1

Bm rie 05 >y p

F-111 WING COMMANDER

A Mprolog Expert System
by
John T. Minor & Grant Wright
CSR-90-044

DTIC

ELECTE
FEB 251991 ~

0
=
@
o
N
(-]
g

Approved tor puriic telecsey

DISTRIBUTION STATEIMENT X
. Dismouncn Utizaited

1 2 15

®1

181

MASTER COPY.- » KEEP THIS COPY FOR REPRODUCTION PURPOSES

1. ECT TERMS 15. NUMBER OF PAGES

REPORT D MENTA Form Approved
EPORT DOCU TION PAGE rorm Awproved
Mnmm'«mwmmo'mw-eﬁnmmmmawm|w°..m. mﬂﬂﬂmmmmm prem
mmmmmmmmmm collecton of information. Send Commenty Burden estmate of m by
e T Sy o St e i e oSt o Tt Cortoo 104 Seprs 13 e
1. AGENCY USE ONLY (Leave Diank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
1/91 Technical
T T Tt —— VRS

4, TITLE AND Sﬁﬁrﬁ 9. FUNDING NUMBERS

F-111 Wing Commander - A Mprolog Expert System DAALQ3-87-G-0004
6. AUTHONS)

John T. Minor and Grant Wright
7. PERFORMING ORGANZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION |

University of Nevada, Las Vegas REPORT NUMSER

4505 Maryland Parkway CSR-90-044

Las Vegas, NV 89154

9. SPON /MONITORING AGENCY NA AND ADORESS(ES, 10. SPONSORING / MONITORING

U. S. Army Research Office AGENCY REPORT NUMBER
P. 0. Box 12211
Research Triangle Park, NC 27709-2211 ARO 24960.67-MA-REP

11. SUPPLEMENTARY NOTES
The view, opinions and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Army

sition licy, or decision, unless so des ted by other documentation. -
F_m.ﬁmmmn" _'-"E_L_f__—uvmwﬂ STATEMENT “——&—Lm——-

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

MPROLOG is used to implement the expert system discussed in this paper. A
description of the expert system, “a F-111 Wing Commander Consultant”, and
its implementation, starting with the knowledge acquisition and design phases,
are discussed in part 2. The problems encountered developing the expert system
and problems due to MPROLOG are also presented. Finally, an evaluation of

MPROLOG as an expert system development tool will make up part 3.

MPROLOG Expert System, Expert Systems
16. PRICE CODE

”. gm" Y CLASSIFICATION | 18. SECUNTV CLAS;MCATION 19. SECURITY CLASSIFICATION | 20. LUMITATION OF ABSTRACT

OF THIS P OFf ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
p{m By ANSI Svd. 239.18

Acknowledgements

The authors wish to thank Col. Edward Kowalczyk, USAF retired, for the
valuable assistance that he gave us on this project. As our domain expert, he

generously gave of his time so that this research could be completed.

This work has been funded by the Army Research Office under grant #DAALQ3-

87-G-0004.

Accesion For

NTIS CRA&}
DTIC TAB
U..announced
Justification

OD KL~

Di -t .EB;tion !
Availability Codes

] Avail a-d/or
Dist Special

A-l

Contents

1 Introduction 1
1.1 ExpertSystems 1
12 MPROLOG e, 3

2 The F-111 Wing Commander: 8 MPROLOG Expert System 6

2.1 The Expert SystemDomain]
2.2 Design of the Expert System 8
2.3 Knowledge Acquisition Phase 12
2.4 Implementing the Knowledge Base 14
25 Examples 0. 16
2.6 Limitations of the Expert System 19
3 Evaluation of MPROLOG 20
3.1 Advantagesof MPROLOG 20
3.2 Problems with MPROLOG 21
4 Bibliography 23
A Appendix: Menus from Wing Commander 24
B Appendix: Source Code for Wing Commander 28

i

1 Introduction

1.1 Expert Systems

Expert systems are designed to perform the tasks currently performed by human
experts. The specialized knowledge that a human expert has is placed in the
expert system program. If constructed properly, the expert system will request
the same information that an expert would request, and then output the same
decision that the expert would. These programs are useful because there is
usually a shortage of qualified human experts in a given field. The computer
can be fully informed of changing facts at all times and will never get fatigued
or temperamental. Also an expert system can apply the expertise of several
human experts, if so programmed, and can free human experts to do more
creative work. Many expert systems have already been developed to perform
tasks like medical diagnosis, geological analysis, computer configuration design
and more(8,9].

Expert systems are divided into a knowledge base and an inference part. The
knowledge base is kept separate because it must be allowed to grow and change,
while the inference program part is not changed. The knowledge base is made up
of decision rules and facts, which the program uses when s result is to be output.
Since an expert must make decisions based on data with questionable accuracy,
an uncertainty factor is often associated with knowledge base information. For

instance, a8 medical diagnosis program may have a rule stating “the patient

has Disease; with a confidence level of 90% if x-rays show condition A with a
confidence level of 85% and symptoms B and C are present”. The role of the
inference part would be to ask the user for input, process the proger rules and

output an acceptable result.

The construction of expert systems is called knowledge engineering. Acquiring
the knowledge is the most important step because the expert system will only be
as good as the knowledge base it uses. The programmer, or knowledge engineer,
must have some familiarity with the domain of the expert system. Then the
knowledge engineer must tap the expertise of the domain expert, a person that
has expertise in the given area, who may or may not be able to convey his
knowledge readily. The knowledge engineer must organize the information into
a set of facts and decision rules, which can be used to output answers that the
expert thinks are feasible. Problems arise in rule design because of uncertainty,
since an expert must make decisions based on facts with confidence levels less
than 100%. When the confidence levels of facts and rules in the knowledge base
have been determined w..h accuracy, the likelihood of the expert system doing

the intended job is much greater.

Choosing the tool of implementation is the next problem in expert system de-
sign. Early expert systems were designed using ad hoc methods. They were
designed from the ground up, using system and domain dependent strategies.
There are now many useful expert system design tools, among which are KEE

(knowledge engineering environment (6]) and ART (automated reasoning tool

{1,2]). The main problems with these tools are cost and complexity. An univer-
sity researcher has developed a free expert system tool called MPROLOG(4].
This tool provides a designer with the programming power of PROLOG (a
logic programming language(3]), as well as providing the representation power
of fuzzy confidence levels in the knowledge base. A description of this expert

system design tool is presented below.

MPROLOG is used to implement the expert system discussed in this paper. A
description of the expert system, “a F-111 Wing Commander Consultant”, and
its implementation, starting with the knowledge acquisition and design phases,
are discussed in part 2. The problems encountered developing the expert system
and problems due to MPROLOG are also presented. Finally, an evaluation of

MPROLOG as an expert system development tool will make up part 3.

1.2 MPROLOG

MPROLOG is an expert system development tool designed by Dr. John Mi-
nor and implemented by Martin Flatebo in 1988 to complete a masters degree
in computer science at the University of Nevads, Las Vegas(4]. MPROLOG
is written in Common LISP on the Symbolics 3600 series machines. The pur-
pose of MPROLOG is to increase the capabilities of the powerful programming
language PROLOG, by supplementing the language with multi-valued logic ca-
pabilities. Standard PROLOG uses simple two-valued logic leaving no room for

uncertainty. MPROLOG allows programmers to stoee information with uncer-

tainties based on minimal-bounded fuzzy logic. The usefulness of PROLOG as
an expert system development tool is therefore greatly enhanced since uncer-
tainties are put directly into the knowledge base and manipulated automatically
by the language interpreter. This allows the knowledge engineer a mechanism

for implementing the full knowledge of the expert, even in uncertain cases.

The fundamental piece of knowledge in MPROLOG is the fact. Facts are the
same as single predicates in first-order logic. For instance, likes(john,mary)
could mean “jchn likes mary”. A group of facts with the same predicate name
could be thought of as a database relation. The following example demonstrates

this:

Group of Facts

plane(111, fighter, damaged).
plane(121, fighter, available).
plane(211, bomber, damaged).
plane(221, bomber, available).

Plane database relation
plane# type status
111 fighter damaged
121 fighter available
211 bomber damaged
221 bomber available

MPROLOG is not frame-based like ART and KEE. The inheritable properties
from other relations must be extracted with rules. Rules are Horn clauses which

are processed using backward-chaining.

MPROLOG facts look like:

p{c}(t1,ta2, ..., tn).

where p is a predicate (the fact name),
c is the optional uncertainty factor, or truth value (0 < ¢ < 1),
t1,...,tn are terms (attributes of the fact).

MPROLOG rules look like:

p{co}(t1,t2, . tn) - @u{c1}(s11, 812, s $1m,),
qz2{ca}(s21,922, ... 82m,),

qk {ci }(’hls LY I ‘EM;)-
where p is the head predicate of the rule,
¢;’s are the optional uncertainty factors (0 < ¢; < 1),

q;'s are predicates that make up the tail of the rule,
t;’s and s;;’s are the terms for the respective predicates.

If an uncertainty factor is absent, MPROLOG assumes, like PROLOG, that
the fact or rule is 100% true. Otherwise the uncertainty factor is treated as a

minimal bound on the truthfulness of the fact or rule.

MPROLOG works by resolving rules against rules and facts. The first rule is
invoked at the MPROLOG prompt “?-". At this point, the question calls the
system interpreter. For example, a system with the above rule could be invoked
with“?- p{.7}(a1,a3, ...,8,).” A rule p is satisfied (the head is true to at least
level co) if each q; is true with a truth value of at least c;. Any q; that matches

a fact is true, and any q; that matches the head of a rule will cause MPROLOG

to attempt to satisfy the tail of its rule in this same way. When a rule’s tail
cannot be satisfied, backtracking occurs in an attempt to resatisfy the rule in a

different way.

2 The F-111 Wing Commander: a MPROLOG
Expert System

2.1 The Expert System Domain

The domain of this expert system is an F-111 wing commander circa 1975
(Vietnam War era). The wing commander is expected to assign planes, weapons
and weapon fusings to missions which field personnel want to see implemented.
The conditions of the mission affect the number of planes needed, the types of
weapons used on the mission, and the fusing of those weapons. The commander
issues a mission assignment if the needed planes and weapons are available. The
wing commander does not assign the individual pilots because this is done at a

lower command level.

The calculation of the number of planes and their weapon loads is done by first
considering certain factors like low altitude cover and terrain (affecting target
visibility and hit/miss probability), target materials (affecting load types and
fusing), defensive positions and anti-aircraft weaponry (affecting the number
of planes needed), etc. These factors are looked up in mission implementation

manuals, the suggestions are noted, and the commander estimates the number

of planes needed and the type of loads needed for a mission consisting of the
given factors. An intelligence officer keeps the commander briefed on current

conditions on all missions.

The expert system is assist with the duties of the wing commander. It will in-
teract with the field personnel by querying about the type of mission, problems
which can possibly affect the mission, and the desired completion level for the
mission. If the mission can be implemented, the expert system should make
a suggestion by listing the number of planes, types of weapons, and types of
weapon fusings needed to carry out the request. If the mission cannot be im-
plemented, the system should cite possible factors for this, such as insufficient

supplies or too difficult conditions.

The expert system is expected to maintain databases for missions, planes and
weapons, so field personnel can check the status of these items. The expert
system also allows changes and deletions, to a certain degree, to the mission
database. Changes to the plane and weapon databases are unlimited, but there
is a password system frotecting access to these databases. A standard file is
used when starting up the expert system from scratch. The field personnel
can also edit a saved session of the expert system. Changes can be made to
the system to reflect more current conditions, but no special capability for the

opinions of an intelligence officer are provided.

The domain expert, Colonel E. Kowalcayk, USAF retired, was a pilot of F-111

aircraft during the Vietnam War. He has extensive knowledge of mussions imple-
mented during this era, and knows the expected effectiveness for these missions.
His knowledge is lazgely declarative, and he had no problems relating heuristic
values or describing critical factors. He was very patient in explaining much
of the military jargon and semantic knowledge, and was helpful in eliminating

unimportant factors and establishing restrictions on other factors.

