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ABSTRACT

Null values are a special kind of incomplete Information that appear in database
applications. There are several kinds of null values. The one modeled in this paper are
those that represent entities that are known to exist but whose exact values are only
known to be in a finite subset of constants in a given domain. For example, if we know
that Paul is the fraternal grandfather of John, then we know that there is someone who is
the father of John and a child of Paul. If we further assume that there are only finitely
many individuals, then this someone can be represented by the kind of null value men-
tioned here.

In this paper we incorporate these null values into definite programs by using a
new kind of symbols called S-constants. We present model theoretic, proof theoretic and
fixpoint semantics for such programs. In the above example, given the additional
knowledge that Mike is the father of Joe, these semantics allow us to answer the ques-
tion We John and Joe brothers?" by "Yes, if the (unknown) father of John is Mike."

The proposed semantics reduce to the usual semantics for definite programs
(e.g. [10] ) when there are no null values present.

Keywords: incomplete information, null values, definite program semantics
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Null Values in Definite Programs

Yuan Liu' and Jack Minker .2

Department of Computer Science' and
Institute for Advanced Computer Studies2

University of Maryland
College Park, MD 20742

1. Introduction
A particular kind of incomplete information, called null values, often emerges in relational database appli-
cations. These represent the information "entity exists but value at present unknown". Consider the fol-
lowing example,

Let database DB contain a single relation Father(F,S) where the domains of the attributes F and
S are both male names. A tuple (fs) is in the relation iff f is the father of s and s is a son of f.
Assume that we have the tuple (John,Smith) in the database. We want to record the knowledge
that Jim is the grandfather of Dave, i.e. someone is the father of Dave and a son of Jim, whose
identity is unknown at this time. We also know that Joe has a son, but we do not know his
name.

In this example, the unknown son of Jim, the father of Dave and the unknown son of Joe are null values.
These null values can be subdivided into two subtly different categories. The first contains those null

values whose actual values can only be in a known domain. For instance, in the above example if we
know that D is the set of all male names, then we know that Joe's son must be one of them, i.e. we can
write 'Faher(Joe,CD) A (e D', where o) represents a null value.

This kind of null values are similar to what is termed OR-object in [8] which are used to denote a
special class of disjunctive facts in relational databases. Lipski's incomplete information [9] is a generali-
zation of such null values.

The second category are those null values whose actual values can be either in a set of known con-
stants or can be entirely new constants. The null values in Reiter's work [12 fall into this category.

Most of the previous work on query answering in databases with null values, deal with extensional
databases only, i.e. there are no deductive rules. Some of these try to extend the relational algebra opera-
tors to accommodate the appearance of null values, e.g. [1,2,3,4,5,7,13,16. Others use a proof-
theoretic approach which treats databases as sets of first order theories and queries as theorems to be
derived from these theories, e.g. [11,12,15,6,14].

In this paper, we consider the problem of adding to a definite program, Incomplete information
represented by the first kind of null values. One way of achieving this is to use disjunctive clauses. For
example, in [6], the information 'the unknown son of Joe is one of Dave, Mike or Smith' is represented by
the clause 'Father(JoeDave) v Father(Joe>Mke) v Fader(Joe,Smith)'. However, this means that we need to
deal with the full complexity of disjunctive logic programs, although the clauses we use are just a very spe-
cial subset of disjunctive clauses.

Instead, we preserve the definiteness of our clauses by introducing a new kind of symbol, called an
S-constant, to represent these null values. This also allows us to define a refutation procedure that has
the appearance of the SLD refutation. In the next section, we present background information. In the three
following sections, we present, respectively, model semantics, fixpoint semantics, and procedural seman-
tics for definite programs with null values. Finally, we discuss our results and future work.
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1.1. Language
Two different ways have been described to model null values. One method uses a single symbol to
represent any null value, e.g. [5]. In this method, whether or not two null values are equal is unknown. In
this representation the database DB, given above, would have the following tuples In relation Faher:
(John,Smith), (Jin,o), (coDave) and (Joe,ca), where co represents null values. The other methods use
indexed null values (e.g. [14 D where different symbols are used to represent null values, and unlike the
first method, whenever two null values are represented by the same symbol they are equal. In this
representation the database DB, given above, would be represented as Faher,(olSmith), Faher(Jimo),
Fathez(wJDave), and Faihcr(Joe,oW,). Whether or not two null values represented by different symbols, e.g.
o), and w2 above, are equal to each other is unknown.

The latter method is more expressive than the former because it can be used to record more Infor-
mation about null values, for nistance that one unknown entity (the father of Dave) Is the same as another
(the unknown son of Jim), while the former method cannot. Also, the former can be viewed as a special
case of the latter where every unknown value is represented by a distinct Indexed null. Therefore, this
latter approach is adopted here.

Our language is basically the same as that of first order logic (with equality symbol), except that we
have a new kind of symbol called an S-consta usually written with a lower case Greek letter. S-
constants are used to represent null values. Other than the definition of terms, the definitions for con-
structs like atoms or formulas exactly parallel those for a first order language.

Definition D1.1 (Formula) A language L, contains symbols for the following: constants (e.g. a, b, c), S-
constants (e.g. a,, r), function symbols (e.g. f, g), variables (e.g. x, y, z), predicates (e.g. P, Q, R), con-
nectives (-, V, A, -), quantifiers (V and 3), and punctuations (', ", "-).

* A term is defined inductively as follows:
- A variable is a term

- A constant is a term
- An S-constant is a term
- If f is an n-ary function and t .... t, are terms, then f(c1,.... 0 is a term. If nl, then it is called afunc-

tional term.
* Aformula is defined inductively as follows:

- If P is an n-ary predicate, and t,...j, are terms, then P(t1,..., 4) is a formula. P(t .... is also called
an atom.

- F and G are forrr.'as, then -,F, FAG, Fv G, F -- G are also formulas.
- F is a formula and x is a variable, then VxF and 3xF are also formulas.

* A formula (term) is ground if it contains no variable. A ground Instance of an atom A is obtained by
substituting each variable in A by a ground term. U

In order to model null values whose actual values are in some known domains, we attach a specification
of these domains to each formula in a program.

Definition D1.2 (Program) Let L be a language with constants D, and S-constants 1.
e An extended program clause, is a two-tuple (C;R). C is a formula of the form A- B+,...,B, where m>O, A

and Bj, lsj5m, are atoms. R is a set of the form {{oa}eDl,... Ic,) Dj where for 1!in, a is an S-
constant that appears in C and Di is a non-empty subset of D. We call 'A', 'Bi,...,Bi' and R', respec-
tively, the head, the body, and the domain specifcation of the extended program clause. Di is called the
range of ai in R. If there is no S-constant in a clause, then R=0.

* A program P is a set of extended program clauses that satisfy the following: if an S-constant, or, appears
in two different clauses, (C1;Rl) and (C2;R2). then (Y has the same range in R, and R2. Let this range be
r.. We say r. is the range of a in program P. We will also call r. the Initial range of r. U
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Example 1.1
Let a and q 2 be two S-constants and P be a program with the following extended program clauses:

(Father(ajohn);([(o) !g (Mike.SmithJoe))) (E1.1.1)
(Faher(Paul,a1);({a') g {Mike,Smith,Joe)}) (E1.1.2)
(Faher(a21jones);( (q2) g (Dave,Mike,Smith))) (El.1.3)
(Fazher(DavePaul);0) (El.1.4)
(Sib(xy) +- Father(zx),Faher(zy);0) (E1.1.5)

Note that a, has the range (MikeSmithJoe), and 0Y2 the range (Dave,MikeSmith}. This means that
the possible values of c1 are Mike, Smith or Joe and those of a2 are Dave, Mike or Smith. a

Informally, (El .1.1) and (E1.1.2) together specify that someone, represented here by cr, is both the father
of John and the son of Paul, and the domain specifications say that this *someone" can only be Mike, Smith
or Joe. On the other hand, (El .1.3) says that someone, represented by O2, is the father of Jones, and the
domain specification restricts his identity to Dave, Mike or Smith. (El .1.4) is an assertion that Dave is the
father of Paul with no conditions associated with the statement.

There are two things to note. The first is that the "meaning* of a, is determined by all the assertions
that contain 0i, i.e. (El.1.1) and (E1.1.2). The second is that although a, and q2 are two different S-
constants, they may in fact be the same person since there are common elements, namely Mike and
Smith, in their ranges. However, the information contained in the program is not sufficient to determine
this equality one way or the other. We will formalize this discussion about the meaning of S-constants in
later sections.
Next, we define the notion of a substitution as follows:

Definition D1.3 (Substitudon) Let there be an arbitrary ordering of S-constants so that they are
represented by a,, qT2 .... etc, where a< caj iff ikj. A substitudon 0 is a finite set of the form (tj/vj,...,,/vj,
where each vi is either a variable or an S-constant, and vi vj for ij. Each vi does not appear in the
corresponding t. Also, if vi Is a vanable, then t is an arbitrary term, and if v, is an S-constant, say a,, then
k can only be either a (normal) constant or another S-constant ar such that a<x<a,. The special substitu-
tion e= {), is called the Identy substiftudon.
The application of a substitution 8 to a formula (or a term) H, written as HO, is the formula (term) obtained
by simultaneously replacing all the v1's in H by their corresponding t's. U
The reason for imposing an arbitrary ordering on the S-constants will be made clear in the next section.

In the above definition, we do not allow substitutions of the form (t1/a) where a is an S-constant and t
is a ftnctional term other than a constant. This is because we consider function symbols to be distinct from
constants, and since S-constants only have constants as their values, we do not consider S-constants to
be replaceable by functional terms.
Composition of substitutions is defined in the usual way.

Definition D1.4 (Composidon of Subsdtudons) Let 8 - {s/u,...,s=Ju.) and p - {t/vj,...t,jvj be substitutions.
The composition, Op, of 8 and p is the substitution obtained from the set (stpAi,...,s p/u.,tl/v..... tlv. by
deleting any item sipA for which tk-=sp and deleting any item Vvj for which vj e (u t....u=}. U

2. Model Semantics
For logic programs without null values, the Herbrand Base of a program is an integral part of their declara-
tive semantics. Therefore, in order to define a formal semantics for logic programs with null values we
extend the classical Herbrand Base to include S-constants.

