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ABSTRACT
I- The development of the general stifiness coefficients
and load constants are presented for the flat Pratt and
gabled Pratt truss frames. The stiffness coefficients and
load constants are derived through the application of the
theorem of least work.

The elemental stiffness matrices for the flat and
gabled Pratt truss frames are assembled using the respective
stiffness ccefficients for each type of truss.

Two examples illustrate the procedures for computing

numerical solutions for each type of truss frame. _
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Kt Truss stiffness coefficient
L, Length of a specified member
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CHAPTER 1
Introduction

1.1 Ccncept of the Truss Frane

The truss frame is described as a structural steel
framing system utilizing a truss as the load carrying
horizontal member supported at its ends by columns. The
truss frame has historically been utilized in what some
authors and designers have referred to as "industrial
buildings." Though these buildings are typically single
story structures in which the roof is supported by the
upper chords of the truss, the truss frame concept can
also ke incorporated into multi-story buildings as well.
Figure 1.1 shows several examples.

The truss frames are generally lighter in weight than
the typical beam-column framing system and thus provide a
cost savings in material. In addition, due to the high
stiffness of the truss, truss frame structures typically
can span longer distances and therefore provide for larger
cpen floor areas free of interior support columns found in
nost standard beam-column structural framing systems. The

truss frame structure is generally best utilized when the
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Figure 1.1 Examples--truss frame configurations




clear span column spacing is greater than 40 feet but not
larger than 120-140 feet (White & Solman, 1987). Normally
for spans of less than 40 feet, many designers recommend
the use of standard wide flange sections in a standard
beam~column frame since these sections are readily
available from standard steel pre-engineered building
supply companies. For shorter spans, the use of the truss
frame in steel weight is normally offset by the increased
cost of labor to manufacture the truss, especially if done
so as a special order. The designer should check with a
standard products supplier to see if the shorter truss is
readily available, if they in fact feel justified in its
use for spans shorter than 40 feet.

1.2 Classification of Truss Frames

There are as many variations of the truss framed
structure as given by the style of truss used. Examples
of the variations include the Warren, Fink (or W), Pratt,
and Howe. Each of these in general refer to the geometric
configuration of the web members of the truss.

There also are variations in the truss frame given by
the geometric shape of the frame, also referred to in some
texts as a bent. These variations include the single
story and multi-story previously mentioned, the multiple
bent given by the use of interior supporting columns, and

geometric shape variation given in the use of the gabled,




flat, flat-cambered, and arched truss. (See Figure 1.2
for examples of the various shapes and styles of trusses.)

The choice as to which truss frame shape is used is
normally one of architectvral aesthetics or simply one of
owner's preference. The selection of which truss type
used is normally a preference of the designer. However,
the Warren and Pratt are used most for flat roofs while
the Fink and Pratt styles are used most for the large rise
gakled roofs (White & Solman, 1987).

1.3 Historical Background

Early examples of truss-frame structures include
steel mills, train-locomotive repair and maintenance
shcps, automotive assembly plants, and aircraft
raintenance facilities and factories. Each of these
examples typifies the regquirement for a large open floor
space with adequate overhead space to allow the use of an
overhead traveling crane (Grinter, 1955).

Other applications and benefits of the truss frame
can also be seen for smaller scale manufacturing plants,
commercial retail sales buildings, and warehouses.
Through the use of the truss frame, the interior columns
are eliminated or at least significantly reduced. 1In the
case of its use in a warehouse, this reduces the nunber of

obstacles which forklift operators and delivery trucks
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navigate around and thus reduces the opportunity for
stru~tural damage to occur to the structure caused by
impact on the columns from forklifts and trucks operating
in the warehouse. 1In the case of the commercial retail
sales facilities, the use of the truss frame allows the
building owner to erect a clear span facility without the
worry of interior columns dictating the final layout of
equipment or manufacturing processes. In the case of the
commercial property development companies who lease their
buildings to other users, the benefit of the clear space
offered by the truss frame allows the developer to
construct the facility without limiting the use or layouz
of the facility because of interior column ccnstraints.
It should be pointed out, however, that if the end user
intends to suspend mechanical equipment such as an
overhead hoist from the truss or other special mechanical
systems not initially included in the designer's
calculations, a design investigation will be required tc
determine what, if any, structural changes and
modifications will be required to accommodate the special

equipment and associated loadings.




CHAPTER 2
Stiffness Coefficients and Load Functions
2.1 Introduction to the Ioad and Stiffness Coefficients

The load and stiffness coefficients for a parallel
(flat) Pratt truss and a gabled truss are derived in
Sections 2.2 and 2.3, respectively.

The development of the load and stiffness
coefficients follows the derivation of the slope-
deflection equations contained in the unpublished Masters
of Science theses of Morrisett (1957) and Smith (19%7),
prepared at the School of Civil Engineering, Oklahoma
State University, in 1957 under the direction of Dr. 7J.
Tuma.