2.2 Design of the Expert System

The expert system consists of databases for planes, weapons, missions, and
mission components. The plane database keeps track of plane status and avail-
ability. The weapon database holds the amount available of each weapon type.
The mission database consists of many attributes: mission number, ' ype, desired
completion level, start time, location, and number of planes. Mission compo-
nent databases also exist to keep track of data associated with each mission,
including lists of the numbesr of planes carrying a certain load with a certain

weapon fusing.

The expert system is menu driven. The menu breakdown was developed by Dr.
Minoe, who also created the idea of the F-111 wing commander expert system.
The top level menu of the expert system has § choices: plan mission, change
mission, check status, change database and quit the system. The plan mission
selection is where the expert knowledge is used. The other selections are simply

used to configure, change and check the databases, and will not be discussed

further.

The plan mission section is used to develop a mission frame. A mission frame

example follows:

mission number : 1

location: locname

start-time: 1200

mission type: interdiction

number of planes assigned: 33

desired completion percentage: 60-75%

Also associated with this frame is a mission-component frame and a list of

assigned planes with corresponding weapon loads and fusings.

The plan mission section starts by querying for location and start-time of the
mission. The mission number is supplied by the system. Then the user is asked
to select from the following mission types: interdiction against a target, area
preparation, close-air support, and 24 hour alert. The interdiction selection
also brings up a menu on target types: personnel concentration, unarmoured
vehicles, armoured vehicles, building complex, roads/railroads, and bridges. Se-
lection of any mission type results in a series of menus appearing which are
designed to get a proper description of important factors for the chosen mission
(see figure 1 for a list of these factors). All of these factors are represented as
menus except for the 24 hour alert selection, which simply asks for the num-
ber of planes. A final menu records the desired completion percentage for the

mission. This completion level specifies to the expert system the importance

Mission Type Affecting Factors

interdiction: personnel force size of targeted personnel,
terrain type, protective cover,
defensive positions, anti-aircraft guns,
surface-to-air missile sites, visibility

interdiction: unarmored vehicles size of vehicle convoy, terrain type,
protective cover, anti-aircraft guns,
surface-to-air missile sites, visibility

interdiction: armored vehicles number of vehicles, terrain type,
protective cover, anti-aircraft guns,
surface-to-air missile sites, visibility

interdiction: building complex area of complex, building materials,
anti-aircraft guns, surface-to-air missile
sites, visibility

interdiction: road/railroad number of cuts, road/railroad-bed type,
anti-aircraft guns, surface-to-air missile
sites, visibility

interdiction: bridge length of bridge, building materials,
anti-aircraft guns, surface-to-air missile
sites, visibility

area preparation size of area to prepare, terrain type,
protective cover, defensive positions,
armored vehicles, anti-aircraft guns,
surface-to-air missile sites, visibility

close-air support force-size to support, terrain type,
protective cover, defensive positions,
armored vehicles, anti-aircraft guns,
surface-to-air missile sites, visibility

24 Hour Alert number of planes to put on alert.

Figure 1

10

and priority level of the mission. (The desired completion percentage for a 24

hour alert is automatically assumed to be 100%.)

The expert systern takes all these mission factors and resolves them against rules
to figure out the number of planes, load types and fusings needed for the mission
to meet the desired completion level. If there are enough planes and weapons
to meet mission specificatiuns, the system suggests the number of planes and
weapons required. The system user can then assign or scrap this suggested
mission. Assigning the mission causes the system to subtract the number of
planes and amount of each weapon used from the appropriate databases, as
well as adding the mission to the mission database. If the number of planes or
the amount of any weapon type is insufficient for the mission, then the system
tells the user the mission cannot be implemented. Factors are then cited as to
why the mission cannot be implemented:

Mission requires X planes but only Y available.

Not enough of weapon X to implement mission.
Some important factors limiting the mission completion may also be cited:

Heavy foliage makes completion level difficult.

Urban cover makes completion level difficult.

Dense Fog makes completion level difficuit.

Mountainous terrain makes completion level difficult.
Lowering the desired completion level may help.

11

2.3 Knowledge Acquisition Phase

The knowledge acquisition stage was interleaved with the design of the program.
Initially Dr. Minor worked on the design of the menu framework with the
domain expert, Col. Kowalczyk. The mission types were established, and the
factors involved in each mission were listed. A method of supplying values for
these factors was needed, and so menus were chosen because they would limit
difficulties in user input. Menus also allowed the programmer a simple way
of defining ranges of values to be input. The information flow for the expert
system program had been established, but more interviewing was needed to get
menu ranges. The expert supplied much semantic information that was used
in developing the menus, such as dividing force sizes into units like squads,
platoons and battalions, and dividing aati-aircraft guns and SAM-site sizes into

sections, batteries and battalions.

The most important menu established was the desired completion percentage.
This menu required many adjustments. The expert recalled that missions with
above 60% completion were considered satisfactory, missions with over 75%
completion were considered excellent, but missions with over 90% completion
were rare. This led to a final percentage range breakdown of : 20-44%, 45-59%,
60-74%, 75-89%, 90-100%. The 60-74% range was considered the basis value for
the facts in the rule-base. Since above 90% completion was very difficult, our
expert said the number of planes needed to implement a mission at that level

would be 3 times the number needed at the 60-74% level. The 75-89% level was

12

considered 1.5 times as difficult, while 45-59% and 20-44% were considered 0.8

and 0.4 times as difficult respectively.

Other factors were decided declaratively. These included things like anti-aircraft
guns and SAM-sites. The expert estimated the number of planes these devices
could eliminate at each of their respective menu levels. The expert also esti-
mated multiplier values for these other menus: terrain, protective cover and
low-altitude visibility. These multipliers were created to increase the number of
planes to a level that would make the desired completion level attainable. The
number of planes required to implement every mission type at the basis level
was recorded and placed in the rule-base. The load types and fusings associ-
ated with each mission type was also recorded. Certain mission types could be
affected by defensive positions and protective cover factors, which could also

require different weapon loads.

There were few decision rule requirements for the system. Since the number
of planes for each mission ¢ype and each menu level were in the database, al-
ternative rules were no problem(7]. Weapon loads were determined in a similar
fashion and again alternative rules did not occur. This was due to the menu im-
plementation which narzowed the weapon load assignments by supplying specific

menu values.

13

2.4 Implementing the Knowledge Base

The implementation of the knowledge base was done as follows by Grant Wright.
Each mission had specific plane and weapon assignments for each menu value.
The basis completion percentage value was 60-74%. Thus if the menu for mission
type typex had menu values 1, 2, and 3, and these menu values required 5, 10,
and 20 planes to allow completion at the basis level then the facts would look

like this:

assn{.60} (typex,1,5).
assn{.60} (type.x,2,10).
assn{.60} (type.x,3,20).

To find the values of these at different percentages, the following rules would be
used:

mn}.mi (typex,M,NP) :- m}.ﬁo (typex,M,N), NP is N*0 4.
assn{.45} (type.x,M,NP) :- assn{.60} (typex,M,N), NP is N*0.8.
assn{.75} (typex,M,NP) :- assn{.60} (typex,M,N), NP is N*1.5.
assn{.90} (typex,M,NP) :- asen{.60} (typex,M,N), NP is N*3.0.

This is how all initial plane assignments are handled. The actual number of
planes can be higher because of multipliers from other factors, as well as the

addition of planes because of factors like anti-aircraft guns and SAM-sites.

Load types and fusings are decided by asserting appropriate percentages of
weapons for each mission type. The weapon types and fusings vary on specific

menu criteria that characterize a mission. Load rules look like this:
lcad.missiontype(MissionNuin, Factors, Percentages) :-

14

assert(loadpc(MissionNum, Load,, Fuse;, Percent,)),
assert(loadpe(MissionNum, Loads, Fuses, Percent,)),

assert(loadpc(MissionNum, Load,, Fuse,, Percent,)).

The Percentages variable is needed for missions that have more than one set
of load constraints. Area preparation missions, for example, are affected by

defensive positions and protective cover.

Implementing the weapon loads as assertions to a new loadpc database was
necessary for many reasons. The most important reason was the absence of list
access in MPROLOG. The easiest way of implementing the loads would have
been to construct a list of load and fuse tuples. This would have avoided costly

assertions and deletions to unnecessary databases.

A similar database called load_amt was created later to find the actuai amounts
of each weapon for the mission. Then a database with tuples for mission number,
number of planes, plane loads, load fusings. and load amount was also created

to store the actual mission data. Even this could have been implemented more

efficiently as lists.

Certain allowances had to be made for underflow. Missions against small forces
with low desired completion levels tended to need less than 2 planes. This
caused 3ero planes carrying nothing to be asserted into the database becsuse

most missions needed more than 2 weapon types. This was solved using a

15

naximum attribute attractiveness rule. The expert supplied weapon types for
each mission that were considered most essential. Only these weapons were

asserted in cases of underflow.

2.5 Examples

All examples have been tested using the Wing Commander expert system. The

mission suggestions and failure factors are those provided by the expert system.

The menu ordering is that found when running the Wing Commander. A listing
of menus used by the expert system is given in Appendix A, and the small letters
used below refer to that list. These examples all start by choosing “plan mission”

from the top-level menu (a).

Example 1

Close air support mission: a company is to be provided with close air support.
The company is travelling over rough terrain under a jungle cover. Enemy
positions will be underground (in tunnels). No armored vehicles, anti-aircraft
guns, SAM-sites are expected to be encountered. Low altitude visibility is clear
and the mission should be carried out to 75% satisfaction level. Set location as

“loc 1” and time at 0830 hours.

Menu (appendix letter) Selection
Select Mission Type(b) close-air support
Select Principle Terrain Type(e) mountainous / rough

16

Select Protective Cover Type(f)
Select Type of Defensive Position(g)
Est. Number of Armored Vehicles(m)

Est. Number of Anti-aircraft Guns(h)

Est. Number of SAM-sites(i)
Low Altitude Cover(j)
Desired Completion Percentage(k)

heavy forest / jungle
tunnels

none

none

none

clear

75 - 89%

The Wing Commander system outputs the following suggestion:

5 planes will carry 60 napalm bombs with impact fusing

5 planes will carry 100 500lb HD bombs with impact fusing
1 planes will carry 16 cluster bombs with proximity fusing
4 planes will carry 16 2000lb bombs with delay fusing

All 15 planes will carry a total of 30000 rounds of 20mm

Example 2

Bridge mission: A large concrete bridge is to be destroyed. The bridge crosses

a gorge of approximately 250 feet. Expect a battery of anti-aircraft guns and a

section of SAM-sites. Visibility is hazy due to heavy rain in the area. A 50%

completion level will be satisfactory. Set location as “loc 2” and time at 1130

hours.

Menu (appendix letter)

Select Mission Type(b)

Select Principle Target Type (¢)
Estimate Length of Bridge in Feet(r)
Select Bridge Material(s)

Est. Number of Anti-aircraft Guns(h)
Est. Number of SAM-sites(i)

Low Altitude Cover(j)

Desired Completion Percentage(k)

Selection

interdiction
bridge

200-300

concrete

3 - 6 (battery)

1 - 2 (section)
hazy / heavy rain
45 - 59%

The Wing Commander system outputs the following suggestion:

17

2 planes will carry 32 750lb bombs with delay fusing

2 planes will carry 8 2000lb bombs with delay fusing

4 planes will carry 96 air-to-ground missiles with impact fusing
All 8 planes will carry a total of 16000 rounds of 20mm

Example 3

Area preparation: an area of more than one square mile has been requested to
be cleared. The area is in a mountainous area in thick jungle. Enemy positions
include a set of bunkers and a platoon of armored vehicles. No anti-aircraft
devices are expected and visibility will likely be clear. Completion level of 70%

is satisfactory. Set location as “loc 3" and time at 0310 hours.

