Ty

AD-A232 065

MASTER COPY KEEP THIS COPY FOR REPRODUCTION PURPOSES

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

D,00:¢ "20C T T IUTINA TR Toamton It SUIEMANSR ¢ 35T Mateq T3 31,8730 | SOUr J€r “A5DOrIe, NCILAING ThE TiMe FOr @ IRwWIng iNSTPUCTIONS, (8N nG @4 sTing 1373 SOU
jatrennryrg = 2313 Te2Qeq. 100 (IMDIRNUN] IR reviewing The IZHECUCN Ot Atormation Send cOmments r8garding thig Durden esTimate or 3ny Sther ssoect Jf this
siecnen [t nttemans BVER.EIN -,,es: 178 73F S2quGng s Surden 12 AIshirgron ~eagquarters Services, Jirectorate for nfarmation Qoerations ang Reponts, 14'S .etterson
Daoe = imady Sate T8 L eyt D 224302 1ng 1S the Jttia ot ttaragement ana Juager. Paperwork Reduction Prciect (0704-0188), Masmington 7€ 23503
1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
Apr 90 Technic: 1

4. TITLE AND SUBTITLE "N, |5 FUNDING NUMBERS

Null Values in Definite Programs D I ‘(: ' DAAL03-88-K-0087
6. AUTHOR(S)

Yuan Liu and Jack Minker
. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER
University of Maryland
College Park, Maryland 20742
). SPONSORING / MONITORING AGENCY i..ME(S) AND ADDRESS(ES) 10. sz%ugn;ucé ngroﬁomue
AGENCY REPORT NUMBER

U. S. Army Research Office

P. 0. Box 12211 87

Research Triangle Park, NC 27709-2211 ARO 25870.29-MA
I1. SUPPLEMENTARY NOTES

The view, opinions and/or findings contained in this report are those of the

author(s) and should not be construed as an official Department of the Army

osition, policy, or decision, unless so designated by other documentation.

12a. OISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT

Null values are a special kind of incompiete information that appear in database
applications. There are several kinds of null values. The one modeled in this paper are
those that represent entities that are known to exist but whose exact values are only
known to be in a finite subset of constants in a given domain. For example, if we know
that Paul is the fratemal grandfather of John, then we know that there is someone who is
the father of John and a child of Paul. if we further assume that there are only finitely
many individuals, then this someone can be represented by the kind of nuit value men-
tioned here.

in this paper we incorporate these null values into definite programs by using a
new kind of symbols called S-constants. We present model theoretic, proof theoretic and
fixpoint semantics for such programs. In the above example, given the additional
knowledge that Mike is the father of Joe, these semantics allow us to answer the ques-
tion “Are John and Joe brothers?" by “Yes, if the (unknown) father of John is Mike.”

The proposed semantics reduce to the usual semantics for definite programs
(e.g. [10]) when there are no null values present.

OF REPORT

UNCLASS

14, SUBJECT TERMS
incomplete information, null values, definite program semantics e PRICE CODE

15. NUMBER OF PAGES

17. SEC.n1Y CLASSIFICATION] 18. SECURITY CLASSIFICATION [19. SECURIIT woaSSIFICATION [20. LIMITATION OF ABSTRACT

OF THIS PAGE OF ABSTRACT
IFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280-5500

298-102

Standard Form 298 (Rev 2-89)
Prescribed by ANSI Std 239-18

Afo 25§720. 296

COMPUTER SCIENCE
TECHNICAL REPORT SERIES

UNIVERSITY OF MARYLAND
COLLEGE PARK, MARYLAND

20742

91 2 19 007

UMIACS-TR-90-48 April, 1990
CS-TR-2447

Null Values in Definite Programs

Yuan Liu' and Jack Minker'?

Department of Computer Science' and
Institute for Advanced Computer Studies 2
University of Maryland
College Park, MD 20742

ABSTRACT

Null values are a special kind of incomplete information that appear in database
applications. There are several kinds of null values. The one modeled in this paper are
those that represent entities that are known to exist but whose exact values are only
known to be in a finite subset of constants in a given domain. For example, if we know
that Paul is the fraternal grandfather of John, then we know that there is someone who is
the father of John and a child of Paul. If we further assume that there are only finitely
many individuals, then this someone can be represented by the kind of null value men-
tioned here.

In this paper we incorporate these null values into definite programs by using a
new kind of symbols called S-constants. We present model theoretic, proof theoretic and
fixpoint semantics for such programs. In the above example, given the additional
knowledge that Mike is the father of Joe, these semantics allow us to answer the ques-
tion “Are John and Joe brothers?” by “Yes, if the (unknown) father of John is Mike.*

The proposed semantics reduce to the usual semantics for definite programs
(e.g. [10]) when there are no nulil values present.

Keywords: incomplete information, null values, definite program semantics

Table of Contents

1. INEOGUCTIONoniiiieintisniicssiaesnrosicstossssssssessesssssanorssssssssassssaseosssssssstnsesstsssossesasnstsnsssssstssnnsasensensensanses 1
1.1 LANQUAGE ...cooiiiiiinrinreiiensisasssaessessssenarenrsesssscsssnssnasssnsansasersnsnns 2
2. MOABE SEMANLCSc.coiiinrrircreiecenieseersssassaseseesnesssssssesssesnsssassessssensantessassassessarsessessessessesasssesssessonsons 3
2.1. Herbrand Base With NUIl VAIUESccccoiiecinrieruenessinssenasssnssssasssnessesesssesaessesanssassessessssssnans 3
2.2, UNICALIONcceirieennieriarercnesnersessesssessessessssassssaseasasssessssssessesssssassessesesssassesssssssnsensessense 8
2.3. State and Model Statec.ccccceverernuernenseresosicssansassescsssssnsassossssnsasesasns 9
3. FIXPOINt SOMANTICSccccoverrrrecrerrverreesesserresssassssesssasssessersasessassasessesssosssesasssnesssossssssssssesssnssssssransassasssne 13
4. ProcaUral SEMAMICScccccveertiierneereerarsesesserssesasssssssssnssasstessssssssasasssesssassessenssansansessesssessssssssnssassrs 15
4.1, RESOIULIONcoeiiiiiinieneniscinsonessasaesesassentssssasesassasasessssssesssnnsssssssasasnassssssesasassrasssessennesnessanses 15
4.2. NSLD-REFULALIONc. ieenineeniecevtecnneseenserassasessssnsnasssssnseseessannsstssasssesasssessssssessessesensassssssesassres 17
4.3. Soundness Of NSLD-RESOIIHIONcccccveeerncrneissccsereeesesassasssensssesssnsensssssessssssssssasesnsssossas 17
4.4, Completeness of NSLD-ReSOIUtIONcoeeereieereaesssasersnessasssese 19
5. CONCIUSIONoonteeeeeericsnnernrsessisseeessesanessssssssanesaarostesssasasssnsssnssssersrsessssaranorsesntontesssssassasnsssssssssassnses 20
ADPPENAIX A,coneiiiereeeiciirescnemsssnesanesessssssessssossansssestsstasansentssstessassstesst sesaaseensesessesasnsesssnssaranssrnssssesans 21
REFERENGCGES ... iiiiiicceircntcseeseassensesssossosssrarssssssssnssassassssssssssssasssssasssesnesssssssnssssasssssrsssnsasessesses 22

Accession For

71

NTIS GRA&I
DTIC TAB 0
Unannounced O

Justification .

By.
Distribution/
Avallability Codes
Avail and/or
Special

Null Values in Definite Programs

Yuan Liu' and Jack Minker'?

Department of Computer Science' and
Institute for Advanced Computer Studies 2
University of Maryland
College Park, MD 20742

1. Introduction

A particular kind of incomplete information, called null values, often emerges in relational database appli-
cations. These represent the information "entity exists but value at present unknown". Consider the fol-
lowing example,

Let database DB contain a single relation Father(F,S) where the domains of the attributes F and
S are both male names. A tuple (f.s) is in the relation iff f is the father of s and s is a son of f.
Assume that we have the tuple (John,Smith) in the database. We want to record the knowledge
that Jim is the grandfather of Dave, i.e. someone is the father of Dave and a son of Jim, whose
identity is unknown at this time. We also know that Joe has a son, but we do not know his
name.

In this example, the unknown son of Jim, the father of Dave and the unknown son of Joe are null values.

These null values can be subdivided into two subtly different categories. The first contains those null
values whose actual values can only be in a known domain. For instance, in the above example if we
know that D is the set of all male names, then we know that Joe’s son must be one of them, i.e. we can
write ‘Father(Joe,m) Aw e D, where o represents a nuil value.

This kind of null values are similar to what is termed OR-object in [8] which are used {0 denote a
special class of disjunctive facts in relational databases. Lipski's incomplete information [9] is a generali-
zation of such null values.

The second category are those null values whose actual values can be either in a set of known con-
stants or can be entirely new constants. The null values in Reiter’s work [12] fall into this category.

Most of the previous work on query answering in databases with null values, deal with extensional
databases only, i.e. there are no deductive rules. Some of these try to extend the relational algebra opera-
tors to accommeodate the appearance of null values, e.g. [1,2,3,4,5,7,13,16]. Others use a proof-
theoretic approach which treats databases as sets of first order theories and queries as theorems to be
derived from these theories, e.g. {11, 12, 15, 6, 14].

In this paper, we consider the problem of adding to a definite program, incomplete information
represented by the first kind of null values. One way of achieving this is to use disjunctive clauses. For
example, in [6], the information the unknown son of Joe is one of Dave, Mike or Smith’ is represented by
the clause ‘Father(Joe,Dave) v Father(Joe Mike) v Father(Joe,Smith)’. However, this means that we need to
deal with the full complexity of disjunctive logic programs, although the clauses we use are just a very spe-
cial subset of disjunctive clauses.

Instead, we preserve the definiteness of our clauses by introducing a new kind of symbol, called an
S-constant, to represent these null values. This also allows us to define a refutation procedure that has
the appearance of the SLD refutation. In the next section, we present background information. in the three
following sections, we present, respectively, model semantics, fixpoint semantics, and procedural seman-
tics for definite programs with null values. Finally, we discuss our results and future work.

-2- Introduction

1.1. Language

Two different ways have been described to model null values. One method uses a single symbol to
represent any null value, e.g. [5]. In this method, whether or not two null values are equal is unknown. In
this representation the database DB, given above, wouid have the following tuples in relation Father:
(John,Smith), (Jim,w), (w,Dave) and (Joe,w), where o represents null values. The other methods use
indexed rull values (e.g. {14]) where different symbols are used to represent null values, and uniike the
first method, whenever two null values are represented by the same symbol they are equal. In this
representation the database DB, given above, would be represented as Father(John,Smith), Father(Jim, 0,),
Father(w,,Dave), and Father(Joe,a;). Whether or not two null values represented by different symbols, e.g.
®, and o, above, are equal to each other is unknown.

The latter method is more expressive than the former because it can be used to record more infor-
mation about null values, for nstance that one unknown entity (the father of Dave) is the same as another
{the unknown son of Jim), while the former method cannot. Also, the former can be viewed as a special
case of the latter where every unknown value is represented by a distinct indexed null. Therefore, this
latter approach is adopted here.

Our language is basically the same as that of first order logic (with equality symbof), except that we
have a new kind of symbol called an S-constant, usually written with a lower case Greek letter. S-
constants are used to represent null values. Other than the definition of terms, the definitions for con-
structs like atoms or formulas exactly parallel those for a first order language.