The derivations are based on the energy methods of
Castigliano's theorem of least work. In each of the
derivations, the properties of the elastic center are
employed in order to simplify the number of terms
contained in the deformation equations.

The necessary changes have been made tc the slope--
deflection derivation to reflect the stiffness sign
convention defined by Dr. J. Tuma (1987). Also, several

symbols in the nomenclature in the original theses are




changed to simplify or clarify the equations and to once
again conform to the sign convention used by Dr. Tuma
(1987).

The final load and stiffness coefficient equations
are located at the end of each section and are presented
in a tabular form.

The load and stiffness coefficients for the truss
frame columns are not derived in this paper. Their
derivation is contained in several structural analysis
text books offered at the undergraduate level, following
the standard beam analogy. The lcad and stiffness
coefficients for the columns are presented in tabular form
in Section 2.4.

2.2 Derivation of the lLoad and Stiffness Coefficients:

Flat Pratt Truss

2.2.1 Statics

A typical flat Pratt truss beam removed from a
continuous elastic system, lcaded by a general system of
forces, is shown in Fiqure 2.2.1. The truss has constant
depth and is fixed at both ends.

In the analysis of this truss, the following
assumptions have been made:

1. All members are connected by frictionless

hinges.
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2. All members are subjected to axial forces only,

and the influence of shear and bending noment is

neglected.

3. The truss and the loads are forming a coplanar
system.

1. All loads are applied at joints.

5. The deformations of the truss are elastic and
small.

The structure has four reactions: two reactive

torces, R,, and R,, and two reactive moments, F!

and FM. ..
Y 5A

“as
The prcblem is statically indeterminate to the second
degree and requires two equations of deformation to form a
soluticn.

The genreral displacements of the supports are wiven
by 2,,, a,,, 9, and ®;. Figure 2.2.2 shows the free body
sketch of segments AC and CB. The resultant of the loads
corresponding to part AC and CB are denoted by W, and W,,
respectively. The redundant forces at the center cf the
cross-section are V_ and M /h. Assuming all displacements
and reactions are positive and using conditions of static
equilikrium, the end reactions of parts AC and CB are:

Rye = Wo v, M

It

A8 - Mo + aVO + CMAC

(1)

i

Ry, = W, -V, Mga M, + av, - Mg
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12
CM,. and CMBc are the cantilever moments at c¢ due to W, and

W,, respectively. Since there are no horizontal loads

2[

applied to the truss, R, and R, = 0.

AX
The normal force for any member in the truss due to

the applied loads and the redundants is:

N, = SN; + o;H + BV, + v;M/ (2)

1

where SN, normal force in a given member due to

loading on the truss

@, = normal force in a given member due to
H =1
B, = normal force in a given member due to
V=1
and y; = normal force in a given member due to

Due to the geome:try and loadings of the truss, the
axial deformation and normal force due to H, will be
neglected. As such, a; H = 0 will be eliminated at this
point. in the derivation.

2.2.1 Least Work

The Principle of Minimum Potential Energy is given as:

U, = U (3)

1 e !

where U

e the external work

and U.

; the internal work

The internal work, U,, is formed by:

U, = U, + U, (3a)

1
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where Us

U

v

the strain energy of the structure

the strain energy due to volume change
The energy due to volume change will be neglected. Only
energy of normal forces will be considered. Hence,

Equation (3a) becomes:

B
N.°L,
Ul = US = > (3b)
2AE
A
where L. = length of any member
A; = cross-sectional area of any member
and E = modulus of elasticity
If we let Al = L, , then Equation (3b) may be rewritten as:
AE
B
N2,
U, =0, = % (3¢c)
2
A
The external work is given by:
U, = U, + U, (34)
B B
where U = Z Wa + Z WO = work due to applied loads
A A
B B
and U = Z Ra + £ MG = work due to reactions
A a

The work of the supports in terms of reactiors and

displacements given by Equation (1) is:
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Uo = Rydpy + Mgy + Rgpagy + M0
Substituting the equivalents for each of the reactions
from Eguation (1):
U. = (W, + V))a, + (=M, + aV, + CM,.)9, o)

+ (W, = V )ag, + (M, + aV, - CM,)e,
From Castigliano's theorems, the first partial
derivative of the strain energy of a truss with unyielding
supports, with respect teo a redundant, is equal to zero.

