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ABSTRACT

This research memorandum presents a means of cal-
culating the expected length of "awai+ing-parts time" of
weapon replaceable assemblies, which are needed to cal-
culate aircraft readiness in a multi-indenture, readincss-
based sparing model. The method presented is appro-
priate for any other level of indenture. Although full-
scale application of the model is not feasible at this time,
the model aids in cornparing and evaluating existing
models.
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INTRODUCTION AND SUMMARY

In traditional demand-based sparing (DBS), past replacement rates are used
as future, projected demand rates. After a safety factor is added, these demands
form the basis for a collection of aircraft spare parts that are placed aboard a
carrier and used to repair aircraft and failed components. These parts are called
an Aviation Consolidated Allowance List (AVCAL).

Department of Defense (DOD) policy states that spares provisioning must be
based on weapon system readiness objectives [1 and 2]. In [3], DOD amplified
its position that the methodology used to determine requirements must relate
requirements of secondary items and repair parts to the readiness goals of end
items and weapon systems.

The Navy outlined its response to these concepts in [4]. In particular, based on
the successful results of the F-14A readiness-based AVCAL test conducted aboard
USS Enterprise in 1986, the Navy is implementing readiness-based sparing (RBS)
methodology in determining AVCAL requirements.

In RBS, as in DBS, past demands are used to project future demands. In
RBS, however, tradeoff among parts is performed while producing AVCAL re-
quirements in order to maximize readiness without exceeding a cost limit or to
minimize cost without causing readiness to drop below a certain level.

For the RBS development p-,ject, the Center for Naval Analyses (CNA) was
tasked to examine alternative ways RBS can be used to determine spare-part
requirements for multiple type-model-series (TMS) aircraft sites, and how RBS
can be used in the simultaneous sparing of aircraft components and the subparts
needed for their repair-the multi-indenture, readiness-based sparing (MIRBS)
problem.

This research memorandum focuses on the modeling of MIRBS. Another
memorandum [5] focuses on the problem of gathering correct and appropriate
data.

Although full-scale application of the model is not feasible at this time, its
importance lies in that it facilitates comparison and evaluation of existing mod-
els. RBS methodology cannot be used immediately in simuitaneous sparing of
components and their subparts because existing models use wrong assumptions
and cannot be used even as approximating methods. The model developed herein
is too computer intensive for a full-scale application. In addition, as detailed in
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[5], the quality and type of data currently collected are not satisfactory for such
an application.

The next section of this paper provides background for the model developed
in the subsequent section. Then, approximations to the model are examined and
conclusions given.
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MODELING BACKGROUND

In studying MIRBS, the hierarchical structure of aircraft parts is an important
consideration. In such a structure, an aircraft is composed of weapon replaceable
assemblies (WRAs) (in this study all organizational-level removables are regarded
as WRAs). Each WRA is composed of shop replaceable assemblies (SRAs), and
each SRA is made up of sub-SRAs, and so on until the last sub-SRA and piece
part. In such an indenture structure:

* A single part may consistute a whole WRA.

e Identical parts can be found in distinct parents.

e Identical parts can be found in distinct indenture levels.

Although there are different methods of calculating aircraft readiness, they
all depend on aircraft downtime. Aircraft downtime is a function of WRAs'
turnaround times (TATs). TAT is composed of "awaiting-maintenance time,"
"in-process time" (which is mainly the time actual work is performed), and
"awaiting-parts time" (AWPT). AWPT is the time until the required SRAs be-
come available. AWPT is the link between the two indenture levels. (While the
models presented herein are equally applicable to any indenture level, for the
sake of simplicity this research memorandum focuses on a WRA and the SRAs
composing it.) To calculate aircraft readiness resulting from an AVCAL, the
expected length of the AWPT of each WRA must be obtained.

Two factors are necessary in calculating expected AWPTs:

* Which SRAs fail when their parent WRA fails?

* How long does it take for replacement of those failed SRAs to become
available?

The following assumptions relate to these factors:

* No redundancy is built in, so all failed parts need replacement (series sys-
tems).

* WRAs fail independently (of each other).
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* SRAs fail independently (of each other).