2.1. Herbrand Base with Null Values
First, we have the following straightforward extension to the Herbrand Base:

Definition D2.1 (Null-Extended Herbrand Universe and Quasi Herbrand Base) Let P be a program, and Z be
the set of S-constants in P.
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" The Herbrand Universe with null values NUp is the set of all ground terms that can be formed from con-
stants, S-constants, and functions appearing in P. If no constant appears in P then we add an arbitrary
constant, say a, to form ground terms.

" The quasi-Herbrand Base qHB(P) is the set
(P(cl,...,c) I P is an n-ary predicate symbol in P ,c , i=l,...,n, are elements in NUP} i

We note that when there is no S-constant, i.e. X= 0, the quasi Herbrand Base reduces to the (classical)
Herbrand Base.

The quasi Herbrand Base alone is not adequate for our purpose because it contains no information
about the incompleteness of the S-constants. The following example illustrates what additional informa-
tion we need by showing how we might want to respond to queries on a program containing such informa-
tion. It exemplifies the kind of information we want to derive from a program.

Example 2.1
Consider the program in Example 1.1, which consists of the following:

(Father(oJohn); (a) i (MikeSmithJoe}})
(Father(Pa,,Io ); {{aj} (Mike, Smithoe}))

(Father(0 2,George); (an2) g (Dave,MikeSmith)}))
(Father(DavePaul); 0)
(Sib(x,y) +- Father(zx),.Father(z,y); 0)

where a1 and q 2 are S-constants.
In order for George and Paul to be siblings, q 2 must be equal to Dave. This is possible since

Dave is in the range of q 2. On the other hand, for John and Paul to be siblings, o1 has to be Dave.
However, this is in conflict with the information in the program since the range of a, specifies that it
can only be one of Mike, Smith or Joe. Now consider John and George. In order for them to be
siblings, o1 and 02 must have the same value(s). This is possible since there are common ele-
ments, Mike and Smith, in their ranges. N

The first two queries in the above example involve restricting the range of an S-constant to a single ele-
ment; while the third one requires that we reconcile the values of two S-constants.

None of these queries can be answered with a definite "yes" or "no", even though none of them con-
tains any S-constant. The restrictions we obtained, i.e. "a1 = Dave" or "o =a2", must be recorded somehow
so as to give a proper answer. That is, John and Paul are siblings if a, is Dave, and John and George are
siblings if o is the same as a2. Another reason for recording these restrictions which may not be apparent
from the above example is that we may need them in further derivations.

Example 2.2
Let us add the extended program clause "(SR(x,y,u,v)-Fazher(xy),Sib(uv); 0)" to the program in
the above example. Then in order for SR(Paul,MikeJohnGeorge) to be true, Paul must be the father
of Mike and John must be a sibling of George. As we see in the above example, John and George
are siblings under the condition that a1=a 2. On the other hand, for Paul to be Mike's father, -a must
be Mike (by (E2.1.2)). Therefore, the tuple (PaulMike,John,George) satisfies the relation SR if both
of these conditions are true, i.e. a, = c2 and a1 = Mike.

Similarly, for the tuple (PauljoeJohn,George) to be in relation SR, Paul must be the father of Joe
and John must be a sibling of George. As before, for Sib(JohnGeorge) to be true, oz must be equal to
02 while for Father(Pauljoe) to be true, az must be Joe. Here, however, we see that the condition
o1 = 02 A a,= Joe can not be satisfied, because a1 =02 implies that both a1 and 02 can only be either
Mike or Smith, therefore, although Joe is in the original range of ol, the condition a1 =02 precludes it
from the values a1 can take. U

This example illustrates two points. First, we must record the conditions necessary to derive an answer,
e.g. the condition a1=a 2 for deriving Sib(JohnGeorge). In addition, we must also record how these condi-
tions restrict the ranges of the S-constants involved in order to detect an unsatisfiable condition.

To achieve this, we generalize the domain specifications attached to program clauses such that to
each ground atoms in the quasi-Herbrand base of a program, we attach a set of specifications of the form
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S g V, where S is a set of S-constants, and V is a non-empty set of (normal) constants. Sr. V represents
the condition that all the S-constants In S are equal to one another, and V is the set of common values
they can take.

For instance, in the example concerning SR(PaulMikejohnGeorge), the set of specifications attached
to the atom Father(PaulMike) would be ( (Ol] F (Mike) ), which means that a, can only take the value Mike,
and the specification attached to SibtohnGeorge) would be ( [a1 o:) ; (MikeSmith) ), meaning that a, and
q2 must have the same values and these values can only be either Mike or Smith. The specification
attached to SR(PauIM eJohnGeorge) should be { (1,2) 1 (Mike)). Similarly, the specification attached
to Fazher(PaulJoe) would be { ((,) F (Joe)). We see that there are no values that a1 can take to satisfy
both this specification and the one attached to Sib(JohnGeorge). Therefore the two conditions are not
reconcilable.

Formally, we have

Definition D2.2 (Assignment) Let P be a program. Let Z - {(a1,...,F} be the set of S-constants in P. D be
the set of constants in P, and the range of oi in P be r,.

An assignment is a set of the form {Sz Vl,...,S,g VJ where Sir.Z and VicD for 1L. ., and Sin Sj=O
for 1Lj.n, i*j. We also define . as a special assignment.
An assignment w is strict if it does not contain elements of the form {(a) r., where a is any S-constant,
and if it satisfies the condition that, for 15.m, V c r) ra.

"4 S

The range of an S-constant a in an assignment w, written as Ran(aw), and the class of a in w, written as
Cla(a.w), are defined as follows:

For the special assignment _L, Cla(.)=0, and Ran(aL)=0. For all other assignment w, If there is
an element Sg V in w such that ca is a member of S, then Ran(aw)=V, and Cla(aw)=S, otherwise
Ran(a,w) = r, Cla(a,w) = (a). U

Two things to note about this definition. The first is that the special assignment _L is used to represent the
case when we have an unsatisfiable condition. The second is that a domain specification is an assignment
but not a strict assignment. Intuitively, an element of the form (a) F r. merely expresses the initial con-
straint on the S-constant a specified in the program, i.e. that a has range r, and that whether a is identical
to any other S-constant is unknown. A strict assignment is one that does not contain such redundant
information.

Example 2.3
Consider the program in example 2.1:

(Father(a 1lJohn); ((a,) _ {MikeSmithjoe)})
(Fathcr(PauI.l); ((a,) g (MikeSmitJoe))
(Father(a2,Georgc) ; ((j {Dave>MieSmith)))
(Fazher(DavePaul) ; 0)
(Sib(xy) +- Father(zx),Father(z.y); 0)

where O and a2 are S-constants.
ul - {({yl)g (Mike)) and u2 - {(f1, 2)_ (Smith)) are both assignments. Ran(al,ul)=(Mike)

and Ran(oy2,u)=ro,=(Dave,Mike,Smith] as 02 does not appear in ul. C la( 1,u1)=(Ol and
Cla(a 2 ,u1)=(( 2 . On the other hand, Ran(r 1,u)=Ran(a 2,u,) = (Smith) and Cla(ar1 ,u2)=CIa((2,u2) =
{(01,02). U

In defining a program with null values, we introduced extended program clauses. They are nothing more
than ordered pairs of Horn clauses and domain specifications. Since domain specifications are a special
kind of assignments, we can further define the following extensions:

Definition D2.3 (Extended Clauses and Extended Goals) Let P be a program and let w be an assignment.
An extended clause is an ordered pair (C;w) where C is a clause. An extended goal is an extended clause
(C;w) where C is a clause with no positive literals. I

We now define how to combine two assignments, which is used to record the conjunction of two condi-
tions.
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Definition D2.4 (Combining Assignments) Let P be a program. Let £ - { be the set of S-constants
in P, and let the initial range of ai in P be r., for ].Lm. Let w, and w2 be assignments. The combination of
w, and w2, written as wlw 2, is defined inductively as follows:
1. If w, or w2 is 1, then ww 2= .
2. If neither w, nor w2 are 1 and w, (resp. w2) is 0, then wIw 2 is w2 (resp. wl).
3.Let wj=(S1 VI) and w2=S 2 V2). If S rS-=0 then w1w2=w1uw2. If Sin S2 *0 and VtIV2*0 then

wIw2- (SIuS2 j VIV 2). Otherwise (Slr-S2e0 and VztV=0), ww 2=.L.
4. If wl=(Sl 1  V1 ,.....S1p Ve} where p>l, then wzw=u(vw2) where u is {Sl 1g V1 1 .... S1 ,.-1 e V1p-1 ) and v is

{S1Pg V1 }.
5. If wI=[SI 1e VII}, and w2=(S 219 V21 .... S2qVg 2q) where q>1, then wxwe=(wju)v where u is {S219 V21) and

V is (S229 V2,..,Sf Vq).
If wlw 2 *-L, then the assignments w, and w2 are compatible, otherwise, they are incompatible. U

Example 2.4
Let I be (a,a 2,a3 , and r.,= (e,f,g}, r,= (f,g,h), r0,=(ghj}. Let w1={ (a1,a2) (f,g} . (a3) r (g}), and
w2={ ([ 2,a}3) e g,h) ). We want to calculate wlw2. According to 4 above, w1we=u(vw2) where u is
{{((,=a2 - {fg[} and v is [(r3) g (g)). To calculate vw2, we use 3 above. Since [a3) n [cr2,c 3)*0,
and (g) n g,h)={g)*0, we have v'=vwl= ((7,c3 ) g (g)). Similarly, using 3 again, we have
wIwI=uV'- ((aI, 31 -9 (g1. 1

We note from the examples at the beginning of this subsection that, in general, any condition that we need
to record can be seen as the result of applying a sequence of substitutions to the initial constraints speci-
fied in the program. For example, the substitution (a,/c) results in the condition a1=a 2,and (Mike/ld},
results in the condition cr=Mi ke.This suggests that applying a substitution to a formula, has the same
effect as attaching an assignment to that formula. Therefore, we have the following definitions:

Definition D2.5 (Substitions as Assignments) Let P be a program, and Z - (ot,..., } be the set of S-
constants in P, and the range of ai in P be r,. Let I ]A be a mapping from substitutions to assignments.
Then, let e be a substitution, the assignment [6]A is called the equivalent assignment of 0, and is defined
inductively as:
If 0 - e - () is the identity substitution: [(]IA=0
If 8 - (t/v}, where v is a variable: [0 A-= 0

If 0 - {t/v}, where v is an S-constant and t is a constant:
If ve I and te r, then [0]A - {v (t)). Otherwise, [0]A=.L

If 0 - ft/v), where v and t are both S-constants:
If ve Z, t e Z, and r, r,=*0 then [0A = {(v,t)3 r,, rJ. Otherwise, [e]A=..