Allowing displacement of supports, we have:

5U. v,
cM oM
b Q 4
i (4)
au. du.
T N
EAY cv

g 0

The rartial derivatives of Equation (3c) with respect to

each redundant are:

B
U ON, B
= I N - = £ Ny, (d1a)
oM cM A
2 Q
A
B
au, oN, B
—= = I N = Z NS}, {(4b)
ov eV A
o] C
A

The partial derivatives of Equation (3e) with respect to

each redundant are:




au.
= -6, + 0
A B
oM
Q
au,
- = a,, t ag, + aeB — bgy
ov
e]
If we let a, = a,, = &g
then,
oy,
R =T 9t G
oM
(;Lsr
= a, t a (9, + 0)
av
2.2.3 Deformation Eguations
Egquations (4) in terms of Equations (4a, 4b,
may now ke written as:
B B
- ©, + 6, = I SNy + M T v,
A A
B
VAT
A
B B
s, - a(e, + ) = T SNFA +M T ypLA
A A
5 2
+ VL B%A,
2

From symmetry of the truss

properties of the elastic center:

B B
z Yiﬁikl = z Eiyill =0
A A

and making use of the

41c,

15

(4c)

4d)
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The equations in (4e) can be reduced to:
B B ,
-9, + §; = T SNijy;Ad;, + Mj T ¥y}
A A
(41)
B B ,
a, + a (0, + €) = T SNBA + V, T B4,
A A
Denoting:
B B
D, = £ SNy.A., D, = I SN.8A,
A A
B B
C, = EEILY ¢, = T B,
A A
where
D, = truss load factor--rotations
D, = truss load factor--shear
C, = truss framing constant-~rotation
C, = truss framing constant--shear
Substituting the terms intc Egquation (4f),
the deformation equations beccme:
—(9"4'&)3:DG+MOC(3 »
(4g)
a, + a (9, + o) =D + VC
Solving these two equations, the redundants are:
- D, - ©, + 9
M, = — —_ - (5)
C, c, G
a, + a (e, + ©,) =~ D,
Yy = —_— _
p)
C. C C

4 Y Y
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Substituting the results of Equation (5) into Eguation

(1):

2 2
~ 1 + a 0, + ac - 1 O + A (&, dgy)
Mg = | o — — _—
Co Cy Cy Co Cy
(6)
+ Dy - a Dy + CM,,
Co Cy
2 2
ac - 1 8, + [1 + a 9, + a (&, = ag)
M, = |— — - — —
BA
Sy Ce Co Cy Cy
(7)
- D, -a D - CM,
Co Cy
Ry = Wy + Bay T Ayt @ (64 + ©) - Dy
— - (8)
c, c, c,
Ry = W, - Sar T By - a (0, + 65) + D,
- - (9)
C C C

Note:
If the truss is loaded symmetrical with respect to
the axis of symmetry of the truss, the lcad constant Dy

will egqual zero.




18

$SNAY 330Ad AR [J--SJURISUOD TvINIONIFS ¢ ¢ ¢ odubidg

(ssnaq . R Lot v o
o1ajzouwis--ueds prw) v X L, h2To= s YANS Z = a
o d
1 ! M ) Lootgt v A
N, 2T = 0 Y'ONS X = a
3! g
Z
*q ‘aspath oyy
JO I93u80 9yl 3R pPa3edoT] = om O = e 0 = “a
:I93Ud) OI3seTd Is3UL3sUOD Purag :sS3uUe3SUOD proT

*sSopa037 Jo wajysAs Jarevuvldoo e Ag papeo]
*d pue Y 3 paulealsox AT[eoI3serd Y JuURlSUOD JO SsSnid3 Je[J-TedTaj3suwdAs :Aixjsuosn

weabeTIp Apoq ®91J ssSnij 3Ield q welsAs [evan3ionals ssnigy epld e

I
v8 .L' < — U~ T Mt . Axh,. ve yok - - : e ¥
" =] — - [ PSR AT T (e
vid 8 Doy e O 9 " R v TN
< S R SIS P e —- “ ;v_ o T R | D
YT R R FNI | [oe, "y _ , I Ty
v / r | i ¥ o [
\\\ P MRS | ~ | , } ! SN TR
~ R VA N IR B N S IS M NI
Yy A u ¥ 4 u g, R T T e e b o
S o- - . " v T Wb - V2NN e ﬂ/ A Foew
O RS i 1 Ve S d ool f . B
' )
n._ . I _ ; { i % _ ‘
" & L
R
! Lo




Stiffness Matrix Coefficients:

Kty s = Ktmm = 0
Ktl,AB = Kty = O
1
KC s = Kb g = —
Cy
a
KE; 5 = Rty = —
CY
1
K, a5 = Kb 4 =
. . c,
Ktg 45 = KtS,BA =7
Load Functions:
FH,; = W,,
D,
Vg = Wy - —
C
7
D D
FM,, = — - a --—
c, c,

a
C
1
— +
Co
+ CM
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2.3 Derivation of the Load and Stiffness Coefficients:

Gabled Pratt Truss

2.3.1 Statics

A fixed end gabled truss removed from a truss-frame
system, loaded by a general system of loads, is shown in
Figure 2.3.1. Once again, the basic assumptions made in
the analysis of the gabled truss are:

1. All jocints are pin connected.

2. Truss members are subjected to axial loads cnly.

3. Truss members and loads are in one plane only.

4. All deformations of the truss are small in

cormparison with the dimensions of the truss.

