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SYNERGETIC MULTISENSOR FUSION

Summary

Synergetic multisensor fusion is the process of integrating

information obtained from diffe '-ent sensing modalities in order to

extract additional information that cannot be obtained by separately

processing the signals from the different sensors. The development of a

computer vision system using synergetic multisensor fusion is a complex

task which encompasses sensor modeling, environment modeling,

determining the analytic models used to interrelate the different

sensing mechanisms, determining the models used to interrelate the

sensed parameters of imaged objects (such as thermal emissivity, visual

reflectance, and radar reflectance), and devising algorithms to exploit

the derived models. We have developed powerful and robust algorithms

for computer vision tasks based upon synergetic multisensor fusion. Our

approach is suitable for applications such as object recognition,

tracking, surveillance, and autonomous guidance.
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Statement of the Problem Studied.

The automated interpretation of sequences of images for the purposes of
detecting man-made objects, recognition of objects, and locating and tracking
objects has many important applications in the peace-keeping activities of the
Department of Defense. These activities include automated surveillance and
monitoring, autonomous navigation fox smart weapons, and industrial robotics,
among others. The extraction of useful information from digitized imagery in
a timely manner is crucial to these tasks. Due to the large amount of data to
be processed, the presence of noise in the imagery, the absence of complete
information, the ill-posed nature of the problems, and inadequate modelling of
the scene and the sensors, such extraction is a very complex task. A broad
program of research in machine vision is needed to establish useful and prac-
tical methods for machine perception of targets and guidance of payloads.

Past research in machine perception has focused mainly on use of a sin-
gle sensing modality, such as a video camera or an infrared camera. A great
deal of effort has been devoted to interpreting imagery sensed by each
(single) modality. The many techniques based on this approach work only in
highly constrained environments and require enormous amounts of computational
resources. Such research efforts in multisensor fusion are of limited scope,
and consisted mainly of developing empirical, ad hoc techqniques to accomplish
narrowly defined tasks. These efforts used simple strategies such as merely
combining the results obtained from separately processing sensor outputs to
produce a larger set of features to classify. This type of sensor fusion does
not produce features that are more discriminatory, but simply increases the
dimensionality of the feature space, at the cost of a sharp increase in the
computational demands--thus nullifying the advantages of sensor fusion.

Multisensor fusion allows for the integration of information in a syner-
getic manner--that is, it allows the extraction of new information that cannot
be obtained by separately processing signals from the various sensors. This
characteristic of multisensor fusion is illustrated by the case of stere-
oscopy, where the determination of depth information is possible only when
features from both left and right images are examined concommitantly. Such
synergetic processing can be extended to the integration of diverse sensing
modalities, e.g., the integration of information from thermal and visual
images in order to obtain an estimation of surface heat fluxes at the surface
of an object, which in turn yields features that enable object recognition.
Synergetic multisensor fusion offers several other advantages, including an
increase in the number of feature obtained, which leads to increased ability
to discriminate objects; an increased robustness, due to the redundancy of
information obtained, which provides fault-tolerance and the ability to adapt
to changing conditions; and an increase in computational efficiency, since the
additional information provided by synergetic multisensor fusion and the
resulting increase in feature discrimination allow the use of simpler classi-
fication algorithms and provide increased accuracy in classification.

The primary objective of our research under this contract was to develop
powerful and robust algorithms for computer vision tasks based on synergetic
multisensor fusion. Our approach was intended to facilitate the integration
of several sensing modalities, such as infrared, visual (including color and
stereoscopy), radar, and other available active and passive sensing modes. In
the course of developing such algorithms, it was necessary to identify and
address the various issues involved in integrating sensing modalities, includ-
ing the fundamental issues of sensor modeling, environment modeling, determin-
ing analytical models to interrelate the sensing mechanisms, determining
models to interrelate the sensed parameters of the imaged object, such as
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thermal emissivity, visual reflectance, and radar reflectance, and finally,
determining the algorithms that make optimal use of the derived models. The
work included establishing analytical models for sensors and environment,
using these models to specify sen3itive and specfic features, and devise algo-
rithms based on these features to detect, classify, and track objects in the
sensed scene.

Summary of Important Results.

Presentation of our research results has been organized as follows.

1. Multisensor Fusion of Thermal and Visual Images

2. Segmentation and Understanding of Ladar Images

3. Interpretation of Range Imagery

4. Passive Aerial Navigation by Image Sequence Analysis

5. Identifying Man-made Objects in Outdoor Scenes / Fusion of Color

and Geometry Information

6. Positional Estimation Techniques for An Outdoor Mobile Robot
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1. INTERPRZT!TXON O THERMAL AND VISUAL SENSOR INFORMATION.

Past research in computer vision has shown that the interpretation of a
single image of a scene is a highly underconstrained task. Fusion from multi-
ple cues from the same image, and fusion from multiple views using the same
modality have been marginally successful. Recently, the fusion of information
from different modalities of sensing has been studied to further constrain the
interpretation. A number of approaches have been developed for image segmen-
tation and the analysis and understanding of the segmented images using multi-
sensor fusion. In this section, we describe a system that uses registered
thermal and visual images for surface heat flux analysis, and an image synthe-
sis system that generates visual images as well as thermal images based on
internal heat flow in objects. In the following section, we detail a system
based upon fusion of ladar (laser radar) and thermal images.

Our approach is based on the phenomenological modeling of infrared and
visual signal generation and detection, and the relationship between these
signals and the intrinsic thermal properties of the imaged objects. The
approach combines information from thermal and visual imagery to classify
objects based on the estimated lumped thermal capacitance of the imaged
objects.

To briefly describe our approach developed for combining thermal and
visual sensors for outdoor scene perception, we develop a computational model
that allows us to derive a map of heat sinks and sources in the imaged scene
based on estimates of surface heat fluxes. A feature which quantifies the
surface's ability to sink/source heat radiation is derived. Aggregate region
features are used in a decision tree based classification scheme to label
image regions as vehicle, building, vegetation or road. Real data are used to
illustrate the usefulness of the approach.

We assume that the thermal image is segmented into closed regions by a
suitable segmentation algorithm and that the thermal and visual images are
registered. The thermal image is processed to yield estimates of object
surface temperature [1]. The visual image, which is spatially registered
with the thermal image, yields information regarding the relative surface
orientation of the imaged object (1]-(3]. This information is made available
at each pixel of the images. Other information such as ambient temperature,
wind speed, and the date and time of image acquisition is used in estimating
the surface heat fluxes at each pixel of the image.

Consider an elemental area on the surface of the imaged object.
Assuming one-dimensional heat flow, the heat exchange at the surface of the
object is represented by Figure 1, where Wi is the incident solar radiation,
qi is the angle between the direction of irradiation and the surface normal,
the surface temperature is Ts, and Wabs is that portion of the irradiation
that is absorbed by the surface. Wcv denotes the heat convected from the
surface to the air which has temperature Tamb and wind speed V, Wrad is the
heat lost by the surface to the environment via radiation and Wcd denotes the
heat conducted from the surface into the interior of the object.