" Total (airwing) demand for each SRA has a Poisson distribution.

" Ordering of spares is done on a one-for-one basis.

" Repair/resupply times of different types of SRAs are independent (of each
other).

" Exactly one SRA fails each time its parent WRA fails (to be revisited).

Under these assumptions, the conditional probability that SRAI failed given
that its parent WRA failed is approximated by the ratio

failure rate of SRAj in this WRA application

Eall js in this WRA failure rate of SRAj in this WRA application

and the conditional expected AWPT given that SRAI and its parent WRA failed
is obtained by using Little's formula [6 and 7], and equals the expected number
of backorders of SRA divided by the failure rate of SRAI in all its airwing
applications.

Although most of the assumptions are reasonable approximations to real life,
the last one is shown to be unrealistic. In table 1, data show that during the
1985 deployments of USS Constellation and USS Coral Sea, only between 15 and
25 percent of the Intermediate Maintenance Activity (IMA) WRA repairs re-
quired exactly one SRA. It is interesting to note that between 50 and 69 percent
of the WRAs required no SRAs at all. Among those 16 to 26 percent of WRAs
requiring two or more SRAs, some required hundreds of SRAs.

It is relatively easy to modify a model that assumes exactly one SRA failure
for each parent WRA failure into one that accounts for failed WRAs that do not
require any SRAs to be repaired. In this case, the conditional probability that
SRAi failed given that its parent WRA failed is approximated by the ratio

failure rate of SRAi in parent WRA application
failure rate of parent WRA (including failures needing no SRAs)

and the conditional expected AWPT remains as before for the case when an SRA
failed and equals zero when no SRA has failed.
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Table 1. Number of SRAs required to repair a WRAa,
Percent

Percent Percent needing
Number of needing needing two or

removals no SRAs one SRA more SRAs

All IMA repairs 29,604 68.4 15.3 16.3

Aircraft repairs 20,852 61.5 18.7 19.8
at IMA

Sampleb 566 50.5 23.5 26.0

a. Data: 1985 deployments of Constellation and Coral Sea.
b. Sample = IMU, radar receiver, receiver transmitter,

GM launcher. All have SRAs.

It is extremely simple to calculate the expected AWPT for both cases (ex-
actly one failed SRA, and one or zero failed SRA). Simply sum over all the SRAs
composing a WRA the product of the probability for the SRA to fail and the con-
ditional expected AWPT for this SRA. (Because in the case of no failed SRAs the
conditional expected AWPT equals zero, it suffices to modify the probabilities.)

Multiple failures present a much more complicated problem. A conditional
expected AWPT calculation that uses the expected number of backorders is valid
if and only if at most one SRA fails. In the multiple-failure case, the distribution
of the time until the last type of SRA is obtained is needed (similar to the
maximum in order statistics). To illustrate the concept, consider the following
very simple example.

There are no spares stocked. n distinct SRAs have failed. Repair/resupply
time of each SRA has an independent exponential distribution with parameter
y. The probability that the time until the last SRA becomes available is less
than t, F(t), is the probability that all SRAs become available before t. Under
the independence assumption, this is equal to the product of the probabilities
that each SRA becomes available before t, that is:

F~t = (1 - ~ 4)n = ( e t)k ( n 1 _ Z (_ )k+ (e -p~It)k ( n )F(t) = (1 - e-1) = "(-e-')t k - k

5s=o

and the expected AWPT, E, equals
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f= [1 - F(t)dt 1) '

u k=1 k k u m

The average repair/resupply time for the single-failure case is 1 To give a

feeling for E (in terms of -) as a function of n (the number of failed SRAs),
several values of E and n are presented in table 2.

Table 2. Sample of expected
AWPT (E) and number of
SRAs (n)
n E

5 2.3/1L
10 2.91A
15 3.3/1
20 3.6/p
25 3.8/p
30 4.0/y
35 4.1/u
40 4.3/p
45 4.4/p
50 4.5/p

It can be seen that E increases sharply at the beginning and then stabilizes.

