance term at the advanced time

(implicit) and the current at the retarded (explicit) time, it becomes
Mty - ¥(5,))

C = + g V(&,) = I(t

or

¢
k?ﬁ%‘d‘(ﬂ%)-wﬁn=l“0'ﬂ¥“ﬂ

~

Section 3.50 explored the difficulties associated with the above,
explicit current dependence. The implicit approach replaces I(tl) with

the following approximation for I(tz) for each surface:

I(V(t,)) = T(V(t)) *+ S5 » (Vb)) - V(v)))
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Substituting to find the implicit formulation

uQ

§ d]
Bty * & qy [y-(tz) - -‘»’("'1)] = I(t) - g V(%) (4.50-1)

where Atl = t2 - tl.
The most difficult term to evaluate in Eq. (4.50-1) is the current
derivative dI/dV. A predictor-corrector type of approach is used to

estimate the final voltage (V(t2)) in order to calculate the derivative.

Two cycles with Eq. (4.50-1) are used for each timestep iteration of the
algorithm. A reasonable guess is used for the derivative in the first
stage. The results from the first stage are used to find a better

estimate for the final stage.

The current derivative term stabilizes the problem by increasing
the diagonal matrix terms. Physically, the 81 (surface i)/3V(surface i)
will be nonpositive for surfaces approaching a stable equilibrium.
Since no surface to surface interactions are included in the current
derivative matrix, dI/dV is diagonal. The current derivative is
discussed in in detail in Section 4.56 along with the entire charging
algorithm. The current derivative for conductors is described in detail
in Section 4.51.
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4.51 CONDUCTOR CURRENTS AND CURRENT DERIVATIVES

With beams and sheath conduction the charging algorithm has to be
applied to the exposed conductors with care. Each current source needs
to be considered separately. In an attempt to describe the different
situations systematically, each specific case of currents and potentials
will be addressed. First, the definitions of variables to be used in

the following narration.

Ib beam current

Ip - sheath current

Isec - secondary currents

Iph - photoelectron current

Iraw - total of all currents to conductor assuming all the low
energy currents (Isec and Iph) escape

Ihi - total of all currents to the conductor excluding Iph and
Isec

Icond - conduction current

- total current to conductor

dI - total current derivative

kT - plasma temperature

sec electron secondary energy, typically about 2 volts
positive

Vc - initial conductor voltage

AVc - estimated conductor voltage change made before charging
calculation

VB - beam energy

Enorm - average normal electric field over conductor

dx - mesh or surface size




Case 1 - Conductor Voltage 2 E

conductor fits a category.

are ignored.

The currents are checked in the following order until the
When the first check is satisfied, the rest

sec
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After the appropriate current check is found, the total

current and the current derivative can be deduced.

I

I

hi

raw

>0
Then

>0
Then

I1=1.+1
hl. b
dl = -(ITI/AV) + dIg

I=1
raw

deh =0

dIb =0

dl = -(I1T - T} - T, 1/aV)

Iraw > 0 and Ihi <0
Then the total current is

Case 2 - Conductor Voltage ¢ Ese

I

hi

>0
Then

Vc > Esec then I = Ihi
VC < Esec then I = Iraw
and the current derivative is
VC # Esec then dI = I/(Vc - E

Ve = E__ then dI = ITI/-kT

)

sec

C

I=1 .- Toec - Iph - I

dIB = min(O,(Ib/(Vc = VB)))
deh = Iph/(VC - Esec)
dI = Iec/ (Ve - Esec)

sec sec
dl = -(IT1/aV) + dIg + dI, + dI

B

sec
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I <0
raw
Then 1= Iraw - Iph -
dl = -(II1/AV)

Ihi < 0 and Iraw >0
Then
This is the tricky case. If this conductor were an insulator, it
would have a fixed normal electric field boundary condition and
PWASON would find the surface potential. We will use an average
normal electric field for a crude, but sufficient boundary
condition. Charging is dominated by the behavior of the

secondaries here.

To find the total current
E e dx ) Esec

norm
Then I-= Ih.
i
Enorm ¢ dx g Esec
Then I=1
raw
and for the total current derivative
norm dx = Esec
Then dl = I/(Enorm ¢ dx - Esec)
E o dx # E
norm sec
Then dl = |I1/-kT

The above conditions handle the complete variety of situations for
exposed conductors. If the conductor is one which is not exposed at any
point, then the current derivative is found by studying the derivative
of the beam current. If the beam is off, then dI = 0. Otherwise,

dI = Ig/(Ve - V).




4.5-6

4.52 ELECTRON CURRENTS, PRIMARY, SECONDARY

The POLAR electron environment is described in Sections 3.15 and
3.31. This section explains the integration procedures used to obtain
the net electron currents to a surface due to primary, secondary, and
backscatter electrons when pushed electron currents are not appropr’ te
(Section 4.52.7). Before the integrations are presented, we develop the
secondary and backscatter yield coefficients. These yield models were
developed for NASCAP (Reference 4-1) and are well proven and thoroughly
tested. Further information concerning the code mechanics and

subroutine relations can be found in Section 5.70.

4.52.1 SECONDARY ELECTRONS

Secondary electrons are defined as those emitted from the surface
due to particle impact with energies beiow 50 eV. Their energy
distribution is usually peaked below 10 eV. We define the secondary
yield Y as the ratio of primary to secondary electron current.

emitted secondary current due to electron impact
primary electron current

Y =

POLAR (NTERAK) calculates the secordary electron emission yield,

Y, using the empirical formula (Reference 4-6):

R
_ dE[ _-ax cosf
Y(e)_cjo Idxe dx

where x is the path length of penetration of a primary electron beam
into the material, R is the "Range,"™ or maximum penetration length, and

@ is the angle of incidence of the primary electron.

This equation is based upon a simple physical model (Reference 4-

7):

a. The number of secondary electrons produced by the primary team at
a distance x is proportional to the energy loss of the beam or
"stopping power®™ of the material, IdE/dx|.
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b. The fraction of the secondaries that migrate to the surface and
escape decreases exponentially with depth (f = e* cos0). Thus
only those produced within a few multiples of the distance 1/a
(the depth of escape) from the surface contribute significantly to
the observed yield.

The range increases with the initial energy, Eo’ of the incident
electrons in a way that approximates a simple "power law" (Reference 4-
8):

R=bE"

o

where 1.0 < n ¢ 2.0. This equation implies a simple form for the

stopping power S(E):

n

-1 1-
© - |f] - |87 -5

Because the primary beam loses energy as it passes through the material,
both E, and hence S(Eo,x), depend on the path length x. Integrating:

n,o _gh X
E'(x) = Eo b

1-1/n
S(x) = %S [R ? x]

The stopping power S(Eo,x) depends upon both the initial electron energy
Eo' via R, and the path length x. Figure 4.52/1 shows schematically

S(Eo,x) plotted against x for several values of E°. Inspection of
Figure 4.52/1 and the equation for S(x) illustrates the following

points:

1. S(Eo,x) increases with x, slowly at first, before reaching a

singularity as x approaches R.

2. The initial value of S(Eo,x) decreases with increasing initial

energy Eo'
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Both of these observations are due to the decrease in electron-atom

collision cross-section with increasing energy.

The yield is only sensitive to the details of the stopping-power
depth-dependence for initial energies with ranges of the same order as
the escape depth, R ~ 1/a (i.e., about the maximum of the yield curve).
For lower energies, R < 1/a, and essentially all of the primary energy
is available for detectable secondary production, leading to a |inear
increase in yield with increasing Eo' At higher energies, where
R > 1/a, S(Eo,x) remains almost constant, at its initial value, over
the depth of escape and so, along with S(Eo,x) the yield decreases as E°

increases.

POLAR takes this into account and approximates the stopping power

by a linear expansion in x, about x = 0.

-1 2 -3
€. (@7 L),
(]

POLAR allows for a bi-exponential range law:
n n
_ 1 2
R = b1 Eo + b2 Eo

involving four parameters blm b2, Ny Np- The parameters are fit to
reproduce range data as accurately as possible. For materials where no
suitable data is available, a mono-exponential form is generated using
Feldman's empirical relationships (Reference 4-8), connecting b and n to

atomic data.

o
!

= 250 A/pz™/?

2
]

1.2/(1 - 0.29 log,o2)

where A is the atomic or molecular weight of the material, Z is the

atomic number, and p is the density. The stopping power is then
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obtained indirectly via the equation above. Recently good theoretical
estimates of the stopping power for number of materials have become
available (Reference 4-9). Comparison of these values with those
implied by the range data showed significant discrepancies, particularly
for those materials fit using Feldman's formula. A better approach is
to fit the four parameters in the equation for R directly to the
stopping power data.

_ 1
S = {nlbls + nobE

n,-1 n2-1}”1
Secondary emission of electrons due to ion impact is treated in a

way similar to that for electron impact. The yield A us given by

t
A (6) = C Io 1SE1 &7 sin 6 dx

The angular dependence is assumed to be a simpie sine form, and the
stopping power is assumed to be independent of path length x over the
thickness t of the sample.

)

dE 1/2
=l =pE 12,1 « EE, .

Emax is the energy at the maximum in the yield curve. This is “50 keV

for most materials. A typical yield curve is shown for aluminum in
Figure 4.52/2.
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4.52.2 BACKSCATTER ELECTRONS

Backscattered electrons are those emitted from the surface with
energies above 50 eV. Their energy distribution is usually peaked close
to the primary incident energy and they may be considered as reflected

electrons.

The large-angle scattering theory, together with Monte Carlo data
and experiments by Darlington and Cosslett (Reference 4-10), indicate

that the angular dependence of backscattering is well described by

n(8) = 1(0) exp[n, (1 - cos6)]

where the value of ", is, within the uncertainty in the data, what would
be obtained by assuming total backscattering at glancing incidence, viz.

" = -log T Mo = n(o). The net albedo for an isotropic flux is then

Y =201 - 7,01 - log 1)1/ (log 1)

As the energy is decreased below 10 keV the backscattering

increases. Data cited by Shimizu (Reference 4-11) indicated an

increase of about 0.1, almost independent of Z. POLAR approximates this

component of backscattering by

éqo = 0.1 exp[-E/5 keV]
At very low energies the backscattering coefficient becomes very small
and, below 50 eV, backscattering and secondary emission are

indistinguishable. POLAR takes account of this by a factor of

[(E - 50 eV)/log 20] log(E/50 eV) .
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The formula for energy-dependent backscattering, incorporating these
assumptions, is then

N, = {[log(E/0.05)B(E - 0.05)8(1.0 - E)/log(20)
+ B(E - 1.0)} x [0.1 exp(-E/5) + 1 - (2/¢) 9%7]
where energies are measured in keV.

4.52.3 INTEGRAL OF THE MAXWELLIAN DISTRIBUTION

In Section 3.41, the current JM of electrons of charge q to a
surface at voltage V due to the Maxwellian portion of the spectrum was

given as

£ 27 r/2
h==E-{"ap [ sino cost a0 g(E, ¥ (4.))
(kM)“r 70 0

* Jm K dK exp[-(qV + K)/kT]
L

L = max(-qV, 0)

The lower kinetic energy limit L is chosen to exclude orbits that
cannot energetically connect to infinity. The function g is a function
of the pitch angle y, and total particle energy E. POLAR is presently
approximating all distributions as isotropic, so the angle integrals are
performed assuming g to be a constant of value unity.
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The flux of electron generated secondary and backscatter eiectrons
is obtained by adding a yield function Y(K, ¢, 6) to the above integrals
(Section 3.33). POL IR presently replaces Y with an angle averaged ;(K)

for the isotropic case. Thus

00
o = —35 VAT [T AT LT ) o oK
(kT) 2x L

where the pfimary current J, is obtained by setting Y=1.

For arbitrary Y, the integral must be performed numerically. It
is also desirable to divide up the spectrum in a manner that covers the
larger fluxes at low energies without ignoring the high energy tail of
the Maxwellian spectrum. A logarithmic spacing is accomplished by the

substitution

K = -kT In(x)

Thus we have

xXu
Jys = oF jx'?(x(x)) In(x) dx

°L/kT, and xI = 0. Since In(x) is singular at x = 0, the

where xu = e
lower limit is set to x| = 0.01 » xu and the omitted portion of the
spectrum approximated by x| * In(x). The summation is performed using

Simpson’s rule and 20 points.
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4.52.4 INTEGRAL OF THE POWER LAW DISTRIBUTION

The discussions of angular dependence in the flux integral given
in Section 3.31 and 4.52.3 also apply here, so we will limit this
treatment to the energy integral

KU
(A) J=aq jKL Yk » (3o qv)~ @) g g

where J is current, Y is secondary or backscatter yield, K is kinetic
energy, a is a constant (a = 7A for isotropy), q is charge, and V is

surface potential. For the limits we choose

KL = MAX (0, EL - qV)
KU = MAX (EU, EU - qV)

where EL is a physical cutoff (default = 100 eV) and EU is imposed
sufficiently high as to avoid significant error (default =1 x 109 eV).

The first step is the transformation
X=K+qV,
which gives

XU
J = aq JXL YKOO) o [0 - qv x"(@D)y gx

where XL = max(qV, EL) and XU = max(EU + qV, EU).

Since a can be as large as 3.0, this spectrum is strongly peaked
towards lower energies, which implies that a nonuniform spacing of
integration points is desirable. This is easily accomplished by the

substitutions,
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= y-ll(a-l), for the first term, and

X = z-lla, for the second term

of the previous integral, which leads directly to

1 (Y- 1 (3Y <
J = aq [;:T I Y dy + 2 I Y dz
yl zl

l-a, etc. Notice that these choices produce integration

where yl = xl|
weights of value unity. The numerical integration is done over 20
points spaced evenly iny and z. These transformations are very
strongly biased towards the lower energies thus the upper cutoff was
chosen quite high (1 x 109 eV) to force good coverage of intermediate

energies where Y might be peaked.

A method with variable bias was also investigated. This utilized
for Eq. (A), the substitution

K= x-llp - S
dK = - % x-(l’llp) dx = w(x) dx

This method has the ability to adjust the bias with f, and center the
integration points about an energy related to S. This method is
inherently siower due to the calculation of the weights w(x), and
appeared to offer no great advantage over the previous method. It is

not presently used by POLAR, but remains an option.
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4.52.5 INTEGRATION OF GAUSSIAN DISTRIBUTION ELECTRONS

This treatment is |imited to the energy integral of the Gaussian
electron distribution. The angular dependence has been integrated
assuming isotropy as discussed in Section 3.41 and 4.52.3. From Section

3.41, the integral of interest is

"8 jw Y(K) exp[-(K-K )2/6%]k dK . (1)
KL °

where KL = max(0, -qV).

As in the previous Section 4.52.1 and 4.52.2, the inclusion of the
angle averaged yield function Y(K) will make J the current of
backscatter or secondary electrons (see Section 3.43); with the emission

of Y, J becomes the incoming primary flux.

This integral is performed numerically by an 8 point Hermit

integration scheme (Reference 4-12).

The weights and abscissa are:

i X, w(xi)
1,5 +0.38119 6.61147 x 10~}
2,6 +1.15719 2.07802 x 107}
3,7 +1.98166 1.70780 x 1072

4,8 +2.93064 1.99604 x 10~4
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Equation (1) can thus be approximated by

8 -——
Jg = B ;{; w(x;) » V(K,) * exp[-OK3/69] o K. * B(K,-KL) (2)
=
where
K. =K + X, *6
[} (o] 1
AK. = X. % §
] [}
and
B(Ki - K) (=1 for Ki -KL >0

O for K - KL ¢CO ..
i

KL is chosen as max(0, -qV) which excludes energetically trapped orbits.

JS as given by Eq. (2) has the undesirable property of being
discontinuous with respect to K due to the B function. This feature can
be removed by calculating J with the same scheme (omitting Y). J will
be discontinuous at exactly the same values of K as JS' We can then
form a smooth J; as

J
*
JS =7 ° Ja
where Ja is the analytic solution to the primary flux integral derived
below:

J, = B j:L exp [-[K ; K°]2]K dK
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set
X = (K-Ko)/ﬁ, K=X5+K°
SO
J =18 f exp(-X2) (X6 + K_) dX
a Z (o]
where
KL - K
_ o
l=—3
Integrating
2
), =B [exp(-—Zz) . J% [, + 1K 1 erf(lll)]]

4.52.6 PHOTOEMISSION

The photoemission electron currents are calculated using material
properties and the area of the surface lit by the sun. The material
property (6.12.10) used is the yield (Y), or the number of electrons
emitted for a surface normal exposed to the solar spectrum, an "earth
distance" from the sun. POLAR calculates the photocurrent from a

surface exposed to the sun at an angle ¢, according to

iphot = (Area exposed) * Y ¢ cos¢

where the exposed area takes into account any shadowing by other
surfaces of the object. This formula assumes that the yield per photon

is, on the average, independent of ¢.
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4.52.7 SHEATH TO OBJECT ELECTRON CURRENTS

When the attracted species are electrons, the initial currents and
velocities are different than for ions. This discussion applies to
attracted electrons whose collection is space charge |limited; the orbit
limited case follows. To account for sheath shadowing in the

quasineutral presheath the sheath flux is

J = Ne {kT/27m

sheath
where N is the ion density in the presheath. For a nonflowing plasma N
= No’ the unperturbed density; however, for a flowing plasma in the wake
direction, N is reduced over the ambient value, by geometric shadowing
effects of the sheath. (Section 3.31.)

The initial velocity for electrons used in the particle pusher
routines is average velocity of an electron crossing the sheath
boundary. This is
Vo = ({2 kT/*m) E
The unit vector E is opposite to the direction of the electric field at

the sheath boundary.

The electron tracking is broken into two categories. When the
cyclotron radius is large (greater than a mesh size) step pushing is
used as for ions. If the cyclotron radius is smaller than a mesh size,
a drift approximation is used (the actual keyword/variable used is
RDMAX2) . The cyclotron radius is found by

Feye = Mg /eB
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where v' is the velocity in the drift frame. The drift frame is the
frame in which the perpendicular electric field is zero. The drift
approximation ignores electric field gradients and that is consistent
with the finite element approximation. The drift velocity is given by

_ ExB
-5

Y
Y
Writing the initial velocity and electric field in components parallel
to B (E|I and V'I) and normal to B (EI and Vl) the drift approximation
is

dv

I _
m—g = " Ey

and

v
B2

]
The procession V' = V - VI about B is computed in the drift frame when

[ VAR 2 2
dt = WXV

when

»

- <8

In orbit limited electron collection, the surface fluxes are defined by

J kT)

surface ~ Jsheath 1+ vsurface/

For more information, see the NASCAP Programmer’s Reference Manual (Ref.
4-1).
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4.53 ION SURFACE CURRENTS

The ion currents used in PFOLAR are found using one of two methods.
When surfaces have potentials which are not high enough to be enclosed
by the sheath, the random ion current (Section 4.53.10) is used. These
currents are also used as default currents when the CURREN module has
not been utilized previously during the run (for an example see PRECHG
in Section 6.42.40).

The second method uses the particles pushed by the CURREN module
(Sections 4.40 and 5.60) to the object’s surface. These pushed currents
are combined with the random ion currents to provide ion currents with a

voltage dependence. Section 4.53.20 describes the second method.

The ion current contribution to the current derivative (dI/dV in
Eq. (4.50-1) is discussed in Section 4.53.30.

The above pertains to attracted ion currents whose collection is
space charge |limited. For a discussion of orbit limited ion currents,
please see the NASCAP Programmer’s Reference Manual (Reference 4-1).
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4.53.10 THERMAL ION SURFACE CURRENTS

POLAR must have a default model for ion currents for surfaces that
are not included inside the sheath, or have not yet had an ion current

calculated.

For an uncharged surface in a non-flowing plasma, its "random"

thermal ion current density would be

_ ‘ kT
Jth - Noe 2ﬂni

For the case of a flowing plasma the current should be properly

derived by integrals over the ion distribution function. We have thus
far found it adequate to approximate the current by blending the

following approximation. For a surface facing the flow
* . H
J = Noe(-Vn a) L;;

where is the surface normal, and V +és the flow or Mach velocity,

normalized to the ion acoustic speed

For a surface on the wake side, we presume that a neutral ion density,
ng, has been calculated, and approximate that

J o~ " Jth

These approximations are combined into the expression




Where

VDN

Jen * Mg |27« von s Al

th

~

max (0.0, - VM * a)

. -1
2.0,
min ( g )
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4.53.20 SHEATH TO OBJECT ION CURRENTS

For the space charge collection limited, attracted ion currents,
POLAR tracks particles from a sheath surface to an object surface.
Experience has shown that if surface currents are simply accumulated
from incident particles, the currents are noisy and lead to non-physical
charging behavior. Numerous reasons exist for this noise: tracking
errors, potential field irregularities, too few trajectories, etc.
While these problems have all been studied, it remains desirable to have

a smoothing aligorithm for the ion surface currents.

The ion currents to be smoothed are derived from the "dead-list"
of particles produced from the particle pushing module CURREN (4.40).
This dead-list contains the particle’s weight, final position, final
velocity, and initial energy and the surface the particle landed on. To
speed up the surface current calculation and to reduce noise, the dead-
list is condensed to the SRFC list, ordered by surface number. The
particle weights are added since they represent the ion current. The
particle weights are also used to weight the averages of spatial and
energy information. An average position on the cell, angle of

incidence, and particle energy are calculated as follows:

w
5 . = k Tik
i~ N
z:"k
k=1

where " is the weight (current contribution) of particle k, N is the
number of particles striking the surface, and Xi is the ith component of

the position vector. The average velocity and energy are found

similarly.
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The adopted smoothing algorithm is a two-step process wherein the
raw surface currents are distributed to nodes, and then re-
distributed back to surfaces. This simple algorithm is illustrated in
Figure 4.53/1. Given an averaged particle at the point P, on surface a,
its current is shared in 2 bilinear fashion to the vertices (nodes) of

the surface, rrndu~ing a node current T-

Figure 4.53/1.

Since two different types of surface occur, triangles and
rectangles, two different methods are used. For triangles, the bilinear
weight of a corner is area of the triangle opposite the corner over the

total surface area (see Figure 4.53/2).

w = area a
sa = area of triangle ABC
A or
_ 1 x B0
wb__ =
2 |R-8 x B-O
c a 8 where wg, is the bilinear weight, X is the

particle position, and s and a refer to

surface and node.

Figure 4.53/2. Bilinear weighting of triangular surfaces.
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For rectangular surfaces, the particle position divides the
rectangle into four smaller rectangles. Then the weight is found by
dividing the area of the opposite small rectangle by the area of the
surface (see Figure 4.53/3).

i
L

p = area of a
WOsa = area of ABCD

Figure 4.53/3. Bilinear weight (wb%2) of a rectangular surface.

Thus we have for Figure 4.53/1
AI; = wb,; * SRFC(a)

where the A indicates that this is a current increment. The complete I;

is never formed.

The next step is to share the node current back to the surfaces.
We may derive a simple sharing formula by forming a nodal current

density, AJ;, as
AJ; = AIL; /A,

where A, is the area associated with node i;

A, = > Aj/nj

j=l

where the Aj are areas of the m surface cells adjoining node i, and n;
is the number of vertices of each adjoining surface cell. A; is bounded
by the dashed line in Figure 4.53/1.




4.5-28

The AJi is redistributed to surfaces adjoining node i in
proportion to the area each contributed to the node area. Thus, surface
b would receive a final surface current increment AIb,

A

b
AI, = — AJ.
b n, i

Finally, we may combin. t!- three previous equations into a node
to surface weight factor wsij. Thus the final surface current, AIb' is

obtained from the intermediate node current AIi as

AIb = WS, AIb
. "
ib ™~ m,
ZA/n
-1.|

This process is performed for each surface adjoining the i nodes
of surface a. The final smoothed surface currents are accumulated as

this overall process is repeated for all the surfaces of the object.

An important feature of this algorithm is that a uniform flux to
an irregular object will produce surface currents exactly proportional
to the surface areas as would be expected. To see this, consider the
quasisphere of Figure 4.53/1. This object has three types of surfaces,
with areas S, R, and T; and only one type of node. A uniform flux of

particles, if tracked accuratel;, will produce uniform node currents.
Summing wo.o* I around the vertices of a surface, we see that the
resultnng surface current will be proportuonal to the surface area, and

inversely proportional to the factor in the denominator of the
expression for 'sij' which is constant for our example. The 'sij are
properly normalized. This can be easily seen in our example by summing

the 'sij around a node;
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n. Ak/nk _ 1 o
k=1 n

i A./n

j=1 3

since the indices k and j range over the same surfaces.

At our present stage of development, we are simply dividing and
redistributing the node currents according to the relative areas of
adjacent cell, but provisions have been made for a more comprehensive
treatment. For example, spatial and electrical information could be
used to avoid non-physical sharing of surface currents; such as
redistributing ion currents to a surface with a large positive

potential, or around corners.

After the sheath to object ion currents have been calculated, they
need to be combined with the ambient or random ion currents (see Section
4.53.10) since some surfaces may not be within the sheath. The two sets
of currents are blended by taking the maximum of the two as the surface

current.
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4.53.30 ION CURRENT DERIVATIVE

In order to increase the utility of the ion currents in the
charging algorithm, an approximate voltage dependence needs to be
defined. The algorithm used by NTERAK chooses a model depending on
current voltage and the last voltage change (or estimated voltage
change) .

The derivative is calculated to estimate I(Vl)‘ where
= dl
I(Vl) = I(Vo) *av AV

For V1 less than -10 kT, an ion attracting surface,

o, 3L(Vy) (v, - V)
av °¥ = - 201V, T+ DVLIN)

where DVLIM is used to limit the voltage change in a charging single
step. This is a Child’s law (I » - IVI"3/2

compensates for overcorrection of the voltage dependence for small

) dependence which

sheaths.

When V1 is greater than -10 kT and the surface is charging
positively (V1 - Vo > 0), then the current derivative is

i, . I(Vy) (KT - Vy)
av &Y = (IVg! + kD

and if it is charging negative,

dI

dvAV:O
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These ion current derivatives have been found to produce stable results
when only one CHARGE iteration is performed between PWASON/CURREN
CYCLES. It is recommended only one CHARGE iteration be done without
recalculating space potentials and surface ion currents when the
current balance on a surface is affected more by ion currents than by
electron secondaries. When secondaries are dominant, the ion current
derivative becomes insignificant and multiple CHARGE iterations are

possible and recommended.

The value of I1 is limited in later portions of the surface
charging calculation (Section 4.56.20). The total current due to all
current sources is constrained in order to force the problem to smoothly
converge on a solution. This allows the slower portions of the
calculation, PWASON and CURREN, to execute more quickly. The
constraints discussed in Section 4.56.20 may result in the re-evaluation

of I1 at a different Vl.
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4.54 SURFACE INTERACTIONS

Surfaces interact with each other via conduction, electrical or
photocurrents. Insulating surfaces interact with other insulating
surfaces by surface conduction and their underlying conductor by bulk
conductivity (Section 4.54.10). When normal electric field boundary
conditions are in effect, a hopping current carries low energy electrons
to the most positive conductor in the area. For the purposes of
discussion, this current is called photoconduction although it may be
caused by phenomena other than photons (such as positively biased,
exposed conductors) and is described in Section 4.54.20.

Surface to plasma and to conductor capacitances are discussed in
4.54.30 and 4.54.40, respectively.

4.54.10 SURFACE CONDUCTIVITY

POLAR breaks the surface of the satellite into smaller surfaces
using the grid, so that each portion of the surface is completely
contained in a single element. Because these surfaces are not really
disjoint, the surface to surface conduction current is taken into
account when both surfaces are insulators. Normally the current due to
surface conductance is several orders of magnitude iess than the bulk
conductance, the conductance from the insulator surface to the

under lying conductor.

The bulk conductance is found by using the material properties
(Section 6.12.10) defining oy, bulk conductivity (ﬂ-1 m'l, property 3)
and d, the dielectric thickness (m, property 2). So

Ao
Bulk Conductivity = P

w

[- 8

o

where A is the surface area in m2 and € is permittivity of free space
(8.85 x 1012 farad/m).




4.5-33

The surface to surface conductivity is calculated by assuming each
surface is a square then using the surface resistivity. Or for a
surface i,

R. =
|

N =

Pi

Where p is the surface resistivity (1 edge-l, property 14). The surface
conductivity along the edge between surface i and j would be

Surface Condcutivity = ﬁf—%_ﬁ_

i
This approximation is accurate enough since surface charging is
dominated by other effects.

4.54.20 PHOTOCONDUCTION/HOPPING SECONDARIES

An electron current through space above a surface can exist when
secondaries are emitted but trapped by a positive surface potential.
These secondaries can be generated by photons or by high electron fluxes
inside electron collecting sheaths. The hopping secondary electron
currents appear to be highly voltage sensitive surface currents. The
currents move along parallel electric fields until they are absorbed by

a conductor.

The presence of the parallel electric and hopping current informs
CHARGE it will not be able to calculate surface potentials for these
surfaces. So it fixes their surface potentials. But their contribution
to the current of the exposed conductor where they end up must be

considered.

The current to the exposed conductor can be found by
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I= Ve ldA
conductor

I = J e d2
boundary of
conductor .
( 4<€)

I-= - —J E,, d2
boundary E? e "l

where Je is the incident electron current (see Section 4.22 for more
detail).

This is done in the code by adding the incident current to
insulating surfaces (times a multiplying factor) adjacent to an exposed
conductor to the exposed conductor’s current. In this manner,

photoconduction, or hopping secondary currents, are modeled.
4.54.30 SURFACE TO PLASMA CAPACITANCE

The small surface to plasma capacitance is currently modeled using

€A
- 9
sm~ h
where €, is the permittivity of free space, A is the area of the surface

and h is the mesh length. This approximation appears to be accurate

enough for modeling purposes.
4.54 40 SURFACE TO CONDUCTOR CAPACITANCE

The surface to conductor capacitance determines the charging or
differential charging rates for many problems. NTERAK calculates the
capacitance using the following material properties (Section 6.12.10):

relative dielectric constant (er, property 1) and dielectric
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thickness (d, property 2). So the large capacitance in charging
problems is

where A is the surface area.
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4.55 CIRCUIT MODEL

POLAR represents the spacecraft in the charging algorithm with a
circuit model using the plasma as a voltage dependent current source.
Insulating surfaces are represented by circuits of the form shown in
Figure 4.55/2. (Figure 4.55/1 defines the circuit elements used in
Figures 4.55/2-4.) Exposed conductors follow the example of Figure
4.55/3. Additional connections appear between surfaces a: d between
conductors. Insulating surfaces are connected as shown in Figure
4.55/4. Underlying conductors are connected to each other via a
resistor and a capacitor in parallel. The exposed conductor surfaces
are lumped together for each of the underlying conductors. An example
of a general circuit and its charging equations has been worked out in
detail in Section 4.57.




(]
; plasma ground
", v
_.‘_. _.'_ voltage on insulating surface
Ve (surface 1, surface 2)
——
Ve underlying conductor reference voltage
L ]
-—;{*—- voltage due to magnetic field
\(:]
I
r—-(:)-} current source, from plasma to surface
R resistance (1/conductance)
—AMN—
c capacitor (those with a subscript G
—t are plasma to surface capacitances)

Figure 4.55/1. Legend of circuit elements shown in Figures 4.55/2 -
4.55/4,
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Ir Ric
v : V. I v
6 1 c
{' 3= c + vl-—.
Cr6 IC 18

Figure 4.55/2. Circuit representation of a single insulating surface
(see Figure 4.55/1 for a legend of the circuit
elements).

Vs T

;‘** o] +J& °
Cre c8

Figure 4.55/3. Circuit representation of a single exposed conductor
surface (see Figure 4.55/1 for a legend of the circuit
elements).

I Ric Rac I
—O— WA —AAA— —(O—

VG 11 V| 1 vc | 11 vz' L VG
R e g Ve e | Ge 1
16 IC 18 V2B 2C Co6
Ri2
{:—f l ::::l——-—-4
+ +
Vie Ci2 Vop

Figure 4.55/4. Circuit representation of two insulating surfaces with
a common underlying conductor (see Figure 4.55/1 for a
legend of the circuit elements).
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4.56 CHARGING ALGORITHM

This section discusses the details of the charging algorithm.
Section 5.7 describes the actual coding used for the surface charging
module. Here the physical models are presented in an order which

paraliels the sequence followed by the coding.
4.56.10 CHARGING NOTATION

The two stage iteration over the implicit charging equation (4.50-
1) requires the careful use of a notation to prevent confusion.
Subscripts shall be used to indicate timestep iterations of the
variables. A superscript prime marks a result found during the first
stage. And a superscript double prime indicates the voltage |limited
result from the first stage. So the first stage, first iteration
charging equation would be

[ C df

q‘:{(; + g = W lto ] (M‘(tl) = y(to)) = l(to) = g !(to)

or perhaps more simply,

¢ df
-g;;*z-;,;”,—o(xl-xo)=;°-gxo

~

Note the convention of using (to) to define the initial values.

The second stage, first iteration equation which finds V. (the

initial voltage for the next iteration) would be
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¢ dIl |°
e a0 W kg

o]

Generalizing for ith iteration, the two stages become,

S dl

{KE; *e- gy i](!'*l v.) =1, - g Y (4.56-1)
¢ L

[KET *ECdy i](¥i+1' Y;) =k - ¢, (4.56-2)

where d]/dY has yet to be defined.

For the first stage, the current derivative is estimated using the
initial values described in the next section. The derivative used by
the second stage is found by using the results of the first stage. It
is defined by

A1 _Ea -k
q| T,V (4.86-3)
~ i i+1 %

where 13;1 is the surface current evaluated using !;;1, the voltage

limited surface voltages from the first stage, or

y|+1 (v|+1)

Although there are two stages for each iteration, only the current
derivative changes from stage to stage. Eqs. (4.56-1) and (4.56-2) can

be simplified somewhat more to
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¥, BY; = B, (4.56-4)

for the first stage and the second stage equation,

M 8Y; = §; (4.56-5)
where

dl
!' - éi ) EY i

dI|’
g' = ei EY i

S

A|=K%T¢§

B =X - Y

A¥i = ¥i+1 - ¥i

The above abbreviated notation will prove useful during general

algorithm and code discussions.
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4.56.20 DETAILS OF THE CHARGING ALGORITHM

The formulations of the charging equations defined in Section
4.56.10 will be used to describe the quantities used by NTERAK to model

surface charging.

The conductance matrix, g, contains the bulk, surface to surface,
and conductor to conductor conductivity terms. The capacitance matrix,
C, is constructed from the interconductor, bulk and surface to infinity

capacitance terms. Currently the capacitance from the surface to

infinity uses a distance to the sheath of 1 meter.

The tota! surface currents, I, are calculated using the surface
voltages, V. The models for the ion and electron currents to the

surface have been discussed in Sections 4.53 and 4.52, respectively.

The voltage change during a stage, AVi, and AVi, is found by

solving Eqs. (4.56-4) and (4.56-5), respectively, using the Incomplete
Cholesky Conjugate Gradient (ICCG) method described in Section 4.30.
The ICCG matrix solver solves the charging equations quickly and
efficient!ly even for large satellites.

The crucial portion of the implicit charging equation is the
current derivative, dI/dVY. Each of two stages has a different method of

calculating the derivative.

The first stage attempts to make an intelligent guess based on
user defined constants and results from previous iterations. Two
possible derivatives may be calculated for each surface. The final
matrix, which is diagonal, is built of these independent terms. The
first defines the crossover or equilibrium voltage, where the total
current is zero, to be XDVFAC+DVLIM volts away (XDVFAC and DVLIM are
input parameters discussed in Section 6.43.30). Or as it is computed on
a surface by surface basis using
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ay | 14l
&Vl | =~ XOVFAC.DVLIN
1

The other calculation method is used when previous iteration
information indicates the crossover voltage has been overshot.
Obviously this method cannot be used for the first iteration. The

second method is

) -l
dvl. = V. - V.
[} ] [

2 1

which predicts equilibrium to be reachable with half the voltage change
of the previous timestep iteration. When both forms are applicable
(i.e., after an overshot by a surface in at least the second iteration),

the more negative current derivative is used.

The voltage change, AV'i, found by ICCG using the first stage

current derivative can then be solved to find the new predicted surface

voltage list, v‘i+1' This result is used to find the second stage

current derivative after a voltage limiting process.

Finding the most useful voltage, V"i+1, for the second implicit

~

stage current derivative requires two steps. First, the voltage change
estimated during the first stage may need to be modified to correct
obvious problems, |ike voltage overshooting or destabilizing voltage

changes due to the influence of other surfaces.

Figure 4.56/1 shows a hypothetical I-V curve possessing multiple
crossovers. Upper and lower boundaries enclose the crossover voltages
and are used to limit the initial voltage approximation. This keeps the

surface voltage from straying too far from the appropriate
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crossover. This feature also stabilizes the surface charging by
reducing the voltage changes in regions where the I-V curve has a
rapidly varying slope. It also allows the user to exercise his
knowledge to produce a more efficient charging sequence by choosing the
boundary voltages. If a surface voltage is outside the bounded region
and moving away from the nearest equilibrium point, the estimated
voltage change is limited tc a maximum of DVLIM (Section 6.43.30).

Since the potential is leaving the vicinity of the crossover point,
slowing the movement helps to stabilize the problem. Usually this event

is due to the influence of another capacitively coupled surface.

(=]

Figure 4.56/1. A multipie ¢ .cscver I-V curve. Voltages V, and Vp, mark
the upper :zud lower boundaries of the region known to

enclose both the stable equilibrium points, Vi and V,.

