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EXECUTIVE SUMMARY

This report concludes the research initiated in 193 with the objective to contribute to fundamentals of
the new emerging area of autonomous robotics. The goal of this research is to develop a theory of
design and functioning of Intelligent Mobile Autonomous Systems (IMAS) to be utilized for solving
various problems of combat engineering. It was the initiative of the research team to combine the
fundamental research with the experimental analysis of the IMAS testbed. This work has premises
different from those determined in the corresponding DARPA research. It started before the DARPA
program (at January 1983), and is based upon the scientific principles, that at the time of the beginning
of the research, were pioneering in this area.

This research resulted in creation of a theory of nested hierarchical systems and in particular, of the
structure of a multiresolutional nonhomogeneous system of representation interacting with a similarly
built planning/control system (PLANNER-NA"IGATOR-PILOT-CONTROLLER).The hierarchical
nested structure, together with the unique structure of knowledge representation, as well as capabilities
of minimum-time dynamic navigation, and the knowledge-based controller, are promising for IMAS,
and are expected to be expanded into the domain of multilink manipulators as well. Testing has
confirmed the viability of scientific premises, and has clarified the program of subsequent analysis and

scientific research.

This report contributes to a new rapidly developing area of autonomous robotics. Actual
experience of dealing with autonomous robots (or rather, robots with some elements of autonomy)
does not exceed just a couple of decades. And yet, the pace of development is so quick that a number of
highly ambitious programs is in progress at the Universities, industrial corporations, and multiple
research centers. These programs are focusing the effort of the scientists and engineers not only on the
problem of autonomous mobility of robots, they are also premonishing the future stages of R&D such
as coordination of the relatively autonomous subsystems of the mobile robot, cooperation among
several autonomous mobile robots working for the same goal, etc. Thus our results can be implemented
in most of the contemporary systems which employ unmanned technology.

Indeed, the rapid advancement of autonomous and semi-autonomous systems is spurred by a direct
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practical demand which has been generated in a variety of application areas. Outdoor means of

transportation as well as indoor industrial transport devices are limited in their capabilities to perform

various tasks, in their efficiency (and/or cost-effectiveness): they require RF link, or underfloor wiring.
Most of the flexible manufacturing systems as well as combat engineering robotic systems, depend on

the autonomous mobility as the tool for the increase of productivity and viability. Numerous
applications based upon the unmanned character of operation as a major property of the job to be done

(such as mine neutralizing, nuclear stations maintenance, underwater operations, operations in the

space, etc.), have generated a powerful demand for the mobile autonomous systems that can substitute
a human operator in a variety of unstructured situations where the motion as well as the job
performance cannot be prescribed in advance exhaustively. Of course, the military applications (e.g. in
the area of combat engineering) constitute a substantial domain of "vested interest".

However, the most powerful drive toward the accomp',sunent of definite scientific and engineering

goals in the area of Autonomous Mobile Robots, is determined by the structural changes in the science
and engineering. Indeed, the blossoming in the combined area of the Artificial Intelligence and
Robotics, the results in the area of Neural Networks, advances in the areas of computer vision,

hierarchical intelligent control, and knowledge base systems, as well as in the 5-th generations of
computers which can be clearly foreseen within this decade, all of these factors are focusing our

attention on the Cognitive Science as a part of the electrical and computer

engineering. Thus, the Autonomous Mobile Robots can be considered as an example
and the first area of application for this nascenting science.

This research is based upon analysis of a complete account of the theoretical and experimental results

obtained during the last two decades in the area of Autonomous Mobile Systems (see our prior report
"Intelligent Control of Mobile Autonomous Systems: The State-Of-The-Art",
Gainesville, FL 1983). An attempt was made to build some available generalizations upon the body of
the two decades experience. These two major features of this report: the account of existing experience,

and the generalizations upon this experience, were used to generate a number of engineering
recommendations which can be utilized at the stages of design, manufacturing, and testing of
Autonomous Mobile Robots. Certainly, the skeleton of the abovementioned science is looming behind

the engineering tissue of this report: science of cognitive engineering which is to tie together all
of the diversified issues related to unmanned autonomous mobility of robots.

Most of the research and design results of the numerous robotic teams in US, France, England, West

Technical Report on Intelligent Mobile Autonomous System (IMAS)



4

Germany, Japan, etc. are reflected in the abovementioned report. A survey of the information about the
accomplishments of the USSR and the other East European countries in this area gives another,
somewhat different perspective of development in the area of Autonomous Mobile Robots. These two

perspectives in combination, form a basis for viewing the alternatives of solutions for the emerging sets
of requirements in the application areas.

However, most of the results presented in this report, the overall philosophy of the approach, as well as
the software packages recommended for simulation and/or , are produced within the Laboratory of

Applied Machine Intelligence and Robotics (LAMIR) at Department of Electrical and Computer
Engineering of Drexel University (see our prior reports "Primer on Autonomous Mobility",
Drexel University, Philadelphia, PA 19104, 1985, and "IMAS: briefing", Drexel University,
Philadelphia, PA 19104, 1985). Since these results are generated by the University research team
under the contract aiming for a practical application, a dual significance of this report can be visualized.
It can be used directly by the engineers of R&D groups at the stages of design, manufacturing and
testing of autonomous robots. On the other hand, this report may be recommended as a source of
additional information for existing graduate courses in robotics, and for the corresponding research
groups. The state-of-the-art information on autonomous systems for intelligent operation of robots,
seems to be a reasonable supplement to the course (depending on its orientation).

The concise sketch of the theory of control for an autonomous land vehicle (totally on-board computer
controlled with no umbilical cord, no RF communication), is presented which has been developed by
Drexel University under contract with Belvoir Development and Engineering Center ("Intelligent Mobile
Autonomous System"-IMAS, the updated version- IMAS-2). The vehicle base is Sandair
Dune-Buggy, however the intention was to develop a universal solution that could be used with any
type of mobile base, or a standard vehicle.

IMAS-2 is based on a theoretical concept of Nested Hierarchical Control which employs joint
multiresolutional planning-control procedures, algorithm of enhanced nested dynamic programming
(combined with A* search), and the hybrid world representation using "look-up tables" for the
"analytical" part, and linguistical clauses for the rule-bases. The software package NEST (for Nested
Hierarchical Control) has been developed and tested. Part of this package is a rudimentary learning
subsystem which updates the information of the world, and adds new suggested actions to the list of
rules (how to deal with traps).
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The computer architecture is built around Al computer structure ("Symbolics 3460") with a network of
single board computers (BCC-52). The objective was to implement the existing computer equipment for
the NEST-architecture, and to investigate the real-time actuator control systems using LISP as a main
control language.

IMAS-2 is equipped by a vision system based upon a Fairchild CCD-3000 camera, Data-Cube
VG/AF-123 frame-grabber, and the IBM-PC with 256K memory. The input scenes are successive
images (256x240 by 8-bit gray level) which are processed and interpreted in real time, submitting
information about "go" and "no go" areas as well as of distance to these zones. The objective was to
demonstrate the innovative concept of computer vision with no edge-detection which allows for
substantial increase in efficiency and enables real time operation of the vehicle.

Testing has demonstrated the behavioral "habits" of autonomous robot under NEST control. Report is
illustrated by a video-tape of the IMAS-testbed demonstration (available on request).

The following statements can be considered as statements of accomplishment (in addition to the
theoretical results reflected in the corresponding papers and intermediate reports).

1.IMAS* should contain a nested hierarchical system of knowledge representation.
This system must be equipped with the reasoning system for map updating. Both of
these systems are a part of IMAS-2.

2. Planning/control is a joint recursive process performed upon system of nested
hierarchical knowledge representation. This system is a nonhomogeneous one, and the
subsystem of planning and control should be able to deal on-line with a variety of
knowledge-types. This recursive process dealing with nonhomogeneous knowledge is
a part of IMAS-2 software package.

3. Planning/control process is becoming more and more dynamically involved while
descending top-down in its hierarchy. Thus, dynamics is reflected at the stages of

*All further statements are related to all Intelligent Mobile Autonomous Systems (not only to IMAS, and
IMAS-2 produced at Drexel University). We believe that the generality of our results suggests their broad use
for design of autonomous mbot.
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planning and navigation which is a novelty for contemporary systems of
guidance-navigation-controL Our team is the first in development of dynamic planning
with searching in a state-space under a number of criteria to be minimized.

4. Unique results are obtained, and a set of practical algorithms has been developed
and tested in the area of motion planning in traversability spaces. Our planning/control
system can efficiently compute the minimum cost path in the environment where

different regions are traversable however the cost of traversal can vary.

5. A vision system has been developed which does not require any edge detection.
Nested Hierarchical information representation is being employed for making the
subsequent processes of interpretation more efficient.

6. The processes of piloting has been thoroughly investigated, and a number of
knowledge-based PILOT systems has been developed. These systems of vehicle
guidance are working on-line, dealing with nonhomogeneous knowledge in real time,

and are finding near optimal solutions.

7. One of the most advanced systems of PILOT imitates two types of human
decision-making behavior: one which is based on a complete knowledge of the
situation, and one that does not require almost any information of the world. The blend
of these two PILOT personalities leads to a number of advantages in the IMAS
functioning.

8. A fundamental result is obtained applicable for the lowest level execution controller.
The sequence of the ."switching commands" generated to achieve minimum-time

actuation, is being compensated based upon current information about the stochastic
properties of the surrounding environment.

At the same time we would like to list the three major shortcoming of our research all of which reflect
noninvolvement in the three important topics of investigation:

A. IMAS operates with a very simplistic system of perception. It has only non-color
vision, and sonar sensors for "touch" imitation. One can presume that using color vision, and a variety
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of sensing subsystems of various modalities of sense can enhance the capabilities of autonomous
system. However, this was not our goal: to produce the autonomous mobile robot. On the contrary,

we were interested in focusing upon problems of representation, and planning/control. Thus, we were
interested in using a minimal perception . Development of a vision with no edge detection is a side
result of our research. Our minimal perception enabled us to easily organize it as a nested hierarchical
system which can work in association with nested hierarchical systems of representation and
planning/control. On the other hand, we have received a number of results that suggest that using this
organization of perceptual system in the future, can simplify the processes of interpretation.

B. IMAS cannot learn new rules of operation from experience. This means that it does not have
any subsystem of cognitive learning: learning that allows for making some inductive hypotheses
based upon similarities of prior experiences, and for generating new concepts implied by the most
plausible among these hypotheses. Certainly, it has rudimentary learning (see, MAP learning for map
updating in the system of representation, and REPORTER learning the traps in the PILOT subsystem.
However only conceptual learning can provide the reliable long term autonomous missions in real
environment.

C. Thus, no real autonomy is possible with inadequate perception, and with no conceptual
learning. One can expect that IMAS should be used only for limited time and limited function missions
with limited autonomy. Then its perceptual deficiencies, as well as conceptual dependency won't affect
the results of operation. IMAS should be considered as a strictly master dependent system .This
means that the system should be made deeply and quickly communicable with a human operator.
This property can be achieved on the basis of a language of IMAS-master communication which will
enable the automated rcprogramming the system during the process of communication. Present IMAS

does not have this important fcature.

The abovementioned shortcomings have determined ours plans for the future research in the area of
Intelligent Mobile Autonomous Systems:

1. Development of a system for IMAS-master communication based upon language with
flexible structure.

2. Development of a system for conceptual learning.
3. Development of the Nested Hierarchical Multisensor System with structural mechanisms of

image interpretation employing conceptual learning, and occasional communication with the master.
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The research team included the following graduate students (their theses contributed to the success of
the final results, and are mentioned in the list):

1. S. Waldon, MS EE Thesis, "Nested Hierarchical Representation of Uncertain Spatial Information:
Problems of Updating" (in progress, due 1987), an excerpt from the thesis see in Section 2

2. P. Graglia, MS EE Thesis "Multiprocessor Architecture for Planning in Variable Traversability
Space", (in progress, due 1988), an excerpt from the thesis see in Section 3

3. D. Gaw MS CS Thesis "Knowledge Management in a Nested Hierarchical Controller for an
Autonomous Robot" (in progress, due 1987), an excerpt from the thesis see in Section 4

4. R. Bhatt, MS EE Thesis, "Planning and Control of Robot Motion with Hybrid Analytical
Linguistical Knowledge Representation", (in progress, due 1988), an excerpt from the thesis see in
Section 5

5. S. Uzun, PhD EE Thesis, "Nested Hierarchical Architecture for a Computer Vision System in an
Intelligent Mobile Autonomous System", (in progress, due 1989), an excerpt from the thesis see in our
prior report to Fort Belvoir RD&E Center "Primer on Autonomous Mobility", Drexel University,
Philadelphia, PA 1985

6. S. Uzun, MS EE Thesis, "Image Structuring for an Intelligent Mobile Autonomous System", Drexel
University, Philadelphia, PA 19104, 1986, an excerpt from the thesis see in our prior report to Fort
Belvoir RD&E Center "Primer on Autonomous Mobility", Drexel University,Philadelphia, PA
1985

7. C. Isik, PhD EE Thesis, "Knowledge Based Motion Control of an Intelligent Mobile Autonomous
System", University of Florida, Gainesville, FL 32611, 1985, an excerpt from the thesis see in our
prior report to Fort Belvoir RD&E Center "Primer on Autonomous Mobility", Drexel University,
Philadelphia, PA 1985

8. M. Roberts, MS EE Thesis, "Minimum-time Controller for Robotic Actuators", University of
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Florida, Gainesville, FL, 326111985, an excerpt from the thesis see in our prior report to Fort Belvoir
RD&E Center "IMAS: briefing", Drexel University, Philadelphia, PA 1985

9. E. Koch, MS CS Thesis, "Path Planning in Binary Traversability Spaces", Drexel University,
Philadelphia, PA, 19104 1985, an excerpt from the thesis see in our prior report to Fort Belvoir RD&E
Center "Primer on Autonomous Mobility", Drexel University, Philadelphia, PA 1985

10. J. E. McKisson, MS EE Thesis, "Guidance and Navigation for Intelligent Mobile Autonomous
Systems", Gainesville, FL 32611, 1983, an excerpt from the thesis see in our prior report to Fort
Belvoir RD&E Center "Intelligent Control of Mobile Autonomous Systems: State of the
Art", University of Florida, Gainesville, FL 326111983

Our research team is grateful to Mr. Uri Bar Am who was a manager and supervisor of the research
activities during the period 1985-1987. Unusually high productivity of the researchers should be
credited to his contribution to the management activities and operations, to his wit, optimism, and
energy.

Help and supervision of the Fort Belvoir RD&E Center monitoring officers is highly appreciated.

Dr. B. Eisenstein, Chairman of the ECE Department of Drexel University, has done everything to make
our work enjoyable as well as constructive and resourceful. We thank him for help and cooperation.
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SECTION 1

PLANNING/CONTROL ARCHITECTURE FOR INTELLIGENT MOBILE
AUTONOMOUS SYSTEM WITH NONHOMOGENEOUS KNOWLEDGE
REPRESENTATION

The problem of partial autonomy for IMAS was raised in the Preface (see page 8). The related problem
of computer architecture for intelligent controller for robots with partial autonomy is addressed in this
section. IMAS is a robot with partial autonomy, and it can be considered a degenerated case of a fully
autonomous robot. Since the nonhomogeneous representation system is applied, the process of
man-machine communication is shaped by the hybrid character of languages implemented. The
problem of master-robot control is formulated, and the conditions are determined for generating a
language for the process of communication between master and IMAS within this framework of
consideration.

The problem of master-dependent autonomy is a key problem for contemporary efforts in the area of
robotic autonomy. No actual autonomous system can be created in a foreseeable future because of the
available on-board computer power, impossibility to create human-like knowledge base, and
inadequacy of the computer perceptual systems. Only limited autonomy can be considered. One should
realize that despite of the upsurge of research in the area on neural networks, no conceptual learning
can be expected on-board in the foreseeable future. (As a matter of fact, neural networks so far are
being contemplated for learning the patterns under a teacher supervision, i.e. no autonomy is being
claimed). Partial (master-dependent) autonomy is meant to compensate for the deficiencies of human
perception and/or performance (DHPP) when the CRT is used as a "narrow window" to the world,
and no or limited other means of perception are available.

Problems to be considered. Three different problems can be visualized in this situation:

-the problem of design of the IMAS-master (man-machine) control system,
-the problem of the human participation in the IMAS performance, in its the decision making
processes, in the operations of situation and image recognition.

-the problem of master-robot communication supporting the solutions of two previous problems.

The problem of design of man-machine control system was first addressed in [1]. Based upon the
notion of a limited "bandpass required of a man" the paper suggests that the control system should be
allowed autonomy in "integration, differentiation feedforward", and a number of other computation
procedures in order to allow a man "to operate as a simple amlifier". The fact that a human operator
still has to perform a unique job of information integration and decision making, at this stage was
overlooked. However, very soon the human capabilities to be a universal feedback with unlimited
"sensor fusion" talents were questioned in [2] especially when the complex task or multiple task
situation is involved (3].

Rapid growth of the requirements to productivity and quality factors, brought DHPP mentioned above
to the attention of researchers in the area of advanced control systems. The variety of teleoperated
and supervised automated systems described in [4-61 concentrate upon enhancement of human
capabilities by allocating some properties of autonomy within the machine control system. The
state-of-the-art reflected in the literature, implies the sequence of development stages as shown in
Figure 1. A need in the Interactive Manual-Automatic Control arises in a natural way due to the DHPP.
According to [6], manual-automatic control allows for some motions under the manual control
whereas the remaining motions are performed automatically referenced to a variety of sensor data. One
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of the system created at JPL, is featuring a menu which can be activated by an operator in a
modifications swting with fully manual and ending with fully automated operation.
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Figure 1. Typical approach to the problem Figure 2. Our approach to the problem
of partial autonomy of partial autonomy

TACIL ROTIN
NAVIGATOR PLANN[

(ruAP-ASI[O PATH SEARCH

LOCAL PLANNMER LOCAL
P I L 0 T UIPLE OSSTACLES

PIOT) AVOICANCE

PATH EXIECUTION
CONTROLLER EXECUTION CONTROLLER

Figure 3. Comparison of planning/control structures from [8-12]
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Thus the second problem is being approached: the problem of human participation in the robot
decision making. This problem is treated in [7] where the dynamic reallocation of tasks between
human and computer system, in the multitask situation is suggested.Apparently the following solution
is considered to be preferable: the human performs whichever tasks he chooses while the computer
system attempts to perform the remaining tasks [7]. The structure of human decision making activities
in the supervisory control situation was analyzed [8,91, and the distribution of the multiplicity of tasks
between the human and the robot seems to be predictable.