In the next section, the multiple-failure case with multiple applications of a
type of SRA in a parent WRA and with different parameters (p) for different
types of SRA is discussed.
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MODEL DEVELOPMENT

This section shows how to develop a means to calculate expected AWPTs
when there are multiple SRA failures and multiple SRAs per parent WRA.
The model presented recognizes that in MIRBS problems SRAs compete for
repair/resupply resources with SRAs of the same type from all airwing applica-
tions; that is, given that SRAs of type i are required for WRA 1, .,e waiting time
to get them depends on the total number in the repair/resupply pipeline, not on
the number required by WRA 1. Repair/resupply of the different types of SRAs
belonging to WRA1 is performed simultaneously.

The following situation is considered.

The aircraft whose readiness is calculated, for example A/C 1 , is composed
of, for example, v WRAs, all of which have to be ready (that is, in working
condition) for A/C 1 to be ready. When a WRA, say WRA 1, has been removed
after aircraft inspection or repair, it is either replaced with a whole WRA 1 , or
repaired. While repairing WRA1 , occasionally SRAs need to be replaced (at
least 30 percent of the time). A removed SRA is either replaced with a whole
SRA or repaired. Each type of SRA can be used, in different quantities, in
different WRAs of A/C. It can also be used in OTHER APPLICATIONS, such
as other aircraft of the same type as A/C 1 , or different types of aircraft. Each
removed SRA goes into a repair/resupply pipeline that is characterized by the
type of SRA. (See figure 1.) Under the assumption that WRAs fail independently,
WRA 2 ,... , WRA, need not be explicitly considered when calculating AWPT of
WRA,; our universe can be divided into: WRAI applications, and ALL OTHER
APPLICATIONS (= WRA2 U ... U WRAu OTHER APPLICATIONS).

The following notation is used:

E = Expected length of AWPT of WRA,

Eij = Expected length of AWPT of WRA1 given that at least one
SRA type i, Vie!, is needed, but no SRA type j,
VjEJ, is needed. I J = ,IU J ={1,...,n}

P(I, J) = Probability {at least one SRA type i, ViE!, is needed but
no SRA type j, VicJ, is needed}
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Figure 1. Flow of SRAs into repair/resupply pipelines
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S= Rate at which a WRA1 used in A/C 1 is removed and repaired
aboard ship

Ai = Removal rate of an SRA, used in WRA1 ; i = I,...,n

7i = Total removal rate of SRAI (all applications); i = 1,... In

7'i = Mean repair/resupply time of SRA; i = 1,...,n

q4 = Quantity of SRAI per WRA1 ; i = 1,...,n

3i = Number of spare SRAs type i initially stocked (AVCAL);
i = 1,... ,n

Ki = Total number of SRAs in the repair/resupply pipeline for
SRAs type i, including all the SRAs type i needed for WRAI;
i = 1,... ,n

Pi(k) = Probability Ki = k; i = 1,2,...,n; k = 0,1,...

Ti = Total time waited for repair/resupply of all SRAs type i in
the pipeline; i = 1,...,n.

The derivation logic and assumptions follow those outlined in the previous
section. Now, by the law of total probability, we have:

E = Ei,j -P(I,J) (1)

VIJ 3 I 10
In J=o
IUJ ={1,...,n}

The probability that SRAI failed in a given WRA failure is estimated by

so
i 

9

estimates the probability that no SRA type i has failed in a given WRA failure.
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Thus, P(I, J) is estimated by:

P(I,J) A l - - l (2)

and

Ej~j f Go[1 - Probability{AWPT of WRA1 _< t I at least (3)

one SRA type iVi E I, is needed, but no SRA type j,

Vj E J, is needed}]dt

By assuming independence among SRAs of different types, equation 3 can be
rewritten as:

E j T [1- iIIProbability{ T t}]dt . (4)

Again, using the law of total probability:

Probability {T : t} = YProbability{T _t I K = k} .P(k) (5)
k=0

Let us assume that total demand (all applications) for SRA is distributed
Poisson (dy,). Then, each repair/resupply pipeline can be modeled by a
M/G/oo/oo/oo queueing system. (In standard queueing theory [6and 7], this
notation means that interarrival times are exponential random variables, the ser-
vice times' distribution is not specified, and there are infinite numbers of servers
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and customers/parts, and no capacity constraints are imposed on the system.)
For such a system, the number of customers, that is SRAs, in the system is
distributed Poisson (-yii), or:

Pi(k) = e-(1iri)(-iTi)k/k!; k -0,1,... (6)

And, the output of the system (that is, repaired/resupplied SRAs) is distributed
Poisson (-ti), just as the input. It should be noted that these results are inde-
pendent of the service (that is, repair/resupply) time distribution.