Another problem caused by a second surface is a surface potential
being driven in the direction opposite to the one expected due to the
environmental fluxes. It is presumed that during the second stage the
external influence (usually the underlying conductor) will be
constrained and greatly reduced. Thus, the sign of the voltage
increment is changed to counteract this effect to establish a more
reasonable dl/d!.
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The next step is to calculate a current for the voltage found
above. If the new current has the same sign as the initial current, the
crossover has not been reached yet and a derivative can be calculated
using the two points. If the sign of the current has changed, the
surface potential overshot the crossover point. In this case, another
current point is found between the first two voltages. The third

voltage used to find the current point is the initial voltage, V'i+1’

plus the minimum of the voltage change calculated during the previous
timestep (the keyword DVTEST, Section 6.43.30, is used during the first
iteration) and half of the difference between the |imited voltage, found
during the first step, and the initial voltage. A parabola is fitted
through the three points and used to interpolate an estimated
equilibrium potential where the total current will be defined to be
zero. This method successfully dampens oscillating voltages and forces
the problem to converge to a steady state solution. If the limited

voltage is actually equal to V'i+1, a small perturbation factor (VWIGGL,

Section 6.43.30) is added to prevent numerical problems when the second

stage derivative is calculated.

The set of surface voltages at the conclusion of this limiting
process, V"i+1, is used to calculate the second stage current
derivative. The second stage derivative actually used to solve the
second stage charging equation is defired to be the minimum (most
negative) of the second stage derivative found using Eq. (4.56-3) and
the derivative used during the first stage. Or

] T L . TSN
avl. = ™M layl. ' Vi - V.
~li i ~isel N

The second stage may now be solved using ICCG to find V the new

~itl’
surface voltage list.
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4.56.30 PARTICLE BEAM CHARGING EFFECTS

Particle beam effects are accounted for in the surface charging
model. Presently, particle beams are only seen as a current source (or
drain) on the conductors. The interaction of returning beams with the

object surfaces are not taken into account.

The beam’s current contribution is added to the conductor to which
it is attached until the conductor voltage is greater than the beam
energy. The dI/dV term for the particle beam is discussed in detail in
Section 4.51.
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4.57 CHARGING MATRIX FORMULATIONS

To discuss the solution to Eq. (4.50-1), the notation of Section
4.56.10 is used to write

MeAY =R (4.57-1)

where M includes the capacitance, conductance and current derivative
matric;s. When the number of vector components is not too great

(€<1000), the Incomplete Cholesky Conjugate Gradient (ICCG) method is
found to be an efficient means of solving Eq. (4.57-1) (see Section

4.30).

Experience has shown that ICCG is most effective when M is
diagonal or nearly diagonal (diagonal elements ») off diagonal

elements). To see how M may be improved, write (4.57-1) as

2

(Mli M2: === MC)A = B
If surface 1 connects to infinity (subscript G) and conductor C, and

considering only the capacitance,

where CiC » ClG' CCG' (That this is a legitimate example, see the
complete sample problem worked in 4.57.10.) It is the off diagonal
entries of C1c that need to be removed. This is accomplished by
transforming (4.57-2) to
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AV1 -AVC
(Ml' MQ’ ’ MC + Ml) - = B
AVC
A column transformation for each surface will "clean up" the upper right

triangle of M, while producing a transformed potential vector where
surface pote;tials have been replaced by the potential difference
between the surface and the underlying conductor. The lower left
triangle of M is diagonalized and symmetrized to the upper by similar
row addition; with corresponding transforms of R on the right hand side.
Currents (in R) to surfaces remain unchanged, but currents to conductors

are replaced as

where the sum is over all surfaces connected by capacitance or
conductance to the main conductor, C and over the surfaces connected to
their own underlying conductors; other conductors are treated as
surfaces and referenced to C. The g and ¥ on the right hand side are
treated identically to g, C and V o; the left. Finally, the current
derivative has terms inNthe same elements as the capacitance to infinity

terms and is manipulated the same way.

Another feature of POLAR’s charging model will change the previous
transformations. This will occur when the routine computing the surface
currents during the first stage (MAKJ1) finds the total current’s sign
is determined by the size of the electron secondary currents. In this
circumstance the surface potential is controlled by the normal electric
field. This may occur when a secondary or photoelectron space charge
density becomes large enough to form a small barrier to the low energy
portion of t'ie emitted spectrum. Such a surface will be flagged and get

its potential floated in the Poisson
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solution according to the d/dt (E * i) = 0 condition, while being held

fixed during the circuit solution.

This fixing is not compatible with the V transformation, so POLAR
is forced to solve the circuit model with the original equations.
Accuracy does not suffer, but ICCG will require more time for the same

level of convergence.

Other conditions may also arise that will require a surface cell
to be held at a fixed potential.
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4,57.10 AN EXAMPLE OF MATRIX FORMULATION

Figure 4.57/1 shows the circuit diagram of an object which can
be used to demonstrate the various matrix formulations. This object
could be a 2 x 1 flat plate with two insulating surfaces (nodes 1 and
2) and two exposed conductors (nodes 3 and 4). By convention, the
ground conductor is defined to be first named conductor, or in this
problem, node 3. In the following example, the current derivative
terms are left out. Since they would have appeared everywhere there
was a capacitance to infinity term, they need not be carried through
the example.

I, R I2
12 __( }_.
C I Vie® —wWA— Vg
] b l+c |+2 "4,‘_‘;
I LA ) —
\v/ Cig { — Ca6

Figure 4.57/1. CGCeneral circuit model used to study the matrix con-
struction (see Figure 4.55/1 for a legend of circuit
elements).
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Using Kirchhoff’s rules, the equations describing the current

balance at each of the nodes can be written as
I =G L (0V) ¢ (004 Co 8y vV, - (v, + V)]
1~ “16 dt 1 13 13 dt 1 3 1B

S 015+ Gy ) V) - (Vi)

d d_
Iy = Cog gt (0-Vp) + (054 + Coy gp) [V -(Vy + Vo)l
d
* (019 + Qo g8 [(Vp - Vo) - (V) - Vip)]
Iy= ~Cop S5 10-(V, + Vo)l = (0,0 % Cpa 99 IV, = (V, + V,0)]
3="C350 a8 3 * Vap 13*Gagp) [V - (V3 + Vg

d_
= (034 + Ca4 gg) (V4 - V3)
I, = ~Coo Je 10 - (Vy + Vy)] - (0o + Coy 93 [V = (v, + Vo))
4~ T4G dt 4 4B 24 24 dt 2 4 28
¢ ©Oap * Coy B v, - V)
34 34 dt 4 3
where
_ 1
i
If the indicated time derivative is performed, the magnetic field

voltages across capacitors disappear (the various VB terms). Writing

the above equation in matrix form and using Vi in place of dVi/dt,
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This is the fixed form of the matrices. When any node other than
the ground conductor is fixed, the above matrix formulation is used.
Note that the conductor magnetic field terms have dropped out of the

matrices, thus the magnetic contribution vector can be changed.

v

V18 18
Vog| ,  |Ve8
Vap 0
Vs 0

in order to simplify its appearance.

The currents to the conductors,

though, still depend upon surface voltage which includes the magnetic

field voltage contribution.
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As previously discussed in Section 4.57, it is desirable to
diagonalize the matrix by moving the larger bulk capacities to the
diagonal. To diagonalize the matrices, the rows and columns of the
insulators are added to their underlying conductors. Then the
conductors need to be added to the spacecraft ground conductor. As an
example of the linear algebra involved, a simple case is worked out. A

two variable linear equation is defined as
31 22 by €2
To add columns of a matrix without changing the equations,
’all 312} [1 1] (1 —1] [bl] ) [Cl]
357 299 01 ‘0 1 b2 C2

P 1 a12] by - bz] _ [c1]
821 %21 * %22 ¢

or adding rows,

(1 0 a5, 3, 'bl’ _ [1 o0 C1
1 1 b - . 1 C

{ 21 222

11 212 ] 0] [ et ]
211%%21 127322

and combining the results,

1 211*%12 ] [bl'bz]

a11%3g1  311%319%a5 %3, b,

C1+C2

Applying the above result to the fixed matrix form, the

diagonalized or unfixed form can be written as
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L | [eects o 16 12 W
I G2 Coe*Ci2*C2s o0 C26*C12
IielyIged, ) C6 Cae C16*C20*Cag*Cac C26*Cac
SR ZALYI B ST Coe*Cr2 Co0*Cac C20*Cac*C12*Cad)
919%*%13 %12 0 12 | [YaVs)
O1p  O19*%94 O 912 Vo-Vs
"o 0 0 0 v,
[ 712 912 0 919*%34) | VaV3)
9197913 912 013 92 | [Vi8Vas
P12 0127924 024 9127924 Vog-Vas
.
0 0 0197004 T4 Vg
| %12 Yy 24 91274  Vag~V3p)

Again, if the magnetic portion is multiplied out, the V3B and V4B cancel

or

Vig = V vV

18 ~ VB 18

Vop = Vag| ., |VoB
Vag 0
Vag -~ Vap °

In other words, the magnetic field contribution to the circuit model is

constant in both the fixed and unfixed forms.

Two more matrix formulations are possible with the inclusion of
the biasing of two conductors to one another. They are the biased/fixed

and biased/unfixed forms. Biasing reduces the four
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variable problems to three by adding the equation V4 = V3 + Vbias' So
if the substitution is made and the two conductor equations are added,

the set of equations becomes

d d -
I, = -Cig gt O-Vy) + (0434C53 g5 [V - (V3 + Vyp)]
d_
- (099 * Cpp gt [(Vg - Vog) = (V) - Vyp)]
L= <Con o (0-V,) ¢ (0, + Coy ) [V, = (Vo + V. + V.0)]
2 = ~Co¢ gt (O-Yy 24 * Cog at) [Vo - (V3 + Vpias * Vop

+ (049 + Gy %E) [(Vy - Vog) = (V; - Vyp)]

d d
Igely = -Caq gt [0-(V3+Vap)] - (043 + Cy3 gp) [Vq - (V3 + Vip)]

+ C + V

d_
46 dt (V3 * Vpias * Vap)

d
- (0 * Cop gp) Vo - (V3 + Vpiae *+ Vop)l

Note that the 034 and C

form, these become

34 terms are lost upon addition. Or in matrix

I “6*¢12*¢s 2 s V1]
b 1= | e €26*C12*Coa Co4 V2
I3+I, [ -Cy3 “Coa Ce*C13*Cag*Coq V3,
712*%13 012 <013 Vq)
* | 9y *004 004 vy
| %13 024 013*024 &)
- - \
197913 942 0 V18
+ | %9 0197024 0 VoB
L %13 994 0] | 0
(0 0 0 (0
+ |0 094 0 Vbias
| © 24 0) | 0




where the magnetic field has disappeared from the matrix again.

the biased/fixed formulation of the circuit equations.

To find the biased/unfixed formulation, the linear algebra

techniques are applied as before to find

I ’CIG#C

1 12*
1

2 G40

11+I2+I3¢I4 ClG

(019%013

012
L 0

0127913

* | %2

. 0

0
+ 0

0

C

13

¢

G2

+C, +C

26*“12*%24

Cog -

C

Ci6

Cag

+C

16 726 "3G

+C

o)

+C

4G
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This is

. 0

(O

vbias

)

It should be pointed out that when these forms are used by the

code, the magnetic field and bias (if appropriate) contributions are

computed to become vectors then added to the current vector and the sum

is manipulated into the appropriate form.
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5. POLAR CODE STRUCTURE

This chapter is designed to provide insight into the internal
workings of POLAR. Whenever possible, actual subroutine names and

variable names will be used.
§.10 TOP DOWN VIEW OF THR POLAR PACKAGE

POLAR is actually four standalone programs, and several utility
programs, that communicate through a minimum number of files. This
approach allows a high degree of flexibility in model building while
minimizing the amount of unnecessary computing. These programs are
VEHICL, ORIENT, NTERAK, and SHONTL. Their functions are described
below. Whenever scratch files are used, they are assigned and disposed
of automatically. In general, only two files are needed to allow

communication between the four modules.

VEHICL is the object definition program. It utilizes much of the
user-oriented object definition procedures developed at S-CUBED for
NASCAP. With VEHICL, one uses a variety of basic building blocks to
define the vehicle to be modeled on a yariable sized 3-D grid. One also
defines all of the surface properties and underlying conductors. VEHICL
then completes the vehicle electrical model and creates a2 number of
"connectivity" tables to accelerate NTERAK execution. This information
is written on two files, 11. and 19., which carry this information to

the other modules.

ORIENT is the attitude control program. U er input is simply the
dominant plasma flow direction viewed from the vehicle. If necessary,
ORIENT will rotate the vehicle and object grid so as to keep the wake
direction predominantiy in the +Z direction. ORIENT will also
restructure most of file 11 in order to organize the slices properly. A
set of six ORIENT runs could catalog all of the possible coordinate

orientations, and allow for all Mach vectors.
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NTERAK is the biggie that actually calculates the vehicle-plasma
interaction. The internal workings and I/0 are the subject of most of
this document, but it should be emphasized that once a Mach vector has
been defined, the extended computational grid will be "burned" into file
11. The file retains a complete restart-continue capability, but a

fresh file should be used if the Mach vector or the grid dimensions are

to be changed.

SHONTL is the machine independent plotting package. It is
designed to be run semi-interactively. By this we mean that plotting
directives are entered by a "keyword" input system that functions in
both batch and interactive environments, but nothing is plotted until
the session is concluded and the appropriate plotting utility is
executed. This somewhat cumbersome procedure is necessary to maintain
the machine independence of SHONTL. SHONTL can be used after any of the
previous three modules to graphically check the work progress at any
given stage. SHONTL reads from file 11, and communicates with the
device drivers through file 2. The file 2 contains the generic pen-move
and vector commands written on file 2 by SHONTL which are later

translated to a specific graphics display device.

SHONTL is also a powerful debugging and diagnostic tool. It can
be used to produce hidden line plots, print data stored using the

buffered I/0 routines and can be used to see up diagnostic or test runs.

Two utilities are provided for pre- and post-processing POLAR
calculation, SUCHGR and TRMTLK. Several device dependent graphics
programs which display the contents of file 2 are included. There are
also support tools available to handle job control tasks and software

maintenance of the source code.
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5.11 VEHICL

VEHICL
VEHICL/ VEHIOL oo
d’e?:t??s input OBJDEF PLTSAT generation
se

Figure 5.11/1, VEHICL structure.

The vehicle or ocbject definition phase of POLAR is done once for
each object by the use of VEHICL. Figure 5.11/1 depicts the
organization of VEHICL. The sutroutine tree is traversed from left to
right.

The first step is to set local VEHICL default parameters. The
default values to be used later during NTERAK are set by VERICL. This
is also done during the default setting phase.

After setting defaults, the routine VEHDEF solicits input from
standard input (unit 5 in standard Fortran) in either a batch or
interactive mode.

When the end of the keyword input portion has bteen completed,
the OBJDEF subroutine is called to read the otject description from
file 20 and initialize the element and surface lists.

Upon successful completion of satellite definition, PLTSAT
generates plots of the satellite if desired. Hidden line perspective
plots and/or axial material plots can bte generated.
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During the initial object definition, general tabies and lists are
created. The final phase of VEHICL is preprocessing these lists to
generate the various tables used by NTERAK to speed up the calculations.
The generation of these detailed lists imposes a strict set of object

validity tests and frequently errors in object definitions are found in
this part of VEHICL.
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ORIENT

input

Figure 5.12/1.

permute
lists

ORIENT structure.
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Because the modeling of plasma flow is facilitated by the use of a

preferred direction during computations, the plasma flow is defined to

be in the +Z direction in NTERAK.

convenient way to define an object.

This is not always the most
ORIENT provides the means to rotate

an object to a preferred orientation from the arbitrary orientation used

during definition.

The first step is to solicit input from standard input in either a

batch or interactive mode.

generated by VEHICL are permuted to the new set of axis.

After command input is complete, the lists

ORIENT can be calied several times in sequence to perform many
permutations. The final lists are in the same form as those generated
by VEHICL. The ORIENT can, of course, be skipped altogether if the

object is already properly oriented or no flow is going to be used.
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5.13 NTERAK
NTERAK
[
| i
initialize Time
Problem integration
|
| | [ 1
initial Potential Particle Surface
Wakes Potentials Solver Pusher Charging

Figure 5.13/1. Structure of NTERAK module.

NTERAK has two major divisions, the initialization processes and
the time integration sections. Figure 5.13/1 depicts these portions
of NTERAK.

The first calculations needed are those which define the wake
structure and the initial surface and space potentials. The details
of the protlem determine the complexity, or even the necessity of
these computations.

The majority of interest in most cases is upon the results of
the time integration portion of NTERAK. NTERAK iterates between the
potential solver, particle pusher, and surface charger to find a
quasistatic solution for a problem,
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The potential solver, PWASON, uses the space charge densities and
the surface potentials to compute space potentials. The particle
pusher, CURREN, uses the space potentials to calculate a particle sheath
and to compute electric fields to push the attracted specie of particles
from the sheath to the object surface. The particle pusher computes new
space charge densities within the sheath and iew particle currents to
the object’s surfaces. The surface charger, CHARGE, uses the particle
currents to compute new surface potentials. The new surface potentials
and space charge densities are then used again by the potential solver

to continue the iteration.

Each of the three modules are independent of one another and if
one of them is not necessary for a calculation, it can be left out of

the iteration cycle.

NTERAK can be stopped at any point during initialization or the
time integration using the keyword input. Input is accepted in either a
batch or interactive mode from the standard input file. The input is
used differently than in VEHICL or ORIENT. Keywords are read until one
of the calculations pictured in Figure 5.13/1 is requested. At that
point input is suspended and the computation is performed. At the
completion of the calculation, input is resumed. In this manner, input

parameters can be changed from iteration to iteration.

After any calculation, NTERAK can be stopped and the intermediate
results viewed using SHONTL or whatever. The run can be continued by

starting NTERAK again with the appropriate instructions.
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5.14 SHONTL

The SHONTL module is described in detail in Section 5.82. The
SHONTL module is used to produce plots, print grid and list data stored
on the buffered I/0 files 11 and 19, make hidden |ine perspective
pictures of the object, and serve as a diagnostic, debugging, and

general all purpose driver.

5.15 UTILITIES

In addition to the four main POLAR executables, there are several
specialized utilities to aid the analysis of spacecraft/environment
interactions. The utilities provide the means to perform quick
calculations before beginning NTERAK jobs, the ability to study the
charging of the individual spacecraft surfaces, interfaces to two
different standard graphics packages, a method of NTERAK batch job
control, and some tools to maintain and modify the source code for the
POLAR package.

SUCHGR performs quick analysis of the interaction between
materials and POLAR environments. This utility contains both orbit
limited and space charge limited algorithms for calculating the
equilibrium surface potential, surface currents and sheath radii.
Typically SUCHGR calculations are used to anticipate the charging
behavior of surfaces, ignoring geometric and surface/surface interaction

effects, before beginning NTERAK computations.

After NTERAK charging calculations, TRMTLK can be used to provide
information on the charging history of individual surfaces and
conductors. The surface voltage charging history, current breakdowns for
each insulating surface, and other items are taken from file 16 and
displayed in both table and plot formats. Tools are available to select
groups of surfaces or individual surfaces with out requiring surface

numbers.
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Two types of standard display device plots are supported by this
version of POLAR. Plot files are translated to Tektronix 4014 graphics
commands by T4014. Postscript versions of file 2 can be created by
PSTPLT. For ‘computing environments where the calculations are performed
on one machine and graphics are viewed on another incompatible machine
(for example NTERAK is run on a batch oriented CRAY and plots are viewed
on a VAX system), a pair of routines can be used to transfer plotting
data in an ASCII format. READO2 converts the contents of file 2 (an
unformatted file) to a text file, file 4. The text file can then be
moved to a second machine and displayed in Tektronix 4014 graphics
commands with PLOTO4.

Since NTERAK calculations can take a fair amount of time,
sometimes it is desirable to stop a running batch gracefully and then
restart it again later. At convenient intervals, NTERAK checks for job
control input files (.JCI files). STOPRUN sets a flag to indicate the
desire for a graceful termination of the current run. KILLJOB sets a

flag to kill the run immediately upon detection.

The source code for POLAR is normally organized in a directory
tree, where each library and executable have their own subdirectories of
source code. A shell script, MAKEP1, is used to compile and load the
POLAR executables. A specially tailored version of MAKEP1 is available
for making modifications of POLAR without incorporating them into the
main version of the POLAR package.
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5.20 SLICE GRID SYSTEM

The displaced slice grid system is designed to provide the
computational space in which to solve Poisson’s equation for the shuttle
orbiter, including a wake extending many spacecraft lengths. Hence the

grid must continue for an arbitrary length in the plasma flow direction.

To facilitate this, the grid is composed of a variable number of
XY slices, stacked along the Z axis, rather like a loaf of sliced bread.
Figure 5.20/1 illustrates a displaced grid system along with a number of
important parameters. O0Objects are defined on a rectangular NXOB x NYOB
x NZOB grid (5.11, 6.20). In all cases, the object grid will have been
rotated by ORIENT such that the dominant component of the plasma flow
vector VMACH is oriented along the +Z direction. As shown in the
figure, the grid follows VMACH by stepping #1 unit in the X and Y
direction every IDELX and IDELY mesh units along the Z direction (the #1
step follows the sign of IDELX or IDELY). These step intervals are
calculated in the routine SPACE according to the relation (FORTRAN)

IDELX
IDELY

VMACH (Z) /VMACH(X) + 0.5
VMACH (Z) /VMACH(Y) + 0.5

where the + follows the sign of WACH(X). Since IDELX is an integer,
the 0.5 centers the velocity ratio between integral increments.

The computational grid must enclose the object grid with a minimal
amount of wasted space. To accomplish this, the routine SPACE
references the two grids at the point shown in Figure 5.20/1, then
calculates the NXGRTH(NYGRTH) necessary to fit the grids together. When
the user anticipates the need for additional work space, the INPUT
parameters NXADNT, NXADNB, NYADNT, and NYADNB can increase the
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Figure 5.20/1. A X-Z cut of a typical NTERAK computational mesh
showing the object definition grid and the computed
(NXGRTH, IDELX) and user-specified (NXADNT, NXADNB,
NZADON, NZTAIL) grid parameters.
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X-Y grids without requiring a redefinition of the object space. The
GRTH and ADON parameters are included into the final NX x NY dimensions.

The computational space is characterized by the following

parameters:

NX0B,NY0B,NZ0B = The real node dimension of the
object grid along the X, Y, and
Z directions.

NX = NXOB + NXGRTH + 2 x NXADON

= the real node dimension of a

slice along the X direction.

NY = NYOB + NYGRTH + 2 x NYADON

NZ = NZOB+NZTAIL + NZADON

The NZADON and NZTAIL are also inputs to NTERAK and are currently
limited to total a Z node count of 100. This iimit could be extended
indefinitely subject to available disk storage and budget limitations.
This last feature is the intended result of NTERAK’s data management
system. This system allows models to be constructed primarily on disk
with the computer "core® used to perform arithmetic on small volumes of

space.
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5.21 SLICE MACHINERY

The grid machinery consists of routines designed to move or page
grid information between disk and core. In both media, information for
each of the vectors (’p’, ’r’, ’'u’, etc. (4.21.1) are called vectors
even though they are scalars at a particular grid point) involved in a
calculation is organized into individual one-dimensional arrays

corresponding to each X-Y slice.

NTERAK distinguishes between two types of nodes, real and virtual.
At real nodes a problem’s variables are truly variables. Virtual nodes
exist as the outer boundary of the problem, where values are generated
according to the boundary conditions. There may be one or two virtual
nodes beyond the edge of a slice (see Figure 5.20/1) depending on the
proximity of a step. Only real nodes are paged in and out. Each vector
slice has a real node length NX = NY with the assumed convention that

the X coordinate varies the fastest.

In order to relate the slices to one another and perform
arithmetic with minimal confusion, it is necessary to adopt a standard
coordinate system. There are two possible choices; object and slice
coordinates. We have chosen object coordinates as the primary system,
but slice coordinates are sometimes required by lower level routines.
Object coordinates reference the "least" real node of the object grid as
(1,1,1) (see Figure 5.20/1). By "least" we mean the node for which
NX = NY » (Z-1) + NX = (Y-1) + X is a minimum. Thus the least real
node object coordinates of some slices may be less than zero, while the
slice coordinates of the least node will be (1,1,ZSLICE) where ZSLICE
numbers from 1 to NZ. The relationship of the slices to each other is
written in the common block MESHY by the routine GRID. This block
contains the object coordinates of the least real node of each slice.
For further detail concerning subroutines and common blocks see

Appendices A and B.
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NTERAK’s grid machinery exchanges information between disk and a
special common block called CBUF. The core location of CBUF is such
that its addresses are the highest of all other data and instructions.
On many machines this allows the CBUF length to be extended or reduced
dynamically during execution to precisely match storage requirements.
The allocation and addressing of data space in CBUF is controlled by
three routines (see Section 5.30), MRBUF, BUFCLR, and BUFSET. MRBUF is
called only once from the level 2 routine SPACE and initializes the
array VPROPS which contains all of the individual vector properties that
affect the vector’s handling storage requirement in CBUF and on disk.

Subsequently, any computational process requiring vector slice
transfers to/from disk will first call BUFCLR. BUFCLR clears the ADDRES
common block which contains the CBUF addresses, releases any dynamical

requested core, and resets other storage control variables.

The next step is to call the routine BUFSET, passing it a list of
up to four vector names and the number of slices that will be needed in
core. BUFSET will assign each vector a region in CBUF, and list this
addressee in the common ADDRES. BUFSET may be called repeatedly for a
total of 12 vectors. For example, in an operation requiring three
slices of 'R’, 'R’ would be assigned the address sequence; A, B, C, A,
B, C, A, B, ... , for all 1-NZ slices. The actual transfers are
effected by PAGER, which can read, write, or read-write slices. Suppose
that 2, 3 and 4 were in core starting at the CBUF address B, C and A,
respectively. If PAGER were called to read-write 'R’, for slices 3-5,
’R” slice 2 at B would be written on disk, and slice 5§ would be read
into CBUF at B. The R slices 3 and 4 would remain untouched.
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Some other routines that are commonly used with this grid
machinery should be mentioned. One is XYGRID, which looks in the MESHY
common block and returns the X and Y |imits of a slice in object
coordinates. The others are XBNDRY, YBNDRY, and ZBNDRY. These routines
will take an element index (equal to the least index of its eight nodes)
and determine which of the element’s eight nodes are real or virtual
(boundary nodes). This information is kept in the array MBXYZ(8). To
form an element on the staggering grid, VERTIO is called to pick four
nodes from each of the two bordering slices totaling eight vertices.
Individual words of a vector at a node are located in CBUF by the

statement function (or integer function on some machines) IPUFAD.

In retrieving these words, the MBXYZ array is consulted to
determine if a node is virtual. If so, the boundary value (currently
zero) will be used for that node.

The routine GETSCR is a cousin to VERTIO. It will ’GET’ or ’REP’
the element centered quantities ’GI’ or SCRN’. ’GI’ is the name given
to the normalized ion densities (3.20, 4.41), and ’SCRN’ refers to
screening factors (4.43).
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5.22 VOLUME ELEMENT MACHINERY

To illustrate NTERAK’s volume element machinery we will describe
its use by the subroutine COPROD. COPROD’s function is to generate the
M e U product and U * M *» U inner product (4.30). Once slice
7nformation has been a:cessed and resides in core (5.21), COPROD must
calculate residuals, element by element, and return the vector so
calculated back to the disk in slices. These operations are complex and
require fairly elaborate machinery. We begin by offering a brief

overview.

COPROD begins by reading in the relevant slice information,
establishing a section of the computational space in core. This volume
is swept, element by element. Each element is characterized by the
coordinates of its lowest indexed vertex. The potentials, and other
vector information, for each of the eight vertices of a particular
element are extracted from the main /CBUF/ array by VERTIO. VERTIO also

replaces or augments array entries with calculated vertex information.

The potentials at the boundary of the computational space are
assumed to be fixed and known (presently set to zero). Hence they are
not stored explicitly in CBUF. Instead, COPROD examines each vertex of
each volume element and determines if any be an implicit boundary.
Those that do are fixed at the boundary potential. VERTIO (5.21,
Appendix B) takes the X-Y displacement of the slices into account in
picking out the vertices. Having set the potentials at the vertices of
a particular element with VERTIO, COPROD calls ELEMNT to look up its
characteristics in the list ’LTBL’. LTBL is an array with an entry for
each element in the object grid, ’LTBL’. LTBL is an array with an entry
for each element in the object grid, containing the following bit coded
information (5.23): the element type, the number of surface cells
sharing one or more nodes with the element (NCELLS), the element
orientation, and the top/bottom flag.




o
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The number of surface cells (NCELLS) sharing nodes with the
element is used to refer to a second list, LCEL. If NCELLS is non-zero,
DCVCEL is called to decode the next (NCELLS + 1) entries in the LCEL
(5.25) list. The first word of this group will be an element I.D.
number used merely as a check. The remaining words are also bit coded
with: the surface cell number, the NODCOD telling which nodes are
shared with the surface, and the FCN number (4.21) telling which element

face, if any, the surface occupies.

If a vertex or node is shared by a surface cell, its potential is
replaced with the surface potential for that cell, stored in the array
SVRFV, sequentially by cell number. In the same way the contribution to
the residual derived from the shared vertex is returned to the list
SVRFR rather than the residual vector. Hence the surface potentials
play the part of additional grid points, or variables in the matrix
conjugate gradient equations. If a vertex is shared by more Lhan one
surface cell, the adjoining cell potentials are averaged by FORFIL
(4.21) and assigned temporarily to the vertex. Once the vertice
potentials have been collected, the residuals (4.30) are calculated by
either PCUBES or ECUBES (4.20) and shared back to surface cells SRFR

entry.




5.23 ELEMENT TABLE, LTBL

The element table,
An

calculating its relative

element in the grid.

where the Z range starts

Each word is coded
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LTBL, is a list with one entry for every
element’s LiBL entry can be accessed by
address a5 if it were a 3-D array LTBL (X,Y,2)
with © .7 J:rst slice in core (5.21).

«n the [oilowing manner:

3110981765422 1209118765431121 01

D L B A
where:

A - The element-type number.

B - The number of surface cells sharing nodes with the element
(up to 15) (NCELLS).

C - The orientation of the cell. This is only significant for
partially filled celis and is explained below.

D - Top/Bottom flag for elements above or below a thin plate.
D=1 - bottom

=2 - top

3 - both top and bottom, type 5

The foiiowing element types are allowed:

Type Number Bits Descripticn

0 000 Empty cube

1 001 Half-empty wedge

2 010 Cube with diagonal on
one face

3 011 Tetrahedron

4 100 Truncated cube

5 101 Empty cell bisected by
a diagonal thin plate

6 110 Unused

7 111 Filled cube

These volume elements are described in 4.21.
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The orientation code is a nine-bit (three octal digit) code
describing how a non-symmetric element may be transformed into its
"standard" orientation. The transformation (consisting of rotations,
inversions, and translations) to the "standard" orientation is that
transformation

which takes vector r into vector s, where

[ i ]
I

= (x,y,2)
(a(iy), a(ig), al(iz))

1
"

i1 is the octal digit in bits 14-12
1o is the octal digit in bits 11-19
ig is the octal digit in bits 8-6

q(1) = x q(5) = 1-x
a(2) =y q(6) = 1-y
q(’) =z q(?) = 1-z

For example, the octal code 365 implies the transformation
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5.24 SURFACE CELLS

5.24.1 SURFACE CELL LIST, KSURF

One of the lists produced by VEHICL and stored on file 11 (see
Chapter 5.30 on file 11) is the surface cell list, KSURF. This list
consists of bit packed word cairs for each surface cell. The
information content is explained below, and the bit coding convention is
illustrated in Figure 5.24/1. The bit ordering notation used here
assigns each bit the exponent of 2 required to move an integer 1 to that

location by multiplication.

COND = Conductor number, 1 to 15.

NORM = Surface normal in Miller indices, two
bits for each index. The lowest bit
representing 1 or O, ar3 the highest
set for minus, off for plus.

X1,Y1,21 = Lowest coordinates of the volume
element with which the surface cell is
associated (the element that the cell
norma! points in to).

MAT = Material number, assigned by order of
definition.
B = Set for all right-triangular surface

cells (100,010, etc.) and for all

equilateral (111) triangles whose

enclosing volume element is mostly
empty .

H = Orientation code for right-triangle
surface cells. The two bits define
the location of the right-angled
corner in the plane of the triangle,
i, j. The greatest bit refers to j.
The j and i are related to the normal
direction as follows:

NORM i i
Z X Y
X Y i
Y Z X
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X0,Y0,20 = Volume element that the surface normal
points out of.
1B = 0 - not applicable

= 1 - bottom surface of a thin plate

= 2 - top

The KSURF list is written on file 11 by either subroutine VESURF
or ORSURF. Prior to output it is ’Z’ ordered to produce sliceability in
the chosen orientation. It is written on file 11 in a series of records
with each record containing all the word pairs with a given ZI
coordinate. These records are indexed by the NWSURF(Z) list in record 1
of file 11. For each ZI of the object grid there is a NWSURF entry set
equal to the number of KSURF words in the record for that ZI. If an
NWSURF entry is zero, their corresponding null ZI record of KSURF is
skipped.




N = O

bW

KSURF (1,N

COND
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KSURF (2,N)

MAT

o ~NO;»

IN

10
11

NORM { YN
XN

12
13
14

15
16
17

XI

X0

18
19
20

21
22
23

YI

Y0

24
25
26

27
28
29

i1

20

30
31

Figure 5.24/1.

KSURF surface cell

list bit code.

B
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5.25 LCEL, CONNECTIVITY

The LCEL list is used in the potential solving segment to connect
node point to surface cells (4.20, 5.22). This is a bit packed list
with the following structure:

ELT#
CODED WORD
CODED WORD

ELTH

The ELT§ is a coded element identifier,
ELT# = 4096 x (I + 64 = J + 4096 * K)
which serves as a check for correct addressing in the list. Addressing

is accomplished by accumulating the NCELLS word count from the element
table LTBL (5.22, 5.23).

The coded words are bit packed as follows:
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3101987116 54321098765432111009118176%54321 0!

where:

Number

0 ~N O O s W N =

@
'

Bits 0-7 are set if the corresponding vertex is shared
with the surface cell. The vertices are numbered with X
changing faster than Y which changes faster thin Z, e.g.,

for element 1, 1, 1

Coordinates
X Y z

N = N = N e N e
N N = = NN N =
N N NN = = e e

Is the standard orientation surface node number (see 4.21)
that the surface will have when forming the elment into

which this surface points.

Is the surface number.

Is a code for surfaces that are on the top or ittom of a
thin plate (4.21.1). The code is the same as the one used
by the KSURF entries (5.24.1).

0 - not applicable

1 - bottom surface

2 - top surface
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5.30 FILE SYSTEM

One of the most outstanding features of POLAR is its file
management system. This system, combined with the sliced grid system
(5.20) allows POLAR to mode! variably large 3-D problems (20,000 grid
points is common), with fewer than 100,000 words of core. The modules
VEHICL, ORIENT, NTERAK, and SHONTL communicate through the mass storage
files 11 and 19 (see 5.31). Internal to each module, other files of
differing types are used as scratch files. VEHICL uses the NASCAP
object definition coding and thus a variety of NASCAP files are used
initially in VEHICL as scratch files (Reference 1). Two files (11 and
19) are used instead of just one, so that one may be indexed with
literal name keys (19), and the other (11), with number type index keys.
Additional charging information is kept on file 16. This file can be
interpreted after NTERAK runs using the TRMTLK utility.
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5.31 MASS STORAGE FILE MANAGEMENT

Data stored on the permanent file 11 and 19, and the scratch file
9 and 10, is written and retrieved using the CDC MSI0 system (mass-
storage-input-output). On non-CDC machines, the MSI0 routines OPENMS,
WRITMS, READMS, and CLOSMS are provided by POLAR FORTRAN routines which
mimic the CDC versions to provide a machine independent interface to the
host system. We now describe these four routines as they are used in
POLAR.

OPENMS :
Example: DIMENSION IND (NUM)
CALL OPENMS (LUN, IND, NUM, t)
LUN - The logical unit number of the file.
IND - Space provided for a working copy of the file index.
NWM - Length (words) of IND
t - type of index
= 0, number type index
= 1, name type index
To index XR records, a t = O file requires NUM > XR + 1;
for t =1, NUM > 2+XR + 1.
READMS :
Example: DIMENSION BUFR(1000)
CALL READMS (LUN, BUFR(100),NWD3,KEY)
LUN - Logical unit number
BUFR([BO) - Starting address to which data is to be read
NWDS - Number of words to be read

KEY - The index key under which the data record was stored.




WRITMS:
Example:

CLOSMS :

Example:

5.3-3

CALL WRITMS (LUN,BUFR,NWDS,KEY,r)

LUN, NWDS, and KEY are as for READMS; data is read from

BUFR. r = -1, always for POLAR. This specifies that a

record may be overwritten only if the new record length

does not exceed the old length. When this occurs, a new

record is written and a link stored in the old location.

CALL CLOSMS (LUN)

This routine writes the working index from core to the
file copy. It is called frequently to maintain an up to
date file copy of the index to protect data against
unexpected crashes and stops.
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5.32 MRBUF PLUS BUFSET PLUS FRIENDS

To enhance the efficiency of both the execution and development of
POLAR, a formalized system of variable characterization and
identification is used. This begins with the array VPROPS(20,70)
wherein 20 different properties of 70 different variables are
initialized by MRBUF. To set up a work space for a variable (or a slice
of a variable) in the general purpose buffer CBUF, a call is made to
BUFSET using the literal name of a variable (5.33). BUFSET will move
the vector properties from VPROPS to a working array (IAVECS(20,I)) and
the index I will be written into the MELAD common block in the variable

pseudonym. For example

CALL BUFSET(5, ’POT’, ...)

would result in space for five Z slices of potential to be allocated in
CBUF with all essential information stored in IAVECS (20,IPOT) with IPOT
being found in the MELAD common block.

The IAVECS properties are listed below, with a V indicating a non-
variable property that is placed in VPROPS by MRBUF.