Under the action of loading, the vertical reactions
R,, and Ry, are induced. The end thrust of the truss
procuces the horizontal reacticns R, and R;. Since the
ends of the truss are restrained, the end mcments FM,, and

FM_, are also developed.

3a
The truss is then divided at its centerline as shown
in Figure 2.3.2, and the internal forces at the central
section are then replaced by an infinitely rigid arm to
some arbitrary point 0, the elastic center of the truss.
The displaced forces are denoted as H, V_ , and M/ (Figure

2.3.2). This displacement of the internal forces will

allow the simplifications of the analysis. The general
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system of loads is resolved into two parts, AC and CB,
each corresponding to one-half of the symmetrical truss.
The resultants of the system of loads acting on parts AC
and CB are denoted as W, and W,, respectively. The

general displacement of the supports are given by a,, a,,

@, and »a agy, © 1s introduced. If we again assume all

8x’/

displacements and reactions to be positive, the new

reactions, due to applied loads and internal forces at the

elastic center, C (Figure 2.3.2), are:
Rix = Wy = Hy,
Rgyy = Wy = H,,
R, = W, + V,, (1)
Rgy = W, = Vg
My, = = M, + cH3 + av, + CM,.,

My, = M, - cH -~ av, - CM.
where Cl,. and CM;. represent the cantilever moments of the
appl.ied loads at the

There are six unknown reactions in Equation (1).
With only three eqguations of static equilibrium, the truss
is statically indeterminate to the third degree. The
three additional equations required to sclve the problen
must be derived from the deformation relationships

corresponding to H, V_ , and M.
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The normal force for any given member in the truss in

terms of the applied loads and the redundants is:

N, = SN, + aH + B,V  + yM (2)
where N. = total normal force in any nmember,
SN, = normal force in any member due to loading,
@, = normal force in any member due to H = 1,
B; = normal force in any member due to V = 1,
¥; = normal force in any member due to M = 1.
2.3.2 Least Work
From the Principle of Minimum Potential Energy:
U, = U, (3)
where U; = the internal work
and U, = the external work.
The internal work:
U, = U, + U, (3a)

<
o
0]
[a]
1]
(=}
Il

the strain energy of the structure

and U

the strain energy due to volume change.
Once again, the energy due to any change in volume will be
neglected and only the energy of normal forces will be
considered, therefore:
B

N.2L,

Uy =U, = T
2AE
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where L, = length of any member,
A, = cross-sectional area of any nember,
E = modulus of elasticity,
L
or in its simpler form when A, = —
AE
B 2
N;
U, = U, = T — A, (3k)
2
A
The external work,
Ue = UL M Ur (3C)
B B
where U = £ W + I We = the work due to applied loads
A A
B B
and U = T R + I Mo = the work due to reactions.
A A

The work of the supports in terms of reactive forces, and
displacements is:

U =R

r axdax TR

+ MABGA + R,oa., + R.,a

A2 ay 8x28x gaday

= M58
substituting from Equations (1):

U, = Ha, + (W, + V)a,

r 27 AX - HOABX + (WE - VO)A

Y 8Y

+ (- M, + CH, + aV_, + CM,)@ (3d)

A
+ (M, - cH, + aV, - CM, )&,
From Castigliano's theorems, assuming unyielding

supports, the first partial derivative of the strain
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energy of a structural system with respect to a redundant
is equal to zero. Allowing displacement of the supports

we have again:

oU, ou
S _ r
- '
SH,  9H,
du,  du,
= / (4)
av, BVO
cUS ~ CUr
c"\Ic SMO

The partial derivatives of Equation (3b) with respect to

each redundant are:

B B
oU. ON.A.
S 1 1
= T N— = 3 Nai,
CH, GHO
A A
B B
au, ANA,
= T N = T N.a.hi, (4a)
Y '3v b
d o )
A A
B B
au, 3N A,
= z N — = T N.y.A
om, au,
A A

The partial derivatives of Equation (3d) with respect to

each redundant are:




au,
= A T o Bgy + C(E‘)A - @B),

JH,
au
—L =, - ag * a(e, + 6,),
av

Q
au,
T T 0 T G
GMO

If we let

By T Bax T bgy
Ay T by T bgy

then Equations (4b) may be rewritten as:

2.

The deformation equations are ocobtained by

ct,
- = a2, + C(O, - ©)
cHy
au,
= a, + a9, + o)
vy
cu_
- =0 - 9
cll

3.3 Deformation Eguations

26

(4b)

substituting Equatiors (2), (4a), and (4c) into Equation

(+) .