Menu (appendix letter) Selection

Select Mission Type(b) area preparation
Select Area in Square Miles (t) 1-11/2

Select Principle Terrain Type (e) mountainous

Select Protective Cover Type(f) heavy forest / jungle

Select Type of Defensive Position(g) concrete bunkers
Est. Number of Armored Vehicles(m) 1 - 4 (platoon)
Est. Number of Anti-aircraft Guns(h) none

Est. Number of SAM-sites(i) none
Low Altitude Cover(j) clear
Desired Completion Percentage(k) 60 - 74%

This mission will fail. The Wing Commander states the following:
Not enough planes to implement mission. 57 needed but only 50
available.
Mountainous terrain makes completion level difficult.
Heavy foliage makes completion level difficuit.
Lowering the iesired completion level may help.
If the mission is attempted again at 45-59% completion, the result is:

12 planes will carry 192 cluster bombe with proximity fusing

18

2 planes will carry 40 500lb HD bombs with impact fusing
2 planes will carry 32 750lb bombs with impact fusing

2 planes will carry 8 20001b with impact fusing

15 planes will carry 60 2000lb bombs with delay fusing

15 planes will carry 240 7501b bombs with delay fusing
All 48 planes will carry a total of 96000 rounds of 20mm

2.6 Limitations of the Expert System

The framework of the program is very restrictive. In the era of the wing com-
mander, planes could carry mixed loads, although only certain loads could be
mixed on any one plane{5]. This could have been implemented if the list notation

of PROLOG existed in MPROLOG.

The system automatically quits resolving against rules when there is an insuf-
ficient amount of any weapon load. Suggesting the mission anyway and simply

telling the user that it cannot be implemented would have been better.

The numbers for most of the mission suggestions seem to “round”. This prob-
lem occurs with floating point numbers, which must be represented as strings in
MPROLOG. Multiplication of these numbers, which lose accuracy being repre-
sented as strings, compounds the numerical error. MPROLOG also had no way

of providing an upper-bound limit on the completion percentage.

Verifying the expert systems operation could not be carried out fully. The only
source to verify the system was the domain expert since access to the military

information needed was impossible. The verification consisted, more or less,

19

of showing the domain expert a series of missions suggested by the system for
given inputs. These simulations were carried out on a variety of different mission
types, and in each case the domain expert evaluated the results of the program
and suggested corrections. Adjustments to the rule base were made until the

expert verified that subsequent simulations produced satisfactory results.

3 Evaluation of MPROLOG

3.1 Advantages of MPROLOG

MPROLOG has a distinct advantage over other expert system design tools
since it is based on PROLOG. PROLOG is familiar to everyone in the artificial
intelligence community, and thus most knowledge engineers would be familiar
with it. In MPROLOG one can perform non-monotonic reasoning, a feature
present in both KEE and ART. Database facts are basically the same in all
three systems. The rule types in KEE and ART can be modeled in MPROLOG,
but both KEE and ART have messier LISP-like implementations. A person
designing an expert system in KEE or ART must have a good understanding of
LISP, must learn the syntax of the specific tool, and must learn to work with
a new system-dependent environment. MPROLOG only requires the designer
to understand PROLOG. MPROLOG does not require specialized training of
system personnel to keep it running. It can simply be loaded onto a system and

run like any PROLOG implementation.

20

MPROLOG features a way of updating information in the database with the
built-in predicates support and detract, as well as the standard PROLOG predi-
cates assert and retract. These operators work by “adding” some confidence per-
centage to a given rule when sapportis used, and “subtracting” some confidence
percentage when detract is used. In diagnostic expert systems applications, this

would be incredibly useful.

3.2 Problems with MPROLOG

Some of MPROLOG’s advantages become its problems. The fact that MPRO-
LOG is based on PROLOG gives it the power of that programming language,
but also the problems associated with PROLOG are inherited: basic count-
ing is a task in PROLOG; asserting and deleting database items is not order
preserving; infinite looping and recursion can occur easily in PROLOG; some

predicates allow the programmer to write rules that are unsafe.

List notation was left out of MPROLOG, and implementing list operations using
the lisp predicate is incredibly difficult. Using the LISP ¢uote function seems
impossible, and the lack of the “|” operator from PROLOG is a major drawback.
Flosting point handling must also be improved and expressions should be eval-
uated as arguments to functions and predicates before being passed. Another
helpful fix would involve the uncertainty values. If the system provided ways
to allow variables in the uncertainty value field, MPROLOG would be more
powerful.

21

Procedural attachments available in ART and KEE are not available in MPRO-
LOG. Through these procedural attachments, both ART and KEE support
object oriented programming. The inheritance properties in ART and KEE
provide easy classification methods not present in MPROLOG. Of course a
programmer has the power in MPROLOG to create these properties and at-

tachments, although they are not built-in.

Overall, the problems of MPROLOG may hinder the knowledge engineer, but

all of these problems are correctable. If mended, MPROLOG will be very useful.

Bibliography

. ART Reference Manual: ART version 3.0, Inference Corp., Los
Angeles, Jan. 1987.

. ART Programming Tutorial, Vol 1, Inference Corp., Los Angeles.

. Clocksin, W.F. and C.S. Mellish, Programming in Prolog: Third

Edition, Springer-Verlag, Berlin, 1987.

. Flatebo, Martin, “MPROLOG Manual and Source Code”, Dept. of Com-
puter Science Report CSR-88-003, University of Nevada, Las Vegas, Jan.
1988.

. Flight Manual T.O. 1F-111A-1, for USAF Series Aircraft F-.

111A, United States Air Force, Sept. 1974.

. Hedberg, Sara and Marilyn Seltzner, Knowledge Engineering Envi-
ronment (KEE) System: Summary of Release 3.1, Intellicorp,

Mountain View, CA, 1988.

. McGraw, Karen L. and Karan Harbison-Briggs, Knowledge Acquisi-
tion: Principles and Guidelines, Prentice-Hall, NJ, 1989.

. Rich, Elaine, Artificial Intelligence, McGraw-Hill, New York, NY, 1983.

. Weise, Sholom and Casimir Kulikowski, A Practical Guide to Design-
ing Expert Systems, Rowman & Allanheld, Totowa, NJ, 1984.

23

A Appendix: Menus from Wing Commander

a) Fighter Mission Dispatching System:

plan mission
change mission
check status
change database
quit

b) Select Mission Type:

interdiction
area preparation
close-air support
on 24-hour alert

¢) Select Interdiction Target Type:

personnel camp
unarmored vehicles (convoy)
armored vehicles
building complex
roads/railroads
bridge

d) Select Approximate Force Size:

squad (1 - 10)
platoon (11 -30)
company (31 - 100)
battalion (101 - 350)
regiment (351 - 1000)
lazger (over 1000)

e) Select Principle Terrain Type:
flat
rolling hills
mountainous / rough

f) Select Protective Cover Type:

open

24

light trees / scattered buildings
heavy forest / jungle
city / urban area

g) Select Principle Type of Defensive Position:

none
trenches/earth works
tunnels
reinforced concrete bunkers/caves

h) Estimate Number of Anti-aircraft Guns:

none
1 - 2 (section)
3 - 6 (battery)
7 - 18 (battalion)
over 18

i) Estimate Number of SAM Sites:

none
1 - 2 (section)
3 - 6 (battery)
7 - 18(battalion)
over 18

j) Low Altitude Cover:
clear
light rain / drizzle
haze / heavy rain / fog patches
dense fog / smoke
k) Estimate Desired Mission Completion Level:
20 - 44%
45 - 59%
60 - 74%
75 - 89%
90 - 100%
1) Estimate Number of Unarmoured Vehicles:

less than §

25

5to 10

11to 15

16 to 20
more than 20

m) Estimate Number of Armored Vehicles:

none

1 - 4 (platoon)
5 - 12 (company)
13-36 (battalion)

more than 36

n) Estimate Size of Buildings in Square Feet:

under 1000
1000 to 2500
2500 to 5000

5000 to 10,000
10,000 to 20,000
over 20,000

o) Select Building Material Type:
wood, straw, or tents
sandbag reinforced hut

brick
reinforced concrete

p) Select Road/Railroad Target Type:
simple cut
double cut
intersection/fork
major junction
q) Road Type / Railroad Underlining:
dirt
macadam / rock
concrete

r) Estimate Length of Bridge in Feet:

under 50

26

50 - 100
100 - 200
200 - 300
over 300

s) Select Bridge Material:

wood
concrete
stee|

t) Select Area in Square Miles:

0-1/4
1/4-1/2
1/2-1
1-11/2
11/2-2

27

B Appendix: Source Code for Wing Comman-
der

28

(/users/masi/gwright/lonnie/gex.mprolog)

Structure of Wing Commander ezpert system

/ .
level description
1 Plan Mission
1.1 Interdictions
1.1.1 personnel concentration
1.1.2 unarmored vehicles
1.1.8 armored vehicles
1.1.4 buslding complez
1.1.5 roads / rasiroads
1.1.6 bridges
1.2 Area Preperation
13 Close—-air Support
1.4 On 2 Howr Alert
2 Change Mission
2y Delete
22 Location
23 Time
24 Completion %
3 Check Status
3.1 Status of Planes
3.2 Status of Weapon Loads
3.3 Status of Missions
4 Change Datgbase
4.0 Change Password for Access
4.1 Chenge Plane Amounts
{-1.1 nsmber of unassigned
412 number on maintenance
4.1.3 sember with battle damage
4-1.4 nember malfunctioning
42 Chenge weapon emounts
$-2.1 amount of 20mm
{.2.2 aemosnt of Cluster Bombs
4.3 emousnt of 500lb high drag
.24 amount of 500ld low dreg
{-2.5 emount of 750ib
{.2.6 smousnt of 20000
{.8.7 smousnt of nepeim
{28 emount of sir—{o—~ground
S Qust

round(X,Y) =
Wis X + 0.5,
lisp(Y truncate,W).

teunc(X,Y) :~ lisp(Y.truncate,X).

bk_amt(mm20,0).
bk_amt(cb,0).

bk_ame(hd500,0).
bk_amt(14500,0).
bk_amt(m750,0).

14:57 Apr 19 1990

/® Keeps track of load usege during wespon asssignment */
/* In cese same wespon used with different fusing
/® Must be reset every time a mission is planned

predicates
process(!,..)
processi!
processii(pe,..)
processi(uv,..)
processii(av,..)
processii(be,..)
process{{(rr,..)
processii{bridge,..)
process/{areaPrep,..)

processi(closeAirSupport,..)
processi(on2{HrAlert,..)

process(?,..)
processg(Mnum,del)
process2(Mnum,loc)
process2(Mnum,time)
process2(Mnum,cmp)
process(3,..)
process$(1)
process3(2)
process3(3)
process(4,..)
process{(0)
process{(1)
process{i(se)
process{i(sm)
process{1(bd)
process41(mf)
process{(2)
process{2(mm20)
process{ 2(cb)
process{2(hd500)
process42(1d500)
process{2(m750)
process{2(m2000)
process{2(nepaim)
process{2(aty)
process(S,..)