Now, since the output is Poisson, times between outputs are exponentially
distributed, so:

Probability {T < t I Ki = k} = (7)

Probability {sum of k exponential random variables < t}

Equation 7 holds only for k > Si. For k < Si there is no waiting at all, and
thexi Probability {T < t} = 1 for all t > 0, (since Probability {Ti = 0} = 1).

Thus, using equations 6 and 7, equation 5 can be rewitten as:

Probability {T < t} (8)
SI= 1.e "Iikk

k=O

00 t k-S-
+ 1 1i , .= r-- -) e-fiUdu] e-Cir)(-ri)"/k!

k=S1+1 LO(k -Ji

= e k Ti -" ) (-,-,)A/k! + .. E7 ,,"i) ,y"--Ik,)
k=O k=$+l

(k - , 1)!-e -
k _lk-S i- 1

= 1 - ~~-~e-"i)(yiri)k/k! e-tt(-yit)"/m!
k=Si + m=0
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At this point, let us return our attention to equation 4 and let us denote

Probability {T ! t} by Fi(t) and 1 - F(t) by Fi(t). Then,

= [1- (i)] d i (9)

= LO~ 11(-1) P1EJ fFi (t) dt

9ii EI;j =1,...,p
and

*11 1 = ,. . P-0 F1
= (-1) -  = 1 fo M Ft) ai

1)ii E I;j = 1,...,p

and
ij+l > ij;j = 1,...,P- I

Using equation 8 for F(t), we solve the integral of equation 9.
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j~([t)~] dt (10)

Go cc

k, =Sl 1 pSl

k= (P -1 k=S, ) I +1 -p- e ( -Yi )(7 ,1 )k. /k1 .

Eps1 + ,1j. . . e.. 'f tt p

E ~ ~ ~ I Z--,i)-j-j'/j . e ('YiiP,rj,,)k/kp!

fi = 1(m .1 j=1 ,S,,1+vu

ki-S -I ,Yil ml k -SP 1 3, M PM)P



Equation 11 has an interesting probabilistic interpretation; it equals:

E E ... E Drobability{M, , m ,.Mp = m,} (12)

j=1 vm1 =O MP=O
P

II Probability{Kii - si > Mi I M, = Mi}
j=1

with

... , Mp) - Multinomial ( 7i7 ,

and Ki, -" Poisson (Tt);j = 1,... ,p.

This is a generalization of E = -L. Expected number of backorders, which is
obtained by setting p equal to 1.

This section is closed by synthesizing equations 1, 2, 9, and 11 to yield:

fI"l

E(-1)P1 (13)
VI, J I 1 €P=1 v(il,..., ip)
In J = ij E I;j = 1,...,p
IU J ={1,...,n}ij+l > ij;j ,p-

041=0 Yi 'rj [P j. Il 1 m!
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MODEL APPLICATION

As mentioned previously, the theory developed in this paper is applicable to
any level of indenture. However, the computational complexity (see equation 13)
and the quality of available data (see [51) limited application down to only the
SRA level.

As mentioned in the Modeling Background section, expected AWPTs are
required to calculate aircraft readiness. The method developed in the previous
section was incorporated into the multi-indenture version of CNA's Multi-Item,
Multi-Echelon (MIME) model. In MIME, an additional WRA or SRA is stocked
if it increases most aircraft readiness per dollar, up to a prespecified budget
limitation.

To implement the method, the infinite sums-of equation 13-were approxi-
mated by finite sums. This was accomplished in the following way.

The number of spares stocked initially aboard ship plus an integer, say m,
was substituted for infinity. m was varied from 1 to 200, and expected AWPTs
for several representative real-life data cases were observed. After m exceeded
six, expected AWPT changed less than one hundredth of a day. This magnitude
of change was judged acceptable. The intuitive reasoning for such a good ap-
proximation is the lack of concentration of probability masses on the righthand
tail of the Poisson distribution for these real-life data.