A

The deformation equations are:

B B
, * Cc(e, - 9) = T SNak +H = afh
A A
B B
+ VvV, 0z mﬂiM + M, T oavh,
A A
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B B
ay + a(e, + ©;) = T SN;B.A; + Hj T Biod,
A A
(5b)
B ) B
+ VO = ﬂiki+ MO P BﬂiX“
A A
B B
-9, + 0 =X SNyA +H Iy
A A
(5¢)
B B )
+ VT oyBA M, Z Y%A,
A
Equations (5a), (5b), and (5c) may now be solved

simultaneously tc determine H, V, and M . These equatiocns

may be reduced if H, V , and M, are applied at the elastic

o’ 0

center, as shown in Figure 2.3.2. When the three

redundant forces are applied at the elastic center, the

terms:
B
L ;8,4
A
B B
£ ayd =2 YA (5d)
A A
B B
S8k = T VB
A A

vill equal zero in the case of a symmetrical truss.

For a symmetrical truss, the lateral X location of
the elastic center is always at the mid span.

The vertical, Y, location of the elastic center is

computed by:
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— B — —
Y, = £ Y, dA
A
B —
S dA
A
where ?; = distance from the crown of the truss to the
elastic center
Y. = distance from the crown of the trust to the

centroid of the ith bar

There are other variations on the methed for lccating
the elastic center of a truss or frame that will yield the
same location, however, this is the method used in this
analysis.

Taking advantage of the relaticnships given in
Equation (5d) resulting from the use of the elastic

center, Equations (5a, 5b, and 5c¢) reduce to:

B B,
a, + ¢c(e, -9, = I SN a,A; + H, I a4,
A A
B B
a, + a(9, + 95) = I SN + V, T 87, (5e)
A A
B B
-9, + 0, = T SNyA +M I y0
A A
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If we denote:
B B ,
D, = % SN,a;;, c, =3 afh,
A A
B B ,
D, = £ SN.8;A,, C, = 2 B,
A A
B B ,
Do = T SN;y;4,, Dy =T v,y
A A
We may then rewrite the deformation equations as:
a, + c(8, - @) = D, + HC,,
A, + a(e, + ;) = D, + VC, (6)
-0, + @, = Dy + MC,.
Solving for the three redundants:
a C (8, - &) D,
H = — + — - -,
C, C, C,
ay a (0, + &) D,
v, = — + - - T (7)
[e}
CY CY CY
~0, * G De
Moo= —_— - —,
[o]
Co Co
Substituting the results of Equation (7) into
Equations (1),
Ay c Dx
Ry = Wy + — + — (9, - 6,) - — (8)
G c,
ay a Dy
Ry =Wy + — + — (8, + &) - — (2)
CY Y CY
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2
9, - 9 Dy c C® (9, - ©p) C D,
My =—"+—+ — + — - —
Co C,  C C, C,
(10)
a a? D
t s, b — (0, + 9;) - a — + CM,,
Cy Y Cy
Ay C D,
Ry = Wy = — - — (8, - &) + — (11)
Cy Cx S
Ay a D,
Ry = Wyy = == = == (6, + §) + _ (12)
c, C C,
2
_ O, = 9 Dy o] C
L%A = - — - " - T sy, = (@A - 93)
Co Co Cx Cy
(13)
D, a a? D,
+ C — +t — A, + — (8, + ;) - a — = ClMg,
Cx Cy Cy Cy

Equations (8) through (13) are the stiffness equations for
the gabled truss.

Stiffness Matrix Coefficients:

1
K8 = Ky ga = —
Cy
C
I\t1,AB = Kt'I,SA =

Cx
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1
Kt, g = Kby = —
Cy
a
Kty pg = Kby = —
Cy
1 at c?
Ktoag = Kb gp = — + — + —
Co Cy Cy
1 a? Cc*
KEo g = Kbggp = - — + — = —
c, ¢ G
Load Functions:
o Dy N D,
FHAS = "1)( - — FHBA = WZX + —
Cx Cx
Dy Dy
FV.,. = Wy - — FHgy, = Wpy + —
Cy Cy
D D, b D D,
FM,, = ~ — - ¢ — FMg, = = — + ¢ — - a = - Clg
c, c, C, c, c,
D,
- a — + CM,,
D

2.4 Column Stiffness Coefficients and ILoad Functicns

As previously stated in Section 2.1, the column
stiffness coefficients will not be derived in this paper
as they are readily available 1in various undergraduate
structural analysis text books. The column stiffness

coefficients are the same as those for the standard beam
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element. The coefficients are shown in Section 2.4.1,
accompanied by their orientation diagrams.