At any given instant, applying the principle of conservation of energy
at the surface, the heat fluxes flowing into the surface of the object must
equal those flowing out from the surface. We therefore have
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Wabs - Wcv + Wcd + Wrad (1)

Wabs is computed at each pixel using surface reflectivity and relative surface
orientation information which is estimated from the visual image, along with
knowledge of the incident solar radiation. Wrad is computed from Stefan-
Boltzman's law knowing sky temperature and surface temperature. We use the
empirical convection correlations developed for external flow over flat plates
for computing Wcv. Having estimated Wabs, Wcv and Wrad, Wcd is estimated us-
ing equation (1). The estimation of surface heat fluxes is described in detail
in references (1]-[33.

The surface heat balance described by equation (1) and Figure 1 depends
on several time varying parameters. In such a dynamic situation the rate of
heat loss / gain at the surface must equal the rate of change of internal
energy of the object. Hence, we have:

Wcd - DVc dTs/dt

where D is the density of the object, V is the volume of the object, c is the
specific heat of the object, and t denotes time. Let h denote the convection
heat transfer coefficient, eo the surface emissivity, and a the Stefan-
Boltzman constant. Considering a unit surface area, the equivalent thermal
circuit for the surface is shown in Figure 2, where the resistances are given
by:

Rcv - 1/h , Rrad - i/EOO(T2 + T2 )( Ts+ Tapb)s amb) s ab

Note the dependence of the latter on the driving potential, i.e., the
temperature difference. The lumped thermal capacitance of the object is given
by Ct - DVc. A relatively high value for Ct implies that the object is able
to sink or source relatively large amounts of heat. Note that the conduction
heat flux at the surface of the object is the component that affects the
internal energy of the object, and is dependent upon both the rate of change
of temperature as well as the thermal capacitance. In our experiments, we have
found the rate of ci.ange of surface temperature to be very small except during
the short period of time when the surface of the object enters into or exits
from a shadow (1]. Hence, in general, the predominant factor in determining
the conduction heat flux is the thermal capacitance of the object.

An estimate of Wcd provides us with a relative estimate of the thermal
capacitance of the object, albeit a very approximate one. Table 1 lists
values of Ct of typical objects imaged in outdoor scenes. The values have
been normalized for unit volume of the object. The value shown for automo-
biles has been computed using the volume of an entire automobile, its weight,
and the specific heat value for mild steel.
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Figure 1. Surface heat nu xcs 

Figure 2. Equivalent thermal circuit of the imaged surface. 

Figure 3. Visuallmagc of Scene 
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Figure 5. Mode of heat flux ratio for each region 

Figure 6. Surface reflectivity for each region 

Figure 7. Average region temperature 

Figure 8. Region labelling by classifier 
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Object Thermal

(x10- 6 Joules/Kelvin) Capacitance

Asphalt Pavement 1.95

Concrete Wall 2.03

Brick Wall 1.51

Wood(Oak) Wall 1.91

Granite 2.25

Automobile 0.18

Table 1. Normalized values of lumped thermal capacitance.

Note that the thermal capacitance for walls and pavements is signifi-
cantly greater than that for automobiles; hence, Wcd may be expected to be
higher for the former regions. Plants absorb a significant percentage of the
incident solar radiation for photosynthesis and transpiration. Only a small
amount of the absorbed radiation is convected into the air. Therefore, if
equation (1) is used, the estimate of the Wcd will be almost as large
(typically 95%) as that of the absorbed heat flux. Thus Wcd is useful in esti-
mating the object's ability to sink/source heat radiation, a feature shown to
be useful in discriminating between classes of objects. Note that Wcd is pro-
portional to the magnitude of solar irradiation incident on that surface ele-
ment. In order to minimize the feature's dependence on differences in ab-
sorbed heat flux, a normalized feature was defined to be the ratio
R- Wcd/Wabs.

Although the heat flux ratio Wcd/Wabs captures a great deal of informa-
tion about the imaged object, it cannot unambiguously identify the imaged ob-
ject. Other sources of information must be used. Our classification scheme
uses information such as the surface reflectivity of the region derived from
the visual image and the average region temperature derived from the thermal
image. Also, a histogram of the values of Wcd/Wabs for each region is com-
puted, and the mode of the distribution is chosen to represent the heat flux
ratio for that region.

The classification of regions is based on rules which use the above fea-
tures. The rules are of the form:

IF {VALUE(R) e [0.2,0.9) AND VALUE(reflectivity) e [0.35,1.0]1
OR (VALUE(R) e [-.8,-.3]) THEN IDENTITITY - BLDNG

Rules of the above form were derived for each class of object to be
identified. The intervals were specified heuristically based on observed vari-
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ations in the values among different regions of the same class.These rules
were encoded in a decision tree classifier.

We tested this approach using real data gathered from naturally occur-
ring outdoor scenes (4]. Figure 3 shows the visual image of a scene imaged at
1:30 pm in March. Figure 4 shows the thermal image of the same scene. A his-
togram of values of the ratio Wcd/Wabs is computed for each region, and the
mode of each distribution is obtained (Figure 5). The surface reflectivity
(Figure 6) of each region and the average region temperature (Figure 7) are
also computed. These features are used by the classification algorithm dis-
cussed above, which labels to each region as a vehicle, building, vegetation,
or road, as shown in Figure 8.

The method described above was tested on other similar sets of data ob-
tained at different times of the year and obtained results consistent with
those presented here. Figures 9, 10 and 11 show data and results acquired
from a tank surrounded by vegetation. Again, the values of the heat flux ra-
tio for vegetation are highest, while those for the tank are lower. The clas-
sifier used for the previous experiments, however, will fail for this object
since the lumped thermal capacitance of the tank is much higher than that of
automobiles. The classifier, therefore, must be designed for the domain of ap-
plication. In other words, rules for recognition are task-specific.

The results discussed above were presented at the First International
Conference on Computer Vision (London, 1987) [5]. A paper based on these
results was also published in the IEEE Transactions on Pattern Analysis and
Machine Intelligence [4]. Generalization of these results was presented at
the IEEE International Conference on Robotics and Automation [2]. Our group
has presented these results at the NATO Advanced Research Workshop on Highly
Redundant Sensing for Robotic Systems [6) and the NATO Advanced Research
Workshop on Multisensor Fusion for Computer Vision [7], and at the NSF
Workshop on Range Image Processing [8).

The work described above was extended to the integrated modelling of
thermal and visual image generation. Preliminary results based upon the inte-
grated modeling of thermal and visual images were presented at the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (San
Diego, 1989) [9]. Figures 12 - 14 show results obtained from that work.