Because of the combinatorial nature of the MIRBS problem, each subproblem
must be solved many times, and each subproblem is complicated and computa-
tionally intensive. Therefore, computer central processing unit (CPU) times are
in the magnitude of hours, which is unacceptable for real-life-sized applications.

To overcome the obstacle of computer resource scarcity, approximating or
bounding models were sought. The first candidate was the Availability Centered
Inventory Model (ACIM) [8]. Although ACIM belongs to the class of models
that assumes exactly one SRA failure per WRA failure, which happens in only
15 to 24 percent of the cases considered in table 1, its very short CPU time
requirements warranted a try.

The second candidate was a CNA-modified ACIM that allows zero SRA re-
quirements when a WRA fails, the ACIMO model.

The subroutines calculating the expected AWPTs were altered to print out
the values at each iteration of the AVCAL requirements determination. ACIM
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AWPT and ACIMO AWPT were compared to the expected AWPT calculated by
the method developed in the previous section, NEW AWPT. The comparison was
performed for a radio receiver WRA with five SRAs. This WRA had (relatively)
reliable data, and five is the largest number of SRAs for which NEW AWPT
produces exact results. A sample of the outcome is presented in table 3.

Table 3. AWPTs for a radio receiver
with five SRAs

Number of NEW ACIM ACIMO
spare SRAs AWPT AWPT AWPT

in stock (days) (days) (days)

0 4.6 3.0 2.7

1 0.6 1.1 1.0

2 0.5 0.8 0.8

3 0.4 0.4 0.4

4 0.3 0.6 0.6

In using the table, it should not be inferred that increasing the number of
spares vertically from three to four would result in an increase from 0.4 to 0.6 in
AWPT, because the three spares are not necessarily a subset of the four spares
in the next line.

A horizontal comparison makes it clear that ACIM AWPT and ACIMO
AWPT cannot be used as bounds for NEW AWPT, because while ACIM AWPT
is greater than or equal to ACIMO AWPT in all cases, no such relationship was
established to hold in regard to NEW AWPT.

As approximating methods, the average percentage of

IACIM AWPT - NEW AWPTI
NEW AWPT

is 56 percent, and the average percentage of

I ACIMO AWPT - NEW AWPT [
NEW AWPT
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is 54 percent, These numbers are too high for an acceptable error by an approx-
imating method.

It should be mentioned that the Aviation Readiness Requirements Oriented
to Weapon Replaceable Assemblies (ARROWs) model-being intalled at the
Navy Aviation Supply Office (ASO)-uses the expected number of backorders
in its formulae for calculating expected AWPT. As explained in the Modeling
Background section, this approach is valid only under the assumption that at
most one SRA fails with a WRA.

Having seen that models making this assumption give wrong answers quickly,
one more attempt to approximate the NEW model was made.

By assuming independence of random variables M1,... ,Mp in formula 12,
the multinomial distribution term can be factorized and the summations per-
formed individually for each of the mi,..., mp indices, which simplified calcula-
tions greatly.

Regarding the accuracy of this approximation: in the worst case, when no
spares are stocked, AWPT is, on the average, 5 percent (or about a quarter
of a day) off; when the number of spares stocked is approximately the same
as the average number of spares in the repair/resupply pipeline, the difference
in AWPTs is less than a thousandth of a day, quite a good approximation-
surprisingly good, especially in view of the fact that the independence assumption
is totally wrong from the probabilistic point of view.

Regarding calculation times, CPU times were reduced by a factor of 30, but
this is still much slower than ACIM and too slow for large-scale application.
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CONCLUSIONS

Models assuming at most one SRA failure per parent failure compute ex-
pected AWPT very quickly, but use the wrong assumption. A correct model was
developed but it is very computer intensive. The fast models cannot be used
as approximating or bounding methods. A good approximating method was
developed, but it is still too computer intensive for full-scale application. New
computing approaches, such as parallel computing, raise hope for application,
but data quality problems must be resolved first.
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