The idea of combined computer/manual controller was explored in [10] where the results of human
operation are statistically generalized and utilized for generation of new routines of motion. We are
interested in a simpler form of the computer/human symbiosis in which the human operator tends to
communicate to the robot the results of recognition and generalization while does not interfere with the
lower level motion routines: they will be changed autonomously if the robot apply the results of human
recognition and generalization. The advantages of human involvement in these particular procedures
are known for recognition with partially missing data [I 1], for recognition where the context plays the
decisive role [ 12], for the context permeated processes of task structuring and recognition [ 131, and
for proper organization of previously unknown spatial data [ 141.Finally, the problem of master-robot
communication is expected to be dependent on the area of human interference. We would like to
explore a possibility to confine the channel of supervisory communication to the boundaries of the part
of the system vocabulary, in particular to the upper level vocabulary of the hybrid system of
representation which is being created and monitored by a master [13, 15-19].

Approach to the master dependent autonomy. This type of the partial autonomy can be
approached in the following way. Let us imagine that the structure of a system is available with full
autonomy of operation. How does this structure look like? What are the components of this structure
that can and cannot be achieved by the technological means under consideration? It may happen that
some elements of the autonomous operation can never be achieved, or can be achieved in a very
remote future. The set of such "unachievable-now" operations can be considered domain of
impossibility of the mission (DIM-area).Then it would be reasonable now to make a step back
from the ideal image of the autonomous machine, and build a system which rely on human
participation however only within the limited part: within the DIM-area.

This approach to the problem of partial autonomy can be illustrated by Figure 2. It shows that the
supervised automation cab be viewed as a retreat from the demand for a fully automated system. In the
same vein, the partially autonomous, or supervised autonomous robot can be considered a trade-off
between the demand for a fully automated system (which has never been satisfied), and a demand for
a fully autonomous system (which cannot be satisfied, at least currently).

Focus of concentration Problem of autonomous robot operation is often erroneously considered
a problem of intelligent perception (only). In fact, even having the problems of perception and
knowledge organization solved, the problem of motion planning and control, or more generally, the
problem of autonomous (as well as partially autonomous) decision making remains unresolved.
This paper attempts to give a structure of recommended methods of theoretical analysis for partially
autonomous planning/control processes of a class of intelligent robots equipped by a control
architecture designed for fully autonomous operation. This control architecture has an important
distinction which affects supervised operation with partial autonomy: areas of motion planning, and
motion control are treated as a part of a unified recursive computational process within IMAS.

Planning/control systems for IMAS were introduced first in [20-23). IMAS should operate in
unknown environment with limited human involvement or with no human involvement at all. IMAS
are using human-like procedures of perception, maintain sophisticated information structure capable of
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learning and self-organization: Knowledge Based Control System (KBCS).Knowledge is
understood as a structured information incorporating numerical data as well as linguistical, or symbolic
information, which must be interpreted in a definite context. KBCS employs the principle of
nested hierarchies which allows for an efficient knowledge organization as well as for the efficient
processes of knowledge-based perception and planning/control.

Control solutions to be considered The word control is being used for decision making
activities including planning, navigation, and guidance. This inseparable triad is presumed to be
applicable at least, to systems for control of mechanical motion. It should provide a mapping of the
a)task,b)system, and c)environment, from the domain of knowledge - into the domain of output
specifications. An overview of the recent results in the area of IMAS [24], suggests that different
control solutions show definite resemblance with human teams: they have a hierarchy of
decision-making units even when the system is equipped by a single actuator [25]. In Figure 3, three
examples of control structures are compared [26-30]. Each of these structures tends to form an
intelligent module for automatic generation of control strategies, policies, and commands.

However, the most remarkable thing about all of these systems is that in all of them the scope of
decision making is becoming smaller, and the resolution of decision making is
becoming higher when the level of decision making is becoming lower. This sequential
multiple process of decision making in the same situation at different resolutions, and with different
scope of attention, seems to be almost obvious. Thus, the need in proper theoretical justifications
escapes from our attention. We would assume that the underlying theory should be applicable to
IMAS. The major result pronounced within the theory , is related to the information structure required
to run the system. The realization of this information structure is a special, control oriented knowledge
structure [30],.Theory of control oriented knowledge organization as a part of the IMAS, is focused
upon development of models of KBCS for motion, structures of algorithms, and design of systems
for optimum motion of autonomous or semiautonomous systems.Roughly speaking, any IMAS is
organized as a team of human decision-makers which allows for using many efficient solutions
developed for human teams. This problem gets a specific content: information structure should be
suited a proper knowledge quantization [20-231.

Hierarchical structures of attention and resolution. Hierarchical decomposition of systems
is a well known phenomenon, and is used usually as a method of dealing with their complexities. A
system is being decomposed in parts (partitioned) when teach of these parts contains some active
elements of the systems subject to control (actuators). Thus, it is typical to consider multiactuator
control systems in a form of "tree-hierarchies"where the hierarchical decentralized techniques are
recommended: relative independence of the levels is as important, as coordination of the branches
[31-35]. The hierarchy is being preserved by the fact of resolutional as well as attentional nesting.

Decision making processes in a nested hierarchical structure. Decision-making process
which is being done upon the nested set of representations can be characterized by different frequency,
accuracy, and combinational power. The frequency of decision-making at the lowest level of
representatit a can be in the interval (2.10-4 to 10- Hz), then at the next higher level (10- 3 to 10- 1

Hz), and finally at the highest level of representation it will be (10-1 to 5Hz).

Certainly, on the level of controller compensation, the required frequency as well as accuracy might be
even higher. In the meantime, the number of "objects" of the world represented in all of the levels can
be kept the same due to the difference of resolution. We can easily find that at a given frequency of
decision-making at a level of consideration, the moving robot will pass during the period of time
between two consecutive decision-making processes, the same quantity of resolution units so that the
ratio
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(maximum state space changes 2 decision) = const
(time interval between two consecutive

decisions)

is constant at all levels. After transformation we receive that

(time interval between 2 consecutiv decisions) = const
(resolution at the level)

for all levels of consideration.

Similar consideration brings us to the conclusion that "combinatorial power" is also the same at all
levels of consideration; it is just applied to different units of information, units that have different
resolution. This hierarchy of representations at different resolution can be easily transformed into a
hierarchy of decision making processes at different resolution.

Decision making processes of planning-control procedures In the most general form, the
controller can be represented as a box with three inputs, and only one output. These inputs can be
specified as follows (see Figure 4,a):

-Task: the goal (G) to be achieved, (and conditions to be satisfied including the parametrical
constraints, the form of the cost function, its value, or its behavior).
-Description of the "exosystem", or map of the world (M) including numerous items of information to
be taken in account during the process of control; M is often incomplete, or even deceptive.
-Current information (I) is the information set delivered by the sensors in the very beginning ofthe
process of control, and continuing to be delivered during the process of IMAS operation.

The processes within the controller are illustrated in Figure 4,b,cd.Input T has determined where the
points SP i and G are situated within the input map M. Input I gives a limited zone Ol,i-O2,i(in the
vicinity of SPi) in which the information set is more reliable, or even exhaustive.Thus, in the overall
planned trajectory SPi-G'i-G i, a part SPi-G'i can be determined with more reliability than the rest of it.
In other words, the overall trajectory SPi-G'i-G i from SP to G might be changed if the future input I
will update M in the way that the computed trajectory will become not the most desirable alternative.
However, SPi-G'i part of the plan (bold line) won't be changed: no new information is expected.

Let us concentrate now on the part of the trajectory SPi-G' i which is assumed to be mor- known than
the rest of the overall plan.Label the point G'i the "new goal", or the "goal for the lower level of the
nested hierarchy". Notice that instead of the planned curve segment SPi-G'i the stripe is known with
boundaries Bi+.Within this stripe, a new planned motion trajectory can be determined at a higher
level of resolution pertained to the level (i+l). Again, only part of the trajectory SP-G"i+1 can be
refined within the sector 0 1,i+l-0 2,i+l. This in turn, brings us to the more precise pan SPi+l-G"i+l
which can be subsequently refined at the level (i+2). Eventually "new goals" of the adjacent levels are
becoming indistinguishable, and the the trajectory SP-Gn can be utilized for computing the actual
control sequence. All previously determined trajectories are plans at different level of refinement.

This simple consideration includes the following components of the joint planning/control process.
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I.Finding the optimum plan SP-G based upon the map M, and the task formulation (SP,
G,cost-function, constraints).

1.1 Computing the alternatives of SP-G.
1.2 Comparison of the available alternatives.
1.3 Selection of the preferable alternative.

2.Updating the map information M in the vicinity of SP by using the sensor information I.
2.1 Recognition of the set I.
2.2 Comparison between M and I.
2.3 Deciding upon required changes in the cases of: M/I*0, I/M *0, I-M.
2.4 Creation of the new map in the vicinity of SP with required deletions and additions.

3.Refined planning the path within the updated zone of the map.
3.1 Determining the subgoal G' (e.g. as a point of intersection of SP-G and the

boundaries of updated part of the map).
3.2 Finding the optimum plan SP-G' ( which implies that the whole set of procedures

mentioned in p.1, should be repeated).
4. Track the optimum path SP-G'.
5. Upon arrival to the new point of the selected trajectory loop to the position 2.

The set of recursive procedures 1 through 3 is illustrated in Figure 4,b. Two major recursions are
presumed within the set of accepted decision making activities. Firstly, position 3.2 generates a
recursion which requires consecutive refinement within the zone which allows for this refinement.
Secondly, the major loop from 5 to the position 2 presumes that the whole set of procedures after each
increment of motion will be repeated. So, the process of path planning is substituted by a consecutive
determining of subgoals located closer and closer to the current position.However, we still must
determine a) the trajectory SP-G, and b)the zone in which the refined information should be obtained.

Nested dynamic programming. Method of Nested Dynamic Programming (NDP) was developed
in [6-9]. It is an algorithm of joint planning/control process illustrated above. In NDP optimum control
is found by consecutive top-down and bottom-up procedures, based on the following rules.

Rule 1. NDP should be performed first at the most generalized level of information system with
complete (available) world representation.

Rule 2. NDP is being performed consecutively level after level top down. The subspace of the search
at each of the consecutive lower levels is constrained by the solution at the preceding upper level
recomputed to the resolution of the next lower level.

Rule 3. When during the actual motion, due to the new information, the optimum trajectory
(determined at a given level) must violate the assigned boundaries, this new information should be
submitted to the upper level . This generates a new top-down NDP process.

Rule 4. When arrival of the new information is bounded (e.g. by a "limit of vision"), then the
recursion of nested process of planning is being done with consecutive process of subgoals creation.

Any combinatorial algorithm can be applied as an operator of generating plans or solution
alternatives in the NDP decision-making process. Consider A*-algorithm for the search of minimum
path trajectory [42,45,48], or any type of conventional or 'enhanced" dynamic programming
[36,37,44,46]. A number (value) is assigned to each of the combinations generated (preferability,
closeness, propensity, cost-effectiveness, etc.) which enable the decision-maker to make his choice
under the accepted strategy of decision making.
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Partitioning and nesting of representations. The information set is assumed to be the past
measurements and controls for all levels of our hierarchy nested by generalization and focus of
attention. It is shown in [20-23] that these phenomena is characterized best by the operators of
inclusion using some procedures unusual for the conventional control theory. Decomposition of the
categories of representation is done through decomposition of objects and morphisms represented in
this category [38]. Decomposition implies dividing objects and relationships in parts, so the
components of objects are becoming of interest unlike before the process of decomposition. This, in
turn, implies higher resolution of world representation than before the decomposition. If we continue
with decomposition,the hierarchy of decompositions will describe the same world with higher and
higher level of resolution. Changes in time are represented by sequences of the snapshots in the
domain of representation describing sequences of the world states. Thus, change in the time-scale is
intrinsically linked with the value of resolution. Certainly, different levels of the hierarchy can be
characterized by different time-scales. All these phenomena are illustrated in Figure 5.

This system of nested variables and nested mappings is obtained as a result of natural, and or artificial
discretization (tesselation, partitioning) from an initial continuous space of the isomorphical world
description. The tesselated space can be considered as a nested state-space for a dynamical system in
which the trajectory of motion can be represented for a given moment of time (snapshot of the
world). Then, a sequence of snapshots can be obtained. The conventional state-space is a
superposition of all snapshots which describe the process.

This tesselation can be done in such a manner that the "points of interest" can symbolize the variables
on a grid of the uniform space tesselation at the lowest level, words describing the physical objects at
the intermediate level, and words descnbing the unions of physical objects at the highest level of the
representation system. These "points of interest" are placed to the center of the "tile" of tesselation at a
level (grain, discrete, pixel, or voxel of the space). These terms can be used intermittently, and each
of them characterizes the level of generalization. One cannot discern any another point within the tile,
this is a minimum grain at this level of resolution. So, the tile of the tesselation determines resolution
of knowledge defined as a minimum discrete of information, or minimum word. All of them allow
for producing implications (well formed formulas,wffs), or difference equations, which is the same.

Hierarchies created in this way, satisfy the following principle: at a given level, the results of
generalization (classes) serve as primitives for the above level. Then each level of the
hierarchy has its own classes and primitives; thus, it has its own variables (vocabulary), and the
algorithms assigned upon this vocabulary can be adjusted to the properties of the objects represented at
this level. This leads to the consistency rule: at least two adjacent levels of the hierarchy must be
considered simultaneously. We are interested in the pairs of adjacent levels where the upper level is
discretized in a "natural" way (based upon "words" of the context), and the lower level is discretized in
an "artificial" way (based upon grids, scales, etc.). Decision making in this case depends on the ability
of these two levels to communicate efficiently despite of the differences in representation .The role of
the master is critical for providing real consistency in a context.

Resolution and accuracy of representation. Resolution is a measure of distinguishability
of the vectors in the state space. Accuracy can be understood as the value of the relative error of the
quantitative characteristics assigned to the node or the edge of the graph. This evaluation can be based
on estimation of probabilities, zones of uncertainty, fuzzy membership and/or in any another way.The
value of uncertainty is assigned to the numerical values associated with the properties of the tile of
representation which is considered as a minimum unit at a level.
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After assigning to the cluster a new class-label (a word to be included to the vocabulary), a new
primitive appears with its own properties, the numerical values are assigned to these new properties,
and they are characterized by the accuracy depending on the accepted evaluation theory for this
particular property (including probabilistic approaches, fuzzy set theory, etc.).This means that
accuracy and resolution are formally independent. The rules dealing with information: what must be
given in details, retained, or dropped in generalization, cannot be formulated for all possible situations.
How long the information will be needed can probably be determined only by a master.

So,under human supervision the knowledge in a context can be represented as a space tesselation at a
definite resolution, and as a system of nested tesselations with different scale where scale is defined as
a ratio between resolution at a level and resolution at the lowest level.Each of the larger tiles at the
upper level is a "generalization" for the set of smaller tiles at the lower level of the hierarchy. The
inclusion predicate has a meaning of "belonging to a class" . Then dicretization of the state space will
contribute simultaneously to a) minimum required interval of consideration, b) hierarchy of classes
of belonging to a meaningful neighborhood.

We would like to stress the link between the generation of entries for the look-up tables (LUTs) as an
approximation in the space of consideration, and the problem of generalization oriented
tesselation (discretization of the space). At the level of discretization determined by the context, i.e.
determined by the words of the semantic network, the results of tesselation are always determined by
the vocabulary of the master.In most of the cases the"automatic" tesselation of the space creates
discrepancies when the correspondence between the two adjacent levels is to be determined. These
discrepancies might be eliminated by the interference of the master.

Knowledt,- Bases: Semantic Networks With Context Oriented Interpretation
Knowledge Bases (KB) are considered to be a collection of rules (wffs) for man-machine as well as
for autonomous decision-support systems.Knowledge consists of linguistical discretes (entities), or
units of knowledge.Nesting reflects semantic discretization of resolution in representation from
human experience.Thus, a nested hierarchy of semantic networks can be formulated. This semantic
nesting can be interpreted within a context only under human supervision since the subdeties of the
context knowledge must be properly coded. Under master's supervision we receive, two types of
nested hierarchies for declarative wff's: existential nesting (nested statement of existence) including
nested statements of objects and relations among them, and transitive nesting (nested statement of
change). Both of these nested units of knowledge are presented in implicative form (nested
clauses).This another form of representation in turn, can be divided in two different kinds of
representation: continuous (using differential equations) and discrete (using difference equations
and/or finite state machines (see Figure 6). In both cases, the property of nesting holds.

The same world can be represented within the same levels of resolution in a different way.
Representation is defined as a structure (e.g. algebraic, or information structure) which is
homomorphic to the world, to the structure of reality (or a domain of reality). Representation consists
of both numerical as well as descriptive information about the objects and systems, and is assumed to
be obtained from prior experience, and or derived theoretically (based upon multiplicity of existing and
possible tools of logical inference).Knowledge Bases as a model of information system contain many
representations homomorphic to each other such as systems of difference, or differential, or integral
equations, logical formulas, and others (see Figure 6).

Two major types of representation. The apparatus of differential and integral calculi (DIC) is
applied at the lowest levels of control where the tiles of tesselation have no meaning in the natural
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language, which is actually the language of technological application (LTA). Thus, the whole bulk of
LTA-knowledge cannot be utilized in the problem solving process because of constraints imposed by
the DIC-language which is always less diversified than LTA-langage.Solution obtained within
DIC-representation, should be translated back to LTA. The following inclusion holds:
TRLTA :DTRDIC which determines the same situation with representations of the output of the
design process
CSLTA = CSDIc (TR-task requirements, CS-control specifications).DIC-techniques allows for
solving only well formulated problems with limited types of relations represented. So, only those
problems are assigned for the upper level which must not be abridged by the process of mapping the
set of technical requirements from LTA-representation into DIC-representaion. DIC-representation
cannot be satisfactory for all of the problems that arise in intelligent robot control

After decomposition is completed, the lower levels contain too much information for using in the
planning/control process of the higher levels.The knowledge of the robot R explicated from the
LTA-representation, is frequently presented in such a way that the resulting R-model in
DIC-representation, turns out often to be quite rudimentary, or at least, too simplistic. The rest of
the knowledge should be taken care of, using master-robot communication. The uncertainties cannot
be judged upon using the existing probabilistic models since the information does not exist for
building such models. Master can prefer using more flexible apparatus of linguistic variables.