Four column load cases are shown in Section 2.4.2.
These four load cases are taken from class notes given by
Dr. J. Tuma during his lectures in the Theory of
Structures ccurse, taken by the writer while attending
Arizona State University. These same four column lcad
cases, along with numerous other variations of the load

functions, may be found in Dr. J. Tuma's Handbook of

Structural and Mechanical Matrices (1987). 1In using this

handboolk, the reader must remember to make the appropriate
changes in the load applications orientation due to the 90
degree rotation of the member axis.

2.4.1 Column Stiffness Coefrficients

EA 4ET
L L
1Z2ET 2ET1

Kc. = N Kc; = —
L L
6E1

Kc. =
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T
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78
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(52}
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8
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Y

2.4.2 Column Fixed End Forces

Concentrated loads m

(1+2m) n°p,

1/2 L P,
1/2 L P,

1/12 L°p,

(2-n)n°b P,/2
nb P/2

(4-3n)nb?P, /12

3 L P/20
L P,/6

L°P,/30

< UItitittc

@

LN
— e = [

m
. \]/"
S [

N

7

«

N

a/L

]

BT

BT

8T

BT
AR
‘BT

8T

BT

BT

BY
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b/L

+(1+2n)m°p,
+mP,

= mna PX

+1/2 L P,
+1/2 L P,

- 1/12 L%p,

+ (l+m+m®n)b P?
+ 1/2 (2-n)b P,/2

- (6-8n+3n%)b%p,/12

7 L P,/20
+ L P/3

- 1°P,/20




CHAPTER 3
Method of Analysis

3.1 Construction of the Structural Stiffness Matrix

The structural stiffness matrix is formed by merging
the elemental stiffness matrices for the specified truss
configuration and the elemental column stiffness matrix
together to form a single stiffness matrix (alsc referred
to as the stiffness matrix equations).

Up to this point, the reaction and deformation
notation used in the derivation of the truss stiffness
equations have been R, R, M, a

A and 6. We now wish

Y’ x?! Y’

to change this notation in order to conform with that used

by Dr. Tuma (1987). The modified nomenclature is:
Ry = Upg Ry, = Ugy 8ax = Uy s = Ug
Ry = Vig Rgyy = Vi =Y, 8oy = Vg
Mis = Zg Mgy = Zga O = & O = &

In the case where two subscripts are used, the first
denotes the local joint of interest and the second
identifies the terminal end of the member.

In a more general form, the subscripts L and R are
used to define the left and right end of a structural

element since the actual subscripts used in the analysis
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of a truss frame depend on the manner in which the joints
are identified.

In the case of the nomenclature used above, U is
the same as U, and Uy, is the same as Uy, in more general

terms.

3.1.1 Procedure of Analysis

The following is a step by step procedure for the

analysis of a truss frame using the stiffness matrix

method.
1. Determine the geometry cf the truss-frame:

a. label all joints alphabetically and number
all members.

b. identify all external dimensions, ensuring
the truss frame is symmetrical as for the
cases derived in Sections 2.2 and 2.3.

C. identify the length, cross-sectional area,
moment of inertia (I) of the colunns, and
the modulus of elasticity for all members.

2. Calculate the elastic center of the truss:

a. for a parallel truss the elastic center is
located at the mid-depth of the truss, h/2,
and at the center of the truss span for a
symmetrical truss-frame.

b. for a gabled truss the elastic center must

be calculated from the equation:
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Ty, dA

TdA

Y,

Based on the truss shape given in either

Sections 2.2 or 2.3, calculate:

a. truss constants C,, C,, and C,
b. load constants D,, D,, and D,
c. cantilever moments at C due to loads

applied only to the truss.
Using the load and truss constants from Step 3,
calculate for the specific type of truss shape:
a. truss stiffness coefficients
Iy. fixed end forces and mcoments
Substitute the stiffness coefficients and fixed
end forces and moments for the given truss into
the appropriate elemental truss stiffness
matrix, Kt.
Calculate the stiffness coefficients and the
fixed end forces and moments of the elemental
column stiffness matrix and substitute them 1into
the elemental into the matrix, Kc.
Identify the unknown displacements for the truss
frame in terms of u's, v's, and €'s. Establish
displacement relations. These exist only in the

case of the symmetrically loaded truss frame.
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8. Write the joint equilibrium equations for each
joint in the truss-frame.

9. Using the joint equilibrium equations, assemble
the structural stiffness matrix, K', by
algebraically adding the elemental stiffness
matrices for the truss and columns.

10. Solve for the unknown displacements in terms of
u's, v's, and 0's.

11. Substitute the values of the now known u's, v's,
and @'s into the elemental stiffness matrices
and sclve for the end forces and moments of each
of the members.

It should be noted that at this point all of the bkar
forces in the truss were previously calculated in Step 3
above, therefore, their analysis has been already
completed.