Definition D1.1 (Formula) A language L, contains symbols for the following: constants (e.g. a, b, ¢), S-
constants (e.g. o;, 0), function symbols (e.g. f, g), variables (e.g. x, y, z), predicates (e.g. P, Q, R), con-
nectives (—, v, A, &), quantifiers (V and 3), and punctuations (*(", ", ".").

e Atermis defined inductively as follows:
~ Avariable is a term
- Aconstantis aterm
- An S-constantis aterm

- = M fis an n-ary function and ,....,t, are terms, then f(t,....,.t,) is a term. if n21, then it is called a func-
tional term.

o A formula is defined inductively as follows:

- Wt Pis an n-ary predicate, and t,,....t, are terms, then P(y,.....t,) is a formula. P(y,.....t,) is aiso called
anarom.

- Fand G are form...:as, then —F, FAG, FvG, F« G are also forrmulas.
- Fis aformula and x is a variable, then VxF and 3xF are also formulas.

e A formula (term) is ground i it contains no variable. A ground instance of an atom A is obtained by
substituting each variable in A by a ground term. |

In order to model nuil values whose actual values are in some known domains, we attach a specification
of these domains to each formula in a program.

Definition D1.2 { Program) Let L be a language with constants D, and S-constants Z.

e AN extended program clause, is a two-tuple (C;R). C is a formula of the form A « B,,....B,,, where m20, A
and B;, 1sj<m, are atoms. R is a set of the form {{c,) € D.....{5,} € D,} where for 1<i<n, o; is an S-
constant that appears in C and D; is a non-empty subset of D. We call ‘A’, ‘B,.....B,’ and R’, respec-
tively, the head, the body, and the domain specification of the extended program clause. D; is called the
range of o; in R. If there is no S-constant in a clause, then R=@.

e A program P is a set of extended program clauses that satisfy the following: if an S-constant, o, appears
in two different clauses, (C,:R,) and (C,iR,), then ¢ has the same range in R, and R,. Let this range be
re We say r, is the range of ¢ in program P. We will also call r, the initial range of c. |

-3- Introduction

Example 1.1

Let o, and o, be two S-constants and P be a program with the following extended program clauses:
(Father(c,.John);{{0,) € {Mike,SmithJoe}}) (E1.1.1)
(Father(Paul,6y):{{01) € (Mike,Smith Joe)}) (E1.1.2)
(Father(c, Jones);{{0,) € {Dave Mike Smith}}) (E1.1.3)
(Father(Dave Paul); @) (E1.1.4)
(Sib(x,y) « Father(z,x) Father(z,y); D) (E1.1.5)

Note that o, has the range {Mike,Smith Joe), and o, the range {Dave Mike,Smith}. This means that

the possible values of o, are Mike, Smith or Joe and those of o, are Dave, Mike or Smith.]

Informally, (E1.1.1) and (E1.1.2) together specify that someone, represented here by &, is both the father
of John and the son of Paul, and the domain specifications say that this "someone” can only be Mike, Smith
or Joe. On the other hand, (E1.1.3) says that someone, represented by g,, is the father of Jones, and the
domain specification restricts his identity to Dave, Mike or Smith. (E1.1.4) is an assertion that Dave is the
father of Paul with no conditions associated with the statement.

There are two things to note. The first is that the "meaning” of o, is determined by all the assertions
that contain o, i.e. (E1.1.1) and (E1.1.2). The second is that although o, and o, are two different S-
constants, they may in fact be the same person since there are common elements, namely Mike and
Smith, in their ranges. However, the information contained in the program is not sufficient to determine
this equality one way or the other. We will formalize this discussion about the meaning of S-constants in
later sections.

Next, we define the notion of a substitution as follows:

Definition D1.3 (Substitution) Let there be an arbitrary ordering of S-constants so that they are
represented by o,, o, ,... etc, where o;<g; iff i<j. A substitution 6 is a finite set of the form {t/vy,....t/v,},
where each v, is either a variable or an S-constant, and vv; for i#j. Each v; does not appear in the
corresponding t. Also, if v; is a variable, then ¢, is an arbitrary term, and if v; is an S-constant, say o, then
t; can only be either a (normal) constant or another S-constant o, such that 6,<0,. The special substitu-
tion e={}, is called the identity substitution.

The application of a substitution 6 to a formula (or a term) H, written as H9, is the formula (term) obtained
by simultaneously replacing all the v;’s in H by their corresponding t;'s. |

The reason for imposing an arbitrary ordering on the S-constants will be made clear in the next section.

in the above definition, we do not allow substitutions of the form {t/c} where g is an S-constant and t
is a functional term other than a constant. This is because we consider function symbols to be distinct from
constants, and since S-constants only have constants as their values, we do not consider S-constants to
be replaceable by functional terms.

Composition of substitutions is defined in the usuai way.
Definition D1.4 { Compesition of Substitutions) Let 8 = {s,/u;,....8p/uz} aNd p = {t;/Vy,....1o/v,} De substitutions.

The composition, 6p, of 8 and p is the substitution obtained from the set (s;p/u},...,5mP Umt1/V1seoke/Va) DY
deleting any item s;p/u; for which u=s,p and deleting any item t/v; for which v;e {u,...,un}.]

2. Model Semantics

For logic programs without null values, the Herbrand Base of a program is an integral part of their declara-
tive semantics. Therefore, in order to detine a formal semantics for logic programs with null values we
extend the classical Herbrand Base to include S-constants.

2.1. Herbrand Base with Null Values
First, we have the following straightforward extension to the Herbrand Base:

Definition D2.1 (Null-Extended Herbrand Universe and Quasi Herbrand Base) Let P be a program, and Z be
the set of S-constants in P.

-4- Model Semantics

» The Herbrand Universe with null values yUp is the set of all ground terms that can be formed from con-
stants, S-constants, and functions appearing in P. If no constant appears in P then we add an arbitrary
constant, say a, to form ground terms.

e The quasi-Herbrand Base qHB(P) is the set
{ P(cy,....co) | P is an n-ary predicate symbol in P ;, i=1,....n, are elements in yUp} [|

We note that when there is no S-constant, i.e. Z=J, the quasi Herbrand Base reduces to the (classical)
Herbrand Base.

The quasi Herbrand Base alone is not adequate for our purpose because it contains no information
about the incompleteness of the S-constants. The following example illustrates what additional informa-
tion we need by showing how we might want to respond to queries on a program containing such informa-
tion. It exempilifies the kind of information we want to derive from a program.

Example 2.1
Consider the program in Example 1.1, which consists of the following:

(Father(c; John) ; { (0} € {Mike,SmithJoe}})
(Father(Paul,0,) ; {{,} € {Mike,Smith,Joe}})
(Father(a,,George) ; {{0,] € (Dave Mike,Smith}})
(Father(Dave Paul) ; @)

(Sib(x,y) - Father(zx) Father(z,y) ; @)

where o, and o, are S-constants.

in order for George and Paul to be siblings, o, must be equal to Dave. This is possible since
Dave is in the range of g,. On the other hand, for John and Paul to be siblings, &, has to be Dave.
However, this is in conflict with the information in the program since the range of o; specifies that it
can only be one of Mike, Smith or Joe. Now consider John and George. In order for them to be
siblings, o, and o, must have the same value(s). This is possible since there are common ele-
ments, Mike and Smith, in their ranges. n

The first two queries in the above exampie invoive restricting the range of an S-constant to a single ele-
ment; while the third one requires that we reconcile the values of two S-constants.

None of these queries can be answered with a definite "yes" or "no”, even though none of them con-
tains any S-constant. The restrictions we obtained, i.e. "c, =Dave” or "6, =c,", must be recorded somehow
$0 as to give a proper answer. That is, John and Paul are siblings if ¢, is Dave, and John and George are
siblings if o, is the same as o,. Another reason for recording these restrictions which may not be apparent
from the above example is that we may need them in further derivations.

Example 2.2

Let us add the extended program clause "(SR(x,y.u,v) « Father(x,y),Sib(u,v) ; &)" to the program in
the above example. Then in order for SR(Paul Mike John,George) to be true, Paul must be the father
of Mike and John must be a sibling of George. As we see in the above example, John and George
are siblings under the condition that o;=0,. On the other hand, for Paul to be Mike’s father, ¢, must
be Mike (by (E2.1.2)). Therefore, the tuple (Paul Mike John,George) satisties the relation SR if both
of these conditions are true, i.e. 0,=0; and ¢; =Mike.

Similarly, tor the tuple (Paul,Joe John,George) to be in relation SR, Paul must be the father of Joe
and John must be a sibling of George. As before, for Sib(John,George) to be true, oy must be equal to
o, while for Father(Paul Joe) to be true, o, must be Joe. Here, however, we see that the condition
g, =0, A Gy=Joe can not be satisfied, because o, =c, implies that both g, and o, can only be either
Mike or Smith, therefore, afthough Joe is in the original range of a,, the condition ¢, =0, preciudes it
fromn the values ¢, can take. [|

This example illustrates two points. First, we must record the conditions necessary to derive an answer,
e.g. the condition o,=0, for deriving Sib(John,George). In addition, we must aiso record how these condi-
tions restrict the ranges of the S-constants involved in order to detect an unsatisfiable condition.

To achieve this, we generalize the domain specifications attached to program clauses such that to
each ground atoms in the quasi-Herbrand base of a program, we attach a set of specifications of the form

-5- Model Semaniics

Se V, where S is a set of S-constants, and V is a non-empty set of (normal) constants. S¢ V represents
the condition that all the S-constants in S are equal 10 one another, and V is the set of common values
they can take.

For instance, in the example concerning SR(Paul Mike,John,George), the set of specifications attached
to the atom Father(Paul, Mike) would be { {0,] € (Mike) }, which means that o, can only take the value Mike,
and the specification attached to Sib(John,George) would be { {0,,0,} € (Mike,Smith} }, meaning that o, and
o, must have the same values and these values can only be either Mike or Smith. The specification
attached to SR(Paul Mike, John,George) should be { (0,,0,) € {Mike}). Similarly, the specification attached
to Father(PaulJoe) would be { (0,} € {Joe}). We see that there are no values that o, can take to satisfy
both this specification and the one attached to Sib(John,George). Therefore the two conditions are not
reconcilable.

Formally, we have

Definition D2.2 (Assignment) Let P be a program. Let £ = {0,,....0,} be the set of S-constants in P, D be
the set of constants in P, and the range of o; in P be 1.
An assignment is a set of the form (S, € V,.....S, € V.} where S;,cX and V,cD for 1si<n, and $;~S=0
for 1<i, j<n, i»j. We also define L as a special assignment.
An assignment w is strict if it does not contain elements of the form (o) € r,, where o is any S-constant,
and if it satisfies the condition that, for 1si<m, V;g m&
ce

The range of an S-constant ¢ in an assignment w, written as Ran(c,w), and the class of ¢ in w, written as
Cla(o.w), are defined as follows:

~or the special assignment L, Cla(o,1)=@, and Ran(o,L)=@. For all other assignment w, if there is

an element Se€ V in w such that ¢ is a member of S, then Ran(o,w)=V, and Cla(o,w)=S$, otherwise

Ran(o,w)=r4, Cla(o,w)={c}. n
Two things to note about this definition. The first is that the special assignment L is used to represent the
case when we have an unsatisfiable condition. The second is that a domain specification is an assignment
but not a strict assignment. Intuitively, an element of the form {o) € r, merely expresses the initial con-
straint on the S-constant o specified in the program, i.e. that ¢ has range r, and that whether ¢ is identical
to-any other S-constant is unknown. A strict assignment is one that does not contain such redundant
information.