*/

20

40

Page | of [users/ masif guright/lonnie/ gez.mprolog

(/users/masl/gwright/lonnie/gex.mprolog)

bk_amt(m2000,0).
bk_amt(napalm.0).
bk_amt(atg,0)-

name_of(mm20,%20 sm") :— !.

name _of(cb,"cluster bombs*) .- I

name_of(hd300,"5001b high drag bombs“) :— . 50
name_of(1d500,%5001b low drag bombs") : - !.

name_of(m750,*7501> bombs”) :~ !.

aame_of(m2000,720001b boabs") :- !

name_of(napalm,"napals*) :— !

name of(atg,“air to ground missiles”) :— !

expert - [* Start the database by typing erpert at the '?~’ prompt */
clear_db,
lisp(Ans,newdb),
open_proper(Ans), !, 20
do(0).

clear_db :—
mission(M, _, Sel. _, _, _),
retract(mission(M,_Sel._._)),
kill loadamts(M), kill sugg(M), kill loadpc(M),

removeTypeAtte(M Sel),
clear_db.
clear db :— cpass, ccounts, cplanes, cweaps. 80
cpass -
password(),
replace(password(), password(secret)).
cpass.
ccounts -
count(), miscount(),
retract(count())),
retract(miscount()).
ccounts. 90
cplanes :~
uaplanes(),
retract(uaplanes()), retract(aspianes()), retract(bdplanes())),
retract(miplanes(_)), retract(smpianes()).
cplanes.
cweaps -
weapon(mm20, _),
retract(weapon(mm20, _)), retract(weapon(cb, _)), retract(weapon(hd500, .)),
vetract(weapou(ld500,)), retract(weapon(m750, _)), retract(weapon(m2000,),
retract(wespon(nspalm, _)), retract(weapon(atg, _)). 100
cweape.

open_proper(n) :—
ask(’Supply tile name of your database (in quotes with .mprolog):’'.Name),
[Nm];ﬂo

write(’ File ' Name,’ is in the work space...')anl
14:57 Apr 19 1990 Page 2 of [ssers/ masi/ guright/lonnie/ gez. mprolog

e

open_proper(y) :=

(*standards.sprolog”].

do(Activity) :—

Activity = quit,
lisp(Ans, exitMenu),
saveDB(Ans).

(/users/masl/gwright/lonnie/gex.mprolog)

saveDB(Ans) :—~ /* Save session in a file */

Ans = 'y’,

write(" Supply prefix tile name (without .mprolog) to save database in:"),

read(SaveMe), nl.
tell(SaveMe),

count _listing,
missionListing,
planeListing,
weaponListing,

list1, list2, listd,

list4, listS, list@, list7, list8.
list9, list10, liscll, list12,
list13, list14, listl$,
told.

saveDB(Ans) :~ told.

120

count listing :— listing(count), listing(miscount).
count listing.

planeListing :—
lilting(uaplana).lhting(smplmes).listing(bdglanu), -

listing(mfplanes), listing(asplanes).

planeListing.

weaponListing :— listing(weapon).

weaponListing.

missionListing :— listing(mission).
missionListing.

listl :~ listing(new_pl_amt).
list1.

list2 :- listimg(bk_amt).
list2.

listd - listing(password).
listd.

list4 :~ listing(personnel).
listd4.

listd :~ listing(uVehicles).
listS.

list6 .~ listing(aVehicles).
list6.

list7 :~ listing(buildings).

14:57 Apr 19 1990

140

150

Page 3 of [users/ masif guright/lonnse/ ges. mprolog

[————

———-—-———-‘

list7.
list8 -
list8.
list9 -
list9.
list10 :~
list 10.
listll -
list1l.
list12 :—-
list12.
list1d :-
list13.
list14 :~
list 4.
listld : -
list15.

(/users/masl/gwright/lonnie/gex.mprolog)

listing(cuts).
listing(bridge).
listing(areaPrep).
listing(closeAirSupport).
listing(on24HrAlert).
listing(loadpc).
listing(load amt).

listing(sugg_miss).

do(Activity) :~ !, process(Activity, Next), do(Next).

process(0, Next) :~

process(1

lisp(Selection, menu(),
process(Selection, Next).

(80

/* Process selections from menw */

, 0) :=al, [/* Plan Mission level | */
write(’Plan mission’), nl,

missioaNum(Mnum),

resetbk,

ask(’Bater mission location:’, Mloc),

190

ask(’Rater mission starting time:’', Mctart),

lisp(Selection, selectMission),
processi(Selection, Mnum, Inter),
get_cp(Sel, Comp),

asmignPlanes(Maum, Selection, [nter, Comp, NPs), !,

round(NPs, Planes),
]

imhmt_mbion(Mnoum, Mloc, Mstart, Planes, Selection, Inter, Comp).

get_cp(ou24HrAlert, 0).
get.cp(Sel, Comp) :~

resetbk :

lisp(Comp,compperc).

replace(bk_amt(mm20,),bk_asmt(mm20,0)),
replace(bk_amt(cb,) bk_amt(cb,0)),
replace(bk_sme(hd500,),bk_amt(hd500.0)),
replace(bk_smt(14500,)bk ame(14500,0)),
replace{bk_amt(m750,),bk_ame(m750,0)),
replace(bk_amt(m2000,),bk_amt(m2000,0)),
replace(bk_amt(napalm,), bk_amt(napaim,0)),
replace(bk_ame(atg,), bk_smt(atg,0)).

14:857 Apr 19 1990

200

210

Page § of [users/masl/ guright/ lonnse/ gez.mproiog

(/users/masl/gwright/lonnie/gex.mprolog)

/* Now, assign planes, loads & fusings !!!

assignPlanes gets total # of planes needed and computes load factors
by asserting a new database. Then loadmtype is called to assign
those loads to cach plane for missions of type miype... */

assignPlanes(M, on24HrAlert, none, Comp, Nplanes) :— 220
on24HrAlert(M, Nplanes),
load_24hr(M).

assignPlanes(M, closeAirSupport, none, Comp, TotPlanes) :—
closeAirSupport(M, FS, Terr, PC, DP, AV, AA, SS, LC),
assnpe(Comp, closeAirSupport, FS, Nplanes),
assign_std_factors(AA, SS, AddPlanes),
assign_avs{ AV, AddMorePlanes),
compute_terr_factors(Terr, PC, LC, TFactor)/,
230
X is Nplanes * TFactor. Y is AddPlanes + AddMorePlanes,
TotPlanes is X + Y,

cond_load(M, closeAir, DP).
/* load_closeAir(M, 0.5), Cover only for area prep
cov_and def(M, PC, DP). */

cond_load(M, closeAir, none) :-

load_closeAir(M, 1.0).

240

cond_load(M, closeAir, DP) :~

load_closeAir(M, 0.75),

defpos_loads(M, 0.25, DP).
assignPlanes(M, areaPrep, none, Comp, TotPlanes) :—

areaPrep(M, AR, Terr, PC, DP, AV, AA, SS, LC),

assnpc(Comp, areaprep, AR, Nplanes),

assign std_factors(AA, SS, AddPlanes),

assign_ave(AV, AddMorePlanes),

compute_terr_factors(Terr, PC, LC, TFactor), !, 250

X is Nplanes * TFactor, Y is AddPlanes + AddMorePlanes,
TotPlanes is X + Y,

load_sp(M, 0.75),
cov_sad_def{ M, PC, DP).

assignPlanes(M, interdiction, pc, Comp, TotPlanes) :—
personnel(M, FS, Terr, Pcov, DP, AA, SS, LC),
amupce(Comp, pe, FS, Nplanes), 260
assign std_factors(AA, SS, AddPlanes),
compute_terr_factors(Terr, Pcov, LC, TFactor), !,

X is Nplanes * TFactor,
TotPlanes is X + AddPlanes,

14:57 Apr 19 1990 Page 5 of [wsers/ masi/ guright/ lonnie/ gez.mprolog

(/users/masl/gwright/lonnie/gex.mprolog)

cond_load(M, pec, DP).

/* load pers(M, 0.5), Cover only for area Prep
cov_end_def(M, PC, DP). */
270
cond_load(M, pc, none) :—
load pers(M, 1.0).
cond_load(M, pc, DP) :—
load _pers(M, 0.75),
defpos_loads(M, 0.25, DP).
cov_and _def{ M, PC, nope) :-
cover loads(M, 0.25, PC).
280
cov_and def{ M, PC, DP) :-
cover_loads(M, 0.125, PC),
defpos_loads(M. 0.125, DP).
assignPlanes(M, interdiction, uv, Comp, TotPlanes) :~
uVehicles(M, UV, Terr, PC, AA, SS, LC),
assnpe(Comp, uv, UV, Nplanes),
assign_std_factors(AA, SS. AddPlanes),
compute_terr_factors(Terr, PC, LC, TFactor), !,
290

X is Nplanes * TFactor,
TotPlanes is X + AddPlanes,

losd_uv(M, 1.0).
/* load wv(M, 0.5), cover shouldn’t affect
cover_{oads(M, 0.5, PC). */
assignPlanes(M, interdiction, av, Comp, TotPlanes) :—
aVehicles(M, AV, Terr, PC, AA, SS, LC),
assnpe(Comp, av, AV, Nplanes), 300
assign_avs(AV, AddPlanes),
compute_terr_factors(Terr, PC, LC, TFactor), !,

X is Nplanes * TFactor,
TotPlanes is X + AddPlanes,
load_av(M, 1.0).
A losd ev(M, 0.5), cover shouldn’t affect
cover loads(M, 0.5, PC). */

assignPlanes(M, interdiction, be, Comp, TotPlanes) : - 310
buildings(M, Ares, Mats, AA, SS, LC),
assnpc(Comp, be, Area, Nplanes),
assign_std_factors(AA, SS, AddPlanes), !,
TotPlanes is Nplanes + AddPlanes,

load_ buildmats(M, 1.0, Mats).

14:57 Apr 19 1990 Page 6 of [users/ masi/ quright/lonnie/ gez.mprolog

(/users/masl/gwright/lonnie/gex.mprolog)

assignPlanes(M, interdiction, rr, Comp, TotPlanes) :—
cuts(M, NC, RT, AA, S§, LC), 320
assnpe(Comp, rr, NC, Nplanes),
assign_std_factors(AA, SS, AddPlanes). !,

TotPlanes is Nplanes + AddPlanes,
load_cuts(M, 1.0, RT).

assignPlanes(M, interdiction, bridge, Comp, TotPlanes) :~
bridge(M, Len, Mat, AA, SS, LC),
assnpc(Comp, bridge, Len, Nplanes), 130
assign_std_factors(AA, SS, AddPlanes), !,

TotPlanes is Nplanes + AddPlanes,
load_bridgemats(M. 1.0, Mat).

ask(Question, Response) :— write{Question),
read(Response),nl, write(“response: <" Response,”>"),nl.

processi(interdiction, Mnum, Selection) :~ lisp(Selection, targetType), 340
processil(Selection, Mnum).

processll(pc,Maum) :-
lisp(ES forceSize),
lisp(Terrain,terrain),
lisp(Pcov,pcover),
lisp(DefPos,defpos),
airdef{AA,SS),
lisp{LC locover),
replace(personnel(Mnum,__,_._._._....), - 350
personnel(Moum, ES, Terrain. Pcov. DefPos, AA, SS, LC)).

replace(C1.C2) :— Cl, retract(Cl), assert(C2).
replace(C1,C2) :— assert(C2).

processll(uv,Mnum) :-
uavehicles(UV),
lisp(Terrain terrain),
lisp(Pcov,pcover),
airdef(AA,SS), 360
lisp(LC,locover),
replace{uVehicles(Mnum,,__._._....), uVehicles(Mnum,UV, Terrain,Pcov,AA SS.LC)).

processll(av,Moum) :~
lisp(AV ,avehicles),
lisp{ Terrain,terrain),
lisp(Pcov,pcover),
airdef(AA,SS),
lisp(LC locover),
replace(aVehicles(Mnum,,__., .. .), aVehicles(Maum,AV, Terrain,Pcov,AA SS,LC)). 370

14:57 Apr 19 1990 Page 7 of [users{ masi/ guright/ lonnse/ gez.mprolog

(/users/masl/gwright/lonnie/gex.mprolog)

processii(bc,Mnum) :—
lisp(SF ,buildingarea),
lisp(Material, buildingMats),
airdef(AA,SS),
lisp(LC locover),
replace({buildings(Mnum,__, _, _, _), buildings(Mnum. SF, Material, AA, SS.LC)).