If 0 - {tI/v 1...,. vj where n>1: 19]A - []XI]AM where , is {tI/v1} and g. is {t,/v 2,...,t /v=}
If [0]A0.L then we say that 0 is applicable (w.r.t. P). Otherwise, it is inapplicable. Also, we say that [6]A is
an assignment expressible by the substitution 9. K
We see that if a substitution contains no substitutions for S-constant, then its equivalent assignment is 0,
which essentially represents the condition "true", i.e. "no additional restriction on the values of the S-
constantso. The reason we impose an ordering on the S-constants is that the two forms of substitutions
{a,/aj) and ({a1/j. both express the condition that a, and a2 are equal, and the ordering allows us to con-
sistently choose one of them. Also, we note that given a substitution 0 if []. then []A is strict.

Example 2.5
Let Z be {(a,o 2,a3}, and r,= e,f,g), r.= fgh), r.=ghj). Consider the substitution
0-{oC1/x,b/y,o'2/otI,g/o 3). [e]A=f[JIIA2]A[IJ. ]A[ 4]A where I1.=(oa/x}, l={(b/y), L3=(o'/aj, and
k.=g/d3). Since g, and g2 are all variable substitutions, [L]IA=[A2]A-= 0 . Also,
r,rr 0,=(e,f,g)n =[g,h,i}=f,g) 0, hence [.i3]A= [{oa,a 2)!g f,g)). And since ger 0 ,, [.,4]A=
((a 3)! ( g). So, o]A=0 0 ((a,a2 ) f,g} (( ga3) f (gil {al1a21 (f,g},{a 3 l f (g)) U

A dual of the above mapping is the following:
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Definition D2.6 (Assignment as Substitution ) Let [ Is be a mapping from strict assignments to substitutions.
Then, let w=-(Sl g Vl,...,Sa V=) be a strict assignment, the substitution [w]s is called the equivalent substtu-
don for w, and is defined inductively as follows:
[O]s=, the identity substitution.
V, is a singleton (c) where c is some constant. Then [w]s=(cfTI e SI) u [w- (S1 F Vj]s
V, is not a singleton, and S1 is the set (a ,..... oij, where ij<ik for j<k. Then

[Ws=('ajil 15j<rm) U [w- (Si g Vdls
In the above definition, since SirnSj- for i*j, the order in which we convert the elements in an assign-
ment w is irrelevant.

Example 2.6
Let us find the equivalent substitution for the assignment in the previous example.

W - {{az,Cr2}! IQ -f },a3] 9 (g}}
[wIs - {a/ 1) U [{(a 3 } (gils = { 1,JCr) V {g/a 3} - {arCF1 ,g/a3).

Among all the possible assignments that we can form using the S-constants and constants, not every one
is expressible by a substitution. Notably, any assignment w that contains an element of the form S• V,
where S is a singleton, say {a), and V is the set r. (i.e. w is not a strict assignment) can not be an
equivalent assignment of a substitution. To see this, we note that only two kinds of substitutions would
permit an S-constant, a, to appear in an equivalent assignment, namely, substitution of a by a constant, c,
or by another S-constant, r. In the first case, V would become (c), and in the second case, S would be
(C,O.

In defining a model semantics of a logic program with null values, we only need to consider assign-
ments that are expressible by substitutions:

Definition D2.7 (Assignment Universe) Let P be a program. The assignment universe of P is the set
1[0A I 0 is applicable w.r.t. P ). 0
From now on, unless specified otherwise, an assignment always refers to one that is in the assignment
universe.
Finally, we have the definition of the Herbrand Base with null values:

Definition D2.8 (Herbrand Base with Null Values) Let P be a program, qHB(P) be its quasi-Herbrand
Base, and W be its assignment universe.
The Herbrand Base with null values for program P, HBNV(P), is the set of ordered-pairs (A;w) where
Ae qHB(P), we W.
We call elements in HBNV(P) (null-)extended atoms. U

Note that for the case in which the program does not have any null values, i.e. when X= 0, no substitution
contains S-constants, and therefore, [O]A= 0 for all applicable substitutions 0. W -10). Also, qHB reduces
to the classical Herbrand Base, and every element in HBNV is of the form (A; 0). Since there are no S-
constants, (A; 0) represents the atom A without any condition attached, that is, HBNV is isomorphic to the
classical Herbrand Base.

Below is an example that illustrates some of the definitions in this section.

Example 2.7
Consider the program P which contains the following:

(RFOIAe; {Ucyd g {e,-lg))

(F(a 2,); {[a2. • fgh}))
(S(x,y) +- F(zx),F(z,y); 0)

Then NUp is the set {e~f,g,h,a 1,jaz. So,
qHB(P)={F(e,e),F(ejf),F(e,g) jF(e,h),F(e,o'l),F(e,oa2),F(f,e),...,F(f,o'l),F(f,o'2),....

F(ayl,e),....F(O1 ,al),F(a1 ,02),F(Cr2,e),...,F(02 ,aF1).F(a 2,a2).
S(e,e),.....S(f,e),.....S(a ,e) ..... S(a 2,e),.....S(a 2,a2 )}



-8- Model Semantics

and the assignment universe is:

WV={0,{{o'lii {e}},{{o 1 ) (f)),{ (or (g)),{(a2) (fl),{(2)f. (g)),{[o(2 j (h)),
({a} g {c},{o2} (f}},{((aj g (e},(cY2 g (g)},{ {oj) f (e},(cY2)r ( h)),
{{ }l r; {g},(cr2)} (Q)f}, l) f {g},{2).} (g)},( } _r 'kg},{2} e (h),
{fajg2 (g .(,2)g},{{ ,aje (g},jo ,2) (g)((j! (gg}}} [~j

We will not list all the elements of HBNV(P) here. As we will see later, some of the elements of
HBNV(P) that will be in the "model" of the program are: (F(a1,e);O),(F(a2rt);0),(S(ee);0),
(S(f,;O),(S(ef);( (aj,q2) g (fg) g),(S(fe);( (cY. 2) f (f,g ) ). 0

Given an atom A in the Herbrand Base of a definite program (without null values), we would like to know
whether A is derivable from the program. Similarly, given an extended atom (A;w) in the HBNV of a pro-
gram P, we would like to know whether A is derivable from P under the condition represented by w. We
will see other aspects in which the relationship between HBNV and programs with null values are analo-
gous to that between Herbrand Base and definite programs without null values.

2.2. Unification
Unification will be a basic concept used in subsequent discussions. First, we define what we mean by a
set of atoms being unifiable when they contain S-constants.

Definition D2.9 (Unifier and MGU) A set of atoms T - (A1,...,A..J is unifiable if there is a substitution 0
such that A0=AjO for 1< ij n. 0 is called a unifier of T. 0 is a most generl unifier (mgu) of T, if for each
unifier p of T, there is a substitution .such that p = 01. U

Example 2.8
Consider the set {P(,Y,f(y)),P(bx)1. If we apply the substitution p= (f(a)/ix,a/y,b/) to the two atoms in
the set, then they both become P(b,f(a)). Therefore, p is a unifier for the set. However, p is not a
most general unifier. An example of an mgu for this set is 0= t'(j)/x,b/a}. Note that p=0(a/y}. U

Unifiers for extended atoms can now be defined.

Definition D2.10 (Uniiers for Extended Atoms) A set of extended atoms T - {(A1;uj),...,(A-;u)} is unifiable
if there is a substitution 0 such that 0 is a unifier of the set of atoms t - {A1,...,Aj and [O]AU1...u,*J.. 0 is
called a unifier of T. A unifier 0 of T is an mgu iff 0 is an mgu of t. U

Example 2.9
{(P(g(cj).f(y));{{o} fa (ab,c))),(P(g(02),x);{(o 2) g (bcd)))) is unifiable with the mgu 0= (f(y)/x,a2/a},
since [(]At{o71) 9 (a,b,c}){(a 2  g (c,d,}e) I - (( 1 ,o2} e (c}.
On the other hand, {(P(c 1f(y));((ag (a,b,c}}),(P(a2 ,x)({(] 2) . (efg,)) is not unifiable since
(0]^{(a1) 9 (a,b0c){a 2 l f. l(e1 ,)=.L. N

The unification algorithm for atoms without S-constants can be adapted to handle S-constants. First, we
need some definitions ([101).

Definition D2.1 1 (Term Equations and Solutions)
A term equation is an equation of the form s= t where s and t are terms.
A substitution 0 is called a unifier of a term equation s=t iff sO and tO are identical. A substitution 0 is called
a unifier of a set of term equations S iff 0 is a unifier of every term equation in S.
Two sets of term equations are called equivalent iff they have the same unifiers.
A (possibly empty) set of term equations is called solved iff it is of the form (vj=t ....v,=,}, where v's are
distinct variables or S-constants, and none of them occurs in a term ;.. Also, if vi is an S-constant, then t is
either another S-constant or a constant. N

A solved set of term equations {v1=tj,...,v--Q} determines a unique substitution {t/vj,...,tJv0}. Clearly, this
substitution is a most general unifier of the set of equations. In order for two atoms to be unifiable, they
must have the same predicate symbol. Finding the mgu of two atoms, P(s1 ,...,s) and P(tl . ....t) is the same
as finding the mgu of the set of term equations s, = t, ..... s=
The following unification algorithm is adapted from (101.
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UNIFICATION ALGORITHM
Non-deterministically choose from the set of equations an equation of a form below and perform the
associated action. (In the following, f and g are two different function symbols, c and d are two dif-
ferent constants, v is either a variable or an S-constant, and all the others are terms.)

replace by the equation s1 = ti,...,.%=
(2) c=d or f( ..... = g (tl,..)

halt with failure.
(3) c=c or v=v :

delete the equation
(4) t= v where t is neither a variable nor an S-constant:

replace by the equation v=t
(5) t=v where t is an S-constant and v is a variable:

replace by the equation v=t
(6) v= t where v is different from t, and v has another occurrence in the set of equations:

if v appears in t then halt with failure
if v is an S-constant and t is neither a constant nor an S-constant then halt with failure
if v is the S-constant ai and t Is the S-constant aj and i>j, then replace by the equation t=v
otherwise perform the substitution (t/v) in every other equation

Example 2.10
To find the mgu of the two atoms P(g(al),f(y)) and P(g(a2),x) we solve the set of equations
{g(aCr) = g(U),'(.) = x}.
1. Choosing the first equation and using (1) above, we replace it by the equation cya = a 2 .
2. By using (4) above, we replace the second equation by x= f(y).
3. The set of equations is now ( 1 = 2,x= f(y)), and it is solved.
The corresponding mgu is {'2/atf(y)/x}. U

It is easy to augment the proof in [10] to show that the following theorem is true.