New information about the R-parameters will be obtained during the IMAS operation, thus the
discovery of the new IMAS models is expected as a part of planning/control procedure (part of the
learning process). The variety of the expected operation modes is taken in account by the master
judgment, and the processes of operation under all possible conditions are taken in consideration by
him. Even for a simple robot, one cannot easily answer the question what is the "best", and what is
the "worst "cases, and is there any hypothetical "average" case which could be acccpted as a "design"
case. The model of external environment (EXO) is becoming a part of R-model.

The task is posed imprecisely, the number of functions to be provided by a control system is
incomplete, and the situations of the operation are introduced to the control system in an approximate
way. In many cases it is determined by the very fact of impossibility to transfer the knowledge of a
particular context, to a robot controller. In many cases it is determined by intractability of the problem
as it seems to the R system of representation.

Recognition and Identification. An example of interpreting the situation with identification,
recognition, and learning the new patterns of the entities of the world, is shown in Figure 7.If A is a
robot location, and B is the goal, then minimum time path can be sought in one of the following areas:
I, IT, and IT. It can be demonstrated geometrically, that the minimum distance path can be found in the
area II. However, since each turn within the "slalom-type" area creates losses of time (speed at the
turning point should be reduced to avoid skidding), then the minimum time trajectory seems to be
within one of the areas I or 1Il

Even before we start to compute all and possible trajectories within these areas, they can be analyzed
as some entities with common properties. Indeed, area I can be described as an area which has
"obstacle 1" on the right of the moving robot all over the motion, area Ili has "obstacle 2" on the left of
the moving robot, and area II has obstacles on both sides. Areas I and III are not different when robot
is moving far from the obstacle, but they differ substantially if we try to minimize the length of the
trajectory : trajectory in the area I will have five linear segments and four turns while the trajectory Ill
will have only two linear segments and only one turn.
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Further analysis shows that the cost-functions have different form for all three areas. Moreover,
within one particular area cost-function can be considered monotonic in the sense of [45]. These kind
of areas are named "topoways" [46], and-they can be considered entities for minimum time problem
solving at the higher level of planning/control system. Rules can be formulated in which the
condition part will describe the relative obstacle location while the consequent part will be related
to the most general description of the topoway recommended for further consideration. These rules
have to be recognized by a master, however they can be utilized with no master's direct participation.

On the equivalence between the difference equation model, and the production rules.
Difference equations can be easily transformed into production rules, Indeed, instead of the form

x(k+l)= A(k) x(k) + B(k) u(k)

where k-is the number of the stage of recursion,
A(k) and B(k) are the matrices of system parameters,
x-is a state, and
u-is a control.

Instead of having this information in a form of an equation one can state

IF {x(k)AA(k)AB(k)Au(k))-> THEN {x(k+1))

which actually describes the causality exposed by a particular system: "if present state is given, and
the parameters are known, and some definite control is applied, then the state will change as follows".
In most of the real systems causalities obtained experimentally and/or from the other models of
representation can be inverted in a form of rules-prescriptions [411

IF{x(k)Ax(k+I)AA(k)AB(k)) -> THEN (u(k)}

which can be interpreted as follows: "if present state is given, and the the following state is required,
while the parameters of the system are known, then apply this control".

In some cases even the form of trajectory can be utilized for rules formulation. Indeed, the form
k-I

x(k) = F(k,O) x(O) + 'F(k, 1+1) B(1) u(1), and
1=0

F(k+1,l+1) = A(k) F(k, 1+1)

implies the following ways of subsequent planning/control activities:

1) solving the problem by sequential search and finding the trajectory by on-line computation,
submitting to the execution controller, and storing it for the subsequent use in a similar situation,

2) retrieving the previously stored solution for the same or similar conditions, obtained from
off-line training, or from on-line experience.

Applying the production rules at different resolution levels. The above consideration can
be expanded if the prior behavior is taken in consideration in order to estimate how the reality differs
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from what was expected and provide correctives for the control signal, or "tuning" for the matrices A
and B.

Thus, the following sets of information can be considered initially known:
S-states : (x(O), x(-1), x(-2),...)
P-parameters : {A(O), B(O), A(-1), B(-1), ... ]
G-goal states : {x(k), x(k-1),...}.

The general form of a control-generating rule can be represented as follows

IF [PASAG]* -> THEN DO U

where U -is a string {u(1), u(2),..., u(k-1), u(k)),
*-means that the solution is Pareto-optimal.

Solution can be found by one of the selected search procedures. There is a set of optimum solutions,
the cost difference between them can be found only at higher resolution.NDP is done a the following
sequence of procedures:

SUBSTITUTE THE "OUT-OF-REACH" GOAL BY AN ACHIEVABLE GOAL
FIND A CONTROL-GENERATING RULE
IF THE CONTROL-GENERATING RULE IS NOT FOUND, APPLY
SEARCH
SUBMIT THE SOLUTION TO THE NEXT LOWER LEVEL
IF THE SOLUTION IS NOT FOUND,

REPORT THE PREDICAMENT TO THE NEXT UPPER LEVEL

This approach is very general and produces the trajectories of motion in all cases: when the general
rule exist and is known to the planning/control system, or when it does exist but is unknown. All
algorithms of path-search in 2D binary world start with a statement IF THERE IS NO
OBSTACLE BETWEEN THE ROBOT AND THE GOAL, GO DIRECTLY TO THEGOAL, ELSE DO THE SEARCH [42]. In fact, this rule must be proven by geometrical methods
(i.e. at the higher level) or found by a search after discretization and putting the problem to the lower
level. This is the way of finding the trivial trajectories A and B in Figure 8,a.After the trajectories A
and B are obtained as a result of the search procedure, the corresponding strings of commands can be
stored for subsequent using them as solutions in corresponding rules [50].

In the case shown in Figure 8,b we have a less trivial situation. Indeed, the lower level search can lead
us in a straightforward manner to the trajectory A. However, when the back-up motion is allowed, at
least one additional trajectory should be added: a backing up motion B and then motion forward C.
This new opportunity immensely reduces the productivity of search. One would probably prefer to
first select one of these opportunities (A or B+C) at the higher level, and then compute the actual
trajectory.

The following examples of higher level rules, ha re been explored in IMAS-2 (42,43,47-501.

IF ROBOT IS BECOMING CLOSE TO AN OBSTACLE (DISTANCE IS LESS
THAN D)
(ON THE RIGHT, OR ON THE LEFT)
THEN PUT MESSAGES TO PILOT AND CONTROLLER TO 1 PRIORITY
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AND
IF DISTANCE IS LESS THAN D* AND MORE THAN D**
THEN REDUCE SPEED TO V* AND MAKE A TURN (LEFT, RIGHT)
AND

IF DISTANCE IS LESS THAN D**
THEN STOP AND REPLAN

One can see that these rules do not refer to any specific global coordinates of the trajectory to be
executed, and the local coordinates (position of the obstacle relative to the robot) are given with low
accuracy using linguistic variables as it was done in [411. Similar rules are formulated for a more
subtle maneuver when after the local goal was determined in a particular situation, it turned out to be in
an inconvenient location, e.g. the actual location of G'i+2 (see Figure 4) cannot be achieved in a
near-minimum time fashion by a simple continuation of the motion ahead.

IF G(X) IS LESS THAN RTMIN
AND G(Y) IS LESS THEN 2 RTMIN

AND ORIENTATION IS LESS THEN 1901

THEN BACK-UP AND TURN IN THE DIRECTION OPPOSITE TO THE GOAL

(G(X) and G(Y) are the "x" and "y" coordinates of the local goal in a local reference frame, i.e.
when the coordinate system is attached to the robot, RTMIN is the minimum radius of turn).

This rule leads to a nontrivial motion (Figure 8,c) which reproduces an anthropomorphic way of
dealing with the problem.No wonder - it was introduced by a human "master".There is no experience
in automatic formulation such rules. Using human experience and intuition in formulating rules is
beneficial for dealing with predicaments arising during processes of operation.

The overall process of using the rules previously formulated and stored, and the search process for
cases when the rule is not found in the list, is illustrated in Figure 9. The process of learning with new
rules generation is illustrated in Figure 10. The stage of "generalization" can be performed so far only
with "master" direct participation. Indeed, the control strings found as a response to the concrete
situations should be stored but the subsequent analysis should be done by a "master" unless the
reliable algorithms of generalization are developed.

In the meantime, the other types of learning (primarily, inductive learning) can be exercised with no
human involvement. They include memorizing the snapshots of the world, analyzing the evolution of
the snapshots, and computation of correctives for the matrices A and B as well as for the string of U.

Retrieval of rules.The first experience of operation of IMAS-2 has demonstrated that using the lists
of rules is inefficient, and the hierarchical structure increases the productivity of the rules retrieval. The
structure of the retrieval system is based upon the theory presented in [51]. Lx is the language of
conditions consisting of their vocabulary and the weighted relationships among them. Ly is the
language of consequents also consisting of the vocabulary and the grammar of weighted relationships
among the words of this vocabulary. The matching algorithm is based upon the grammar translator
consisting of the weighted relationships among the words of vocabularies Lx and Ly,
correspondingly. The matching process C ends with obtaining several "best" matchings, then
evaluation, selection, and decomposition of the proper rule is done ((E,S,D)).
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SECTION 2
MULTIRESOLUTIONAL REPRESENTATION OF SPATIAL KNOWLEDGE
FOR AUTONOMOUS ROBOTS

In this section the concept of Multiresolutional Representation of Spatial Knowledge (MROSK) is
defined and explored. The sensory process is examined to define two categories of error: resolutional
error and perceptual error. This result is used for the formation of a MROSK which structural and
maintenance mechanisms are discussed. MROSK is elaborated for a case with binary classification of
space but extensions to more complex situations are given. MROSK was developed at Drexel
University to support the Nested Hierarchical Controller for autonomous robots [1,2]. The material
presented in this section is a condensed version of that given in [3] and represents an extension of an
earlier work [4]. It is concerned with the task of developing a system that can function independently
in a partially or fully unstructured environment. Environment is considered to be unstructured not only
if it is unknown, or contains unknown object, but also if it consists of the objects which are related to
each other in a previously not recorded configuration. This in turn requires existence of mechanisms
that store and maintain knowledge of the environment. In this section the problem of dealing with a
specific subset of this knowledge is addressed which contains two important classes of knowledge:
physical knowledge (PK) and semantic knowledge (SK).

PK reflects the underlying assumption that the world of interest to IMAS exists as a set of physical
objects, and that the act of sensing (measurement) does not affect the structure of the world. The
physical world can be divided into regions which contain objects and occupy specific volumes.
Partitioning of these regions is governed by the physical properties of these objects and their location
in space. Information necessary for partitioning is obtained from measurements (sensing) . The
patterns, that emerge are characterized by quantities detected by a sensor (coordinates, color, shape,
density, etc. ) and are identified with the supposedly existing objects. When the changes are observed,
the temporal aspect is included the resulting structure of the world. This includes moving objects, or
their deformation. Physical objects as well as the results of sensing are uninterpreted knowledge of the
world.

SK emerges in the process of interpretation of PK. Thus, the structures of SK are considered to be
representatives of PK structures. SK structures appear as a result of labeling PK structures, including
observations, and their combinations. In turn, SK structures may also be created via combining other
SK structures.In both the PK and SK, the method of combination of structures to create other
structures is governed by rules (grammars). In PK the rules of grammar are contained within the
world itself). In SK these rules partially represent the relational information extracted from our
observations and partially reflect our mechanisms of dealing with information.

This section is concerned with a portion of SK that contains structures corresponding directly to PK
objects with a definite spatial locations. These SK define a System of Spatial Representation.
Spatial Representation is a limited domain but it is very rich in information, and in this section we will
limit further the scope of the world to be considered. Motion is excluded from our system of
interpretation. Change is allowable if objects can disappear or change position (instantaneously and
with limited frequency) creating a conflict between the state of the world predicted by memory and that
created by nature. This definition can include cases of motion. Indeed, even if motion is represented
explicitly the possibility for conflict with existing knowledge still exists.

The world is limited further since it is flat and does not contain curvilinear shapes. The only
boundaries of objects allowed, are represented as polygons and only in the two dimensions of the
horizontal plane.
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Mechanisms of Perception. The overall process of perception is illustrated in Figure 1. The
structure of the world is converted to raw sensory information which is then interpreted by the object
identification module to determine the existence of objects. As the overall system becomes more
familiar with its environment the learned information can be fed forward to aid with the object
identification procedure. This mechanism is considered not to be involved with in the system of SK
and is not necessary for the topic at hand.

Attention will be focused on the processes of the Object Identification Module (OBIM) since it is there
that the natural structure of a Spatial Representation will reveal itself. It was found that two classes of
errors of the Sensory Perception Systems can affect the operation of OBIM: 1.) Resolutional Error and
2.) Perceptual Error (illusions). A explanation for both of these types of error will be given for vision
and ultrasonic systems. It should be emphasized that these are characteristics of all sensory systems.

Formal Description of Perception. The process of perception can be described using the
following terms.

Iraw -the set of raw sensory data in the vocabulary of the sensory mechanism known as the
sensory parameter space

Iproc -the set of sensory data that has been converted into the language (parameter space) of the
knowledge structure. e.g. Range, angle and resolution.

0 - an object which represents the connected subset(s) of Iraw or Iproc that are not allowable for
the robot to travel in.

S is free space; it corresponds to the connected subset(s) of Iraw or Iproc that are allowable for the
robot to travel in.The three functions that characterize the overall process are presented as follows.

Poi: Iproc ' proc (L.a)

Poi: Iraw - Iraw (1.b)

Statements (la) and (lb) define functions that partition either raw sensory data or sensory data in the

language of the knowledge structure into subsets that correspond to objects and free space.

Ptrans: Iraw -' Iproc (2)

In the statement (2) the function of Perceptual Translation (Ptrans) is defined. It is a function which
maps the information that is in the language of the sensor (Iraw) to that of the knowledge structure
('proc). This function is order preserving with respect to the partitions that are created by the function
given in (la) and (lb). A feature that is necessary for those systems that perform object identification
on Iraw (la) rather than on Iproc (I b).

The sensory process can be further characterized as an information source. To simplify the description
the source will include the process Ptrans. This allows it to be modelled as a binary source. The
probability of occurence of each symbol will in reality be a function of the environment. However, the
entire world is considered to be sufficiently diversified in the size and number of obstacles that the
probability of object and of free space will be equal. Mathematically, Sensory System of an IMAS can
be modelled as a Markov Process with finite memory.
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Figure 3.Resolutional distortion

Figure 4. Perceptual error (in a vision system)
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The probability of a symbol to represent an object would be a function of the previous symbols
occurences, and could be quantified if a measure of the average size of objects could be determined.
However, for a first approximation the probability of object and the freespace to be equal can be cal-

culated as H(x) = I Pi log (Pi), and for P1 = P2 = ... Pn; H(x) = log (Pi),therefore H(x) = log (.5).

Resolutional Error and Illusions of Perception. A complete and detailed description of the
perception system discussed in this section can be found in [5]. (This system is accepted here because
it fits to the overall concept of multiresolutional nested hierarchical control, and because the test-bed is
based upon this system of computer vision). It determines the range to object boundaries using a
unique algorithm for "Blob detection" in conjunction with a fixed camera angle and triangulation to
determine distances to object boundaries.

In Figure 2 error from a finite CCD grid is shown. It is evident that the resolution of the system is
different for pixels at the top of the image plane than for those at the bottom. This is shown for pixel 1.
which represents a smaller area than pixel 2. This area corresponds to the accuracy with which the
boundary can be determined. The distortion this would produce if modeled explicitly is given in
Figure 3. This diagram shows the multi-resolutional nature of the information conveyed by this type of
sensor. In Figure 4 the idea of Perceptual Error is displayed. Because of PK factors such as lighting,
texture etc. the vision system is subject to errors that represent gross mistakes and can not be
charaterized by statistical analysis.

Resolution and Perceptual Error of Ultrasonics. The resolutional nature of the ultrasonic
ranging system is depicted in Figure 5. The major factors that affect the errors in this system are beam
width, discretization of scanning, and accuracy of the circuit used to detect the time of reflectance of
the ultrasound pulse. Illusions of ultrasonics are, again, determined by a number of environmental
factors. A few of the more common ones are demonstrated in Figure 6. In Figure 6a. the pulse is
totally reflected and no object is detected. This could be alleviated if the sensitivity if the detection
mechanism is increased but this will lead to another error shown in Figure 6b. The distance to the
object is wrong since the range detected will be (x+y+z)/2 rather than x.

Nested Hierarchical Representation. It is clear that all mechanisms that provide interface to the
real world produce information that is multi-resolutional in nature. A representation that makes use of
these phenomena was developed. In Figure 7 a Nested Hierarchical Representation (NHR) of an
object boundary is given. The representation is said to be nested because all knowledge at level i+l is
contained within the bounds of the resolution of level i (in a generalized form).

This structure must be easily maintained and updated because it should contain as much information as
possible. Thus, it is necessary to introduce efficient and adequate Algorithms of Generalization (AG).
Indeed, the contribution to any given level of the representation is limited by the processes of natural
generalization that exist in the sensor (e.g. incorporated in the mechanisms of preprocessing). Also the
amount of information given to any level for a single "snapshot" will decrease as the number of
represented levels increases. The process depicted in Figure 8 shows how the process of AG helps fill
in the upper levels (levels of low resolution) by generalizing higher resolutional information. AG
should incorporate rules of inclusion from [1,2].

Formal Description of Nested Hierarchy. In this section a formal description of the NHW
representation described will be given. The following meaning of symbols is accepted.