Vv TIAVECS(1,I) = Name
IAVECS(2,1) Start address in CBUF
IAVECS(3,1) Number of siices
v IAVECS(4,1)
v IAVECS(5,1)

Vector length of a slice

Words per vector

(The number of words in a slice is TAVECS(4,I) « IAVECS(5,I).)
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V. IAVECS(6,I)
TAVECS(7,1)

Mass storage file number

Low pointer (shifted slice coordinates), see
property 14 and Section 5.21

and

JAVECS(8,1) High pointer used by the data paging routine
PAGER

IAVECS(9,1) Lower (object coordinates, 5.21)

and

V. IAVECS(10,I)
TAVECS(11,1)

Upper object limits, inclusive

Starting key number for the number key files.

X dimension of a slice

v JTAVECS(12,1)
v IAVECS(13,1) Type of slice or vector. Choices are:
"VARI’ - variable length (exampie, LCEL)
’SNGL’ - single slice (example, SRFV)
’WORK’ - work space

’0THR’ - other (e.g., FOTO0)
1 - object slice (e.g., LTBL)
2 - real grid (e.g., POT)
3 - outer virtual node (e.g., LCOF)
4 - virtual element grid (e.g., DION)

v IAVECS (14,1) Shift added to slice coordinates to prevent

FORTRAN MOD function of negative or zero s!ice

coordinates

v IAVECS(15,1) Y dimension of slice




v

IAVECS (16, 1)

TAVECS(17,1)

TAVECS (18, 1)

5.3-6

Lower Z limit of the variable range

Pointer to relate node data to auxiliary node
data (necessary for double points created by
thin plates)

Word type, ’REAL’, *INTE’ (integer), '0CTL’,
*ALPH’
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5.33 MRBUF VARIABLE LIST
NAME DESCRIPTION (Section Reference)
AMAT A work space used for calculating RMAT
ASRF Al. of KSURF in CBUF, unsliced
AXDE Auxiliary DELC values
AXDI Auxiliary DION values
AXGH Auxiliary GH values
AXGI Auxiliary GI values
AXQU Auxiliary QUSD values
AXRE Auxiliary RHOE values
AXRI Auxiligry RHOI values
AXSC Auxiliary SCRN values
CLRG Vector list of large capacitances of
insulating surfaces
CSML Vector list of small capacitances to
insulating surfaces and conductors
DD Unused
DELC Electron density array
DION Composite ion density array
EBAK Electron backscattered current to each surface
EHOP Electron hopping current for each surface
ENRM Normal electric field to surface
ESEC Electron secondary current to each surface
EXTV Surface voltages found during first trial step
FOSH Surface shadowing information
FOTO Memory of past charge information (not
' implemented yet)
GH Neutral he+ density (with respect to its own

species)




GI
ICND
IFIX

IFLT
IMAT
ISEC
JFIX
JINE
JINI
JPRM

JSM

JSMS
JT0T

JTSR
KSURF
LAUX
LCEL
LCOF

LIST

LTBL
LTYP

MRKR
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Neutra! ion densities
Conductor number of each surface

List indicating surfaces with fixed voltages
in insulator plus conduct list form

Floating surface list for PWASON

Material type of each surface

Ion secondary current to each surface
Similar to IFIX only for each surface cell
Incident e to SURFS

Incident ion to each surface

List per surface of derivative of total
current by surface voltage

Small surface currents for insulators and
conductor list

Total of "small" currents to each surface

Total surface current list for insulators
and conductor list

Total current to each surface
Surface cell list

Coordinate list for auxiliary values
Surface to node connectivity list

Table to provide direct addressing to the LCEL
list by element address

Defines element location ICCG packed sparse
matrix

Element table

Element location with respect to sheath. Also
a calculalion saver used by CURREN.

Marks the starts of new rows in LIST

Product of matrix M dot U




NLST
oLoV
oLJT

oLSv
0POT
POT

PSGM

QE
QusD

RHOI
RHOE
RHS

RMAT

SCRN
SCRT
SEDL
SFAR
SFHC

SGMA
SPAC
SRDT
SREL

SRFC
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A list of insulating surfaces
Voltage change from previous charge step

Previous CHARGE cycle total surface currents
from first trial step

Surface voltages used to find OLJT
Previous space charge iteration potentials
Node potentials

Pre sigma (conductance) calculated by VEHICL
and ORIEMT. Does not include grid size.

Average element electric field
Stabilized - harge density array
Node residuals

Sheath ion densities

Sheath electron densities

Right hand side of charging equation

The capacitance matrix portion of charging
equation

Linearized screening term
Scratch vectors

Surface edge list

Area of each surface

Weighted sum of h+ particles which impacted on
object during CURREN

Conductivity matrix including grid size
Work space
Keeps the voltage of fixed surfaces

List of pointers per surface into the LCEL
list

Weighted sums of particles which impacted on
object during particle pushing




SRFE
SRFH
SRFI
SRFR
SRF'}
SRFV
SRFY
SRHA
SRIA
SRTS
SUMM

SUNC
TKSR
TSRV

VCHG

VDT

VMAP
WMC

vXB

5.3-10
Pushed e~ currents to surface
Pushed h+ currents to surface
List of surface ion currents
Surface residual list
Surface U list
Surface voltage list
Surface Y list
Estimate of ambient h+ surface current
Estimate of ambient ion surface current
Surface unpermutation ordering information
Code history information, summary information
from previous PWASON, CURREN and CHARGE cycles
(not implemented yet)
Photo current to each surface
Sets CBUF space to hold all KSURFs at once
Trial surface voltage list
Conjugate gradient error vector

Volume charge associated with each surface

Change in voltage portion of charging
equations (the answer found by ICCG)

Velocity space map, work space

Voltage vector used to construct RHS (voltage
minus conductor)

V cross B voltage bias for each insulating
surface
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5.40 OBJECT DEFINITION

The interpretation of the object definition keywords is done by
VEHICL. The building blocks (Section 6.10) are recognized and used to
define entries in an element table and entries in a surface cell list.
The element table describes the contents of each cube making up the
object definition grid. The surface cell list describes the type of
surfaces which define the object. POLAR models objects using their
surfaces as an inner boundary to the calculation grid. The majority of
computations done by POLAR deal with the space surrounding the object.

Some parts, i.e., CHARGE, look at ch~nges which occur on this boundary.

After the object has been translated to element and surface
descriptions, VEHICL can generate the various .|ists used by the other

modules.
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§.50 POTENTIALS

The potential solver, PWASON, finds the space potentials
surrounding the object. The algorithm used is discussed in Section
4.31. This discussion is limited to the coding structure. Figure
5.80/1 illustrates the organization of PWASON. The convergence test
used for the space charge iteration is to find the RMS error between
the two most recent cycles.

CONGRD performs the conjugate gradient calculation test for CGM
convergence (4.21.1). Figure 5.50/2 outlines the structure of CONGRD.

PWASON

initialize calculate
boundry s::::: :::lr'ge final normal
conditions converged electric tields

calculate
norma' CONGRD

electric fields

Figure 5.50/1. PWASON structure.




find initial
estimate of
residuals

M-o
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CONGRD

find for
initial

—e

£-r

e O

Figure 5.50/2.

loop until
M-y
converged

calculate update
Y My B ru

CONGRD structure.
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5.60 PARTICLE DENSITIES

The calculation of charge densities is performed in two major
segments. Before any electric field information is available the
straight line thermal ion density is calculated everywhere in the grid.
When potentials have been calculated, the sheath edge is found and
particles are tracked from the sheath edge to the object. Once a sheath
has been defined, the straight line thermal ion densities can be
recalculated. The algorithms for these two calculations are described

in the following sections.
5.61 PRESHEATH SPACE CHARGE DENSITIES

Two algorithms are available to calculate presheath densities. The
difference between the approaches lies in the treatment of the
spacecraft and sheath geometries. The NEUDEN method creates a more
accurate representation of the spacecraft than the SHADO algorithm. The
SHADO algorithm is much faster and is able to include the sheath
gener.ted wake in its calculations. The presheath electron densities
are defined to be of equal magnitude, but of opposite sign, as the ion
densities since the presheath densities are defined to be quasi-neutral.

5.61.10 NEUTRAL ION APPROXIMATION (NEUDEN)

The presheath ion density calculation consists of determining the
function g(x,0) (described in Section 3.31). This function has value
unity when particles can reach point x from angle fl without hitting the
vehicle, and it has value zero when the particles are prevented from
reaching x because they are blocked by the object. The major routine in
this section of the code is GEMFAC for geometrical factor, and the
results used by NTERAK are GI’s for geometrical ions. The GI’s are

element centered and defined as

oI(1,4,K) = L Jg(z,ﬂ) jfio(r,u)uz dv di
0.
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For calculation of these geometrical factors we work in a polar
coordinate system whose = 0, ions. In this system, the function f;  is

azimuthally symmetric and the integral is reduced to

GI(1, 90 = 3046 [% 9(9a'¢i)A¢a} ag,
i i

where the function f(8) is normalized so that

% }6: f(6,) 86, bp. =1

.

This function is calculated in FCAL. The calculations are done on a
uniform grid with a default resolution of 1° in § and 10° in ¢. The
greater resolution in the polar angle 6 is necessary since f changes
rapidly as we move away from the ram direction. The geometricai factor
is calculated by taking the building block surfaces (A2’s from HIDCEL)
and projecting them onto the 8, ¢ plane. Regions inside of each surface
are then marked as excluded. The major source of error is the
interpolation between vertices in 8, ¢ space are not straight lines in ,
straight line edges in Cartesian space are not straight |line edges in
Cartesian space are not straight lines in 6, ¢ space. To improve
accuracy, ADVERT adds extra vertices in the middle of edges for each A2
surface. The number of vertices per edge is controlled by NADD, and has
default value of 2. The calculations to determine the points inside the
surfaces are usually done in STICK (for STICK a one into the GEM array).
However, the cases of the ram or anti-ram directions being excluded must
be treated separately. The poles in the 8, ¢ space are singular points
and are handled in STKUP and STKDN for the 8 = 0 and 6 = 7 poles,

respectively.

GEMFAC is called for each surface by NEUDEN (for neutral
approximation density) which also performs the angle summations. The
principle advantage of this geometrical technique is speed, the tens of
millions of g(f, ¢) needed for the densities at each grid point can be
calculated in just a few minutes of computer time. A few representative
plots of ram, regular and anti-ram polar angle projections are shown in
Figures 5.61/1-5.61/3.
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POLAR PLOT

Figure 5.61/1. Neutral approximation phase space map of a flying brick
blocking the ram direction.
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Figure 5.61/2. Neutral approximation phase space map of a flying brick
at right angles to the ram direction.
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POLAR PLOT

Figure 5.61/3. Flying brick in the anti-ram direction.
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5.61.15 SHADO APPROACH

SHADO is a new module for use in computing the particle wake
behind an object in Low Earth Orbit (LED) traveling at mesosonic speeds.

Two simplifying assumptions are made in computing the ion
densities in the wake. The first assumption is the neutral ion
approximation which assumes ions travel in straight lines and are
stopped if they impact the spacecraft. This neglects electric field
effects on ion trajectories. The second assumption is that ion filling
of the wake is due to electric field acceleration. The neutral ion

approximation is expressed by the following equation:

Ji(x,%) = g(x,0) fio(¥V) (1)

where fi(;,z) is the ion distribution function at a point X in space for
a velocity v and /io(;) is the unperturbed velocity distribution
function for a drifting Maxwellian. The function g(;,ﬂ) has a value of
zero if a ray starting from X in direction fl would strike the
spacecraft; otherwise it is one. The charge density is obtained by

integration over velocities:

G =169 = [ e[ [° (f)io(t,n)v%v | a0 @

The object being studied is described by a collection of surface
elements which are referred to as object definition surface element, but
include object and sheath surfaces. In order to determine the charge
density at a point in space, it is necessary to determine the solid
angle which is occupied by the object and performing the integration in
equation (2). The problem is reduced to finding g(;,ﬂ) given x due to

the neutral ion approximation.




5.6-7

While the NEUDEN (5.61.10) algorithm is practical for simpie
objects, it becomes clear that complex objects with many surface
elements will be increasingly difficult to handle. This is especially
true when several million x coordinates are required to adequately
compute the particle wake behind a spacecraft. Another application for
which this approach is inadequate is problem of sheath shadowing. The
sheath around the moving object can be described using surface elements
and treated as an object. However, very many surface elements are
required and the old algorithm is too cumbersome to compute both the
particle wake behind the object and the sheath shadowing.

The SHADO approach was developed to simplify the object definition
so that the charge density may be computed much more rapidly. The new
algorithm relies heavily on the fact that the ion distribution, relative
to the spacecraft, is heavily weighted towards the ram direction at
mesosonic velocities. Since it is azimuthally symmetric, equation (2)

can be reduced to:

GI() = 37 faun(@)) | 390, ] e, (3)

where the GI’s are called ‘geometrical ions’ obtained by dividing
equation (2) by the unperturbed ion density (noi)' If a point X is
completly blocked by the spacecraft, GI will be zero, while GI will be
unity far from the spacecraft.
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The function fcum(f8) is obtained by integrating /io(ﬂ,ﬁlzl) over ¢

since it is azimuthally symmetric, and normalizing it as follows:

feun(®) = %“ Jio(8;,8;,v)8¢, (4)

% feum(6)26. = 1 (5)

. . . + . .
feum is calculated in advance, given v, and is stored internally as an

array which rapidly decreases as § increases for mesosonic velocties.
The value of 6 at which fcum drops to 0.01 of its value in the ram
direction (@ = 0) is computed and saved as 699%. As vl increases, 099%
decreases indicating that the Maxwellian distribution of ions is shifted
towards the ram direction. Surfaces lying within 0 ¢ 6 < @ 99% from the
perspective of x will therefore have a significant effect on the value
of GI (;), while surfaces positioned beyond 099% will have a negligible

impact.

Simplification of the object definition is achieved by first
projecting the object onto a surface which is normal to the ram
direction and then overlaying this projection with a new two dimensional
grid. The nodes on this grid are arranged in an equilaterally spaced
staggered array resulting in hexagonal elements. These hexagonal
elements provide greater angular resolution of the object projection
than an equivalent cartesian grid system. Each surface element in the
object definition is then sequentially projected onto this hexagonal
grid and a depth is computed for each grid node which falls inside the

surface element projection.
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This depth represents the distance from the projection surface to the
surface element along a ray parallel to the ram direction. The
projection surface is placed so that the forward-most point on the
object corresponds to zero depth. All of these calculations are

performed only once prior to evaluation of any GI’s.

The number of nodes making up the hexagonal mesh is controllied by
a parameter mhex. The nodes are distributed uniformly over the
rectangular area on the projection plane which just encompasses the
entire object projection. As each object definition surface is
processed, a table of depths for each node in the hexagonal mesh is
maintained. After all the surfaces are projected, the table for each
node is sorted by increasing depth. Thus, at each node on the hexagonal
grid there is a table of depths representing the intersection of a ray
beginning at the node and any of the object definition surfaces in the
path along the anti-ram direction. Given a M coordinate, it is then
simple to compute its distance from the projection plane and its
location on the hexagonal grid. Comparing the depth of X to the table of
depths of the adjacent hexagonal grid nodes it is quickly determined
whether x is in front of, behind, inside, or adjacent to the object.

If the reference point, ;, is in front of the object, then GI (;)
will be unity because all angles 8 pointing to the object definition
surfaces will be much larger than 099%. If the reference point is
sufficiently far away from the object such that the entire object lies
outs.de of the 699% limit, then GI is set to unity as well. If the
reference point is inside the object, then GI is set to zero. Since many
of the points in the object mesh fall into one of these categories,
little computational effort is expended in determining the GI (;)’s.

For the remaining points in the object mesh, it is necessary to
determine where the object is relative to X and determine how much of

the view towards the ram direction is blocked.

Much of the computational speed improvement in the SHADO module is

attributable to the simplification of the object representation already
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described. Given an x coordinate, say directly behind the object, a scan
along a number of rays controlled by a parameter N phi’ is initiated.

Each ray begins at X and proceeds along a fixed angle ¢ in the plane
of the projection surface. At intervals just less than the hexagonal
mesh element size, the surrounding hexagonal nodes are tested to
determine whether they are over the object or not. If the table of
depths for one or more of these nodes is empty, then this indicates that
the scan has proceeded beyond the projection of the object. A quick
calculation is made which approximates the distance to the object
outline (accurate to half the hexagonal mesh dimension) and the depth to
the object at this point is computed. This gives the angle & from x to
the boundary of the object and the contribution to GI (;) along this
value of 8 is determined. Summing for each of the Nphi values of 0 gives

the value the geometrical ion at x.

A number of variations on the scheme outlined above are possible
based on whether the point X is directly behind (the table of depths on
all nodes adjacent to X are non-zero), or off to one side of the object.
The same basic procedure is followed however, by scanning in rays along
the projection plane, determining where the object is relative to X on
this plane, and then determining the angles, 6, locating the boundaries
of the object in three dimensions relative to x. The accuracy of the
object description using this algorithm is controlled by the number of
hexagonal grid nodes (Nh ) placed on the hexagonal grid and the number

of scan angles (N phi .) used when locating the object relative to X.
5.61.16 SHADG STRUCTURE

The SHADO routines are organized in a highly modular fashion. The
following sections detail the organization of the routines and describes
their function. The overall structure diagram for SHADO is shown in
Figure 5.61/4. The driver is the POLAR code, SHDSET is the routine
which processes the object definition surface elements, and SHADO is the

routine which computes the GI given x.
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SHDSET oop on
X,y,2
SHADO

Figure 5.61/4: Shado Structure Diagram

SHDSET - Set Up Routine

Initialization for the SHADO routine takes place in SHDSET and
consists of looping over each surface defining an object, projecting
that surface onto the plane perpendicular to the ram direction, and
determining which nodes on a hexagonal grid are shaded by each surface.
For each surface, limits are determined which define a box in the hex
mesh which encloses the projected surface. Only points inside this box

are checked for shadowing by that surface.

At each mesh point in the hexagonal grid, a record is kept of the
height of intersection from the projection surface and the number of
surfaces which shade a given mesh point. An array stores the z values of
each surface intersection sorted by ascending node number and then by
ascending z value. Given any node, it is then simple to determine if
this node is shaded in the ram direction and to find the entry and exit

z values.

The structure diagram for SHDSET is shown in Figure 5.61/5.
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load | hsHpEF | FCAL
surfaces
I
SPACEP| |A2L0AD 'GETSRF| | INSIDE

Figure 5.61/5: SHDSET structure diagram
ROTATE

Computes the rotation matrix required to convert any (x,y,z) to
(x’,y’,z’) in which the x’-y’ plane is normal to the Mach vector. The x

axis is taken to be in the x-z plane.
SPACEP  A2LO0AD

Reads in surface element data for the National aerospace plane
using the MSI0 library. Alternatively, A2 surfaces may be read using
routines A2LOAD and A2PREP. These routines simply read in data from MSIO
data files and load an array of vertices for each surface. These
routines will also find the minimum and maximum x,y, and z values within
the object to be used in defining the hexagona! mesh. Data selection is
determined by the LUSURF parameter which corresponds to the logical unit
number for the surface data; 19 for the A2’s, 9 for the spaceplane data.
Surfaces are defined by coordinates for surface vertices and an outward
pointing normal vector. This form is exactly how A2 surfaces are
defined, for the spaceplane, however, the normal is computed using three
distinct vertices to compute the normal vector assuming clockwise node

numbering.
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MSHDEF

MSHDEF fits the projection of the shadowing object (either a
spacecratt andfor the plasma sheath) with a 2-dimensional hex grid. The
constraints are to resolve the cbject’s edge as well as possible while
using less than the maximum number of hex mesh points. To do this, hex
mesh lengths are guessed and then the mesh is checked to see how close

the grid boundary is tc the object.

Using the minimum and maximum x,y, and z values, a box is defjned
within which the object is fully contained. The eight vertices making up
this box are then projected onto the x’-y’ plane and the minimum and
maximum x’ and y’ values are found. A hexagonal mesh is then
- A) and extends up

establisked which has its origin at (x_. -4,y .
min min

to (smax + A, Ymax * A) where A is the mesh spacing. A is chosen using
iteration such that the number of mesh points is SNhex' The mesh is
then skewed 60 degrees to give a square mesh and normalized by A such

that the nodes on the mesh are integer values.

FCAL

Calculates the ion density factor array for a point in space which
is unobstructed in all directions. The ion density factor is computed as

a function of the out of plane angle 6 as follows:

A -y

16) = #e— 6)
T

dhere:
_ cosf

y = vmachl 2 ™)
o2
ire’ (1 - erf(y)) y<3

A = 1-2 3-4 15-12 105 -16 (8)

-1
y -2y T+ qy - Ty T+ ey y>3
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The f(6)'s are calculated over a uniform grid with a resolution of 2

degrees in 8 and then integrated over 6 to give:

Jeum(8) =[5 1()ay (9)

GETSRF

Reads in the surfaces of the object and returns the internal
limits for the hexagonal mesh points which must be checked for
shadowing. Any surface which is perpendicular to the projection surface
is ignored. A loop inside SHDSET reads in the number of surfaces from
this file, and GETSRF gets a valid surface. The return arguments are the
coordinates of up to four vertices making up a surface element which is

not perpendicular to the x’,y’ plane.
INSIDE

Fills an array which retains all of the surface intersections at
each hexagonal grid point which is shaded by a surface. For each mesh
point which is blocked by the given surface, the height of the surface
above the projection surface is computed and stored in an array of z’s
and the corresponding node number is stored in a companion array. After
all of the surfaces have been processed, these two arrays are sorted by

node in ascending order of z’ to obtain the minimum z value (z ) and

entry
maximum z value (zexit) for each of the blocked nodes.

ANGLES

In SHADO, the hexagonal mesh is skewed by 60 degrees to become a
cartesian grid system. Scanning to define the object boundary takes
place over a given number of angles in the x’-y’ plane, which when
skewed, become |ines which are no longer uniformly spaced angularly.
This routine computes the increments in x’ and y’ to be taken along each

of these lines. The increments are selected to be 99 unskewed mesh:
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Ex’.

0.99(I3sing. - cosf.) (10)

Ay’

' 0.99 cos¢. (11)

Where ¢ is the angie in the x’,y’ plane measured from the y’ axis

and incremented by: ¢i = [i - % ]—ﬁ—; N¢ is the number of scan angles to

be used in the x’,y’ plane.
SHADD - Calculate Geometrical Ion Density

SHADO calculates the presheath ion density using the neutral ion
approximation. This approximation assumes that ion motion is perturbed
only by collisions with an absorbing object. The ion density accounts
fully for ion thermal velocities, but neglects trajectory bending by
electric or magnetic fields. The ion density at a point is obtained by
integrating the ion distribution at that point over the range of ion

velocities:

0 ) = [ 1Dl (12)

The ion distribution is a function of position x and of the ion
velocities v. The ion distribution function is redefined as the product
of the unperturbed velocity distribution function and a geometrical

factor as follows:

+ 4 N
f(x,v) = ;31 a(¢,) /CU"'(9)/N¢ (13)

The fcum(§) array was computed in FCAL while the geometrical
factor is determined by scanning along lines of constant ¢ in the x’,y’
plane and finding the points at which an unblocked position becomes
blocked or a biocked position becomes unblocked. If the given point is
behind the object, a 6 can be found by interpolating for the object

boundary between blocked and unblocked scans and finding the z for

exit

this interpolated position. The angle 6 = arctan r where r is
Zexit

the distance from the interpolated boundary position to the given point.
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The structure diagram for SHADO is shown in Figure 5.61/6.

Increment
SQUASH XY2HEX status of scan position status of Transition

Look for

rel pamt. scan pat.

Look wp Compute
Compute # fcum(s) oGl

Figura 5.61/6: Structure Diagram for the SHADO subroutine

The majority of coding in SHADO is devoted to determining the
status of the reference point and the scan points on the hexagonal
projection mesh. The status includes determinations of whether a
particular point is within the hexagonal mesh or off of it; whether it
is in front of the object; whether the point is blocked in the ram
direction, and if blocked, whether the point is inside the object. As
indicated in the structure diagram, the reference point (input) is first
checked. If the point is inside the object, in front of it, or so far
off to the side of the object that it would not be possible to intersect
the object within the 99.9 1limit, then the GI value is returned as zero

without further calculation.

Once the reference point status is determined, a loop is entered
which initiates scans along the scan angles Gi calculated in ANGLES. For
each Oi, a transition is sought which marks the outline of the object on
the projection surface. If the reference point is not blocked with
respect to the ram direction, then a transition is sought where the
object first blocks a scan point. If the reference point is blocked,
then a transition to unblocked status is sought.
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When a transition is found, the angle 8 is computed which is the
angle from the reference point to the object surface at the transition
point. If the reference point is blocked and behind the object, the
density contribution for Bi is fcum (B)ING. If the reference point is
unblocked, then density contribution is 1.-fcum (01) + fcum (02) where

91 is the angular position of the first transition to blocked status,
and 02 is the transition back to unblocked status.

5.61.20 ELECTRIC FIELD CORRECTION FOR NEUTRAL IONS

An optional multiplying factor has been included in the ion
density calculation of NTERAK to correct for weak electric field
focusing and the expansion front seen in the deep wake. The correction

was implemented in the fol lowing manner:

A variable length table of correction factors is produced along
with the associated ion densities during initialization by SETEFC which
is called by NEUSET.

SETEFC calculates the ion densities and their corrections for an

infinite half plane. These values are calculated using the following

set of equations:

For 8 =0 to 7

Let
> cosf
Y vMachl 2
and let
2
Ired (1- erf(y)) y Sz
A=

-4 15 -12 105 -16]

-1 1 3
ly -3y 5yt -8y By




where

X 2
erf(x) = %: I eV du
r °0
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Using these variables, the ion density before correction as a function

of 0 is

2
A -y

F(8) = —

6 J—ze

The correction factor, C(8), for the electric field effect is

found by the following series of operations:

Fér

NI

6> tan-l l-log (0.7) .
I§IvMachI

c@® =1.0

and for smaller 6,

0.7 erEIVMachltan(G - 1/2)

C(¢) = ﬁ?g)
This C(8) is redefined

if C(6) ¢ 1.0 then C(8) = 1.0
and then

if C(6) F(6) > 1.0 C(0) = 1/F(6)

NEUDEN uses the tables created by SETEFC by calling the routine

EFCORV to find the corrected gi (ion density) for an initial ion

density.

EFCORV checks for the special case of 'vMachI = 0 (no correction)
before finding the correction factor. If this is not the case, EFCORV

looks for the range of entries in the F(8) which includes
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the neutral wake density sent to it by the calling routine, using a
binary search algorithm. The search is sped up by first checking the
interval which included the ion density found in the previous call to
EFCORV.

When the correct range is found, 8 is found by linear
interpolation. This is then used to find C(8), also using linear
interpolation. The corrected ion density is then found by multiplying

the correction factor and the neutral wake density.
5.62 SHEATH PARTICLES

The space charge density of the attracted specie internal to the
sheath boundary, and currents of the particles to the vehicle surface
must be determined by particle tracking. The concepts involved were
discussed in Section 3.32 and 4.42. This section documents the coding

responsible for these calculations, but a brief overview is in order.

External to the sheath, electric fields are weak enough to allow
for accurate estimates of the flux to any portion of the sheath surface,
including ram effects for ions. Presuming a previous Poisson
calculation, the sheath is currently defined to be an equipotential near
the ambient plasma temperature (this is an input parameter). Once the
sheath is located, it is divided into subareas. These subareas
subsequent!ly become ’particles’ which represent a constant current,
rather than constant charge. This current, referred to as current
weights, is the subarea times the input flux density of ions (Section
4.42) to the subarea. The actual particle tracking is done per slice
(4.11) with the particle ’pusher’ sweeping the grid alternately in the
+Z (called right) and -Z (left) direction. Trajectories evolve in the X
and Y coordinate directions until they exit a slice whereupon the
trajectory information is stored. The trajectory is picked up in the
next slice or the return pass of the pusher. Ultimately, they leave the
problem or more commonly, hit a surface and are moved to a ’dead-

particle’ list, and are later processed into surface currents.
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Throughout all of this pushing, the time a particle spends in a
volume element is multiplied by its current to determine the space

charge contributicn to the element.
5.62.10 SHEATH EDGE

The controlling routine for the sheath edge and particle
assignment algorithms is STHCAL. STHCAL uses two boundary potentials,
CURPOT and BNDPOT. These are either defaulted in OPTDEF, input through
OPTIN, or calculated by SETENV depending on user and model requirements.
CURPOT is used to calculate the presheath to sheath fluxes. This is
done only once for NTABLE different angles between the sheath edge
normal and flow vector. Individual sheath subareas (corresponding 1 to
1 with particles) are assigned fluxes by interpolation. BNDPOT is the
potential of the sheath edge and is usually the same as CURPOT, but is
sometimes set to PSIM (4.44.2, 3.60) or a user input value.

Once BNDPOT is known, STHCAL loops through all of the elements,
calling SHEATH to check each element to see if it contains the sheath
potential. If part of a boundary passes through a cell, it divides the
boundary surface into triangular pieces. These pieces represent
potential particles which are assigned a current equal to the piece area
times the sheath flux for that location and normal (interpolated by the
function STHWGT). Their initial position is the centroid of the
triangle and their initial velocity is found using BNDPOT and the method
described in Section 4.42.2.

SHEATH will occasionally find particles that should be eliminated.
This might happen when the sheath edge equipotential lies between two
regions of opposite polarity, different extensions of a complex object,
or otherwise cannot "see infinity". This elimination is affected by
DBLCHK which backtracks the trajectory through about three elements to
look for non-source regions. Statistics from this process are available
in the output by setting KDIAGS(4) to 2 or more (Section 6.44.20).
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There are two user-specified options to the process of creating a
particle list. The two correspondii -~ keywords are AVEPRTCL for
averaging particles and THRMSPRD for thermal spreading particles.

In the AVEPRTCL option, all particles of the same type (ion+, h+,
or e-) found at cell (ix,iy,iz) are lumped into a single particle called
an average particle which will have the following properties: flux is
the total fluxes of all contributing particles; initial position and
initial velocity are that of the particle which has the greatest flux;
initial energy is calculated with respect to its new initial position
and velocity. Particle type and QE are the common particle type and

common QE, respectively. All this is done by the routine AVRAGR.

After the particle averaging, if it was requested, each particle
is broken into a number of smaller particle with different initial
velocities. The method used to thermally spread the sheath particles is
described in Section 3.43,

Once all of the particles in a Z-slice (4.11) are defined, they
are written onto file 10 with their current, initial position, initial
velocity, and initial total energy. Then the particle lists are stored
in a linked list data structure (5.62.11) in chunks of 100 or fewer

particles.
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5.62.11 THE PARTICLE LIST STRUCTURE

The particle list is kept in a linked list data structure. An
array in the common block /LNKCOM/ contains either -1 or the key of a
particle list. The key is key number of the particle list in file 10 as
it is used by the MSI0 package.

To find the key of the first particle list of a certain z-slice,
the /LNKCOM/ array LKPART(i) (LKSCUR(i) for surface currents) is indexed
by the z-coordinate of the slice (4.11, 4.12). The rest of the particle
lists for a given z-coordinate are indexed by the first word from the
preceding list. This is the MSID key of L. next slice. When a
particle list does not have another list following it, the key it holds
is a -1. The negative one is a flag signalling the end of a linked
list.

For example, if our problem had a z-coordinate which varied from O
to 6 and 200 particles in z-slice 0, 730 particles in slice 3 and 1300
particles in slice 4, file 10 would be similar to table 5.62.11/1.
Since the order in which the particles were stored affects the actual

contents of the table, there are a number of possible arrangements.

In the table, 230 particles of the z = 3 slice are in file 10 at
key 1 and 500 are at key 5. Since next key is -1 for key 5, we know

there are no more particles in this slice.

As particles are moved to other slices, space opens up in the
middle of the file (keys 3, 4 and 8 in the example). To conserve space
and to keep the file packed, the emptied keys are also linked. So when
a new particle list needs to be stored on file 10, an emptied key will
be used if there are any available. The key of the first empty location
is stored in the variable IOLDKY.




TABLE 5.¢2
AN EXAMPLE OF THE PARTICLE

First Key List:

11/1
LIST DATA STRUCTURE
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z-slice
3
4

LKPART (i)
I0LDKY i =0 1 2 3 4 5 6

key = 4 6 -1 -1 1 2 -1 -1
file 10 contents
Key No. Next Key No. Particles

1 5 230

2 9 300

3 -1 0

4 8 0

5 -1 500

6 -1 200

7 -1 500

8 3 0

9 7 500

10 empty empty
Note: This example assumes a maximum page size of 500 particles.
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To store the surface currents, another array LKSCUR(i) is used to
hold the key of the first particle list for each z-slice. The linked
lists allow the surface currents to use the empty spaces left by the
particle list used by the sheath particle tracking section, which helps
keep the file packed.
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5.62.12 PARTICLE PUSHING UNITS

It is convenient to define special units for the trajectory
calculations. The time is in units of the ion acoustic period, the
distance is in grid lengths, the velocities are in Mach velocities, and

the acceleration is unitless. The quantities are defined by

v_ (ion acoustic speed)

t(code) = t(sec) = hs(grid length in meters)
x(code) = x(meters)/h(grid spacing in meters)
v(code) = v(meters/sec)/vs(ion acoustic speed)

E (electric field in volts)
a(code) = QE Y

= Tv(ion temperature in volts)
where the ion acoustic speed is

v_ = Izi k-Boltzman, T °K, m - kg
s m

For the particle currents we have

I(code) = A(xZ(code)) ¢ J(code)

J(#/m2 sec) _
= N°e°Vs

J(code) =
FNORMe e 27

where N is specie density m ({/ms), and e is the electron charge.

For electrons, all of the above expressions are the same except

the ion mass is replaced by the electron mass.
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5.62.20 SHEATH CURRENT

The routine CURREN controls the process of finding the sheath
current (see Figure 5.62.20/1). CURREN calls the initialization and
exit routines CURPEP and CUEXIT, respectively, and it pushes the
particles alternately to the right (+Z) then left (-Z) until all of the
particles have left the grid or hit the object or the push limit, IPCNT,
is reached (1 left + 1 right = 1 IPCNT). The variable, NPRTCL, is the

number of particles left which have not been pushed to completion.

PUSHER (RIGHT’)

Figure 5.62.20/1. Structure diagram of the subroutine CURREN.
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5.62.21 CURPEP (CURRENT PREPARER)

Called by CURREN, CURPEP initializes the particle counters, opens
file 10 and initializes it (5.62.11), clears CBUF with a call to the
routine BUFCLR, and calls STHCAL to find the initial set of particles.

Once the initial particle lists are calculated, CURPEP resets CBUF
for PUSHER with calls to BUFCLR and BUFSET. Then the force table (QE),
the extended element table (LTYP), and the sheath current table (RHOI
and RHOE) are initialized to complete the routine. To speed up the
calculations in XITCEL (5.62.22), the force table (QE) contains the
acceleration. The acceleration is equal to the negative trilinear
electric field divided by the temperature in volts. The units of the
acceleration are grid units (see 5.62.12).
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5.62.22 PUSHER (PARTICLE PUSHING)

This routine pushes all the particles to the left or to the right.
PUSHER loops through all of the particles in each z-slice, pushing
particles until they leave that slice. The particles leaving in the
forward direction are pushed again in the next slice and so on. When a
particle’s path intersects an object face, the particle is transferred
to the surface current list (5.62.11) and counted as a dead particle.
Particles detected leaving the computational grid are counted and
removed from the problem (although their previous trajectory information
remains in the RHOI and RHOE lists).

The routine which PUSHER calls to push a particle through a cell
is named PUSH.

PUSH decides which of the pushing techniques to use to push a
particle out of its cell. PUSH checks the element table (5.23) to see
if the element is next to the object or in a partially filled cell (both
are labeled ’NEAR’ in the LTYP table in CBUF). The routine STPPSH moves
ions which are ’NEAR’ the object. If the ion is not close to the
object, PUSH calls XITCEL (exit cell) to find the time the particle
needs to exit the cell, and MOVER to move the particle to its new

location.

Similarly, electron particles use ESTEP and EMOVE in place of
STPPSH and MOVER, respectively. The electrons are checked when magnetic
fields are present to see if the cyclotron radius is larger than the
grid size. If it is, ESTEP is used regardiess of how close the particle
is to the object. When the cyclotron radius is smaller than a half of

the mesh size (dxmesh » [RDMAX2 See Section 4.52.7), as determined by

CHKRAD, a drift approximation is used. In this case the particle’s
initial velocity is replaced by a drift velocity, Exﬁ, normal to B with
the component of velocity parallel to B unchanged. The electric
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field is replaced by its parallel component to B. The motion is then
computed using EMOVE and EXITCL in a manner similar to MOVER and XITCEL

or ions.

XITCEL solves the following six quadratic equations for the time,

t.., required for the traject-ry tc be traced from an entry coordinate

. . . R
ol t¢ an exit coordinate ..

\ 2 i=X,Y, 2
X.. =X . +V . t.. + - QE. t7.
ji oi o1 ji i j=e, -

where Voi is initial veloc.ty. QEi is the acceleration calculated from

the electric field at the center of the element. The smallest positive

real t.i is chosen as the time required by the particle to leave the

cell. See Section 5.62.12 for a discussion of the special units used

for the particle pushing.

MOVER used the time found by XITCEL to find the new particle
focation. First it calculates the new position and velocity using

1 2
X, =X . ¢V .t +5 Gt

V.:V.+QEit

Then it shifts the particle position by one thousandth of the velocity,
moving forward along the c¢xit axis, found by XITCEL, and backwards along
the other two. This is necessary because the particle’s cell number is
referenced by taking the integer portion of the particle position. If a
particle stopped exactly on the top side of element (i,j,k) as it moved
downward, the address found by truncation would be (i,j,k+1). To
prevent this form of faulty addressing, the particle is moved off of the

cell boundaries.
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Because the central electric field is used for the entire element,
and the total energy may drift with each move, MOVER renormalizes the
velocity vector to force the particle to conserve energy. After MOVER
pushes the particle out of the element, PUSH increments the RHOI (space
current density) by the time spent in the cell multiplied by the area of
the particle. If the pushed particle was an electron, RHOE is used in
place of RHOI.