Example 2.3
Consider the program in example 2.1:

(Father(o;,John) ; {{c,} € {Mike.Smith,Joe}})
(Father(Paul,6,) ; { {01} € (Mike,SmithJoe}})
(Father(c,,George) ; {{02) € (Dave Mike,Smith}})
(Father(Dave,Paul) ; @)

(Sib(x,y) « Father(z x),Father(z.y) ; &)

where o; and o, are S-constants.

v, = {{0) € (Mike}} and u, = {{¢;,0,} € {Smith}} are both assignments. Ran(o,u,)={Mike}
and Ran(oyu)=re=(Dave Mike Smith) as o, does not appear in u,. Cla(su)=(c;} and
Cla(o,.u)=(0;}. On the other hand, Ran(c,,u;)=Ran(0,,u;) = {Smith} and Cla(o,,u;)=Cla(g,,uy) =
{ohaZl' a

In defining a program with nuil values, we introduced extended program clauses. They are nothing more
than ordered pairs of Hom clauses and domain specifications. Since domain specifications are a special
kind of agsignments, we can further define the following extensions:

Definition D2.3 (Extended Clauses and Extended Goals) Let P be a program and let w be an assignment.
An extended clause is an ordered pair (C;w) where C is a clause. An extended goal is an extended clause
(C;w) where C is a clause with no positive literals. n

We now define how to combine two assignments, which is used to record the conjunction of two condi-
tions.

-6- Model Semantics

Definition D2.4 { Combining Assignments) Let P be a program. Let £ = {0,,...,0n} be the set of S-constants
in P, and let the initial range of c; in P be ry, for 1<i<m. Let w, and w, be assignments. The combination of
w, and w,, written as w;w,, is defined inductively as follows:

1.t w;or wyis 1, then wywy= 1.

2. if neither w, nor w, are 1 and w, (resp. w,) is &, then w,w, is w, (resp. w;).

3.Let w;={S;€ V)} and w={S;€ V3}. If $;nS;=0D then wyw=wiuw,. If S\NS,2D and V,NV=2J then
wwp = {S;US; € ViNV,). Otherwise (S;N S22 @ and ViNV=0), wyw=L1.

4.if w={S), € Vi1,...51, € V1p} where p>1, then wyw,=u(vwy) where u is {Sy; € Vyy....81p-1 € Vip} and v is
{Sip€ Vil

5.f w;={S)1€ Vi1}, and wy={Sy; & V3,....S2 € V3 } where g>1, then wyw=(w,u)v where u is {S; g V3;} and
vis {Sn€ sz.....qug qu}.

It wywypz L, then the assignments w; and w, are compatible, otherwise, they are incompatible. [|

Example 2.4

Let £ be {61,02,03}, and rq= (efig), 1= (f.g1), ro=(ghii}). Let wi={{o1,0:) ¢ (f.g).{a3) € (g}), and

wy={ {02,063} € {g.,h}) }. We want to calculate w,w,. According to 4 above, w,w,=u(vw,) where u is

{{o1,02) € {f.g)} and v is {{o3) € (g)). To calcuiate vw,, we use 3 above. Since {63} N (0,,03}#0,

and (g} n{gh)=(g)#D, we have v'=vw,= {{0,,03) € {g}}. Similarly, using 3 again, we have

wiw=uv’ = ({0,,0,,03}) € (g]}. .
We note from the examples at the beginning of this subsection that, in general, any condition that we need
to record can be seen as the resuit of applying a sequence of substitutions to the initial constraints speci-
fied in the program. For example, the substitution {c,/0,} results in the condition ¢,=0,,and {Mike/c;},
results in the condition o,=Mike.This suggests that applying a substitution to a formula, has the same
effect as attaching an assignment to that formula. Therefore, we have the following definitions:

Definition D2.5 (Substitutions as Assignments) Let P be a program, and I = {0,,....0,} be the set of S-
constants in P, and the range of o; in P be r,. Let [], be a mapping from substitutions to assignments.
Then, let 6 be a substitution, the assignment (6], is called the equivalent assignment of 8, and is defined
inductively as:
it 8 = ¢ = {} is the identity substitution: (0], =9
it @ = {t/v}, where v is a variable: [0],=Q
If 8 = {t/v}, where v is an S-constant and t is a constant:

if ve Zand te r, then (0], = {ve {t}}. Otherwise, [6],=1.
if @ = {t/v}, where v and t are both S-constants:

fve X, te L, and e,z D then [0], = {{v,t) € r,n1}. Otherwise, [6],=L.
It 0 = {t;/vy,...to/vo} Where n>1: [8], = [A].[1], where A is {t,/v,} and i is {ty/va,....t/ Vo)
If [8],= L then we say that 0 is applicable (w.rt. P). Otherwise, it is inapplicable. Also, we say that (6], is
an assignment exprassible by the substitution 0. n

We see that if a substitution contains no substitutions for S-constant, then its equivalent assignment is &,
which essentially represents the condition "true”, i.e. "no additional restriction on the values of the S-
constants”. The reason we impose an ordering on the S-constants is that the two forms of substitutions
{o/a;} and {o;/0;} both express the condition that o, and o, are equal, and the ordering allows us to con-
sistently choose one of them. Also, we note that given a substitution 9 it [8],=.L then [8], is strict.

Example 2.5

Let £ be ({0,,0203), and re={ef.g), ro={f.8h), ro=(ghi}. Consider the substitution
8={0/x,b/y,02/01,8/03}. [0]a=[t1]alialalMslale]a where p=(cy/x}, H=(bly}), Hy=(cyo;}, and
w={g/cy). Since u; and u, are all variable substitutions, [la=0)\=B. Also,
e Nrg=(ef.g) N (ghil={f.g)»D, hence [Wla= {{01,02)¢ (f.g)}. And since gery, [la=
{(o3) € (g]}. So, [81a=DD{{01.0) € ([.8]} {{03) € (8]} = {{01.02) & (f.g).{o3) € (g)) a

A dual of the above mapping is the following:

-7- Model Semantics

Definition D2.6 (Assignment as Substitution) Let []s be a mapping from strict assignments to substitutions.
Then, let w=($, € V,.....S, € V,} be a strict assignment, the substitution [w]s is called the equivalent substitu-
tion for w, and is defined inductively as follows:
(D1s=¢, the identity substitution.
V, is a singleton {c) where c is some constant. Then [wls={c/x]t€ S;) U w~(S;:€ Vi)ls
V, is not a singleton, and S, is the set (g,,...,0. }, where i;<i; for j<k. Then

[wls=(c /o, | 1Sj<m} U [w- (S, € V,}]s |
In the above definition, since S;S;=@ for i#j, the order in which we convert the elements in an assign-
ment w is irrelevant.

Example 2.6
Let us find the equivalent substitution for the assignment in the previous example.
w = {{0},0,] € {f.g).{03) € (g]}
[(wls = {0201} L [{(03) € (8)}]s = {0/01} U {g/03} = {o/01.8/03).
B
Among all the possible assignments that we can form using the S-constants and constants, not every one
is expressible by a substitution. Notably, any assignment w that contains an element of the form Seg V,
where S is a singleton, say {c}, and V is the set r, (i.e. w is not a strict assignment) can not be an
equivalent assignment of a substitution. To see this, we note that only two kinds of substitutions would
permit an S-constant, o, to appear in an equivalent assignment, namely, substitution of ¢ by a constant, c,
or by another S-constant, t. In the first case, V would become {c}, and in the second case, S would be
{o.x).
In defining a model semantics of a logic program with null values, we only need to consider assign-
ments that are expressibie by substitutions:

Definition D2.7 (Assignment Universe) Let P be a program. The assignment universe of P is the set
{[6]4] 6 is applicable w.r.t. P }. [

From now on, unless specified otherwise, an assignment always refers to one that is in the assignment
universe.

Finally, we have the definition of the Herbrand Base with null values:

Definitlon D2.8 (Herbrand Base with Null Values) Let P be a program, qHB(P) be its quasi-Herbrand
Base, and W be its assignment universe.

The Herbrand Base with null values for program P, HBNV(P), is the set of ordered-pairs (A;w) where
Ae gHB(P), we W.

We call elements in HBNV(P) (null-)extended atoms. |
Note that tor the case in which the program does not have any null values, i.e. when == @, no substitution
contains S-constants, and therefore, [8],=2 for all applicable substitutions 6. W ={@}. Also, gHB reduces
to the classical Herbrand Base, and every element in HBNV is of the form (A;@). Since there are no S-
constants, (A; @) represents the atom A without any condition attached, that is, HBNV is isomorphic to the
classical Herbrand Base.

Below is an example that illustrates some of the definitions in this section.

Example 2.7
Consider the program P which contains the following :

(F(one):{{o1]) g {efg})
(F(GZ'D ’ { [62] € [fvgvh] })
(S(x.y) «F(z,x),F(z,y); D)

Then \Up is the set {e.f,g,h,5,,02}. So,

qHB(P)={F(e.¢),F(e.f).F(e.g).F(e.h),F(e,01).F(e.0) F(£.€),... F(£,51).F(f.0).....
F(oy.e)....F(01,61).F(61,02).F(02.8)....F(02,61) F(02,07),
S(e.e),....5(£.8),....5(61,6).....5(62,€),....5(02,52)}

-8- Model Semantics

and the assignment universe is:

w={D.{{o)) € (e)}.{{o1) € (1} {[o1) € (8)).{(o2) € {f}}.{(02) € (8}}.{(o2) & {h}},
{{c1) € {e).[c2) s (f}}).{(01) € (e}.[o2) € (B)}).{{o1]) € {e).[o2) € (h]),
{{oy) € (f).(02) € (1}}.{(c1) € (f).[02) € (8)).{{c]) € {f}.(02) € (h}},
{{o1) g (g).[02) € {f}}.{{o1]) € (8).{02) € (8)).{{o1]) € (g).[o2) € (]},
{{o1.02) € (£.8)).{(01.02) € ()}.{{c1.0:) € (g}}}

We will not list all the elements of HBNV(P) here. As we will see later, some of the elements of

HBNV(P) that will be in the "model” of the program are: (F(o,.):D), (F(c..0):D),(S(c.c);D),

(S(.0:D), (S(e.Di{ (01,02) € (£.8) D). (S(fe)i{ (01.02) € (f.8)). L
Given an atom A in the Herbrand Base of a definite program (without null values), we would like to know
whether A is derivable from the program. Similarly, given an extended atom (A;w) in the HBNV of a pro-
gram P, we would like to know whether A is derivable from P under the condition represented by w. We
will see other aspects in which the relationship between HBNV and programs with null values are analo-
gous to that between Herbrand Base and definite programs without null vaiues.

2.2. Unification

Unification will be a basic concept used in subsequent discussions. First, we define what we mean by a
set of atoms being unifiable when they contain S-constants. '

Definition D2.9 (Unifier and MGU) A set of atoms T = {A,....,A,} is unifiable if there is a substitution 8
such that A;8=A;0 for 1<ij<n. @ is called a unifier of T. 0 is a most general unifier (mgu) of T, it for each
unifier p of T, there is a substitution p suchthat p=0y.]

Example 2.8

Consider the set {P(c,f(y)),P(®.x)}. if we apply the substitution p = (f(a)/x,a/y,b/o} to the two atoms in
the set, then they both become P(b.f(a)). Therefore, p is a unifier for the set. However, p is not a
most general unifier. An example of an mgu for this set is 0= (f(y)/x,b/c]. Note that p=6{afy}). W

Unitiers for extended atoms can now be defined.