A related paper on the simultaneous modeling of three dimensional
objects for visual and thermal image synthesis was presented at the 1990
Optical Engineering Southcentral Symposium [10). A volume surface octree is
used for ,bject modeling. This representation was found to be suitable for
thermal modeling of complex objects with non-homogeneities and heat
generation. The technique to incorporate non-homogeneities and heat
generation using octree intersection was discussed. The proposed model can be
used to predict discriminatory features for object recognition based on the
surface temperature and intrinsic thermal properties in any desired ambient
condition. The model is designed to be used in a multisensor vision system
using a hypothesize and verify approach. Several examples of the generated
thermal and visual images were presented to illustrate the usefulness of the
approach.

7



a

8



9 

Figure 9 . Thermal Image 

Figure 10. Visual Image 

Figure 1 1 . Ratio of conducted 
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Figur e 12 . Visual Image of Object . 

Figure 13. Temperature i mage of 
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2. SEGMZNTATION AND UNDZRSTANDING OF LADAR ZMAGES.

Continuing our efforts at understanding multisensor images, we have de-
veloped a system for image segmentation, analysis, and understanding using
laser radar and thermal images. This work includes several new segmentation
techniques for multisensor images and a prototype expert system for interpret-
ing these segmented results, which are briefly described below.

We have studied ladar images of manmade objects in outdoor scenes with
the objective of separating man-made objects from the background. At first,
we explored ways to integrate information from two sources and analyzed re-
sults using both ladar range and ladar intensity data to improve segmentation.
We used planar surface fitting to segment the range image. The background
usually could not be fit into planar segments. Objects, on the other hand,
yielded planar segments. The intensity image was segmented by finding statis-
tics of local busy-ness. We intersected these segmentation maps to generate a
combined result. The integrated segmentation results showed strong resem-
blance to human-generated segmentation, and shared nearly coincidental region
contours. Further, by examining the computed means and standard deviations,
we found that (i) different types of targets generate different statistics in
intensity data, and (i) the background segments have much higher standard de-
viations in range data than object segments. These preliminary results, based
on the segmentation of range and intensity portions of images, were presented
at the 1988 Conference on Pattern Recognition for Advanced Missile Systems
(11]. We continued the development of this system with the addition of veloc-
ity images of the ladar signal. Results based on velocity, range, and inten-
sity were presented at the Sensor Fusion Workshop II: Human and Machine
Strategies (Philadelphia, 1989) [12], and published in Pattern Recognition
[13]. In addition, we have added a module for segmenting thermal images. The
segmentation obtained from the four modalities is combined using a procedure
described later in this section.

We have developed a prototype system for interpreting segmented laser
radar (ladar) images for man-made object recognition and image interpretation.
The objective of this prototype system is to recognize military vehicles in
rural scenes. The system uses a knowledge-based system which is constructed
using KEE rules and LISP functions, and uses results from preprocessing mod-
ules for image segmentation and integration of segmentation maps. Low-level
attributes of segments are computed and converted to KEE format as part of the
databases. The interpretation modules detect man-made objects from the back-
ground using low-level attributes. Segments are first grouped into objects,
and then man-made objects and background segments are classified into pre-de-
fined categories, such as tanks, ground, etc. A concurrent server program is
used to enhance the performance of the knowledge-based system by serving nu-
merical and graphical-oriented tasks for the interpretation modules [12].
Complete results on this expert system will be presented at 1991 Conference on
Artificial Intelligence Applications (143, and will be published in Machine
Vision and Applications (15].

-In addition, we have developed a new approach for segmenting scenes us-
ing multisensor data based on the pyramid data structures. In this approach,
image pyramids are built for each sensing modality. Information fusion between
these pyramids is used to establish the scene segmentation. We applied the
technique to real multisensor data to test its performance. The segmentation
which results from this technique is suitable for use by vision systems which
classify objects (image regions) using multisensor data. A paper containing
the details of our approach and experimental results was recently published in
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Pattern Recognition (16] . The application of this approach to thermal and vi sual scenes , and the advantages of this approach over previous techniques which use a singl e imaging modality are also discussed. 

Recently, we have formulated and impl emented an interesting method for combining region and edge-based segmentation. These results were presented at the 1990 International Conference on Computer Vision in Osaka , Japan (17 ] . This algorithm integrates segmentation maps using both region and edge segmentation maps as input to obtain a region map in which each region is large and compact. The operation is efficient and independent of image sources as well as segmentation techniques. The a l gorithm allows multiple output maps and applies user-selected weights on various information sources . The scope of integration is parametrically control led for the desired spatial r esolution. A maximum likelihood estimator provides initial solutions of edge positions and strengths from multiple inputs. An iterative procedure is then used to smooth the resul tant edge patterns. The edge map is converted to a region map, using closed edge contours if desired. Finally, regions are merged to ensure that every region has the required properties. Experimental results are demonstrated using various segmentation techniques and real data from laser radar and thermal sensors. 
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3. nIM3RIT3ATXON Or RANGZ IMAGERY.

The Computer and Vision Research Center is a leader in the interpreta-
tion and understanding of range images. One of the earliest contributions on
this subject was pr-isented by Vemuri and Aggarwal at the 1984 International
Conference on Pattern Recognition (18]. Subsequent contributions were pub-
lished in the journal, Image and Vision Computing (19], in the book,Three
Dimensional Machine Vision (20], in Proc. Conf. on Computer Vision and Pattern
Recognition (1986) [21], and in IEEE Trans. Circuits and Systems (22).

Over the past five years, active devices have been developed which can
provide three-dimensional data directly to vision systems. We have examined
the progress that has been made in the field of 3-dimensional computer vision,
from data acquisition to object recognition, and reviewed published research
results [23]. This review of the state-of-the-art of 3-D computer vision was
presented at the 1988 International Conference on Pattern Recognition (24].

As described in greater detail below, we have developed a hierarchical
approach for segmentation of dense, 3-D range images. Our first attempt at
segmentation used four local properties (the 3-D coordinate, the surface nor-
mal, the Gaussian curvature, and the mean curvature of each data point),
combined in a hierarchical data structure to segment a given 3-D dense range
map into surface patches. This algorithm applies to planar and curved sur-
faces. This research was presented at the 1988 IEEE Conference on Systems,
Man, and Cybernetics [25]. Subsequently, we developed a more robust algorithm
based upon the surface normal and its projections, which we presented at the
recent International Conference on Computer Vision in Osaka [26].

A model-based vision system has been developed in which a commercial CAD
system is used for object modeling. Assuming that the model is known, the
corresponding object in the scene is located. Given the CAD model of an ob-
ject, certain features of the model are extracted, while others are precalcu-
lated and stored. Using the newly developed segmentation procedure, the given
dense 3-D range image is segmented into a set of homogeneous surface patches.
Properties such as curvature, surface normal, and surface area are approxi-
mated for each surface patch. For each extracted surface patch, three filters
are applied to the previously obtained model features to find the best match.
Then a global consistency filter is applied to remove ambiguities and to find
the best matched model (27]. In addition, we have developed methodology for
constructing octrees from range images [28].