Theorem T2.1 (Unificadon Theorem) Let T be a finite set of term equations. if T is solvable, then the unifi-
cation algorithm terminates and gives an mgu for T. If T is not solvable, then the unification algorithm ter-
minates and reports this fact.
Proof:

As far as the unification algorithm is concerned, S-constants are identical to variables except for,
(a) the ordering among the S-constants, and (b) the requirement that an S-constant be unified only
with S-constants or constants. In the proof of the original algorithm, the order of the variables is not
important. Also, since we define substitution such that an S-constant can only be substituted by
either an S-constant or a constant, point (b) is exactly what is needed to make the mgu produced
by the algorithm a proper substitution. Therefore, the proof holds for our modified algorithm regard-
less of the presence of S-constants. Q.E.D.

2.3. State and Model State
A program with null values can be viewed as a compact way of representing a set of possible worlds. For
instance, if P has the following extended program clauses: (P(arl); ((a,) r (a,b)}), (Q(ar2);{(o 2) F (c,d)}),
and (R(e) ; 0); which means that either a or b is in relation P, either c or d is in relation Q, and e is in relation
R. We can view P as representing the four possible worlds: Pi: {P(a),Q(c),R()}, P2: {P(a),Q(d),R(e)),
P3: (P(b),Q(c),R(e)}, P4: (P(b),Q(d),R(e)). These are obtained from P by assigning to each null value one of
the constant in the range of the null value. Each possible world can therefore be identified with a particular
substitution. For instance, P1 can be identified with the substitution "a for a, and c for a2", and P2 the sub-
stitution "a for (71 and d for a2", etc.
This above discussion motivates the following definitions.
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Definition 02.12 (S-Mapping) Let P be a program, and let Z:1o1 ,...,a 3) be the set of S-constants appear-
ing in P and D be the set of constants appearing in P. A function V from Z to D is an S-mapping Iff V maps
each element ai of X to a constant c in the initial range of ei. We write an S-mapping V as a set of values
(al,...,aJ to represent the fact that V(o1)=a, V(a2 =32,...,V(o.)=a,. 0

Definition D2.13 (S-Mapping Substitution and Possible Worlds) Let P be a program and Z be the set of S-
constants appearing in P. Let V be an S-mapping, then the substition correspoUdiag to an S-mapping V is
the substitution {V(a 1)/t 1,...,V(q,Y, usually written as pv.
Let S be a set of extended clauses, the image of S in the S-mapping V. written as SV , is the set of first
order formula: {Rpv I (R;w)e S wp1VIA*.L} The possible world represented by P and the S-mapping V. is
the image of P in V. PV. 0

In a program without null values, any subset of the Herbrand base is a Herbrand interpretation of the pro-
gram. Subsets of the HBNV can play a similar role if we extend the notion of possible world to these sub-
sets. Consider a subset, 1, of HBNV. An element, (A;w), in I represents the atom A with the condition w.
To compute the image of this element in a possible world represented by the S-mapping V, we first see
whether w is satisfied in this world (i.e. whether W(PV]A is ). If it is satisfied (wtpv]A*.L) then the image is
Apv, otherwise, the element has no counterpart in this particular world. The Image of I itself is simply the
collection of the images of all the elements in I, which is the set {ApvI (A-w)e I AW[pv]A*-L}. We see that
this image is a set of ground atoms, and can therefore serve as a Herbrand Interpretation for the program
PV"

For example, consider the program P:

(P~l) (cr) (ab)))
(Q(a 2); (oA2} 9 (c,d)})
(R(e); 0)
(S(xy)--P(x),Q(y); 0)

Now consider the following subset I of HBNV(P):
{(P(a);2 ),(Q(c);{(ro2J g {c),)(Q(d);{{(q2} g [d}))

As before, there are four possible S-mappings, namely, V, - {ac), V2  ( ad), V3 - {b,c}, and V4 - {bA.
The image of P in V1, PV,, contains the four definite clauses (P(a),Q(c),R(e), S(xy),-P(x),Q(y)). And, the
image of I in V, is {P(a),Q(c)}. If we treat this as a Herbrand interpretation, then the only atoms that evalu-
ate to true in this interpretation are P(a) and Q(c). Therefore, the four clauses in PV I have truth values
w.r.t. 1, "true", "trueo, "false", and false" respectively. On the other hand, In V4. the image of I is
{P(c),Q(d)}. Hence, the four clauses in P ,4 i.e. (P(b),Q(d),R(e),S(xy)4-P(x),Q(y)}, have truth values
false","true", "false", and "false*. In fact, it Is easy to see that, with respect to 1, the second clause In P has

truth value "true" in all four possible worlds, and the third and forth clauses are always false, while the first
clause is true in V, and V2 and false in V3 and V4.
The following definition is a natural outcome of this discussion.

Definition D2.14 (States) Let P be a program, V be an S-mapping, and S be a subset of HBNV(P). Let
(C;w) be an extended clause such that W[pv]A*-L, then the value of (C; w)in V w.r.t. S is the Herbrand
interpretation of Cpv w.r.t. the set Sv. S is a state of P 1ff for every extended clause (C; w) in P, (C; w) has
the same value w.r.t. S in every S-mapping. 0
It is easy to see that if w is a domain specification, then w[pv]A*&J for any S-mapping V. Therefore, every
extended program clause in a program has a value in every S-mapping w.r.t. every subset of HBNV(P). A
state, then, is just a collection of "consistent* interpretations. By this we mean that a clause is interpreted
consistently in every possible world, i.e. we do not want to have a clause being interpreted as "true* under
one S-mapping while interpreted as "false" under another S-mapping.

For instance, the subset I in the previous discussion is not a state, but the set {(Q(c);{ (a2) (c }),
(Q(d);( (a2)g (di })} is a state, as well as the set {(P(aY1);0), (Q(c);( (a2) (c) }), (Q(d);( (a2) r; (d)).
The definition of state has a shortcoming which is inherent in the format of extended Herbrand base: two
apparently different subsets of HBNV can represent the same state, i.e. they have the same image in all
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S-mappings. For instance, let us continue our previous example, where the S-mappings are V, = {a,c), V2
- {a~d), V3 - {bc), and V4 - (b,d}, and consider the two sets I = {(P(a);( (l) q (a) )),(P(b);( (l) F (b) })) and
12 - ((P(Y1);0)}. Although they look quite different, their "image" in every S-mapping is the same, i.e. both
are {P(a)) in V, and V2, and both are (P(b)} in V3 and V4. Therefore, there is no practical difference
between the two.

To deal with this shortcoming, we define the following relation

Definition D2.15 (Equivalence Relation for Sates) Let P be a program and let S and T be two subsets of
HBNV(P). We say that S and T are equivalent, written as S R, T, iff for every S-mapping V, Sv=Tv. U
It is obvious that == is an equivalence relation. Similar to the definition of Herbrand models, we have the
following.

DefInitIon D2.16 (ModelState) Let P be a program and I be a state of P. I is a model state of an extended
clause (C; w) iff for every S-mapping V. if W[pv]A.-L then Iv is a Herbrand model of Cpv. I is a model state
of P iff I is a model state of every extended clause in P, and for every state J such that J §, I, JqI.. 0
The last condition in the above definition can be understood in another way. Since == is an equivalence
relation, the set of all the states can be divided into equivalence classes. Given any state I, suppose that I
belongs to the equivalence class E, then it is easy to see that the union of all the elements in E is itself a
state, and moreover, this union is also equivalent to I and hence also a member of E. That is, (UJ) i.I,

I.E
and hence (LJ) E E. Let us call this union M. From the definition of model state of extended clauses, if I

J' E
is the model state of an extended clause, then every member in E is also a model state of that clause.
Therefore, if I is a model state of all the extended clauses in a program P, then so is M, and since all other
states in E are subsets of M, M is a model state of P.
The following proposition concerns the existence of such a model state.

Proposition P2.1 Let P be a program, and let V1,...,V, be all the possible S-mappings. If M1,...M.., are
Herbrand models of PV. PVa, respectively, then there exists a unique model state S of P such that
S%,-M1 .. Sv.lK.
Proof:

We prove this by constructing S. Let J3 be the set ((A;[pvJA) I A MJ., then the image of Ji in Vi is
exactly the set M. Let J be the set LJi i, then J is a subset of HBNV(P) and J is a model state for

every extended clause in P. Therefore, the set S - U K is a model state of P. Also, S is unique,

since for any other state S', if S ,MK then S' 3n,J and hence S'QS. O.E.D.
Next, we introduce the concept of a minimal model state. Given a program P, for any S-mapping V. PV is
a definite program. Hence for each V, PV has a unique least model. By proposition P2.1, there is a
unique model state whose image in V is this least model.

Furthermore, as we see below, just as in the case of definite programs, this model state Is the inter-
section of all model states of P.