W - World ("Universe") of Discourse
R - Resolution defined as minimum distinguishable size of a feature
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Kw- Knowledge of the world
Kw -Knowledge of the world at a specific (i-th) level of Resolution
0 -Objects of the world

Figure. 5. Design of Ultrasonics for Natural Generalization

7Y

Figure 6. Illusions in Ultrasonic Sensors

Technical Report on Intellignt Mobile Autonomous System (IMAS)



34

Figure 7. Nested Hierarchy of a Boundary

Figure 8. Pruess of Building a Nesied Hierarchy
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Oi - Objects of the world at a given level of resolution
Sf- Free Space of the World
S? - Free Space of the World at a given level of resolution
Su - Unknown Space
P.- Perception of the World
Pi -Perception of the World at a given level of Resolution
Op.-Objects of Perception
Op - Objects of Perception at a given level of Resolution

In addition to the above notations, two classes of structuring relations will be defined.

1) Relations that determine Vertical Structure with respect to Resolution [1,2]. Within this class there
are two relations

a) Generalization - G
b) Focus of Attention - Fa

2) Relations that determine Horizontal Structure for a given Resolution. In this class falls the
mechanisms of Updating [3,41.

Algorithm of Generalization is a Recursive computational process that maps one level of Knowledge
or Perception into a higher level. For every element of level "i" a corresponding element at level "i+ 1"
is determined. Properties of this mapping are discussed in [ 1,2].

G : Kwi --+ Kwi+l1 (3)

G : Pi ._.> Pi+ 1 (4)

Generalization. By examining the process pictured in Figure 8 it is evident that there are two
sources that provide knowledge to any given level of the hierarchy: the sensors, and Algorithm of
Generalization (AG). It is this second process that plays a key role in maintaining consistency in the
knowledge structure. To enable this it is necessary that AG be isomorphic to the actual mechanisms of
PK that are used to generalize in the parameter space of the sensors, and are applied in the system of
preprocessing. Since it would be cumbersome to duplicate algorithms utilized for the sensor parameter
space, it was sought to find a language (alternate parameter space) and a transformation to that space
that would enable a single mechanism to work for all the different types of sensors. This language is
exactly that of the knowledge structure and the transformation is given by expression (2).

The overall process of AG as it functions in knowledge structure, parameter space is given in Figure
9. First the allowable size of a feature is reduced, see Figure 10 (reduction in resolution) then, second
(as a result of this reduction) the objects that existed at level "i" will be transformed into another set of
objects at level "i + 1". In order to determine the set of objects that exist at the level "i + 1", a
procedure of object identification must be performed (see Figure 11). This is similar to the procedures
of clustering but because of a significant number of heuristics that exist for this domain it is sometimes
difficult to see the similarity.

Artifacts of Generalization. A number of interesting observations can be made that appear as a
result of the mechanism of generalization and its application to a representation based on obstacle
boundaries. It is evident that at some level of the hierarchy an object will be reduced (or abbreviated) to
a single point, or a line. In Figure 12a the process of transition is illustrated from level "i" where the
object has spacial dimension in all of the directions of its cartesian space (i.e. for two dimensions it has
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length and width for three dimensions length, width and height.) to level "i + 1" where it has no
spacial dimension and exists as a single point. A similar transition is shown in figure l2b here, the
object loses

t Obj."Ct l,1-ntifi:r~ian

/I i Z E hZ i

t GE \PF-\LI7ATON

Figure 9. The Entire Process of Generalization
LEVEL i + I

Z

Level i

Figure 10. Generalization in a Nested Hierarchy
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only one of its dimensions but at some level (i + n) will eventually lose the second dimension as well.

These concepts are important for a number of reasons. One of the major reasons for identifying the
correct transition level is to protect the insignificant objects from representation at the levels of very
low resolution. This in turn poses restrictions on the correct change in resolution from one level to the
next ("rate of resolution change"). To examine this problem, and to provide a more formal theoretical
basis for the concept of Generalization, its information-theoretic aspects will be considered in the next
subsection.

Information Theoretic Description of Generalization. In Section 2.3 the sensory system
was shown to be characterized as a binary source delivering the two symbols, object and no-object,
where the probability of occurrence of each symbol is (.5). In this section the effects of applying AG
upon this information will be examined from an information theory side. The flow of information
through the knowledge structure is shown in Figure 8. The amount of information at any particular
level is given by:

I(x) = -7- pilog(pi) (5)
where: Pi represents the probabi" .v Jf occurrence of the information in each grid cell.

However, since the probability oi occurrence of each symbol is .5 the total information for N grid cells

will be:

I(x) = -.5 N Log (.5) (6)

During the process of Generalization a grid cell at the level "i + " is determined to contain an object
boundary if any of the tiles nested with in it at level i contain an object boundary (see Figure 10). By
referring to Figure13 it can be seen that this causes a loss in information about free space. The
maximum information loss that may result can be calculated using (5). In the case portrayed in Figure
13,a there is maximum information transferred between levels since there is no information about free
space to be lost. The amount of correct information represented at level "i + 1" is:

Ii+la(X) = -.5 (x'y) log (.5) (7)
where x*y = the number of nested cells at level 'T'

In the case demonstrated in Figure 13,b the amount of information lost is maximum since it level "i"
contains the maximum amount of information about free space. The amount of correct information
represented is given by:

i+lb(X) = -.5 log (.5) (8)
Therefore in the worst case the amount of information lost during generalization will be the difference
between (7) and (8) given below:

Iloss(x) = -.5 (x*y - 1) log (.5) (9)

Updating. The representation scheme developed to this point would be rather ineffective since no
mechanism(s) was introduced yet to modify it so as to reflect and incorporate the changing nature of
the world. This mechanism is shown in Figure 14 for a single level of the hierarchy. In the first step of
the procedure the Expected Perception of knowledge-to-appear is already formed in memory. Then
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this is compared with the actual view to determine possible matches between objects in memory and
objects currently in view. Thiese candidates for possible matches, are then grouped into categories
according to the amount of overlap and the number of overlapping objects (see Figure 15).

4 RENM')VE OCCLUDED POEM

CO FELNE OBJECTS %%TTH L. PES

FIGLRE OBJECT DENTIRCATION

Figure 11. Object Identification

Figure 12. Artifacts of Generalization
(~) (M

Figure 13. Loss of Information During Generalization
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For each candidate for a possible match, a statistical decision is made to determine if the there is
actually a correspondence between new and old knowledge. If there is, then the old and new
information are combined statistically and heuristically to produce an updated view of the object. If no
correspondence is found then a decision is made whether to delete the existing object or to discount the
new information as an object of illusion.

Determining New and Old Knowledge Correspondence. The problem of classifying new
knowledge can be formulated in the terms of "detection theory". The first step is to characterize the
signal mathematically so that it can be evaluated. In Figure 16 each object that is identified in the new
sensor view can be thought of as a signal Rnew(a): the distance to a point on the object at a given angle
a. A similar signal can be constructed for the corresponding object in memory Rold( a ). The
representation can be extended to three dimensions by the addition of a third variable, namely, a
second angle to vary R( a ) vertically. Using this representation it is then possible to formulate the
hypotheses that will be decided upon by the box labeled "Classify" in Figure 14. There are a total of
three hypothesis:

HI: Rold( a ) + N( a) object in memory (10)
Rsen(a)= H2 : Rnew(a)+N(a) newobject (11)
H3: Ri(a) + N(a) object of illusion (12)

The first hypothesis (HI) represents the decision that the object that is currently being sensed is the
same as the Expected Perception of the object already in memory plus some additive noise (N( a )).
The second hypothesis (H2 ) represents the decision that the object currently being sensed is not the
same as the object that is in memory is actually a new object that is now in the same place as the old
object. This could also be the same object but slightly moved or rotated, however, to the robot this is
the a different object (see Section 1-2 for a better explanation). The third hypothesis (H3) represents
the situation where the newly sensed object is really not an object but is a product of Sensory Illusion.

In the formulation of this as a signal detection and estimation problem a number of issues
regarding knowledge of the statistics of the three classes of signals arise. The first major assumption
that is made is that the noise that corrupts the three signals in (10), (11) and (12) is the same, and that a
good estimate of its statistical quantities is known. The second assumption is that the signal
corresponding to the object in memory (Rold( a )) is a deterministic one, and can be used as a
template. The largest error will be caused by the lack of information about the signal that makes up the
deterministic portion of the input. The only true knowledge that we have, is that it is deterministic and
that it is either the same as the signal in memory or it is not.

Numerous schemes exist for detection of known signals such as likelihood ratio test or
crosscorrelation each with there limitations. For the purpose of demonstration the formulation and
drawbacks of two popular methods will be given. The formulation using a cross-correlation method of
detection will be presented first:

IR1R2= Rl(a)R 2 (a+b) (13)

The discrete convolution given in (13) represents the cross-correlation of the object in memory with
the object that is currently being sensed. It will produce a delta function at "b" if the two signals are
similar and a flat curve if the signals are not similar. One of the major drawbacks of such a process is
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that for signals that are of very low frequency in nature, such as the distance information of a flat wall
perpendicular to the field of view. This would have severe repercussions in a system of this kind since
these type of inputs will be the rule rather than the exception.

The mean squared error (MSE) between the two signals is another measure of similarity measure that
can be used to determine the correspondence between two signals. This can be formulated as follows:

MSE = ( 7 IR1 - R212 )/N (14)

This is essentially a measure of the variance of the two signals. If the value falls within the limit of
error of a given level of resolution then the two signals can be judged to be the same.

After a decision has been made to determine which hypothesis to accept either (1) or both (2) and (3)
further processing is required to find the best estimate of the new signal (if 1. is decided upon) or to
differentiate between hypotheses (2) and (3).

Incorporating New Information. The process of incorporating new information if hypothesis (1)
is accepted requires that the new information be combined with the existing information to produce the
best estimate of the object. In a conventional approach based upon small Gaussian errors and a special
form of the cost-functional, the process of incorporating new information can be formulated in terms
of a Kalman Filter. This leads to a very complex computational structure which cannot be justified
especially when the assumptions of the theory do not fit to the particular case of application. A much
simpler approach is adopted here which involves the well known estimator of the mean:

Rupdated( a i) = (RI( a ) + R2 ( a ))/2 (15)

Deleting Old Information. If the result of the decision process yields that either hypotheses (2)
or (3) should be accepted, the problem of deciding between reality and illusion emerges. To deal with
this a measure of Perceptual Certainty for the known object and the new information about this object,
must be devised. This measure should be based on the 4 following criteria.
1. The number of times the object in memory was confirmed by hypothesis (1) or unconfirmed by (2)
and (3).

2. The amount of the objects in memory that can be seen in the current view.

3. The overall illusion/Reality Ratio for a given World and/or for a given Robotic htelligence.

Since no sound theory for the development of such a scheme is presently known the following
heuristics is devised based upon intuition. For each object a Perceptual Certainty Factor (PCF) is
created employing the initial Illusion/Reality Ratio of the sensor. Each time a portion of the object is
confirmed by hypothesis (1) the PCF is increased by an amount proportional to the length of the object
that was in view. The PCF is decreased every time the hypothesis (3) is chosen by an amount
proportional to the length of the object in view. If the PCF of an object falls below the PCF of the
newly sensed data the new information is taken as fully correct, and the prior object representation is
deleted from memory.

Results and Discussion. A crude implementation of the above theory was developed on a
Symbolics 3640 for IMAS-2. Presently, a simulated sensor is used to produce three levels of
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multi-resolutional data. This information is delivered to the knowledge organization module which
incorporates the *new information and confirms or deletes the existing knowledge. A typical
representation of an object is built up over successive views from different distances and multiple
angles. The three levels comprising the existing knowledge constructed in this fashion, are depicted in
Figures 17a-19#. The current view of the world is given in Figures 17b-19b. The updated knowledge
of the object after the procedures described in this section have been applied, is given in Figures
17c-19c.

Algorithm of Generalization was implemented using a polygonization routine along with the above
mentioned method of determining the new objects and verifying the old ones. Using the polygonizer
obtains the necessary reduction in resolution.

The current work is being performed to incorporate a vision system and sonar ranging device to
replace the simulated sensor and to make the progression into real environments. Although the
examples given in this section have been developed for binary polygonal object representation, this is
not a necessary requirement. If the procedures of generalization and updating are implemented on a
grid base, then any combination of shape primitives may be used to describe the object. All that is
required is 1) a procedure to map the set of shape primitives onto the grid, and 2) a reverse procedure
to map from the grid into the set of shape primitives.

If the extension to three dimensions is required, then another dimension must be added to each level of
the hierarhy. In doing so the grid tiles will become three-dimensional cells (volumes and not areas).
The problems encountered will be computational complexity and memory required. It is also possible
to extend the representation to include information from texture and color. This can be accomplished
by assigning a description of the color or texture that is contained in each grid cell that is enclosed by
one of the boundaries. A few problems now occur that will require future investigation.

The mechanism of AG may become increasingly complex to furtherly develop since very little is
known about processes that create effects such as a surface with rough texture appearing smooth at a
distance or a multi-colored pattern that appears as a single color in low light levels. A careful
examination of the Natural Generalization that occurs in the Sensor Parameter Space will be necessary
if this is to be accomplished.

Figure 17. Simulation results I
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Figure 18. Simulation results U
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Figure 19. Simulation results III
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SECTION 3

PATH PLANNING IN THE RANDOM TRAVERSABILITY SPACE

TIONersability spece is introduced and developed as the representation in the path planning system of

IMAS. A second (generalized) level of traversability space is introduced to reduce computational
complexity and make the problem of control tractable. This lower resolution generalized level of
representation is used to guide search in the original traversability space. Recursive repetition of this
procedure is presumed to create a resolutional hierarchy of representations applicable for planning, and
increasing the its efficiency. This is achieved by successive reduction of the search envelopes. The
results are analyzed with respect to the value of relative error vs search complexity. Comparisons are
made between the envelope of search and heuristics of search.

Planning in the System for Autonomous Control of IMAS. In this section, the principles
and the algorithms of planning the path in the traversability space are demonstrated in the context of
control of an autonomous robot moving in the random field. IMAS is pursuing a goal while
modifying its behavior as new information is acquired about its environment. (Theoretical background
is given in [1,2]). This system is partitioned into six subsystems: sensor, perception, knowledge
base, planning/control, actuation, and the "plant" or robot per ce. This system is intended to develop
plans and control sequences based upon knowledge stored in the memory and/or acquired during the
robot operation. The path planning part of this subsystem combines the perceptual map and the prior
knowledge about the system, which does not come from perception, to form a complete state
description of the system and searches for a plan of actions. A detailed description of a system which
combines information of the environment with its system model is presented in [3].

The goal-oriented procedure of path planning is then applied which generates a sequence of states
which best satisfies the goal and is considered to be the planned path. These state descriptions are
then submitted to the lower levels of control system. Finally, the actuation system performs a
mapping of the description of the next state into inputs for the system actuators.

Representation of the World for Planning in a Mobile Robot: Traversability Spaces.
All information acquired about the environment must be mapped into a form which can be used to
control the motion of an autonomous robot. Each point of the space where the motion is to be
performed (we will name it terrain), thus, corresponds to a location (value of coordinate), and a
value which determines how that particular location in space will impede the motion of the vehicle
(value of traversability). The minimal area which can be characterized by both coordinate and
traversability is a discrete zone limited by the accuracy of the information available (e.g.
distinguishable). The space into which all locations are mapped with their coordinates and
traversabilities at a definite level of resolution, is the resolutional traversability space.
Traversability space is developed in [7].

In fact, there are other factors which affect the motion of the robot besides the external environment.
Along with the traversability factors, the physical parameters and the dynamic properties of the vehicle
also affect the motii, and thus, the planned path. With all this additional information the complete
state of the robet can be described at any instance of time. We will concentrate only on the upper
levels of plUnninl in a muldresolutional nested hierarchical controller, i.e. will consider the motion on
a large scale. Whas the vehicle's trajectory is considered on a large scale, the dynamic properties such
as inertia of the motion, or nonlinearities, such as turning radius and maximum acceleration, become
insignificant. Under this assumption, the traversability space is defined in this section.

Formal Definition of Traversability Space. When the accuracy of the The raversability space
of a mobile autonomous vehicle is defined as follows:

TL = K(dS/dt)L (1)

where, TL is the traversability at location L
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(dS/dtk is the maximum attainable velocity
through location L

K is some positive constant determined
by the properties of the robot and
the environment.

If the location is fairly large with traversability defined in such a way, the time of traversing within a
region R having a uniform traversability TR for a distance DR will be,

tR = DR/TR (2)

The environment is now mapped into a representation by which paths may be compared according to
the time taken for the vehicle to follow a particular path. For example, a path P may be divided into N
segments which lie in N traversability regions. The time taken to traverse path P is,

tp = D1/T 1 + D2/T 2 +... + DNiTN (3)

Clearly, the "precise" value of traversability can be computed if the size of the segment is equal to the
minimal discrete of the space at a given resolution.

Time Optimal Path Planning Using a Search in the Traversability Space. Paths in the
space can now be distinguished from one another by the cost of the path, (which for IMAS is time).
We would like to distinguish the best path, between an initial point and the goal, from all the possible
paths. This suggests that a search in the traversability space can be used to find the best path.

At this point we would like to determine the law of discretization of the space to transform it in a
suitable form to conduct a search. The simplest tesselation is assumed based upon the scales on each
of the dimension axes discretized using the minimal distinguishable value of the particular dimension.
Thus our space is partitioned in the cells each of which is a multidimensional cube. To make the
2-dimensional terrain amenable to search, a tesselation of a grid is imposed. Each cell in the grid has
eight neighboring cells. If the distance from the center of cell A to the center of its neighbor, cell
B, is DAB then the cost incurred in going from the center of A to the center of B is,

CA = (DAW2TA) + (DAW2T 3 ) (4)

Since this cost is a constant (independent of both the path up to A and the path beyond B), a dynamic
programming type of search may be used. Further, the recursive search employed in the dynamic

g may be made more efficient by including a heuristic cost of the euclidean distance to the
ga(A with ittotal cost F=G+H where G is the cost of achieving the next node, and H is a heuristic
estimate of a possible distance to the goal). Euclidean distance is an admissible heuristic for H in the
traversability space This can be shown if we consider two nodes in the traversability space, n and n',
and the goal. A trimgle is formed by the three points and the triangle inequality can be written,

H(n') < C(n',n) + H(n) (5)

where C(n',n) is the cost of going from n' to n. The smallest value C(n',n) is the euclidean distance
from n' to n and for this value the inequality holds. So, for any other C(n',n) the inequality will also
hold proving that the heuristic is monotonic which implies that it is also admissible [6]. The version of
search algorithm A* applicable to the traversability space is introduced as follows.