3.1.2 We begin the construction of the structural
stiffness matrix by first defining the elemental stiffness
matrices for each type of truss identified in Section 2
and for the columns, all in terms of the redefined
nomenclature.

All of the elemental stiffness matrices are presented

in terms of the global X-Y axis system (X axis horizontal,
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Y axis vertical), therefore, no rotational transformation
of the elemental matrices are required in the analysis.
In the end, the solutions for the unknown displacements in
the global system are also the same in the local axis
system.

3.1.3 Parallel Truss Elemental Stiffness Matrix

Before assembling the elemental stiffness matrix for
the parallel truss, we will first rewrite the stiffness
equations, Equations 6 through 9 of Section 2.2, in terms
of the new nomenclature and the stiffness factors given by
Kt

Kt,, etc. We will also introduce the horizontal

Ol
reactions U, and Uy, which were initially left out of the
derivation by neglecting any axial deformation.

The slope deflection equations may be rewritten as:

Ui = FHyg

VAB = Kt2 (VAB - VBA) + Kt3 (@A + @B) + FVBA
Z,5 = Kty (Vg - vg,) + Kt, 6, + Kt, O, + FM_
Uga = FHy,

Vga = Kb, (Vg = Vg) - Ktg (6, + ©,) + FV,

BA
Zgo = Kty (Vg = V) + Kt ©, + Kt, O, + FM,,

Writing these six equations in matrix form becomes:




- - T roT r 1
UAB 0 0 0 0 0 u,, FHAB
Vg 0 Kt, Kt -Kt, Kty Vg FV,,
Zis | = |0 Kt; Kt -Kt, Kt o, FM,,
— . + .
UBA 0 0 0 0 0} Ug, FHBA
Ve 0 -Kt, -Ktg Kt, -Kt, Vea FVg,
2 0 Kty  Ktg -Kt;  Kt, R Fi4,

L. - - - - _ .

3.1.4 uvabled Truss Elem2ntal Stiffness Matrix

Rewriting the stiffness equation for the gabled truss

in terms of the new notation and K's:

Ups = Kty (Ug
Vis = K& (Vg
Zap = KE (Ugg
+ FM,,
Usa = Kt (Ug
Ver = KT, (Vg
Z,, = Kt, (U,
~ FMg,
Writing these six

becomes:

- U,) + Kt, (9, ~ ©,) + FH,

- vg,) + Kty (9, + 6} + FV,,

- U”A)

2

= Ve

Usa) Kt} (Vas = Vga) + Kt 9, + KT 6
- Kt, (8, - ©,) + FH,,
- Kt; (o, + ©,) + FV,

- v,) + Kty 9, + K, o,

- ) Kty (v

equations in terams of its matrix form




3.1.5 Column Stiffness Matrix

U, Kt, O Kt, , -Kt; 0 -Kt,
' 0O Kt, Kt; | 0 -Kt, Kt
2 Kt, Kt, Kt, | -Kt, -Kt; Kt
U, | |-kt, o -Kt, | Kt, 0 Kt,
Vg, 0  -Kt, -Kt;| 0 Kt, -Kt,
Ze | [-Kt, K&y K, K, -Kt; Kt

FH,y

FVs

FM,,

FH,

FV,,

The column stiffness matrix will not be derived in this

paper. Simply stated, the column stiffness matrix may be

obtained by applying the rotational transformation nmatrix to

the general case of the stiffness matrix equation for the

straight-horizontal bar.

The general stiffness matrix for a

horizontal bar may be found in Tuma (1987), along with an

explanation of the transformation matrices.

stiffness matrix is:

Usg ’_Kc1 o] Kc, -Kc, 0] KczT
Vg 0 Kc, © 0 -Kc,

Zi Kec, © Kc, -Kc, o Ke,
Ug; B -Ke, O -Kc, Kc, 0 -Kc,
Var 0 -Kc, 0 0 Kc, O

LZ‘” ] [Ke 0 Kc, -Kc, 0 Key |

T8

T8

13

BT

BT

s

The column

FH_]

FVg

FM_g

FHg;

Fv,,

FM

BT




>
[N&]

where:

1. Kc represents the specific column stiffness
coefficients as opposed to the previously defined
truss stiffness factors, Kt.

2. U, vV, 2, u, v, and € are in the global axis system
of the truss frame.

3. The subscripts, TB and BT refer respectively to

the near end and far end of the column with
regards to the member and forces or displacements
we are working with. More specifically, the top
or bottom.
The fixed end forces and moments for a column are
presented in Section 2.4 along with the column stiffness
coefficients.

3.1.6 Construction of the Structural Stiffness Matrix

The overall construction of the structural stiffness
matrix for a single truss frame is contained in Steps 1
through 9 of the Procedure of Analysis (Section 3.1.5).