Proposition P2.2 ( Least Model State ) Let P be a program with null values. There is a unique model state S
of P such that Sv is the least Herbrand model of PV for any S-mapping V. Furthermore, S=C'(KI K is a
model state of P).
Proof:

Let V, ,.... /, be all the S-mappings and let M be the least model in Vi. From proposition P2.2 we
know that there is a unique model state S such that Sv=M for 1:iLn. Let S'=n (KIK is a model
state of P). We need to prove that S=S'.
Since S is a model state of P, S ,=f(Kv, I K is a model state) QSv,=K.. On the other hand, since M
is the least Herbrand model of PVi and Kv, are all Herbrand models of PV,, M S,. Therefore,
SV,,= My, and hence S' ,4= S, so S'cS.
For any model state K, K can be constructed from the Herbrand models Kv, .... Kv, as seen in the
proof of proposition P2.2. Sv,- Kzv, for 1.i_<n. Let D, be Kv,- Mi. Then for any J such that J N' S,



- 12- Model Semanics

the set Ju( U ((A;[p-A) IA e Dj) is equivalent to K. Therefore, J g K, and since S is the union of all

suchJ, SK. Hence Sa(n[KIK is a model state), i.e. S.S'. O.E.D.

Example 2.11
Consider the following program P:

(F((Yje); {{o,}) g {ef'g}))

(S(x~y) +-- F(zx),F(z~y); 0)

It is easy to see that the state

M= I (F(Ca1 ,e); 0),(F(a2,f); 0),(S(ee); 0).(S(ff); 0),
(S(e,t);{ ({l,02) (Qf,g) ),(S(fe);( (01,02} { If,g })1

is a model state of all the extended clauses in P. For instance, consider the S-mapping V1= [e,f).
PV - {F(e,e), F(ft), S(x,y) +- F(zx),F(z,y)} and My% - {F(ee),F(ff),S(e,e),S(fO) which is a Herbrand
model of PV" Furthermore, we see that if we remove any element from My, then it is no longer a
model of PV, i.e. My, is the least model of PV,. This result applies to all other eight S-mappings.
Therefore, we can conclude that the largest equivalent state of M is the least model state of P. The
part of this model state that is equivalent to the extended atom (F(a1,e);0) is shown in Fig. 1. •

I(F(aje);O),(F(e,e);{ (a1 ) g (e) }),(F(fe);{ (a,) g (f) }),(F(ge);{ ({l} g (g),

(F(a1 ,e);{ (a2) g (f) )),(F(cae);( (a2] g (g) )),(F(aje);{ (Y2) g (h) }),

(F(e,e);( {a;l}e (e) , (02) (f) }),(F(fe);( Iyl g If, (02) . IfM ),

(F(ge);( {O} g (g) , (a2) - (f) )),(F(ee);{ (ah} g (e) , (a2) g (g),

(F(f,e);( (a1) g (f) - (a2) 9 g) )),(F(ge);{ (al) g (g)f, (a2 ) 9 (gh )),

(F(ge);{ (al) g (g) , (a2) g (h) }),(F(c 2,e);( (1,0 2) g (ff),

(F(c2e);{ (a1,0() (f) )),(F(cT2,e);( (a,a2) 9 (g }),

(F(f,c);{ [aIOl2 9 If) ),(F(ge);{ (o 1,02) (g) }))

Fig. 1 (Example 2.11) Part of the Least Model State of Program P.

The following definition is analogous to the definition for "logical consequence" in first order logic.

Definition D2.17 ( N ) Let P be a program. If every model state M of P is a model state of an extended
clause (C; w), then we say that P P (C; w). U

We denote the unique model state in the above proposition as MN. The following theorem argues strongly
for using MpN as the declarative semantics for P.

Theorem T2.2 Let P be a program and (A;u) be an element in HBNV(P). Then PJ(A;u) iff (A;u)e MpN.
Proof:

P (A;u)
7Tfor any model state S of P, and for all S-mapping V such that u[pv],A*-, Sv= Apr.
ff for any model state S of P, and for all S-mapping V such that u(pv]A*J., Apvr Sv.

( "." Apv is ground)
ifffor any model state S of P, U((Apv;(pv],A)) cS.

V
iff for any model state S of P, (A;u) e S. (." (A;u) ,,,U((Apv[pv]A)))

v
iff(Au)e Mi'. (proposition P2.2) C.E.D.
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3. Fixpoint Semantics
In a definite program without null values, we can calculate, in a bottom-up fashion, the set of all atoms that
are derivable from the program. Let us call this set I, and we start by setting I to the empty set. We obtain
new atoms by applying the clauses in the program in the following way. Given a clause in the program
H +-body, if we can find a substitution 0 such that when we apply 0 to body, all the atoms in the resulting
bodyO are in set I, then we say that HO is one-step derivable from the set I. After we have found all such
atoms, we add them to I. We repeat this process of a one-step denvation until we cannot find any new
atoms to add to I.

The above description of one-step derivation is formalized as an operator defined below, and the
process of finding the set of atoms derivable from the program is the same as finding the fixpoint of this
operator.

Definition D3.1 (FLxpoint Operator for definite Programs (121) Let P be a definite program without any S-
constant, and I be a subset of its Herbrand base. The fixpoint operator of P, represented by Tp, is defined
by Tp(1)=: (A I A+- B 1..... B, is a ground instance of a clause in Pand {B1,...,B.) QI) U
We can follow the same approach for programs with null values, except that we need to take care of the
incomplete information. This means that not only must we find new atoms by applying program clauses,
we also have to find the proper assignments to attach to these atoms. First, we need to define ground
instances of an extended clause.

Deflnitlon 03.2 (Ground Instances of Extended Clauses) Let P be a program, (C;d) be an extended pro-
gram clause in P, and 0=0,, be a substitution, where 0, is a variable substitution, and 0, is an applicable
substitution w.r.t. P. Then (C0;[]) is a ground instance of (C;d) if CO contains no variable. Gnd(P) is
the set of all the ground instances of the extended clauses in P. 1
Note that d in the above definition is a domain specification, and as such, is of the form
{(} g D,..... {<;,} F Dj, where for 1!5.5n, Di is the initial range of cri. Since d is not an element of the
assignment universe, we can not define the ground instance of (C;d) to be (C0;d[8]A). However, since d
specifies the same condition as the empty assignment 0, (CO;[]xA) is all we need.
The following property is useful.

Proposition P3.1 Let P be a program, and C =(C;d) be an extended program clause in P. If
(C0;[0],,=(A4-B1 ,...,B3 ;w) is a ground instance of C and if for some S-mapping V, w(pv]A*.L, then
(Apv4-Bjpv,...,Bpv;[pv]A) is also a ground instance of C.
Proof:

Since W~pv]A=[e]A[pv]A., then [8PV]A=[Pv]A. (A general property of pv) Q.E.D.

In defining our fixpoint operator, we need the following closure operator.

Definition 03.3 (Equivalence Closure) Let P be a program, and I be a subset of HBNV(P). The equiwleoxe
closure (or E-closure) of I, equ(I), is the set UJ. •

Since the only subset of the HBNV that is equivalent to the empty set 0 is the empty set itself, we have
equ()=0. In general, equ(I) is much larger than I, as illustrated by the following example.

Example 3.1
Consider the program in example 2.11. Let I=((F(c1,e);0)). Then Figure 1 is the E-closure of I. a

Definition 03.4 (Flxpoint Operator) Let P be a program NTp is a mapping from the power set of HBNV(P)
to the power set of HBNV(P). If Ic HBNV(P), then NTp(I)=equ(I) U TP(I) where

TpM)=((A;w) I (A+-B 1,. . . ,B.;w)e Gnd(P),

and there are (B';w),...,(B';w,) in I, such that w=w1 ...w. *1 and B![w]s=Bi for ls..n)

We also define 4TpTn and TpTn inductively as

NTpT0=0 NTTpTn=4Tp(.TP;(n--1)) for n>O.
TO=0 TpTn=Tp(Tp(n-l1)) for n>O.
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Both Tp and NTp are continuous (see Appendix), and since the power set of HBNV(P) is a complete lattice,
this means that NTpTo) (resp. TpTo)) is the least fixpoint of NTp (resp. Tp).

As noted before, equ() is expensive to calculate. However, as will be clear in the rest of the section,
the inclusion of equ in the definition of the NTp operator is mainly to facilitate the proof of the next proposi-
tion. In fact, we shall see later that to calculate the least fixpoint of NTp, we can first calculate the least fix-
point of Tp and then take its E-closure.

Example 3.2
Recall example 2.11, where the following program P is given:

(F(aleO {((a} g (ef4}))
(S(x,y) +- F(zx).F(z~y); 0)

We will only consider Tp here.
Tptl={(F(cax,e) ;{(hi e {g)}),(F(cr2 );{(cr21} I (fgh})}.

TpIT2T(Tpt)=TpI lU{((S(e,c);0),(S(f,f);0),(S(ef);{(({ca 2) {f,g)} D

For any k>2, TpTk=Tp12. Therefore, Tpl2 is the fixpoint. U

The next proposition states that the model state of a program is Identical to the pre-fixpoints of NTp.

Proposition P3.2 Let P be a program. I is a model state of P iff NTP(r) ..
Proof:
Only if I is a model state of P.

We first prove that Tp() I. Then by the definition of model state, equ(I)cj, and hence NTp(l) c,.
If an element (A;w) is in Tp(I), then there is is a ground instance of a clause in P, (A4-B,...,B,,wo),
and there are i. elements, (B1;w.) 1in, in I such that w=wow 1...w*-i This implies that there is an
S-mapping such that wIpv]A*.L for Oie. Since I is a model state of every extended clause in P,
and since wo[pv]A*., Iv is a Herbrand model of Apv+-(B1,...,B,)pv. Since wi[pv]A*-L for 1.S.n, Bipv
is in Iv. Therefore, Apv must be in Iv. By the definition of model state, we know that I contains all
elements of HBNV(P) whose image is Apv, i.e.

V(A';w')e HBNV(P)(W'PV]A*.LAA'pV=A -- (A';w') e 1) ()

In particular, if we let (A';w') be (A;w), then all the premises of (*) would be satisfied, and hence
(A;w) e 1. That is, Tp(1).I.

ift NTP(MI
We prove that if Tp(!) l then I is a model state of all the extended clauses of P. And since equ(IkI,
Jc, for any J z,, I. Then, we would have I as a model state.
Let (A4-B,...,B.;wO) be a ground Instance of an extended clause C in P. Let V be an S-mapping
such that WO[PVIA*.L. That is, Apv+-(B1,...,B,)pv is a ground instance of Cv. Suppose there are n
elements, (Bi;w.) 1:5in, in I, such that wi[pv]A*.L, i.e. Bjpv e Iv.
Wi[pV]A*.L, for 0.<:n, implies that if w=woW,...w, then w[pv]A*J-. By the definition of Tp, (A;w) e TP(Q),
and hence, (A;w) ,I. That is, Apv is in Iv, therefore, Iv is a Herbrand model of this ground Instance
of clause Cv. This argument holds for any ground instance of Cv where C can be any extended
clause in P. Therefore, I is a model state of all extended clauses in P. O.E.D.