(1) Beginning at the initial node, the eight neighboring succesors are generated and put into list
OPEN. Generating a node consists of:
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(a) Assigning the cost (4) of arriving at the neighboring node
Gij+ 1 = (D/2Ti) + (D/2Til)

where D is a width of the grid ceiL
(b) Assigning the heuristic cost to the goal

H-cost = 4(Xmd. - Xsota)2 + (ynode - ygoal)2 (6)
(c) Assigning the list of predecessors

Predecessor-list = (Xin, Yiit)

(2) The node in list OPEN with the lowest G + H cost (or F-cost) is selected to be expanded. If this
node is the goal node, the search for the optimal path has been successful. If list OPEN is empty, the
goal can't be found and the search halts.

(3) All other occurences of the node selected to be expanded, are removed from list OPEN. When a
node is selected to be expanded, it is marked so that it will no longer be marked as a successor.

(4) The node being expanded generates the eight neighboring nodes as successors with the exception
of those which are marked as having been expanded. The G-cost is the total cost of arrival to a given
node " from the predecessor node "i- ", which represented recursively is,

Gi= D/2Ti+1 + D/2T i + Gi.1  (7)

or as a summation:

G i = (XD)/T1 + (,.D/T2 +... + (,D)T =D X (I/Ti), i=l,...,n. (8)

where Ti is the traversability of region i.
The predecessor list is obtained by appending the location of the previous node to the predecessor list
of the previous node.

(5) These successor nodes are then put in list OPEN and the process continues as described above
starting with the selection of the best node on list OPEN.

(6) Loop to the stage (2).

Permissible Computational Complexity For Real Time Control. In the previous section it
was shown that a A* search operating on a square tesselation of the 2D traversability space of the
terrain, yeieds a time optimal path through the space. To integrate this planned path into the closed
loop controller described in [1), measurements and constraints must be imposed on the results of
planning. Given the nature of the path planning process described, path trajectories will be generated
periodically,. and not continuously. Thus, the time consuming search is expected to be less detrimental
to the overall contrl system.

Nevertheless, under condition of limited computational resources we are interested in making the
process of planning as less time consuming as possible, in order to use the computer for other levels
of the planning/control hierarchy. Meanwhile, the computation time is proportional to the number of
nodes expanded and this may be quite large depending on the planning area considered. In practice,
search on the original level of traversability space is not fast enough to be considered for actual control
application.

Alternatives to limit the computation time include (1) increasing the planning cell (tile) size, (2)
defining a subgoal with a restricted area of search, (3) introducing a new level of resolution to guide
the search in the lower level
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Increasing the tile size significantly will reduce computational complexity, but introduces an equally
significant discretization error in the path found. Defining an arbitrary subgoal permits the system to
function in real time, however, the system behavior while being locally optimal might be globally far
from optimaL We will try to unify both of these options by defining manageable subgoals whilemaintaining a global perspective of behavior. This can be achieved by defining a coarser level of
resolution and using its results at the lower leveL

Generalization and Creation of a New Level of Traversability Space. Types of the
Traversability Spaces. To reduce the computational complexity of search in the traversability
space, a new level of traversability space is introduced. This type of control structure is presented in
[5]. This new level should adequately represent the original information in a less detailed way. The
conditions of adequacy include inequalities of inclusion thoroughly satisfied for all of the information
items on hand. In this way, a path found at this new level will always contain the optimum path.

Thus, the coarse results of planning obtained at the artificial upper level of resolution, can be refined at
the original level with substantial computational savings. Before the criteria for defining this new level
are considered, the types of traversability spaces on which this criteria is applied will be discussed.
Since we are dealing only with a two-dimensional traversability space in this section, we will use the
term map instead of using the term traversability space. This will satisfy our common
topographical intuitions.

Uniform Regions Map. The first type of map to be considered is the map of uniform regions.
This map consists of regions of uniform traversability. This is a typical representation for large paved
areas, a football field, a lake, etc.. Producing a generalized level for a map of uniform regions is
straightforward since the value of traversability in upper cell will be identical to the traversabilities in
the lower cells. The only consideration to be made is in dealing with upper cells which fall on the
boundary between two or more regions. This is the discretization error introduced by the new level.
The traversability of the border cells may be calculated from the weighted average of the lower cells or
to be conservative it may assume the worst traversability of the lower cells.

Non-uniform Regions Map. The next type of map to be considered is the map of regions with
non-uniform traversability. This map is not segmented into regions and each cell value is considered
independently of its neighbors. For a real terrain, it is expected that there will be regularities within the
map and that coarse regions do exist.

Binary Traversability Map. Another important type of map is the map containing only obstacles
and free space. This is very common especially for man-made environments. The t-aversability space
representation does not exclude this type of map as each of these represents the extremes of the
traversability value.

Random Traversability Map. A random map (the most general case) consists of cells which are
assigned a random traversability value. This fits the description of the non-uniform map, but it
presents the wot cae for deternmining an appropriate generalized leveL So, a generalization function
that performs adequately for the random map will be insured to perform at least as well, (and probably
much better), on my non-uniform map that attempts to reflect reality.

Generalization Criteria. The criteria for generalization will now be discussed. Let the cell on the
new level consist of 2x2 lower cells, having traversabilities TiI, T12, T21, and T2. Let the size of
the lower cells be unity.
The average time to traverse the larger cell will be the average time of diagonal, horizontal, and vertical
traversal. If both horizontal paths and both vertical paths are considered, the average time is
(Figure 1),

tav- W (42+I)/4 ( I/T11 + 1f"12 + I/T2 + I/T2) (9)
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If the average distance, (42+ 1), is divided by tavg , the generalized traversability becomes,

Ts= 1 /4 ( I/TI + lIT 12 + l/T 21 + l/T22) }- (10)

This generalization function works well for random maps and likewise it is appropriate for

non-uniform maps and maps of uniform traversability. This generalization function is not, however,
appropriate for a map of obstacle and free space. Generalization in this case should focus on critical
elements of the lower level. Thus, if half of the large cell is obstacle, then the large cell should Ie
considered an obstacle and should not be averaged or weighted less.

Complexity of Two Level Control in the Traversability Space. In the previous section, a
generalization operator was introduced to make a new level of resolution. The complexity of path
planning in a map with this new level is now considered.

Consider a random map R,(ij) and let R2(ij) be the generalized random map. Let el and e2 be the
planning tile sizes of the two levels. An optimal path is found on level 2, 02, and is to be refined on

level 1. First 02 will be segmented into several areas of search for level 1. When the robot

approaches an area defined to have a width of e2 f and a length of D, the search begins for an optimal
path. Each of these areas will be searched independently and successively and the total area covered
on level I will be,

A t = nx (e2 f
2 + e2 fD

if there are n subareas.

The number of nodes expanded on level 1 is,
N1 = A, / e l

The number of nodes expanded on level 2 is,
N2 = A2 / e2
where A2 is the area covered by A* search.

The total number of nodes expanded in the refined search is,
N12 = N1 + N2

If this is compared with search without the generalized level, a ratio of computational complexity is
determined.

The complete search at level 1 is,
Nitt = A2 / el

The ratio of computational complexity is,
R = N12 / Niter

This simplifies to,
R = el / e 2 + (ne2f(Ie2f + D)) / A2 (11)

Experiments with Two Level Search and Analysis. Table 1 shows the number of nodes
expanded for a single level search and this is compared with the two level search for four random
maps. The path taken from the upper level is given to the lower level and made wider so that search is
conducted in the stripe. Three widths are given for each map and the results are compared.

The first line under each map (A, B, C, and D) in Table I shows the number of nodes expanded in the
generalized map. The optimal solution, that is, the lowest cost, is found by allowing unbounded
search search at the lower level (this is the second line under each new map). If we take the path
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found in the search on level 2 and make it wider by three times the upper level tile size on each side ofthe path, we obtain the results found in the third line in each map. Note that the number of nodes

expanded for this refined search includes the number of nodes expanded in the upper level search.
The amount of cushion around the path is then reduced to two times the upper level tile size and then
to one times the upper level tile size. The percent difference in cost from the optimal is shown in the
last column.

Clearly, it is expected that there will be a tradeoff between finding the optimal path by unbounded
search and doing a two level search. From the results shown in these four random maps it is
surprising how little accuracy is actually lost. The strong relationship between the information on the
two level gives a confidence that the optima' -'ath will be found within an envelope surrounding the
upper level path.

In Figures 2 through 5 the maps of Table 1 are shown with (a) being the level 2 search, (b) the
unbounded level 1 search, (c), (d), and (e) being the bounded search with successively smaller
envelopes of search. The envelop acts as a heuristic which directs the search. Figure 6 shows map A
using best first search instead of A*. Note how the similar A* and best first are in the cases of
bounded search. Figure 7 shows map A with unbounded search; first with best first and next with
A*. Although the euclidean distance heuristic reduces search drastically it is still less effective than a
reduction of search based on the evaluation of generalized properties in the space.

Conclusions. I. The traversability space representation is a uniform representation for the control
of an autonomous vehicle accomodating varied terrain and obstacle/free space environments
2. Generalization of properties is straightforward in the traversability space. The generalized map is
strongly related to the original map and serves as an excellent means of guiding the search at the
original level.
3. Because of the uniformity of the traversability space representation, the same algorithm is used on
both levels of the system. This is a nice feature when a system is being implemented since no new
algorithms are needed to deal with generalized information.
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SECTION 4
PILOT WITH BEHAVIORAL DUALITY

This section describes a system of guidance for an intelligent mobile autonomous system (IMAS)
based upon an algorithm of "pilot decision making" which incorporates different strategies of
operation. Depending on the set of circumstances including the level of "informedness", initial data,
concrete environment, and so on, the "personality" of PILOT is being selected between two
alternatives: 1) a diligent and thoroughful strategist which tends to explore all available trajectories
off-line and be prepared to follow one of them precisely, and 2) a hasty decision maker inclined to
make a choice of solution in a rather reckless manner base upon short term alternatives not regarding
long term consequences. Simulation shows that these two personalities support each other in a
beneficial way. This section is based on the concept of Nested Hierarchical Coatroller [1,2]. Intelligent
Mobile Autonomous System (IMAS) is considered to be controlled by a Planner-Navigator-Pilot type
of an intelligent controller [3]. Only Pilot's level is analyzed. The concept of behavioral duality is a
development of our prior papers exploring this level of a multiresolutional controller [4-6]. Pilot level
with behavioral duality was thoroughly simulated in the Laboratory of Applied Machine Intelligence
and Robotics (LAMIR) of Drexel University, and applied in the IMAS-2 (Drexel-Dune-Buggy) which
has been developed under the contract with US Army.

Types of Decision Making Behavior in the System . Even with the few existing different
approaches to motion control, it seems clear that each algorithm has its strengths and weaknesses. It
does not appear that a method can be devised which is totally appropriate for all combinations of
environment, situation, and physical system [7]. An obvious remedy then is to design a multiplicity of
special purpose algorithms each with clearly defined "operating limits", and to use a meta-control, or
dispatcher to choose among these available algorithms depending on the circumstances. Each of these
algorithms results in a definite behavioral "portrait" of the Intelligent Mobile Autonomous System
(IMAS).

A multiplicity of the algorithms with different strategies of operation, and thus, with different
behavioral portraits should result in a behavioral plurality. We have taken this approach, and use
two algorithms, one which is best for known or slowly changing environments, and the other which is
more appropriate for unknown or highly dynamic worlds. Our motivation was to analyze a particular
case of behavioral duality.

A "vocabulary of situations" is introduced. This is a simplified predicate calculus which is used to
classify a given world description so that the familiar set might be recognized, and the appropriate
control can be found. This language must support "fuzzy" descriptions, since we would quickly be
swamped, computationally, if we tried to describe every detail of each situation uniquely. Also these
fuzzy descriptions should differentiate between aspects of the situation which most affect control
decisions, and obscure differences which do not.

Known world. In the case of a priori known environments, the problem of motion control reduces
to that of planning a complete trajectory, and then tracking it, with possible compensation for enor.
Since the world is given, the complete trajectory can be found before motion begins (ultimately,
off-line) and thus more time consuming methods may be employed.

For most of the applications, typical situation is based on a partially known world. Although the robot
may have a complete map of his surroundings (e.g. factory ), it will inevitably be required to deal with
unforeseen (moving or temporary ) obstacles. Thus, compromises are required, and a trajectory
should be planned which is likely to be achievable. This reduces the computation required for each
trajectory, while ensuring that the path found will not become invalid too soon. The "Precise
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Preplanning" algorithm is doing this job.

Search is recognized as the most general approach to the trajectory planning problem in known
worlds. Often varnos heuristics are used to reduce computational complexity. Our approach has been
to use generalized results of search done off-line (with no constraints on the time of search) to create
the generalized rule base used on-line. The "generalization" of the search results then can be seen
as a pruning after the fact, where each of the pruned regions are transformed into a description of the
(class of) situation common to the pruned set, and a trajectory representative of the pruned set.

Unknown World. The other extreme is a completely unknown world. Undoubtedly, any robot
architecture is based on certain assumptions about its intended environment, and in that sense the
world is never completely unknown. However, we are interested in the case when no information is
given to the robot, other than is a part of "built-in" assumptions. In this case, planning complete
trajectories, at any stage of the motion, is not reasonable since they will quickly become invalid.

There are far fewer existing "solutions" to the problem of motion planning in unknown worlds.. A
main reason for this is that there is no clear method for evaluation of the performance of any such
algorithm. Whatever parameter the decision mechanism is attempting to "optimize", must be evaluated
in terms of the information the system has at a given moment, since the robot's knowledge is
constantly changing.

Precise Preplanning algorithm ( PP ). General Structure and Concepts. In a
completely known world, the problem of planning a dynamically feasible ( minimum time ) trajectory
in the presence of obstacles can be formulated as an optimal control problem, with the obstacles acting
as constraints on position. One way to approximate a solution to this problem is by using search in a
state space consisting of the state variables of the vehicle. Positions of obstacles can then be
superimposed on this space making those positions "illegal" states. Using a model of the vehicle, a
successor generating function can be defined, which will generate the next possible states, given any
one state. Time of motion from one state to the next can be used as the cost of each arc in a graph
generated be recursively applying the sucessor generator. A search algorithm can then be applied to
find a minimum time trajectory. Details of an implementation of this trajectory-finding search
procedure can be found in [6].

Although the method mentioned above does indeed yield a minimum-time solution to the control
problem, it is too computaionally expensive to be used on-line. The following observations led us to
a solution to transform results of search performed off-line into a rule form, usable on-line. Firstly,
in the "similar" situations, optimum trajectories are "similar". Secondly, only a limited number of"characteristics" of the situation determine the resulting trajectory. Thus, a language of situations to
put in correspondence a rule base of trajectory classes, and the base of associated situation
descriptions. Then the rule base con be defined as a set of rules in a form:

(situation description) -> (trajectory)

where the "trajectory" is an actual trajectory instance meant to be representative of the entire set of
trajectories within the bounds of acceptable error.

More formally we can state this as follows. Let the "planning universe" (U) be a discrete space
represented at some resolution Eu. Then any trajectory planned on this space will have accuracy or
resolution (Et ) of at most Eu. We will use Di to denote the i-th situation description, from the set of
all situation descriptions which are possible given the vocabulary V. A situation description is
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intended to be an n-tuple, with each component having a range of discrete values which it may
assume. The set of all "real world" situations ( at resolution Eu) described by a given Di will be
expressed as S(Di).

Notice that this implies that there is a many-to-one mapping between situations and situation
descriptions. This is because we generally assume that our situation descriptions are at a lower
resolution than the "representation" from which they are derived. In some cases, this "representation"
may be the world itself. In this case, the "resolution of the world" means the resolution at which we
can measure or sense the world. Actually, the resolution at which one should represent situation
descriptions will depend on the accuracy of motion that is ultimately required. This relationship
between the various discretizations and required accuracy of motion will be discussed later.

Using the notation given above, we can describe a PP motion control rule as follows.

Let T(D i) = set of minimum cost ( eg. time ) trajectories, one for
each element of S(Di).

Ti = a "representative" trajectory.
Ti e T(Di) I Error (Ti, Tk) <epsilon

for all k I Tk e T(Di)

where "Error (Ti, Tk)" is some measure of difference between
Ti and Tk in terms of the cost functional being used.
( eg. time of motion ).

Notice that epsilon < Error (Tj, Tk) where TjTk e T(Di)
and Tj is highest cost trajectory, and Tk is lowest cost.

Then a rule can be represented as:

Di --> Ti
which means" If the situation can be described by a set Di, then use trajectory Ti".

A Rule Language. The rule language must have several important features.
(a) It must be able to distinguish between situations that would require solution trajectories differing
by more than boundaries of allowable error.
(b) It must be concise and easy to "compute". In other words there must exist simple, fast
procedures for instandating the "words" or "sentences" of the language from some more primitive.
(c) The languag will be easier to use if the "sentences" are of a uniform structure ( analogous to
model-bused ra).
(d) The langugp should be such that different "accuracies of description" are possible. There should
be some fuzzy, but quantitative nature to the descriptions. This will make it easier to augment the
language to provide more accurate descriptions, and thus more accurate control.
Kepn he above considerations in mind, along with knowledge of the behavior of our system

in R experience, we have developed a language with which to implement the control rules.Later we will describe the major components of this language, and wili give more details of
implementation. Earlier, one of the possible ways was explored to derive the "word classes" diretly
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from the variables that would appear in an analytical, differential equations formulation of the problem
[4]. What remains then, is to determine the range of discrete values that each of these words (
variables) may asume. One problem is hidden in the characterization of obstacle positions. Even in
the analytical fomulation of the problem, there is more than one way to represent obstacle positions.
Thus in the "translaton" to a linguistical form, we have some flexibility in how we will represent the

obstacle positions. In creating the part of the rule language which describes obstacle positions, we
have used language criterion (b) above, as well as knowledge of the kinematics of the type of vehicle
we are considering, to sufficiently characterize obstacle configurations. Following are descriptions of
the word classes used to form the PP rules.