380
processll(rr, Moum) :—

lisp(FC,ncuts),

lisp(RT .roadtype),

airdef(AA,SS),

lisp(LC locover),

replace(cuts(Mnum,_,_,_,_,_._), cuts(Mnum,FC,RT,AA,SS,LC)).

processii(bridge, Mnum) :—
lisp(Len.bridgelen),
lisp(Material, bridgeMats), 390
airdef(AA.SS),
lisp(LC locover),
replace(bridge(Mnum.,_,_,_,_,.), bridge(Mnum, Len, Material. AA, SS, LC)).

processi(areaPrep, Mnum, none) :-
lisp(Area, area),
lisp(Terrain, terrain),
lisp(Pcov, pcover),
lisp(DefPos, defPos),
armoredVehicles(AV), 400
airdef(AA,SS),
lisp(LC locover),
replace(areaPrep(Mnum s -
areaPrep(Mnum, Area, Terrain, Pcov, DefPos, AV, AA, SS, LC)).

armored Vehicles(AV) :— lisp(AV,av2).
uavehicles(UV) :~ lisp(UV,uvehicles).

airdef(X,Y) :~ aaGuns(X), samSites(Y).
aaGups(AAguns) :— lisp(AAguns,aadef). 410
samSites(SAMsites) :— lisp(SAMsites samsites).

processi(clossAirSupport, Mnum, none) :—
lisp(FoeceSise, forceSize),
lisp(Terrain, terrain),
lisp(Peov, pcover),
lisp(DefPos, defPos),
armored Vehicles(AV),
airdef{AA,SS),
lisp(LC locover), 420
replace(closeAirSupport(Moum,_ a
closeAirSupport(Mnum,ForceSize, Tecrain, Pcov,DefPos, AV ,AA,SS.LC)).

processi(on24HrAlert, Mnum, none) :-

14:57 Apr 19 1990 Page 8 of [users/ masi/ gwright/lonnie/ gez.mprolog

(/users/masl/gwright/lonnie/gex.mprolog)

write(’24 hour alert’), nl. uaplanes(Count),

nl, write('Jumber of unassigned planes = '),

write{Count), nl,

write(’Sov many planes are to be put on 24 bour alert? '),
read(NumPlanes), nl,

replace(on24Hr Alert(Maum.),on24HrAlert(Mnum.NumPlanes)). 430
suggest(M) :- /* Output a "suggestion™ for the given mussion M */

sugg miss(M, Load. Fuse, Amt, Planes),

name_of(Load.Lname),

print_line(Load, Planes, Amt, Laame, Fuse),

fail.
suggest(M).

print_line(mm20, Planes, Amt, Loame, Fuse) :~
write(" ").al,
write(”All " Planes.” vill also carry ".Amt.” rounds of 20ma "),nlnlnl

140

print_line(Load. Planes, Amt. Lname. Fuse) :-

Load |= mm20,
write(Planes,” planes will carry " . Amt,” units of ",Lname,” with a " Fuse" tusing.").
ol

/* implement_mission({ Mnum, Nplanes, MissionType, InterdictionType)

430
At this point, an atlempt {o implement the mission is put forth.

Failure in implement mission occurs if the nwmber of planes avaslable

is insufficient. Faslure in calculations results if an augmented

piane amount is stil insufficient. Failyre 1n more_calculations

resslts when there are inssfficient weapon loads of any kind. */
implement_mission(Mnum, Mloc, Mstart, NP, Sel, later, Comp) :~

uaplanes(X),

X >= NP,

!

;:’alculationl(Mnum, Mloc, Mstart, NP, Sel, Inter, Comp).

460

implement_mission(Mnum, Mioc, Mstart, NP, Sel, Inter, Comp) :~
uaplanes(X),
write("Jot enough planes in database for mission *,Mnum)al,
. Nission requires ".NP* planes, only “.X,” available.")nlnl,
excuse(Mnum, Sel, Inter, Comp, NP),
finally_implement(2, Maum, Sel, [ater, NP).

calculations(Mpum, Mloc, Mstart, NP, on24HrAlert, none, Comp):— 470
uaplanes(X),
X >= NP,
special 24(Moum, NP),
more_calculations(Mnum, Mloc, Mstart, NP, on24HrAlert, none, Comp).

calculations(Maum, Mloc, Mstart, NP, Sel, Inter, Comp):-
Sel |= on24HrAlert,

14:57 Apr 19 1990 Page 9 of /ssers/ masi/ gwright/ lonnie/ gez. mprolog

(/users/masl/gwright/lonnie/gex.mproiog)

cale_load_amts(Moum, NP),

new_pl_amt(Mnum. NNP),

uaplanes(X), 180
X >= NNP,

retract(new_pl amt(Maum. NNP)),

'

more_calculations(Maum. Mloc, Mstart, NNP, Sel, Inter, Comp).

calculations(Moum, Mloc, Mstart, NP, Sel, Inter, Comp) :-
not(new_pl_amt(_)),
too_few(Mnum, Sel. Inter, NP),
more_calculations(Mnum. Mloc, Mstart, NP, Sel, Inter, Conp '

490
calculations(Mnum, Mloc, Mstart, NP, Sel, Inter, Comp) :~ /* Not enough of weapon */
uaplanes(X),
pew_pl_amt(Mnum, NNP),
retract(new_pl_amt(Mnum. NNP)),
write("Not enough planes in database for mission ", Mnum),nl,
write(" Mission requires " NNP.“ planes, only ", X,” available.").nl.nl.
excuse(Mnum, Sel, Inter. Comp, NP),
finally_implement(2, Mnum. Sel, Inter, NP).
special 24(Mnum, NP) :- /* Kludge to avoid approzimations on 2{Hr Alert mission */ soo
L1 is 45°NP,
L3 is .10°NP,
trunc(L1,R1),
trunc(L1,R2),
round(L3,R3),
figure(NP,R1,R2,R3 X,Y),

loadpc(Mnum, LD1, F1, PC1),

retract(loadpe(Mnum, LDI1, Fl1, PC1)),

loadpe(Mnum, LD2, F2, PC2), -

retract(loadpe(Mnum, LD2, F2, PC2)), s10
loadpe(Maoum, LD3, F3, PC3),

retract(loadpe(Mnum, LD3, F3, PC3)),

std_load_amts(LD1, Amtl),

std_load_amts(LD2, Amt2),

std_load_amts(LD3, Amt3),

ANl is Amt1*X,

AN2 is Amt2*Y,

AN3 is Amt3*R3,

load_and suggest(Mnum, AN1, LD1, Fl, X),

load_and suggest(Moum, AN2, LD2, F2, Y), $20
load_and_suggest(Mnum, AN3, LD3, F3, R3).

figure(NP, X, Y, Z, NX, NY) -~
TisX+Y+2Z,
NP =T,
NX is X,
NY is Y.

-

figure(NP, X, Y, Z, NX, NY)
X+1, 530

X=Y, XXX is

14:57 Apr 19 1990 Page 10 of /vsers/masi/ quright/ lonnie/ gez.mprolog

(/users/masl/gwright/lonnie/gex.mprolog)
figure(NP, XXX, Y, Z, NX, NY).

figure(NP, X, Y, Z, NX, NY) := YYY is Y + 1, figure(NP, X, YYY. Z, NX, NY).

setnpa(A, B,C) .~ B> C, Ais B.
set npa{ A, B, C):— Ais C.

too_few(Mnum, Sel, Inter, NP) :— /* Too few is evoked when underflow occurs */
kill loadamts(Mnum), kill sugg(Mnum),
princ_load(Moum, Sel, Inter. Lode, Fuse),
std_load_amts(Lode, Amt),
weapon(Lode, AmtAvail),
AmtNeeded is NP * Amt,
AmtAvail > AmtNeeded,
assert(load amt(Mnum, Lode, Fuse, AmtNeeded)),
assert(sugg miss(Moum, Lode, Fuse. AmtNeeded, NP)).

540

too_few(Mnum, Sel, Inter, NP) :—
princ_load(Moum. Sel. Inter. Lode. Fuse),
assert(load amt(Mnum. Lode, Fuse, 0)).

330

toofew(A, B, C, D).

more_calculations(Maum, Mloc. Mstart, NP, Sel, Inter, Comp) :—
cale_20(Mnum, NP),
not(load_amt(Mnum.__0)),nlnlnl,
write(* Here is a suggestion for implementing mission *,Mnum),nl,
write(" “),nlnl,
suggest(Mnum), 560
lisp(Ans, assnmission),
finally implement(Ans, Moum, Sel, Inter, NP-),
assert _if necessary(Ans, Mnum, Mloc, Sel, Mstart, NP, Comp).

more_calculations(Mnum, Mloc, Mstart, NP, Sel, Inter, Comp) := /* Not enough of weapon */
report_failures(Mnum),
excuse(Moum, Sel, [ater, Comp, NP),
1

finally_implement(2, Maum, Sel, Inter, NP). s70

load_20(Maum, NP) :-
std_load_ amts(mm20, Amt),
weapon(mm20, Old),
SP is Amt*NP,
NewAmt is Old - SP,
replace(weapon(mm20,0ld), weapon(mm20,NewAmt)).

asgert_if necessary(1, Mnum, Mloc, Sel, Mstart, NP, Comp) :-
assert(mission(Mnum, Mloc, Sel, Mstart, NP, Comp)), 580
uaplanes(X), asplanes(Z), miscount(R),
YisX~-NP, WisZ +NP,SisR + 1,
replace(uaplanes(X), uaplanes(Y)),

14:57 Apr 19 1990 Page 11 of [users/masif guright/lonnse/ gez.mprolog

(/users/masl/gwright/lonnie/gex.mprolog)

replace(asplanes(Z), asplanes(W)),
replace(miscount(R), miscount(S)).

assert_if necessary(2, Mpum, _, _, _, _, _) :~ kill sugg(Mnum).

/* ezcuse cover possible reasons for ¢ missions faslure */

530
excuse(Mnum, closeAirSupport, none, Comp, N) :~ !,

closeAirSupport(Mnum, _, Terrain, Pcover, _, _, _, _, LC),
terrExcuse(Terrain),
pcovExcuse(Pcover),
compExcuse{ Comp).
excuse(Mnum.areaPrep , none. Comp, N) - "
areaPrep(Mnum. _, Terrain, Pcover. _, _, _, _, LC),

terrExcuse(Terrain),
pcovExcuse(Pcover), 500
compExcuse(Comp).

excuse(Mnum, interdiction. pc, Comp. N) - "
personnel(Mnum, _, Terrain. Pcover.
terrExcuse(Terrain),
pcovExcuse(Pcover),
compExcuse(Comp).

LC),

- a! -

excuse(Mnum, interdiction, uv, Comp, N) :- '
uVehicles(Mnum, _, Terrain. Pcover. _, _, LC), 610
terrExcuse(Terrain),
pcovExcuse(Pcover),
compExcuse(Comp).

excuse(Mnum, interdiction, av, Comp, N) :- . :

aVehicles(Mnum, _, Terrain, Pcover, _, _LC).

terrExcuse(Terrain),

pcovExcuse(Pcover),

compExcuse(Comp).

520

excuse(Mnum, interdiction, be, Comp, N) - '

buildings(Maum, _, _, _, _, LC),

locovExcuse(LC),

compExcuse(Comp).

excuse(Mnum, interdiction, rr, Comp, N) .= '

c“q Mnum'.l.l-‘.l LC)!

locovExcuse(LC),

compExcuse(Comp).

630

excuse(Mnum, interdiction, bridge, Comp, N) :~ ',

bridge(Maum, _, _, _, _, LC),

locovExcuse(LC),

compExcuse(Comp).

excuse(Moum, X, Y, Z, W) - .