In proving the following theorem we use a property of complete lattices and fixpoint operators ([121),
namely,

Proposition P3.3 If L is a complete lattice, and T is an operator on this lattice, then the least fixpoint of T
is equal to the greatest lower bound (glb) of the set (I e LIT(I) r. } 0

We will also use the fact that for any continuous (hence monotonic) operator T, Ttn cTT(n+l) for n2O. This
is easily proven by induction on n.

Theorem T3.1 (Flxpoint Characterizaion of Least Model State) Let P be a program. Then
(1) the least model state, MIP, of P equals the least fixpoint of the operator -Tp, NTPto).
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(2) TpTo) i NT.pTC.
Proof:
Part 1: M - (KIK is a model state of P) = glb(KIK is a model state of P)

- glb(KI NTp(K) K} = Ifp(NTp) = NTto).
Pat 2 We prove (2) by showing that for nO, TpTn % NTptn.

First, it is easy to prove that for ma0, TpTm c NTpTm: NTpTO=TpTO, and TpTk c NTpTk implies
TpT(k+l) r_ Tp(NTpTk) a equ(NTpTlk) u Tp(NTptk)= NTpT(k+I).
For n=O. NTpT0=Tp 0. so Tpl10um NTpTO.
Assume that for n<k, TpTn,,m NTpln.
In the appendix we siJw that for any subset I of HBNV(P) and any n>0, if TpTn,,. I and TpTn c I.
then TpT(n+).,.TpM(I). Since Tpt(k-1)r NTpT(k-I) and by the induction hypothesis,
TpT(k-1) ., NTpt(k- 1), we have Tptk am Tp(NTpl(k- 1)). In any S-mapping V,
(NTpTk)v=(NTpT(k- 1))vu,(Tp(NTpI(k-1))v. Since NTpr(k-1)% TpT(k-1) and Tp(NTpT(k-I))%TpTk.
we have (NTpTk)v=(TT~(k-1))vu(TlpTk)v. And since Tp is continuous, Tpt(k-1)CTpTk. So,
(NTpTk)v=(Tpk)v, and hence NTelkxn.Tpfk. O.E.D.

Since the most useful information contained in a least model state of a program is the Images" of that
model state in each possible world, (2) above tells us that it is adequate to calculate the least fixpoint of
the Tp operator.

4. Procedural Semantics
In the previous sections, we have defined declarative semantics for programs with null values. This
includes both a model theoretic and a fixpoint characterization. In this section, we present a refutation pro-
cedure, called NSLD refutation, which is a generalization of SLD refutation with a discussion of how it
relates to the declarative semantics.

4.1. Resolution
Our procedural semantics is based on the concept of resolution. The following definitions are adapted
from the binary resolution for clauses in [3].

Definition 04.1 (Factor) Let C - (C;w) be an extended clause. If two or more literals (with the same sign)
C have a most general unifier g±, and if WM]A*1., then C;i - (C,;w[j4jA) is called a factor of C. U

Example 4.1
Let (C;w) be the extended clause (P(crlx)vP(zj(y))vQ(ac);{(ar I (a,b,c)). The first and second
literals of C have an mgu li= {oj/zf(y)/x). Since W]A= 0 , w(1A---L. Hence, (C;Wt].gA) -

(P(cr,f(y)) v Q(ac);w) is a factor of (C;w). U

Definition 04.2 (Binary Resolvent) Let P be a program. Let C1 - (C1;u) and C2 - (C2;v) be two extended
clauses such that there are no common variables In C, and C2. Let L, and L2 be two literals in C1 and C2,
respectively. If L, and -. ,L2 have a most general unifier 0, such that []Auv'.L, then we say that C, and C2
resolve on L, and L2 with binary resolvent C a (C;w), where C=(C0-LO) u(C20-L 20) and W=-[]Auv C,
and C2 are called the parent clauses of C.

Example 4.2
Consider the two extended clauses C1 - (P(al,f(y)) vQ(a,c);u), where u is ((a,) j (a,b,c)), and C2 =
(R(q2,x)v-.P(b,x);v), where v is {(r2}) (d,e,f)). We see from example 2.10, that P(ajf(y)) and
P(b,x) unifies with mgu 0= (b/ 1 ,f(y)/x), and [O]Auv= ((1,) Z {b),[a 2) ; {de,f) .L Therefore, CI and
C2 can resolve on P(f(y)) with the binary resolvent

C - (Q(a,c) v R(a 2J(y));{(*1 ) } (b),(}%) g (d,e,f)))

Definition 04.3 (Resolvent) A resolvent of (parent) extended clauses (Ct;w1) and (C2;w2), is one of the fol-
lowing binary resolvents:
1. a binary resolvent of (Cl;wl) and (C2;w2),
2. a binary resolvent of (C,;w1) and a factor of (C2;w2),
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3. a binary resolvent of a factor of (Cl ;wl) and (C2;w2),
4. a binary resolvent of a factor of (Ct;w1) and a factor of (C2;w 2), U

Example 4.3
Let C1 - (C1;w1) be the extended clause (P(a1 ,x) vP(z,f(y)) v Q(ac);{oJ (a,b,c)), and C2 ' (C2;W)
b a the extended clause (R(a2,x) v-,P(bx); ( 2) g (d,e,f). From example 4. 1, we know that a factor
of C1 is C1' - (P(a1,f(y))vQ(ac);[a1) [ (a.b,c)). and from the previous example, we know that a
binary resolvent of C1 ' and C2 is C - (Q(ac) v R(o 2.f(y));( { g (b),{( 2) g (d,e,f}}). Therefore, C is a
resolvent of C1 and C2 . M

The resolution theorem below states that a resolvent is a logical consequence of its parent clauses. In
proving it. we need the following lemma.

Lemma L4.1 Let P be a program, and C . (C;w) be an extended clause. Let PhNC.
(1) if Cg is a factor of C, then PI ClL
(2) If u is an assignment such that uw-.L then P (C;uw).
(3) If 9 is a substitution such that W[0]A0-, then P (C0;w[OI }
Proof:
(1) Let V be an S-mapping such that W5LXApv]A*L. Then w[pv]A*-L. Since Pk(C;w), this means that

for any model state I of P, Ivk=Cpv. Since Cg is just an instance of C, Iv =Cpv. Hence,
P §(Cj4L.411

(2) Let V be an S-mapping such that uwCpv]A-. Then W[PVIA*J. Since P= (C;w), this means that for
any model state I of P, I#vlCpv. Hence, P (C;uw).

(3) We need to prove that for any model state, I, of P, and all S-mapping V such that (w[O]A)[pv]A *-L, Iv
is a Herbrand model of Cepv.
If (w[0],)[p]O-L then w[pv]A*J- and since P (C;w), Iv is a Herbrand model of Cpv. Therefore, Iv
is a Herbrand model of all ground instances of Cpv. To prove that Iv is a model of COpv, we need to
prove that Iv is a model of all the ground instances of COpv. We can show this by proving that any
ground instance of COpv is a ground Instance of Cpv.
Let 0=6v i 0, where 0. contains variable substitutions only, and 0, contains S-constant substitutions
only. (w[O]A[pv]A-.L implies that [][AIpv]I.-L, and so O,pvpv (see appendx) and therefore,
0pv=0,v and since 0, contains only variable substitutions and pv contains only S-constant substi-
tutions, 0,pv=pv(O8pv). Hence, for any variable substitution y, (COpv)y=(Cpv)0,pv, and any ground
instance of COpv is a ground instance of Cpv. Q.E.D.

Theorem T4.1 (Resoaludo Theorem) Let P be a program, and C1, C2 be two extended clauses. If C Is a
resolvent of C1 and C2, and if P"NC, and P= C2, then PN C.
Proof:

From lemma L4.1(1), we know that if Cjg, and C2kz are factors of C, and C2, respectively, then
(T4.1.1) P=C,g, and P=C L2

Therefore, in the following, we only show the proof for case (1) in the definition of resolvent, i.e. the
resolvent being a binary resolvent of C, and C2. The cases involving factor(s) of C or C2 or both,
are straight forward implication of (T4.1.1) and case (1).

Let C1 be (C1;u)=(L1 v L, v ... v Ll,;u) and C2 be (C2;v)=(L 2 v L21 v ... v L,;v) such that C, and
C2 resolve on L, and L2 with mgu 0 and resolvent C - (C;w). Then

C=(L11v...vL1.vL2 1v...vL,O and w=[O]Auv*.L.
W=[O]AUV*.L implies that [0IA-0. and [e]Av*L, and since PI=C, and PNC2 , from lemma L4.1(3),
PN(Ce;u[O]A) and Pk(C20;v[O]A. Also, w=[O]Auv.L, implies that, for any S-mapping V, if
CPYJAW*.L then [PVIAU[O]A*.L, and [Pv]^v[OIA.L. Therefore, for any model state M of P,
Mvl=COpv and Mv =Cpv. We need to prove that Mvl=Cp.

Assume that Cpv is false w.r.t. My. Then L 1Opv and L.pv are all false w.r.t. Mv, for I!iLm
and lj5Jn. In order for Mv =COpv and Mv=COpv, we must have MvI=LOpv and Mv =L2 0N.
Since 0 is an mgu of L, and -,L, L18=-,L 2Q. Therefore, both LOpv and L20p--,L19pv are true
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w.r.t. My. a contradiction. Hence, MvI=C, and M is a model state of C. Q.E.D.