When the particle gets closer to the object, MOVER can no longer
be used since the particle could strike an object surface before it left
the cell. To push particles within a grid length of the spacecraft,
PUSH calls STPPSH (step push). STPPSH checks to see if the particle is
inside a filled portion of an element. If it is, the routine finds
which surface it passed through and returns to PUSH. If not, STPPSH
calls STPPAR (step particle) which moves a2 particle for time t. Time t
is the smaller of the time required for the particle to free fall or

move at a constant velocity a distance of one-tenth of a grid length.

t = smaller of [D/n‘n, l—""l-—]
(1E1/6)

where £ is the electric field at the particles position, 8 is the plasma

temperature and D is one-tenth of a grid length. When the time step has

been computed, the particle is moved to Xi' (i =x,y,2)
E.
= 11,2
Xi=Xoi * Voit v 27 ¢
Vi = V°i + (Ei/e)t

After the particle is moved, STPPSH increments the RHOI or RHOE
(space current density) by the current weight of the particle times the
time it was moved. Then checks to see if the particle left the cell by
counting how many of the element coordinates of the new position differ

from the old. If the particle did not leave the cell, energy
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conservation is checked and the velocity is renormalized if there is

more than a *5 percent error. Then the particle is pushed again.

If the particle did leave the cell, energy conservation and the
number of element coordinates which have changed are checked. If the
number is greater than one or the energy is off, the particle is backed
up until only one element boundary is crossed and the energy is
right. The routine that does this is called MOVBAK (move back). It is
important to keep particles from crossing more than one boundary at a

time, since it is possible for particles to miss corners of objects.

MOVBAK backs up a particle by finding the average velocity of a

particle during the timestep (3 = (; + 3)/2) then solving X=x_ +
5 ave o o

Vavet for t on all of the sides of a cube. Using the smallest pgsitive
time it finds, it moves the particle from its original point to x’.

-+ + +

x* = %o * Vave tmin

MOVBAK then moves the particle off of the cell boundary by shifting the
position by 0.001 times the velocity in the same manner as MOVER did

previously.

After calling MOVBAK, STPPSH checks energy conservation again.
After renormalizing the velocity, if necessary, and incrementing RHOI
(or RHOE), the particle is checked to see if it hit a surface as it left
the element.

Magnetic field effects for ions are modeled by rotating the
velocity vector, at the end of a push, around the magnetic field (see
Section 4.42.4).
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5.62.23 SHEATH PARTICLE DENSITY

The sheath particle densities, known as RHOI’s and RHOE’s, are
incremented continuously throughout the pushing process. PUSH calls
either the pair XITCEL and MOVER, or STPPSH to move a particle, I,
across a2 cell and to calculate the time, t, spent in the cell. As
discussed in Section 4.42.5, the density contribution of a particle is
just the particle current multiplied by the time spent in a cell divided
by the volume (one in these units). The density is incremented

RHOI(x,y,z) = RHOI(x,y,z) + CURRENT(I)#t(I)

in NUTERM .f uhe push was performed by MOVER, or directly in STPPSH.
The above is true for both ions and electrons. (RHOE is used for

electrons in place of RHOI).

5.62.24 CUEXIT (CURRENT EXIT ROUTINE)

This routine takes care of the exit from CURREN. It prints a
tally of what happened to the particles from SHEDGE and it closes file

10, which now contains the surface currents.
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5.70 SURFACE CHARGING

The CHARGE module calculates the change in surface potentials.
The attracted species may be modelled in several ways which are
described in section 5.72. The default is to use pushed particle
densities for the attracted particle surface currents (see section

5.71).
5.71 PUSHED PARTICLE SURFACE CURRENTS

The ion and electron surface currents are found in the lists,
SRFI, SRFH, and SRFE, respectively. These lists are created in the
segment headed by the subroutine IONCUR from the dead particle list
(dead-list) created by the CURREN segment. The upper structure of this
segment is illustrated in Figure 5.71/1.

loop over
corners of the
surface

Figure 5.71/1. Structure diagram of IONCUR segment.

The creation of the SRFI list occurs in two main steps; step 1
reduces the dead-list to an intermediate SRFC list, and step 2
redistributes the surface currents among the surfaces. The
Justification and computational techniques for these steps have been

discussed in Section 4.53.
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Step 1 is controlled from IONCUR and performed by INICUR. The
dead-list can be very large with an order that is best described as
chronological. A particular surface will appear as often as it is
struck by a particle. To speed up the surface current calculation, and
to reduce the noise inherent to particle pushing, INICUR reads through
the dead-list sequentially and simultaneously accumulates in the SRFC

list the "average" particle (see 4.53) for each surface.

This average particle has the sum of the contributing current weights
with an average impact location, energy, and velocity. These averages

are weighted by the current weights (4.53).

Step 2 is the redistribution or sharing of the "raw" surface
currents in the SRFC list. This is done to further reduce the "noise"
in the raw ion surface currents (4.53). Thus, IONCUR will next loop
over the surfaces in SRFC and for each surface, S, call SPLATR to
calculate the bilinear weights, SPW (node), which are used to distribute
the SRFC current to the vertices of the surface. These node currents
are to be shared back to all of the surfaces adjoining each node.
IONCUR loops over the surface vertices calling GETWGT to calculate the
CRW (node, ns) where ns indexes neighboring surfaces (4.53). The
surface-node-surface connectivity is provided by the LCEL list (5.25).
Since the LCEL list is designed to be read sequentially and is ordered
by slice and e!ement, direct access to the needed section of LCEL is
provided by an index list, SREL (5.25).

After the CRW have been obtained for a node, SPREAD is called to

perform the summation;

SRFI (ns) = SRFI (ns)
+ UNITS = CRW (node, ns) = SPW (NODE) = SRFC (S)

where ns ranges over the neighboring surfaces including surface S.

UNITS = ECHRG + DXMESHZ + FNORMI s {27 , where ECHRG = 1.6 x 10”29




- 5.7-3

Coulombs and DXMESH is the length of a mesh unit in meters. FNORMI is
the unperturbed Maxwellian flux density against which the current

weights are calibrated,;

FNORMI = nilkT/Qt m.

where, in MKS, n; is the ion density, k is Boltzmann’s constant, T is
temperature and m; is the ion mass. For electrons, the equivalent to
FNORMI, FNORME is used. For hydrogens, SRFH, SFHC, and FNORMH are used
in place of SRFI, SRFC, and FNORMI, respectively.

5.72 CHARGE MODES

Three methods may be used to model the attracted species during
charging calculations. Pushed particle surface currents, the default,
may be used in space charge |imited collection cases. Orbit |imited

collection currents may be used if appropriate.

An intermediate case is also available. This is the situation
where the total current to the spacecraft is limited by a space charge
limited sheath, but the actual surface currents are essentially orbit
limited. The current through the sheath is calculated and saved.
During the CHARGE cycle, the total orbit limited current to the object
is computed. The two totals are then used to renormalize the orbit
limited to each surface.

The selection of the appropriate charging mode is left to the
expertise of the user. The default action is to assume space charge
limited collection.

5.73 CHARGE (SURFACE CHARGING CONTROL)

CHARGE is the entry level routine into the surface charging
section of POLAR (see Figure 5.73/1). It initializes the charge cycle
by reading in the material properties and calculating the plasma to
surface (routine MAKCSM) and surface to conductor (MAKCLG) capacitances
as well as the conductance matrix (routine MAKSGM).
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Figure 5.73/1. Structure diagram of CHARGE module."

After the initialization routines have been called, CHARGE
calculates the surface potentials by finding a first stage solution then
a second and final stage result. For historical reasons, the flags for
the two stages are ’explicit’ and ’implicit’, respectively CHARGE
loops on the SURCHG sequence until converged or after a fixed number of
iterations as defined by MAXITT (the loop is indicated by the empty
oval). Upon conclusion, the array SURFV contains the new surface

potential which is stored on file 19.

The computational theory for the charging section is discussed in

Section 4.5.
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5.73.1 SURCHG (SURFACE CHARGER)

SURCHG calls the routine: needed to set up the equation to be
solved and finds the next set of surface voltages. SURCHG solves the

charging equation in the implicit form (Eq. (5.73-1)).

C dI
VRS S

2.g- - Y (5.73-1)

Q

Using a flag sent by CHARGE, SURCHG determines which stage of the
charging equation is being solved (see Figure 5.73/2). When solving the
second stage charging equation (5.73-1), the SURCHG assumes a first

stage solution had been found previously.

" SURCHG (STAGE.FLAG) "

<fTAGE-FI.AG =*EXPLICIT" >

T (seconp|F
(FIRST STAGE) -
STAGE) — Any.Fixed_Nodes ="NO"
MAKDJ2 or
Biased.Conductore ="YES"

IHAKFIX

MAKDJ1 "

Figure 5.73/2. Structure diagram of the routine, SURCHG.




5.7-6

SURCHG, called with an "explicit® flag, generates the fixed
surface vector (MAKFIX), V (MAKV), the first stage dI/dV (MAKDJ1), and
I - g V (MAKRHS), then calculates V(t+At) for the first stage. When an
impl?cit flag is received, MAKDJ2 is called to calculate the second
stage dI/dV. MAKDJ2, after the first step in limiting the first stage
voltage solution (Section 4.56.20), will call MAKJ2 which will calculate
the currents to a surface at a given voltage. MAKJ2 will perform the
second step of the voltage limiting process whenever it discovers a

change in the sign of a surface’s current from one stage to the next.

At this point, both charging equations can be treated the same

way. The matrix,

is calculated in the correct fixed or unfixed matrix form (Section 4.57)
by MATGEN, setting up M for the ICCG call by SURVLT. SURVLT solves Eq.
(5.73-2)

MAY =R (5.73.2)

where R is the vector found by MAKRHS and AV is the change in the

surface potential.

Using the AV found by SURVLT, SURSET calculates the new surface

potentials and saves them, completing the charging timestep. The

following is a detailed discussion of the above routines.
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MAKSGM (MAKE THE o MATRIX)
8

MAKSGM makes the g matrix by taking conductivity information
created by VEHICL and moving it to the right place in the fixed matrix
form (see 5.72.2) for ICCG after changing the units of the elements to

mks units.

MAKFIX (MAKE THE FIXED SURFACE LIST)

MAKFIX constructs the fixed surface list. This list is used by
ICCG to mark which nodes in the problem will not change, or change by
fixed amounts. The routine MAKFIX also defines the voltage change, if

any, of the fixed nodes.

MAKV (MAKE THE VOLTAGE VECTOR)

MAKV builds the voltage vector in the appropriate form (5.72.2)
using a surface voltage list and the conductor voltage common block.
The LAD number (Section 5.30) of the desired surface voltage list is

passed as an argument to this routine.

MAKDJ1 (MAKE THE FIRST STAGE CURRENT DERIVATIVE)

MAKDJ1 uses the algorithm discussed in Section 4.56.20 to estimate
the first stage current derivative.

MAKRHS (MAKE THE RIGHT HAND SIDE)

MAKRHS makes the right hand side of the vector equation solved by
ICCG. The right hand side is equal to

R=1-¢¥.
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This is done by first calling MAKJ to calculate the current vector.
Then MAKRHS finds the product of oV and subtracts it from the current.
gN
The magnetic field voltage effects and any conductor biasing terms

(see Section 4.57) are calculated and subtracted as well.

The right hand side of the vector equation is the same for both

stages so it only needs to be called once for each iteration.
MAKJ1 and MAKJ2 (MAKE THE CURRENT VECTORS)

These routines find the current vector I given a |list of surfaces
voltages. MAKJ1 is used during the first stage and MAKJ2 during the
second. To find the contributions to the current from the various
sources, MAKJ (MAKJ is the generic form of MAKJ1 and MAKJ2) calls the
routines which calculate the incident, secondary, and backscattered

electron fluxes and the incident and secondary ion currents.

Two lists are created by MAKJ, one is the total current, I. The
other is the sum of the secondary currents, I... The secondaries are

used by MAKJ1 to locate surfaces which will need to be fixed.

MAKJ2 is called by MAKDJ2 (below). When this occurs, it checks
for changes in the sign of the total current or more importantily, the
proximity of the current equilibrium point. Then, using the algorithm
described in Section 4.56.20, the surface voltage is further |imited and
a parabolic interpolation is done to find the crossover point. The
current at this new voltage is defined to be zero for purposes of

calculating second stage current derivatives.
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MAKDJ2 (MAKE THE SECOND STAGE CURRENT DERIVATIVE)

MAKDJ2 is called during the second stage to provide the dI/dV
matrix as described in Section 4.56.20. The second step of the voltage
limiting process, performed prior to calculating the derivative, is done
by MAKJ2 (above). MAKJ2 is also used to provide the currents at the

limited surface potentials.
MATGEN (MATRIX GENERATIOCN)

MATGEN finds the sum of the matrices which multiply the voltage
vector, AV, solved for by ICCG. It performs the sum

=T
]
ZFe
+
QD
]
Z%' Z&

If the desired matrix formulation is not the fixed form (Section 4.57),
the 0 matrix is manipulated to the proper form before the other matrices

are added to it.
SURBIS (VECTOR REFORMULATOR, SURFACE BIAS)

SURBIS is invoked to change the vectors to the formulation
appropriate to the situation (see Section 4.57). The matrix M has
already been reformulated by MATGEN though some additional changes are

made when there is biasing in the problem.
SURVLT (SURFACE VOLTAGE)

SURVLT recovers from storage on file 19, the M matrix and R vector
for use by ICCG. It also calls ICCG (4.32) which returns AV.
Currently, the initial guess for AV is AV = 0.
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SURSET (SURFACE VOLTAGE RESET)

SURSET uses the solution found by SURVLT to find the new surface

and conductor voltages after charging.
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5.73.2 CHARGING MATRIX AND VECTOR FORMULATION

As discussed in Section 4.57, there are two cases which affect the
charging equation, 5.73-1 , depending on the occurrence or non-
occurrence of fixed potential surfaces. When a surface potential is
fixed, the matrices and vectors of 5.73-2 are constructed exactly as
implied. If a surface has been fixed, (called from SURCHG) SURCHG
passes a flag, ANYFIX, to the matrix vector routine, MATGEN, to
construct the diagonalized matrices, g and g These transformations are
discussed in 4.5, but they are characterized by constructing V(t) from
the potential difference between a surface and the underlying conductor
instead of simply the surface potential. The effect of this is to
reduce the off-diagonal elements and increase the diagonal elements of
the amalgamated matrix g (Eq. (5.73-2)). ICCG likes this and will
generally converge faster.

Since there can be as many as 1200 surfaces or so, it was
necessary to pack all the matrices in the problem (unpacked it could be
1 million words/matrix). Since the matrices are mostly empty, just
saving the nonzero entries and their locations simplifies the problem
greatly. The entry locations are stored in a list (called ’LIST’ in
MRBUF) with a second list (’MRKR’) being used to indicate the starting
locations of the rows in LIST. The entry locations are stored row by
row with the first entry for a row being the negative row number. For
example, the nonzero locations in the following matrix

OO0V
oOnow o
-0 0 O
a® o OO0
[ - NeNe]
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would appear in LIST as -1, -2, 3, -3, 2, 4, 5, -4, 2, 3, 5, -5, 3, 4
and MRKR would be 1, 2, 4, 8, 12, 10000 with the 10000 signalling the
end. Since the matrices always have nonzero diagonals, the -2 in LIST
means there is an entry at (2, 2). The 3 following it means (2,3) and
so on. The actual matrix values are stored in lists so that the
locations of the entry in the LIST correspond to the location of the
value. For example, the value b stored at (2, 3) would be the third
value in the value list. For large problems this greatly reduces the

data requirements.
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5.80 OUTPUT
5.81 GENERAL

Output is produced throughout the POLAR modules. The various
print statements placed in the code during development were flagged
rather than removed when deve!opment was completed. This allows output
to generate at many levels of verbosity. These "diag" flags are
discussed in detail in Sections 6.22, 6.31, 6.44, and 6.45.10.
Utilities have also been created which print only selected Z slices of
the grid data (see Section 6.44, the "SELECT" keyword).

During VEHICL and NTERAK runs, the two modules write notes to a
file called STATUS.JCO. The notes are date and time stamped and contain
short informative facts. The STATUS.JCO file is opened, added to, and
then closed. Because it is always up to date, it provides a quick,
concise means to follow the progress of a calculation. The file also

summarizes the run history of a POLAR calculation.

Postprocessing diagnostics and graphical output is available from
the SHONTL program. The "PRINT" keyword produces data stored on the
buffered I/0 files 11 and 19. SHONTL also generates color or black and
white pictures of space potentials and several types of space charge

densities.

TRMTLK can be used to postprocess the charging calculation data on
file 16.

5.82 GRAPHICAL CODE STRUCTURE
5.82.10 AN OVERVIEW OF SHONTL

SHONTL is a module designed to create the graphics commands for
PLOTTR. It presents cross-sections of data generated by NTERAK as
contour plots. Currentiy, axial slices of the ion density, the electric
field potential, the sheath boundary, and the particle trajectories can
be plotted (DION, DELC, GI, GH, QUSD, and POT).
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The form of the plots can be varied by using keyword commands.
The plot types and slice locations are also defined by keywords. The

keywords and their use are described in Section 6.5.
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5.82.11 SHONTL

This is the main routine of the module. SHONTL oversees the order
of operations of the various phases of the plotting process (see Figure
5.82/1). It calls an initialization routine (SHODEF), an exit routine
(SHOXIT) and cycles on the input routine and the plotting routine
(SHOINP and GENPLT, respectively). EOF is a flag from SHOINP signalling
the end of a plotting session.

5.82.12 SHODEF (PLOT INITIALIZATION)

SHODEF is the initialization routine. It opens POLAR data files
11 and 19, sets the faster graphics window, initializes common blocks,

sets the defaults for plot descriptions and prints a welcoming message.

SHORTL I

SHODEF SHOXIT

SHOINP GENPLT

Figure 5.82/1. A general structure diagram of SHONTL.
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5.82.13 SHOINP (SHONTL INPUT)

This routine is the keyword input section of SHONTL. SHOINP
recognizes the various keywords (described in detail in Section 6.5) and
sets the appropriate flag for GENPLT. In addition to keywords for
plotting features and to describe the data for plotting, keywords are
also recognized which direct the data handling, control the SHONTL
exiting and plotting procedure, and provide useful aids for the user.
This includes a WHAT’ command to see which plotting features have been

selected.

All of the plotting features have default values set in SHOINP so
that no harm will be done if a flag is not set in SHOINP (the default

values are described in Section 6.5 also).
5.82.14 GENPLT (GENERATE PLOTS)

GENPLT calls the routines responsible for generating the pseudo-
graphics calls used by PLOTTR. The flags set by SHODEF and SHOINP are
used to decide which plotting routines to call.

To make a plot, GENPLT sets the constants it will need, reads the
data to be plotted, generates the plot along with any extra features
selected, and then prepares for the next plot.

5.82.15 SHOXIT (SHONTL EXIT)

SHOXIT is the exit routine for SHONTL.
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6.0 OPERATING INSTRUCTIONS

In general, POLAR can be run in either an interactive or batch
computing environment using keyword input. Keyword values are set to
defaults during object definition (VEHICL) and are passed from module to
module and run to run. New input is remembered, so it is not necessary
to re-enter the same keywords constantly. Commands controlling rurn
characteristics, defining environmental constants, and choostng %hne
amount of appropriate output are either recognized by the module’s input
routine or by a general input routine (POLINP) which processes non-

module specific keywords such as the grid size and diagnostic keywords.

The exception to this general rule is the set of keywords used to
def:. 2 an object. These keywords are expected to be found within a
definition file separate from the VEHICL runstream. Section 6.1
describes the intricacies of object definition in detail and includes

several helpful examples.

The other secticns describe the keywords pertinent to all of the
modules (Section 6.7) or keywords appropriate to a particular module

(Sections 6.2 to 6.5). Some keywords appear in several locations for

the sake of convenience.
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6.10 OBJECTS

POLAR objects are defined separately from the VEHICL runstream.
VEHICL will look for the object definition file as unit 20 (Fort.20).

POLAR objects are defined in an object grid of variable
proportions subject to the limitation NX«NY«NZ = 9537; NY,NX < 17;
NZ < 33. The keyin language is identical to NASCAP, except for the
addition of slanted thin plates and the omission of booms (POLAR does
not do booms), antennas, and thin triangular plates. If "empty space"
and "object" both coexist in the same computational space, what makes
objects distinguishable? The answer is that POLAR can distinguish
between volume elements that are filled (with object) and those that are
empty (except for ambient plasma of course). Once we have this
distinction it is easy to see how objects can be constructed by filling
in collections of volume elements. For example, a simple cuboid may be
constructed by filling in 2 x 3 x 4 = 24 elements as shown in Figure
6/1.

While arrangements of completely filled and completely empty cubes
can be quite versatile in representing objects of many different shapes,
more sophisticated representations are possible if we allow cubes to be
partially filled (or partially empty). Only three partially filled
cubes are allowed. These are shown in Figure 6/2.

While it is easy to see how objects might be constructed by
filling or partially filling individual volume elements, a command
structure that required the user to specify every element comprising an
object would be very cumbersome to use. So several generalized objects
are definable.

It is very important to note that POLAR objects must never touch
the edge of the object grid defined by VEHICL (see Section 6.2).
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Figure 6/1. Cuboid made by filling in twenty-four volume elements.
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Figure 6/2.

Four shapes of volume cells considered by the POLAR CODE:
(a) empty cube; (b) wedge-shaped cell with 110 surface;
(c) tetrahedron with 111 surface; (d) truncated cube with
111 surface.
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6.10.10 BUILDING BLOCKS

To greatly simplify the user definition of objects, POLAR pre-
defines commonly used shapes built up from individual elements. These
shapes are called POLAR BUILDING BLOCKS. There are eight.

Flat Plate

Slanted Plate

Cuboid

Octagon

Quasisphere

Tetrahedron

Wedge

FIL111
These are shown in Figure 6/3. These basic shapes can be defined to be
any size (within the inner grid). POLAR automatically includes the
correct number of individual elements for the size of building block

chosen by the user.
6.10.11 COMMANDS (OR HOW DO I ACTUALLY DEFINE AN OBJECT?)

The POLAR module VEHICL is responsible for recognizing and
understanding the object defi-~d by the user in the object definition

file.

Each building block has its own keyword. For example, the quasi-

sphere is associated with the word QSPHERE, and the cuboid (rectangular
parallelepiped) with the word RECTAN. The building blocks and their

keywords are summarized in Table 6/1.

Once VEHICL has read a building block keyword from the object
definition file, it then expects to find several more |lines (or cards)

setting the block parameters. These might include the dimensions of




6.1-5

A

o

Figure 6/3. The eight building block types are shown here. The
uppermost object shows a FIL111 smoothing a corner.
Below, from left to right are quasi-sphere, octagon
right cylinder, tetrahedron, wedge, and rectangular
parallelepiped.




TABLE 6/1.

Keyword

FIL111
OCTAGON
PATCHR
PATCHW -
PLATE
QSPHERE
RECTAN
SLANT
TETRAH

WEDGE

6.1-6

POLAR BUILDING BLOCKS AND THEIR KEYWORDS

Building Block Description

Smooth inside of a diagonal corner

Right octagonal cylinder

Surface of a rectangle

Diagonal face of a wedge

Arbitrarily thin plate or cuboid

Quasisphere

Cuboid or rectangular parallelepiped

Thin plate slanted at 45

Tetrahedron

Wedge derived from half a cube




6.1-7
the building block, its orientation and the materials that cover its
surface. (Surface materials are discussed in Section 6.12.) Finally,
VEHICL expects to find a line ENDOBJ’ telling it that no more
information referring to the present block is coming and to expect the
next building block keyword. The information to be entered in the
object definition file for each building block is summarized in Table
6/2. Note that numbers and words may be separated by one or more spaces

on the same line. (Input is free-format.)

The keyword ’ENDSAT’ signals the end of the satellite definition

and should be included at the end of all vehicle descriptions.
6.10.12 PLATES AND PATCHES

A careful inspection of Table 6/1 will show that there are some
building blocks that are not derived from cubic volume eléments. These
are the PLAIS, SLANT, PATCHR and PATCHW.

PLATEs are arbitrarily thin cuboids (RECTANS). They are assumed
to have only a top and a bottom, the sides being of negligible height.
Flat plates always lie in one of the axis planes (XY, XZ, YZ). SLANTed

plates lie along one axis, and at a 45° angle to the other two.

PATCHR and PATCHW are the surfaces only of a cuboid and wedge,
respectively. They are used to change the surface material patterns of
existing building blocks and should never be defined in spaces not
already occupied by solid objects. (Objects defined to occupy the same
space are explained in Section 6.14.)




OBJECT DEFINITION
SYNTAX

RECTAN

CORNER xy 2

DELTAS Ax Ay A2

(UP TO 6 SURFACE CARDS)
ENDOBY

WEDGE

CORNER x y 2z

FACE matenainame normai
(type 110)

LENGTH Ax Ay A2

(UP TO 4 SURFACE CARDS)

ENDOBY

TETRAH

CORANERA xy 2

FACE materiainame normal
(type 111)

LENGTH Ax

(UP TO 3 SURFACE CARDS)

ENDOBY

OCTAGON

AXISxyzx'y 2

WIDTH w

SIDE s

{UP TO 3 SPECIAL SURFACE
CARDS 3 + --. e - ‘..
or 'C™)

ENDOBY

QSPHERE
CENTERxy2
DIAMETER d

SIDE s

MATERIAL matenainame
ENDOBY

SLANT

CORNER x y 2z

TOP materialnormal
(type 110)

BOTTOM material

LENGTH Ax Ay 42

ENDOBJ

TABLE 6/2.

OBJECT DEFINITION
EXAMPLES

RECTAN

CORNER 3 -2 8
DELTAS 1 2 4

SURFACE + X ALUMINUM
SURFACE ~ X ALUMINUM
SURFACE +Y ALUMINUM
SURFACE ~Y ALUMINUM
SURFACE +2Z ALUMINUM
SURFACE ~2Z ALUMINUM
ENDOBJ

WEDGE

CORNER -3 2 1
FACE S102 -1 -1 0
LENGTH 1 1 3
SURFACE +X SI02
SURFACE +Y SIO2
SURFACE +2Z GOLD
SURFACE ~Z SIO2
ENDOBY

TETRAH

CORNER -3 -2 8
FACE KAPTON 1 1 =1
LENGTA 2

SURFACE - X TEFLON
SURFACE - Y KAPTON
SURFACE +2Z TEFLON
ENDOBY

OCTAGON

AS 3.2.-6 3.2-9
WIDTH 3

SIDE 1

SURFACE + SILVER
SURFACE - SILVER
SURFACE C MAGNES
ENDOBY

QSPHERE
CENTER 0.0.0
DIAMETER 4
SIDE 2
MATERIAL NPAINT
ENDOBY

SLANT
CORNER -1 -1 O
TOP TEFLON 1 1 O

BOTTOM KAPTON
LENGTH 2 2 3
ENDOBJ

OBJECT DEFINITION
YNTAX

FiL111

CORNERLINE xy 2 x' y' 2

FACE materiainame normat
{type 111)

ENDOBY

PLATE
CORNER xy 2z
DELTAS ax Ay A2

TOP = ; matenainame

BOTTOM = (i) materiainame
ENDOBY

PATCHR
CORNER x y

DELTAS Ax Ay Az

(UP TO 6 SURFACE CARDS)
ENDOBJ

PATCHW

CORNER xy 2

FACE matenalname normal
(type 110}

LENGTH Ax Ay Az

{UP TO 4 SURFACE CARDS)

ENDOBJY

60 1-8

OBJECT DEFINITION - FILE 20

OBJECT DEFINITION
EXAMPLES

FiL1n

CORNER 3. 2.6. -5 4.6
FACE SOLAR ~1.-1 ~1
ENDOBJ

PLATE

CORNER ~1 =1 ~10
DELTAS 2 2 0

TOP +Z CPAINT
BOTTOM - 2Z CPAINT
ENDOBY

PATCHR

CORNER 3 -2 8
DELTAS 1 0 1
SURFACE - Y SCREEN
ENDOBY

PATCHW

CORNER ~3 2 7

FACE AQUADG -1 =10
LENGTH 1 1 1

ENDOBJ

NOTES “‘normal’ is three vaiues.
each either +1.0. 0r - 1.

SURFACE CARD has the following format:
SURFACE = (i) materiainame

SPECIAL SURFACE CARD 1s:
SURFACE (E) materiainame

OTHER OBJECT DEFINITION COMMANDS

ENDSAT
COMMENT
OFFSET 1j k
CONDUCTOR n

DELETE 1§ k
unrecognized word

Must be fast card in tile

No effect.

Moves coordinate origin

Sets number of underlying conductor

1€ n<

getetes"surra'ces. teaving empty cefl
Assumed 'o be name of new surface
matenal. Next ¢arg scanned tor
parameters
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6.10.13 SPECIAL SHAPES

FIL111 is a special shape designed to fill in "steps" whose corner
line runs at 45° to the grid lines in any axis plane (i.e., XZ, ZY, XZ)
(Figure 6/4a). There are two kind of "steps®™ that can occur between
POLAR building blocks. For example, a small cuboid on top of another
creates four "steps" that lie along grid lines (Figure 6/4b). These may
be *filled in" or smoothed by defining a WEDGE to |ie along the corner
line of the step. A second type of step is possible however when, for
example, a tetrahedron or octagon is defined to sit on top of another
building block. These steps have corner lines that run at 45° between
grid lines. This is shown in Figure 6/4c. Such steps can be smoothed
or filled in by a combination of tetrahedra and truncated cubes. This
combination is supplied as the building block FIL111.

6.10.14 BUILDING BLOCK PARAMETERS (OR WHO’S ON NEXT?)

The very center of the object grid is assumed to be the origin of
the coordinate system 0, 0, 0. Hence the grid itself extends from -8 to
+8 in the X and Y directions and from ~16 to +16 in the Z direction.
This coordinate system is used to specify the position and size of the
building blocks in the parameter "cards™ or lines following the building
block keyword. Let us examine the definition of each building block in
detail to see how this works.




Figure 6/4a. A FIL111 building block all by itself.

Figure 6/4b. "Steps" along grid lines.

“Steps® along
45% angle 1ines

Figure 6/4c. "Steps" along 45° angle lines.

6.1-10
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6.10.15 RECTAN

The following cards define a cuboid or rectangular parallelepiped:
RECTAN
CORNER x y z
DELTAS Ax, Ay, Az
SURFACE +X G0OiD
SURFACE -Y KAPTON
(Four more SURFACE cards for -X, +Y, +Z, -Z)
ENDOBJ

Notes:
1. RECTAN: is the building block keyword.

2. CORNER x y z: defines the coordinate of the lowest indexed corner
of the cuboid (the one so that if you added up x + y + z it would
give the lowest (least positive) number).

3. DELTAS Ax, Ay, Az: gives the length of sides of the cuboid along
the X, Y and Z axes. (Note that the edges of the cuboid must lie
in the direction of the three axes.)

4. SURFACE +X GOLD: assigns the material GOLD (see Chapter 6.12)
to the surface of the cuboid whose normal points in the +X
direction. There are up to six surfaces that may be assigned
materials (+X, -X, +Y, -Y, +Z, -Z). All surfaces that will
eventually become a surface of the finished object (rather than
become 2 connection to another building block) must be assigned a
material. (For surfaces that are shared with other building
blocks the material assigned is ignored.)




As an example, the following cards:

RECTAN
CORNER
DELTAS
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
SURFACE
ENDOBJ

{
E-

2 -1
3 2 5
+X GOLD
+Y GOLD
+Z GOLD
-X GOLD
-Y GOLD
-Z GOLD

6.1-12

define a gold bar extending from -4 to -1 in the X direction, 2 to 4

in the Y direction and -1 to +4 in the Z direction (Figure 6/5).

e

e
e
e

RN
RN
RN
N
~

Figure 6.5.

RECTAN.
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6.10.16 PATCHR

PATCHR is defined in exactly the same way as RECTAN.
PATCHR
CORNER x y z
DELTAS Ax Ay Az
(SURFACE card(s) (usually just one)j

e.g., SURFACE +X GOLD
ENDOBJ

PATCHR should only be defined within an existing object.(see 6.14).

6.10.17 WEDGE

The following cards define a right angled wedge:
WEDGE
CORNER x y 2z
FACE KAPTON 110
LENGTH Ax Ay Az
SURFACE +X TEFLON
<{Up to four SURFACE cardsj
ENDOBJ

Notes:
1. WEDGE: is the building block keyword.

2. CORNER x y z: defines the lowest indexed vertex of the right
angled corner of the wedge (see note 2, 6.10.15).

3. FACE KAPTON 110: contains two pieces of information:

a. ’'KAPTON’ assigns the material KAPTON to the surface of the
face of the wedge. (The face is the sloping surface of the
wedge.)

b. ’11 0’ defines the direction of the normal to the face and
hence the orientation of the wedge itself. The normal may point
in any of the following directions only:
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0, +1, 1

(For those of you not familiar with the ’1 1 0’ notation a ’11 0’
normal is a vector pointing to the coordinates X =1, Y =1 and Z
= 0 from the origin.)

4. LENGTH Ax, Ay, bz: gives the lengths of the sides of the wedge
paraliel to the X, Y and Z axes. To maintain symmetry two of
these must be equal (i.e., the two right triangle sides).

5. SURFACE +X TEFLON: assigns the material 'TEFLON’ (Section 6.12)
to the surface whose normal points in the positive X direction.
There are up to four remaining surfaces that may be assigned
materials (see 6.10.15, note 4). These all have normals pointing
along one of the axis directions. Along which axis direction they
point depends on the orientation of the wedge or the choice of
normal for the face (note 2). The possible combinations of face
directions and remaining surface directions are summarized in
Table 6/3. Cards defining materials for non-existent faces are

ignored.

As an example, the following cards:

WEDGE

CORNER 000

FACE GOLD 110
LENGTH 2 2 2

SURFACE -X GOLD

SURFACE -Y GOLD

SURFACE +Z GOLD

SURFACE -Z GOLD

ENDOBJ
define a wedge covered in gold with the origin as one of its corners and
a face whose normal points between the X and Y axes in the XY plane.
This is shown in Figure 6/6.
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TABLE 6/3. DIRECTIONS OF SURFACE NORMALS ASSOCIATED WITH
ALLOWED WEDGE ORIENTATION

Normal of WEDGE Face Normals of Four Remaining Surfaces
1 10 =X, -y, 2z, -2
-1 10 X, -y, %, -1
1-1 0 -X, Y, Z, -1
-1-1 0 X, Y, Z, -2
1 01 =X, Y, =Y, -Z
-1 01 X, Y, -Y, -
1 0 -1 X, Y, -Y, ¢
-1 0 -1 X, Y, -Y, Z
011 X, -X, -Y, -2
0-1 1 X, -X, Y, -Z
0 1 -1 X, =X, =Y, ¢
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- Y

0,0,0.

al 110 and corner

Figure 6/6. Wedge defined with surface norm
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6.10.18 PATCHW

PATCHW is defined in exactly the same way as a wedge.

PATCHW

CORNER x y 2z

FACE GOLD 1 -1 O

LENGTH Ax Ay Az

<Up to four SURFACE cards (usually just one)j
ENDOBJ

Like PATCHR (6.10.16) it may only be used to define a wedge inside
another building block. This is explained further in Section 6.14.

6.10.19 TETRAH

The following cards define a tetrahedron:

TETRAH
CORNER x y z

FACE ALUMINM 1 1 -1
LENGTH  Ax

SURFACE -X TEFLON
SURFACE -Y TEFLON
SURFACE +Z TEFLON
ENDOBJ

Notes:

1. TETRAH is the building block keyword.

2. CORNER x y z: defines the coordinates of the right angled
corner of the tetrahedron. There is only one of these. (It
corresponds to the corner of the partially filled cubic volume
element that is actually filled.)

3. FACE 1 1 -1: assigns the material ALUMINUM to the unique face
of the tetrahedron opposite the right angled corner.
1 1 -1’ gives the direction of this face’s surface normal and
hence the orientation of the tetrahedron. The following

directions only are allowed:
41, 41, +1

(This notation is the same as explained in 6.10.17, note 3.)
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4. LENGTH Ax: gives the length of the sides along the X, Y and Z
axis directions. (These must all be equal to preserve symmetry.)

5. SURFACE -X TEFLON: assigns the material tefion to the remaining
surface with surface normal pointing along the negative X axis
direction. Up to three surfaces remain to be assigned materials
(see 6.10.15, note 2). The surface normals of these surfaces
depend on the orientation of the tetrahedron and hence the normal
of the "face". Table 6/4 summarizes these relationships.

Definitions of non-existent surfaces are ignored.

TABLE 6/4. DIRECTIONS OF SURFACE NORMALS ASSOCIATED WITH
ALLOWED TETRAHEDRON ORIENTATIONS

Normal of TETRAHedron Face Normals of Three Remaining Surfaces
1 11 -X, ~Y, -Z
-1 11 X, =Y, -1
1-11 =X, Y, -2
1 1-1 =X, =Y, 2
-1-11 X, Y, -2
-1 1-1 X, -Y, 2
1-1-1 =X, Y, Z

-1 -1 -1 X, Y, 1
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As an example, the following cards:

TETRAH

CORNER 0 O O

FACE KAPTON 1 1 1

LENGTH 2

SURFACE -X KAPTON

SURFACE -Y KAPTON

SURFACE -Z KAPTON

ENDOBJ
define a tetrahedron with its right angle corner at the origin and the
normal of the opposite face pointing between the positive X, Y and Z

axes. This is shown in Figure 6/7.