14:57 Apr 19 1990 Page 12 of [ssers/ masl/ guright/lonnie/ gez.mprolog

(/users/masl/gwright/lonnie/gex.mprolog)

compExcuse(0)

compExcuse(1)

compExcuse(2). 140
compExcuse{ 3) :~ nl, write("Attempting to drop completion percentage may aid you.").
compExcuse(4) :— nl. write("Attempting to drop completion percentage can aid you.").
compExcuse{ 5) :— nl, write("Attempting to drop completion percentage vill aid you.").

terrExcuse(mountains) :— nl, write("Mountainous texrrain makes completion level difficulc."'
terrExcuse(open).
terrExcuse(hilly).

pcovExcuse(open). !
peovExcuse(sb). 450
pcovExcuse(jungle) :~ al, write("Heavy foliage makes completion level difficult."). \
pcovExcuse(urban) :— nl, write("Urban cover makes completion level difficult."). |

locovExcuse(1). |
locovExcuse(2).

locovExcuse(3) :— nl. write(“Haze/Heavy Rain/Fog Patches make completion level difficult.”'
locovExcuse(4) :— nl, write("Dense Fog/Smoke make completion level very difficult.").

cale_20(Mnum, NP) - /* Find amoxnt of 20mm needed to implement mission */
std_load_amts(mm20, Amt), 560
AmtNeeded is NP * Amt,
weapon(mm20, AmtAvail),
AmtNeeded =< AmtAvail,
assert(sugg miss(Mnum, mm20, impact, AmtNeeded, NP)).

calc_20(Maum, NP) :—~
assert(load_amt(Mnum, mm20, impact, 0)).

calc_load_amts(Maum, NP) := /* Find amount of any weapon needed to implement mission */
loadpe(Mnum, Load, Fuse, P), 570
retract(loadpe(Mnum, Load, Fuse. P)),
]

X is P*NP,

round(X,Y),

add_new_tot(Moum, Y),

std_load amts(Load, AmtStd),

AmtNeeded is Y*AmtStd, /* Yis # of planes */

load_and_suggest(Moum, AmtNeeded, Load, Fuse, Y),!,

cale_load_amts(Moum, NP).

580

calc_load_amts(Mnum, NP).

add_new_tot(M, 0).
add_new_tot(M, X) :-
newplamt(M, Y),

ZisX +Y,
replace(new_pl amt(M,Y), new_pl amt(M,Z)).

14:57 Apr 19 1990 Page 13 of [users/ masi/ gwright/lonnse/ gez.mprolog

,,A___‘,——,»——’—/——'i—/——p——k*j—’——/_‘

(/users/masl/gwright/lonnie/gex.mprolog)

add_new_tot(M, X) :— assert(new plamt(M, X)). 530

load_and_suggest(Mnum, AmtNeeded. Load, Fuse, 0). /* do not assert 0 planes !!! */
load _and suggest(Mnum, AmtNeeded, Load, Fuse, Y) :-
weapon(Load, AmtAvail),
bx_amt(Load. Used), /* Load Total used on same weapon */
Total is Used + AmtNeeded, /* (if weapon uses with different fusings) */
Total =< AmtAvail,
replace(bk_amt(Load.Used), bk_amt(Load.Total)),
assert_load_and _sugg(Mnum, AmtNeeded, Load, Fuse, Y).
00
assert_load_and sugg(Mnum, AmtNeeded, Load, Fuse, Y) :—
load_amt(Mnum, Load, Fuse, Other_Amt),
sugg miss(Maum, Load, Fuse, Old_Amt, OY),
NY is OY + Y, /* Changing #’s in case weapon already asserted */
Total Amt is Other Amt + AmtNeeded,
replace(load_amt(Mnum, Load, Fuse, Other_Amt),
load_amt(Mnum, Load. Fuse, Totai_ Amt)),
replace(sugg miss(Mnum. Load, Fuse. Other_Amt, QY),
sugg miss(Maum, Load. Fuse. Total Amt, NY)).

assert_load_and_sugg(Mnum, AmtNeeded, Load. Fuse, Y) : -
assert(load amt(Mnum. Load. Fuse, AmtNeeded)),
assert(sugg miss(Mnum, Load, Fuse, AmtNeeded, Y)).

losd_and_suggest(Mnum, AmtNeeded, Load, Fuse. Y) :~
assert(load_amt(Mnum, Load, Fuse, 0)).

report_failures(Maum) :—
load_amt(Maum, Load, _, Amt),
Amt > 0, 720
retract(load amt(Moum, Load, _, Amt));
report_failures(Maum).

report_failures{ Mnum) :-
load_amt(Mnum, Load, _, Amt),
Amt = 0,
name_of{ Load, WeaponName),
write("Not encugh “,WeaponName,* to implement mission ",Mnum),
retract(load_ amt(Moum, Load, _, Amt)),
report_failures(Mnum). T30

report_failures(Moum).

finally_implement(1, M, S, I, NP) :=
load_20(Mnum, NP),
actually_load(M).

actually_losd(Maum) :-
load_amt(Moum, Load, Fuse, Amt),
Amt > 0, 40
weapon(Load, X),
Y is X - Amt,

14:57 Apr 19 1990 Page 14 of [users/ mesif guright/lonnse/ gez.mprolog

(/users/masl/gwright/lonnie/gex.mprolog)

replace(weapon(Load.X), weapon(Load.Y)),
retract(load amt(Mnum. Load. Fuse, Amt)),
actually_load(Maum).

actually load(Moum).

finally_implement(2, M, S, [, NP) -
deletemtype(M, S, 1), 30
count(X),
z i. x - lv
replace(count(X), count(Z)),
kill losdpe{ M), /* Remove all scratch work for mission */
kill sugg(M),
kill loadamts(M).

kill loadpc(M) :— loadpe(M,), retract(loadpe(M. _, _, _)), kill loadpc(M).
kill_loadpe(M).

kill_ loadamts(M) :~
load_amt(M._._._).
retract(load ame(M. _, _, _)),
kill loadamts(M).

kill loadamts(M).

kill sugg(M) -
'u&mh(M’ - =) =@ -)1
retract(suggmiss(M, _ _, _, _)), 770
kill sugg(M).

kill sugg(M).

deletemtype(M, interdiction, pc) :— retract(personnel(M._._.__._..._))

deletemtype{ M, interdiction, uv) :— retract(uVehicles(M.__._._....))-

deletemtype(M, interdiction, av) :— retract(aVehicles(M.__._._._..))

deletemtype(M, interdiction, bc) :~ retract(buildings(M._.__._)).

deletemtype(M, interdiction, rr) :~ retract(cuts(M.__._._._)).

deletemtype(M, interdiction, bridge) :~ retract(bridge(M. __._)) T80
deletemtype(M, closeAirSupport, none) :~ retract(closeAirSupport(M,_,_._._.__..))
deletemtype(M, areaPrep, none) :— retract(areaPrep(M._.._..))

deletemiype(M, on24HrAlert, none) :— retract(on24HrAlert(M,_)).

std_load amts(cb, 16). /* in fours */

std_load_amts(mm20, 2000).

std_load_amts(hd500, 20).

std_load_amts(14500, 2¢).

std_load_amts(m780, 16).

std_load_amts(m2000, 4). 90
2

std_load_amts(atg, 24). . /* i sizes */

/* princ_load(Sel, Inter, Lode, Fuse) */
prine_load(M, interdiction, pe, bd500, impact).

14:57 Apr 19 1990 Page 15 of [users/mesl/ gunight/ lonnse/ gez.mprolog

(/users/masl/gwright/lonnie/gex.mproiog)

princ_load(M. interdiction, uv, atg, impact).

princ_load(M, interdiction, av, atg, impact).

princ_load(M, interdiction, be, Lode, Fuse) -
buildings(M, _, Mats, _, _, _),
pla_appropo(bc, Mats, Lode, Fuse).

princ_load(M, interdiction, rr, Lode, Fuse) :-
cuts(M, _, Mats, _, _, _),
pla_appropo(rr, Mats, Lode, Fuse).

ptinc_load(M, interdiction, bridge , Lode, Fuse) :-
bﬁdse(Mv -l va -l ! -)'
pla_appropo(bridge, Mats, Lode, Fuse).

princ_load(M, closeAirSupport, none, hd500, impact).

princ_load(M, areaPrep, none, m750. delayed).
princ_load(M, on24HrAlert, none, hd500, impact).

pla_appropo(be, wood. napalm. impact).
pla_appropo(bec, rhut, m750. proximity).
pla_appropo(be, brick, m2000, proximity).
pla_appropo(be, re, m2000, delayed).

pla_appropo(rr, 1, m2000, delayed).
pla_appropo(rz, 2, m750, impact).
pla_appropo(tr, 3, m750, impact).

pla_appropo(bridge, wood, m750, impact).
pla_appropo(bridge, concrete, m2000, delay).
pla_appropo(bridge, steel, m2000, impact).

missionNum(Mnum) :—~ -

count(X),

Moum is X + |,

not(mission(Moum,__,_._.)),

replace(count(X),count(Mnum)).
missionNum(1).

process(5, quit) :— write(’Quit’).

300

310

820

330

14:57 Apr 19 1990 Page 16 of [users/masi/ gwright/lonnse/ ges.mprolog

(/users/masl/gwright/lonnie/static.mprolog)

levei(complete, 5,90 ~ 100%").
level(complete, 4,%78 - 89%").

levei(complete, 3,60 - 74%").

level(complete, 2,%48 - 59%").

level(complete, 1,720 - 44%").

level(complete, 0,”100%").

location(Loc¢) :—
nl, write('Vhere are the planes to be based? '),
read(Loc),nl.

process(2, 0) :— /* Make changes to missions */
write('Change mission’), nl,nl.
miscount(Nmiss),
Nmiss > 0,
write(’There are ' Nmiss) write(’ mission(s) in the database.’)nlnl
list missions,
ask('Vhich mission would you like to change (enter number):’' MN),
showMission(MN),
lisp(Which.attribute), nl.
process2(MN . Which).

process(2, 0) :— miscount(Nmiss), Nmiss = 0, nl. write("There are no plansed missions!!!'")nl.
process(2, 0) :— nl, write(’'mission not changed...’), nl.

continue(M) :—
m".”n(M' o) e e -)'
write('lew Nission Status: Missioa ' M).nlnl,
showMission(M). 30

continue(M).
process2(M,none).

process2(M, del) :—]* Delete this mission */
return_weapons(M),
remove_book_keeping(M),
miscount(X), Yis X ~ 1,
replace(miscount(X), miscount(Y)), 40
retract(missioa(M,___,_.)).

return_weapons(M) -
pull_and replace_loads(M),!,
return_weapons{ M).

return_weapons(M): -
mission(M, ___NP,_),
ulpw X)s
Y is X + NP, %
replace(usplanes(X), uaplages(Y)),
asplanes(R),

14:57 Apr 19 1990 Page 1 of [nsers/ masif gunght/lonnse/ static.mprolog

(/users/masl/gwright/lonnie/static.mprolog)
replace(asplanes(R), asplanes(S)).

pull_and_replace_loads(M):~
sugg miss(M, Lode, Fusing, Amt, _)./,
weapon(Lode, Old),
New is Old + Amt,
replace(weapon(Lode. Old), weapon(Lode, New)), 50
retract(sugg miss(M. Lode, Fusing, Amt, _)).

pull_and _replace_loads(M):~ fail.
remove_book _keeping(M) :~

mission(M,_Type.__),
removeTypeAttr(M,Type).

process2(M loc) :— /* Change location name of this mission */

ask(“Enter nev mission location".Nloc),nl, *0

mission(M,_ W ,X.Y,Z),

replace(mission(M._,W ,X.Y .Z) mission(M.Nloc.W XY ,2}),

continue(M).
process2(M time) :— /* Change time of this mission */

ask(“Enter nev mission start time” Time),nl,

mission(M,W X, Y.Z),

replace(mission(M,W X, Y Z) mission(M,W X, Time,Y,Z)),

continue(M).