In a study on the determination of motion from a sequence of range im-
ages, we have developed an algorithm that uses extracted planar patches from
the scene to estimate motion. Given the correspondence between planar surface
patches in a sequence of 3-D range images, and assuming that the object is
rigid, the motion transformation is estimated. The plane surface parameters
are used to formulate a least square optimization problem that computes the
optimal rotation and translation. This results in the transformation that
best fits the images. This algorithm proved to be reliable on both synthetic
and real data [29].

Another aspect of our research relating to object recognition, in which
occluding contours are used for model construction and shape recognition, is
given in a paper by Chien and Aggarwal, published in the IEEE Transactions on
Pattern Recognition and Machine Intelligence [30]. This approach, which is
based upon octree descriptions of each model and a hypothesis/verification
process, allows planar and curved objects to be handled in a uniform manner.
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The octree structure is a popular means for representing the volume of 3-D ob-
jects. When surface information is encoded into an octree, the resulting oc-
tree is called a volume/surface octree (VS octree). The VS octree is a com-
pact and informative representation of 3-D objects.

In the following, we present partial details some of our most recent re-
search contributions in range image understanding. The work described in the
section entitled "Segmentation of Range Images," was presented at the 1990
International Conference on Computer Vision (Osaka, Japan) [26]. The work de-
scribed in the section entitled "Motion from a Sequence of Range Images" was
presented at the 1990 International Workshop on Intelligent Control (Istanbul,
Turkey) [29].

SagmntAtion of Range rmaaer.

The first step in any object recognition task is to partition the input
data into homogeneous regions and extract a set of primitives. In this sec-
tion we address the problem of partitioning range imaging that represent the
3-D coordinates of each point in the scene. Specifically, the problem ad-
dressed is stated as follows: Given a 3-D range image of a scene containing
multiple arbitrarily shaped objects, segment the scene into homogeneous sur-
face patches.

Much work has been done in the past on the segmentation of range images.
Besl and Jain [31], Fan, Medioni, and Nevatia (32], and Brady, et al. [33),
segment the images by using the Gaussian curvature and the mean curvature to
determine the similarities and dissimilarities in the data. Hoffman and Jain
[34] cluster the input data into regions by detecting connected planar, con-
vex, or concave surfaces using various statistical measurements made on sev-
eral properties of surfaces. Most of the remaining range segmentation ap-
proaches depend upon the types of expected surface shapes. For example,
Boulanger and Rioux (35] segment planes, spheres, ellipsoids, and other simple
quadric surfaces; Han, Volz, and Mudge [36] and Flynn and Jain [37] segment
planes, spheres, and cylinders. While these approaches may be well suited for
specific applications, they lack the generality needed for most real world ap-
plications. The common drawback to most algorithms is their requirement for
many empirically determined thresholds. Since these thresholds are dependent
on the quality and the type of the input data, such algorithms can only be
used for a small class of input data. For each class of input data, the
thresholds must be readjusted. For the algorithm to be independent of its in-
put data, it is important that the thresholds be derived from the data itself.

Tn general, a segmentation procedure partitions a given image into homo-
geneous regions. The segmentation should depend on the input data type and on
the final representation of the homogeneous regions. These qualifications
suggest a two-part framework for segmentation: one driven by the input data
and a second driven by the final region representation. In this procedure, we
adopt such a modular framework. Figure 17 shows the overall organization of
the segmentation scheme. The procedure is divided into two modules. The first
module is the low level segmentation module where the local properties are ex-
tracted from the given input data, and clustered into homogeneous regions.
This module gives an initial over-segmented output. These over-segmented
regions are merged in the second module using the surface representations dic-
tated by higher vision tasks.
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Low Level Segmentation High Level Segmentation

Figure 17. Overall Organization of the Segmentation Scheme

Low Level Segmentation Module. The low level segmentation module uses
local information to arrive at a preliminary segmentation of the input data.
The module is divided into two stages. The preprocessing stage computes
the local properties of the input data, and the pyramidal clustering
stage clusters the data into homogeneous regions. The clustering is per-
formed using four properties which are calculated by the preprocessing stage
for each point in the range image. The four properties are the surface normal
vector, its three projections onto the xy-plane, the yz-plane, and the xz-
plane. The projections are equivalent to the views generated by viewing the
scene from three orthogonal directions. Prior to calculation of these proper-
ties, smoothing is performed to reduce the noise level. Each of the four im-
ages generated by the preprocessing stage are independently used by pyrami-
dal algorithms, resulting in four initial segmentations. The pyramidal al-
gorithm is an iterative procedure that clusters pixels with similar properties
into groups in a hierarchical manner. The four segmentation outputs are then
added, resulting in a maximally partitioned image. The result of this module
is an over-segmented image.

High Level SegRmntati-on Module. The resulting segmentations from the
first stage represent a local grouping of the corresponding local property.
The second stage of the procedure merges the regions based on certain ' omo-
geneity criteria, which depend on the final representations of the surface
patches to be used by the high level tasks. This stage can be modified ac-
cording to the application that uses the segmentation results. Here we use
bivariate polynomials of up to fifth degree to represent each patch. Two ad-
jacent surface patches are merged .'f parameters of one of the patches results
only in a small error when used to extrapolate over the neighboring patch.

Figures 18-22 show results obtained using this segmentation procedure.
Range images were obtained from several institutions and the parameters were
unchanged for all the examples shown. The details of the segmentation proce-
dure are found in the paper by B. Sabata et al. f26]. The original range
image is shown on the left, and the results on the right.
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Figure 18. Left: Complex range image of several ob jects obtained by 100A Technical Arts Laser Scanner (The University of Texas at Austin) . Right : Segmentation results. 

Figure 19 . Left: Range image of model space shuttle (obtained from SRI International) . Right: Segmentation results . 
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Figure 20. Left : Range image 
Southern California) . 

of c hair (obtained fr om University of 
Right: Segmentation results. 

Figure 21. Left: Complex range image of severa l objects obtained by lOOA 
Technica l Arts Laser Scanner (The University of Texas at Austin) . 
Right : Segmentation results. 
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Figure 22. Left: Image of scene containing two polyhedrals, one atop the 
other, and a third object with a cylindrical region (obtained from 
Michigan State University.) Right: Segmentation results. 

Motion from a Se~uence of Ran~e Ima~es. 

A new robust method to estimate motion from a sequence o f range images has been developed, which uses the correspondence between planar surfaces in a sequence of images rather than point and line correspondences. Rotation and translation are both determined using properties of the planar surfaces, such as surface normal and surface intersection. Because global features are used, the method is less sensitive to noise, quantization errors, and partial occlus ion of the surfaces . This method can be applied to a scene containing several objects,each with a different motion. The algorithm has been tested on sequences of synthetic data as well as laser range data . 