0 Goa ll (Goal-ang)
Goal Angle describes the direction to the goal relative to the current position of the robot. All
measurements such as Goal Angle, are done in a polar or rectangular coordinate frame, with the origin
being the current robot position. Figure 1 shows the values of Goal Angle used. Notice that these
values are not distributed uniformly over the 3600 range. This is because we found that goal angles
within certain adjacent regions resulted in the same control recommendations, regardless of the values
of the other precondition variables. Thus, those adjacent regions ( angles) could be consolidated for
the sake of criterion (b).

• Goal ane ( goal-range)
Goal Range describes the distance to the subgoal from the current robot position. Recall that the
subgoal is determined by selecting a position in an immediately surrounding passageway that allows
achievement of the NAVIGATOR's currently planned subgoal, with minimum cost.

* Phantom Points ( phantons )
This can be thought of as a discrete "artificial potential field" surrounding the robot. They my also be
seen as "virtual proximity sensors". They are used to help classify obstacle configurations in
constrained situations. Since the underlying representation of obstacles is a local grid surrounding the
robot, this structure is fast and easy to use. For each Phantom Point, we only need to reference the
obstacle array to determine if it is "stimulated". Alternatively, the Phantom Points could be
implemented as actual proximity sensors, thus bypassing the need for an underlying representation of
obstacle positions. Fipre 1 shows the configuration of phantom points we have used.

* Feasibility of Trajectory ( traj-feasible?)
This "word" is a binary variable which is true if the "region swept" by the trajectory of the right side
of the rule is obstacle-free. The "region swept" is determined by the width of the vehicle plus some
safety margin. In all cases, this must be true for the given rule to fire.

* CurntL Ltalg ( curr-state )
Represents the state of the vehicle (system) itself via pertinent state variables, such as steering
position, velocity, acceleration. In the PP algorithm, this is likely to determine the first few
commands of a given trajectory. In some cases, this can be a "dominating variable" in that for a given
situation, the trajectories found will be quite different based on the value of curr-state.

With these "words" defined, we can now give the actual form of a PP rule.

If [ (giml-ang = a) & (goal-range = r) & ( phantoms = p)
& (tra.fewible? (Ti)) I Then (Trajectory <-- Ti)

Implementation. The PP algorithm operates according with 6 with some modifications. The first
step is to transform the NAVIGATOR's currently planned subgoal to a locally reachable"passageway". This is done using simple criteria of minimum deviation from path, and safe width of
passageway. Next the precondition variables are instantiated. Rule matching is facilitated by having
the rules organized in a loose tree form. Common parts of preconditions are extracted and are
incorported into a "dummy" parent rule, which determines which subordinate set of rules should be
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tested. This organization makes matching fast, but at the expense of more difficult addition of rules.
Clearly, an automatic "classificatiqn tree" could be formed from the full set of rules.

Most of the above rule vocabulary components depend on an underlying representation. We found a
simple binary grid to work satisfactorily. Obstacle boundaries are projected onto the grid, and thus
each cell is marked as either "free-space" or "obstacle". This grid is the basis of the PILOT's "context
map". Although the sensors provide less than a 3600 view, the PILOT Context Map is 3600 so that
certain trap situations can be avoided. The mapping of obstacle boundaries onto the grid can be
facilitated by using built-in graphics functions for drawing lines, which many systems have.
Goal Angle and Goal range are computed using integer division and a simple table lookup. Aminimum division is defined, and then a table is defined which maps each division to a linguistical
variable. An alternative would be to use the integer division only. However, it would then be
necessary to have substantial redundancy in the rule base.

Phantom Points are easily implemented with the grid representation of obstacles. A "ray" of the
phantom point is activated ( or set to true ) if any point along the ray corresponds to a cell tagged as"obstacle" in the underlying grid
Feasibility of Trajectory is tested using the phantom points structure. For a given trajectory Ti, the
robot position is "conceptually" moved to each position of the trajectory. For each position, the
phantom points are checked against the obstacle-grid. A trajectory is collision-free if there are no
phantom points activated during such an iteration.
Current State is normalized into a linguistic value by simple integer division of the full range of values
that are used to measure the state.

Path Monitor. After PP produces a sequence of commands, the execution controller issues"actuation positions". In our simulation system we call this mechanism the Path Monitor. Its
functions include, firstly, checking the consistency of the next command with the current position
estimate. It will then make small adjustments if necessary. Secondly, the Path Monitor compares the
latest local sensor information with the currently planned trajectory. If there is no conflict, the next
command is issued. The following are criteria that cause the Path Monitor to exit and send a "replan"
message to the PILOT.

(1) A new plan has been given by the NAVIGATOR.
(2) The trajectory is blocked by the latest sensor information.
(3) The currently planned trajectory has been completely executed.
(4) The current vehicle position is significantly off course from the

current trajectory.

Instantaneous Decision Algorithm (ID). General Structure and Concepts. In situations
where robot's information about the world is changing rapidly, the trajectory generated by the PP
algorithm will be abandoned quickly. This can be compensated for, to some extent, by adding a
mec .ha.m to "predict" how the world ( robot's map of the world ) may change. (The effect of the
predictive decmo-.aker personality will be explored in a separate paper). In general, however,
it seems that in such environments it is computationally wasteful to look for an entire trajectory when
only one or two commnds will be used before replanning.

The objective is to develop a control module which quickly, (and rather superficially) classifies the
situation, and gives a single command. Operating at a relatively high frecr .cy, this decision
procedure is expected to produce reasonable paths for environments that are .pidly changing. (
Actually it may not be the environment which is changing, but the robot's knowledge of the
environment.)
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ID algorithm is producing a single command per decision cycle, versus the trajectory of the PP
algorithm. Since PP is based on search in the vehicle's state space, vehicle position information is
inherent in each ot the commands of the trajectory found. The association between state, command,
and new-state-reaultng-fiom-command, is explicit in the generation of successors in the search
algorithm, and is thus part of each trajectory in the rule base. On the contrary, in the ID algorithm,
this link is implicit only. It is built into the rule tables in a more indirect way. This results in the
decision-maring (DM) procedure operate more like a traditional control system. Accuracy of control
can be effected by varying the frequency of DM. A second distinction of ID from PP, is that the
"rule" tables are separated into tables which are dependent (implicitly) on the particular vehicle model
being considered ( as mentioned above ), and tables which are not. The obvious advantage of this is

Figure 1. Configuration of the phantom points

Figure 2. Geometrical r entatio of the font and rear DAR
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adaptability of the algorithm to cther mobile robotic systems.

A fundamental premise that the ID algorithm rests on, is that for DM in immediate time-space
vicinity of the present state, we are able to decouple, and consider separately, different components
of a situation description, and how they will affect the decision. Consider the following general form
of the problem at hand.

Let Wi = Description of world known to robot, C = a control to the system, then we are
interested in solving:

F(C, Wi) = Wk
and inverting it to obtain:

G(Wi,Wk) =C
which in a more linguistic form can be stated as:

IF (current state is Wi, AND desired state is Wk)
THEN ( give control = C ).

Now obviously the function G is likely to be a complex function of the many variables necessary to
"describe" the state of the world. ( By state of the world we mean description of the system being
controlled, as well as of all aspects of the "external" environment which affect operation of the system
e.g. obstacles ). If we consider this multivariable function G at any single point, however, we can
describe that point as a linear combination of the variables of G (in the vicinity of the point). By
distributing, over time, these point values of G, we can in effect approximate the actual function G.

The accuracy of this approximation will be dependent on (a) the increment of time at which we are
determining a value of G, (b) the particular topology of G itself, and (c) the discretization of the
variables of 0 ( since we are working in a discrete world ). Within definite limits, we have some
control over the increment of time ( DM frequency ) at which we approximate 0, as well as over the
discretization of the variables, (tradeoff with computational complexity).

An example of exploiting some empirical knowledge of the behavior of G to increase accuracy can be
seen in the variables describing state of the system being controlled. In the ID algorithm, the state is
described by Steering position, and velocity. It is fairly obvious that regardless of the situation, a
command cannot be prescribed without considering position of the steering and direction of velocity,
together. For a given "desired" direction of motion of the robot, the command that should be
executed is quite different. Approximating the influence of steering position, and velocity with a linear
combination will clearly result in substantial eor. In ID , all combinations of dominating, interacting
variables are explicitly presented.

Linguistic Varlbi.. There are several issues concerning linguistic variables which are important
for both the PP and ID algorithms. Earlier, we discussed some criteria for choosing the particular
"word classes" or lingutisic variables to adequately control the system. Similar methods will be used
to first define a set of linguistic variables for the ID algorithm. Also the proper discretization, is to be
determined or the set of values assigned to each of the linguistic variables.

Choosing de Variab/es
Some of the linguistic variables used in ID are common to the PP algorithm. Goal angle, Goal
range, Phantom points, and Current state are all understood in ID as they were for PP. In addition to
these, ID uses a construct called "Dynamic Avoidance Regions" ( DARs ). This is simply another
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variable to characterize obstacle positions. Figure 2 shows the geometric representation of the front
and rear DARs associated with the underlying grid representation of local obstacles.

It is important to remember that part of the "linguistic variables" described above, are composite
variables. Goal angle, Goal range, and Current state can be viewed as simple variables, which can
take on any one value from a set of discrete or linguistic values. DARs and Phantom points, however,
are actually classes of variables. Since more than one of the "phantom rays" may be active at once, to
consider "phantom-points" to be a single variable, we would have to specify as its value set the entire
set of combinations of the component "values". For example "left and left-front" would be a legitimate
value for phantom-points. It may be easier though, to consider each of the components of
Phantom-points ( and DARs ) to be individual variables which can assume only boolean values. This
is then a set of variables belonging to the class "Phantom points" ( or DARs ).

We should note now that we have 3 different ways that the configurations of obstacles are being
represented. DARs, and Phantom Points are two classes of variables which explicitly, though fuzzily,
represent positions of obstacles. Also, by translating the NAVIGATOR's subgoal, to a local
subgoal, which is done by both PP and ID , we are implicitly representing the configuration of
obstacles.

Discrediadon of Variable;
It was stated in [4] note that there are two considerations in determining the discretization of a
linguistic variable.

(A) Errors from observation: The information given by a linguistic variable can be at most
as precise as its input. Therefore, the range of errors involved in assigning a linguistic value to an
observation should be smaller than the support set of the linguistic value.

(B) Go LAngIC Position error due to angular resolution will vary with the range, and will
be maximum at the maximum range.

(C) Comqmmis between acoura of motion and comp~utational comleaity. Regardless

of the algorithm used, it is reasonable to assume that computational complexity will be positively
correlated with size of vocabulary. The more words ( values of variables ) the more rules, and thus
the higher the time for rule matching. On the other hand, a finer discretization of the variables isneeded to provide accurate motion control. Therefore, we seek a compromise that provides avocabulary size just large enough to produce the required accuracy of control.

Discretization for some of the linguistical variables used in ID is done according to [4]. If we
consider error in position to be the scale against which we judge the "accuracy" of our control, we can
arrive at minimal discretizations for the variables.

The ID Algorithm. This subsection will describe the Instantaneous Decision (ID) algorithm used
to determine control at the lowest level of the IMAS control hierarchy. Previously we discussed the
classes of words or variables which ID uses to classify a situation in order to prescribe an action.
We will describe the algorithm itself.

General IDalWn
1. Normalize Precondition Variables.
2. Rank Desired Direction vectors.
3. Translate ranking of directions into motion command.

Step I could also be called "assigning observed values to linguistic variables". We use the word"normalize" since the values assigned to the linguistic variables are actually derived from an
intermediate representation, and not directly from "observed" values. For the simple variables such as
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Goal angle and Goal range, normalization is simply an integer division of the currently represented
goal position relative to the robot. The table lookup is necessary since the linguistic variables of Goal
angle, for example, do not represent uniform divisions of the range of the variable.

Values of the Phantom points variable are instantiated using the underlying grid representation of
local obstacles. Since this grid is continually redefined at each decision cycle, with the robot at the
origin, each Phantom-ray can have an associated obstacle-grid coordinate set. These coordinates can
then be easily referenced to see if a particular Phantom-ray is activated. It was shown earlier, that
Phantom points refers to a class of variables, each taking on a boolean value. Thus normalizing the
Phantom points requires setting each of these variables to true or false.

The DAR's are handled similarly. Each variable of the DAR class is defined by the set of obstacle-grid
coordinates to which it corresponds. Thus to determine whether a particular DAR word is "activated"
(contains and obstacle) we need only to check each obstacle-grid coordinate belonging to the set of
coordinates defining that word. "Front" and "rear" DARs are treated as two separate classes of words
in the current algorithm. Both "front" and "rear" DARs could be handled as a single class however this
should not give any computational advantage.

Step 2 of the algorithm alludes to the idea of "Desired Direction" vectors. These are simply a result of
a discretization of the space of possible resultant directions ( and magnitudes ) of motion. Figure 3
shows the particular linguistic directions we have used in this implementation. Notice that this is a
uniform discretization of the possible directions, and no knowledge of the kinematic characteristics is
taken in account.

The ranking of desired directions, based on the current situation is achieved using a special type of
table lookup. Figure 4 shows an example of the table used for this purpose. This each row of this
table corresponds to a particular word ( or variable value ). The numbers in the row effectively impose
an ordering of the possible directions of motion as a measure of "compatibility" with each direction.
Any situation is described by one word from each class. The rows corresponding to the words
describing the current situation are extracted from the table, and are "combined" using some
combination operator, in this case addition. For the "special" classes, DARs and Phantom points, the
multiple words for a single description are precombinec.

The row corresponding to a DAR or Phantom point word can be viewed as an assignment of
magnitudes to each direction of the "vector field" defined by the set of desired directions. The set of
DAR or Phantom point words instantiated for a particular situation are superimposed to result in a
single magnitude for each of the desired directions using a main function as follows:

Let di for i = I to n be the set of desired directions represented by
the table.

Wa be the set of words of class W that are true for the
given situation.

vk (w) = value of word w for direction k.
then the ranking of the d, due to the word class W is
defined as:

For i = I to n
dj = MIN ( all vi (w) such that w is in Wa)

Once a single row is obtained for each word class, a final ranking of the directions is found by
column-wise addition of the rows selected for the current situation. This results in a ranking of the
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possible directions of motion, which is the input for the next step of the algorithm.

Step 3 p knowledge about the kinematic and dynamic characteristics of the particular vehicle
being controlled. The entire ranking of directions is given to this step instead of a single "best"
direction, since that best direction may not be directly achievable. Having the entire ranking of
directions enables this step to compromise between the direction the robot should go, and the direction

LF I FO IRF I

LF2 PF2
LF3 / RF3

L54 R84

Figure 3. Linguistic directions LB3 RB3
L82 W RB2

LB I BO B

, ~~~~ .. 2~ee*,,h
0,t 0 1 2 0 05 IS 4 ' 40 52t C an 24 7 '

Fiur 4. Example of a tal-oo-p inu -+ieto

r-4 *¢cal Repor on nte0lli 0 obile Au n s 4 10207020

-00 0o 7 0 0 0 1 4 4 05215-,,o'-,.-*2 0,A 20202020.

4 4-2-0 0 0 2 4 0 0 5 2 5 0 0 00.4,., .. , 0 55 52 0 2 0 0

LI0• -4 o5 1 • 0 0 .0 4 0 2 0 2020202

"-"- O 0 0.. . .. . . ..-.. .. ...... 0 0 0 0 50 ,20

'07204 0-00 0 l00 2 0 0 0 0 0 0 00-0-4 4 - -' -to 05

Figure 4oE00 mpl ofaooable-oop input- d3rct7 o

. .. .44 . ..0 0000000-00-00.40e000000ro. 0101520



70

C 0M MA N T ABL E -THRUSTS

V.1-stoor 90 LB1 LB2 LB3 L94 LF4 LF3 LF2 LFI FO RFI RF2 RF3 RF4 RB4 RB3 R92 RBI
F-RI -1 -1-1-1 -1 1 1 1 1 1 1 1 1 1-1 -1 -1-1
F-R2 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1
F-R3 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1
F-R4 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1
F-R5 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 1 -I -l -1 -1
F-0 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1

F-5-1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1
F-L4 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1
F-L3 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1
F-L2 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1
F-LI -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1
0-RI -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 -1 -1 -1 -1
0--R2 -1 -1 -1 -1 -1 -1 1 1 1 1 1 -1 1 1 -1 -1 -1 -1
0-R3 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 -1 -1 -1 -1
0-R4 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 -1 -1 -1 -1
0-R5 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 -1 -1 -1 -1
o-o -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1
0-L5 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1
0-L4 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1
()-L3 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1
0-L2 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1
0-Li -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1
B-RI -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 -1 -1 -1 -1
B-R2 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 -1 -1 -1 -1
B-R3 -1 -1 -1 -I -1 -1 1 1 1 1 1 1 1 1 -1 -1 -1 -1
B-R4 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 -1 -1 -1 -1
B-R5 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 -1 -1 -1 -1

B-L4 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1
B-L3 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 -1 -1 -1 -L -1
B-L2 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1

Figure 5. Example of a table-look-up: direction --*command
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it can go.

The transformation of direction into command is done using a simpler form of table lookup. Figure 5
shows the structure of this table. In the simple case, the "best" direction, and the normalized current
state are indices into the table that contains the command to achieve that direction from a given state.
Since our robot is a steered vehicle, it is biased toward moving forward which creates a number of
"ambiguous" cases. Directions that are near 900 from the heading of the robot, for example, can be
achieved either by a hard turn and forward motion, or by backing up and then moving forward, in a
"three point turn" fashion. For these cases, both commands can be stored in the cell of the matrix,
along with the "temporary" direction associated with each of them. Then the command with the
highest value of direction ranking will be used.