6.10.20 OCTAGON

The following cards define a right octagonal cylinder:
OCTAGON

AXIS xyz x’y 2’

WIDTH w

SIDE s

SURFACE + GOLD

SURFACE -~ GOLD

SU'==ACE C GOLD

ENDOBJ

Notes:

1. OCTAGON: is the building block keyword.

2. AXIS xyz x’y’”z’: defines both the direction of the symmetry
axis and the height of the cylinder. The symmetry axis must be
parallel to one of the axis directions. Thus two of the coordinate

pairs (x, x’), (y, y’) and (z, 2z’) must be identical. For example,
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200

000 020

Figure 6/7. Tetrahedron defined with its "corner" at 000 and a surface
normal 111,
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'AXIS 6 3 -2 7 4 -2

would define an axis that was noi parallel to the X, Y or Z

directions. However,

'AXIS 6 3 -2 7 3 -2

defines an axis parallel to the X direction and is acceptable.

The height of the cylinder is given by the difference in
coordinates along the axis direction. (For example, in the case

above, the axis is one mesh unit long.)

3. WIDTH w: gives the width of the octagonal cross-section of the
cylinder as w. If WIDTH is chosen to be odd, the axis must be
moved or the sides of the cylinder will lie halfway across a volume

element. POLAR automatically moves the axis +1/2 a mesh unit in

each direction in the plane perpendicular to it.

4. SIDE s: gives the length of one of the sides of the octagonal
cross-section that lies in an axis direction. The symmetry
relationship between the width and the sides of the cross-section
is shown in Figure 6/8. To maintain this relationship the side
must always be an even number of mesh units less than the width.
This means that they both either must be odd or both even numbers

of mesh units.

5. SURFACE + GOLD: assigns the material GOLD to the top surface of

the cylinder. °’-’ and ’C’ replacing the ’+’ assign surface

materials to the bottom or side cylindrical surface, respectively.
Only those surfaces that will eventually become surfaces of the

completed object need be assigned a material.

As an example, the following cards:

OCTAGON

AXIS 2 -4 6 2 -4 10
WIDTH 5

SIDE 3

SURFACE + TEFLON

SURFACE - TEFLON

SURFACE C TEFLON

ENDOBJ
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defines a right octagonal cylinder covered in tefion. The symmetry axis
lies along the Z direction and the height of the cylinder is four mesh
units. Because the WIDTH is odd the axis is imagined to pass through
the point 2 1/2, -3 1/2 in the X Y plane. Hence the top and bottom
faces run from X = 0 to X = 5 and from Y = -6 to Y = -1. The
coordinates of the top of the cylinder are shown in Figure 6/8. A

three-dimensional view is shown in Figure 6.9.

1

!

!

I 5, -2

|

I

!
" 25, 3y "

——s-.—————— ——————— -S—*X

1" e—————  WIDTH — ‘J”

1’ - H—— SIPE ———4’ -6

Figure 6/8. Top of an OCTAGON.




6.1-23

ANANAVAN

ANANANAN

[ [ )/

[ [ [/

Figure 6/9. Octagon.
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6.10.21 QSPHERE

The following cards define a quasisphere:

QSPHERE

CENTER x y z
DIAMETER d
SIDE s
MATERIAL Si02
ENDOBJ

Notes:

1. QSPHERE: is the building block keyword.

2. CENTER x y z: defines the center of the sphere to be at

coordinates X, Y, Z.

3. DIAMETER d: defines the diameter of the sphere to be d mesh units.
The quasisphere can be thought of as an octagonal cross-section
(like the top of an OCTAGON (see 6.10.20)) rotated about an axis in
the cross-section plane. The diameter then corresponds to the
WIDTH for a two-dimensional octagonal section. The same
restrictions then apply: An odd value for the DIAMETER causes
POLAR to automatically move the CENTER by +1/2 a mesh unit in the
X, Y and Z directions.

4. SIDE s: sets the length of a side lying in one of the axis planes
(e.g., X Y plane). Like the OCTAGON, the SIDE and DIAMETER must

differ by an even number of mesh units.

5.  MATERIAL SI02: assigns the material SI02 to the whole sphere

surface.

As an example, the following cards:

QSPHERE

CENTER 1 -3 5
DIAMETER 7

SIDE 3

MATERIAL SILVER
ENDOBJ
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define a silver sphere centered at 1 1/2, -2 1/2 and 5 1/2. The
sphere extends along the axis direction as follows:

x from -2 to 5
y from -6 to 1
z from 2 to 9

(See Figure 6/10.)

[ [/
/[ [/ /
NNANAN

ANANAN

Figure 6/10. QSPHERE.
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6.10.22 FIL111

The following cards define a FIL111:
FIL111
CORNERLINE x y z x’ y’ 2°
FACE KAPTON 1 -1 -1

ENDOBJ

Notes:

1. FIL111: is the building block keyword.

2. CORNERLINE xy z x’ y’ z’: defines both the length and the
direction of the "step" FIL111 is to fill. The line must lie in
one of the axis planes (XY, XZ, YZ) and must have a direction lying
45° to two of the axes. This means that one pair of the
coordinates (x’, x), (y, y’) (z, z’) must be identical and the
other two pairs must differ by the same magnitude. For example,

"CORNERLINE 1 2 3 4 5 &’

is unacceptable since all three coordinate pairs change. The
following correct example

’CORNERLINE 1 2 3 -1 4 3
defines a line in the XY plane (Z is constant) with Ax = -2, and Ay
= +2. Hence the line is 2 2 units in length and runs at 45°between
the positive Y axis and the negative X axis.

3. FACE KAPTON 1 -1 -1: assigns the material KAPTON to the exposed

surfaces of the FIL111 and defines its orientation via the surface
normal of its exposed face: 1 -1 -1. The surface normal can
only be combinations of

41 41

Only certain choices of corner line direction are consistent with
each choice of FACE normal. If we subtract the x y z, x’ y’ 2’
coordinates defined in corner line

Ax = x' - x
by =y’ -y
Az = 2’ - 2

then the surface normal n; ny n3 (e.g., 1 1 1) must be orthogonal
to Ax, Ay, Az, i.e.,

Ax ny + Ay npe+dz n3=0.
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With the choice 1 2 3 -1 4 = :or the corner line coordinates

only 1 1 +1 or -1 -1 +1 faces are permissible, e.g.,
2. -1 +2. -1 +0. +1 = 0.

However, with -1 +1 +1
-2. -1 +2.1 +0. +41 =4

the vectors are not oi:hogonal and so are not allowed.

As an example, the following cards:

FIL111
CORNERLINE 1 4 -6 1 7 -3
FACE GOLD -1 1 -1

ENDOBJ
defines a FIL111 covered with gold smoothing a step with a corner line

running from1l 4 -6 in the YZ plane, between the positive Y and Z axis
tol1 7 -3. The face of the ~IL111 points in the negative X and Z
directions and positive Y direction. (See Figure 6/11.)

Figure 6/11. FIL111.




6.1-28

6.10.23 PLATE

Notes:

The following cards define a PLATE:

PLATE
CORNER x y z
DELTAS Ax Ay Az

[5] ALUMIN
Z

BOTTOM + m KAPTON
Z

TOP

1+

ENDOBJ

PLATE: is the building block keyword.

CORNER x y z: defines the vertex of the thin plate with the
lowest indices (see 6.10.15, note 2).

DELTAS Ax Ay Az: defines the length of the plate along the
three axis directions. A PLATE may be thought of as a cuboid (or
RECTAN) (see 6.1C.15) with zero thickness in one direct' .n. Hence
cne of Ax, Ay and Az must be zero. For example, if Ay is chosen
to be zero the PLATE will lie in the xz plane.

0P+ [5] ALUMIN:
z

assigns the material ALUMIN to the TOP surface of the plate. The
"TOP™ surface may be either in a + or - axis direction. This
choice is arbitrary unless a "double point" conflict is possible.

Double point conflicts are explained in Section 6.11.11.

BOTTOM + [ﬂ KAPTON:
z

assigns the material KAPTON to the other side of the plate. If
"top" were chosen as +X then bottom must be -X, and so on. Note
that the choice of x, y or z must coincide with the Ax, Ay or Az

chosen to be zero.
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As an example, the cards

PLATE

CORNER 0 0 O

DELTAS 0 2 2

TOP -X TEFLON

BOTTOM +X GOLD

ENDOBJ
defines a 2 x 2 thin plate with gold on the +X side and teflon on the
-X side lying in the YZ plane. (See Figure 6/12.)

Figure 6/12. PLATE.
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6.10.24 SLANT

The SLANT object should be thought of as a WEDGE with the 100-type
surfaces left undefined. The FACE card is transformed to a TOP card,
‘and a BOTTOM card is added. The CORNER is remote from the slanted
plate, and is where the CORNER of a WEDGE would be if we were defining
the FACE of a WEDGE. Similarly, the LENGTH card corresponds to that of
a WEDGE. The syntax is

SLANT

CORNER ix jy kz

TOP matl nx ny nz
BOTTOM matl

LENGTH Ix Iy Iz
ENDOBJ

6.10.25 MORE OBJECT DEFINITION KEYWORDS

In addition to the building block keywords and their parameter
cards, the object definition of VEHICL also recognizes a few other
keywords. With these and the building blocks, a complete object

definition file can be constructed. Let us examine the remaining

keywords and their effect one by one.
ENDSAT

Just as ENDUOBJ terminates a set of building block parameter cards,
so the keyword 'ENDSAT’ terminates the whole object definition file.
After reading an ’ENDSAT’ card VEHICL stops reading from the object
definition file and begins to process the information it has. Note that
ALL object definition files must end with an ’ENDSAT’ card.
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COMMENT

VEHICL ignores anything written on the same 80 character line (or
card) that begins with the keyword *COMMENT’. This allows the user to

include notes or reminders in long and complicated object definition

files, e.g.,
COMMENT DEFINE OCTAGONAL BODY
OCTAGON
AXIS -6 0 2 -8 0 2
L ]
OFFSET

POLAR uses a coordinate system defined so that the lower, leftmost
corner of the object definition grid has the coordinates (1,1,1). This
is done so that all elements which contain the object will have

addresses which are positive and nonzero for bit packing purposes.

Usual ly the computational grid coordinates are not convenient for
object definition. The OFFSET card allows the user to shift the
reference point during object definition. By default, the center of the
object grid is labeled (0,0,0) for satellite description. The center of

the grid in calculation coordinates is calculated by

x, = int[(NX+1)/2]
y_ = inb[(NYs1)/2]
¢ < int[(NZ+1) /2]

where NX, NY, and NZ are the object grid sizes as defined using the NXYZ
keyword (6.21) in the normal VEHICL input mode. Point
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(%c1¥c,Ze) would then become the default (0,0,0) for the duration of

satellite definition.

The card
OFFSET a b c
would shift the coordinate system so that origin for satellite
definition became (x.-a, y.-b, z.-c) in computational grid coordinates.
The coordinate shift used during input will be the default or the most
recent offset. Each additional OFFSET card will be used as an offset
from the default shift (x.,y.,zc)-

CONDUCTOR

POLAR allows for both insulating and conducting materials (Chapter
6.12) . It assumes that all surface materials cover an underlying
conductor. Up to 15 separate conductors are allowed. Ea¢h building
block is associated with a particular conductor. This association is
made by preceding all building block definitions associated with the
first conductor with the card:

CONDUCTOR 1
Similarly, blocks associated with a second conductor are preceded by the
card
CONDUCTOR 2
and so on. If no CONDUCTOR card is included in the object definition
file all building blocks will be associated with CONDUCTOR 1. In the
same way any building blocks defined before VEHICL encounters a card
CONDUCTOR n (n > 1)
will be associated with conductor 1. All subsequent blocks will be
associated with cornductor n, until another conductor card is

encountered.

It is conventional to choose conductor 1 as the satellite ground

conductor. Skipping conductor numbers is not recommended.
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DELETE

DELETE allows the user to modify building blocks already defined
by selectively "deleting" filled or partially filled cells (i.e.,
"deleting® them by making them empty).

DELETE x y 2z

empties the filled cell with the indices of its lowest index vertex
given by x y z. (The lowest index vertex is the one with the sum of its
X, Y and Z coordinates equal to the least positive number.) The
coordinates x, y, z refer to the coordinate system presently active
(i.e., the default system or that associated with the most recent OFFSET
command) . The DELETE command requires great care in its use. It does
not assign materials to surfaces that are newly exposed by the removal
of a filled element. The user must do this by defining a new object or
objects with surfaces that coincide with those newly exposed. This is

most easily done by overlaying objects (6.14).
COMPRESS

Since there is a limit of 1250 to the number of surfaces on an
object (the rectangle defined in Figure 6/5 has 62 surfaces), large
complex objects sometimes contain interior surfaces which need to be
removed. Normally these surfaces are removed when the satellite
definition is complete or when the number of surfaces exceeds the
surface |limit between building blocks, COMPRESS forces the existing
interior surfaces to be removed immediately. An exampie of the syntax
is

ENDOBJ
COMPRESS
RECTAN

[
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MARKTB

Sometimes when defining odd objects with unusua! geometries,
undefined double points will be found. One way to patch the object is
to use the MARKTB command to define an element and its associated
surfaces to be TOPs or BOTTOMs.

MARKTB 1 2 2 TOP
MARKTB 1 2 1 BOTTOM

The first MARKTB command forces the cell with lowest index
vertices of (1,2,2) to be marked as a TOP element. The second line
marks the element below the first in the Z-direction as a BOTTOM cell.
It should be noted that these index vertices will be affected by
previous OFFSET commands. (See Section 6.11.11 for more hints for

dealing with double points.)
OTHER WORDS

Any other words that VEHICL reads in the object definition file
are assumed to be the names of new materials and VEHICL then expects
three more cards defining the material properties (6.12) to follow

immediately.
6.11 DEFINING AN OBJECT: AN EXAMPLE

The input file of Figure 6/13 defines an object consisting of an
ALWMINWM slab, trimmed with four KAPTON wedges and four TEFLON
tetrahedra, and topped with a GOLD sphere. Three views of the resulting
object are shown in Figure 6/14.
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6.11.10 LIMITATIONS IN OBJECT DEFINITION

It is probably fair to say that you can link building blocks
together and nine times out of ten there will not be a problem.
This section deals with the other one time out of ten, when what
appears to be a perfectly reasonable combination of building blocks
is rejected by VEHICL. We itemize here a rather formidable iist of
object definition "don’ts™. However, you should remember that it
takes hard work to break more than one or two of these rules

defining any one object if you use a little common sense.

1. Al exposed surfaces must be assigned materials.

2. The parameter cards for each building block, discussed in Section
6.10.14, must appear in the order shown, and no other.

3. The object must not touch the object grid boundary planes at any
point.

4. Thin plates sharing the same volume element can do so only if the
TOP face of one shares volume with the TOP of the other, or the
BOTTOM face of one shares volume with the BOTTOM face of the other.
TOP faces may not share volume elements with BOTTOM faces.

5. Thin plates may only intersect each other at the edges or corners.

6. Double points must be assigned TOP and BOTTOM sets (see Section
6.11.11).
(Rules 4 through 6 are all manifestations of conflicts involving double

and triple points.)

6.11.11 DOUBLE POINTS

Thin plates may have different potentials on their two surfaces,
yet they occupy only one plane of grid points. These grid points must
therefore be associated with two distinct sets of potentials. For this

reason they are called double points. The two sets of potentials

associated with each half of the double points are distinguished by
calling one set 'TOP’ and one set ’BOTTOM’. Recali (6.10.23) that the
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surfaces of a thin plate may be defined as 'TOP' or 'BOTTOM'
regardless of whether their surface normal points along a positive or
negative axis direction: The TOP and BOTTOM definition refers to the
(arbitrary) choice of which set of potentials (TOP or BOTTOM) to
associate with each surface. When double points share a volume
element they must all be of the same type; i.e., all TOP or all
BOTTOM. This is the basis for rule 4 in Section 6.11.10.

Double points also occur when other building blocks touch in
such a way that their single points come together to form a common
vertex of two "disjoint" volume elements. By "disjoint" volume
elements we mean elements physically separated from each other by
solid surfaces. This is shown for two cuboids touching along one edge
only in Figure 6/15. The row of points along the touching edges are
double points and one set must be defined as BOTTOM. This may be done
by defining a thin plate touching the common edge. If the exterior
surface of the plate pointing into one of the disjoint volumes is
'BOTTONM' then the half of the double point associated with the other
disjoint volume becomes ‘TOP'.

X
5 Row of Double Points
Extending in the Z Direction
i
'——?_
Disjoint
Volume Elements

Figure 6/15. Profile of two cuboids sharing a common edge and
resultant double points. Heavy lines show possible
orientations for the definition of a thin plate to re-
solve the conflict.
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Because of the way surface cell potentials are assigned to grid
points, the edges of thin plates are only single points. However, a
thin plate touching another building block with its edge creates a row
of double points similar to that caused by two cuboids touching at an
edge (Figure 6/16). These double points are automatically assigned TOP
and BOTTOM sets.

Double point ambiguities can also be resolved on an element by
element basis using the MARKTB command discussed in Section 6.10.25.

6.11.12 TRIPLE POINTS

A triple point is said to occur when a vertex is common to three
or more disjoint volume elements. Triple points are illegal! The
easiest way to get a triple point is to define one thin plate passing
through another. This is not aliowed (rule 5, Section 6.11.10).
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6.12 SURFACE MATERIALS
6.12.10 MATERIAL PROPERTIES

Each material name (e.g., KAPTON, GOLD, FRED (the name is

arbitrary)) has associated with it a list of material properties. The

name of each material and the values for each material property are
supplied by the user in the object definition file. (This is explained
in Section 6.12.11.) The nineteen material properties are summarized in

Table 6/5. Here we examine each one in more detail.

DIELECTRIC CONSTANT (PROPERTY 1)

Property 1 contains the relative dielectric constant for an
insulating material ¢,
€

€ =
r

m

(o)

where € is the absolute dielectric constant and €o is the dielectric

constant of free space. ¢, is dimensionless.

THICKNESS (PROPERTY 2)

Property 2 gives the thickness d of a dielectric film covering an
under lying conductor in meters. d is arbitrary and may be chosen to be
more or less than a mesh unit. However, note that POLAR uses thin-film
approximations in many of its calculations involving surfaces (Section
4.52).

BULK CONDUCTIVITY (PROPERTY 3)

Property 3 gives the bulk conductivity o, of the surface material
in ohms™! m~1. 0, is assumed to be the value appropriate for a sample
not exposed to any radiation and not subject to any internal electric
fields. Field enhancement and radiation enhancement of o, are not
currently modeled by POLAR. A value of -1 indicates that the material
is a metallic conductor.




Property No.

TABLE 6/5.

User Input Units

1
2

=
= OWOO~

12

13

14

15

16

17

18

19

None

ohms'1 m

None

None

keV

angstroms
one

angstroms

None

None

keV

A m~2

ohms square”

Volts

Volts

ohge 130}

None
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MATERIAL PROPERTIES
(see Section 6.12.10 for notes)

Description

Relative dielectric constant

Dielectric material
thickness

Bulk conductivity (= -1 for
a metallic conductor)

Atomic number

Maximum secondary electron
yield for electron impact

Primary electron energy that
produces maximum secondary
yield

Range parameters (4.3)
R = PE'8 + PgE 10

Secondary electron yield due
to impact of 1 keV protons

Incident proton energy that
produces maximum secondary
electron yield

Photoelectron yield for
normally incident sunlight

Surface resistivity (= -1
for non-conducting surface)

Maximum (absolute) potential
attainable before a
discharge must occur

Maximum potential difference
between surface and
underlying conductor before
a discharge must occur

Radiation-induced
conductivity coefficient (k)

Radiation-induced
conductivity power (4)

Material density
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ATOMIC NUMBER (PROPERTY 4)

Property 4 is the atomic nusiber for pure elements or the mean
atomic number for chemical compounds; e.g., polyethylene (CHy), has a

mean atomic number of (6 + 1 + 1)/3 = 2.7.
SECONDARY YIELD (PROPERTIES 5 AND 6)

Properties 5 and 6 are the coordinates of the maximum in the
secondary electron yield curve of the material. The secondary yield

curve is a plot of secondary yield 6

current of secondary electrons emitted
incident primary electron current

6 =

for normally incident electrons, against the incident energy of the
primary electron E. This is further discussed and illustrated in
Section 4.52. Property 5 contains 6,,,, and property 6 contains Epax i0
keV.

ELECTRON RANGE (PROPERTIES 7, 8, 9 AND 10)

Part of the serondary electron emission formulation requires an
analytical form for the "range" of electrons in the material. The range
is the depth to which the electrons can penetrate the material as they
are continuously siowed down by losing energy to the material lattice.
POLAR uses a biexponential form. If P,, Pg, Pg, and Pjo are properties
7-10 respectively, the range R is given by

R =Py E8 . pgE10

The four parameters are obtained from fits to stopping power data
(Section 4.52). The range is determined in A (10'10 m). If no
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reliable stopping power data or four parameter fits are available, the
range may be estimated from Feldman’s formulal4] automatically by
assigning -1 to property 7. In this mode properties 7-10 are assigned
as follows:

-1
Pg = null

©
~
"

Pg = material density (g cm's)
Pio = mean atomic weight (AMU)

The mean atomic weight is calculated in the same way as the mean atomic

number (property 4) using atomic masses rather than numbers.
ION INDUCED SECONDARY EMISSION (PROPERTIES 11 AND 12)

Secondary emission of electrons due to ion impact is also treated
using a two parameter theory (4.52). Parameter 11 contains the yield
for 1 keV normally incident protons and parameter 12 the proton energy
that produces the maximum electron yield. The secondary emission
properties due to impact of ions other than protons are assumed to be

identical to the proton values.
PHOTOEMISSION (PROPERTY 13)

Property 13 contains the yield of photoelectrons from the surface
material exposed to the solar spectrum. The intensity is that measured
on earth 93,000,000 miles from the sun. (Earth orbit altitudes are
negligible by comparison and the intensity of the sun close to earth may

be considered constant.)
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SURFACE RESISTIVITY (PROPERTY 14)

Property 14 gives the intrinsic surface resistivity in the "ohms
per square". This rather odd unit is used to distinguish the
resistivity coefficient (property 14) from the actual surface
resistance (in ohms) calculated by POLAR. Consider two points in a
plane A and B, a distance L1 apart. If L, is the "width" of the

2
plane
Ly
surface resistance = surface resistivity x "
dimensionless
i.e. ohms = (ohms per square) x geometrical
factor
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POLAR uses the surface resistivity per square, times a geometrical
factor it calculates to determine the surface resistance between two

adjacent materials.

The intrinsic surface conductivity is due to the migration of
electrons along the surface layer aided by adsorbed impurities and

defects.

Surface conductivity may be omitted from the current calculations

completely by choosing property 14 to be negative.
DISCHARGE ANALYSIS (PROPERTIES 17, 18, 19, 20)
Currently under development.
PROPERTIES 17, 18, 19, 20 (RADIATION INDUCED CONDUCTIVITY) |
Currently under development.
6.12.11 DEFINING MATERIALS

New materials are defined, and their properties assigned inside
the object definition file (6.10.11). The object definition file is
read by POLAR module VEHICL. VEHICL interprets any word that it does
not recognize as a building block keyword (or their parameter cards
(6.10.25)) as the definition of a new material name. New material names
may not appear inside building block definitions (i.e., between a
building block keyword and an ’ENDOBJ’ statement).
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Following the material name, VEHICL expects to find three
additional cards specifying 20 constants as the material properties to
be associated with the name. The 20 constants correspond to properties
1-20 and are read sequentially; i.e., the first constant read is
interpreted as property 1, the second, property 2, and so on. They are
arranged sequentially, eight per car?, so that cards 1 and 2 each have
eight numbers and card 3, four numbers. Formally each number is written
in a field of up to ten characters, but POLAR will read the cards in
free format. No units need be specified. POLAR will assume the units
given in Table 6/5 and no others. For properties not requiring any
input such as property 20, or properties 17-19 for conductors, some
constant must be entered but its value is arbitrary. (POLAR will not

actually use the values entered but expects to read something.)

Once the three material property cards have been read VEHICL is
ready to accept any other keywords or more material names. POLAR will

recognize up to fifteen different materials.

Materials must be defined before they are referred to in any
building block definition. For example, if 1 assign the surface of a
sphere to be ’FSTUFF’ with the card

MATERIAL FSTUFF
if 'FSTUFF’ and its material properties have not been declared earlier
in the object definition file, an error will occur and execution will
stop. For this reason all the materials to be used are usuvally declared
at the very beginning of the object definition file. This is shown in
Figure 6/17.




COMMENT DEFINITION OF SATELLITE "BIG EARS®

Material Name 1
3 material property cards

Material Name 2

3 material property cards
[ ]

COMMENT DEFINE MAIN BODY
CONDUCTOR 1

QSPHERE
parameter cards
ENDOBJ

RECTAN
parameter cards
ENDOBJ

. more building blocks

COMMENT DEFINE SOLAR PANEL (SEPARATE CONDUCTOR)
CONDUCTOR 2
PLATE

parameter cards
ENDOBJ

more building blocks

COMMENT
CONDUCTOR 3

* more conductor segments
[ ]

ENDSAT

Figure 6/17. General form of the object definition file.
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6.12.12 DEFAULT MATERIALS

There is one cass where the user can forget to define his or her
materials and get away with it. When VEHICL encounters a material that
hasn’t been defined already, before an error occurs, it checks the

following list of default materials:

ALUMIN
AQUADG
CPAINT
GOLD
INDOX
MAGNES
SCREEN
KAPTON
NPAINT
S102
SOLAR
TEFLON
SILVER

If the material is included in this list, it becomes one of the up to
fifteen defined materials and its properties, stored internally, are
automatically entered as VEHICL input by the code. The properties of
these materials are shown in Table 6/6. Any further reference to the
material will assign the same set of properties to the surfaces
concerned. If the material is not found in this list, an error will
occur. These material properties are currently a carryover from NASCAP.

New default materials will be included in future revisions.

If two sets of material properties are defined with the same name,

or names with the same first four letters, two of the fifteen possible

materials are used up but only the first set of material properties are
used. For example, if GOLD is referenced before it is defined in the
runstream, the default material properties of gold will be associated
with all gold surfaces in the object definition file.
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TABLE 6/6

MATERIAL PROPERTIES

MATERIAL  1: ALuMI

PRQPERTY

DIELECTRIC CONSTANT
THICKNESS

CONGUCTIVITY

ATOMIC NUMBER

DELTA max )COEFF
E=max JOEPTHes=]
RANGE

EXPONENT > RANGE
RANGE > EXPONENT
EXPONENT

YIELD FOR IKEZV PROTONS
MAX DE/OX FOR PROTONS
PMOTOCURPCENT

SURFACE RESISTIVITY
SPACE DISCHARGE POT°L
INTERNAL DISCHARGEPOT'L
RAON INQUCEDCOND YCOEFFT
RAON INDUCEOCONC*YPOJER
CENSITY

MATERIAL 2: AQuUAD

PROPERTY

OIELECTRIC CONSTANT
THICKNESS
CONpUCTIVITY

ATONIC NUMBER

SELTA wAx >COEFF

E=™aAX YOEPTHaRR=]
RANGE

EXPONENT > RANGE
RANGE > EXPONENT
EXPONENT

YIELD FOR 1KEV PPQTONS
“aX DE/0X FOR] PROTONS
PHOTCCUROENT

SURFACE SESISTIVITY
SPACE OISCHARGE POT'L
INTERNAL DISCHARGEPQT L
RADN INOUCEGCINDCYCOEFFT
RACN INDUCEDCONG*YPOwER
GENSITY

INPUT VALUE

120000
103C=2C2
=il.Cc+CO0
1.3C+CQ012
?.70-C31
3.00-001
1.54+0C2
8,00-3012
2.20+002
176000
2ekt=231
24370362
4450238
=l.Jd0¢2LC
163003
2435C+032
seCi¥=C13
2e353+300
1.30+0G2
2.20+C01

{NCNE)
“gTERS
MHC /M
(NONE)
INONE
KEV
ANG o
(NONE)
ANG.
INONE)
(NCNE)
KEV
L/veE?
OH~S
voLTS
voL TS
MMCMSS
(NCNE)
KRG /M*3

INPUT VALUE

1,30+C00
1.2C=C33
=1.3C+CC3
0edC+0GC
1.30+020
3eo0-201
=1.2C¢C30
«J3C
2300350
1425+001
4.55-CC1
se40eng2
2e13=3G5
L 1Al Lagoty]
lelGeNJu
2e30CA2
LeGiC=2L2
l.32+C3C
1.30+703
203C+C31

{NCNE)
METERS
“uuC/™
{NCNE)
INGNE)
REV
ANG o
{NCNE)
ANG o
INCNE)
(NCNE)
“Ev
Ayrem)
OHMS
VOLTS
veLTS
MHCMS]
INCNED
KG/Me2
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CCOE VALUE

1euQd+0C2
L.JQ'502
«l.cC*0QC
1.39+001
$.18+300
3.30~002
1234002
3.37+002
8.50~0G1
le760CC
2ebua031
2e32C22
4e30-C5S
-3.35-213
LecC+l0H
esaleCC3
1.37-112
Leal¢20GC
1.30203
~1.G0+C00

(NONE)
MESH
MHO/M
(NONE)
INONED
ANG=C]
ANG o
ANG.
(NGNE)
{NCNED
{NONE)
KEV
LYALS X
ves$/%$
VoLTS
VGLTS
MMOMS2
{NONE)
KG/M®3

CGDE VALUE

1.30+023C
seul~-202
=1.534CGCC
0e3J+C0CT
TelbeCUT
2¢21=CC2
€.32¢0C2
«30
1055202
leCJeC0C
4¢55-731
le&le202
2.1C=NCS
-5+d5-C13
1+40e030
Jai0e0C2
l.5C-C12
Lo,z
lel0en32

=1.33°CUC

(NONED
wESH
“MC/™
INCNE)
{NONE)
ANG=C1i
ANG,
‘\G.
tNONED
(NONE?
(NONE)
KEV

I YALLP)
=573
veoL TS
veoL TS
HOMS3
{NONE)
nG/Me?




6.1-51

TABLE 6/6
MATERIAL PROPERTIES (Continued)

YATERIAL 3: CPAINT

PRQPEDTY INPUT VvaALUE CODE vaLuf

1 CIELECTRIC CONSTANT 3.,50¢007 INCNE) 3.53+3GC (NONED

2 THICKNESS 1.5C=352 METERS 1.00=C32 MESH

3 CINCUCTIVITY =1eC0¢QLC MHA/™ =leul*R3IC MHI/M

“ ATOMIC NUMBER S.00+C38 (INCNE) 500030 (NONE)

S DELTA vax YCOEFF ce10+00L0 INCNE)D 4.25+0G1 (NONE)

6 E=maYx OEPTHRm= 130031 KEV 3.74=032 ANG=C)

7 RANGE Te15¢2C1 ANG. 4eZ2G+2T1 ANG.

8 EXPOMNENT > RANGE 5esC=201 (INONE) $5¢352+332 ANG.

9 RANGE > EXPONENT 3412+032 aANG., 6.20=2G1 (NONE)
10 EXPONENT 1l.77+2C0 (NCNE) 177500 (NONg)
11 YIELD FOR IKEV PROTONS 4.55-001 (NONE) 4,55-0G1 (NONE)
12 MAX QE/OX FOR PROTONS 1.40¢0£32 KEy 1.43+0C2 KEV
13 PHOTOCURRENT 230035 A/mses2 2.00-0Q05 A/man?
16 SURFACE RESISTIVITY *1eGC*00T QmMmS =d.85=-313 v=S/4Q
15 SPACE OISCHARGE POT" L 1.50+CC8 VvOLTS 1¢J0¢0Cu VOLTS
16 INTE®snAL JISCRARGEPOTL 2e¢3N+C33 vOLTS Ceu3+003 VvOLTS
17 RACN [NOUCEDQCONDYCOEFFT 1e0C=013 MHOMSS 2e33=C.3 mMuOMS2
18 RADN INDUCEDCOND®YPONER 1ec0e303 INGCNE) eSS+ INONE)
19 CENSITY 1e3Ce033 nG/me} 1eSC*337 AG/Ne3
20 Zewiaeld} ~lel3e0QC

MATSRIAL 42 GOLD

PRQPERTY INPUT VALUE CODE vaput

1 DIELECTRIC CONSTANT 1.CC+CS0 (NCNED 14534532 (NONE)

2 THICKNESS 1.00-003 ETERS 1.36-0G2 MESH

3 CONQUCTLIVITY *1eCC¢C0T MuO/M =1:37+00C MHC/™

[} ATOMIC NUMBER T+92+031 (NONE) T«97+0Q1 INONED

] DELTA mMaXx YCOEFF 8.60-331 ¢NONE) 2093+33C (NCONE)

6 E=mMAX >OEPTHsa=] 5.50=C31 ®EY 2+32=0G2 ANG=C)

7 PaANGE 8e37¢NC1 ANG, 8417+C01 ANG.

) EXPGNINT > RANGE 9<C=ZG1 (NCNE) GelS*751 ANG.