Definition D2.10 (Unifiers for Extended Atoms) A set of extended atoms T = {(A;;u;),....(Aq;uy)} is unifiable
if there is a substitution 68 such that 8 is a unifier of the set of atoms t = {A,,...,.A;} and (8] u;..u,2 L. 0 is
called a unifier of T. A unifier 6 of T is an mgu iff 6 is an mgu of t. [|

Example 2.9
{P@Ee)L){{01) € (ab.c})).(P(g(c).x){(02) € (bic.d)])} is unifiable with the mgu 8= (f(y)/x,05/0,},
since [01A{{01] € (abclH (o) & (cde}) = {{01,0,) € {c]}= L.

On the other hand, {(P(c,.f(y))s{(01) € (abc)].(P(c2x)i{(02) € {ef8.)])} is not unifiable since
(01a{{c1) & (abc}N(c2) & {efg])=L. u
The unification algorithm for atoms without S-constants can be adapted to handle S-constants. First, we

need some definitions ([10]).

Definition D2.11 (Term Equations and Solutions)

A term equation is an equation of the form s=t where s and t are terms.

A substitution 0 is called a unifier of a term equation s=t iff s6 and 9 are identical. A substitution 0 is called
a unifier of a set of term equations S iff 8 is a unifier of every term equationin S.

Two sets of term equations are called equivalent iff they have the same unifiers.

A (possibly empty) set of term equations is called solved iff it is of the form {v,=t,,...,v,=t,}, where v;'s are
distinct variables or S-constants, and none of them occurs in a term ¢;. Also, if v; is an S-constant, then ; is
either another S-constant or a constant. | |

A solved set of term equations {v,=t,.....v,=t,} determines a unique substitution {t;/v,....ty/v,}. Clearty, this
substitution is @ most general unifier of the set of equations. In order for two atoms to be unifiable, they
must have the same predicate symbol. Finding the mgu of two atoms, P(s;.....s,) and P(t;.....t,) is the same
as finding the mgu of the set of term equations s;=t;,...,8, =1t

The following unification algorithm is adapted from [10].

-9. Model Semantics

UNIFICATION ALGORITHM
Non-deterministically choose from the set of equations an equation of a form below and perform the
associated action. (In the following, f and g are two different function symbols, ¢ and d are two dif-
ferent constants, v is either a variable or an S-constant, and all the others are terms.)
(1) £(SgseesS0) = f(t1sennle) ©
repiace by the equation s, =1,,....5, =1,
(2) c=d or f(1..--. 8D =8(t;onte) ©
halt with failure.
(3)yc=corv=v:
delete the equation
(4) t=v where t is neither a variable nor an S-constant :
replace by the equation v=t
(5) t=v where tis an S-constant and v is a variable:
replace by the equation v=t
(6) v=t where v is different from ¢, and v has another occurrence in the set of equations :
if v appears in t then halt with failure
if v is an S-constant and t is neither a constant nor an S-constant then hat with failure
if v is the S-constant o; and t is the S-constant o; and i>j, then replace by the equation t=v
otherwise perform the substitution {t/v} in every other equation

Example 2.10

To find the mgu of the two atoms P(g(a;).f(y)) and P(g(c,).x) we solve the set of equations

{8(01)=g(c2).L(y)=x}.

1. Choosing the first equation and using (1) above, we replace it by the equation ¢, =0,.

2. By using (4) above, we replace the second equation by x=f(y).

3. The set of equations is now {o, =0;,x=1(y)}, and it is solved.

The corresponding mgu is {0./0.f(y)/x}. |]
it is easy to augment the proof in [10] to show that the following theorem is true.

Theorem T2.1 (Unification Theorem) Let T be a finite set of term equations. if T is solvable, then the unifi-

cation algorithm terminates and gives an mgu for T. If T is not solvable, then the unification aigorithm ter-

minates and reports this fact.

Proot:
As far as the unification algorithm is concemed, S-constants are identical to variables except for,
(a) the ordering among the S-constants, and (b) the requirement that an S-constant be unified only
with S-constants or constants. In the proof of the original algorithm, the order of the variables is not
important. Also, since we define substitution such that an S-constant can only be substituted by
either an S-constant or a constant, point (b) is exactly what is needed to make the mgu produced
by the aigorithm a proper substitution. Therefore, the proof holds for our modified algorithm regard-
less of the presence of S-constants. Q.E.D.

2.3. State and Model State

A program with null values can be viewed as a compact way of representing a set ot possible worlds. For
instance, if P has the following extended program clauses: (P(c,);{{c;) € {a,b}}), (Q(co);{{02} € (c.d}}).
and (R(e) ; @); which means that either a or b is in relation P, either ¢ or d is in relation Q, and e is in relation
R. We can view P as representing the four possible worlds: P.: {P(a),Q(c).,R(¢)}, P,: {P(a).Q(d).R(e)},
P,: {P(h).Q(c).R(e)}, P,: {P(b),Q(d).R(e)}. These are obtained from P by assigning to each null value one of
the constant in the range ot the null value. Each possible world can therefore be identified with a particular
substitution. For instance, P, can be identified with the substitution "a for o, and ¢ for o,", and P, the sub-
stitution "a for g, and d for ", etc.

This above discussion motivates the following definitions.

-10- Model Semaniics

Definition D2.12 (S-Mapping) Let P be a program, and let £={0,,....0,) be the set of S-constants appear-
ing in P and D be the set of constants appearing in P. A function V from Z to D is an S-mapping ift V maps
each element o; of I to a constant ¢;; in the initial range of o, We write an S-mapping V as a set of values
(a)...., 30} tO represent the fact that V(o)=a,, V(0)=a,,..., V(G)=2,. | |

Definition D2.13 (S-Mapping Substitution and Possible Worlds) Let P be a program and I be the set of S-
constants appearing in P. Let V be an S-mapping, then the substtuton corresponding to an S-mapping V is
the substitution {V(0,)/0.....V(G/0,}. usually written as py.

Let S be a set of extended clauses, the image of S in the S-mapping V, written as Sy, is the set of first
order formuia: {Rpyv| (Riw)e Saw{pyl 2L} The possidle world represented by P and the S-mapping V, is
the image of Pin V, Py,. |

In a program without null values, any subset of the Herbrand base is a Herbrand interpretation of the pro-
gram. Subsets of the HBNV can play a similar role it we extend the notion of possible world to these sub-
sets. Consider a subset, I, of HBNV. An element, (A;w), in I represents the atom A with the condition w.
To compute the image of this element in a possible world represented by the S-mapping V, we first see
whether w is satisfied in this world (i.e. whether w(py], is 1). If it is satisfied (w[pyv].#L) then the image is
Apy, otherwise, the element has no counterpart in this particular world. The image of I itself is simply the
collection of the images of all the elements in I, which is the set {Apy| (A;w) € A wlpy] 2L}. We see that
this image is a set of ground atoms, and can therefore serve as a Herbrand interpretation for the program
Py-
For example, consider the program P:

(P(oy):{(o1) & (ab}D)

(Q(o2):{{02} € (cd}])

R(e): D)

(S(x.y)P(x).Q(y): D)

Now consider the following subset I of HBNV(P):

{ (P(a):D).(Q(c):{{02) € (cIN(QAAi{{o2) € (d}}) }

As before, there are four possible S-mappings, namely, V, = {ac}, V2 = {ad}, Vy = {bc}, and V, = {bd}.
The image of P in V,, PV,- contains the four definite clauses {P(a),Q(c).R(e), S(x,y)P(x),Q(y)}. And, the
image of I in V; is {P(a),Q(c)}. If we treat this as a Herbrand interpretation, then the only atoms that evalu-
ate to true in this interpretation are P(a) and Q(c). Therefore, the four clauses in PV, have truth values
w.rt. I, “true®, "true”, “faise”, and “false” respectively. On the other hand, in V,, the image of I is
{P(c),Q(d)}. Hence, the four clauses in Pv‘, i.e. {P(),Q(d).R(e), S(x,y)=P(x),Q(y)}, have truth values
"false”,"true”, "faise”, and “false”. In fact, it is easy to see that, with respect to I, the second clause in P has
truth value "true” in all four possible worlds, and the third and forth clauses are always false, while the first
clause is true in V, and V, and false in Vs and V,.

The following definition is a natural outcome of this discussion.

Definition D2.14 (Sutes) Let P be a program, V be an S-mapping, and S be a subset of HBNV(P). Let
(C;w) be an extended clause such that w(py],=L, then the value of (C;w)in V w.r.t. S is the Herbrand
interpretation of Cpy w.r.t. the set Sy. S is a saate of P iff for every extended clause (C;w) in P, (C; w) has
the same value w.r.t, S in every S-mapping. |
It is easy to see that if w is a domain specification, then wpyl,=L for any S-mapping V. Therefore, every
extended program clause in a program has a value in every S-mapping w.r.t. every subset of HBNV(P). A
state, then, is just a collection of "consistent” interpretations. By this we mean that a clause is interpreted
consistently in every possible world, i.e. we do not want to have a clause being interpreted as “true” under
one S-mapping while interpreted as “false” under another S-mapping.

For instance, the subset [in the previous discussion is not a state, but the set {(Q(c):{ {s2} € {c]],
Qi {o2) € (d} D)} is a state, as well as the set {(P(c,):D), (Q(C):{ (02} € (¢} . (QUA):{ {02) € {d)}).

The definition of state has a shortcoming which is inherent in the format of extended Herbrand base: two
apparently different subsets of HBNV can represent the same state, i.e. they have the same image in all

D |

-11- Model Semantics

S-mappings. For instance, let us continue our previous example, where the S-mappings are V; = {ac}, V,
= {ad}, V; = {b.c}, and V, = {b.d}, and consider the two sets I, = {P(a);{ (51} & (a} }).P®):{ (51) € (b} })} and
I, = {(P(c,):D)}. Although they look quite different, their "image” in every S-mapping is the same, i.e. both
are {P(a)} in V, and V,, and both are {P(b)} in V; and V,. Therefore, there is no practical difference
between the two.

To deal with this shortcoming, we define the following relation

Definition D2.15 (Equivalence Relation for States) Let P be a program and let S and T be two subsets of
HBNV(P). We say that S and T are equivalent, written as S =, T, iff for every S-mapping V, S\=Ty. | |
it is obvious that =, is an equivalence relation. Similar to the definition of Herbrand models, we have the
following.

Definitlon D2.16 (Model State) Let P be a program and I be a state of P. I is a model state of an extended
clause (C; w) iff for every S-mapping V, if wlpyv] =L then Iy is a Herbrand model of Cpy. 1is a model state
of P iff I is a model state of every extended clause in P, and for every state J such that J=, I, J<I. |
The last condition in the above definition can be understood in another way. Since =, is an equivalence
relation, the set of all the states can be divided into equivalence classes. Given any state I, suppose that I
belongs to the equivalence class E, then it is easy to see that the union of all the elements in E is itself a
state, and moreover, this union is also equivalent to I and hence also a member of E. That is, (JUEI)-,,I,
[§

and hence (A) e E. Let us call this union M. From the definition of model state of extended clauses, i I
JeE

is the model state of an extended clause, then every member in E is also a model state of that clause.
Therefore, if I is a model state of all the extended clauses in a program P, then so is M, and since all other
states in E are subsets of M, M is a model state of P.

The following proposition concerns the existence of such a model state.

Proposition P2.1 Let P be a program, and let V,,....V, be all the possible S-mappings. If M;,... M, are
Herbrand models of Pv yeres PV , respectively, then there exists a unique model state S of P such that
sV—Ml veeey SV-Mn
Proof:
We prove this by constructing S. Let J; be the set {(A;[pv]a) | Ae M}, then the image of J; in V; is
exactly the set M;. Let J be the set ,g,’i' then J is a subset of HBNV(P) and J is a model state for

every extended clause in P. Therefore, the set S = U K is a model state of P. Also, S is unique,

since for any other state S’, if Sy=M; then §' m;J and hence s'cS. Q.E.D.