4.2. NSLD-Refutation
NSLD-refutation is an extension of SLD-refutation to logic programs with null values.

Definition D4.4 (NSLD-Derivadon) Let P be a program and G=-(+-A 1,..A.,k;w) be an extended goal
clause. An NSLD-derivation of P u {G) is a sequence of extended goal clauses GO, G, ... where 0(=G and
for all iL0, Gij is obtained from Gi as follow:

(1) G is (+ , .... w.)
(2) C l = (A--B1 ,...,B.; u) is an extended program clause in P
(3) AOi+i= A011, where 0e= is an mgu of A and Ai.
(4) w1 .. = wi[01 +]A l
(5) Gi+. is (is (Ai,...,A.iBi,...,Bq,Az ,...Ai0i ;wi+)

We call C, the input clause to the i+l-st step. U
Note that by (4) above, a sequence of extended goal clauses is an NSLD derivation only if the assignment
part of each clause is not ..

Definition D4.5 (NSLD.Refutoalon) Let P be a program, and G=-(g-u) be an extended goal clause. An
NSLD-refutadon of P u (G) is a finite NSLD-derivation of P u (G) such that G3- (O;U[01]A...[011A), where O,
1. n, are the mgu's in the derivation. We say the refutation has length n.

Example 4.4
Consider the program in Example 2.11:

(1) (F(o,e);({&J)M (e,f&g))
(2) F(rf); U02} A {f,g,h})(3) (s(xy) +- F(zx),F(zy) ;. 0

Let G be the goal (--S(ef); 0). One possible NSLD-refutation is as follows:
Step 1: Go is (+-S(eo); 0). We choose S(ef) and use clause (3) to calculate G1. The mgu for the two

atoms is 01 - (e/x,f/y). Since there is no S-constant in e1, w1=[e]A= 0. And G Is
(+-F(ze),F(z,.);O).

Step 2: Choose F(ze) and use clause (1). The rngu is 02 - (adz). This does not involve substitution
of S-constants, therefore, w2 is still 0. And G2 is (4-F(al,) ; 0).

Step 3: The only atom left is F(rj4). We use clause (2). The mgu is 03 - (r2/a}. w3=w 2[e3]A which
is I(a 1,-a2) g (f,g)). And G3 Is the extended null clause (O;w3).

This Is, therefore, an NSLD-refutation of length 3. U

4.3. Soundness of NSLD-Resolution
We can (informally) demonstrate the soundness of NSLD-refutation as a direct result of the resolution
theorem. In the definition of NSLD-derivation, we see that if Gj+ is obtained from Gi by using an extended
clause C - (A--B,...,Bq;u) and an rngu 0e , then C and G resolve on A with mgu e8+ and resolvent G1,1.
Since C is a clause in P, P C. Therefore, by the resolution theorem, if PNG then PkGi,,. Now let
Go=(.-A,...,A,;w). By induction on the length of an NSLD-refutation for P Ui (Go), we will have PGo
implies P.(aw). To put it another way, if we assume -,(AA ...AA), 1 .in, is true in P, then we will
derive the empty clause, i.e. a contradiction. Therefore, Ai must all be true. Of course, to formally prove
this soundness result, we need to consider the substitutions obtained from the refutation. The following
definitions are useful in subsequent discussions.

Definition 04.6 (Computed Answer) Let P be a program, G=(g;u) be an extended goal. If there is an n-
length NSLD refutation of P v (G) with mgu's e .... o,.then a computed answer substtiudon 0 for P u (G) is
the substitution obtained by restricting the variables in the composition 01... , to the variables that appear
in i, and a computed answer assignment is the assignment [0 11A....,]A.
In example 4.4 the computed answer substitution is e, and computer answer assignment is [JA[3]Ae]
- O[(,S]A - [M3A - (( ,C1 2) ; M (}.
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Now we formally state a result regarding the soundness of NSLD-refutation with respect to the declarative
semantics presented in the previous sections. The following lemmas are used in the proof of the sound-
ness theorem.

Lemma L4.2 Let P be a program, and C - (C;w) be an extended clause. Let Pk C.
(1) If u is an assignment such that uw-.L then PI (C;uw).
(2) If e is a substitution such that w(O]IA*±, then PI (CO;wO]).
Proof:

Let V be an S-mapping
(1) UW(PV]A*-

W[PV]A*-
=,Pv Cpv (-.-~ c
SPl=N (C;uw).

(2) wleIA[pvIA*J-

Pv =Cpv = PvI=COpv
(% pv only involves substituting S-constants for constants.)P (C8;w(O].,0. Q.E.D.

Lemma L4.3 Let P be a program. Then
(1) (a) If P,(AAB;w) then P(A;w) and P(B;w)

(b) If P (A;u) and Pk(B;w) and uw- , then P (AAB;UW)
(2) PI (A+-B; w) and PN (B; w) implies Pk (A; w)
Proof:
(Ia) Pf r (A B;w)

=*for any model state I of P, and for any S-mapping V such that wpv-, Ivlffi(A^A B)pv

=, for any model state I of P, and for any S-mapping V such that wpv*.L, Iv=Apv and Iv fBpv
= P=(A;w) and PI.(B;w).

(1b) uw*.L, and PIN(A;u), PJN(B;w)
for any S-mapping V, if uwpv.*L then upv*-L and wpv-.. And for any model state I of P, and any
S-mapping V' such that upv.*.L and wpv.*.L, Iv. I-Apv• and Iv. =Bpv.

= for any model state I of P and for any S-mapping V such that Uvpv*.L. IvI=ApvABpv
= PN(A A B;UV).

(2) P (A-B;w) and PN(B;w)
iff for any model state I of P, and for any S-mapping V such that wpv-L, Iv1=(A+-B)pv and Iv = Bpv
implies for any model state I of P, and for any S-mapping V such that wpvy.L, Iv = Apv
M P (A~w).

Q.E.D.

Theorem T4.2 (Soundness) Let P be a definite program, and (,=(.-C;u) be an extended goal clause. If
there is an NSLD-refutatlon for P u (G) with computed answer substitution e and computed answer
assignment w, then PN(Ce;uw).
Proof:

Let G = (+-C;u)=(--Aj,...,A,;u). Let the P u. (GI has an NSLD refutation with length n, and mgu's
e1 ... e. Then w=-[e]A...[O.]A, We prove the theorem by induction on the length n.
n=l: C=At, e=e1, w=(OIIA and there is (A;v) in P such that AOIf=A8 1 and u(O]A,*-L Since (A;v) is an

extended program clause in P, P N(A;). By lemma L4.2(2), P §(A8 1;O[OJ]). Since
u[Gl]A*.-, by lemma L4.2(1), P (A1 ;u[j]A) =(AIt;uw) =(CO;uw)

n<k: Assume that the theorem is true for n<k.
n=k: Let the first input clause be (A4-Bt,..,B,;v) in P and the atom chosen from Go be A, and 01 is

such that AO1=A,0 1 and u[Oe]A#J.. Then G, is
(--Ct;wl) (
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G1,...,G, is a length n-1 NSLD-refutation for P u (GI), with mgu's 02,..,0,. By the induction
hypothesis, PIk (C18 2 ... (;WI(03jA...[0)JA)
By lemma L4.3(1), P1k ((Bl.....BdO100 2 ... ,;wl(02]A ... [0.A) =((B1,....Bd)6uw). Since
(A4-B 1,....Bp;v) is an extended clause in P, P =(A-B 1,...Bp;0). By lemma L4.2(1),

P ,(A+B1...Bp~).Since uw=-u[1A ... [O0J10-, by lemma L4.2(1), Pk((A-B 1 ...Bd);uw). So
by lemma L4.3(2). Pi--(Ae;uw). Also, by lemma L4.3(1), P N(A,.. So,

P =,((A1..,A)'9;w).O.E.D.

Example 4.5
Consider the refutation for the goal clause (4-S(e,D) :0) in Example 4.4. The computed answer sub-
stitution is 0 = 010203=(eOXRfY,a 2JZ,CT2/O1) With the variables restricted to those in the goal. Since there
is no variable in the goal clause, the resulting substitution is just 83= - (210).
Now (gO; WOIA[003iW - (S(eft);{{a1,ca2)g (ffg)}), which is an element in TpTo (see Example
3.2). Therefore, 0 is a correct answer substitution.

4.4. Completeness of NSLD-Resolution
In this section we prove some completeness results of NSLD refutation. The main technique used in the
proofs is combining refutations; to form a larger one. However, the presence of S-constants complicates
the proof in the following way. Without S-constants, the (SLD) refutation of a ground goal will always yield
an answer substitution that is the identity substitution e, and the refutations of two ground atoms can be
easily combined to form a refutation for the conjunction of the two atoms. However, if there are S-
constants in a ground goal, an NSLD refutation may produce an answer substitution that contains terms of
the form c/cr or ar1/a2, where c is a constant and ca1,c2 are S-constants. Therefore, we need the following
lemma.

Lemma L4.4 Let P be a program with null values. Let (B1;,w), 1i5n, be extended atoms in HBNV(P). If
P u' ((4-Bi;w)) has an NSLD-refutation with computed answer substitution e and computed answer
assignment w, for 1-,5 n, then P u ((4-B 1,...,B,;w)) also has an NSLD-refutation with computed answer
substitution e and computed answer assignment w.
Proof:
n=1: trivial.
n>1: Let Go be (4-B1,...,B,;w). Let the NSLD-refutation for P uj ((4-B 1;-w)) consists of the sequence of

goals (GO..GJ the sequence of input clauses (Cj1,..,Ci. and the sequence of mgu's (Ol-JJ
where Gi=+gjw) for OKj:5mi, and &o6=Bi, and g1=O. We can construct a sequence of goals
(G1...,G.) such that 01(-ibjwi) where bj is the (ground) formula
Since w--w11...wim, and since each of the Bk, 1-<k~n, is ground, BkOil ... Obe~Bk[Wi1]A... Wi.1%Bk1W1s.
So, G,, would be the goal (4-.(B1,..,BJXw~sw). For each Bk., 1acsn, (Bkw) is in HBNV(P), hence
Bk~w~s=-Bk. Therefore, Since there are only n-1 atoms in 0.., we can
use the induction hypothesis. Hence, Go has an NSLD-refutation. Q.E.D.