80

process2(M,cmp) :— /* Change desired completion % for this mission */

mission(M,W X,Y.Z,),

not(on24HrAlert(M, _)),

lisp(CP,compperc),

return_weapons(M),!, -

miscount(J), K is J - 1,

replace(miscount(J), miscount(K)),

retract(mission(M,W X,Y.Z,)),

resetbk,

type_inter(M X Inter), 90
assignPlanes(M, X Inter,CP NP),!,

round(NP, NPlanes),!,

implement_mission{ M, W, Y, NPlanes, X, Inter, CP),

continue(M).

process2(M,cmp) :—
oa24HrAlert(M),
write('Completion perceatage for 24 Hour Alert can only be 100%.’).

process2(M,cmp) :~ write(*Rrror in changing mission“ M).nl. 100

type_inter(M, areaPrep, none).

type_inter(M, on24BrAlert, none).

type_inter(M, closeAirSupport, noue).

type_inter(M, interdiction, pc) :~ personnel(M,
type_inter(M, interdiction, uv) :— uVehicles(M)

14:57 Apr 19 1990 Page 2 of [ssers/ masl/ quright/ lonnse/ stetic.mprolog

(/users/masl/gwright/lonnie/static.mprolog)

type_inter(M, interdiction, av) :—~ aVehicles(M.___.__.)-

type_inter{M, interdiction, bc) :- buildings(M.___._.)-

type_inter(M, interdiction, rr) :— cuts(M_,___)).

type_inter(M, interdiction, bridge) :— bridge(M.__._,_,)- 110
type_intet{M, X, Y) :~ write('error tinding mission type : ’X),nl

removeTypeAttr(M.interdiction) :— personnel(M,_.__._....) interKill(M.pc).
removeTypeAttr(M interdiction) :— uVehicles(M,,_,_.__,),interKill(M,uv).
removeTypeAttr(M interdiction) :— aVehicles(M_,_ ...).intetKill(M av).
removeTypeAttr(M,interdiction) :— buildings(M.____,),intecKill(M,bc).
removeTypeAttr(M. interdiction) :— cuts(M_,__ .) interKill(M.r1).
removeTypeAttr(M,interdiction) :~ bridge(M,_,__,_,) interKill(M, bridge).

interKill(M,pc) :~ retract(personnel(M,_,_._,_.___))- 120
interKill(M,uv) :— retract(uVehicles(M,__,_,_,_,)).

interKill(M ,av) -~ retract(aVehicles(M,_,_,.,_,_,_)).

interKill(M.bc) :~ retract(buildings(M.__,_._.)).

interKill(M rr) :— retract(cuts(M,__,_._.)).

interKill(M bridge) :— retract(bridge(M.__,_,_.)).

removeTypeAttr(M.areaPrep) :— retract(areaPrep(M,_.___.._))-
removeTypeAttr(M,closeAirSupport) :~ retract(closeAirSupport(M,,__._._._._.)).
removeTypeAttr(M,on24HrAlert) :— retract(on24HrAlert(M,)).

130
process(3,0) :— lisp(Selection selectStatus), processd(Selection).
process3(1l) :— /* Check status of planes */
uaplanes(X1),smplanes(X2),bdplanes(X3),mfplanes(X4),asplanes(X5),
nl.nl.nl,
write(’planes unassigned :*.X1),nl,
write(’planes on scheduled maintenance:'.X2)nl,
write(’planes with battle damage : 7.X3),nl,
write(’planes completly malfunctioning: ', X4),nl,
write(’planes assigned to missions :' X5)mni, 140
write(’ '),nl,
Tot is X1+X2+4+X3+X4+X5,
write(’Total number of planes :+* . Tot),nl,process(3,0).
process3(2) :— mnl,al,nl, [* check weapon statss */
write(’ Veapon Status Report’)nl,
write(’ '), al.
weap(,weap 1, weap2,weap3, weap4, weap5,weap6, weap7 process(3,0).
W“Po [150
weapon(mm?20, Amt20),
write(’20mm: '), write(Amt20),
write(’ rounds ia supply’), nl.
weapl -
weapon(cb, AmtCB),
write('Clustexr bombe: '), write(AmtCB),
write(’ rounds i supply’), nl.
weap? -

weapon(hd500, Amt500HD),

14:57 Apr 19 1990 Page 3 of [users/ mesi/ gwright/ lonnte/static.mprolog

weapd :

weapd

weapd :

weapf :

weap’

(/users/masl/gwright/lonnie/static.mprolog)

write(500 ED: '), write(Amt500HD),
write(’' rounds in supply’), nl.

weapon(1d500, Amt500LD),

write('500 LD: '), write(Amt300LD),
write(’ rounds in supply’), nl.

weapon(m750, Amt750),

write('7580: "), write(Amt750),
write(’ rounds in supply’), ol

weapon(m2000, Amt2000),

write(’'2000: '), write(Amt2000),
write(’ rounds in supply’), nl.

weapon(napalm, AmtNapalm),

write(’Yapala (200 gal): '), write(AmtNapalm),
write(’ rounds in supply’), nl.

weapon(atg,Amt),

write(’Air to ground: '), write(Amt),
write(’ rounds in supply’), ol

process3(3) :—~

miscount(Mcount),

Mcount > 0,

write('There are '), write(Mcount),
write(’ planned missions: '),nl listmissions,
write('¥hich mission number? '),

read(M),

showMission(M),

process(3,0). -

process3(3) :-

miscount(Mcount),
Mcount = 0,
write(’¥o planned missions at this time...’),nl

process3(3) :~ write('Supply an existant mission next time’).

showMissica(M) :-

mission(M, Loc, Type, ST, NP, Comp),

write(’Nission type: '), write(Type), nl,
write('Nission location: '), write(Loc), nl,
write(’'Nission start time: '), write(ST), nl,
write(’Fumber of Planes Assigned : '), write(NP), nl, nlnl,
suggest(M),

levei(complete,Comp,X),

write{’Completion level ', X), nl, nl.

showMission(M) :~ write(’No record of mission’ M), fail.

listmissions :—

14:57 Apr 19 1990

60

70

130

210

Page { of [users/ mesi/ quright/lonnie/ static. mprolog

(/users/masi/gwright/lonnie/static.mprolog,
mission(X._Y.__),
print_out(X,Y),
fail.
listmissions :~ al.

printout(X, Y) = |,

write(X,’ " Y),nl 220
process3(4). /¥ qust status check */
process(4, 0) :— /* make changes to databases */

write(’'Change database’), nl,

write('Eater password: '),

read(Password),

password(Password),

lisp(Selection.menu4),

process4(Selection). ~10

process(4, 0) :— write(’Invalid password’).
password(secret).

changePassword :—
ask(’Enter old password’,OP)nl,
password(OP),
ask(’Enter ¥EV password’ NP)nl,
replace(password(OP),password(NP)). 240

changePassword .~

write('Passvord not changed... error on emtry’).
process4(0) :—

changePassword.

process4(1) :— /* Change plane amoxnts */
lisp(Pick,menu4l),
process41(Pick). 250

process4l(ua) :—-
uaplanes(X),
write(’There were ' X)write(’ planes unassigned.’),nl,
ask(’Input the number of planes that will now be unassigned:’.N),
replace(uaplanes(),usplanes(N)).

processdl(sm) :—
smplanes(X),
write(’'There were ' X),write(’ planes on scheduled maintenance.’),nl, 260
ask(’Iaput the number of planes that will now be on scheduled maintemance:’,N),

replace(smplanes() smplanes(N)).

process4l(bd) :-
bdplanes(X),

14:57 Apr 19 1990 Page 5 of [users/ masi/ gwright/ lonnse/ static.mproiog

(/users/masl/gwright/lonnie/static.mprolog)

write('There were ’ X) write(’ planes with battle damage.’)nl,
ask(’Input the number of planes that will now have battle damage:’.N),
replace(bdplanes(_),bdplanes(N)).

process4l(mf) :~
mfplanes(X),
write('There were ' X),write(’ planes malfunctioning.’)nl,
ask(’Input the number of planes that will now be malfunctioning:’.N),
replace(mfplanes(), mfplanes(N)).

process4l(none) :—
lisp(Selection , menud),
process4(Selection).

process4(2) :—
lisp(Sel loadtype),
process42(Sel).

280

addchange(Type,add) :—
weapon(Type,X),
ask(’Input number of units to add: ' Amt)nl,
Y is X + Amt,
replace(weapon(Type,X),weapon(Type,Y)).

addchange(Type,change) :— 290
ask(’Input number of units: ' ,Amt)al,
replace(weapon(Type,),weapon(Type,Amt)).

addchange(Type,neither) :— write(’¥o change made.’),nl.

process42(mm20) :- |* chenge weapon amounts */
weapon(mm20,X), -
write('There are ' X),write(’'rounds of 20mm.’),
lisp(Choice,addorchange),
addchange(mm20,Choice). 300

process42(cb) :—
weapon(cb,X),
write(’There are ' X),write(’ Cluster-Boabs.’),
lisp(Choice,addorchange),
addchange(cb,Choice).

process42(hd500) :~
wespon(hd500,X),
write(’There are ’ X),write(’ 500 HD'), 310
lisp(Choice,addorchange),
addchange(hd500,Choice).

process42(1d500) :—
weapon(1d500,X),
write('There are ’ X)write(’ 500 LD.'),
lisp(Choice,addotchange),
addchange(1d500,Choice).

14:857 Apr 19 1990 Page 6 of [xsers/ masi/ guright/ lonnie/ static. mprolog

(/uzers/ma:l/gwright/lonnie/newrules.mprolog)
/* Format of file:

Plane Assignment Ryles
asen{.60} (Mission_type, MentChac‘ce,PlancsNeeded).
assn{not .60}(Mission_type, MenuChoice. PlanesNeeded) -~
assn{.60}(Mission_type, MenuChoice, Needed),
PlanesNeeded is Needed * Factor.

where Factor is 3.0 for 90+% i0
Factor is 1.5 for 75+%
Factor is 0.8 for {5+%
Factor is 0.4 for 20+% *

assn{.20}(on24HrAlert,)
assn{.45}(on24HrAlert,_).
assn{.60}(on24HrAlert,_).
assn{.75}(on24HrAlert, _).
assn{.90}(on24HrAlert,_).

20

assn{.20}(areaprep,M,NP) :- assn{.60}(areaprep,M,N), NP is N * 04.
assu{.45}(areaprep,M,NP) :— assn{.60}(areaprep, M,N), NP js N * 0.8.

assn{.60}(areaprep, 1, 4.0)
assn{.60}(areaprep, 2,10.0)
assn{.60}(areaprep, 3,18.0)
assn{.60}(areaprep, 4,30.0)

L
1
1
.
assn{.60}(areaprep, 5500) :~ !.

TTT T

assn{.75}(areaprep, M MP) . assn{.60}(areaprep,M,N)}- NP is N * 1.5.
assn{.90}(areaprep, M,NP) :— asen{.60}(areaprep,M,N), NP is N * 3.0.

assn{.20}(pc,M,NP) :— asen{.60}(pc,M,N), NP is N * 0.4,
assn{.45}(pc,M,NP) :~ assn{.60)}(pc,M,N), NP is N * 0.

asen(.60}(pc,squad,1.0):~ !.

asen{.60}(pc,platoon,1.0):~ .

mn{.ﬁO)(pc.my,S.O):- N 40
assn{.60}(pe,battalion,8.0):~ !.

asen{.60}(pc,regiment,25.0):~ !.

assn{.60}(pc,other,70.0):~ !.

asn{.75}(pe,M,NP) : - assn{.60}(pc,M,N), NP is N * 1.5.

assn{.90}(pc,M,NP) :- assn{.60}(pc,M,N), NP is N * 3.0.

a-n{.20}(cbuAirSuppon,M,NP) ‘~ asan{.60}(closeAirSupport,M,N), NP is N * 04.
assn{.45)(closeAirSupport, M,NP) - assn{.60}(closeAirSupport,M,N), NP is N * 08. so
ann{.ﬁO}(cbnAirSupport,sqnad,l.0):— 1,

a-n{.w}(clonAixSuppon,pluoon.l.O):- .