Next, we introduce the concept of a minimal model state. Given a program P, for any S-mapping V, Pyis
a definite program. Hence for each V, Py, has a unique least model. By proposition P2.1, there is a
unique model state whose image in V is this least model.

Furthermore, as we see below, just as in the case of definite programs, this model state is the inter-
section of all model states of P.

Proposition P2.2 (Least Model State) Let P be a program with null values. There is a unique model state S
of P such that Sy is the least Herbrand model of Py, for any S-mapping V. Furthermore, S=M\(K|K is a
model state of P}.
Proof:
Let V,, V, be all the S-mappings and let M; be the least model in V;. From proposition P2.2 we
know that there is a unique model state S such that Sy=M,; for 1<i<n. Let $’=M\(K|K is a model
state of P}. We need to prove that S=§’.
Since S is a model state of P, Sy,=M\{Ky,|K is a model state} < Sy=M;. On the other hand, since M,
is the least Herbrand model of Py, and Ky, are all Herbrand models of Py, M,c S¥. Therefore,
Sv=My, and hence S’ =, S, s0 S’ S.
For any model state K, K can be constructed from the Herbrand models Ky,, Ky, as seen in the
proct of proposition P2.2. Sy=M.cKy, for 1<i<n. Let D; be Ky,—M,. Then for any J such that I =, S,

-12. Model Semantics

the set Ju(\U ((A:lpidoD 1A e Dy)) is equivalent to K. Therefore, JcK, and since S is the union of all
15i<n
suchJ, ScK. Hence ScM\{K|K is a model state}, i.e. ScS’. Q.E.D.

Example 2.11
Consider the following program P:

(F(one);:{{c1) € (efig}D)
F(oxh:{l{o2) € (f.gh)}D)
(S(x.y) «F(z.x),F(z.y) : ©)

It is easy to see that the state

M= { (F(0y.€); D).(F(02.f): D).(S(e.e); D).(S(L.0): D),

(SN (01,02} € (f.8) DSk (01,02} € {fg) D }
is a model state of all the extended clauses in P. For instance, consider the S-mapping V= {e.f).
Py, = {E(e.e), F(E.D, S(x.y) e~ F(z,x).F(z.y)} and My, = {F(e.e).F(f.f),S(e.¢),S(f.H} which is a Herbrand
model of Py.. Furthermore, we see that if we remove any element from My, then it is no longer a
model of Pv , i.e. My, is the least model of Pv This result applies to all other eight S-mappings.

Therefore, we can conclude that the largest equwalent state of M is the least mode! state of P. The
part of this model state that is equivalent to the extended atom (F(o,,¢);@) is shown in Fig. 1. n

{ (F(o1.e):@)(F(e.e)if (o1} € {e] D.F(Ee){ (01) & {f} D.(F(z.e)i{ {o1) & {8})
(F(or.ei{ (02) € {f) D.(F(or.e)i{ {02]) € (8) D.(F(o1.e)i{ (02) € {h] D),
Flee)i{ (o1} & (e}, (o2} & (£} D.F(Ee){ (o) € {f}, (o2} & (f} D),

Fg.ex{ {c1) € (8}, (02} € (£} D.(Flee)f (o1} € {e}. (a2} € (8] D).
F(fe)((1) € {f), (02) € (8) D.(F(g.){ (01) € (g) . (02) € (8} D),
(Fe.e)i{ (o)) € {e} . (0;) & (h}]).(F(Ee)i{ (01) € {f} . {0,) € (R}),
(Fg.e){ (o1) € (8) . (02) € (h) D.(F(oz.e)i{ (01,02} € {f.g)).
(F(oze){ (01,02) € (£}).(Floz.e)if (01.0,) € (8]}),

(Ff.e){ (01,02) € {f) D, (F(g.e)f (01,02} € (8) D}

Fig. 1 (Example 2.11) Part of the Least Model State of Program P.

The following definition is analogous to the definition for "logical consequence” in first order logic.

Definition D2.17 (|=) Let P be a program. If every model state M of P is a model state of an extended
clause (C; w), then we say that P l= (C;w). []
We denote the unique model state in the above proposition as MY. The following theorem argues strongly
for using M) as the declarative semantics for P.
Theorem T2.2 Let P be a program and (A;u) be an element in HBNV(P). Then Pl (Am) iff (Am) e M}
Proof:
Pt: (Aw)
ffor any model state S of P, and for all S-mapping V such that ulpy],#L, Sy Apy.
iff for any model state S of P, and for all S-mapping V such that u{py] =L, Apy € Sy.
(" Apvy is ground)
iff for any model state S of P, kv}((Apv;[pv]A)} cS.

iff for any model state S of P, (A;u) € S. (. ((Asu)) =y \VJ[(ApV;[pv]A)})
iff(A;u)e MY. (proposition P2.2) Q.E.D.

-13. Model Semantics

3. Fixpoint Semantics

In a definite program without null values, we can calculate, in a bottom-up fashion, the set of ail atoms that
are derivable from the program. Let us call this set I, and we start by setting I to the empty set. We obtain
new atoms by applying the clauses in the program in the following way. Given a clause in the program
H e« body, it we can find a substitution 8 such that when we apply 0 to body, all the atoms in the resuiting
body® are in set I, then we say that HO is one-step derivable from the set I. After we have found all such
atoms, we add them to I. We repeat this process of a one-step derivation until we cannot find any new
atoms to addto I.

The above description of one-step derivation is formalized as an operator defined below, and the
process of finding the set of atoms derivable from the program is the same as finding the fixpoint of this
operator.

Definitlon D3.1 (Fixpoint Operator for definite Programs [12]) Let P be a definite program without any S-
constant, and [be a subset of its Herbrand base. The fixpoint operator of P, represented by Tp, is defined
by Te(I={A | A« B,,...,B, is a ground instance of a clause in P,and (B,,....B,} c1) |
We can follow the same approach for programs with null values, except that we need to take care of the
incomplete information. This means that not only must we find new atoms by applying program clauses,
we also have to find the proper assignments to attach to these atoms. First, we need to define ground
instances of an extended clause.

Definition D3.2 (Ground Instances of Extended Clauses) Let P be a program, (C;d) be an extended pro-
gram clause in P, and 6=90,6, be a substitution, where 0, is a variable substitution, and 6, is an applicable
substitution w.rt. P. Then (C6;[0],) is a ground instance of (C;d) iff C6 contains no variable. Gnd(P) is
the set of all the ground instances of the extended clauses in P. n
Note that d in the above definilion is a domain specification, and as such, is of the form
{{c,) € Dy.....[6,) € D,}, where for 1<i<n, D; is the initial range of o,. Since d is not an element of the
assignment universe, we can not define the ground instance of (C;d) to be (C9;d(6],). However, since d
specifies the same condition as the empty assignment &, (C6;{6],) is all we need.

The following property is useful.

Proposition P3.1 Let P be a program, and C=(C:d) be an extended program clause in P. If
(C6;[8)A=(AB,,...B,;w) is a ground instance of C and if for some S-mapping V, wlpy]a=Ll, then
(ApveB1pv.....Bpvi[pv]a) is also a ground instance of C.

Proof:

Since wlpv]a={0lalpvla=L, then [Bpyla=[pv]a. (A general property of py) Q.E.D.
In defining our fixpoint operator, we need the following closure operator.

Deflnition D3.3 (Equivalence Closure) Let P be a program, and I be a subset of HBNV(P). The eguivalence
closure (or E-closure) of 1, equ(D), is the set HJ. .
.

Since the only subset of the HBNV that is equivalent to the empty set @ is the empty set itself, we have
equ(@)=3. In general, equ(l) is much larger than I, as illustrated by the following example.

Example 3.1
Consider the program in example 2.11. Let I={(F(c,,¢);@)}. Then Figure 1 is the E-closureofI. ®

Definitlon D3.4 (Fixpoint Operator) Let P be a program NTp is a mapping from the power set of HBNV(P)
to the power set of HBNV(P). If Ic HBNV(P), then yTp(T=equ() w T(I) where

Te(M=((A;w) | (A< B,,...,B,;w)e Gnd(P),
and there are (B};wy),....(B5;W,) in I, such that w=w,...w, =1 and B{[w]s=B, for 1<i<n)
We aiso define yTpTn and TpTn inductively as

NTpT0=D NTptn= \T(xTpT(n-1)) for n>0.
Tpt0=2 Tptn=Tp(Tpl(n~1)) for n>0.

-14. Fixpoint Semantics

Both Tp and NTp are continuous (see Appendix), and since the power set of HBNV(P) is a complete lattice,
this means that yTpTw (resp. TyTw) is the least fixpoint of NTp (resp. Tp).

As noted before, equ(l) is expensive to calculate. However, as will be clear in the rest of the section,
the inclusion of equ in the definition of the yTp operator is mainly to facilitate the proof of the next proposi-
tion. In fact, we shall see later that to caiculate the least fixpoint of NTp, we can first caiculate the least fix-
point of Tp and then take its E-closure.

Example 3.2
Recall example 2.11, where the following program P is given:

F(c1.8):{{o1) € (efg)])
F(oxh):{(o2) € {f.g.h}])
(S(x,y) «F(z.x),F(z.y) : D)

We will only consider Tp here.

Tet1=((F(o1.0):{{a:] € (ef.g}N.(F(o2.0):{{o:) € (f.gh)D).

Te12=T(Tpt 1)=TpT 1 U{(S(c,€):D).(S(£.0:D).(S(e.D)i{ (01,02} € {f.g)D)]

For any k>2, TpTk=Tp12. Therefore, TpT2 is the tixpoint. B
The next proposition states that the model state of a program is identical to the pre-fixpoints of NTp.

Proposition P3.2 Let P be a program. I is a model state of P iff yTp(T) CI.

Proof:

Only if. 1is a model state of P.
We first prove that Tp(T) cI. Then by the definition of model state, equ(Dcl, and hence yTp(D cl.
If an element (A;w) is in Tp(I), then there is is a ground instance of a clause in P, (A«B,,....B,;Wo),
and there are 1. elements, (B;;w,) 1<i<n, in I such that w=wyw,...w,#L. This implies that there is an
S-mapping such that w;[pyvl.#L for O<i<n. Since I is a model state of every extended clause in P,
and since wylpyla®Ll, Iy is a Herbrand model of Apy«(B,.....B,)py. Since w;lpy] =L for 1<i<n, Bpy
is in Iy. Therefore, Apy must be in Iy. By the definition of model state, we know that I contains all

" elements of HBNV(P) whose image is Apy, i.e.

V(A’;w’) € HBNV(P) (W [pvIs#LAA ' py=A = (A";W')e]))

In particular, if we let (A”;w") be (A;w), then all the premises of (*) would be satistied, and hence
(A;w)e L. Thatis, Te(Dcl.

if: NTe(DI
We prove that if To()cI then I is a model state of all the extended clauses of P. And since equ(Dcl,
Jcl for any I =, 1. Then, we would have I as a model state.
Let (AeB,,....B,;w,) be a ground instance of an extended clause C in P. Let V be an S-mapping
such that wolpyla=Ll. That is, Apy«(B,.....B.)py is a ground instance of Cy. Suppose there are n
elements, (B;;w;) 1<i<n, in I, such that w;[py],=L, i.e. Bpye€ Iy.
w;lpvla#L, for 0<i<n, implies that if w=wow...w,, then wlpy],=L. By the definition of Tp, (A;w) € Tx(I),
and hence, (A;w)cl. Thatis, Apy is in Iy, therefore, Iy is a Herbrand model of this ground instance
of clause Cy. This argument holds for any ground instance of Cy where C can be any extended
clause in P. Therefore, I is a model state of all extended clauses in P. Q.E.D.

in proving the following theorem we use a property of complete lattices and fixpoint operators ([12]),
namely,

Proposition P3.3 If L is a complete lattice, and T is an operator on this lattice, then the least fixpoint of T
is equal to the greatest lower bound (gib) ot the set {Ie LI T cI} |

We will also use the fact that for any continuous (hence monotonic) operator T, TTn cTT(n+1) for n20. This
is easily proven by induction on n.