Many algorithms have been developed for computing motion from sequences of stereo images which rely on point feature correspondence. These algorithms are ve r y sens itive to noise, particularly errors which accrue due to quantization of disparity. Very few investigators have studied estimation of motion from a sequence of range images. Lin, et al., [38] and Aloimonos and Rigoutsos (39] discussed correspondence-less methods of estimating motion from sequences of images. Their main assumption is that a point feature visible in one image must be visible in the next . Correspondence is not required. They also assume that the set of points lie on a plane. The assumption that the s ame points are visible from one image to the next generally does not hold for real data acquired from available laser ranging systems. 

In most existing algorithms, point or line correspondences in the sequence of images are established prior to estimating motion. In practical situations, occlusion and noise greatly complicate the establishment of point or line correspondence . Unlike 3-D points, a surface in that appears in one image is mo re likely to appear in the next . It is unlikely that the entire surface will be completely occluded. Hence, using surface correspondences could minimize problems due to occlusion. The sensitivity to error of individual features does not argue against information in the aggregates; however, since the surface is derived from a large set of points, as compared to line and point features, the surface fitting process suppresses the contribution of noise and quantization errors in individual points. 
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No previous research has been reported using surface correspondences to compute the motion of objects. Unlike stereo data, laser range data are dense 
and complete surface information is available (not just the discontinuities) . 
Thus, sequences of laser range data are more suitable for motion estimation using surface corresponden ces. Using the assumption that surface correspon
dences have been established a priori, we have developed a robust algorithm 
for estimating motion of objects containing planar surfaces. This algorithm was presented at the Image Understanding Topical Meeting [40] and published in 
the Proceedings of the IEEE International Workshop on Intelligent Motion 
Control [29]. 

y 

X 

(a) 

Figure 23. Real image sequence acquired from a laser range scanner. 

The algorithm was applied to a sequence of range images. Figure 23 
shows a sequence of real range images acquired with a 2000A White Scanner. The scanner output is in the form of (x,y,z) coordinates of each point that has 
been scanned. The scene consisted of a polyhedral object whose three surfaces 
are visible in both frames. The second frame was obta ined by rotating the object by 18 degrees, about an axis parallel to the Y axis, and passing through (0,0,-3). 

Results obtained using the motion estimation techniques deve l oped in 
this paper are given in Table 2. The motion is expressed in the form of a ro
tation about the X, Y, and Z directions. In this example , a real image i s 
noisy and the third surface patch in the frame is barely visible. The segmentations results give just 30 points belonging to the patch. In spite of this , 
the algorithm performs well and estimates are close to the ground truth. 
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Actual Estimated

ex 00 0.750

Rotation 18.00 15.80
ez 0.00 1.550

X 0.927 in. 0.993 in.
Translation Y 0.0 in. 0.14 in.

Z 0.147 in 0.103 in.

Table 2. Motion estimation for real data. Estimated
motion is in the form of a rotation about the coordi-
nate axes and then a translation.

Related Motion Research.

In the course of pursuing research on the computation of motion, we com-
piled an overview and comparative study of the literature on the computation
of motion, which was published as an invited paper in the Proceedings of the
IEEE [41).

In a related study, we developed a two-stage solution to the problem of
correspondence of points for motion estimation in computer vision. The first
stage of the algorithm is a sequential forward-searching algorithm (FSA),
which extends all the survivor trajectories. The second stage of the algo-
rithm is a batch-type, rule-based, backward-correcting algorithm (BCA). Under
the simple error assumption (no chain errors), seven rules are sufficient to
handle all the possible errors made by FSA. BCA takes the last four frames of
points as input and rearranges the correspondence among them according to
these rules. FSA and BCA are applied alternately. This algorithm is able to
establish the correspondence of a sequence of frames of points without assum-
ing that the number of points in all frames are equal or that the correspon-
dence of the first two frames has been established. Experiments have illus-
trated the robustness of the algorithm on sequences of synthetic data as well
as on real images. [42)

Finally, we have addressed the problem of reconstructing a 3-D line from
a sequence of monocular images (2-D projections), in a paper presented at the
1990 International Conference on Computer Vision [43]. In this paper, we
first consider the problem of 3-D line representation and then the recursive
estimation algorithm. We point out the problems with all previous 3D line
representation models, and suggest a new approach based on simple geometrical
observations. We then derive the corresponding recursive estimation algorithm
for the new representation, based on simple linear algebra. Simulation re-
sults from implementing the representation model and the recursive algorithm
on an IBM RT PC are presented.
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4. PASSIVE AERIAL NAVIGATION BY IMAGE SEQUENCE ANALYSIS

With the advent of sophisticated techniques for sensing electromagnetic
emissions, passive navigation of aircraft has become of vital importance to
the military community. Passive navigation is the determination of one's
position and heading without the emission of electromagnetic radiation by the
aircraft. Active navigation, on the other hand, must rely on such emissions.
Because the electromagnetic emissions can be detected, active navigation is
unsuitable for many military applications. Therefore, there is a serious need
for passive navigation systems.

In this research, we are developing a passive navigation system based on
matching a sequence of aerial images to a digital elevation map.
Specifically, the research problem is stated as follows: Given a sequence of
aerial images and a digital elevation map, determine the trajectory of the
aircraft relative to the digital elevation map.

Digital elevation maps (DEMs) have recently become more practical for
use in aircraft avionics systems. (A DEM is a digital database of uniformly
spaced terrain elevation measurements.) Recent advances in computer
performance and mass storage technology have led to increased interest in
using DEMs for navigation and other applications. In particular, DEMs are
attractive for use in aircraft navigation systems.

In our research, a general navigation system is being developed based
upon computer vision techniques. Since it is desirable to determine one's
position without resorting to active emissions, our system uses a sequence of
aerial images as the primary input. A DEM is used as the reference database
for feature matching. (Presumably this would be carried on-board the
aircraft.) This research has produced encouraging results, which have been
presented at several workshops (44], (45] and the 1990 International
Conference on Computer Vision (46]. Our most recent results were published in
IEEE Transactions on Pattern Analysis and Machine Intelligence (47].

A DEM of a region in Colorado was obtained from the United States
Geological Survey. The lack of available real aerial image sequences prompted
us to simulate such images using the DEM. This required combining of a
variety of techniques. Lambertian shading was used to compute intensity
values corresponding to the DEM samples. Next, an arbitrary aircraft
trajectory was chosen and perspective projection was used to generate the
perspective aerial image sequence. Figures 24 and 25 show the first two
images in this sequence. In a real situation, these images would be acquired
from an aircraft.