Discussion of Simulated Behavior. Simulated behavior of IMAS is shown in Figure 6 for
operation with PP-Pilot, in Figure 7 for operation with ID-Pilot, and in Figure 8 for a Hybrid Pilot
(using both PP and ID). One can see that PP-Pilot provides an acceptable trajectory with one serious
deficiency: it contains several zones in which no precomputed rule could be found. In this case, IMAS
start losing time for a maneuvering eventually bringing it in a point which can be associated with one
of the stored rules. Otherwise, even more time should be spent to search for a new rule (as was
performed in [61).

On the contrary, the deficiency of ID-Pilot can be found in its definite lack of long-term optimality with
no "wasteful thinking". The compromise is obviously achieved when both of the "personalities" are
used within one system. Here the best solution are employed for the cases when these solutions exist.
And there is no zones of confusion since the ID-Pilot takes over as soon it becomes clear that that no
rule exist for a particular situation.
Full scope of this system opportunities can be determined after the system will be equipped by a
mechanism of learning.
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Figure 6. Simulated behavior of PP-pilot
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Figure 7. Smulatd behavior of ED-pilot
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Figure &. Sim~ulated behavior of (PP+ID)-pilot
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SECTION 5
MINIMUM TIME EXECUTION CONTROLLER FOR IMAS
WITH MODEL BASED PRODUCTION SYSTEM

Intelligent Mobile Autonomous System (IMAS) is considered to be a nonlinear stochastic system
which is supposed to operate under conditions of constantly changing goal assignment as well as
varying components of the mathematical model of the system and constraints. A method is proposed
of minimum time control of mechanical motion for an IMAS in which control assignment can be
changed during the command execution. Based upon enhanced Bellman's optimality principle for
stochastic systems, the string of commands should be recomputed as soon as the new goal of motion
is assigned. The problem of computational efficiency is solved by structuring the motion trajectory in
such way that new solution is obtained via a simple combining the trajectory from a limited number of
standard components. This allows for using a model based production system for synthesizing the
control sequences on-line.

Assumptions Concerned With System Dynamics. The basic goal of IMAS controller is to
find a minimum time command sequence to have the system move a required predetrmined distance
taking into account the assignment, and the initial conditions to the system. As stated above, the
motion of the system should be executed in minimum time and hence the control that would be
required would have to keep the system with constraint variables at their maximum limit. Since this is
a stochastic system, and since the assigned goal of the motion can be reassigned before the motion is
completed, the enhanced Bellman optimality principle is accepted [I] as was suggested in [2]. This
principle states for stochastic problems: whatever the present information and the past decisions, the
remaining decisions must constitute an optimal policy with regard to the current information set [1].

Execution control system of IMAS is equipped by multiple actuators. Each actuation system within the
overall execution controller is considered to be independent of each other and hence can be modelled
and controlled individually. This assumption is attributed to the fact that even if actuators are coupled
together, one could find a system of representation wherein they could be decoupled or could apply
one of many existing methods of decoupling [3].

Each of the independent actuator systems can be modelled by a differential equation of a third order
with each of derivatives constrained. These constraints put a maximum and minimum value on the
state space variables. Input of the system is the rate of change of force, or time derivative of force (jerk
input). Since as s.ated above, the goal is to obtain minimum time control the jerk input is always
selected at a maximum level. Hence the input alternatives are maximum positive jerk, maximum
negative jerk, or no jerk. After jerk is applied, a change in the current value of force will appear
depending upon the direction jerk is applied and the interval of time it was applied. The change in
force input cause. a direct change in acceleration of the system. This in turn caused a change in
velocity and distance moved by the system. Each of these intermediate variables have constraints. As
explained earlier jerk input has a maximum value. Next the force and the velocity have also maximum
positive and maximum negative values. Finally, the distance traversed is the output variable in the
system of execun Hence for the third order system equations should be written for the state space
variables which are devised as follows.

J(t) = Jerk input (rate of change of force).
F(t) = Force input.
Resistance(t) = Force of resistance.
V(t) = Velocity.
D(t) = Distance traversed.

As discussed earlier, minimum time motion control is provided by applying maximum possible input
control ("bang-bang" control) and by keeping all variables of the system at their maximum values at all
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times. Hence the system of equations for the state-space variables is as follows.

F(t) = f J(t) dt (1)

V(t) = I (F(t) + Resistance(t))/mass dt (2)

D(t) = I V(t) dt (3)

Even though the equations (1-3) hold only for linear deterministic motion they can be used for any
other type of actuator system. For example, they could be used when we are controlling angular
motion, using torque, rate of change of torque, etc.

The system we are dealing with can be represented as a third order dynamic system controlled by
"jerks" (first derivative of acceleration) [1,21. Theoretical diagrams for this type of control are shown
in Figure 1. Simulated time trajectories of all of the system controls and state variables if there were no
constraints on any of the variables, are shown in Figure 2. Each of the state space variables F(t) and
V(t) have constraints imposed on them. The constraint will affect the motion as described previously.
First of all, the force which is shown to rise between period 0 and t, tends to reach a value which is
greater than Force-max which is physically not possible. Secondly, the velocity tends to reach a
maximum value at t2 which again can become greater than a permissible limit, and hence the total force
applied between 0 and t2 should to be reduced. Thus, finally we have two constraints imposed on the
system equations:

F(t) < Force-max
V(t) < Velocity-max

We will observe the change in control procedure by application of each of these constraints step wise.
First the case where maximum velocity reached by the system will be constrained. This is shown in
Figure 3. As it is observed from the graph, the jerk input has to be modified so as to remain within the
constraint imposed of velocity. Then, in addition to this constrained system of velocity we wil impose
the constraint of maximum force both in positive and negative direction. This is shown in Figure 4.

One can see that in order to solve the minimum time control requirements, the value of the time periods
and type of jerk input during each period are to be determined. Hence as can be seen from this
diagram, all that is required to be changed for different system configurations and various initial
conditions, is the timing for application of jerks ("switching times"). The sequence in which these
jerks will be applied remains the same. Therefore, each of these periods of jerk application might be
classified as different control regions. These control regions can grow or shrink depending on the
system initial conditions and variables.

Assumptions concerned with propulsion force development. In (1) the input force is
considered as a summation of the rate of change of force since the jerk input remains constant over the
complete range of growth of the input force.

This assumption might not be valid in a wide range of cases. For example in cases where in braking
force is achieved by introduction of excess resistance force (e.g. in propulsion drives with drum
brakes) the value of jerk is not constant over the complete range of input force values. So as to
compensate for such nonlinearities one can add a component of frictional force which is dependent on
current magnitude of force and jerk being applied.
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Figure 2. Simlated monion traijectories with no constrakints
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Figure 3. Simulated motion trajectories with velocity constraints

Figure 4. Simuilated motion trajectodes with velocity and acceleration constraints
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One important set of active faptors is omitted from the system of equations (1-3), namely, the set of
delays which practically exist in most of the actuation systems. This obvious deficiency of the
analytical model as well as the set of continuous nonlinearities neglected in the model of motion. Thus,
in the beginning we know that our equations contain substantial source of errors. We will assume that
all of these sources of errors are included (fictitiously) in the force of resistance.

Assumptions concerned with force of resistance. Resistance force can be visualized as a
nonlinearity of input force mechanism. This nonlinearity can be attributed to many different facts. The
force generator may have its internal nonlinearity and is not able to give out constants output force
which has its own stochastic effect for the model of system. Delays in force generation are mentioned
above. Three different simple cases of resistance force will be considered here.

1. Constant resistance force (slope).
2. Linear resistance force (velocity).
3. Dry-friction resistance force.

These three different forms of representation of resistance force do not cover the whole variety of
existing mechanism of generation of resistance forces, but do in a sense cover the major aspects of
immediate practical applications. For example a constant resistance force can be used for modelling
motion against a constant gravitational force when the object is going up the slope and hence is storing
potential energy. Linear resistance force model is applicable when viscous resistance is encountered
and hence the friction force is proportional to velocity. Dry-friction resistance is a combination of the
first two types. In dry-friction, the resistance force is constant but when input force is less than
resistance force, resistance force becomes equal to input force and hence no motion can be achieved.
This means that the resistance for is not an active one as was in Case 1.

These different models of resistance force are made more realistic by adding one more component to
the three different cases of resistance force. This is a stochastic component which has different
expectations, variances, distribution laws, etc. In this paper, we explore two types of distribution law
of the resistance force: uniform and Gaussian distribution at different mean values and different
variances.

Analytical Expressions of the Motion Equations: Determining Standard Components
of the Control Cycle. Each level of the system as mentioned before is constrained and hence the
system has for minimum time motion eight different forms of regions within which behavior of the
system is to controlled. It is easy to verify that under a broad variety of control conditions the cycles to
be performed consist of the same standard components. These eight region are as listed as follows
(see Figure 1).

STANDARD REGIONS.

(0) Propulsion force increases from initial value to the value of
resistance force.
(1) Increase force from the level of equality with resistance
force to the maximum positive value.
(2) Propulsion force is kept at constant maximum value.
(3) Force decreases from maximum positive value to the level of
resistance force.
(4) Force decreases to zero value.
(5) Force continue to decrease to the maximum negative value (if
the resistance force does not act in opposite direction which is
valid for the case of positive value of velocity.
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(6) Force is kept constant at negative maximum.
(7) Force increases from maximum negative value to the level of
resistance force.

As one can observe the regions mentioned here define the sequence of switching times (or the time
sequence of control commands) for the input actuation so as to obtain a desired response of minimum
time motion to the goal state. Each of these regions have a very peculiar property of similarity in the
sense of the variables controlled in each time zone. Also it can be seen from the form in which the
solution is shown that these regions are very much interdependent as the final goal of the system is to
finally get a specific output form of the system.

Another major point to be made here is also about the system of constraints which again impose a
certain amount of interrelation between the regions. The actual effect of each region will be considered
next. These interrelations will be discussed in the next section. An analytical descriptive production
system can be constructed to generate control sequences under all possible initial conditions, and
taking in account all possible interrelations between the regions-

As can be observed from the description of the eight regions under consideration, there are only three
basic type of input to the system. These basic inputs to the system combined together can give
different forms of motion under different initial conditions. The set of inputs together with a tree of
alternatives of possible motion models under various initial conditions and applicable constraints
constitutes the production system for synthesizing the control sequence. These three different types of
inputs are as follows.

(a) Positive jerk application.
(b) No jerk application.
(c) Negative jerk application.

Group (a). Application of positve jerk.

Force is increased from initial value to force of resistance by application of positive jerk. During this
region the velocity has a growing acceleration value. The distance covered is in turn the integration of
the growing velocity with increasing acceleration. The system equations during this period is as
follows.

jerk-input = f-dot-max+ (4)

f-input = f-dot-max+ * time (5)

f-friction = f-dot-max+ * time (6)

velocity - J (f-input - f-friction)/mass dt = 0 (7)

distance = J velocity dt (8)

Group (b). No jerk applicaion.

Force is kept at initial value and held constant during this period. There is no jerk applied during this
region. The velocity grows linearly during this period as a result of constant acceleration which is held
constant. Also if the initial value of total force applied is zero, the velocity r emins constant and hence
the distance will grow linearly.
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The system of motion equations'during this period is presented as follows.

jerk-input = 0 (9)

f-input = force-initial (10)

f-friction = const-friction-force (11)

velocity = f (f-input - f-friction)/mass dt (12)

distance = f velocity dt (13)

Group (c). Application of negative jerk.

This is the region where in the total input force is reduced from initial value. This is the same as
acceleration reduced form initial value. This causes the system to reduce the rate of growth of velocity.
The system of motion equations during this period is presented as follows.

jerk-input = force-dot-max- (14)

f-input = force-dot-max- * time (15)

f-friction = const-friction-force (16)

velocity = I (f-input - f-friction)Imass dt (17)

distance = f velocity dt (18)

Minimum Time Solution of System Equations: Production System For Combining
the Control Cycle From Standard Components. Given the system of requirements for a
particular distance to be traversed by the system one has to find the timing for each region. Each
region has predetermined type of jerk input. First of all we will list the vocabulary of the system
constraints and their relative effects. The system constraints is described as follows.

Jerk-max+ = Maximum possible positive jerk of system.

Jerk-max- = Maximum possible negative jerk of system.

Force-max+ = Maximum possible force generated by system.

Force-max- = Maximum possible braking generated by system

Force-resistance = Resistance force (friction force).

Velocity-max = Maximum possible velocity of system.

Mass = Mass of the system.
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The set of initial conditions is listed below which also changes the behavior of IMAS execution
controller. These initial conditions are imposed upon the intermediate variables of the system which
have constraints to be taken in account as shown above.

Fcf -init = Initial value of the force at time zero.

Velocity-init = Initial velocity at time zero.

Distance-required = Distance that is to be moved by system.

These regions appear to be in sequence. Nevertheless, the timing of each one cannot be carried out in a
sequence because of the interdependence between the regions. So we will show here the order in
which each switching time is calculated and hence will determine the sequence of switching times and
the values of the constrained variables during each time period.

A timing region is described by the following variables which defime the state of the system at every
point during this time period.

Region-left = Pointer to the region left of current one.

Region-right = Pointer to the region right of current one.

Jerk-input = Type of jerk input to be given (Jerk-max+,
Jerk-max-, 0)

Time = The time at which this region starts operation.

Force = Force value at the start of this region.

Velocity = Velocity value at tlv snrt of this region.

Distance = Distance traversed by system at the start of this region.

Delta-time = Tume period for which this region remains active.

Delta-force = Change of force over this region.

Delta-velocity = Change of velocity over this region.

Delta-distance = Distance travelled during this region.

It was mentioned above that there are eight different regions. These regions have different type of
inputs and consraints. The equation for computing the state variables of each region are shown below.

(0) Increase force form initial value to force of resistance.

Jerk Input = I
Tme =0
Force = Initial value of force.
Velocity = Initial velocity.
Distance = 0
Delta-time = (Force-resistance + Force)/Jerk-max+
Delta-force = (Force-resistance + Force)
Delta-velocity = 0
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Delta-distance = 0

(1) Increase force from initial value to maximum positive.

Jerk Input = 1
Delta-time = (Force-max+ - Force-resistance)/Jerk-max+
Delta-force = (Force-max+ - Force-resistance)
Delta-velocity = (Jerk-max+ * Delta-time 2)/ (2 * Mass)
Delta-distance = (Jerk-max+ * Delta-time 3)/ (6 * Mass)

(2) Keep force constant maximum.

Jerk Input = 0
Delta-velocity = (Vel-max - Delta-velocity-regI

Delta-velocity-reg3)
Delta-time = (Delta-velocity * Mass) / (Force-max+ +

Force-resistance)
Delta-force = 0
Delta-distance = See notes.

(3) Decrease force from maximium positive to force of resistance.

Jerk Input = -I
Delta-time = (Force-max+ + Force-resistance)/Jerk-max-
Delta-force = (Force-max+ + Force-resistance)
Delta-velocity = (Jerk-max- * Delta-time 2)/ (2 * Mass)
Delta-distance = (Jerk-max- * Delta-time 3)/ (6 * Mass)

(4) Keep force constant at force of resistance.
(5) Decrease force to maximum negative.
(6) Keep maximum negative force constant.
(7) Increase force from maximum negative to force of resistance.

This methodology enhances the results of [4] which presume deterministic force of resistance equal at
the stages of acceleration and deceleration.

Simulation of real system. Once the design of the system is done next step is to simulate and
study the effects of sampling and addition of different types of noise to the system. As mentioned
before the type of noise we will be adding is resistance force (e.g. friction). This resistance force can
have different forms of randomness as described above. In the simulated system we have the state
variables of the system which are as follows.

Time = Time at the instance of simulations.
Force(t) = Magnitude of force at time t
Velocity(t) = Velocity at time t
Distance(t) = Distance traversed by system at time t
Resistance(t) = Resistance force executed by system at time t

Depending upon the type of region that the system is in the jerk input is given. This jerk is given for a
finite time period and hence change in force is computed using this change in force. Changes in
velocity and distance are computed and a new state of the system is achived. The equations for uoing
this computations are as follows.
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Force( t + At) = Force ( t ) + (Jerk ( t + At) * At ) (19)

Velocity ( t + At ) =Velocity (t) +
((Force ( t + At ) +

Resistance ( t + At)) * At)/ Mass (20)

Distance ( t + At ) = Distance ( t ) + (Velocity ( t + At )*At) (21)

Hence using these equations one find the state of the simulated system at each instance of the system.
This simulations assumes that the increase of time At is small and hence the assumption that the system
behaves linearly during this time. The results of simulation for different combinations of input
conditions and parameters of the system, are shown in Figure 5.

Introducing a Resistance Force into the Model. As it can be seen from the previous section
that resistance force has to be computed for each time period. This resistance force is the type of noise
we will be adding to the system. We have two different models for simulating the noise in resistance
force in time with (1) Gaussian Distribution, and with (2) Uniform Distribution. The expectation,
variance, and the frequency of introducing the new random value can be varied. Simulated cycle of
operation is shown in Figure 6.The stochastic compnnent of resistance is simulated in a form shown in
Figure 7.1.

These characteristics determine the uncertainty which is typical for the real resistance force, and
incorporate a number of other random factors and model deficiencies mentioned above. The resistance
force has an average value which is constant, or is being changed with a known deterministic law. The
maximum dispersion amplitude is to be varied as a percentage to the average value. The value of the
assigned variance of the resistance force is kept constant for a predetermined time period. This time
period might remain constant of vary over the complete range of the system simulation. These
parameters cab be dependent on the type of region the system is in. Hence we have the resistance force
varying from (Resistance-force - Amplitude) to (Resistance-force + Amplitude). This range can have
different distributions. The simulation has two different ones as shown in Figures 7.2 and 7.3.

As can be observed from the equations for velocity and distance the noise added to the system will
cause corresponding component of noise in the velocity and distance parameters. Hence we will have
the error of motion cumulate and cause error in the final state of the system. This error can be in
Velocity and Distance or both. So using this technique if one has a model of the noise of resistance
force an accurate error estimation can be done.
Conclusions. As one can see from the simulation results the mechanism of production system can
be successfully utilized as a basis for the execution controller structure which serves for the IMAS
Pilot described in [5]. Different laws of distribution and other characteristics of the stochastic
components lead to the quantitative results easy to identify and take in account.