Theorem T3.1 (Fixpoint Characterization of Least Model State) Let P be a program. Then
(1) the least model state, M}, of P equals the least fixpoint of the operator yTp, NTpT®.

-15- Fixpoint Semantics

(2) TpT(l)Im NTpT(I).

Proof:

Part 1: MY = M(K|K is a model state of P} = glb(K|K is a model state of P)
= gIb(K| NTp(K) K} = #p(nTp) = Tpla.

Part 2. We prove (2) by showing that for n20, TpTa =, NTpTn.

First, it is easy to prove that for m20, TpTmg NTptm: NTpT0=Tp?0, and Tptkc NTpTk implies

TpT(k+1) Tp(nTpTk) © equ(NTpTk) U Tp{NTpTk)=NTpT(k+1).

For n=0, NTpT0=Tp10, SO TpTOm, NTp?0.

Assume that for n<k, TpTn =g NTpTn.

In the appendix we si.ow that for any subset I of HBNV(P) and any n>0, if Tptn=,I and TpTngl,

then Tpl(n+1)=, Tp(I). Since TpT(k-1)c NTpT(k-1) and by the induction hypothesis,

TpT(k-1)my NTpT(k-1), we have TplTksy Tp(nTpT(k-1)). In any S-mapping V,

(NTpTR=(nTpT(k-1))y U (Tp(nTpT(k-1))y. Since NTpT(k-1)m, TpT(k-1) and Tp(nTpT(k-1))=m, Tplk,

we have (NTpTkh=(TpT(k-1))yw (TpTk)y. And since Tp is continuous, Tpt(k-1)cTptk. So,

(NTka)v-‘(Tka)v. and hence NTPTk.mTPTk- O.E.D.
Since the most useful information contained in a least model state of a program is the "images"” of that
model state in each possible world, (2) above tells us that it is adequate to caiculate the least fixpoint of
the Tp operator.

4. Procedural Semantics

In the previous sections, we have defined declarative semantics for programs with null values. This
includes both a model theoretic and a fixpoint characterization. In this section, we present a refutation pro-
cedure, called NSLD refutation, which is a generalization of SLD refutation with a discussion of how it
relates to the declarative semantics.

4.1. Resolution

Our procedural semantics is based on the concept of resolution. The following definitions are adapted
from the binary resolution for clauses in [3].

Definition D4.1 (Factor) Let C = (C;w) be an extended clause. If two or more literals (with the same sign)
C have a most general unifier u, and if wip], =L, then Cu = (Cpu;win),) is called a factorof C.]

Example 4.1

Let (C;w) be the extended clause (P(c),x) vP(z.f(y)) vQ(a,c);(0,] € (a.bc}). The first and second
lterals of C have an mgu pu={0,/zf(y)/x}. Since [u],=D, winla.=w=l. Hence, (Cuwlul,) =
P(o,.f(y)) v Q(ac);w) is a factor of (C;w). [|

Definition D4.2 (Binary Resolvent) Let P be a program. Let C, = (C,;u) and C, = (Cxv) be two extended
clauses such that there are no common variables in C, and C,. Let L, and L, be two literals in C, and C,,
respectively. If L, and —L, have a most general unifier 8, such that [6],uv= L, then we say that C, and C,
resolve on L, and L, with binary resolvent C = (C;w), where C=(C,0-L,0) U (C,0-1L,0) and w= (8] uv C,
and C, are called the parent clauses of C. []

Example 4.2

Consider the two extended clauses C, = (P(cy.f(y)) vQ(ac):u), where u is {(o;) € (abc]}, and C, =
(R(o2x) v—P(b,x).v), where v is {{c,) € (d.e.f]}. We see from example 2.10, that P(c,.f(y)) and
P(b,x) unifies with mgu 8= (b/o, f(y)/x}, and [8],uv={(0,} & (b).[0;) € (d.e.f}} = 1. Therefore, C, and
C, can resolve on P(a,.f(y)) with the binary resolvent

C = (Q(ac) vR(G2.f(y))i{{c1) € (b}.(03) € (dief)D)
[

Definition D4.3 (Resolvent) A resolvent of (parent) extended clauses (C;;w;) and (C,;wy), is one of the fol-
lowing binary resoivents:

1. a binary resolvent of (C;;w,) and (Ca;ws),

2. a binary resolvent of (C;w,) and a factor of (C;w»),

-16- Procedural Semantics

3. a binary resolvent of a factor of (C;;w;) and (C;;wo),
4. a binary resolvent of a factor of (C;;w,) and a factor of (Cy;w,),

Example 4.3

Let C, = (C;wy) be the extended clause (P(5),x) v P(z,f(y)) v Q(asc); (3,) € {abc)), and C, = (C;;w)
b2 the extended clause (R(o,,x) v—P(b,x);(0,} € (d.ef}). From example 4.1, we know that a factor
of C, is C,” = (P(0,.f(y)) vQ(ac)i{a,] € {abc)), and from the previous example, we know that a
binary resoivent of C,” and C, is C = (Q(a,c) vR(62.£(¥)):{{0,] € {b).(02) € (d.e.f}]). Therefore, Cis a
resolvent of C, and C,. u

The resolution theorem below states that a resolvent is a logical consequence of its parent clauses.

proving it, we need the following lemma.

Lemma L4.1 Let P be a program, and C = (C;w) be an extended clause. Let PI=N C.

(1) if Cu is a factor of C, then P}:NC;L

(2) If uis an assignment such that uw=L then PI=N(C;uw).

(3) If 0 is a substitution such that w[6],=L, then PI=N (Co;wl0]L).

Proof:

(1) Let V be an S-mapping such that wii] [pvla=L. Then wipyla=L. Since Pr-;,(c;w), this means that
for any model state I of P, Iyk=Cpy. Since Cu is just an instance of C, IyE=Cupy. Hence,
Pl-‘;,(Cu:wm]A)-

(2) Let V be an S-mapping such that uw{py]l,=L. Then w[pyl =L. Since Pl--ﬁ(c;w). this means that for
any model state I of P, Iyk=Cpy. Hence, P#N(C;uw).

(3) We need to prove that for any model state, 1, of P, and all S-mapping V such that (w[6])[pv]la=Ll, Iv
is a Herbrand model of Copy.
it (w81)[pvla=L then wlpyvla#L and since PI=N(C:w). Iy is a Herbrand model of Cpy. Therefore, Iv
is a Herbrand model of all ground instances of Cpy. To prove that Iy is a model of Cpy, we need to
prove that Iy is a model of all the ground instances of Copy. We can show this by proving that any
ground instance of Clpy is a ground instance of Cpy.

Let 0=0, L 0, where 6, contains variable substitutions only, and 6, contains S-constant substitutions
only. (w(6])[pvlaxL implies that [6].[pvia=l, and so 6,pv=py (see appendix) and therefore,
Bpv=0,pv and since 9, contains only variable substitutions and py contains only S-constant substi-
tutions, 8,pv=pw(B,pv). Hence, for any variable substitution y, (Cpy)y=(Cpv)8,pvY, and any ground
instance of Cpy is a ground instance of Cpy. Q.E.D.

Theorem T4.1 (Resolution Theorem) Let P be a program, and C,, C, be two extended clauses. If C is a

resolvent of C, and C,, and if Pi5, C, and Pk, C,,, then Pl5, C.
Proof:
From lemma L4.1(1), we know that if C u, and C,u, are factors of C, and C,, respectively, then
(T4.1.1) Pl=NC,u. and Pr-g‘c,u,
Therefore, in the following, we only show the proof for case (1) in the definition of resolvent, i.e. the
resolvent being a binary resolvent of C, and C,. The cases involving factor(s) of C, or C, or both,
are straight forward implication of (T4.1.1) and case (1).
Let C, be (Cisu)=(L; vL ;Vv...vLigu) and C, be (Cxv)=(L,vLy v ... vL;v) such that C, and
C, resolve on L, and L, with mgu 8 and resolvent C = (C;w). Then
C=(L;;v..vLigvLyVv..vL,)0 and w=[0],uv=Ll.
w=[0],,uv=L implies that [0],u=Ll and [6],v=Ll, and since Pi=N C, and PI-TV C,. from lemma L4.1(3),
Ph‘,(c.e;u[e],\) and P"_N (C;8;v[8],). Also, w=[B],uv=L, implies that, for any S-mapping V, if
[pvlaw= L then [pv] u(@la=.Ll, and (pyI\vi0]a2Ll. Therefore, for any model state M of P,
MyEC,8py and My=C,8py. We need to prove that My Cpy.
Assume that Cpy is false w.rt. My. Then L;;8pyv and L,0py are all false w.r.t. My, for 1<i<m
and 1sj<n. In order for Myk=C,0py and MyE=C,0py, we must have MyEL,8pv and MyEL,8pv.
Since 9 is an mgu of L, and -L,, L,8=—L,0. Therefore, both L,8py and L,8py=-L,08py are true

In

-17- Procedural Semantics

w.r.t. My, a contradiction. Hence, MyE=C, and M is a model state of C. Q.E.D.

4.2. NSLD-Refutation
NSLD-refutation is an extension of SLD-refutation to logic programs with null vaiues.

Deflnition D4.4 (NSLD-Derivation) Let P be a program and G=(«A,....,A;;w) be an extended goal
clause. An NSLD-derivation of P U {G} is a sequence of extended goal clauses G, G, ... where Go=G and
for all i20, G;,, is obtained from G; as follow:

(1) G;is (At Aimp A, § wp)

(2) Civi=(A¢B,,...Bq;u) is an extended program clause in P
(3) A8;=A8;,,, where 6,,, is an mgu of A and A,

@) wi=wi[6;,1]a=2 1

(5) Gin I8 ((AitrsAim1 By B Aimet e Air)Biat 3 Win1)

We call C;,; the input clause to the i+1-st step. |
Note that by (4) above, a sequence of extended goal clauses is an NSLD derivation only if the assignment
part of each clause is not L.

Definition D4.5 (NSLD-Refutation) Let P be a program, and G=(g;u) be an extended goal clause. An
NSLD-refutation of P L {G} is a finite NSLD-derivation of P U {G} such that G,=(Cu(8,]4...[8,]4), where 6,,
1<i<n, are the mgu's in the derivation. We say the refutation has length n. | |

Example 4.4
Consider the program in Example 2.11:

(1) (F(one):{{o1) € (efg}))
(2) (F(oa.f):{{c,) € {f.g.h]])
(3) (S(x.y) & F(zx),F(z.y) : D)

Let G be the goal («S(e.f) ; @). One possible NSLD-refutation is as follows:

Step 1: Gy is («S(e.f) ; D). We choose S(e.f) and use clause (3) to caiculate G,. The mgu for the two
atoms is 0, = {e/xfly}. Since there is no S-constant in 6,, w;=(6,],=0. And G, s
(«F(z,) F(z.f) ;D).