A stereo algorithm was implemented to recover estimated elevation maps
from the intensity image sequence. The first step in this procedure generates
a set of edge maps using several scales of resolution for each image. Two
successive images were treated as the left and right stereo images. For
example, the image in Figure 24 is treated as the left image, and the image in
Figure 25 is treated as the right image. The edge points in their corre-
sponding edge maps are matched to create a disparity map. (The disparity of
an edge point is the amount of displacement between the edge point's x
coordinate in the left image and its x coordinate in the right image.) From
this disparity map, an estimated elevation map is reconstructed by applying
the inverse perspective projection equations.
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Figure 24. Left Image Figure 25. Right Image. 

From the estimated elevation maps, the significant three-dimensional features are extracted -- namely, valleys and ridge lines. Determining the position and orientation of the recovered elevation map (REM) within the reference DEM requires a 3-D surface matching algorithm. Because of the sparseness of the disparity map and the smoothness of the resulting interpolated surface, a meaningful 3- D curvature measurement c annot be accurately computed. For this reason, we developed a novel terra in representation--called a cliff map--that is computed for both the REM and the DEM. For matching , the REM and the DEM are converted to the cliff map representation. Cliffs are defined to be the zero-crossings obtained after convolv ing the elevation map with a Laplacian-of-Gaussian (LoG) filter. Edge detection is applied to an elevation map in the same manner as it is traditionally applied to opt ical intensity images. The cliff map representation is computed for both the recovered elevation map and for the reference digita l elevation map. This computation in effect transforms the 3-D matching problem into a 2-D matching problem. The cliffs in the REM must be matched to those in the DEM to determine the position and orientation of the unknown image. Rather than attempting to match the entire cliff contours, critical points are extracted to form a more compact representation. These critical points then serve as the basis for a point-based matching algorithm. The feature map derived from the images in Figures 24 and 25 is shown in Figure 26. In this figure, the two darkest gray levels represent two levels of valleys and the two brightest gray shades represent two levels of ridge lines. The same feature extraction techniques are then applied to the DEM to create the feature database to which the REM must be matched. Figure 27 presents this digital elevation map, and Figure 28 shows the REM overlaid onto the DEM. 
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Figure 26. REM Cliffs and Critical Points

As seen from the overlay in Figure 28, the technique of matching cliff
maps, recovered elevation maps, and given digital elevation maps yielded
excellent matching. These results are based upon cliff maps that were
recently developed by our group 144], and earlier results of other researchers
[48]-[50] and of our group [511-[531. In this test it was not possible to use
real aerial images.

Figure 27. DEM Cliffs and Critical Points
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Figure 28. REM Overlaid onto DEM

By matching optical intensity images to 3-D terrain data, a continuous
report of an aircraft's position and heading can be obtained. Processing of
the reference digital elevation map data can be performed offline and carried
onboard the aircraft. Use of the cliff map representation provides a compact
representation of the terrain, and use of critical points in the matching
strategy makes testing of every possible position and orientation unnecessary.
Furthermore, the matching algorithm is well-suited for parallel implementation
since each hypothesized match can be verified independently. Experiments were
performed using real terrain data to assess the robustness of the terrain
matcher. It was found that a successful terrain matching could be achieved
even when the stereo match rate is 70% and the disparity value error rate is
40%. These results indicate that the use of cliff map contours for terrain
matching is both efficient and robust.

The results of this research may be applicable to several areas. Not
only is this work important for navigation of aircraft, but for navigation of
other vehicles as well. For example, there is a similar research effort in
progress for autonomous land vehicles. As with aircraft, the stealth of
autonomous land vehicles also depends on passive navigation. Another
application is the registration of aerial reconnaissance images. By matching
a previously-obtained aerial image sequence with a DEM, the precise location
of the area can be determined. This research is therefore expected to have a
great impact in many areas where passive navigation is necessary or desirable.

Our study of digital elevation maps has led to some interesting related
research on stereo imaging systems and algorithms. In designing a stereo
imaging system, one must consider how the various system parameters affect the
range estimation error. We conducted a stochastic analysis of the
quantization error in a stereo imaging system. The probability density
function of the range estimation error and the expected value of the range
error magnitudes were derived in terms of the various design parameters. We
found that when the depths in the scene lie within a narrow range, a better
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measure of range resolution is obtained by the use of the relative range error
(C- IAzI rather than the percent range error (IAzI/z). These results

Zmax-Zmin
were presented at the Conference on Computer Vision and Pattern Recognition
[53) and published in the IEEE Transactions on Pattern Analysis and and
Machine Intelligence.[54).

In another thrust of our continuing research in this area, we evaluated
the contribution of a third camera to increasing accuracy in stereo
correspondence (55],[56]. The use of a third image requires additional
computations for preprocessing the extra image. Understanding the trade-off
between the contribution of the third camera and the additional computation
required to use the third image is of paramount importance in the design of
real-time stereo based vision systems. We evaluated the relative performance
of binocular and trinocular stereo algorithms on aerial monochrome images
generated from digital elevation maps in order to obtain accurate ground truth
verification. We developed a new methodology for comparing the matching
performance of stereo algorithms using actual digital elevation maps. From
these experiments, we found that trinocular local matching reduces the per-
centage of mismatches with large disparity errors by more than one-half, as
compared to binocular matching, while increasing the computational cost of
local matching by approximately one fourth. These results were presented at
the Image Understanding and Machine Vision Workshop [55) and the IEEE
International Conference on Robotics and Automation [56) and will soon be
published in the International Journal of Computer Vision [57].
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5. ZDZNZFYZNG MAN-MaDE OBJCTS IN OUDDOOR SCENES /
FUSION Or COLOR AND GZOMZTRY INI'ORMTION

In past research, we investigated the use of color information to
interpret images of outdoor scenes (especially aerial images) in great detail.
We successfully applied these techniques to the segmentation and
classification of regions in aerial photography (58]-[61] and devised
segmentation of more general classes of chromatic images [62]. In our research
efforts under this contract, we developed a new approach for the detection and
segmentation of man-made objects in color images of natural scenes (63], (64].

The approach is based on detecting geometric structure in the image and
combining the detected structure with color information to guide the
segmentation. The central problem is the detection and semantic
interpretation of large stationary man-made objects in color images of
nonurban scenes. We describe the generation of color-based confidence
functions for material selection in incremental segmentation. We focus on the
segmentation of images of concrete bridges. These techniques are applicable
to autonomous navigation, target navigation, target acquisition, and several
industrial computer vision problems. Large concrete objects often have
rectilinear edge structures with many parallel relationships. We use these
properties to guide our initial incremental segmentation toward concrete
objects. The goal for our segmenter is to locate the representative faces of
concrete material in the image as a starting point for the interpretation
phase. These heuristics rely on the detection of straight lines segments of
the edge map of the gray-scale image. The straight line segments, once de-
tected, are then grouped according to several perceptual grouping criteria.
The straight line segments are then constrained further by region label
restrictions. Finally, color cues are used to restrict the candidate
artifacts further and to produce confidence measures of our initial belief in
our estimation of the material of the identified rectilinear faces [64].