9 QANGE > SXPONENT 5435+041 aNG, Pe20=3301 (RONE)
13 EXPONENT Le73eC3Z INONE) LeTT2C5L INCHE)
11 YIELD FOR IKZIV PROTONS wei3=231 (NONE) 4eiZ=T11 (NCNED
12 “YAX DE/OX FOR PROTONS 1e35+232 XKEvV 1352002 xcv
13 PHOTCCURRENT 2¢9C=CC05 4/vws 2457=03S5 4/vas?
14 SURFACE FESISTIVITY =1.,0C+73C Omms “5485+C1Y v=S/3
15 SPACE JiSCHARGE ©°5T°t 1euG+NC4 VOLTS 1e37¢0u VOLTS
16 INTERNAL OISCHARGEPIT L 2eaT+053 VOLTS 2e22¢002 VOLTS
17 FACN INOULCEDCONGCYCOEFST 2028=0L3 wugons3 1e3l2=011 wpn0uss
18 FADN INJSUCEDCOND'YPQWED 1e30¢03GC INONE) 1el2*2GULC (INONED
19 OENSITY 1eoC0*N3T KG/Me3 1e0C*C0Y KG/Me?
20 232031 =1e0J32020
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MATERIAL PROPERTIES (Continued)

“ATERIAL 5:  INQOM

PQQPERTY
DIELECTYRIC CONSTANT
THICKNESS
CONQUCTIVITY
ATOMIC NUMBER
DELTA “ax >COEFF

E=vax JOEPTHsw=}
RANGE

EXPONENT 9 RANGE
RANGE > EXPONENT
EXPONENT

YTELD FOR 1nhEV PROTONS
MaX DEZ/0Xx FOR PROTONS
PHOTOCURRENT

SURFACE RESISTIVITY
SPACE DISCHARGE POT*L
INTERNAL DISCHARGEPOT'L
RADN INDUCEDCOND'YCOEFFY
RADN INDUCEDCONOYPOWER
DENSITY

“aTERIAL 53 MAGNES

PROPERTY
DIELECTRIC CONSTANT
THICUNESS
CONDUCTIVITY
ATOMIC NUMBLR
DELTA MaX >CCEFF

EeMAX SO0EPTHE®=
RAMGE

EXPONENT > RANGE
RANGE > EXPONENT
EXPONENT

YIELD FOR 1IKEV PROTONS
»aX DE/O0X FGR PROTCNS
PHOTOCURRENT

SURFACE SESISTIWITY
SPACE OLSCHARGE POT'L
INTZONAL OISCHARGEPOT L
PACN INOUCEQCONC YCCEFFT
PADN INOUCEQCIND*YPQwI®
NENSITY

TABLE 6/6

INPUT VvALUE

1632+C50
l.5C~-3C3
=1.30+0C3
2eb4e0]
le42+000
desl=Cal
=1.3C+030
30
7.18+CLC
5.55+001
4,97=231
Le23e022
3427=0GS
~l1.u0+CCC
1.50+034
2.3C*0G3
1.06=-012
1.303+0C0
1.00+0C3
2.30+031

(NCNE)
METERS
MHO/M
(NCNE )
INCNE)
KEV
ANG.
(NCNE)
ANG.
INCNE)
INGNE)
KEV
VAL ¥
OhMS
VoL TS
voLTS
MHC4S3
{NGNE)
KG/M=3

INPUT VALUE

1,3C*C33
1.3C~C33
=1.50+C30
1.20+L351
Se20=031
2e52=031
-1.3C+C20
s
1.74+GC0
2+42°031
2.48=C31
2.3C+032
4,33=0GE
=.e3C*222
LeG3+Cau
Z.20+303
LeTN=C13
LeCC#C3T
13C+033

2euTeCul

(NONE)
METEPS
“pCIn
INONE)
INCGNE)
KE WV
ANG,
(NGNE)
‘NG.
(NCNE)
(NCNE)
KEV
VAT ¥l
CHMS
VCLTS
VoL TS
MHCMS 3
INCNE)
KG/s4=3

~1.3353+0G00
Cellboerg]
3ec2+300
1e4%=6G32
1e¢37+C32
el
2eJ1C00
1.02+200
4.92=C31
10239032
3.20-2GS
-9,85=-"17
1430+0Ga
2420031
1.20-013
1.CJ+000
1.37+003
=1.03+007

CogE Vv
leuZe23C
1.23-0G2

-1430+Cl00
lec2eCl1
T.32+700C
2.79=C32
696302

«20
1.75+300
1.33+0GC
L4031
2.30+032
4elN=03S
~2.38~-017
1eleCCH
Ceule0GC2
1437=313
LelU*23°
1el2+CC2
-1euT*00C

6.1-52

(NONE}
{NCNE)
ANG=T 2L
ANGo
ANG.
(NGNE)
(NONE)
{NONE)
KEW
WA L L Il
V=S/3
VOLTS
veoLTsS
MHOMS3
(NONE)
KG/M=3

ALUE
(NONE)
“ESH
LA
{NONE)
(NONE)
ANG-TL
ANG o
ANGe
(NCNE)
(NONE)
(NONE)
KEV
A/Mmm)
v=S/¢
voLTs
voL TS
MHMOMS I
(NONE)
AG/Me g
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TABLE 6/6
MATERIAL PROPERTIES (Continued)

“aTERIAL 7: SCRESA

PROPERTY

CIELECTRIC CONSTANT
THICKNESS
conpUCTIVITY

ATOMIC NUMBER

DELTA “ax >LOEFF

E=maX J0EPTHee=1
RANGE

EXPONENT > RANGE
RANGE > EXPONENT
EXPGNENT

YIELD FQR 1KEV PROTONS
MAX Jc/Dx FOR PROTONS
PHOTOCURRENT

SURFACE RESISTIVITY
SPACE DISCHARGE POT'L
INTERNAL OISCHARGEPOT'L
RACN INDUCEDCOND’YCOEFFT
RADN INDUCEDCOND®YPQUER
CENSITY

MATERI AL 3: KaPTew

PROPERTY

DIELECTRIC CONSTANT
THICKNESS
CoONpUCTIVITY

ATOMIC NUMBER

DELTA waX >COEFF

EemAX YOEPTHem=]
RANGE

EXPONENT > RANGE
RANGE > EXPONENT
EXPONENT

YIELD FOR IKEv PROTCNS
MAX JE/0X FOR PROTONS
PHOTOCURRENT

SURFACE RESISTIVITY
SPACE OISCHARGE POT*L
INTERNAL DISCHARGEPOT'L
RADN INDUCECCOND®YCOEFFT
RADN INOUCSDCONGYPOLER
DENSITY

INPUT VALUE

LeaCel2

LecC=C32
=lell*037T

1.5C+7013

1.2C«230
1eu0+CC1
1.53«C30C
«CC
1.20+GQ0
.GC
+e50+GCT
32
=.euC+00C
13C+Q04
<ec0+003
1.07=C1%
1.,3C+C30
1e3C+GC3

Ze2C0eN21

INONE )
“ETEPS
MHC /™
(NG NED
(NCNE )
KEV
ANG,
{NCNE)
‘NG -
(NONE)
(NONE)
LIN"
Afveug
OnmMsS
VOLTS
VOLTS
MHCMS3
(NONE)
KG/Me3

INPUT VALUE

3.50+CQ0
1e27=Ca4
1.02-Cls
532000
2e.10Qe030C
1e5C=Co1
Tel®+lJ1
6e02-C38
3.12+032
LeT7erqan
4.55«0C1
LeltfeZ3
2e3=LC3S
1e30+C16
leC0+0G4
«22+0CJ2
iedC=n12
130200
1.30+823
243C+001

(NONE)
METERS
LUT A
(NCNE)
(NCNE)
KEWV
ANG o
(NCHE)
ANG,
{NCNE)
(NCNE)
KEV
A/Men
[ LLEY
vOLTS
VOLTS
MpOMS3
INCNE)
KG/N*3

6.1-53

CCIOE VALUE

LeLleCiC
lecN=0Z2
=1e53+058
L«33+CQ"
37
le38=2C1
1+53+0C1
«32
le50+05°C
1.33+09C
«oT
lel3+0CC
o
~3.85=-313
1.G0+2G0
2.30+203
1.5C=013
l.3C+GaC
1e50+552

~1+70¢000

INCNE)
uE "

L VA
{NONE)
{NONE)
ANG=0L
‘NG.
ANG o
{NONE)
{NCNE )
(NONE)
KEV
A/vee?
v=-S/92
VoL TS
VOLTS
monss
(NCNE)
KG/Me3

COBE VvaLuE

3.50+C20C
1.,27=-902
L.2C=016
5.30+023C
8,56+701
Be.70~352
4.29+CG12
S.52+7C2
640C~7C1
1e77¢3G3
4e55-N31
leue0G2
2.3an=00¢
8.35+903
leGO*308
2450002
1.03=-712
1.32+05C
1.530+022
le27=016

(NCNE)
MESH
LU DY
{NONE )
(NONE)
ANG=~-C1
ANG .
ANG.
(NONE )
(NONE)
{NONE)
KEV
Afvsa2
Vv=-S/¢€
VOLTS
veLTS
MHOMS3
{NONE)
KG/MeZ
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TABLE 6/6
MATERIAL PRCrcRTIES (Continued)

MATERIAL 9: NPAINT

PROPEATY INPUT vaALUE C20E VALUE

1 DIELECT2IC CONSTANT 3.5C+3530 (NONE) 3¢3C*C3C (NONE)

2 TRICANESS Ze20~-C35 “ETZRS 3.30-03u MESH

3 CONDUCTIVITY Se3C~3L4 “ngsm Se3C=T1lu MHOs™

4 ATOMIC NUMBER 5.30+C3C (NCNE) S+37+000 (NCNE)D

S DELTA max dCOEFF 241C2+7C50 (NCNE) 2425+C0Y tnONED

[ Ewnpx J0EPTHew= 1e37=-031 KEV Iewl=032 ANG-C:

7 PANGE =1+JC+CJ0 ANG. 1eG5+C33 anG,

L] EXPONENT > RANSE 22 ENCNE) 30 ANG,

9 RANGE > EXPONENT LeS5+4CC ang. 2eS147GC (NONE)
4] EXPONENTY 9433038 (NCNE) 1e3G*302 (NCNED
11 YIELD FOR lkEv PROTONS 4e55-051 (NCAES 4e¢55=521 (NONE)
12 “AX DE/OX FQR PROTAINS le4ne0CC2 KEV le40+232 KEY
13 PHOTOCURRENT 2e3d0~7355 A/svee CecU=00S A/vwsl
la SURFACE RESISTIVITY 16200012 Oums 8485+ Veg/8
15 SPACE DISCHARGE POT*L 1eal*234 VOLTS L4G0+Q34 vOLTS
16 INTEINAL DISCHARGEPOT 'L 2430+002 vwoL TS 2eG0*NC3 vOLTS
17 R4DN INDUCEGCONDO YCOEFFT 1.G0=013 muOms3 eecd=011 MyOoMS3
18 RAON INDUCEDCONG YPOWER 1.20+020 (NONE) 1leC2*3C2 (INONE)
19 CENSITY LoJ0+032 KG/Me3 132+003 xG/Me2
P41} 2+2C+0C1 Se9C=314

MATERIAL 13: s102

PRQPERTY INPYT VALUE CODE VALUE

1 DIELECTRIC CONSTAxT 44304050 (NONE) 4e30433C INONE)

2 THICKNESS le27~038 METERS 1.27=903 “ESKH

3 CONDUCTIVITY 1e30~014 MHG/M 1.00=Clu mMpg/we

» " ATOMIC NUMBER 1.3C+001 (NONE) 1.30+031 (NONE)

3 DELTA max SCOEFF 2440+030 (NONE) 1.46+901 (NONE)

6 E=may J0EPTHea=] 4.30=001 XEy 221~002 ANG=-0}

4 RANGE 1416+0Q02 anG, 9.42+001 anG,

8 EXPONENT > RANGE 8.19-031 (INCNE) 3.4140G2 anG.

9 RANGE > EXPONENT 1.83+3Q2 aANG. 8.10-3G1 (NONE)
10 EXPONENT 1.86+C30 (NONE) 1.46+0C0 (NONE)
11 YIELD FOQPR 1K€y PROTONS 4435-031 (NGNE) 4¢55=0C1 (NONE)
12 MAX DE/DX FOR PROTONS 1.45+00Q2 KEV 1434302 EV
13 PMOTOCURRENT Ce30=038 Asvmn? 2430-0GCS A/Mus?
14 SURFACE RESISTIVITY 1.32+C19 Qums 84d5¢056 VeS/C
15 SPACE OISCHARGE POT*L 1.36+336 VOLTS 1.J2+0C4 vOLTS
16 INTERNAL DISCHARGEPOT 'Y 4eJ2+LT3 VOLTS <ec0*333 vOLTS
17 RAON INDUCEDCGNOTYCOEFFT 1.33~9,2 mpiQes3 1e03-217 muoMS3
: RPACN INDUCEDCOND YPOW:R ie3GC+CAC (NCNE) 1.5G0eN30 (NCNE)
19 CENSITY 1.00¢002 xG/mn3 1e53eCC3 KG/MEZ
20 2,30+001 133~014
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TABLE 6/6
MATERIAL PROPERTIES (Continued)

MATERIAL 1l: SOLAR

PROPERTY INPUT VALUE
OIELECTRIC CONSTANT 2.80+0C0 (NONE)
TRICANESS 1e79=026 METERS
CONDUCTIVITY lenl=CLlT ™nG/™
ATOMIC NUMRER 1.o0ePC1 (NONED
DELTA “AX dCOEFF 2.,25+032 (NONE)D
E=MAX YOEPTHER=] W lC=C21 KEV
RANGE T.758«201 ANG.
EXPONENT > PANGE 4¢50-001 (NCNE)
RANGE > EXPONENT 1.56+C032 ANG.
EXPONENT 172330 (NONED
YIELG FOR IKEV PROTONS Cedt=CG1 INONE)
wAX DE/DX FCR PROTONS 2.27+002 KEV
PHOTOCURRENT 2ooN=038 A/vms
SURFACE RESISTIVITY Leuleli% GM™S
SPACE DISCHARSE POT° L 1.,204228 VOLTS
INTERNAL OISCHARGEPOT'L Z.3C*0C3 VOLTS
RADN INDUCEOCCNCTYCIEFFT lecC=013 MHONSI
RADN INDUCEDCOND YPQaEP Le30eCa0 INONDD
DENSITY 163C+C32 xG/M*3

ceat*331

wATERIAL 12: TEFLON

PROPERTY INPUT VvALUE
CLELECTRIC COMSTANT Z4735+CC0 (NCNED
THICKNESS 1.27=0GGa METERS
CONDUCTIVITY 1s0C=016 MHO/¥
ATOMIC NUMBER 7.03+000 (NCNE)
DELTA MAX DCQEFF 3.5C+000 (NOMEDS
E-MAX YOEPTH*s~] 3.,3C-001 EV
RANGE 454 +0C1 ANG,
EXPONENT > RANGE +¢2C=3G1 (NCNED
RANGE > EXPONENT 2413+002 ANG,
EXPONENT 1774030 (NONE)D
YLELD FOR L1KEV PROTONS 4.55=001 (NCNED
MAX DE/DX FOR PROTONS 1.40¢032 XEV
PHOTOCURRENT 2.30~005 A/%ww2
SURFACE RESISTIVIVY 1.30+016 OMMS
SPACE DISCHARGE POT° L 132024 VOLTS
INTERNAL DISCHARGEPOT®'L 2.2C+C33 VOLTS
RACN INDUCEDCOND®YCOIEFFY 1.3C=C13 PHOMS3
QAON INOUCEGCIND’YPOWER 1e2C+CTD (INCNE)
DENSITY 1e3Gen3Y KG/M=3

2.32+03010

6.1-55

COCE vALuE

3,30+232
1.,79-2332
1.5C=C17
1.33+C01
1.31+201
3417202
3.49+9351
2.70+C2
«e53=-901
1.73+c3%
Z.4u-7C1
2.30+232
Z2ea2=3CS
8.85°2356
1e2C*C04
2ea0+703
leul=012
1432272
leu207Y

l.;:’gl7

(NONED
“gsSe
L YA
(NONE)
(NONE)
ANG=T1
ANGe
ANG o
{NONE )
(NONE)
tyOoNED
REN
Lyrew
¥y=S/2
voLTS
VoL TS
MpCMS3
INCAS)
KRG/ %3

CCLE VALUE

2e33+03C
127=232
1.30=C16
7+5N+03C
227001
3.%3-§c2
1314201
3.85+C02
u-ﬂO-UCI
1.77’00:
4e55-C31
Le43+002
2030=-005%
8.85+002
1.30+C0u
2430+CT2
LecT=C13
Leod+CCC
143C+002
1.00-Cl6

(NCNE)
MESH
MO/
(NONE)
(NONE)
ANG="1
ANG.
ANG .
{NONE)
{NONE)
{NONED
REV
A/nesQ
v=57Q
YOLTS
voLTsS
wOMS3
INCNED
KRG/ Med
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6.1“56
TABLE 6/6
MATERIAL PROPERTIES (Concluded)

MATERIAL 13: SILVER

PROPERTY INPUT vALUE CODE vALuE
OLELECTRIC CONSTANT ieJT+0CC (NONE) i203+0C3 (NONE)
THICKNESS 1,0C~003 METERS 1.00=032 mESH
CONQUCTIVITY «1.00+200 MHQ/n =1.00+0G0 "no/w
ATOMIC NUMEGER $.70+031 INCNE) 4473+7Q1 (NONE)
DELTA maAX >COEFF 1«C0+0G8 (NONE) 3.39+C02 INONE)
E~maX J0EPTHew=] 8.,J0-001 KEV 158~03G2 ANG=-7})
RANGE 8.45+0C1 ANG, 50934001 ANG.
EXPONENT ?» RANGE 3e22-751 (NCNE) Le38+052 NG,
RANGE > EXPGNENT T7.38+351 ANG, 8427001 (NOME)
EXPONIMT LeTGe0QZ (NCNE) 12784030 (NONE)
YIELD FOR IXKEvV PRQTONS 4.9C=CT1 INCNE) 4492=0021 (NONE)
MAX CE/OXY FOR PROTONS 1e23+3G2 KEV 122+C02 ngv
PHCTOCURRENT 2+93=CCS A/Nes? 2e%0=nCS AyMax
SURFACE RESISTIVITY «1420+33C OHWPS ~3+85-C12 v=5/Q
SPACE OISCHARGE POT°L 1.0C+00Gu vOoLTS 1e3%«3C4 vOLTS
INTERNAL DISCHARGEPOT’L 253400 VOLTS «»20+003 VGLTS
RACN INDUCEGCOMOCYCOEFFT LellaCLl3 MHOMS] 1420012 MHO4S3
SADN INDUCEDCOND YPOWER 1050+C08 (NCNE) 1.L2+0CC (NOME)
CENSITY 12304302 KG/Mw3 345C+052 NG/ /M3

2.0C081 =1l.J%e0C0
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If a material called 'GOLD’ or 'GOLDPD’ or ’GOLDXXXX® is defined later
with different properties the number of materials POLAR thinks it has
will be increased by one, but the new properties will be effectively
ignored. Multiple definition of materials should be avoided. Note,
however, that if any of the default materials are explicitly defined
before they are referred to in building block definitions then POLAR
will make no attempt to find them in the list of default materials and
the materials will not be multiple defined.

6.13 THE OBJECT DEFINITION FILE -~ ANOTHER EXAMPLE

We are now ready to bring together Sections 6.10-6.12 and examine
the structure of the object definition file. The general form is shown
in Figure 6/17. The materials are defined first, followed by the
building blocks associated with each separate conductor. The use of
COMMENT cards allow the logic of the definition of a complex object to
be followed more easily. Finally the whole file is terminated with an
'ENDSAT’ statement. An actual example is shown in Figure 6/18. It
consists of a central RECTANgular body connected to two QSPHERES at the

ends .

A 3D-VIEW (6.20) of the object produced by VEHICL is shown in
Figure 6/19.
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$13COMMENT UORKED EXAMPLE (SECT!ON 6.13)
23 COMMENT MATERIAL DEFINITIONS

J:1COMMENT FOR PRESENT PURPOSES, ALL PROPERTIES ARE ‘KAPTON’
43 COMMENT EXCEPT THICKER

S1TKAP
61 3.8..91.1.€-16 5 .2:1..18.71.48, .60,

71 3as ..45§ 40.,.00002,1.6416,1.E44,2.E+3,
8: 1.6-1 1..1.E+

93COMMENT USE DEFAULT KN‘TON AND GOLD VALUES
10:COMMENT DEFINE THE MAIN BODY AND TOP SPHERE TO BE ON
131 sCONDUCTOR 1

12:COMNENT MAIN CUBOID BODY

13:RECTAN

HICORPER -1 -1 -2

1SIDELTAS 3 3 4

16 SURFACE +X GOLD

171SURFACE -X KAPTON

18:SURFACE -¥Y KAPTON

19tSURFACE +Y KAPTON

201SURFACE -Z XAPTON

21 1SURFACE +2 TKAP

231COMMENT TKAP SPHERE ON TOP

J0$COMNENT PUT THE BOTTOM SPHERE ON CONDUCTOR 2
31 1CONDUCTOR 2
$1QSPHERE

2
JCENTER @ © -4
34:DIANETER 3
351SIDE 1
36INATERIAL GOLD
371ENDOBS
381ENDSAT

EOF 138

[ 1))

Figure 6/18. Object definition file.
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Figure 6/19. 3-D view of object produced by HIDCEL (hidden lines).
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6.14 OBJECTS WITHIN OBJECTS: VARIEGATED SURFACES

POLAR makes it easy to define surfaces that are made up of more
than one material. For example, we may want to define one face of a
cube to be mainly KAPTON buv with a patch of say GOLD in the center
(Figure 6/20). We begin by defining the cube with a KAPTON face. The
center surface cell is then replaced with GOLD by defining a second
smaller cube inside the first cube. The second cube is defined so that
one of its faces is coincident with the KAPTON face. The surface common
to both cubes is then associated with the material on the face of the
second cube, which in this case is GOLD. This is shown in Figure 6/20.

The object definition file associated with this object has the

form:
COMMENT VARIEGATED CUBE
RECTAN
CORNER -2 -2 -2
DELTAS 3 3 3
SURFACE +x KAPTON
SURFACE -x KAPTON
SURFACE +y KAPTON
SURFACE -y KAPTON
SURFACE +2  KAPTON
SURFACE -z KAPTON
ENDOBJ
RECTAN
CORNER -1 -1 -1
DELTA 1 1 1
SURFACE -z GOLD
ENDOBJ

ENDSAT
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Figure 6/20.

A variegated surface definition.
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The same principle can be applied to any of the building blocks.
Exposed surface cells common to two or more building blocks are assigned

to the material of the most recently defined block.

Two special building blocks are supplied specifically to create
variegated surfaces. PATCHR and PATCHW define a RECTAN (cuboid) and a
"~ WEDGE respectively, that may be used to "patch®™ other objects without
adding to POLAR’s list of filled space. The use of actual RECTAN and
WEDGE blocks inside others is also perfectly legitimate, but adds to the
internally used surface list. The use of PATCHR and PATCHW reduces the
likelihood of a problem occurring due to the list overflowing.

The object shown in Figure 6/20 could also be defined using
PATCHR:

COMMENT VARIEGATED CUBE (PATCHR)
RECTAN

CORNER -2 -2 -2
DELTAS 3 3 3
SURFACE +X KAPTON
SURFACE -X KAPTON
SURFACE +Y KAPTON
SURFACE -Y KAPTON
SURFACE +Z KAPTON
SURFACE -Z KAPTON
ENDOB.J

PATCHR

CORNER -1 -1 -1
DELTAS 1 1 1
SURFACE -Z GOLD
ENDOBJ

ENDSAT
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6.20 VEHICL

The VEHICL module is used to interpret the object definition file
(Section 6.10) in order to create the various tables and lists necessary
for the other modules (Sections 5.23-5.25). It also can produce two
separate kinds of object plots. By using appropriate keywords, either
material or perspective plots are produced after the object file passes

through the initial definition processing.

When using keyword inputs, each line (or card) is expected to
contain one keyword followed by its |list of parameters. After the
keyword and parameters have been completely defined, the rest of the
line is ignored. Several characters are ignored by the input routines,
namely extra blanks between words (though some type of delimeter is
necessary), equal signs (=), and commas (,). All input is read using
free formatting with lower case characters being converted to upper

case, and real numbers may be entered as integers.

VEHICL will need the following permanent files: 2. (for graphics
output), 11. (MSIO), 19. (MSIO), and 20. (the object definition file,
used as input). The following temporary scratch files will also be
required: 3., 14., 17., 18., 21., and 27.. All of these files should
be assigned with large storage limits. With the exception of file 20
(fort.20), VEHICL will define the files by itself.

6.21 VEHICL KEYWORDS

The specialized VEHICL keywords fall into three general
categories; object definition, graphical output, and diagnostic output
control. (See Table 6.21/1 for a brief summary of the keywords.) The
diagnostic keywords are described in detail in Section 6.22.
Additionally, all of the general POLAR keywords (Section 6.70), except
SELECT, are recognized by the input routines. SELECT cannot be used by
VEHICL because the grid information needed by the subroutine, MRBUF
(5.30), is not necessarily well defined.
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If an unrecognized keyword or an invalid use of a keyword is
discovered, VEHICL issues a warning or an error message then terminates
batch runs or reads the next input in the case of interactive runs. By
default, VEHICL believes it is being run interactively. The keyword
BATCH (see Section 6.70) will place VEHICL in its batch input mode.

The recognized keywords which contro! the object and grid

definition are:
NXYZ

NXYZ defines the size of the object grid. This keyword should be
defined for each execution of VEHICL since the default value for the
grid dimensions may not be reasonable. An example of the use of the
keyword is

NXYZ 6 7 8
This defines an object grid which has six nodes in the X-direction,
seven nodes along the Y axis, and eight on the Z edge of the grid. Note
that these numbers are in nodes, not elements. So a 1 x 1 x 1 cube
would require a grid of at least 4 x 4 x 4 since object itself is 2 x 2
x 2 nodes and none of the object’s vertices are allowed to touch the
grid boundary. In general, extra space around the object is a good
idea, especially if the object is centered asymmetrically in the grid
and the object may be reoriented within the object grid later using
ORIENT (6.30). These problems can also be avoided if an odd number of
nodes along each axis are used. For more information concerning the
declaration of object grid size, please see Section 6.10. The default

is
NXYZ 17 17 33
DXMESH

DXMESH defines grid size in meters. For example,
DXMESH = 2.0

would define a grid spacing of two meters, while
DXMESH .01
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sets the spacing to one centimeter. The default value is one meter.

This size may be easily changed later during NTERAK.

0BJDEF

The OBJDEF keyword is used to change the unit number of the file
containing the object definition file. For example,

OBJDEF 99
would instruct VEHICL to use file 99 as the object definition file. The
default is to use file 20.

The standard use of this keyword is OBJDEF 5. In this case, the
object definition should follow the VEHICL keyword input in the standard
input (fortran file 5) file.

PREFIX

PREFIX is used to deciare the object file name for the UNIVAC
version of POLAR. The CYBER version expects the object definition to be
located in file 20, so the PREFIX keyword is not needed. 0On UNIX
machines, PREFIX is not needed and the object definition should be in
fort.20. The UNIX default is "$3$$S$".

In the UNIVAC version, VEHICL must know the file’s name in order
to be able to find the input. If this keyword is omitted in the UNIVAC
version, VEHICL will terminate with an error message. As an example,

PREFIX MICRO
causes VEHICL to read from the file MICROOBJ. Note the suffix 0BJ must
be used in all object file names. There is no default value for this
keyword on the UNIVAC.
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GRAPHICAL OUTPUT CONTROL KEYWORDS

MATPLOTS

The keyword MATPLOTS controls the plotting of material plots.
Material plots consist of six views of the object from each direction of
all three axes. The surfaces of the satellite are filled in with
different patterns depending on their material type. It should be noted
only VEHICL can produce material plots, SHONTL is not able to duplicate
them, although it can draw the same views without surface material

patterns.

To control this feature, use
MATPLOTS YES
to turn it on and
MATPLOTS NO
to turn it off. By default, no material plots will be created.

The graphical output created by VEHICL is written on file 2, and
needs to be interpreted by the post-processor graphics package (see
Section 6.6). 0On the UNIVAC, this can be done automatically by using
the PLOTDEST keyword described below.

MAKEPLOT

MAKEPLOT controls the creation of perspective plots. Perspective
plots are views of the object as seen from infinity along a user defined
vector. Both hidden line and transparent object drawings are produced.
These views can be drawn by VEHICL; SHONTL is also able to generate
them, though the syntax and keywords are different.

The keyword MAKEPLOT tells VEHICL how many views to expect. The
actual viewing directions are defined using the PLOTDIR keyword
described below. To set the number of views, use

MAKEPLOT N
where N is an integer from O to 8. A default set of views (two "random®
vectors, from (2,3,5) and (-2,-3,-5)) can be requested using
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MAKEPLOT DEFAULT
or just
MAKEPLOT
In both cases, PLOTDIR does not need to be used to define the views.

If no perspective plots are desired,
MAKEPLOT ©
will disable this feature. VEHICL by default will not make perspective

plots.

The graphical output created by this command will be saved on file
2 and can be interpreted by the graphics post-processor described in
Section 6.6. 0On the UNIVAC this may be done automatically by using the
PLOTDEST command described below.

PLOTDIR

PLOTDIR is used to define viewing vectors for perspective plots.
Each use of PLOTDIR describes one of the views from infinity requested
by the MAKEPLOT keyword described above. To actually produce a plot,
MAKEPLOT must be used. An example of the use of PLOTDIR is

PLOTDIR -2. +1.5 -1.
would be a view along -2.07 + 1.5 - 1.0k from infinity. Default
directions can be defined with the MAKEPLOT keyword.

PLOTDEST

The keyword PLOTDEST is used to draw the plots created using the
MATPLOTS or MAKEPLOT keywords described above immediately after VEHICL
completes its execution. The keyword is only functional in the UNIVAC
version of POLAR. Of course, it is always possible to draw the plots

using the graphics post-processor (Section 6.6).

In the S-CUBED UNIVAC version of POLAR, severa! plotting devices
are available. They are the electrostatic plotter, the Calcomp and the
Tektronix 4014. To automatically draw plots on the later device, one
must run VEHICL from the Tektronix where the plots are desired. The
general form of the PLOTDEST command is
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PLOTDEST destination
where destination can be blank, NONE, CALC (for Calcomp), ELEC (for
electrostatic) and TEKT (for Tektronix 4014). Leaving the destination
blank or using NONE results in no plots being drawn at the conclusion of
VEHICL (again the post-processor still can be used); this is the default

condition.
OTHER VEHICL KEYWORDS

The following keywords are useful, or necessary, when running
VEHICL. They are also described in Section 6.7..

BATCH

This keyword causes the input to be read in a batch mode. The
main effect will be felt when erroneous input is discovered. If this
occurs while in the batch mode, VEHICL will abort with an appropriate
message. The default input mode for VEHICL is interactive (see
description of INTERACT below). An example is

BATCH

which places the input routines in their batch input modes.
COMMENT

See description of REMARK below. The two keywords are equivalent.
DEFAULT

DEFAULT sets the VEHICL default values. In general, the defaults
are for no diagnostic output, no plots, a grid spacing of
1 meter, and an interactive input mode. The keyword DEFAULTS is
equivalent to DEFAULT. An example is

DEFAULT
VEHICL automatically calls the default routine before soliciting input.
This keyword is most useful when using the interactive mode and the

previous input has not been satisfactory, or in error.
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END

The keyword END is used to signify the end of input to VEHICL.
This keyword should aiways be used at the end of a runstream, but if an
EOF (end-of-file) is encountered instead, VEHICL will still function

normally.

An example is
END
No more input will be read at this point and VEHICL will begin

operation.

INTERACT

The INTERACT keyword is used to place the VEHICL input routines in
an interactive mode. This means that any errors encountered in the
input runstream will generate an appropriate error or warning but will
not cause VEHICL to terminate its execution. This is the default mode
of input for VEHICL. To abort on the discovery of bad input, use the
BATCH command described above. An example of the use of the keyword is

INTERACT
which will place VEHICL in an interactive input mode.

REMARK

This keyword is used to insert comments in a runstream. When a
REMARK is encountered, the remainder of the input card will be ignored
and a new card will be read. Any number of REMARKs may be used. An
example of the use of the REMARK keyword is

REMARK THIS IS A REMARK
All of the data on the card following the first REMARK will be ignored.
The keyword COMMENT (mentioned earlier) can be substituted for REMARK
and is completely equivalent, for example,

COMMENT THIS IS A REMARK T00.

And again, everything on the card which follows COMMENT will be ignored.
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WHAT

This keyword prints out the current settings of the VEHICL
options.

ClJ, RIJ

These two keywords define interconductor capacitances and
resistances respectively. They should appear in the keyword input
stream, not the object definition file. For definitions and usage
instructions see Section 6.42.40.
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TABLE 6.21/1
SUMMARY OF THE VEHICL KEYWORDS
BATCH Places VEHICL‘input routines in a batch input
mode. The default mode is interactive. (See
INTERACT.)

COMMENT text Causes text to be ignored by the input routines.
Text may be any set of characters and numbers.

DEFAULT Resets options to default values. Called
DEFAULTS automatically at beginning of VEHICL.

DXMESH length Defines grid spacing. Length is the grid spacing
in meters. Default is 1 meter.

END Makes the end of the VEHICL input. Should be
included at the end of all runstreams.

INTERACT Places VEHICL input routines in their interactive
input modes. This is the default mode. (See also
BATCH.)

MAKEPLOT option Controls number of perspective plots. Valid
options are DEFAULT (produces 2 default viewing
directions) or an integer from O to 8. The
default option is O.

MATPLOTS option Control material plot production. Valid options
are YES and NO. YES produces 6 views of the
object form #x, 2y, *z directions. The default is
NO.

NXYZ ix iy iz Defines object grid size, where ix, iy, and iz are
integers defining the number of nodes in the x, y
and z directions, respectively. This keyword must
be included in all VEHICL runstreams.

0BJDEF iunit Take Object Definition from file iunit.
PREFIX name Defines the file name containing the object
definition. If the file name is CUBEOBJ, name

would be replaced by CUBE. (Keyword applies to
UNIVAC only.)

PLOTDEST option Controls where plots are drawn at end of a VEHICL
run (UNIVAC only). Valid options are blanks,
NONE, CALC, ELEC, and TEKT. The default is NONE.

PLOTDIR x y z Describes viewing direction, from infinity, used
to draw a perspective plot.

REMARK text Causes text to be ignored by the input routines.
Text may be any set of characters and numbers.

WHAT Display current VEHICL option settings.

) I
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6.22 VEHICL DIAGNOSTIC KEYWORDS
There are several levels of diagnostic output available from

VEHICL by keyword instructions. None of it is of interest to the casual

user and is mainly a remnant of the code development process. But

sometimes errors, code modifications or just idle curiosity will require
some of VEHICL’s diagnostic output. By default, all VEHICL output flags
will be turned off or set to the lowest possible values.

The following is a description of the appropriate diagnostic flags

and their settings.

DIAG General VEHICL Output
=0 No output.
=] A few crucial tidbits from the construction of the A-

2, KSURF, LCEL, and LTBL lists.

=2 More details concerning the construction of the
various lists. KSURF in an unpacked format.

=3 Still more information including octal lists.
=4 Provides a great amount of details concerning VEHICL’s
actions.

IDIAGS (1) DCVCEL Information
=0, 1, 2, 3 No output.

=4 Output from DCVCEL during the creation of the SREL
list. Also, information from the various VCUBE
routines.

=5 Additional DCVCEL data.

IDIAGS (2) CBUF Data Management

=0, 1 Nothing.
=2 Output from BUFSET.
=3 Output from PAGER.

=4 All of the information from PAGER and GRIDIO.
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JDIAGS (1) SREL Information

=0, 1 No output.

=2 Print out LCEL and SREL lists. Also information from
RECELL, SREL index to LCEL.

=3 Print out preliminary LCEL list.

=4 Detailed output from routines constructing LCEL and
SREL lists.

JDIAGS (5) Double Point Data

=0, 1, 2 Nothing.

=3 Double point locations from SPDPNT.

=4 More double point information from SPDPNT.
JDIAGS (9) MTLGEN Information

=4 No information.

=4 Material properties and final PSGM matrix.
KDIAGS(1) MSIO information (UNIVAC only)

=1 MSI0 routines echo calls to themselves.

=2 Perform tracebacks when called.

KDIAGS (8) Edge |ist generation

=0 None.
=1 Entry and timing information.
=2 Final results.
=3 Intermediate data.
O0BJPRT level Output from initial object definition routines.

Acceptable level keywords are NONE, SOME or ALL.

HIDPRT level Output from hidden line routine, HIDCEL. Valid level
keywords are YES and NO. Note that YES will generate
a vast amount of output.

IOGRID level Grid information. Valid level keywords are YES and
‘NO. Currently, this keyword is deactivated.
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Some examples are

DIAG 3

IDIAGS(2) = 4

JDIAGS(9) 3

OBJPRT SOME

HIDPRT NO
This set of keywords would produce a high level of general information
concerning the mechanics of the object definition (DIAG and OBJPRT),
no MTLGEN or HIDCEL data (JDIAGS(9) and HIDPRT), and all of the
available CBUF information (IDIAGS(2)).

6.23 AN EXAMPLE OF A VEHICL RUN

In Section 6.13, an object was defined (Figure 6.1/18) and a 3-D
view of it was presented (Figure 6.1/19). Assuming the object
definition kept in a file called XMPLOBJ (UNIVAC), or on file 20
(CYBER), and the necessary files have been declared large enough
(6.20), Figure 6.2/1 shows the runstream (UNIVAC) used to draw Figure
6.1/19. The view used in the figure was the second one defined,

PLOTDIR 1.5 1. .5

130XQT UEHICL
21BATCH

J1MAKEPLOT 2
4:PLOTDIR 1.5 1. .8

S1PLOTDIR 1.5 1. .S
GIREMARK PLOTDIR 3. 1. 2.
TIREMARK PLOTDIR 3. S. 2.
81REMARK PLOTDIR 2. . -3.
9I1REMARK PLOTDIR 2. 3. -1.

161PLOTDEST NONE

18 1MATPLOTS NO
12tDIAG 1§
13:1JDIAGS(1) 2

141 JDIAGS(D) 4
1SIREMARK IDIAGS(1) 2
16INXYZ 16 16 16
17IDXMESH 1.
}ClPﬂEle XMPL

Figure 6.2/1. VEHICL runstream used to draw Figure 6.1/19.
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In addition, several diagnostic flags were used which produced

about 2000 |lines of unnecessary output.

The grid was chosen to comfortably hold the object. If this
object had been defined to be run later using NTERAK, the grid would
have been defined with more care with respect to the final desired size.
It is best to keep from defining a great deal of extra space in the z-
direction (or in the direction which becomes the z-direction after
reorientation) to prevent the needless I0 of oversized object grid size
tables (Section 5.3).

6.24 TROUBLESHOOTING VEHICL

Usually VEHICL will provide an explanatory error message before it
dies. The most common fatal error which currently has no message or at
least an opaque, user hostile message, is from DCVCEL in SUREAL. The
message, "####§-FATAL-FROM DCVCEL - ELEMENT NUMBER ... DOES NOT
CORRESPOND TO LIST ENTRY ..... ", results from the grid being defined too
small or the object being too close to one side.

What has happened is that somewhere the object has touched the
edge of the object grid. The cure is simply to try again with a larger
object grid.

Poorly defined objects or ambiguous double points also create
difficult problems. These errors are typically called SCCYC errors
after the routine which discovers them. Some usefui advice can be found
in Section 6.11. If the definition process has proceeded far enough, it
may be possible to produce material or perspective plots as a visual
aide (Sections 6.20 and 6.21). The SHONTL module may also be used to
draw the object or to print out some of the list output which has been
saved in the MSI0 files using CBUF storage functions (5.30).
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Another restriction of object definition is that an element must
be definable as one type. This mainly affects definitions where empty
elements have more than one face with a diagonal on it. They are aiso
known as type 2 elements (4.21.25) and come from the right triangle
faces of wedges, tetrahedrons, and truncated cubes and the edges of
slanted plates. Only one of these may touch the edge of an element.
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6.30 ORIENT

In order that the object may be defined in an arbitrary direction
or defined once and used in several orientations, it is necessary to be
able to automatically reorient the satellite. The ORIENT module does
this by rotating both the object and the object grid. This is necessary
since NTERAK assumes the largest component of flow vector will be in the
positive Z-direction, forcing a preferred direction on the problem.

This module allows the same object to be studied in any flowing plasma
without redefinition. Of course, if no rotation is necessary, ORIENT

does not need to be used.

After ORIENT rotates the object, the original orientation and
coordinate system is replaced by the new one. So keywords entered later
which require a reference to spatial locations or directions should use

the current reference frame.

ORIENT uses as input files the MSI0 output files, 11 and 19,
created by VEHICL. These files are also the output files, so they
should be copied if the VEHICL output is to be preserved.

6.31 ORIENT KEYWORDS

In general, the keywords which were accepted by VEHICL (6.2) can
oe used in ORIENT since the two modules share many routines. Instead of
-edefining VEHICL keywords again, a reference to the section explaining
she command will be given. The reader is also referred to the general
<eyword input section, 6.7, for more information. Table 6.31/1 contains
a brief summary of ORIENT commands for convenience. The following is a
description of the set of ORIENT keywords.

VMACH

VMACH is the plasma flow direction normalized to the ion acoustic
speed. The entire problem will be rotated so that the largest component
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of VMACH will be in the positive z-direction. The rotated VMACH will be
stored and will be the default value for the NTERAK module. But the
Mach vector can be changed later to any value so long as the largest
component is still in the positive direction. An example of the command
is

VMACH 0. 0. -8.
This would cause the object to be inverted so that the old negative z-
direction becomes the positive z-direction. There is no default value
for this command. If it is not defined ORIENT terminates with an error

message. (This implies a default value of (0., 0., 1.), no rotation.)

For a description of the following ORIENT keywords see Table
6.31/1.

TABLE 6.31/1
A SUMMARY OF THE ORIENT KEYWORDS

BATCH Places ORIENT input routines in a batch input
mode. The default mode is interactive. (See

also INTERACT.)

COMMENT text Causes text to be ignored by the input
routines. Text may be any set of characters

and numbers.

END Marks the end of the ORIENT input. Should be
included at the end of all runstreams.

EXPAND x y z Expand the grid x, y, and z dimensions

INTERACT Places ORIENT input routines in their
interactive input modes. This is the default
mode. (See also BATCH.)