Step 2: Choose F(z,e) and use clause (1). The mgu is 8, = {c,/z}. This does not involve substitution
of S-constants, therefore, w, is still @. And G, is («F(0,.f) ; D).

Step 3: The only atom left is F(c;,f). We use clause (2). The mgu is 8, = {0,/0,}. wa=w,[08;], which
is {{01,02) € (f.g})}. And G, is the extended null clause (O; ws).

This is, therefore, an NSLD-refutation of length 3. | |

4.3. Soundness of NSLD-Resolution

We can (informally) demonstrate the soundness of NSLD-refutation as a direct result of the resolution
theorem. In the definition of NSLD-derivation, we see that if G,,, is obtained from G; by using an extended
clause C = (A«B,....B;;u) and an mgu 6,,,, then C and G; resolve on A with mgu 6;,, and resolvent G;,,.
Since C is a clause in' P, P|= C. Therefore, by the resolut:on theorem, if P|= G, then P|= G- Now let
Go=(eA,,...,A;w). By mductlon on the length of an NSLD-refutation for P u {Go} we wull have P|= Go
implies th (Cw). To put it another way, if we assume —(A;A...AA,), 1<i<n, is true in P, then we w:ll
derive the empty clause, i.e. a contradiction. Therefore, A; must all be true. Of course, to formally prove
this soundness result, we need to consider the substitutions obtained from the refutation. The following
definitions are useful in subsequent discussions.

Definition D4.6 (Computed Answer) Let P be a program, G=(g;u) be an extended goal. If there is an n-
length NSLD refutation of P U (G} with mgu’s 6,.,...,0,, then a computed answer substitution 0 for P L (G} is
the substitution obtained by restricting the variables in the composition 6,...6, to the variables that appear
in g, and a computed answer assignment is the assignment (8,],...(0,],. 2
In example 4.4 the computed answer substitution is e, and computer answer assignment is [8,]1,[062Ja[61]a

= BD(0,], = [8,]4 = {(01.0:) € (f.g)).

-18. Procedural Semantics

Now we formally state a result regarding the soundness of NSLD-refutation with respect to the declarative
semantics presented in the previous sections. The following lemmas are used in the proof of the sound-
ness theorem.

Lemma L4.2 Let P be a program, and C = (C;w) be an extended clause. Let Pl—? C.

(1) it uis an assignment such that uw=L then P|=N(C;uw).

(2) ! 8 is a substitution such that w{6],=L, then Pkgq(ce;w[elm.

Proof:
Let V be an S-mapping
(1) uwlpylazl
= wipylazl
= PyECpy (- PVhN(C;w))
= P}=N (C;uw).
(2) wiBlalpviazL
= wipylazl
= PyECpv = Py=Copy
(. pv only invoives substituting S-constants for constants.)
= P|=-;{ (Co;w([6],). QE.D.

Lemma L4.3 Let P be a program. Then
(1) (a) If Pk, (AAB; w) then Pk (A; w) and Pl (B; w)
() If Pt= (A;u)and Pt: @B; w) and uw=Ll then Pl= (AAB;uw)
(2) Pl= (A(-—B w) and P|= (B; w) implies P|= (A;w)
Prooi
(1a) Pz (AAB;w)
= for any model state I of P, and for any S-mapping V such that wpy=L, Ivi=(A A B)py
= for any model state [of P, and for any S-mapping V such that woy=L, Iyk= Apy and Iy=Bpy
=3Pl= (Aw)andP‘= B:w).
(1b) uwatJ. and Pl= (A; u). Pl= B;:w)
=» for any S-mappmg v, |f uwpy2l then upy+l and wpystL. And for any model state I of P, and any
S-mapping V* such that upy-#.L and wpy-#L, I\~ = Apy» and Iy =By
= for any model state I of P and for any S-mapping V such that uvpyL, Iyl Apy ABpy
= P|= (AABuv).
(2) PI= (A(—B,w) and PI= (B;w)
n'ffor any model state 1 of P, and for any S-mapping V such that wpyv+L, Ivl=(A«B)py and Iv=Bpy
implies for any model state I of P, and for any S-mapping V such that wpveL, IvE Apy
ift lf’}=N (Asw).
Q.E.D.

Theorem T4.2 (Soundness) Let P be a definite program, and G=(«C;u) be an extended goal clause. If
there is an NSLD-refutation for P U (G} with computed answer substitution & and computed answer
assignment w, then Pt.—k(ce;uw).
Proof:
Let G=(«Cu)=(<A,.....Ag:u). Let the P U {G] has an NSLD refutation with length n, and mgu’s
0;.....0,. Then w=[0,1,...[0,].. We prove the theorem by induction on the length n.
n=1: C=A, 6=90,, w=[0,], and there is (A;v) in P such that A8,=A,8, and u{8], L. Since (A;v) is an
extended program clause in P, PI-N(A;Q). By lemma L4.2(2), P|=N(Ae,;c[e,],‘). Since
u(8,]Ja=L, by lemma L4.2(1), Pt-“‘(Ael;u[e,],.) =(A9;;uw) =(C8;uw)
n<k: Assume that the theorem is true for n<k.
n=k: Let the first input clause be (A« B;....,B,;v) in P and the atom chosen from G, be A; and 6, is
such that A0,=A,0, and u(0,],#L. Then G, is
(Cyiwy) = ((A},.ciAiny, By Bp,Ay -, Am)01:u[01]4).

-19- Procedural Semantics

Gi,...G, is a length n—1 NSLD-refutation for P u {G,}, with mgu’s 6,.....6,. By the induction
hypothesis, PI-;‘ (C163...05;W; [63]4...[0,)0)-

By lemma L4.3(1), Pk ((B1Bp8;0,.0,Wi(6]x..10,]0=((B,....B)8uw). Since
(AeBy,...Byv) is an extended clause in P, P}: (A¢B;,...B,@). By lemma L4.2(1),
P}: (AeB;,....Byu). Since uw=u[6]4...[0,]a=L, by Iemrna L4.2(1), PI-= ((A<B,.....By)8uw). So
by Iemma L4.3(2), Pl= (AB;uw). Also, by lemma L4.3(1), P}= ((Aq,.. .A,.,.A,,,, LAL)Ouw). So,
P, (Arn A Suw). Q.E.D.

Example 4.5

Consider the refutation for the goal clause (S(e.f) ; @) in Example 4.4. The computed answer sub-
stitution is 6 =0,0,08,=(e/x.f/y,0,/2,0,/0,} with the variables restricted to those in the goal. Since there
is no variable in the goal clause, the resulting substitution is just 8, = {c-/c,).

Now (g6 ;w([8,]14[6,1A[01]4) = (S(e.f)i{{o1.0,) € (f.g)}), which is an element in TpTw (see Example
3.2). Therefore, 8 is a correct answer substitution. n

4.4. Completeness of NSLD-Resolution

In this section we prove some completeness results of NSLD refutation. The main technique used in the
proofs is combining refutations to form a larger one. However, the presence of S-constants complicates
the proof in the following way. Without S-constants, the (SLD) refutation of a ground goal will always yield
an answer substitution that is the identity substitution e, and the refutations of two ground atoms can be
easily combined to form a refutation for the conjunction of the two atoms. However, if there are S-
constants in a ground goal, an NSLD refutation may produce an answer substitution that contains terms of
the form c/o or 0,/0,, where c is a constant and ¢,6,,0, are S-constants. Therefore, we need the following
lemma.

Lemma L4.4 Let P be a program with null values. Let (B;;w), 1<i<n, be extended atoms in HBNV(P). i

Py {(«B;w)} has an NSLD-refutation with computed answer substitution ¢ and computed answer

assignment w, for 1<i<n, then P U ((«B;.....B,;w)} also has an NSLD-refutation with computed answer -

substitution e and computed answer assignment w.

Proof:

n=1: trivial.

n>1: Let Gy be («By,....B,;w). Let the NSLD-refutation for P U ((«B;;w)] consists of the sequence of
goals (Gip.....Gim), the sequence of input clauses (C;;.....Cim), and the sequence of mgu’s (6;,...,8i,),
where G;=(eg;;:w;), for 0<sj<m;, and g¢=B;, and g,=0. We can construct a sequence of goals
(Gy,....Gm) such that Gj=(¢«~g;;,b;;ww;), where b; is the (ground) formula (By,....Bi-1,Bis1seesBo)Bis...8;5
Since w=w;;...w;, and since each of the B,, 1<k<n, is ground, By0;;...0:n=By[Wi1]la...[Wimi]A=Bx[W]s.
So, Gy, would be the goal («(B,.....B,)[wls;w). For each B,, 1sk<n, (By;w) is in HBNV(P), hence
By[wls=B;. Therefore, Gn=(¢B4.....Bic1.Bi+1,-..Bn;W). Since there are only n-1 atoms in G, we can
use the induction hypothesis. Hence, G, has an NSLD-refutation. QED.

The following property of the fixpoint operator T, makes the proof of completeness much easier.

Proposition P4.1 Let P be a program with null vaiues. Then TpTn can be reformulated as Tpt1=T(D)
TpTn={(A;w) | (A« By,...,B,;w)e Gnd(P), and there are (B;;w).....(B.;w) in TpT(n—1)), i>1.
Proof:
By the definition of Tp, (A;w) e Tpta iff there is (A«B,,...B,) in Gnd(P) and there are (B1;wy) ,...,
(Ba:wy) in TpT(n—1) such that w=w,...w, and B{wls=B; for 1<i<n.
It is easy to prove by induction that TpTk is closed under ground instance, i.e. if (B;v)e TpTk
for some k then any ground instance of (B;v) is also in TpTk.
Since B{[w]s is ground, and from the appendix we know that [[w]s]a=w, (B{Iwls;w,w) =(B;;w) is
a ground instance of (B;w,). Therefore, (B;;w)e Tpt(n-1). Q.E.D.

Note that the above reformulation only applies to the upward powers of Tp, and not to the definition of Tp
itself.

-20- Procedural Semantics

Theorem T4.3 (Completeness) Let P be a program with null values. Let (A;w) be an element in Tptw, then

P u ((«A;w)} has an NSLD-refutation, such that the computed answer substitution is & and the computed

answer assignment is w.

Proof:

Let (A;w) be an element in TpTn. We prove by induction on n.

n=1: (A;w) € TpTl. (Ac—;w) € Gnd(P). That is, there is a unit clause (A’ «;u) in P and a pair of substitu-
tions 6, and 6,, where 8, contains only variable substitutions and 9, contains only S-constant substi-
tutions, such that A’9,6,=A and [0,],=w.
Since A’6,6,=A0,(6,0,)=A, and [w]s=9,, therefore, there is an NSLD-refutation of length 1 where
the unifier is 6,8,.

n>1: Let (A;w) be an element in Tp?n. Then there is (AeB,,....Bo;w) € Gnd(P), such that for 1<i<m,
(B.:w) € Tp(n—1). By the definition of Gnd(P), there exist an extended clause C=(A’«Bj,...BL:u) in
P, a variable substitution 6,, and an S-constant substitution 9, such that [8,],=w and A’9,6,=A, and
B{0,0,=B; for 1<i<m.
A’6,8,=A’0,(0,6)=A and B’9,0,=B’6,(8,0,)=B; for 1<i<m. Therefore, A and the head of the extended
clause C.,=(A’[wlseBi[wis,....Balwlsiuw)=(A’0,B16,,....B,0,;w) unifies with mgu 6,0,. If we let
Go=(«~A;w), and use C as the input clause, then we have G;=(«(B}86,.....B50,)(6,6,);[0,],)=
(eBi,....Bomw). Since (B;w)e Tpt(n-1), by the induction hypothesis, each (B;w) has an NSLD-
refutation with computed answer substitution € and computed answer assignment w. Using lemma
L4.4, we have our resutt. Q.E.D.