This suggests a model of the feedback applicable with the production system controller. After the
stochastic compomt is identified, the set of corrections (tabulated prior to system operation) should
be introduced, and a new string of the switching times is to be submitted to the execution controller.
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Figure 5. Simulated cycles (con:)___

Figure 6. Simulated cycle widi stochastic resistance force
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PERSPECTIVES

I. In the area of IMAS planning/control.The following comments should be taken into
consideration during the further research on IMAS.

1.1 Feature of Supervised Autonomous Planning. Recent accomplishments of the research
and development in the area of autonomous robot control, include some advances in development of
the theory of programming for different types of motion: tracking as well as positioning. In both of
these cases, the world description is supposed to be given, and the programmer is expected to plan the
motion down to the levels for which the analytical routines of the motion, and the chunks of
corresponding programs are known, i.e levels of elementary task recognition). At these levels, a
language exists for programming the operation.

Not only this is a time consuming and expensive way of solving the problem of programming the
goal-oriented motion, but also this is one of the major obstacles for the growth of flexibility and
productivity of multirobot environments (e.g. battlefield, combat engineering situations, and even
computer-integrated manufacturing systems) where many of the robots should be applied
simultaneously under a limited human supervision. Regretfully, at the present time, minor changes in
environment or in specifications, lead to the need in complete replanning, i.e. require constant human
involvement in the procedure.

On the other hand, since the world is presumed to be completely known in the existing control
solutions, there is a great concern in keeping the world "inventory" unchanged. This is often difficult
and sometimes even impossible. Thus, the problem of "automated obstacle avoidance" is formulated
which enables the preprogrammed robot to deviate from the preassigned trajectory if the unexpected
change of the scene occurs. In most of the real cases, it requires equipping the robot by vision and
touch capabilities. However, even in these cases many of existing solutions are based upon inefficient
planning-control recommendations.

Our research shows that there is no clear distinction between planning and control the decision
making processing can be made uniform at all levels of resolution. This allows for using Al and
Control techniques simultaneously within the recursive decision making structure, and arrive to
algorithms, techniques, and theories which are substantially more productive than those presently
developed for autonomous robotics by Al and Control Engineering separately. On the other hand, the
nested multiresolutional structure of representation (NMSR) turned out to be similar in all
subsystems of the Autonomous Intelligence. Our prior experience with IMAS shows that NMSR is an
appropriate basis for development of original, effectively converging algorithms of classification,
pattern recognition, and image interpretation, as well as self-refinement of knowledge structures.

It can be foreu that for a robot with vision and touch, the stage of human-performed planning
operations can be sbstituted by the stage of supervised autonomous planning. Certainly, this is
just planning in a limited world, with limited capabilities for conjecture and variations of the robot
decisions. But it becomes a powerful step ahead in broadening the capabilities of IMAS type systems
in unmanned situations. The robot behaves like it has been preprogrammed for a broad variety of
situations, or like an omniprogrammed robot. The human operator should not worry of
reprogramming the system: it does it autonomously.
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1.2 Cognitive Omniprogrammed Robot. It was shown in the literature, that such level of
limited autonomy can be achieved only via joint set of software and architectural developments
includinf implementation of the nested hierarchical structure for the joint set of subsystems of
perception, knowledge management, and planning/control. The principles of nesting by
generalization, and nesting by focusing of attention should be applied for the world
representation, and the branching factor as well as number of layers of the control hierarchy should be
intended to minimize the "epsilon-enropy" of the overall system.

These cognitive omniprogrammed robots (COR) can be developed on the basis of the recent
advances in the theory of autonomous and cognitive control. One cannot expect that the poor cognitive
power of the existing computer architectures combined with the poor perceptive capabilities of the
existing sensing systems will provide too much of a real autonomy. But it can undoubtedly provide
for the capability of reprogramming the robot autonomously, under limited human supervision. In
fact, the only thing, that should be given to a COR by a human operator, is the final goal of
operation within the ideal world description. The adjustment of the ideal world description to
the reality, as well as the planning and programming of the motion is done by a robot control system
with no human involvement.

1.3 Multiprocessing Omniprogrammed Machine. The concept of tbh omniprogrammed robot
leads directly to the concept of multiprocessing omniprogrammed machine*. Clearly the methodology
of omniprogramming, or autonomous self-programm"ng (based upon nested algorithms of
decision-making within a nested hierarchical structure of world representation) should not be oriented
only to a set of problems linked with a search of motion trajectory, etc. If the version space include
coordinates other than coordinates of the physical motion, a multiplicity of other manufacturing
problems could be assigned to the system. Assuming the goal given as a final product representation,
the version space can be build in such a way as to include capabilities of proper (optimum) selection
of the sequence of operation, or individualized design of a synthetic operation, or a process. (For any
state space a version space can be constructed which represents the multiplicity of results of the
combinatorial search for an optimum solution. One can understand the version space as the
multiplicity of imaginary realities).

1.4 Cognitive Guidance-Navigation-Control System (GNC). The behavior of the
simulazed intelligent module shows that the system has rudimentary properties of what could be named
a robotic cognition. In IMAS explored earlier at Drexel University we dealt with only rudimentary
vision, and no conceptual learning was available. IMAS utilized knowledge, and was not creating
any new knowledge. And yet the system was dealing with unknown world, and although the
combinations of circumstanses IMAS encountered were not prescribed, nevertheless IMAS was able
to cope with this. Certainly, this can be considered an initial stage of cognitive behavior, and GNC
system with such properties can be named cognitive GNC.

These results were obtained at the stage when the overall coverage of the problem by a thorough
scientific analym was far from being complete. At this period of time the study of Knowledge Based
Planning/Conural System was generally completed, and the structure of Knowledge Representation
System was claiied. The subsequent stage of the Drexel effort helped to clarify most of the prior
results since the theory, as well as the desirable engineering solutions are concerned with the structure

*This word (machine) should be understood as a combination of computer system,
mectmical stuctre, and a sysean of sensos (someding simila to IMAS).
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of control-oriented knowledge .ases (which at the present time should be considered as essentially
incomplete and unclear).

II. In the area of Intelligent Perception. The theoretical and simulation analysis of the nested
hierarchical rules-driven multiresolutional NMSR, shows that the nature, the organization, and the
protocols of interfaces with the subsystem-user (in this case the hierarchy of Cognitive GNC-system)
and the subsystem-source of information (in this case the hierarchy of sensors), determine the
algorithm of operation as a recursive multiresolutional stochastic optimum controller.

2.1 The generalized model of multisensor perception. Such a model must be developed in
coordination with the concept of a representation which could be considered optimal for the accepted
model of perception as well as for the model of planning-controlsubsystem. We are convinced that this
model should employ a principle of multiresolutional nested hierarchy. This will enable us to
incorporate the pyramidal structure of advanced vision devices as well as quad-tree type of hierarchical
coding system which has proven to be efficient in a number of cases.

2.2 Knowledge Base for Weakly Supervised Consistent Interpretation. When the world
is as rich as a real world, when the behavior is as close to reality as a moving vehicle behavior,
finally when the feedback is as adequate to the desired IMAS as a vision feedback, then the
Cartographer knowledge base can be explored and analyzed from the view of its capability to serve
with the above mentioned three factors. So, the Cartographer was developed using the real world
operation of a moving vehicle with vision feedback as a source of information. Certainly, its
perception system was rather inadequate, and the vocabulary was poor.

However, now there is no doubts that after enriching the world with the help of more sophicticated
system of sensors, the principles of our Cartographer will remain adequate to the planning/control
procedure formulated in the beginning of this book. It is important to explore the opportunity of
dealing simultaneously with a combination of sensors of different modality as a source of
enriching the world representation, as well as providing the interpretation system by a variety of
built-in means of ensuring the consistency of interpretation.

2.3 Bicameral Representation System. Thus the intermediate testbed testing of which
preceded the testing of the IMAS, has finally determined its successful operation in a real operational
environment. The software structure for the intermediate testbed reflected the existing means of
simulation. A number of enhancements and improvements is planned for the future. One of the major
issues which should be explored at the next stage of research, is an issue of using the duplicated
intelligent module (IM): parallel intelaced operation of two IMs based upon pictorial and linguistical
systems of world representation which will in a sense constitute the right and the left "halves" of the
IMAS' "brain".

2.4 Temporal Perceptual Analysis. A new property should be given to the subsystem of
perception at all of its levels: the capability to record and observe series of the "snapshots" of the
world, and and die capability to infer perceptual conclusions from these series. This mechanism
which actually is the subsystem of world change analysis, becomes an active part of a planning
procedure when t chains of snapshots are considered simultaneously: the sequence of desired ones,
and the sequence of actually observed ones. Then the difference between the two corresponding
snapshots from these two series would imply the action required to eliminate the dillerence.

Then the Wandering Standpoint principle of search in Systems with Limited World Knowledge, can
be applied in a broader sense: not just to perceive a physical 3D space, but rather to perceive a
behavioral space in which the desired and actual operation of IMAS are to be described. Then we
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can talk of perceived situation, expected situation, desired situation, apply mission criteria, and
legislate the situation based upon a self-awareness of IMAS. Then all of the views: perceived,
expected, desired, and settled, as well as the mapping among them will be considered in a
temporal sense.

2.4 Joint GNC/Representation System. After the expected structure of the future Cartographer
is proven to be operational an effort might be expected to explore a possibility to excercise learning
algorithm upon this structure thus transforming the existing planning/control system , or intelligent
module (IM) in a first actually operating IMAS with a cognitive GNC-system. We expect that IM
similar to the module implemented in the prior IMAS, can be a powerful control tool for any type of
robot, not necessarily autonomous robot. Instead of autonomy, IMAS intelligent module can be used
as a means of self-programming in existing generation of industrial robots.

Numerous controllers for robotic and automation systems for IMAS of next generation will be based
on the principles of Intelligent Control: their knowledge representation will be nonhomogeneous
(analytical/linguistic). The main technique of storing the required knowledge of the system and its
environment, will be tabulating it in a form of production rules. Some of these rules will be derived
from the known physical and engineering laws, some of them will be obtained from the experts, some
of them will be obtained from experimental data. The two latter will be the main sources of
knowledge.

III. In the area of IMAS knowledge organization for learning. Problems emerge at the
stage of getting knowledge from experts and from unmanned experiments. These two sources of
knowledge constitute the main predicament when their use in autonomous robotics program is
contemplated since presently neither the experts are familiar with the experiences to be coded in the
controller's knowledge base in the future, nor could the experimental data be anticipated to the degree
of preparing a format for data recording.

3.1 Dealing with unexpected knowledge. The existing experience in autonomous robotics can
shed some light on the domain of expected phenomena to be observed and the character of data which
can be expected at the input of the sensors. However, we would consider much more important the
domain of unexplored situations, and would choose to be prepared to those where unexperienced
controller could endanger the mission. Presently we are not prepared for dealing with unexpected
knowledge.

3.2 Generation of rules for unpredicted domain. IMAS should be prepared for the operation
in an unpredicted (and may be unpredictable) domain. The existing intelligent controllers are well
prepared to operate based upon the sets of rules using the existing human expertise, and the existing
anticipation of information flows to those we are dealing with in the IMAS. In fact, we are not in a
position to say so unequivocally; knowledge based intelligent controllers are yet in the phase of basic
research, and there is no consistent theory of knowledge based control. Some of the existing
successful system are crafted artfully but are not supported by a proven theoretical basis, and can
serve rater as a cmfirmation of the fact that the direction of the research is promising.

3.3 Analysis of human decision-maker operating in the supervision mode. In the
meantime, substantial information flow can be utilized in the knowledge based controllers which can
be extracted from the human operator during his decision making activities. This includes not only
obvious variables such as "pulse frequency", "blood pressure", etc. but also a number of more
sophisticated variables (and probably, moe relevant either) such as EEG, and electrical and magnetic
potentials of the field in the immediate vicinity of the human scull. In other words, we would assume
that "what they feel can be supplementary to what they say".
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3.4 Development of a calculus of semantic networks. This sensor information flow together
with verbal descriptions provided by a witness and/or participant, can serve as a basis for consistent
coding of human knowledge. Most of the human experiences coded in the knowledge based
controllers reflect our inability to state a consistent analytical theory or form a model of the system of
operation when our experience and insight help us to control this system during the regular
man-machine interaction. Either our experiences are difficult to verbalize, or the mathematical
would-be model is expected to be unbearably cumbersome; it is hard to say. But the semantic network
constructed from a multiplicity of verbalized human experiences is a good source of knowledge for the
intelligent controller.

3.5 Dealing with knowledge not associated with human experiences. This knowledge
should be instrumental for solving a number of potentially important problems. Let us investigate the
domain of knowledge which we do not expect to correlate with human experiences. The
planning/control subsystem would not be able to incorporate any knowledge of a system if this
knowledge were not digested initially by a human expert within his personal particular representation
language presumed to be adequate for communicating his human expertise, or within his personal
nonverbalized response mechanism. At least, it can be considered a good source of knowledge for the
development of the conventional mathematical models, and it can run the system efficiently. For
example, we can believe that a human expert can suggest a good enough rule base for moving a
multilink manipulator arm here on the surface of Earth; we know that humans are using their "multilink
manipulators" long enough to feel what is the best way of doing this.(They may not be able to
communicate this knowledge clearly which is a problem of knowledge engineering and intelligent
control).

We would not be as optimistic given a situation in which a human expert has to communicate some
knowledge which is inconsistent with his human experience and hence is not represented in his human
intuitions. So we would not believe in a specific human intuition of performing any mechanical motion
in the multiplicity of situations with no gravity. Human perceptual clues are becoming different, our
motor-sensor loops should work differently under these circumstances. Another example, is intuition
of driving a vehicle, landing and docking it with and without gravity. One should not expect human
intuitions to be the best beacon to follow in the aforementioned cases. One can expect a domain of
"robot intuitions" to be the legitimate domain of scientific interest. Trained to perform efficiently by
the rules suggested by the human experts on Earth, the autonomous, (or semiautonomous) robot may
find some of his new experiences contradicting the suggested rule-base, or requiring supplementary
rules to be properly interpreted and utilized.

3.6 Autonomous robot concept generation. This is not the same as just a computer concept
generation since IMAS is equipped with a system of sensors and can arrange for and exercise a system
of experiments. In order to be capable of doing this, robot should have an ability to form concepts. We
propose a learning mechanism for a robot based upon a special algorithm of generation of stable
information units bas upon converging multiresolutional decision making algorithm (conceptron).
Conceptron diffes from the well known perceptron procedure in a number of features: it does not
require a teacher for leaming, the mechanism of information unit (concept) generation is based upon a
definite dynamic procedure, it requires simultaneous operation of the same information represented at
several different resolutions, etc.

3.7 Development of a decision-making/learning computer architecture. This alternative
of solving the problem of knowledge engineering in an unpredictable domain, is using the voluminous
results in learning systems of last two decades. As we know, all of them can be characterized by one
substantial shortcoming: the structure of the concept to be learned is known in advance whereas in our
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case learning should be done with no conceptual system known, and no "teacher" is supposed to be
involved in the problem of leaining. We believe that such a mechanism does exist in complex animals,
and that this mechanism can be simulated and practically reproduced using definite ideas of
decision-making processes applicable to the advanced computer architectures.

These novel ideas of decision making processes ascend to the interactive information transformation
within the three joint multiresolutional computer structures: perception (sensor-fusion),
knowledge-base, and planning/control. It has been shown that new algorithms of recursive
self-organized processes on the hypergraphs of representation (no matter pictorial or linguistic ones)
do converge, and provide reasonable stability even with small amount of information. A new
architecture (conceptron) is being developed at Drexel University which combines the features
mentioned above.

IV. Theoretical basis for advancements under consideration. This cluster of works has a major
objective: to stimulate development of autonomous robots for IMAS exploration, in particular, for
IMAS operation in various types of environment independently of human interference, or partially
teleoperated.LAMIR at Drexel University has already IMAS experience. Several results will be utilized
in the further research as a direct asset based upon our prior activities:

-Planning and control processes are considered to be parts of a joint recursive decision making
process (planning/control) which starts at a low resolution, broad scope of attention, rough
discretization, and linguistical representation (as planning), and ends at a high resolution, narrow
scope of attention, fine discretization, and analytical representation (as control). This recursion
presumes a number of intermediate stages of planning/control processing with intermediate values of
resolution, attention, discretization, and nonhomogeneous representation.

-The Intelligent Guidance/Navigation/Control (GNC) system of the IMAS of next generation will
have a hierarchical architecture of planning/control loops with information flows
connecting horizontally its vertical subsystems: the perceptual system, the system of knowledge
organization, and the decision making system; representation in the horizontal loop depend on the
resolution level.

-All of the above mentioned subsystems are designed as resolutional nested hierarchies with
joint pictorial-linguistical representation and with parameters minimizing the probabilistic entropy

of the knowledge flow, as well as the S-entropy of the nested representation structure.

-Fuzzy linguistical controllers as a part of the GNC-system turned out to be the best choice at most
of the hierarchical levels since they allow for using not well structured human expertise which is
decisive for autonomous systems operation.

• Intermedia sted (IMAS-2). It is essential to create a theory and practical computer structures of
knowledge bases which might be utilized within autonomous robots not as a source of premeditated
alternative decisions but as a functional part of the overall hierarchical 'stem of intelligent control
guiding the system of autonomous supervised robot. This is why in c. prior research IMAS was
simulated as a physical model rather than a decision-making agent. This is why an intermediate testbed
was created (IMAS-2) which enabled us to observe the first results of IMAS actual activities, and
simultaneously give us an opportunity to fill in the designed structure of Cartographer by actual
knowledge of the world (see Figure A-i).
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Figure A-1. IMAS-2 during the outdoor testing

Methodologies of design and manufacturing can be also enhanced by using our experience of
developing WMAS as a basis for a broad diversity of possible applications. Udoubtfuliy, for all
spectrum of future intelligent robots IMAS experience will be instrmental, and IMAS solutions can be
used as patterns. In its further research, LAMIR in particular, will incorporate many of engineering
principles first explored withrz IMAS at Drexel University.
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