The results of this processing are fed into an expert system. Truth
maintenance techniques are used to reason about all the candidate artifacts
and decide which ones correspond to the model of a known object. The expert
system shell is able to request further processing from the low level
algorithms to clear ambiguities. Finally, the expert system displays its
interpretation of the scene. This research was presented at the 1988 SPIE
Conference (63], the IEEE Computer Society Workshop on Computer Vision (65],
and documented in the archival Journal of the Optical Society of America (643.
Although this approach is based on a two-dimensional model of the side view of
the bridge, the recognition technique also works with non-optimal (non-
orthogonal) viewing angles.

We have extended this approach to 3-D hypothesized representations of
the world, projected to 2-D for tentative match with the observed image. The
central problem was to determine what perspective projection parameters should
be used to derive a 2-D hypothesis from the 3-D model. As it is practical in
most real world situations, we assumed that the geometry of the camera was
known, as well as its roll and pitch. We used the fact that many large, man-
made structures have prominent straight lines in known 3-D directions, such as
vertical and horizontal. In a perspective projection, parallel straight lines
in 3-D converge to vanishing points, the location of which depends upon
projection angles. By detecting likely vanishing points in the image, under
geometric constraints, we could derive projection parameters. Furthermore, we
could classify observed straight lines according to their most likely 3-D
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orientation for matching with the model. This method was demonstrated on
images of various bridges. These results were presented at the 1989
Scandanavian Conference on Image Analysis (66] and at the NATO Advanced
Research Workshop on Multisensor Fusion for Computer Vision [67].
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6. POSI!IONAL zSTIM&TION TECEnIQUzs FOR AN OUTDOOR MOBLE ROBOT

The autonomous navigation of mobile robots is an important area of com-
puter vision research. Before a mobile robot can perform any useful task it
must have the ability to estimate its position and pose accurately in the en-
vironment. Many techniques have been suggested for solving this problem of
self-location. Using the wheel encoders provided on the mobile robot for po-
sitional estimation is not very reliable, since the information from these
encoders is differential. Due to wheel slippage and quantization effects,
these estimates of the robot's position contain small errors which accumulate
quickly as the robot moves, and the position estimate becomes increasingly er-
roneous. A popular technique is to aid the robot in the positional estimation
process by providing alternate means of sensing the environment by using
visual and/or range sensing devices.

Various techniques have been studied for estimating the position and
pose of an autonomous mobile robot using different kinds of sensors. The tech-
niques vary, depending on the kind of environment in which the robot navi-
gates, the known conditions of the environment, and the type of sensors with
which the robot is equipped. The position estimation techniques can be
broadly classified into the following four types: (1) landmark-based methods;
(2) methods using trajectory integration and dead reckoning; (3) methods us-
ing a standard reference pattern; and (4) methods using a priori knowledge of
a world model and matching sensor data with the world model for position esti-
mation.

Our present work on position estimation falls into the fourth category--
the robot is aided in its navigation tasks by a preloaded world model which
provides a priori information about the environment. The basic idea is to
sense the environment using onboard sensors on the robot and then to try to
match these sensory observations to the preloaded world model. This process
yields an estimate of the robot's position and pose with a reduced uncertainty
and then allows the robot to perform other navigational tasks. The problem in
such an approach is that the sensor readings and the world model may be in
different forms. For instance, given a CAD model of the building and a visual
camera, the problem is to match the 3-D descriptions in the CAD model to the
2-D visual images.

In this work, techniques are presented for estimating the position of a
mobile robot in an outdoor environment. Two kinds of environments are consid-
ered; a mountainous natural terrain and an urban man-made environment consist-
ing of polyhedral buildings. In the case where the robot is navigating in an
outdoor natural terrain, a Digital Elevation Map (DEM) of the area is assumed
to be given (68], (691. Also, the robot is assumed to be equipped with a cam-
era that can be panned and tilted, as well as a device to measure the robot's
elevation above the datum. The robot is not assumed to have the ability to
identify and track and landmarks in the environment. The DEM is a three-
dimensional database. It records the terrain elevations for ground positions
at regularly spaced intervals. The images recorded by the camera are 2-D
intensity images. The problem is to find common features to match the 2-D
images to the 3-D DEM. The approach suggested is to use the height and the
exact shape of the horizon line (HL) and the known camera geometry of the
perspective projection to search in the DEM for the possible camera location.
The actual search is a two-step process. The first step is a coarser search
that reduces the possible locations to a smaller set using the height of the
HL in the image plane in different directions; and the second step refines
this estimate using the exact shape of the HL.
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From the current robot position, images are taken in the four geographic
directions: N,S,E, and W. In generating the four geographic views, the tilt
angle of the camera is adjusted until the horizon line is clearly visible in
the image. This tilt angle *j (I - N,S,E,N) is then measured. The approximate
height H of the camera above the datum is assumed to be known. The height of
HL at the center of the image plane in each of these four images is mea-
sured.This can be done using basic image processing techniques. Let this
height be hi (i - N,S,E,N). The reason for using the height of the HL at the
center of the image plane is that the DEM is assumed to be griddeid in the same
directions as those from which the images are taken. So the points that pro-
ject onto the HL at the center all lie along the same grid line in the DEM.

Using the approximate height of the camera H, the tilt angle 40, and the
HL height hi in one of the directions, e.g., north, the DEM is searched for
possible camera locations. That is, a camera location is hypothesized at each
of the DEM grid points and the height of the HL, hi, is back-projected onto
the DEM using the camera geometry to see if any elevation points can project
to this height. If any such points exist, the camera location is marked as a
possible candidate. However, if any grid point is of a height larger than that
estimated by the back-projection, then all the camera locations between the
current location and this tall point are marked as impossible positions and
discarded. This heuristic reduces the search space significantly. Similar
heuristics are also used to prune the search space by the camera height H.
The results of the search process by using one of the images are thus a
sparser set of possible camera locations. These are then considered as the
possible set for the next search, which searches among this set with the geo-
metric constraints extracted from the image along another direction. This pro-
cess is continued by successively applying the constraints in all four direc-
tions, and the search refines the possible locations to a small set usually
clustered around the actual location.

Stage 2 of the search process is used to further isolate the exact loca-
tion from the possible ones returned by the stage 1 search. Each of these lo-
cations is considered as a possible candidate, and the image that would be
seen if the camera were located at that location is generated from the DEM
using computer graphics rendering techniques. The HLs from these images are
then extracted and correlated against the actual image HL to arrive at a mea-
sure of their disparity. The camera location corresponding to the location
with the lowest disparity is considered as the best estimate of the location.
We can further isolate the exact location by generating the images from the
points close to the estimated location and checking to obtain a zero error
measure.