Furthermore, from theorem T3.1(2), we have the following (weak) completeness regarding nTp.

Theorem T4.4 (Weak Completeness) Let P be a program with null values. Let (A;w) be an element in MY,
then there are m NSLD-refutation, m21, for P U ((«A;w)} with computed answer substitutions 6,,...,.8_,
and computed answer assignments uy,...,Uy, Such that {(A;w)} =, lsgﬁ)ﬂ {(AB;wuy)). 2

This result states that NSLD can calculate the images for every element in M}, but it might not be able to
calculate the elements directly. For example, if a program contains the following clauses:
PE—QxYR(Y):D), (Q@o){{cle€ (becl), ROB:D) and (R(c):D). Then (P(a);@) is in M. However,
(«P(a);2) only have two NSLD refutalions, with computed answer assignments w,={ {c}e (b}} and
w={ (0] € (c} }, respectively. Itis easy to see that {(P(a);D)} =, {(P(a);w,),(P(a);w)}.

5. Conclusion

In this paper, we consider the problems of representing, in definite logic programs, a class of indefinite
information called null values, and of computing answers to queries in such programs.

To achieve this, we add to first order logic a new type of objects called S-constants. Together with
other extensions, these S-constants are used to formulate the incompleteness represented by null values.

Wae then defined an extension to Herbrand modeis that gives our logic a model-theoretic semantics.
Two operators are then defined to give a fixpoint characterization of this same semantics. One of the
operator has a least fixpoint that corresponds exactly to the model semantics. The other operator captures
the essential information contained in the model semantics and is much easier to compute than the first
one. A proot procedure that is very similar in form to SLD resolution is also developed, with the proper
soundness and completeness results.

Future work is to develop an appropriate semantics and proof procedure for inferring negative information
from a program that contains null vaiues. We then plan to investigate how to extend these work on null
values to general Horn programs, i.e. programs that allow negative literals in the rule bodies.

Acknowledgement

We are grateful to Dr. John Grant, Dr. Arcot Rajasekar and Jorge Lobo for their helpful suggestions.

This work is done under the financial support of National Science Foundation (grant no. IRI-86-09170),
the Army Research Office (grant no. DAAL-03-88-K0087), and the Air Force Office of Scientific Research
(grant no. AFOSR-88-0152).

-21- Appendix A.

Appendix A.

In the proof of the following proposition, we use the following property of a directed set: {([12))

If X is a directed subset of a complete lattice, and if {A,...., A} < lub(X) then {A,....A) < I for some

Ie X. (Assume that A; e [; for some [; in X, then since X is directed, there is a set I in X such that \U L],
1<isn

and hence {A},...,A;; < L)

Theorem TA.1 (Continuity of Tp and NTp) Given a program P, the Tp and the nNTp operators are continu-
ous.
Proof:
We first prove the continuity of Tp. Let X be a directed subset of the power set of HBNV(P).
(A;w) € Tp{lub(X))
iff (A«B,,....B.;Wo) is a ground instance of an extended clause in P and (B;;w;) € lub(X), for 1<i<n,
and w=wow;...w,=L

iffthere is an I in X such that (B;;wy) € I, for 1<i<n.

iff (A;w) e Tp(I) forsome le X

iff(A;w)e IL{(TpD=lub(Tp(X)).

[4

Next, since X is directed, any finite subset {I;,....I,} of X has an upper bound J in X, i.e. \ULglJ.
1€isa -

Therefore,
equ(lngSnli) cequl) U (equ(d) |J € X)=lublequ(X)),
and
equlub(X)) < lub(equ(X)).
Also, for any I and J, equ(Du equ(J) cequd L J), hence lubequ(X)) cequlub(X)). So, equ is continu-
ous, and so is NTp. Q.ED.

Proposition PA.1 (Properties of Tp) Let P be a program

(1) For any S-mapping V, an atom A is in (TpTn)y iff there is an extended atom (A;w) in TpTn such that

W[pV]A$.L.

(2) i Iis a subset of HBNV(P) such that I=, TpTn and Tptn I then TpT(n+1) = Tp().

Proof:

Part I: When n=1, if A is in (TpT1)y then there is (A’;w’) in TpTl such that w’[py],#L and A’py=A.
Therefore, there is a ground instance (A”;w,) of a program clause C in P, such that w'=w,. This
means that (A’pviwglpvld) is also a ground instance of C, since wolpvla#l. Therefore,
(A’ pviw,lpvl)=(Asw) € TpT1.

Assume that (1) is true for n<k. We want to show that it also holds for n=k.

if Ae (TpTk)y, then there is (A”;w’) in TpTn such that w’ [pyla=L and A’ py=A. By definition of TpTn,
there is a program clause C in P that has a ground instance (A’ «B,,....B,;wo) such that there are
Biw) € TpT(k-1), 1<i<n, and w’'=wow;..wzL. Since w’[pyvl =L, wilpvlazLl for 0<isn. Therefore,
Bipv € (Tp(k-1))y, 1<i<n, and (A’ pv«B;py.....Bpv;Wolpvla) is also a ground instance of C. From the
induction hypothesis, there are [Bpviu)e Tpf(k-1), 1<i<n, such that ulpyl,=L. Therefore,
w=wolpy]aty...Up2l, and (A;w)=(A"pv;w) e TpTk.

Part [I: We need to prove that for any S-mapping V, (TpT(n+1))v=(Tp(D))v.

Since Tp is continuous, TpT(n+1) ¢ Te(l), and hence (TpT(n+1))y S (Tp(D)y.

if Ae (Tp(I))v then there is (A”;w’) in Tp(T) such that w’[pyv]a#L and A’pv=A. Therefore, there is a
clause C in P that has a ground instance (A’«B,....By;wa) and (B;wpe I, 1<i<n, such that
w =wow,.. w2 L. Since w’[pyl 2L, wilpvla=l, 0<i<n. So Bjpye Iy. Since Tptnm, I, Bpve (TpTn)y.
By (1), there are (Bpy:iw)e Tpln, I<i<n, such that wlpylazrl. Since wglpvia=l,
(A’ pveBypv....B.pviwglpvla) is also a ground instance of C. Also, w=wy[pylaw;..w,2L. Hence
(A’ prw)=(A:w) € Tp(n+1), and (Tp(D)v < (Tp(n+1))y. Q.E.D.

-22- Appendix A.

Proposition PA.2 (Properties of Assignments and Substitutions) Let P be a program, and let 6 be an appli-
cable substitution w.r.t. P. Let 6=0, U 8,, where 8, is the part of 6 that invoives only variable substitutions,
and 9, is the part that contains only S-constant substitutions. Let V be an S-mapping such that
(6lalpvia=Ll. Then 6py=90,pv.
Proof:
(6]a=[8,]a, -~ [8,JalpviaLl. Assume that py is {c,/0.....co/T,} and that 8, is {t,/vy,....tn/Vz}, Where v; is
one of o;, I<i<Sm and 1sjsn. 6,pv IS {L1Pv/V1. PV C1/01...C/O,) With any redundant terms
removed. In order for 8,pv=pv, we need to prove that for 1<i<m, either ypy=v; SO that ypv/v; is
removed, or tpy=c;, S0 that upv/v; and ¢;/c; are identical. Since py only substitutes S-constants by
constants, the first situation does not occur. We prove the second one by contradiction.
Assume that there is an i, 1<i<m, such that ypy#c;. There are two cases to consider.
Case 1: is some constant c. tpv=c. If c#c;, then ran(c;,(8,]4) N ran(c,.[pvIA)=3, .. [6]alpvia=L.
Case 2: y; is some S-constant o, such that j<p. tpy=c,. If c;;, then, because t/v=0,/c;€ 6,,
Cla(c;,[6,]A=Cla(0,,[8J0) and ran(0;[6Ja)=ran(c,.[6,])). On the other hand,
ran(dp,.[pvla) N ran(o;lpvld) =(cp) N (¢}=D. These facts implies that [6,][pv]a=L. Q.E.D.

REFERENCES

1. Biskup, J. A Formal Approach to Null Values in Database Relations, Advances in Data Base
Theory, vol. 1, H. Gallaire, J. Minker, and J. M. Nicolas (eds.), Plenum Press, New York, 1981, pp.
299-341.

2. Biskup, J. A Foundation of Codd's Relational Maybe-operations, XP2 Work-shop on Relational
Database Theory (University Park, June). Pennsylvania State Univ., 1981.

3. CHANG, C. L.AND R. C. T. LEE Symbolic Logic and Mechanical Theorem Proving, Academic Press,
New York, 1973.

4. Copp, E. F. Understanding Relations (Installment #7), FDT Bull. of ACM-SIGMOD 7, 3-4 (Dec.
1975) , pp. 23-28.

5. CoDD, E. F. Extending the Database Relational Model to Capture More Meaning, ACM Trans. Data-
base Systems 4, 4 (Dec. 1979) , pp. 397-434.

6. GRANT, J. Null Values in a Relational Data Base, Information Processing Letters 6,5 (Oct. 1977),

pp. 156-157.

. GRANT, J. AND J. MINKER Answering Queries in Indefinite Databases and the Null Vaiue Probiem,
Advances in Computing Research 3 (1986) , pp. 247-267.

. IMIELINSKI, T. AND W. Lipskl Incomplete Information in Relational Databases, J. ACM 31, 4 (Oct.
1984) , pp. 761-791.

. IMIELINSKI, T. AND K. VADAPARTY Complexity of Query Processing in Databases with OR-Objects,
Proceedings of the 8th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Sys-
tems (Philadelphia, PA, March 29-31). ACM Press, 1989, pp. 51-65.

10. Lassez, J.L., M.J. MAHER, AND K. MARRIOTT Unification Revisited, Foundations of Deductive Data-

bases and Logic Programming, J. Minker (ed.), Morgan Kaufmann, 1988 .

11. Lipski, W. On Semantic Issues Connected with Incomplete Information Databases, ACM Trans.
Database Systems 4, 3 (Sept. 1979) , pp. 262-296.

12. LLovo, J. W. Foundations of Logic Programming, Springer-Verlag, New York, 1984,

13. ReiTER, R. Towards a logical reconstruction of relational databas2 theory, Conceptual Modelling,
Perspectives from Artificial Intelligence, Databases and Programming Languages, M. L. Brodie, J.
Myiopoulos, and J. Schmidt (eds.), Springer-Verlag New York, 1984 , pp. 191-233.

14. REITER, R. A Sound and Sometimes Complete Query Evaluation Algorithm for Relational Data-
bases with Null Values, J. ACM 33, 2 (April 1986) , pp. 349-370.

15. SikLossy, L. Efficient Query Evaluation in Relational Databases with Missing Values, Information
Processing Letters 13, 4-5 (1981) , pp. 160-163.

16. VARDI, M. Querying Logical Databases, Proceedings of the 4th ACM SIGACT-SIGMOD Symposium
on Principles of Database Systems (Portland, OR, Mar. 25-27). ACM, New York, 1985, pp. 57-65.

©w o

17.

18.

-23- REFERENCE

YUAN, L. Y.AND D. A. CHIANG A Sound and Complete Query Evaluation Algorithm for Relational
Databases with Null Values, Proceedings of the ACM SIGMOD International Conference on Manage-
ment of Data (Chicago, June). ACM, New York, 1988, pp. 74-81.

ZANIoLo, C. Database Relations with Null Values, J. Comp. Sys. Sci. 28 (1984) , pp. 142-166.