REMARK text Causes text to be ignored by the input
routines. Text may be any set of characters

and numbers.
SHIFT x y z Shift the object in x, y, and z direction

WACH x y z Defines the desired orientation by the sign
and location of largest absolute component. «x
y z is the three vector describing the Mach
vector normalized to the ion acoustic speed.
This keyword must be defined for ORIENT to
execute.




6.3-3

© WHAT Display current settings of ORIENT options.

Diagnostic output from ORIENT is obtainable by using the VEHICL
diagnostic flags defined by Section 6.22.
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6.32 RUNNING ORIENT

After the VEHICL output files (or a copy of them) have been
assigned, the runstream shown in Figure 6.32/1 could be used to rotate
the satellite defined by Figure 6.1/18 and pictured in Figure 6.1/19 so
that neither of the two spheres point in the ram direction. After
execution, the reoriented object can be viewed using the SHONTL module

to see where in the grid the object ended up.

0XQT ORIENT

BATCH

REMARK ROTATE FIGURE 6.1/19 TO0 BE
REMARK SIDEWAYS

VMACH -1. 0. O.

REMARK THAT WAS EASYD

END

Figure 6.32/1 Sample ORIENT runstream.

Because the exact center of the grid is not necessarily on a node,
the object may move a grid space in one (or more) directions. This can
cause ORIENT to find an error during the SREL 1ist creating. The error
is due to the object touching the object grid boundary at some point.

As previously mentioned (6.24), this error is cured by expanding the

object grid. Unfortunately, only VEHICL can do this. So object must
first be redefined in a larger grid by VEHICL, then rotated by VEHICL.
It is a good practice to add an extra node on all sides of the grid if

reasonable when an object is to be rotated.
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An even better solution is to use an odd number of nodes along
each axis. Then the center of the grid will fall on a node and the
object should not touch the grid boundary in ORIENT if it did not in
VEHICL.

Sometimes, it is not possible to rotate the satellite to the
proper orientation in one call to ORIENT. For exampie, for plotting
purposes one end of an asymmetric object needs to be in the +y direction
while another needs to be in the -z direction. In these circumstances
it is best to call ORIENT several times in sequence to rotate the object

to the correct orientation in the grid.
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6.40 NTERAK

The NTERAK module models the object-plasma interactions. Using
the vehicle definition produced by VEHICL or ORIENT, NTERAK defines the
plasma environment, the initial spacecraft potential, and then
calculates the interaction of the plasma and the object using three main

groups of subroutines.

The space potentials are calculated by PWASON (Sections 3.2, 4.2
to 4.4, and 5.5), and its associated routines, using the object surface
voltages. These space potentials are then used to push particles to
calculate new space charge densities for the attracted species. The ion
currents to the object are also found in CURREN by pushing particles
from a sheath boundary to the object (Sections 3.42, 3.6, 4.4, 4.53, and
5.6). These ion currents are combined with analytically calculated
electron fluxes (Section 3.40 and 3.41) to electrically charge the
vehicle in the set of subroutines led by CHARGE (Sections 3.5, 4.5, and
5.7). The calculation results can be printed as they are found. Or
SHONTL can be used to print any of the final vectors or tables when the
NTERAK run is complete.

The calculations and output are controlled using keyword input.
Some notes were made concerning the use of the keyword input section in

Sectinn 6.20 and are worth repeating now.

When using keyword inputs, each line (or card) is expected to
contain one keyword followed by its list of parameters. After the
keyword and the anticipated parameters have been read, the rest of the
line is ignored (allowing for personalized comments). Several
characters are ignored by the input routines, namely extra blanks
between words (though some type of delimeter is necessary), equal signs
(=), and commas (,). All input is read using free formatting with lower
case characters being converted to upper case, and real numbers may be

entered as integers.
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NTERAK requires MSIO Files 11 and 19 as input. Files 9, 10, 23,
and 24 will all be used as temporary files (see Section 5§.3). File 16
is used to save charging information and can be postprocessed by TRMTLK.
The STATUS.JCO file is opened using unit number 8. All of these files
should be assigned with large storage limits, especially File 10 as it
will be used to manage the (trajectory tracking) particle lists. The
UNIX version of POLAR expects files to be named fort 11, fort.19, etc.

but will define the temporary files on its own.
6.41 NTERAK CONTROL KEYWORDS

In general the NTERAK keywords are similar to those recognized by
VEHICL and ORIENT. Differences arise because NTERAK acts before reading
the entire runstream. Input is solicited and interpreted until an
instruction calling for calculation is encountered. When the
computation is completed, input is again read until the next calculation
command. This cycle repeats until the runstream has been exhausted. It
is important that all input parameters be read before a calculation
keyword is encountered, otherwise the calculation will be performed
using possible inappropriate defaults. Moreover, the first encounter
with one of the calculation keywords, PWASON, CURREN, or CHARGE, will
initiate an evaluation of initial conditions. Thus, the bulk of grid
and environmental parameters should be set before the first calculation

keyword is encountered.

The following describes the calculation commands as well as
general input control keywords. Several of these keywords have been
defined elsewhere (Section 6.2) and are repeated here for convenience.
The entire set of NTERAK of keywords have been summarized the Section
6.45.

BATCH
This keyword causes the input to be read in batch mode. The main

effect will be felt when erroneous input is discovered. If this occurs
while in the batch mode, NTERAK will abort with an appropriate message.
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The default input mode for NTERAK is interactive (see description of
INTERACT below). An example is

BATCH
which places the input routines in their batch input modes.

CHARGE

This is a calculation keyword invokes the CHARGE subsection of
NTERAK. If this is the first time a calculation keyword has been named,
a full initialization will occur. The CHARGE subsection of NTERAK
calculates surface charging of the object using analytic electron
currents and either the ion currents found by CURREN or the random ion
current to the object, depending on the history and characteristics of
the problem. If CURREN has not been run, the random ion currents will
be used (equivalent to a precharge). If it has, then the appropriate
current will be used depending on the actions of the IONCUR routine (See
Section 5.71).

CHARGE will also attempt to model the ion current as a function of
voltage in order to stretch the usefulness of the CURREN results. At
this point, it is recommended that only one timestep per CHARGE
interaction be performed in most problems because of the difficulties of
model ing the voltage dependence of the attracted, pushed species. For a
description of the keywords which apply directly to the surface charging
subsection of NTERAK, see Section 6.43.30. An example of the use of
this keyword is:

CHARGE
This command would invoke the CHARGE subsection.

COMMENT

See the description of the keyword REMARK (below). The keywords

are equivalent.
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CURREN

The appearance of CURREN activates the particle pusher subsection
of NTERAK. This section requires the presence of space potentials in
order to function. Although the potentials are initialized to zero on
the recognition of the first command keyword, it is strongly recommended
that each use of CURREN be preceded at some point by a use of PWASON
(see the following description of PWASON).

An example of the use of this keyword is:

CURREN
This invokes the particle pusher. Keywords which effect the control of
the CURREN subsection of NTERAK are described in Section 6.43.20.

DEFAULT

DEFAULT resets the default NTERAK keyword values. In general,
NTERAK defaults to an oxygen charging environment with no magnetic
field. This environment is described in detail in Section 6.42.10.
Reasonable amounts of useful output will be printed automatically. The
default condition of the ISTART (defined below) is CONT. This was done
to protect restart runs and their associated data from re-
initialization. Please see the various keywords or the summary in

Section 6.45 for individual keyword values.

NTERAK automatically sets the default constants at the start of a
new problem (i.e., - the use of NTERAK after VEHICL or ORIENT). To
reset the default values at any point, simply enter

DEFAULT
This will reset the default values. The keyword DEFAULTS is equivalent
to DEFAULT and may be used if desired.
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Since the values of all user input variables are saved at the end
of each NTERAK run, it is best to use the DEFAULT keyword only on the
initial run. Otherwise, all of the variable values different from the

defaults will need to be defined again.

DONE

DONE is an internal keyword used by NTERAK to signal the last
keyword of a run. It is equivalent to the keyword ENDRUN, discussed
below. ENDRUN is the recommended keyword for this function. The two
keywords can be used interchangeably at this point and for a more
detailed description of its use and effects see ENDRUN.

END

This keyword was traditionally used to mark the end of the general
starting or restarting of conditions of an NTERAK run. The input
routines actually just ignore this keyword and will probably continue to
do so in the future. An example is

END
which would be ignored by the NTERAK input routines.

ENDRUN

ENDRUN marks the end of an NTERAK run, and causes a variety of
file indices and contours to be written out. If none of the other
calculation commands (CHARGE, CURREN, and PWASON) have been called and
this is the first use of NTERAK on VEHICL or ORIENT output files, then
the initial conditions of the problem are set and saved before finishing
the NTERAK run. If a calculation command was called or this is a
continued run, NTERAK will end without additional calculations. For
example,

PWASON

ENDRUN
after the PWASON subsection was completed, the ENDRUN keyword would be

read and NTERAK would end normally, without an error.
&
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HELP

HELP keyword features a separate set of "HELP Commands® to display
different groups of NTERAK keyword settings and brief descriptions. For
detailed keyword descriptions, the use of the manual is strongly
recommended. Once entering HELP, only HELP keywords are recognized and
the user must use the keyword QUIT to get back to normal NTERAK input.
Available HELP keywords are:

CHARGE CHARGE keywords and values
CURREN CURREN keywords and values

DIAG Brief description of diagnostic flags

ENVIRON Environment keywords and values

GI Neutral density keywords and values

GRID Grid information keywords and values

HELP This HELP menu

PWASON PWASON keywords and values

QUIT Exit from HELP

WHAT Overall NTERAK settings and diagnostics
IGICAL

IGICAL controls the initialization of the ion densities. By
default, new neutral ion densities are calculated every time ISTART is
set to NEW and then used in place of any existing ion densities. It is
best to only calculate the ion densities once during the first NTERAK
run since the process of calculating the geometric or neutral ion
densities is fairly time consuming and costly. The recommended uses of
this keyword are:

IGICAL YES
the first time NTERAK is executed and

IGICAL OLD
for all the following executions of NTERAK when ISTART is CONT. The
first command calculates neutral ion densities and the second uses the
previously calculated neutral ion densities plus any modifications which
have occurred during the execution of the CURREN subsection. There
other very useful options available for IGICAL, as well as other
keywords affecting the ion density calculation, which are described in
Section 6.42.30.




6.4-7
INTERACT

The INTERACT keyword is used to place the NTERAK input routines in
an interactive mode. Tnis means that any errors encounterad in the
input runstream will generate an appropriate error or warning but will
not cause NTERAK to terminate its execution. This is the default mode
of input for NTERAK. To cause an abort when bad input is discovered,

use the BATCH command described above. An example of the use of the

keyword is
INTERACT
which will place NTERAK in an interactive input mode. The interactive

mode of input will also issue a prompt for the next input card.
ISTART

" ISTART controls the initialization of the surface and space
potentials and the ambient ion currents. The first time NTERAK is used
after VEHICL or ORIENT or whenever a problem is to be reinitialized and
started over, the following should be used:

ISTART NEW
This will reset potentials and define the random ion currents. Ion
densities can also be reinitialized or reset depending on the setting of
IGICAL (described above and in Section 6.42.30).

If a previous NTERAK run is being continued, use

ISTART CONT
This will prevent the resetting of previously calculated potentials and
densities. CONT is used as the default ISTART value in order to protect
previously calculated data. It should be noted the keyword controlling
the calculation of the neutral ion densities, IGICAL, is defaulted so
that when ISTART is set to NEW, ion densities are calculated. If new
ion densities are not desired, IGICAL should be reset to use the
appropriate densities.
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LooP

The LOOP keyword provides a convenient method to iterate on a

fixed set of calculation modules. The format of the keyword command is:
LOOP number_iterations module_1 module_ 2 .... module_13

Where number_iterations is an integer defining the number of times the
listed sequence of modules is to be executed. Up to thirteen modules
may be listed. The acceptable module names are CHARGE, CURREN, and
PWASON. These modules may named in any order and may be repeated.

Different types of problems use the modules in different orders.
For a floating potential, charging calculation the following LOOP

command may be used to perform six iterations:
LODOP 6 PWASON CURREN CHARGE

While a fixed potential calculation, to find the plasma current
collected by a spacecraft at a specific potential configuration, might
use PWASON CURREN module list. Orbit limited charging calculations can
be done with PWASON CHARGE.

Note that running NTERAK with a large number of iterations may
take a while. If a job is happily running for an extended period of
time and one wants to stop it without destroying the data files, the
STOPRUN program can be used. This program is described in the utilities
section 5.15.

PWASON

The keyword PWASON is used to activate the space potential solver.
If this is the first NTERAK subsection to be executed (and it normally
is), the initial values and constants are set, according to values of
ISTART and IGICAL (see above). To invoke the Poisson solver, enter
PWASON
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Then the object surface voltages, ion and electron densities, and
boundary conditions will be used to find the space potentials. The
boundary conditions used by POLAR are that the nodes just outside the
defined grid (the virtual nodes) are at zero volts. This definition of
the boundary needs to be taken into account especially when solving
Laplacian or low density problems. The keywords affecting the PWASON
subsection are described in Section 6.43.10.

REMARK

This keyword is used to insert comments into a runstream. When a
REMARK is encountered, the remainder of the input card will be ignored
and a new card will be read. Any number of REMARKs may be used. An
example of the use of the REMARK keyword is:

REMARK THIS IS A REMARK
All of data on the card following the first REMARK will be ignored. The
keyword COMMENT (described earlier) can be substituted for REMARK and is
completely equivalent, for example:

COMMENT  THIS IS A REMARK TO0O.

And again, everything on card which follows COMMENT is be ignored.

SAVETEMP

This keyword is used to define the file save status for the
temporary data files. Fortran files 9 and 10 contain intermediate data
which may be useful for post-run analysis.

SAVETEMP ON
would cause the files 9 and 10 to not be deleted after use. The default
is to delete them (SAVETEMP OFF) since they can be quite large.

WHAT
This keyword is used to display tre current settings of various

NTERAK keywords. WHAT produces output identical to HELP WHAT (See
above) .
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6.42 KEYWORDS TO SET UP NTERAK

New NTERAK runs using object definitions from VEHICL or ORIENT
need to define the environment and computational grid of the object.
The plasma environment NTERAK uses by default may not be desirable.
Keywords controlling these parameters are described in Sections 6.42.10
to 6.42.30. Some parts of the object definition also need defining
(namely the initial state of the electrical model) and the keywords
initializing these characteristics are explained in Section 6.42.40.
The calculation grid may need expanding and Section 6.42.50 defines the
pertinent keywords. Particle beams may be defined using the keywords
described in Section 6.42.60.

Once these keywords have been defined, all of the POLAR modules
will remember their values. O0f course any keyword can be changed in
later NTERAK runs to simulate changing environments or some other
variable parameter. This feature is true for the keywords recognized by
NTERAK including those in the PWASON, CURREN, and CHARGE subsections.

6.42.10 PLASMA ENVIRONMENT
Currently NTERAK allows the definition of two species of ions (one

must be hydrogen) and hot and cold electron spectrums, as well as a

photon environment.

ION AND COLD ELECTRON ENVIRONMENT

The ion and cold electron populations are assumed to described by

the same Maxwellian distribution.
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DENS

DENS (or DEN1, they are equivalent) defines the density of the
cold electrons and the combined density of the two ion species.

DENS 1.0E10
The above example would set DENS equal to 1

expected in units of meters™S.

3

O10 meter™>.

The input is

If a Laplacian problem is desired, the following command may be
used:

DEN1 = 1.E-10
In this case DENS would be set to 10710 m3. Setting the density equal
to zero is not recommended. (Note that the equal sign above is ignored
by the input routine and is completely optional for all keywords.)

The default for DENS is 1010 m'3.
TEMP

The use of TEMP (or the equivalent keyword, TEMP1) defines the
temperature both of the cold electron and ion populations.

TEMP 1.0
declares the temperature to be 1 eV. The temperature is assumed to be
input in eV. The default temperature for the old species is 0.2 eV.

ESECNRGY

The average electron secondary energy, independent of source and
mate-ial, is set using this keyword. For example,

ESECNRGY 2.0
would set the average electron secondary energy to +2.0 volts. This is
also the default value.
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AMUION

AMUION is used to input the ion mass in the units of atomic mass
units. For example,

AMUION 14
would be used if nitrogen were the ionic species. The default value for
AMUION is 16 (oxygen).

RATIH

RATIH is the ratio of the ion to hydrogen number densities. A
large value of RATIH such as

RATIH 1.E20
would mean there are 1.0E20 as many ions of mass AMUION as there are of
hydrogen. If the portion of ions or hydrogen drops below a minimum
value (see RATMIN below), then the io.r density is defined to be of only

one species. The default value of RATIH is 1.0E20.

RATMIN

To change the value used to set the ion density to a single
species, use the RATMIN keyword.

RATMIN 1.e-10

This would set RATMIN to its default value.
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The high energy electron environment encountered in polar orbits

is represented in NTERAK

®(E) = AE™ % Cn,,

(k1) 3/2

by

AU (G E /6]
e v

e + (3.41-a)

(see Section 3.41), where C = (21r3me)'1/2 and A, «, ny, Tg, B, E,, and
B, E,, and 6 are parameters determined by the spectrum shape. The
SHONTL module can be used to both define and draw the hot electron

spectrum. But when NTERAK is run after saving the spectrum parameters

from SHONTL, the keyword

DEFAULT should not be used. This is because

the energetic electrons will be redefined.

The following keywords define the hot environment:

POWCO value

PALPHA value

PCUTL value

PCUTH value

DEN2 value

TEMP2 value

Power law coefficient (A in Eq. (3.41-a)
above). Value is in units of (m .sec.str.eV)'l
and the default is 1.4 x 102.

Power law exponent (a in Eq. (3.41-a)). Value
is unitless and defaults to 1.2.

Power law integration low end cutoff. Value is
in eV. The default value is 50 eV.

Power law integration high end cutoff. Value
is in units of eV. Defaults to 1 6x10°.

Energetic Maxwellian density (ny in Eq.
(3.41-a)). Value is in units of m™° and
defaults to 4.2x10%m3.

Energetic Maxwellion temperature (To in (Eq.
3.41-3)). Value is in units of eV and defaults
to 4.3x10% eV.




GAUCO value

ENAUT value

DELTA value
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Gaussian coefficient (B in Eq. (3.41-a)). Value
is in units of (m2.sec.str.eV)'1. Defaults to
8.8x10°.

Gaussian peak (E, in Eq. (3.41-a)). Value in
eV. Defaults to 8.2x103 eV.

e-folding width of Gaussian (§ in Eq.
(3.41-a)). Defaults to 1.8x10° eV..

As an example, the default POLAR spectrum which approximates a
spectrum observed by the DMSP satellite (Hardy, D. H., "The Worst Case
Charging Environment," in Proceedings of the AFGL Workshop on Natural
Charging of Large Space Structures in Near Earth Polar Orbit, 14-15
September 1982, AFGL-TR-83-0046, January 1983) would be defined by the

following set of keywords:

DEN2
TEMP2
POWCO
PALPHA
GAUCO
ENAUT
DELTA
PCUTL
PCUTH

4.2E6
4.3E3
|.4E12
1.2
8.8ES5
8.2E3
|.8E3
50.
|.E6

Figure 6.4/ shows the fit of the POLAR spectrum to the experimental

data.
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PHOTON ENVIRONMENT

Photoemission and photoconductivity effects are modeled by POLAR.
To control the current contributions from photo effects, the following

keywords can be used to describe the |ight source:
SUNDIR

The card:
SUNDIR x y 2z
sets the direction from the spacecraft toward the sun. The vector is
normalized by the code so the magnitude is not relevant. For example,
SUNDIR 2.0 2.0 O.
sets the direction of the sun between the positive X and Y axes on the
XY plane. The default value is 0,1,0.

SUNINT

The card:
SUNINT intens

sets the sun intensity as a fraction or multiple of the natural sun
intensity one earth distance from the sun. For any earth orbit exposed
to the sun this should be 1.0, since orbit altitudes are negligible
compared with the distance from the earth to the sun. Sun intensities
differing from 1.0 (and 0.0) are used mainly for simulations of test
tank environments using artificial UV sources, or for interplanetary
spacecraft. For example

SUNINT 0.6

sets the sun intensity to 0.6 times its natural earth value.

The default is 0.0; in other words, the sun is "turned off" and
the object is in shadow. The SUNINT keyword is used by NTERAK to
control the presence of photo cffects. None of the coding relating to

photoemission are executed when the sun intensity is zero.
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CONVEX

The card:

CONVEX yes_or_no
controls the calculation of surface cell shadowing effects. The keyword
input

CONVEX YES
tells the shadowing aigorithms the object is convex and none of the
object surfaces are shadowed by any of the other surfaces. In this
case, the intensity of photoradiation goes as the dot (inner) product of
the surface normal and the sun direction. Surfaces determined to face

away from the sun are considered totally shadowed.

The input
CONVEX NO
is the default value and directs the code to calculate surface-surface

shadowing for all surfaces.
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6.42.20 MAGNETIC FIELDS

The magnetic field environment of POLAR is controlled by three

keywords. They are

BDIR By By B, By, By, B,) define the direction of
the magnetic field. This vector
will be normalized by the input
routines. Default is (-1, 0, 0).

BFIELD option This is a flag which turns the
magnetic field on and off. Valid
options are ON and OFF. The default

is OFF.
BMAG value Magnitude of the magnetic field.

Value is in gauss. Default is 0.4

gauss.

An example of the definition of a magnetic field is

BFIELD ON
BDIR 1 1.0 O
BMAG 0.25

This would define and turn on a constant magnetic field of

2 ¢

i+ g J gauss.

2
8

The order of the three keywords is not important. The default field is

0.4 7 gauss.
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6.42.30 NEUTRAL ION DENSITY

The neutral ion density calculation is controlled by a number of
keywords. Since the calculation requires a rather slow computation for
every element (cell) in the problem, several time saving options are
available for special applications of NTERAK. There are two methods for
the computation of neutral densities, the NEUDEN and the SHADD modules.
No matter which module is used to calculate the initial densities, the

SHADO module is used to calculate sheath wakes, if desired.
VMACH

The VMACH is used to define the plasma flow velocity Mach vector.
For example,

WACH 0. -3. 4.
would define a Mach vector of -3 + 4 Mach units. Or in MKS units, the

¥low velocity would be JkT/mi (-33 + 4;) m/sec. Note that the 2
component of the vector must be positive and larger than the absolute

values of both the x component a. the y component.

To use NTERAK without a flowing plasma, use a small Mach vector,
like
VWACH 0 0 .001

This is effectively a nonflowing plasma.

The default for VMACH is set by VEHICL (8&) or by the Mach vector
used in ORIENT to define the object rotation. (The Mach vector will
have been rotated so that the largest absolute component is in the

positive direction.)
IGICAL

IGICAL controls the calculation of the neutral densities by
choosing between various aiternate sets of ion densities. This keyword
is ignored unless ISTART (Section 6.41) is set to NEW.




When IGICAL is not NEW, three basic types of options are

available. They are to calculate neuctral ion densities from geometric

shadowing by the object, use previously calculated neutral ion
densities, or to use final composite (sheath tracking plus neutral ions)
from a previous calculation. In addition, an approximate electric field
correction may be applied to a new calculation of neutral ion densities
using the EFLDCOR keyword. It should be pointed out that the ion
densities used by the code are normalized by the cold ion density as
defined by DENS (6.42.10).

To save computation time with problems having low densities or no
flow, one may want to set the combined ion density to 1.0 in each
element. When the CURREN module is invoked, these densities are
modified within the ion sheath to more accurate values. For example,

IGICAL NO
would cause a normalized density of 1.0 to be saved for each element in

the problem.

A more commonly used option is to calculate the neutral ion
densities using the flow vector (VMACH, described above) and several
other keyword options defined below. For example,

IGICAL YES
would tell NTERAK to calculate neutral ion densities at each element.
This is the default for new NTERAK runs (i.e., when ISTART=NEW, see
Section 6.41).

IGICAL SHAD
is similar to IGICAL YES except the geometric shadowing method will be

used to calculate neutral ion densities.

Previously calculated densities can be selected in three manners.
These options presume the grid dimensions and Mach vectors have not been
changed. To use composite (sheath and neutral) ion densities left in
the files 11 and 19 by a previous run, one would enter

IGICAL OLDI
This prevents the ion densities from being changed at the start of a new
or continued run. This is the default for continued runs (ISTART=CONT).
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To restart a problem with previously calculated neutral ion

densities, one would enter

IGICAL 0OLGI
The OLGI option causes the neutral ion densities to be copied over the

ion densities used by PWASON.

The third way to utilize old density calculations should be used
with care. If the following is used

IGICAL COPY
the neutral ion densities from a different set of data files will be
copied over both the neutral ion density and composite ion densities
used by NTERAK in the current files (11 and 19). The set of old
densities are expected to be in files 12 and 20. File 12 is the file 11
produced by the previous run. File 20 corresponds to file 19. This
feature is used to move ion densities for one object to another. The
COPY option will work only if the objects are identical and the grids
and environments to be used in both cases are the same. In other words,
the only differences between the objects can be the surface material
definitions. There is no error checking done when the command is
executed and any errors caused by the misuse of COPY will turn up (if at

all) in strange and mysterious manners. So be careful.

STHWAKE
To include the wake effect of the plasma sheath around the

spacecraft, enter
STHWAKE ON

This will include the sheath wake effects at the end of a CURREN step.
By default, this module is OFF.
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EFLDCOR

The use of EFLDCOR will cause the neutral ion densities to be
corrected analytically for electric field effects (see Section 5.6).
EFLDCOR YES

will turn on the electric field correction routines. By default, the

electric field correction will be applied. To turn it off, enter
EFLDCOR NO

and no corrections will be made.

NPHI

NPHI controls the resolution of the zenith angle divisions for the
neutral density calculation. Note that increasing the resolution also

increases the calculation time.
NPHI 72

The above example would set the number of zenith angle divisions
to 72. The default is 36 and is suitable for most applications. This
keyword applies only to the NEUDEN module.

NTHETA

NTHETA controls the resolution in azimuthal directions during the
neutral ion density calculation. Increasing the resolution will

increase computational time proportionally.
NTHETA 180

would set the number of azimuthal angle divisions to 180. This is also
the default value and has proven satisfactory for most applications.
This keyword applies only to the NEUDEN module.
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NADD is used to add extra vertices to the object shadow in
velocity space during the neutral ion density calculation to increase
resolution of the object. Care should be exercised when changing NADD

since increasing NADD will slow down the calculation.

NADD 2
The above example would set NADD to 2. This is the default and should
be appropriate for most situations. This keyword applies only to the
NEUDEN module.
NHEXSH

NHEXSH controls the number of points used to resolve the object
and the sheath during wake calculations by the SHADO module. To define
the default, enter :

NHEXSH 6000

NPHISH

NPHISH sets the number of angular steps to be used to resolve the
object and the sheath during wake calculations by the SHADO moduie.

NPHISH 16

This would set NPHISH to its default value.
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SAVSET

Sometimes neutral ion densities may only be desired in subset of
the entire grid. The SAVSET sets a flag indicating that only a subset
of the ion densities needs to be calculated, and the rest of the
elements may be set to 1.0. This keyword is only used by NTERAK when
IGICAL=YES and ISTART=NEW (see above and Section 6.41).

For example,

SAVSET YES
would inform the geometric ion density calculator to calculate only a
subset of values. The actual subset is defined using GISAVE (described
below). The default for this keyword is NO, which implies that there
are no subsets to be considered.

GISAVE

This keyword is only active when SAVSET YES is also included in
the runstream (see above). GISAVE is used to define a subset of all the
elements in the grid. The elements in the subset will have geometric
ion densities calculated for them while those not in the set will be
initialized to 1.0. The general form of the command is

GISAVE axis coordinate
where axis can be X, Y or Z and coordinate is a location on the axis in
object coordinates and which is also inside the grid. In this manner,
planes of elements may be defined up to a maximum of nine planes on each

axis.

When multiple planes are defined, then the elements in each of the

planes will have densities calculated for them. For example,
GISAVE X 2
GISAVE X 3
GISAVE Y 7

would cause the ion densities for the x=2, x=3 and y=7 planes to be
calculated and all the elements not in these planes to be set to 1.0.
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It should be noted that SHONTL requires two adjacent planes of densities
in order to draw correct plots. If only one plane is calculated and
drawn, the densities will be averaged with ones from the uncalculated

plane. A maximum of eight planes on each axis may be defined.

TEMPRAT

During the neutral ion density calculation different ion and
electron temperatures may be desired. For the ion density calculation
only, the two can be defined to be different by using

TEMPRAT 10.
This defines the electron temperature to be ten times the ion
temperature which is assumed to equal to TEMP (6.42.10). In other
words, TEMPRAT is T(electron)/T(ion) or T(electron)/TEMP. The default

temperature ratio is one, both temperatures are equal.
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6.42.40 INITIAL VOLTAGES AND ELECTRIC MODEL

After VEHICL (and ORIENT), the electrical model has been
completely defined for the insulators and their conductors, but the
initial voltages and biases, and the conductor-to-conductor resistor and
capacitor connections have not been set. These features are defined at
the start of an NTERAK run or changed during a set of runs to simulate

switching or other processes.

The following keywords are used to initialize and modify the

spacecraft’s electrical model:

CONDV

The CONDV keyword is used to set the conductor voltage. The card:
CONDV i v
sets the potential of conductor number i to v volts. All locations of
the conductor are set, including both as an underlying conductor and as
an exposed conductor. For example,
CONDY 2 -1000
sets conductor number 2 to -1000 voits.

The default value for conductors other than the ground conductor
(conductor number 1) is the ground conductor’s voltage, if there is no
biasing (BIAS, see below); or the ground conductor’s voltage plus the
bias, if there is biasing. The ground conductor defaults to the value,
VLTFIX = -(kT/2e) &n(m;/mg), where VLTFIX is an estimate of the simple
thin sheath, no secondary electron, current equilibrium point. The
value of VLTFIX may be changed by the user (see Section 6.43.30).

CONTCONDV i v

In continued NTERAK runs, CONTCONDV is used in place of CONDV to reset
the potential of conductor number i to v volts. If omitted, values
resulted from the previous NTERAK run will be used.
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POTVAL

The POTVAL keyword is used to set the initial surface voltage of
all the insulators. This keyword is used by NTERAK only when ISTART=NEW
(Section 6.41). The card

POTVAL v
defines the initial insulator voltage to be v volts. The potential will

be either the surface potential or the potential difference from the

underlying conductor to the surface of the cell. This choice is
controlled by the keyword INSULPOT (described below). Assuming POTVAL
will define a surface potential,

POTVAL -100

sets the surface voltages of all of the insulating surfaces to -100
volts. The default value of POTVAL and INSULPOT are such that the

insulator surface potentials are equal to the ground conductor voltage.

INSULPOT

INSULPOT is used to define the meaning of POTVAL (described
above). If

INSULPOT DIFF
is used, POTVAL is the differential voltage from the underlying
conductor to the surface of the insulating surface cell. If

INSULPOT CONS
is used instead, POTVAL is defined to be the surface voltage of the
insulator surface cells. This is the default value for INSULPOT. For

example,
INSULPOT DIFF
POTVAL -100

would set all the insulators to the ground conductor voltage less 100
volts. If

POTVAL -100

INSULPOT CONS
were used instead (the order of the keywords is not important), the
insulator surface potentials would be equal to -100 volts.
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INPOT

The INPOT keyword defines the method to be used to initialize
surface potentials on the first NTERAK cycle. The form of the command

is
INPOT flag

where the valid flags are CONS, PRE, and FLOAT. The default is CONS
(constant). In this case the surface potential values are simply set

using the other keywords and no special calculations are performed.

Sometimes when starting a new problem, it is desirable to use the
random thermal ion currents to approximate the ion current and then
calculate an initial set of potentials using the CHARGE module before
the first call to PWASON (6.41). This extra step can save computation
time by giving the Poisson solver a distribution of surface potentials
which approximate the final voltages more accurately than constant

potentials.
INPOT PRE

The above example would automatically call CHARGE at the start of a new
run. This is equivalent to using the default, "INPOT CONS®, and
executing the CHARGE module first, since the ion currents are initially

set to the thermal values in new runs.

The FLOA (float) option is used when the surface to surface
secondary electron currents are expected to require the use of constant
normal electric field boundary conditions in the spatial potential
solver. Normally, PWASON and CHARGE are capable of choosing the
appropriate boundary conditions, but on the first cycle it is best to
set the flag in order to reduce wasted computation time.
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Floating boundary conditions normally arise in situations where the
photoemission currents dominate surface charging, though other
environments exist which may generate large, low energy secondary

currents.
FIXP

The card:

FIXP n v
fixes the potential of conductor number n to v volts. For example

FIXP 4 -6000
sets conductor 4 to a potential of -6000 volts, where it remains, fixed
for all future potential calculations. The most common use of this
option is to ground conductor 1:

FIXP 1 0.
The default behavior is for all conductors to float freely.

Note that fixing the ground conductor when there are biased
conductors (see BIAS below) will have the side effect of fixing all of
the biased conductors, but that it is not allowed to fix the ground
conductor (conductor number 1) by fixing one of the biased conductors.




BIAS

The card:

BIAS i v
causes conductor i to be biased by v volts relative to conductor 1.
Conductor 1 is usually the spacecraft ground. For example, the card

BIAS 3 -1000
causes conductor 3 to always be 1000 volts more negative than conductor
1. If conductor 1 were floating or fixed at -300 V then conductor 3
would have a floating or fixed potential of -1300 V. The BIAS cards for
each conductor must be entered in ascending order. Thus any card for
conductor 3 will be rejected unless conductor 2 has been biased. Cards
need only be included for those conductors that the user wants to be
biased. The default behavior for a conductor not biased or fixed (see

FIXP above) is to float independently.

FLOAT

The card:

FLOAT i
removes the effect of all previous BIAS’s and FIXP’s affecting the
specified conductor number i. For example

FLOAT 4

allows a previously biased or fixed conductor 4 to float freely again.
This is necessary because options FIXP and BIAS are remembered from
previous runs. The card:

FLOAT
with no conductor number causes all previous FIXP and BIAS commands to

be cancelled for all conductors; i.e., all conductors float freely.
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Cc1J

There are two sources of capacitance between conductors. The
stray capacitances that are determined by the throughspace electric
fields are not currently calculated by POLAR. The larger mechanical
capacitances due to conductors being glued together or separated by
dielectric films must be specified by the user. The card:

CIJ k | ¢
sets this "mechanical connection" capacitance between conductor number k
and | to ¢ farads. For example the card:

CIJ 2 3 1.E-8
sets the "mechanical™ capacitance between conductor 2 and 3 to
1 x 10”8 farads. The default interconductor capacitance is zero, so
failure to define this value may cause differential charging between the

two conductors in question to occur unrealistically fast.

When multiple definitions of capacitances are made POLAR includes
implicit as well as explicit connections in its calculation. For
example

CIJ 1 2 1.E-10

CiJ 1 3 2.E-10

Iy 2 3 3.E-11
defines explicit capacitive connections between conductors 1 and 2, 1
and 3 and 2 and 3. However, 1 is also connected to 3 via 2, and so on.
The circuit diagram used by POLAR has the form:

Conductor 3 } Conductor 2

11 _
|} 1R
l; Conductor 1




6.4-32
RIJ

POLAR has the capability of treating explicitly specified
conduction among the various conducting segments. Otherwise, no
connection is assumed, and an infinite resistance is used as the
default. Since infinity is difficult to represent on a2 computer, a zero
value is used internaliy to flag infinity and resistances less than or
equal to 1 ohm are not allowed. Interconductor resistances are
specified in a similar manner to interconductor capacitances by the card

RIJ i j r
where i, j are conductor indices, and r is the direct interconductor
resistance in ohms. Resistances less than 1 ohm will be ignored and the
infinity default will remain in effect. Use of very low resistivities
to effectively short two conductors together is not recommended. The
user should, instead, change one conductor to the other and rerun
VEHICL .
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6.42.50 GRID SIZE CONTROL

At the start of a new NTERAK run, the computational grid
extensions need to be defined (Section 5.20). Only the object
definition grid has been defined at this point and usually it is too

small to perform a calculation.

There are two main features which control the grid size: the grid
spacing and the number of grid points. The defaults for these features
are the values left after completion of VEHICL or ORIENT, whichever was

executed last.

DXMESH

The grid spacing is controlled by the DXMESH keyword. The general
form is

DXMESH 2
where is the grid length in meters.

DXMESH .5
defines the grid spacing to half a meter. The default value for NTERAK

is the value used by VEHICL or ORIENT. The default for ORIENT is the
value from VEHICL and VEHICL'’s default is 1.0 meter.

NUMBER OF GRID POINTS

The number of grid points in a problem depends on several factors.
(See Figure 5.20/1 and Section 5.20.) The grid will be at least as
large as the object definition grid. If the Mach vector (6.42.30) is
defined with non-zero x and y components, the grid will grow enough in
the x and y directions to keep the object grid contained in the smallest
stepped grid (NXGRTH in Figure 5.20/1).

The grid can further be expanded in any of the six axial
directions (+%, +y, or +2). The following keywords are used to
extend the grid along either direction of the three axes:
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NXADNB adds nodes in the -X direction
NXADNT adds nodes in the +X direction
NYADNB adds nodes in the -Y direction
NYADNT adds nodes in the +Y direction
NZADON adds nodes in the -Z direction
NZTAIL adds nodes in the +Z direction

For exampie, the grid shown by the Figure 5.20/1 would be defined

NXADNT 1
NXADNB 1
NZTAIL 7
NZADON 2
The add-ons along the y axis have not been defined since they are not

apparent from the figure.

The only limits on the grid size is that the product of number of
the grid points on the x(NX), y(NY) and z(NZ) axis must satisfy

(NX+2) (NY+2) ¢ 5000

(Mv+2) (N2+2) < 5000

(NY+2) (NZ+2) < 5000
in order to plot the calculation results and the following limits on the
Z coordinates.