The case of mobile robot navigating in a structured, man-made, urban en-
vironment consisting of polyhedral buildings is considered in next. The 3-D
descriptions of the roof tops of the buildings is assumed to be given. Such a
description may be obtained from a pair of stereo aerial images or from the
architectural plans of the buildings. The robot uses the camera to image the
surroundings, each time adjusting the tilt angle so that the roof top edges
are clearly visible in the image plane. Now if a correspondence is established
between the 3-D descriptions of these edges and their images the position and
pose of the robot can be estimated. However establishing this correspondence
is in general not a trivial problem. To alleviate this problem, it is proposed
to use the geometric relations between the 3-D descriptions of the roof top
edges (model edges) to prune the list of possible correspondences. The viewing
plane (the plane in which the robot navigates) is divided into distinct, non-
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overlapping regions called the Edge Visibility Regions (EVRs). These EVRs
essentially capture the geometric relations between the model edges with re-
gard to their visibility from various regions in the viewing plane. Associated
with each EVR is a Visibility List (VL) which is a list of the model edges
that are visible in that EVR; also stored for each edge in the VL of an EVR is
the range of orientation angles of the robot for which the edge is visible in
this EVR. In this research methods for generating the EVRs given a world model
are discussed. An upperbound on the maximum number of EVRs that would be gen-
erated for a given model is derived [70]. The use of the EVR representation of
the environment of a robot for other navigational tasks like path-planning are
outlined.

In this research an algorithm partition to partition the xy plane into
the required EVRs is developed. In developing the algorithm initially the re-
strictive case that all the buildings in the environment have flat rooftops
that are convex polygons, and are of equal heights is considered. The modifi-
cations of the algorithm to the more general case are then discussed. In the
restricted case, it is sufficient to consider the projections of the rooftops
onto the xy plane in forming the EVRs since the tilt angle * is assumed to be
measurable.

The algorithm partition that divides the xy plane into the desired EVRs,
along with their associated VLs, uses three subprocesses called split, pro-
ject,and merge. The basic idea of the algorithm is to start with the entire
xy-plane as one EVR with a NULL visibility list. Each polygon is considered in
turn by extending each of its edges, and the EVRs that are intersected are di-
vided into two new ones. The new EVRs then replace the old one and the VLs of
the new EVRs are updated to account for the visibility of this edge by consid-
ering the edge to be visible in one half-plane, say left of the edge, and
invisible in the other. This is handled by the split process. For each new
polygon considered, the mutual occlusion of the edges of this polygon with the
other existing polygons is handled by forming the shadow region of these edges
on the other existing polygons. This is handled by the project process. The
idea is to project each edge of this polygon onto the edges of the other ex-
isting polygons, and to determine the area in the plane which lies in the
shadow and then delete this edge from the VLs of all the EVRs lying in the
shadow region. Efficient ways to compute this shadow region are discussed in
(70]. Finally the merge process concatenates all the adjacent EVRs with iden-
tical VLs into one EVR. After partitioning the xy-plane into EVRs, for each
model edge in the VL of an EVR the range of orientations of the robot for
which this model edge is visible in the EVR is also computed and stored. An
efficient method to compute this range is also described.

In the case of the buildings with rooftops that are not convex, the non-
convex polygons representing the projections of the rooftops on to the xy-
plane are decomposed into a set of adjacent, component convex polygons. Only
decompositions without Steiner points are considered, since the modifications
to the existing algorithms in this case are straightforward. (A Steiner point
is any point on the boundary of the polygon that is not a vertex.) The extra
edges added in the process are considered as dummy edges, and their visibility
is not marked in the VLs of the EVRs. Hence, the self occlusions of the edges
of a non-convex polygon are handled by decomposing the polygon into component
convex polygons and dealing with their mutual occlusions by using the project
process. In the case when all the buildings are not of the same height, it is
insufficient to just consider the projections of the rooftops onto the xy-
plane alone when forming the shadow regions. The project process is modified
to consider a z-shadow line also. More details are given in [70]. Note that
the case of all the buildings of the same height is actually a special case of

33



unequal height buildings where the z-shadow line is at infinity. In the case
when the rooftop of a building is not flat (planar), it is decomposed into
convex planar polygons and each of these is considered as a separate polygon;
the partition algorithm is then modified as before, in the non-convex case.
Also, the z-shadow lines are drawn to account for these component polygons,
which are now convex and flat but of different heights.

An interesting and important question related to using this method is
how many EVRs are generated using the partition algorithm. If this number is
very large, it is impractical to use the method. One might think that the num-
ber of distinct EVRs would exponentially with m and n the number of polygons
and the number of sides of each polygon, respectively. An upper bound on the
maximum number of EVRs that would be generated is derived in (70]. and shows
that this is polynomial in m and n, O(n2m4). This is a very loose upper bound
and only shows that the number of EVRs is polynomial. In practice, however,
the number of EVRs generated is much smaller than this.

The uses of the EVR representation in positional estimation and path-
planning are also detailed in this research [70].
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CONCLUSIONS.

From the results outlined above, it is abundantly clear that our
synergetic approach to multisensor fusion for computer vision is an
outstanding success. The work has been enthusiastically received by the
computer vision community. Our results have been presented at reviewed
conferences and published in refereed journals. In addition, we have
contributed chapters to the volumes Machine Vision: Algorithms, Architectures
and Systems [71], Advances in Machine Vision (72], Machine Vision for Three-
Dimensional Scenes (73] and Analysis and Interpretation of Range Images (741.
We were invited to present our research on multisensor fusion at the National
Science Foundation Workshop on Range Image Processing [8] and the Workshop on
Machine Vision for Three Dimensional Scenes [73] as well as several NATO
Advanced Research Workshops (6], (7], (67].

One particular measure of the impact of our research in synergetic
multisensor fusion is the outstanding success of the NATO Advanced Research
Workshop on Multisensor Fusion for Computer Vision, held in Grenoble, France
in June 1989 (Director: J. K. Aggarwal). Recognized leaders in the academic,
governmental, or industrial research communities around the world met to
discuss the latest advances in the principles and issues in multisensor
fusion, information fusion for navigation, multisensor fusion for object
recognition, network approaches to multisensor fusion, computer architectures
for multisensor fusion, and applications of multisensor fusion.

In addition to the publications cited in the research detailed above,
several other papers are forthcoming. "Sensor Data, Analysis, and Fusion,"
will appear in the book Encyclopedia of Artificial Intelligence, edited by
Prof. A. Rosenfeld, to be published by John Wiley and Sons. "Sensor Data
Fusion for Robotic Systems," will appear in the volume Advances in Robotic
System Dynamics and Control Systems, edited by Dr. C. T. Leondes of the
University of Washington, to be published by Academic Press.

We have made much progress in synergetic multisensor fusion, but much
work remains to be done towards the development of truly general-purpose
computer vision systems to reach the ultimate goal of computer vision
research, which is to develop and engineer machines with the ability to sense,
understand, and act upon their environments in an autonomous manner. Toward
that end, it is the recommendation of the principal investigator and other
members of our research team that the research in multisensor computer vision
be continued.
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