14:87 Apr 19 1990 Page 1 of [wsers/ masi/ guright/lonnie/newrsies.mprolog

(/ users/masl/gwright/lonnie/ newrules.mprolog)

asn{.60}(clo-eAirSuppon,company,&O):-)
aann(.60}(cloaAirSuppon,baztdion,8.0):- 1
ann(.60}(cloneAirSupport.regiment.25.0):— i
mn{.60}(clooeAirSuppon.other,To.O):— .

assn{.75}(close A itSupport,M,NP) :~ assn{.60}(closeAirSupport. M,N), NP is N * 1.5.
aan{.QO](cloeeAi:Support,M,NP) t—- assn{.60}(closeAirSuppon,M,N), NP is N * 30. 50

asen{.20}(uv,M,NP) :~ asen{.60}(uv,M,N), NP is N * 0.4,
assn{.45}(uv,M,NP) :~ assu{.60}(uv M,N), NP is N * 0.8

asen{.60}(uv,5,24.0):— !.

assn{.60}(uv,4,8.0):~ !.

asen{.60}(uv,3,5.0):~ !.

assn{.60}(uv,2,4.0):~ !.

assn{.60}(uv,1,2.0):— !.

20

assn{.75}(uv,M,NP) :~ assn{.60}(uv,M.N), NP is N * LS.

assn{.90}(uv,M,NP) := assn{.60}{uv.M,N). NP is ¥ * 30.

assu{.20}(av,M,NP) :— assn{.60}(av,.M.N). NP is N * 04,
assn{.45}(av,M,NP) :— assn{.60}(av,M,N), NP is N * 0.8

assn{.60}(av,0,0.0):- !.

assn{.60}(av,1,3.0):- .

assn{.60}(av,2,6.0):- !. 80
assn{.60}(av,3,12.0):— !.

assn{.60}(av,4,20.0):— !.

asen{.75}(av,M,NP) :~ asan{.60}(av,M,N), NP is N * L5,
assn{.90}(av,M ,NP) :— assn{.60}(av,M,N), NP is N ¢.30.

asen{.20}(bec,M,NP) : = asen{.80}(be.M,N), NP is N * 0.4,
asan{.45}(bc,M,NP) :- assn{.60}(bc, M,N), NP js N * 0.8.
9
assn{.60}(be,1,2.0):- !.
asan{.60}(be,2,4.0):= !.
assn{.60)(bc,3,8.0):- !.
asmn{.60}(bc4,16.0):- !.
assn{.60}(be,5,24.0):- !.
assn{.60}(bc,6,30.0):— !.

asen{.75}(be,M,NP) :~ asen{.60}(bc,M.N), NP is N * L5,
asn{.90}(be,M,NP) :~ asen{.60)}(bc,M.N), NP is N * 30.

100

asen{.20}(rr,M,NP) :— assn{.60}(er,M,N), NP is N * 0.4,
assn{.45}(rr,M,NP) :— assn{.60}(rr,M,N), NP is N * 0.8.

asan{.60}(re,1,2.0):— 1.
amn{.60)(rr,2,2.0):= 1.

14:57 Apr 19 1990 Page 2 of [users/ masi/ goright/ lonnie/ newrules.mproiog

(/ulers/mul/gwright/lonnie/newrules.mprolog)

asen{.60}(re,3,4.0):~ !.
assn{.60}(rr,4,6.0):~ !

asen{.75}(rr M.NP) :- asen{.60}(rr.M.N), NP is N * 1.5. 110
assn{.90}(re,M,NP) :— assn{.60}(rr,M,N), NP is N * 3.0.

assn{.20}(bridge, M ,NP) :- assn{.60}(bridge, M,N), NP is N * 0.4.
asen{.45}(bridge, M,NP) : - assn{.60}(bridge,M,N), NP is N * 0.8.

asen{.60}(bridge,1,2.0):~
asen{.60}(bridge,2,2.0):~
assn{.60)}(bridge,3,4.0):-
asen{.60)(bridge,4,6.0): -
assn{.60}(bridge,5,8.0):~

crm iem s s e

assn{.75}(bridge,M,NP) :
assn{.90}(bridge, M, NP) :

assn{.60}(bridge, M.N), NP is N * 1.5.
assn{.60}(bridge,M,N), NP is N * 3.0.

{

assope(5, X,Y,Z) :— asen{.90}(X,Y.2).

asupe(4, X,Y,Z) :~ asen{.75}(X,Y.2).

assnpe(3, X,Y,Z) :- asen{.60}(X,Y.Z).

assnpc(2, X,Y,Z) : - assn{.45}(X.Y.2). 130
assnpe(1, X,Y,Z) :- asen{.20}(X,Y,2).

/O

assigning additional aircraft for various factors:
*/

extra_assn(anti_air,1,0). /* Asnti-aircraft guns ¢/

extrs_assn(anti_air,2,1).

extra_assn(anti_air,3,2). 140
extra_assu(anti_air,4,4).

extrs_assn(anti_air,5,7).

extrs_assn(samsites,1,0). [* Surface to Air missile sites */
extra_assn(sameites,2,1.5).

extrs assn(samsites,3,3).

extrs_ assu(samsites,4.5).

extrs_asen(samsites,5,10).

extrs_assu(locover,1,1). /* Low altitude cover */ 150
extra_assu(locover,2,1.125).

extrs_assn(locover,3,2.0).

extra_assu(locover 4,2.5).

extrs_assn(teerain,open,1). /* Terrain type %/
extra_sssn(terrain, hilly,1.3).
extra_sssn(terrain,mountains,2).

extra assu(cover.open,l). /* Protective cover type */

14:57 Apr 19 1990 Page 3 of [users/ masi/ gwright/lonnie/newrnles.mproiog

(/users/masl/gwright/lonnie/newrules.mprolog)

extra_assn(coversb,1.25).
extra_assn(cover, jungle,1.5).
extra_assn(cover,urban,1.8).

140

extra_assn(avehics,0,0). /* number of armoured vehicles */
extra_assn(avehics,1,3).
extra_assn(avehics,2,6).
extra_sssn(avehics,3,14).
extra_assn(avehics,4,20).
assign_avs(AV,Nplanes) :— !extrs assn(avehics, AV ,Nplanes). 170
assign std_factors(AA,SS,Nplanes) :~ /* assign values for these typical mission factors */
L
extra_assn(anti_air,AA,A),
extra_assn(samsites,SS,S),
Nplanes is A + S.
compute_terr_factors(Terr,Cov,LC Factor) :~ /* Wultiplying factors to nyméber of planes */
!v 180
extrs_agen(terrain, Terr,T),
extra_assn(cover,Cov,C),
extra_assn(locover,LC,L),
XisT*C,
Factor is X * L.
/* Load assigaments :
loads will be made into o detabese, since lists are so difficuit
to implement. The tuples added 1o the database will follow this 190
generel rule: -
load_missiontype(Mnsm, Epossible factors) ;-
assert(loadpc(Mnsm, Load, Fusing, %z)),
assert(loadpc(M;um, Loed, Fusing, %z)).
where Muum is ¢ missions nymber, possible factors include materials, 200
roadigpes, defensive positions, cover etc... Y/
/* cover.losds(Mawm, Pere, CoverLevel) Y/
cover_Joads(M, P, open) :-
X is P/2,

assert(loadpe(M, napalm, impact, X)),
assert(loadpe(M, cb, impact, X)).

cover_joads(M, P, sb) :-
Y is P/3,

e

14:57 Apr 19 1990 Page § of [waers/ masi/ gwright/ lonnie/ newruies.mprolog

(/users/masl/gwright/lonnie/newrules.mprolog)

assert(loadpe(M, napalm, impact, Y)),
assert(loadpe(M, cb, impact, Y)),
assert(loadpe(M, hdS500, impact, Y)).

cover loads(M, P, jungle) :-
Y is P/3,
assert(loadpe(M, bd300, impact, Y)),
assert(loadpc(M, m750, impact, Y)),

220
assert(loadpc(M, m2000, impact, Y)).
cover_loads(M, P, urban) :-
X is P/2,
assert(loadpc(M, m2000, impact, X)),
assert({ loadpc(M, atg, impact, X)).
/* defpos_loads(Mnum, Perc, DPLevel)]
230
defpos_loads(M, P, none).
defpos_loads(M, P, trenches) :—
X is P/2,
assert(loadpc(M, hd300, delayed, X)),
assert(loadpe(M, m750, delayed, X)).
defpos_loads(M, P, tunnels) :— assert(loadpc(M, m2000, delayed, P)).
defpos_loads(M, P, rcb) :— 240

X is P/2,
assert(loadpc(M, m2000, delayed, X)),
assert(loadpc(M, m750, delayed, X)).

load 24br(M) :—
assert(loadpe(M, napalm, imrict, 0.40)),
assert(loadpe(M, hd500, img , 0.40)),
assert(loadpe(M, atg, proximity, 0.20)).

load_closeAir(M, P) :- 250
A is 48°P, B is .10°P,
assert(loadpe(M, napalm, impact, A)),
assart(loadpe(M, hd800, impact, A)),
aseert(loadpc(M, cb, proximity, B)).

l“d-'p(M, P) -
Y is P/3,
assert(loadpe(M, cb, proximity, Y)),
assert(loadpe(M, m780, delayed, Y)),
assert(loadpc(M, m32000, delayed, Y)). 260

/* interdiction loads (std) */

losd_pees(M, P) i~
7 is P/4,

14:87 Apr 19 1990 Page 5 of [users/ masi/ guright/ lonnsc/newrules.mprolog

(/users/masl/gwright/lonnie/newrules.mprolog)

asseet{ loadpc(M, hd500, impact, Z)),
aseert(loadpc(M, m730, impact, Z)),
assert(loadpe(M, m2000, impact, Z)),
assert(loadpe(M, cb, proximity, Z)).

load uv(M, P) :=
X is P/2,
assert(loadpe(M, atg, impact, X)),
assert(loadpc(M, napalm, impact, X)).

load av(M, P) -
X is P/2,
assert(loadpc(M, atg, impact, X)),
assert(loadpc(M, 14500, impact, X)).

load_cuts(M, P, 1) :~
X is P/2,
assert(loadpc(M, m750, delayed, X)),
assert(loadpc(M, m2000, delayed, X)).

load cuts(M, P, 2) :~
X is P/2,
assert(loadpc(M, m750, impact, X)),
assert(loadpc(M, atg, impact, X)).

load cuts(M, P, 3) : -
X is P/2,
assert(loadpc(M, m7350, impact, X)),
assert(loadpe(M, atg, impact, X)).

load buildmats(M, P, wood) :— assert(loadpc(M, napahn. impact, P)).
load bmldmu(M, P, rthut) :-
X is P/2,
assert(loadpc(M, hdS00, proximity, X)),
assert(loadpe(M, m750, proximity, X)).
load_buildmats(M, P, brick) :—
X is P/2,
assert(loadpe(M, m730, proximity, X)),
assert(loadpe(M, m2000, proximity, X)).
load buildmate(M, P, rc) :-
Xis P/2,
assert(loadpe(M, m750, delayed, X))
assert(loadpe(M, m2000, delayed, X)).

load_bridgemate(M, P, wood) :~
Y is P/3,
assert(loadpe(M, hdS00, impact, Y)),
aseert(loadpe(M, m750, _impact, Y)),
assert(loadpe(M, atg, impact, Y)).

load _bridgemats(M, P, concrete) :—
X is P/2, Z is P/4,
assert(loadpe(M, m750, delay, Z)),

3

m

280

310

14:57 Apr 19 1990 Page 6 of | nsars/ masi/ gwright/ lonnse/ newries.mprolog

(/users/masl/gwright/lonnie/ newrules.mprolog)

assert(loadpc(M, m2000, delay, Z)),
assert(loadpc(M, atg, impact, X)). 20

load _bridgemats(M, P, steel) :—
Xis P/2, Zis P/4,
assert(loadpc(M, m750, delay, Z)),
assert(loadpc(M, m2000, delay, Z)),
assert(loadpc(M, atg, impact, X)).

14:57 Apr 19 1990 Page 7 of [nsers/ masi/ guright/ lonnie/ newruies.mprolog