MINZ < -50

MAXZ ¢ 100

MAXZ - MINZ + 1 ¢ 100
where MINZ and MAXZ are, respectively, the minimum and maximum Z
coordinates of the grid points in object grid coordinates (where the
iowest (x,y,z) corner of the object definition grid is defined to be
equal to (1,1,1)).

The size of the data buffer common block, /CBUF/, also limits the
size of the grid but can be easily expanded until machine limits are
reached. The buffer should be able to hoid as much as 20+ (NX)*(NY)
words of data.
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6.42.60 PARTICLE BEAMS

The CHARGE module models the effects of particle beams on the
charging of conductors. Currently, the space charge effects of beams as
well as surface-beam interactions are not modeled. Trajectory plots of
beams can be generated using SHONTL. Although not checked on input, it
is best to define only one particle beam per conductor. When making
plots, this restriction can be ignored. The following describes the
keywords for defining beams and their default values. The words in
upper case characters are keywords and those in Ierr case represent
sets of keywords. The general forms of beam descriptors are

BEAM ALL on-off
This turns all of the described beams on or off. The keywords on-off
can be replaced by ON or OFF. Or

on-off = {ON, OFF}

A single beam can be turned on or off with

BEAM n on-off
where n is an integer and is the beam number. A maximum of twenty beams
may be defincd and saved. If it has not been described, the default

values will be used.

There are two methods which can be used to describe a particle
beam. The first is to turn the beam on using one of the above commands.
Then modify the default values individually until reaching the desired
particle beam definition. The syntax used to modify one feature of a
beam is

BEAM n beam-char char-value
where n is the beam number, beam-char is a beam characteristic, and
char-value is the value of the beam characteristic. The definable beam

characteristics are summarized in Table 6.42/1.
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TABLE 6.42/1
BEAM CHARACTZRISTICS
(a) Keyword Definition

beam-char Definition

(keyword)

LOCATION spatial location of beam

DIRECTION direction beam aimed

COND number of conductor current

CURRENT beam current

AREA cross-sectional area of beam, assumed to

be circular

ENERGY beam energy
MASS mass of beam particles
CHARGE charge of beam particles

TABLE 6.42/1
BEAM CHARACTERISTICS
(b) Input Syntax

beam-char char-value char-value units default value
(keyword) (syntax) (format)
LOCATION Xyz 3 real grid coords 000
DIRECTION Xy z 3 real N/A 111
COND n integer none 1
CURRENT value real amps -.1
AREA value real m? 4‘!(.01)2
ENERGY value real KeV 1
MASS value real AMU Mg /my*
CHARGE value real electron -1xs
charge

. default value 1 if CURRENT ) 0. me is electron mass and my is
proton mass.

% default value 1 if CURRENT > O.
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The second way to define a beam is enter all of the beam
characteristics on a single input card. This may not be a practical
method in some cases due to the 80 character limit of the input card.
The first method also provides a form of self-documentation which is
easier to read. The order of the beam characteristics is LOCATION,
DIRECTION, COND, CURRENT, AREA, ENERGY, MASS and CHARGE where these
keywords are defined in Table 6.42/1a. The syntax of the command is

BEAM n ALL loc-x, loc-y, loc-z, dir-x, dir-y, dir-z, cond,

current, area, energy, mass, charge

where loc stands for location and dir for direction. Values should be
placed between commas. The commas may be replaced by spaces but values
may be left out between commas if the default is correct. The default
values describe a kilovolt electron beam drawing 100 mAmps from the
ground conductor and having a 2 cm diameter. The location and direction

of the default beam is arbitrary.

A 200 mAmp, 1 KeV hydrogen beam drawing current from conductor 2
is defined by

BEAM 1 ON

BEAM 1 COND 2

BEAM 1 CURRENT 200.

BEAM 1 CHARGE 1.
The second method could also be used. One way is

BEAM 1 ALL ,,,,,,,2, 200.,,,, 1.
An apparent extra comma is used after the ALL keyword since a delimiter
is needed between ALL and the x coordinate of the beam location vector.
The values between the commas are filled by the defaults summarized in
Table 6.42/1b. Clearly, the first example is easier to read at a

glance.
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6.42.70 SHEATH IONIZATION

By checking the total ionization of neutral ions within the
sheath, NTERAK is able to adjust the sheath radius to account for
enhanced ion densities. It is also able to check to the case when
sheath ionization begins to dominate the calculation. The sheath
boundary becomes unstable and will expand quickly to fill the
computational grid. When this occurs a message is printed and the run
is killed. The neutrals are assumed to be defined by AMUION. (6.42.10)

The keywords necessary to turn on sheath ionization effects are:

SHEIONZ turns on/off sheath ionization effects. To turn on
ionization effects ‘
SHEIONZ ON
To turn them off
SHEIONZ OFF
By default, sheath ionization effects are off.

NEUTDEN This keyword sets the neutralized ion density. By
default, the neutral density is 1012/m3. For example,

NEUTDEN 1.E+14
would define the neu.ral density to be 1014/m3.

TONZCROSS This defines a probability cross-section for the
electron/neutral atom interaction. For example

IONZCROSS 1.e-20
would set the interaction cross-section to be 1020 m2, which is also
the default.
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6.43 NTERAK SUBSECTION CONTROL

The calculations performed by NTERAK to model spacecraft charging
can be conveniently separated into three major subsections. They are
the Poisson potential solver PWASON, the particle pusher CURREN used to
find ion currents and densities, and the electrical model of the
spacecraft, CHARGE. The keywords which control these modules are
described in the following three sections.
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6.43.10 PWASON (POISSON POTENTIAL SOLVER)

The PWASON subsection of NTERAK is used to calculate space
potentials given a set of surface voltages for an object (Sections
6.42.40, 5.70, 4.50), a computational grid (Sections 6.42.50, 5.20,
4.10), a set of ion densities (Sections 6.42.30, 5.60. 4.40), and a zero
potential boundary condition (Sections 5.50, 4.20) PWASON involves a
double layer of iteration. Innermost is a conjugate gradient potential
solver (Section 4.31) that uses a |inearized Boltzmann electron
contribution to the space charge (Section 4.44). This is referred to as
the Conjugate Gradient Iteration. This is, in turn, iterated upon to
update the linearized Boltzmann electron space charge derivative (SCRN,
Section 4.44). This outer iteration is known as the space charge
iteration. Both the conjugate gradient and space charge iterations
terminate on either a convergence test or an iteration limit. There is
an analytic formula available to generate space charge densities instead

of pushing particles.
PWASON

The keyword PWASON is used to activate the space potential solver
(also see Section 6.41). For example.

PWASON
would invoke the PWASON subsection. All of the keywords which control
the subsection must be defined before the appearance of PWASON in the

runstream if the various defaults are not appropriate.
ENORMCHK

PWASON will recalculate the space potentials if a surface’s
boundary condition has changed as a result of the new space potentials.
This, by default, only happens on the first call to PWASON when there
has been no PRECHG step. If it is desirable to check and recalculate
after every PWASON call, use

ENORMCHK YES
To turn this off, use

ENORMCHK NO
The latter example is the default condition.
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This keyword is mainly intended for use with positive potentials

when secondary electrons are influencing charging.
MAXITS

The MAXITS keyword defines the maximum number of space charge
iterations (Section 4.44 and introduction above). For example

MAXITS 3
would set the number of iterations upon space charge to three, the
default. A MAXITS of one should be used for low densities and/or short
Debye lengths where the space charge will have little impact on the
final solution. Higher numbers of iterations, twenty, may be necessary
when factors of density, temperature, object potential, and object size
conspire to make the repelled electron space charge contribution
significant over large regions of the model. If analytic densities are

being used, a larger value should be used.

MAXTIC

The keyword MAXITC controls the maximum number of conjugate
gradient iterations. If none of the convergence criteria have been
reached after MAXITC steps, the potential data is saved and the NTERAK
run is terminated with an error massage. Saving the potentials allows

the run to be restarted if desired.

To define a maximum appropriate for a low density or Laplacian

problem, an input such as
MAXITC 30
would be appropriate. The default is 20 which is enough for most

densities.
MINITC

The MINITC keyword is used to set the minimum number of conjugate
gradient iterations to be performed (see also MAXITC above).
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This essentially causes the convergence criteria to be ignored until the
MINITC +1 iteration. To change the default, enter
MINITC 1

This forces at least one conjugate gradient calculation to be performed.

The default value is 2 and will not need to be changed for most

applications.

POTCON

The keyword POTCON is used to determine satisfactory conjugate
gradient convergence. The code uses

| RDOTR(1)
°910 RDOTR(v)

to check convergence, where RDOTR is a measure of the accumulated error
of the potential solver (Sections 4.52, §.50) found at the first and at
the current (¥)on conjugate gradiznc iteration. The number calculated
above is compared to POTCON and if it is larger than POTCON, the

conjugate gradient iteration terminates.

To set this variable, use a keyword instruction similar to
POTCON 4
This example would require approximately four orders of convergence
during the conjugate gradient loop unless MAXITC (see above) is
exceeded. The default value for POTCON is six which provides a good
compromise between accurate potentials (e.e., more convergence ) and
approximately correct, as when approaching a total problem convergence,

his parameter can be lowered to four or five.

RORMIN

The keyword RDRMIN is an absolute measure of convergence of the
space potentials (see Sections 4.31, 5.50). RDRMIN defines a value of

RDOTR (a2 dimensionless measure of the accumulated error in the
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potential solution) which is considered a completely converged solution.
If RDOTR is less than RDRMIN, no further conjugate gradient iterations

are reguired or performed. For example,
RDRMIN 1

would define a total error of 1 volt for the problem. The default is
calculated by multiplying the number of nodes in the problem by 0.0001
volts. This is appropriate for most applications. For most problems,
the conjugate gradient iteration should be terminated by POTCON (defined
above). RDRMIN provides a lower limit to prevent the needless use of

calculation time.
RMSCONV

The space charge iteration loop of PWASON can end by satisfying a
RMS convergence condition. The value of the convergence level is

entered using the RMSCONV keyword. For example,
RMSCONV .01

would cause the space charge loop to continue until the root-mean-square
of the space potentials was less than or equal to .01 volt (or MAXITS
was exceeded). The default is the maximum of TEMP (TEMP is described in
6.42.10) and the absolute value of STHPOT (see 6.43.20).

RMSOFF

The root-mean-squared convergence criteria in the spac~ charge

loop of PWASON can be turned on and off via this keyword.

RMSOFF OFF
turns off the convergence checking, while

RMSOFF ON
turns it on. By default, the convergence check will be made. The
convergence check will never be made after the first space charge
iteration, so at least two iterations will be made (unless MAXITS = 1).

See also RMSCONV.
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SQALPH

SQALPH is the space charge limiting factor. The interaction of
this keyword and the space potentials is complex and the reader is

referred to Section 4.44.2. Example:

SQALPH 4
would define SQALPH to be 4. The default is 2.667. and this value is
appropriate to most charging csces. Larger values of SQALPH increase
charge near the sheath edge, a value of 3 may help stabilize the sheath
location if its position is oscillating. For situations where objects

are discharging, a value of 2 is recommended.

MOTIONDEN

The MOTIONDEN keyword in used to turn on or off the analytic

spatial densities during potential calculations.

MOTIONDEN ON

This would cause PWASON to ignore the neutral and pushed densities
and use the analytic densities. The default is OFF.

MIXDEN

MIXDEN is used to play with the diagonalization of the finite
element density information when pushed particle densities are being

used. Its use is not recommended. The default is .5.
MIXDENMO O.
MIXDENMO modifies the diagonalization of the finite element

density information when the analytic densities are being used. Its use
is not recommended. The default is O.
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PDIE

The PDIE keyword defines the maximum allowable positive voltage in
the calculation (Sections 4.30, 4.44, 5.50). NTERAK originally had no
mode! for positive space potentials and PDIE was used to detect this

situation. The keyword remains for debugging purposes.

PDIE 50
The above example sets the PDIE to +50 volts. The default value is
+9999 volts.
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6.43.20 CURREN (ION CURRENT CALCULATION)

The CURREN subsection of NTERAK is used to calculate the ion
densities inside of the sheath (Sections 3,60, 4.42, 5.60), and the ion
currents to the surface of the spacecraft (Sections 5.71, 4.53) using
outside-in particle pushing. The module obviously requires a set of

space potentials in order to perform the ion calculations.

CURREN

The appearance of the keyword CURREN in the input runstream causes
the CURREN subsection of NTERAK to be executed (see Sections 4.40, 4.53,
5.60). For example

CURREN
would invoke the ion particle pushing subsection (see also Section
6.41). Since this keyword activates the CURREN module upon its
appearance, all keywords controlling the various features of the module
need to be defined (if the defaults are not appropriate) before it is

read as input.
IPCNT

IPCNT defines the maximum number of -Z (left) and +Z (right)
particle pushing sequences allowed by CURREN. The particle pusher used
by NTERAK moves each particle within a specific z-slice until that
particle leaves the slice, the sheath, the grid, or hits the object.
After all the particles in the slice have been pushed out, the particles
in the next slice are moved. In this manner the entire grid is swept
through, first in the +Z direction, then in the -Z direction. IPCNT is
the maximum number of these right/left pushing sweeps and is necessary

to prevent "stable" particle orbits from causing infinite loops.
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IPCNT 2
The above example would limit pushing to two left and two right sweeps
so trajectories would terminate after two or three turns in the
z2-direction, depending on the particie’s original velocity direction.
The default for IPCNT is 3.

IPQUIT

It is possible for stable, trapped orbits to occur during particle
pushing. To stop trajectories orbiting in the Z plane, the number of
particles still active after each right/left pass through the grid is
compared to the previous pass. If the number of particles is the same
after IPQUIT passes, pushing is halted. For example

IPQUIT 2
would stop pushing after two consecutive passes without a change in the

number of active particles. The default is two.

XYLIMIT

Trapped orbits are also possible in the xy plane. The particles
are limited to moving into a maximum of XYLIMIT elements without leaving
the plane (a change in the integer portion ¢f the Z coordinate).

XYLIMIT 100
would limit particles to entering 100 elements before marking the
particle as lost and moving the next particle. The default is 40.

STEPLIM

When step pushing particles, the estimated time used to move may
be too small (for example, due to magnetic fields) for the particle to
cross the element in a reasonable number of steps. So after a certain
number steps, specified using STEPLIM, the timestep is doubled. For

example,
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STEPLIM 10
would double the timestep after every ten steps in the same element.
The default is 20. (See also MAXSTPIN.)

MAXSTPIN

The number of timestep doublings caused by STEPLIM (above) is
limited by MAXSTPIN if

MAXSTPIN 3
was used, on the fourth attempt to double the timestep the particle
would be marked as lost and the next particle would be pushed. The

default value is 5.
STHPOT

The keyword STHPOT defines the sheath edge potential where the
initial position and velocity of the particles will be calculated. The
flux represented by the initial particles is defined using CURPOT (see
below). To define a sheath at -2.0 volts, enter

STHPOT -2.

The default sheath "mode" is

STHPOT PSIM
which causes the sheath edge potential to be the lesser (more negative)
of CURPOT or ¢, kT/e, where

$m = L n(SQALTP+ (A\p/DXMESH)?) .

(SEE 3.60, 4.42.1, and 4.44.2 for explanations.)

In general, care should be taken to insure that the sheath
boundary defined by STHPOT is at least a mesh length away from the edge
of the grid boundary. If the sheath comes too close to the grid
boundary, the accuracy of the solution will be adversely affected.
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CURPOT

The CURPOT keyword defines the presheath edge potential (3.60,
4.44.2) at which the presheath fluxes are calculated. CURPOT is also
used as an upper limit for the default of STHPOT, described above. To
redefine this variable, use input in the form of

CURPOT -.069
The above example defines the presheath edge potential to be -.069
volts. The default voltage is -.45+TEMP (TEMP is described in Section
6.42.10).

NTABLE

NTABLE controls the number of table entries used by STHCAL
(5.62.21) to calculate the presheath focusing weights.

NTABLE 20
The above example would call for 20 entries to be used for interpolating
the presheath weights. The default is ten which has proven sufficient

for most cases.
MAGSTH

The MAGSTH keyword should be used when collecting magnetically
limited electron presheath fluxes.

MAGSTH ON
This turns magnetic flux tube restricted electron presheath currents ON.
The default is OFF.
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6.43.30 CHARGE (SURFACE CHARGER)

The CHARGE module is responsible for computing the response of the
vehicle electrical model (Sections 3.50, 4.50) to the plasma. The ion
and electron currents are either the ambient ion currents (Section
3.43), the currents calculated by CURREN (Section 6.43.20), or orbit
limited currents. The energetic electron currents are calculated
numerically in this module using a parametric representation of the

electron spectrum (Section 3.41; keywords, Section 6.42.10).

CHARGE is able to calculate the change in surface potentials using
orbit limited currents, space charge |imited currents, or hybrid
currents. The hybrid currents are surface currents where the total
current to the object is determined by finding the current through the
space charge |imited sheath. The proportion of the current to a given
surface is found by dividing the orbit limited current to the surface by
the total orbit limited current to the object.

The charging algorithm (discussed in detail in Sections 5.73 and
4.50) is controlled by the following keywords. The more crucial
keywords are those controlling the allowable voltage change, the
timestep size used by the algorithm, and the ones which define the

charging regime.
CHARGE

The keyword CHARGE is used to invoke the CHARGE module (5.73 and
4.50). For example

CHARGE
would cause the surface charging section of NTERAK to begin execution.
The keywords which are used to control the electrical model should be
defined (if the default values are not appropriate) before this keyword
is entered. See Section 6.41 for a more detailed explanation of this

keyword.
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SPCLIM, ORBLIM, and ORBSPC

These keywords define the current module to use for the attracted

species. The default method can be requested with

SPCLIM

The SPCLIM keyword is used for space charge |limited (pushed particle)
currents. ORBLIM will turn on the orbit limited current models. For
intermediate charging environments, ORBSPC uses the space charge sheath
current to renormalize the orbit limited surface currents.
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DELTAT

The keyword DELTAT (At) defines the size of the timestep to be
taken by the charging algorithm. Long timesteps (a large DELTAT) allow
the algorithm to converge quickly on an equilibrium solution without
regard to the actual charging time history that one would expect or
perhaps measure during an experiment. Short timesteps will require many
more iterations to yield information concerning long timescale charging
effects, |like differential charging. To define DELTAT, enter an
instruction like

DELTAT .01
which would be a timestep of 10 msec. The units of the input are
assumed to be seconds and the default is 1 second.

MAXITT

The MAXITT keyword defines the number of iterations to be
performed by the CHARGE modules. Since there are currently no
convergence criteria or any other checks for completed calculation, this
keyword is the sole means of controlling CHARGE. To set the maximum
number of timestep iterations for the charging aigorithm, use input of
the form

MAXITT 4
which would set the loop counter to four. The default value is 2.

For situations where current balance is expected to occur due to
the pushed and secondary currents, a value of one for MAXITT should be
used. This is due to the lack of a good model in the code of the
voltage dependence of the pushed specie currents. In cases where
current balance is achieved between analytically calculated incident
currents and their secondaries, multiple iterations of the charging
algorithm may be used.
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DVLIM

The DVLIM keyword defines a limit on the change in voltage during
a single timestep. There are two major circumstances where DVLIM |imits

the voltage step.

The first is during the first implicit stage when the current
derivative is estimated. The voltage at which the current balances for
a specific surface is estimated to be XDVAFAC«DVLIM away from the
original (at the start of the step) voltage. XDVFAC is described below

and has a default value of two.

The second instance when DVLIM is used to limit the voltage change
is when the sign of the total current to a surface changes and the
surface voltage appears to be moving away from the current balance
voltage limits defined by VLTFIX and VFIXHI (possibly due to the
influence of other surfaces or the underlying conductor). In this case,
the surface voltage is constrained in the second and final stage of a
CHARGE iteration to diverge no more than DVLIM from its initial value at
the start of the step. This is done to stabilize the probliem.

An example of the use of the keyword is

DVLIM 100
which defines DVLIM to be 100 volts. The units of DVLIM are volts. The

default value is 1000 volts.
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XDVFAC

This keyword is used as a multiplying factor for DVLIM (described
above) when calculating an estimate for the voltage change necessary to
reach an equilibrium voltage during the first implicit stage of the
iteration. For example

XDVFAC 2
would set XDVFAC to two, which is also the default.

If, for example, a satellite initially at -1.0 V was placed in a
strong charging environment with DVLIM = 100 volts and XDVFAC = 2, the
satellite would charge no more than about -200 V during 2 single, long

timestep.
DVTEST

When a surface voltage is near to the voltage which will establish
a current balance, the change in the surface’s voltage during the
previous iteration is used like DVLIM to limit the voltage change and to
force convergence on a solution. Of course during the first iteration
this variable is undefined. DVTEST is used instead. For example,

DVTEST 2.0
would limit the surface voltage change to 2.0 volts when the equilibrium
point is passed (found by noticing a change in the sign of the total

current). The default value is 5 volts.
DVMAX1

DVMAX1 v
is the absclute measure of convergence of surface charge. Charge
iterations will be halted if every surface potential changed within v

volts from the previous charge iteration. For example,
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DVMAX1 1.
will cause charge iteration to continue until dV of every surface is ¢=
1. volts (or MAXITT is exceeded or conditions of DVMAX2 is satisfied).
Default value for DVMAX1 is 5.stemp.

DVMAX2

DVMAX2 # is the relative measure of convergence of surface charge.
Charge iterations will be halted when changes in surface voltages are
within § (percentage) of previous voltages. For example,

. DVMAX2 .05

will stop the charge iteration when dV/oldV <= .05 or 5% (oldV is
previous iteration V). Of course, MAXITT and DVMAX1 still can cause the
charge iteration to halt. Default for DVMAX2 is .05.

VWIGGL

When a surface voltage is at current equilibrium, it is convenient
to keep the surface voltage charging by a small amount in order to avoid
numerical difficulties. VWIGGL is used to introduce a small amount of
noise to prevent these problems. For example,

WIGGL .01
would force the voltage to change at least 0.01 volts each iteration.

The default is 0.001 volts and is adequate for most applications.
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VLTFIX

The keyword VLTFIX is used to estimate an upper bound on the
surface voltage producing a current balance in noncharging cases.
Currently, this is the value which will be used for all of the material
types in the problem. For example,

VLTFIX -.01
defines the upper boundary to be -0.01 voit. The default is found using

plasma parameters defined in Section 6.42.10 to solve

AMUION + 67 x 10'27]

VLTFIX = - (TEMP/2) * £n e
9.1 x 10

This default should be appropriate for most problems.
VFIXHI

The keyword VFIXHI is used as an estim:te of the lower boundary of
the equilibrium voltage or a charging surface. It is used to prevent
destabilizing voltage swings when at the current balancing voltage. For
example,

VFIXHI -8000
defines VFIXHI to be -8000.0 volts. The default is -10,000.0 volts

which should be adequate for most cases.
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FXFORM

The FXFORM keyword allows the code to choose the best matrix
formulation of the charging equations (FXFORM = NO) or forces the CHARGE
module to use the undiagonalized matrix formulation (FXFORM = YES) (see
Section 5.73.2). In general, it is best to use the diagonalized form if
possible since this form has smaller off-diagonal terms which enables

the matrix solver to work more efficiently.

To allow the code to choose the best formulation based on the
charging behavior of the problem, enter
FXFORM NO
To force the code not to diagonalize the charging equations, enter
FXFORM YES
The default is FXFORM set to NO and should not need changing for most

applications.
USELIM

The USELIM keyword controls part of the voltage |imiting process
used to find a surface voltage to be used to find the current derivative
term for the second stage implicit step (see Section 5.73). This

keyword will almost never need to be used.

When a surface charges quickly towards one of the estimated
current balance voltages defined by VFIXHI and VLTFIX (see above) at
more than DVLIM (also described above) volts, this flag determines
whether the voltage change should be |imited to DVLIM or allowed to

proceed more rapidly towards a solution.

To limit the charging process, enter
USELIM YES
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and allow the code to charge rapidly under these special circumstances,
enter

USELIM NO
The default value is N0 and should be used for most problems.




6.4-59
6.44 NTERAK OUTPUT CONTROL

Currently the bulk of the NTERAK keywords produce output that is
oriented more towards code diagnostics than for studying calculation
results. As the code develops, keywords are added to provide the user
with increasingly easier methods of accessing calculations. Presently,
the greatest difficulty facing a potential user is sifting through the
output, or output control.

The first section defines keywords which reduce the output by
printing useful subsets of the calculation results. The second section
provides a description of all the available diagnostic controls and
complete definitions and exampies of keywords which control both
calculation and diagnostic output. Some keywords appear in both

sections to facilitate convenient referencing.
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6.44.10 CALCULATION MONITORING

The output interface with the user has not been fully developed.
But many features do exist to present calculational results that are
adequate for most purposes. Any of the information stored using the
MRBUF (Section 5.33), as well as graphical representations of data, are
available via the SHONTL module (for SHONTL operating instructions see
Section 6.50), for the last cycle of the calculation. If intermediate
results are desired in graphical form, it is advisable to break a
calculation into several steps and save these intermediate files (11 and
19).

NTERAK can also provide information during execution. Originally
designed as diagnostic tools, several keywords can also be used to print

results as they are computed. This section focuses upon these keywords.
OUTPUT

The OUTPUT keyword provides a convenient method of coarsely
controlling the output from several major sections of NTERAK. The
general form of the command is

OUTPUT subsection quantity
where quantity is the desired amount of output from subsection.
Information from the subsections can be printed at three levels of
verbosity: HIGH, LOW, and OFF. The sections of NTERAK which are
controllable via the OUTPUT command are:

TIMER - code speed information

NEUDEN - neutral ion density calculation

PWASON - Poisson potential solver

CURREN - particle pushing module (ion currents and

ion densities within the sheath)

CHARGE - electrical charging model
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Some examples of the use of OUTPUT are:

OUTPUT TIMER HIGH

OUTPUT CHARGE OFF

OUTPUT PWASON LOW
The first example causes a continuous monitoring of the execution time
at numerous points within the code, most notably after each mass I/0
operation. The second example stops all of the output from the CHARGE
subsection while the third example produces the minimal amount of
information necessary to following the space potential calculation. The
default quantity of output for all subsections is LOW. The SELECT
(described below) can be used to remove or reduce the amount of
information printed at HIGH levels. The OUTPUT keyword is discussed
further in the next section, 6.44.20.

SELECT

The SELECT keyword can be used to choose a specific set of
Z-slices from grid sized arrays. It can also be used to turn off (or
on) the output of any of the data stored by MRBUF (5.30). This is
useful when working with the output keywords set to high levels.

A variety of options are available with SELECT. The five general
forms of the command are:

SELECT name ALL

SELECT name OFF

SELECT name NONE

SELECT name list ENDLIST

SELECT LIST Ilist-number |ist ENDLIST

SELECT name LIST |ist-number
where name is the name used by the buffering system (5.30) to reference
the data, list is a list of Z-slices using object coordinates, and |ist-

number is an integer from 1 to 5.
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The first three examples turn the output of a buffered data set on
(ALL) or off (OFF and NONE). By default, all data sets will be printed
if requested during execution (i.e., set to ALL). The keyword OFF
resets the output selection to the default value. The NONE keyword
causes no information to be printed when NTERAK requests that data set.
Note that the SELECT keyword will not produce any output. It only
controls the output which is produced by other keywords.

The fourth example of SELECT is the basic form used to print only
certain specified slices of sliced, grid sized data sets |ike POT (space
potentials) or DION (ion densities). When a set of slices for a number
of data sets are desired, the last two examples can be combined to
reduce the effort necessary to print them by defining a list, then
selecting the |ist-number instead of retyping the list.

When printing out bit packed |ists, SELECT can be used to contro!
whether the data is printed in an unpacked or packed form.

SELECT NICE
will print the information in decoded format and

SELECT OCTL
or

SELECT PACK
will choose a packed format. The default is to print a packed format.

These keyword commands set a switch which affects all bit packed data
types, but currently, only the KSURFOP (surface information list)

recognizes the switch.

Examples:

SELECT TSRV OFF
SELECT SRFV ALL
OUTPUT CHARGE LOW

The above set of keywords would cause the surface voltage list
(SRFY) to be printed at the end of each CHARGE iteration when the CHARGE
module is executed. The trial surface voltage lists calculated during a
CHARGE iteration would not be printed even though the third command
(OUTPUT ....) would generally produce them.
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More examples:

OUTPUT CURREN HIGH

SELECT DION 4 3 2 5 -1 O ENDLIST
SELECT RHOI -1 0 2 3 4 5 ENDLIST

In this case, when CURREN is activated the same set of slices for
both the composite ion densities (DION) and the ion densities found by
particle pushing (RHOI) would be printed (among other things) by the
OUTPUT command. The set of RHOI slices printed is
Z= -1,0,2, 3,4, 5. The slices are printed in the same order they
are defined.

SELECT LIST 3 54 3 -1 0 2 ENDLIST
SELECT RHOI LIST 3
OUTPUT CURREN HIGH
SELECT DION LIST 3

The same set of slices as in the previous example (but in a
different order) will be printed, and DION now uses the same |ist.

IGIOUT

The IGIOUT keyword is used to print the neutral ion densities at
the start of a new or continued NTERAK run.

IGIOUT YES
The above example will cause the ion densities to be printed.

IGIOUT NO
The second example will prevent the production of the ion densities. By
default, the ion densities are not printed at the start of each run.
This output can be restricted with SELECT options.

ISPOUT

The ISPOUT keyword controls output of the grid sized arrays, POT,
QUSD, and SCRN (Section 4.44.1), from the space charge calculation of
PWASON, the space potential Poisson solver. The general form of the

command is
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ISPOUT option
where the options are
Full - print the arrays on each of the MAXITS

space charge iterations.

Final - print the array after the last space charge
iteration.
No - print nothing.

For example,

ISPOUT FINAL
would print the final potentials at the end of use of PWASON. This is
the default value. The output can be further restricted with SELECT
options.

I0CONG

IOCONG controls output from the conjugate gradient portion of the
Poisson potential solver, PWASON (Section 4.21.1 or 4.31). The general
form of the command is

IOCONG option
where the valid options are FULL, PART, and NO. The FULL option prints
detailed information from the conjugate gradient routine and is intended
to be used mainly as a diagnostic output level. PART generates a
smailer amount of information and NO prints none at all. For example,

IOCONG PART
is the command using the PART option. The NO option is the default

value since this information should be of no interest to most users.
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6.44.20 DIAGNOSTIC GUTPUT

During the aevelopment of POLAR, the various print statements used
for debugging were implemented in such a way that they could be turned
on and off via keywords. The capability of diagnostic output from most
areas of NTERAK still remains and has proven useful on occasions when
new bugs are discovered. Most of these debugging print statements are
controlled by the "diag" flags summarized in Section 6.45.10 and which
are discussed here. Other options have been added to improve the
usefulness of the diagnostic flags (for example, SELECT, Section
4.51.10). Since part of the job of debugging involves checking the
correctness of intermediate physical quantities needed to study
spacecraft charging, many of the keywords described in this section and

the previous section on calculation monitoring overlap.

The division between the two sections is intended to separate the
more general use keywords from the more obscure output options. This
section offers additional insight into the calculations performed by
POLAR and NTERAK in particular.

OUTPUT

The OUTPUT keyword is used to interface a single command to a set
of relevant diagnostic flags (described below). Section 6.44.10
discusses the use of QOUTPUT in detail. Here the actual output produced
by the command shall be defined.

As before, the general form of the command is

OUTPUT subsection quantity
Each subsection contains an associated set of diagnostic flags. Table
6.44/1 shows the settings of the flags defined by the OUTPUT keyword.
The diagnostic flags and keywords in the table are all discussed later
in this section. These flags can be set individually to customize the

output (see below).




Table 6.44/1.

Subsection

Flags

TIMER

NEUDEN

PWASON

CURREN

CHARGE

IDIAGS (4)

JDIAGS (4)
KDIAGS (3)

ISPOUT
IDIAGS (1)
KDIAGS (7)

IDIAGS (6)
IDIAGS(9)
JDIAGS (3)
JDIAGS (6)
JDIAGS (9)

IDIAGS (8)
JDIAGS (3)
JDIAGS (8)
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Flag Settings for the Subsections by Quantity Level

Flag Settings at Quantity
OFF LOWs HIGH

0 2 3
0 1 2
0 0 2

NO NO FULL

[

2

o O O © O
O O = it
N NN NN

E-

+The LOW setting is the default setting for all subsections.
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SELECT

The SELECT keyword is used to choose a subset of the slices of the
grid for output or to turn off the output of a data set altogether.
Section 6.44.10 contains a complete discussion of the options and uses

of the keyword.

IGIOUT

The IGIOUT keyword is used to print the ion densities at the start
of a new or continued NTERAK run.

IGIOUT YES
The above example will cause the ion densities to be printed.
IGIOUT NO
The second example will prevent the production of the ion densities. By

default, the ion densities are not printed at the start of each run.

ISPOUT

The ISPOUT keyword controls output from the space charge portion
of the potential calculation (PWASON, se¢ Section 4.44). The general
form of the command is

ISPOUT option
where the valid options are FULL, PART, NO, FINAL and LAST. The FULL
options causes the screening potentials (SCRN), the space charge used
(QUSD), the space potentials (POT) and the surface voltages (SRFV, if
they have changed during PWASON) at the conclusion of each space charge
iteration. The PART option produces the same output as the FULL except
for the omission of the screening potentials. The FINAL and LAST
options are equivalent and print the same data sets as the FULL except
only once at the conclusion of the space charge loop. The N0 option
generates no output. The default value for ISPOUT is NO.
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The use of SELECT (see Section 6.44.10) is recommended when using

this keyword as a great deal of information is produced.
I0CONG

The I0CONG keyword controls output from the conjugate gradient
portion of the potential solver. There are two loops in PWASON, one
upon the space charge and the other over the conjugate gradient. The
conjugate gradient iteration is the inner loop. Therefore it is
possible to generate huge masses of output using this keyword. In

general, it should be of no interest to the user.

Nonetheless, here is a description of it and its options. The
general form is

IOCONG options
where the valid options are FULL, PART, and NO. The FULL option prints
all of the variables associated with the potential solution (see Section
4.21 for the variables used). The PART option prints potentials from
various points during the calculation. The NO option is the default

option and generates no output.
I0GRID

The staggered grid used by POLAR requires the definition of a
coordinate reference point in each z-slice (see Section 5.2). Each of
the different grids and data types (nodal or element centered values)
need a different set of reference points. The IOGRID keyword prints the
offsets used for each of the data types. To print the reference point

offsets, enter

IOGRID YES
To not print them,
IOGRID NO

The latter is the default.
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SAVETEMP

This keyword is used to save the temporary files 9 and 10 after an
NTERAK run. SAVETEMP ON enables this feature; and SAVFTEMP OFF, the
default, causes the temporary files to be deleted when the run finishes.

Note: RHOI’s and RHOE’s are stored in fort.9 and particle iists are
stored in fort.10. So, SAVETEMP must be ON if these data are
to be examined in SHONTL.

DIAGNOSTIC FLAGS

There are currently 25 NTERAK diagnostic flags. In this section
only a terse definition of each flag is given. The specific output
generated by each level of the flags can be found in Section 6.45.10.
The general fcrm of the command is

keyword level
where keyword is the diagnostic flag (see below) and level is the
integer value used to control the amount of information produced. In
general, larger levels produce larger amounts of output. The valid

diagnostic keywords appear below.
IDIAGS(1)

Used by PWASON, this keyword provides conjugate gradient
convergence information at low levels. As the level is increased, more

detailed code mechanics information is printed.
IDIAGS(2)

This flag can be used to monitor the mechanics of the buffered
data system (CBUF, Section 5.30). The lower diagnostic levels are
concerned with which data types are currently in memory. The higher

levels follow the input/output operations of the data.
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IDIAGS (3)

This flag is used to check the actions of VERTIO, the subroutine
which handles node data associated with specific elements. For example
PWASON loops over VERTIO, using it to find and replace the potentials at

the nodes of each element in the grid.

IDIAGS (4)

At low levels, this flag checks the time spent in each of the
subsections of NTERAK. The level checks time spent in certain loops of
the modules and at the highest level, input/output speeds are checked.

IDIAGS (5)

This keyword turns on a self-diagnostic package within NTERAK.
Currently, the addressing system used to reference grid stored data and

the core locations of certain addresses are checked.

IDIAGS (6)

Used by the CURREN module, this keyword is used to monitor the
behavior of particles as they are pushed from the sheath to the object.
At low levels, groups of particles are watched. The higher levels watch

the individual particle movements and particle energy conservation.

IDIGS (7)

This flag is used to receive information from the QSELT routine
which calculates the charge per node and the screening factor for
elements (a part of the PWASON module).

IDIAGS (8)

This flag controls the output from the CHARGE module. At lower
diagnostic levels, only crucial sets of data are printed. While as the
level increases, more and more of the arrays and lists used by the
charging algorithm are produced. At the highest level the currents to

individual surfaces are listed in detail.




6.4-71

IDIAGS(9)

This flag is used to monitor the calculation of ion currents using
the output of the particle pusher. The lowest level prints the SRFI
computed by IONCUR. As the level is raised, weighting calculation
details then particle lists from CURREN are printed.

JDIAGS (2)

This flag is used to receive information from the presheath

calculation.
JDIAGS (3)

Use this flag to receive information concerning the ambient ion
currents calculated by AMBCUR.

JDIAGS (4)

This flag produces information about the neutral ion densities
calculated by IONDEN. It is used to receive progress notes for speed
checking and for calculated densities for filled and partially filled

elements.
JDIAGS (5)

At low levels, the space potentials calculated for double points
are printed using this flag. At higher levels, the input of the double
point location list and the double point potentials to major modules of
NTERAK can be monitored.

JDIAGS (6)

This flag causes the particle pushed ion densities to be printed
at the conclusion of the CURREN moduie.
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JDIAGS(7)

Sometimes during the code development of CURREN particles would be
lost in the pushing mechanics. This flag controls the actions to be
taken when particle pus