The following property of the fixpoint operator Tp makes the proof of completeness much easier.
Propositlon P4.1 Let P be a program with null values. Then TpTn can be reformulated as Tpl=TP(0)
TpTn([(A;w) I(A+- B,... ,B3;w) e Gnd(P), and there are (B1;w),...,(B,;w) in TpT(n-1)), b..
Proof:

By the definition of Tp, (Aw) e Tptn iff there is (A4-B1,...,B ) in Gnd(P) and there are (B%;wl)
(B ;w) in TpT(n-1) such that w--w1...w. and Bawl3=Bi for 15i<n.

Rt is easy to prove by induction that TpTk is closed under ground instance, i.e. if (B;v)r= TpTk
for some k then any ground instance of (B;v) is also in TpTk.

Since Bawls is ground, and from the appendix we know that [(w]sIA=w., (Baw]s;wiw) =(Bi;w) is
a ground instance of (B-,w ). Therefore, (Bi;w) e TpT(n- 1). Q.E.D.

Note that the above reformulation only applies to the upward powers of Tp, and niot to the definition of Tp
itself.
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Theorem T4.3 (Completeness) Let P be a program with null values. Let (A;w) be an element in Tptca, then
P u ((+-A;w)} has an NSLD-refutation, such that the computed answer substitution is e and the computed
answer assignment is w.
Proof:
Let (A;w) be an element in TpTn. We prove by induction on n.
n=l: (A;w) e TpT1. (A,-;w) e Gnd(P). That is, there is a unit clause (A',-;u) in P and a pair of substitu-

tions 0, and 0,, where 0, contains only variable substitutions and 0, contains only S-constant substi-
tutions, such that A' OO=A and [OJA=w.
Since A'0,0,=A'0,(0,0,)=A, and [W]s=0,, therefore, there is an NSLD-refutation of length 1 where
the unifier is 0,0,.

n>l: Let (A;w) be an element in Tpln. Then there is (A4-B 1,...,Bm;w)e Gnd(P), such that for 15i<m,
(B1;w) e TpT(n-1). By the definition of Gnd(P), there exist an extended clause C=(A',-B ,...,B,;u) in
P, a variable substitution 0,, and an S-constant substitution 0, such that [OJA=w and A'O0,0=A, and
BiO,8=Bi for 1.im.
A'O,9,=A' 9,(0,,)=A and B'oo,=B' o,(OO,)=Bi for 1_L<m. Therefore, A and the head of the extended
clause C.,(A'[w]s,-B'I[w]s,...,B=[w]s;uw)=(A'O,--B0 5,...=BO;w) unifies with mgu O,0,. If we let
Go=(+-A;w), and use C as the input clause, then we have Gl=(,-(BO0,...,B00,,0,);[0J,=
(--B,....Bin;w). Since (Bi;w)e Tpt(n-1), by the induction hypothesis, each ( 1 ;w) has an NSLD-
refutation with computed answer substitution e and computed answer assignment w. Using lemma
L4.4, we have our result. Q.E.D.

Furthermore, from theorem T3.1(2), we have the following (weak) completeness regarding NTp.

Theorem T4.4 (Weak Completeness) Let P be a program with null values. Let (A;w) be an element in Mi',
then there are m NSLD-refutation, m21, for P u ((--A;w)} with computed answer substitutions e1 .... ,,
and computed answer assignments u1,...,u,, such that ((A;w)) wn, U {(Aj;wuJ)).

This result states that NSLD can calculate the images for every element in MpN. but it might not be able to
calculate the elements directly. For example, if a program contains the following clauses:
(P(x).-Q(xy).R(y); 0), (Q(a,');{ (a) g (bc} )), (R(b);0) and (R(c);0). Then (P(a);O) is in MpN. However,
(--P(a);0) only have two NSLD refutations, with computed answer assignments wl={ [a) g (b) I and
w2=( (a) F (c) ), respectively. It is easy to see that {(P(a);0)) mi. ((P(a);w 1),(P(a);w 2)).

5. Conclusion
In this paper, we consider the problems of representing, in definite logic programs, a class of indefinite
information called null values, and of computing answers to queries in such programs.

To achieve this, we add to first order logic a new type of objects called S-constants. Together with
other extensions, these S-constants are used to formulate the incompleteness represented by null values.

We then defined an extension to Herbrand models that gives our logic a model-theoretic semantics.
Two operators are then defined to give a fixpoint characterization of this same semantics. One of the
operator has a least fixpoint that corresponds exactly to the model semantics. The other operator captures
the essential information contained in the model semantics and is much easier to compute than the first
one. A proof procedure that is very similar in form to SLD resolution is also developed, with the proper
soundness and completeness results.
Future work is to develop an appropriate semantics and proof procedure for inferring negative information
from a program that contains null values. We then plan to investigate how to extend these work on null
values to general Hom programs, i.e. programs that allow negative literals in the rule bodies.
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Appendix A.
In the proof of the following proposition, we use the following property of a directed set: ([12])
If X is a directed subset of a complete lattice, and if (A ,...,A) c lub(X) then (A,,...,AJ c I for some
I e X. (Assume that Ae Ii for some Ii in X, then since X is directed, there is a set I in X such that U IQI,

and hence {A1,...,A, c I.)

Theorem TA.1 (Continuity of Tp and NTp) Given a program P, the Tp and the NTp operators are continu-
ous.
Proof:

We first prove the continuity of Tp. Let X be a directed subset of the power set of HBNV(P).
(A;w)e Tp(lub(X))
iff (A--B,...,B,;wo) is a ground instance of an extended clause in P and (Bi;w. e lub(X), for 1.<5n,

and w=-wow 1...w.*-
iff there is an I in X such that (Bi;w-) e I, for 1<i.n.
iff (A;w) e TpQ) for some I e X
iff (A;w) r LUJTp()=lub(Tp(X)).

'EX

Next, since X is directed, any finite subset {1,...j of X has an upper bound J in X, i.e. U IJJ.

Therefore.
equ( U I ) c equ(J) c U (equ(J) I J e X) =Iub(equ(X)),

and
equ(lub(X)) Q lub(equ(X)).

Also, for any I and J, equ(1)uequ()cequ(Iu J), hence Iub(equ(X))cequlub(X)). So, equ is continu-
ous, and so is NTp. Q.E.D.

Proposition PA.1 (Properdes of T) Let P be a program
(1) For any S-mapping V, an atom A is in (Tpln)v iff there is an extended atom (A;w) in Tptn such that
WIPv]^A-L
(2) If I is a subset of HBNV(P) such that Izm TpTn and TpTnrI then TpT(n+1), zTp).
Proof:
Part I: When n=1, if A is in (Tptl)v then there is (A';w') in TpT1 such that w'[pv]A.J- and A'pv=A.

Therefore, there is a ground instance (A" ;wo) of a program clause C in P, such that w' =W. This
means that (A'pvwo[pv]A) is also a ground instance of C, since Wo[Pv]A*-L. Therefore,
(A pv;wp[pv]A)=(A;w) e TT1.
Assume that (1) is true for n<k. We want to show that it also holds for n-k.
If Ae (Tptk)v, then there is (A';w') in Tptn such that w'[pv]A*. and A'pv=A. By definition of Tptn,
there is a program clause C in P that has a ground instance (A' -B,...B.;wo) such that there are
(Bi;w. e Tpt(k-1), 1.ei n, and w'=wow1...w, e-. Since W'[pv]A*i., wi[pv]A- for 0<ign. Therefore,
B pve (Tgk-1))v, 1515n, and (A'pv+-Bpv...B.pv;wo[v]A) is also a ground instance of C. From the
induction hypothesis, there are (Bpv;u) e TpT(k-1), 1515n, such that tk[PV]A*J-. Therefore,
W=WO[PV]AUI...u,.*L, and (A;w)=(A'pv;w) e Tptk.

Part II: We need to prove that for any S-mapping V. (TpT(n+1)) '=p())v.
Since Tp Is continuous, TpT(n+1) (Tp1), and hence (Tpt(n+1))vQ(Tp(I)v.
If Ae (TpI))v then there is (A',-w') in T(I) such that w'[pv]A*-L and A'pv=A. Therefore, there is a
clause C in P that has a ground instance (A'--B,...,B;wo) and (Bi;w.)e I, li n, such that
w'=wow...w. *.L. Since w'[PVIA*.L, Wi[PV]^*L, 0<.L.n. So Bipv e Iv. Since TpTn 1I, Bpv e (TpTln)v.
By (1), there are (Bpv;w.e TplTn, SiSLn, such that wi[Pv]A*I. Since WO[Pv]A*.L,
(A'pv*-Bpv..,B.pv;wo[pv]A) is also a ground instance of C. Also, w=-wO[Pv]AW1...wD*.l. Hence
(A' p,;w)=(A;w) e Tp(n+l), and (Tp(l))v c (Tp(n+l))v. O.E.D.
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Proposition PA.2 (Properties of Assignments and Substitutions) Let P be a program, and let e be an appli-
cable substitution w.r.t. P. Let O= 0, u 0, where 0,, is the part of 0 that involves only variable substitutions,
and 0, is the part that contains only S-constant substitutions. Let V be an S-mapping such that
[8]A[1'PVA*.L. Then Opv=Opvl,.
Proof:

(0]A=[8,A, .'. [JA1PVA--. Assume that pv is {c1/O1,...,c/J} and that 0, is {L/vi...t,/v,}, where vi is
one of oj, 1.<im and 1:j.5n. a,pv is (tpv/vI,..., tp/v,,cl/o1,..,c.J/ad with any redundant terms
removed. In order for 9,pv=pv, we need to prove that for 1_<i.m, either t pv=v i so that kpN/vi is
removed, or tpv=cj, so that t.pv/vi and c,/j are identical. Since 1 only substitutes S-constants by
constants, the first situation does not occur. Wf prove the second one by contradiction.
Assume that there is an i, 1:5.m, such that k-pvcj. There are two cases to consider.
Case 1: ; is some constant c. jpv=C. If c~cj, then rn(aj,[OJA) r' ran(aj,[pv]AJ=0, .'. [(9]A[PV]A=.L.

Case 2: 4 is some S-constant ap such that j<p. kp=p. If cpcj, then, because tvi=op/aje 6,
Cla(oj,[0,A)=Cla(ap [e and an(a[j,[0,,=ran(qp.[e],. On the other hand,
ran(o'p[pv]A) ran(aj,[pv]A) =(cp) r (cj)--. These facts implies that [eJA[PV]A=-L 0.E.D.
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