Steps 1 through 6 deal with the calculation of the
truss and column stiffness coefficients and load factors,
and assembly of the elemental stiffness matrices. Steps 7
and 8 are key to the actual construction of the structural
stiffness matrix.

Step 7 identifies the unknown displacements for a given

truss frame in terms of u's, v's, and ©'s and establishes
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the displacement relationships. From the symmetry inherent
in our particular truss frame, the displacements of a joint
on the right half of the truss frame can be related to the
displacement of the corresponding joint in the left half of
the truss.

The joint equilibrium equations in Step 8 form the
basis for the structural stiffness matrix.

The joint equilibrium equations are the summaticn of
the forces acting on each of the members connected to a
specific joint plus the fixed end forces and moments due to
any lcads applied to those same members or in simple format,
for any given joint in a truss frame:

U, + Z FH, = 0

i i

TV, + I FV, =0

T2, +Z FM =0

In the case of a single bay truss frame, the term & U,
will egual the sum of U, (due to the truss) and U, (due to
the column) at the joint where the truss and column are
connected. Likewise, T FH, is the sum of the horizcental
fixed end force acting cn both the column and the truss at
the joint in question.

Once the joint equilibrium equations have been written

for all joints in the truss frame (in terms of U, V, and 2),

they are rewritten in terms of their corresponding elemental
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stiffness equations given by the truss/column stiffness
coefficients, u's, v's, and @'s.

Next, we make use of the displacement relationships and
the symmetry of the truss frame previously found in Step 7.
Selecting either the left or right half of the structure to
work with, substitute the displacement equivalents into the
joint equilibrium equations such that all displacements
contained in the equilibrium equations represent only the
left or right half truss frame displacements.

The structural stiffness matrix can now be assembled by
placing the rewritten joint equilibrium equations into
matrix format. For a general truss frame, symmetrical
about the center line, as shown in Figure 3.1.1, the center

line, as shown in Figure 3.1.1,

I B R T
|

A S N
- !’ PR AN -

- I I I~ RN AN
- j SN N .

|
Mid Span

e o ——

7
r

~
M\

Figure 3.1.1 Symmetrical truss frame
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the structural stiffness matrix becomes:
[u, ] [ I [ u] = FH,|
Va K. L Va Z FVy
Z, 9, S FM,,
= . + (1)
U, U, T FH,
Vs Kat Ker Vg T Fvg
LZB_ L i L 88_ LZ FMB_
where K, represents a 3 x 3 coefficient matrix.
3.2 Solution fcr Unknown Displacements
The unknown displacements ray be found by using the
structural stiffness matrix developed in Section 3.1.6:
v, ] I i ] = Fu]
Va K. K Va z Fv,
z, o, T FM,
= . + (1)
U, u, £ FH,
V3 Kao Kig Vg z FVB
[ %5 | L “ L %) Y
or
(S) = (X) x () +  (FEF) (2)

The unknown displacements are found by considering
displacements caused by applied lcads or fixed end forces.

As such, Equation 1 may be rewritten as:
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u, -FH,
L K Va ~FV,
0, -FM,
— . = (3)
ug ~FH,
KL Kee Vg ~FVy
L N L 85 L -FMB _
or
(K) X (8) = (-FEF) (4)

The unknown displacements may be found by solving
Equation 4 in which:

a = K’' (-FEF)

The solution may be to obtain by Gauss elimination, hand
held calculator capable of matrix operations, or by means of
a computer program for matrix algebra.

After the unknown displacements have been calculated,
the remaining unknown displacements of the truss frame are
found using the displacement relationships defined in Step 7
of the procedure of analysis if the displacement
relationships exist.

3.2 Calculation of End Forces and Moments

Calculation of the end forces and moments, Step 11 of
the procedure of analysis, is accomplished by inserting the
solutions for the unknown displacements (Step 10) and the
known (or zero) displacements into the elemental stiffness

matrices created in Steps 5 and 6, earlier in the analysis.




The end forces and moments are the algebraic sum of the
appropriate stiffness coefficients multiplied by the
displacements plus the fixed end force or moment.

After obtaining the end forces and moments for each
member of the truss frame, an equilibrium check should be
made at each joint to ensure equilibrium conditions do in
fact exist. A free body diagram is most useful to
accomplish this.

3.4 Calculation of Bar Forces

The forces acting in the bars making up the truss were

previcusly calculated during the calculation of the truss

stiffness coefficients and load functions. The designer is

strongly encouraged to make use of a table feormat during the

calculation of the truss stiffness coefficients and 1load
functions in order to better organize and retain the

calculation of the bar forces, SN..




CHAPTER 4
Examples

4.1 Example 1--Parallel Truss Frame

A single span flat Pratt truss frame with dimensions
and loads shown in Figure 4.1.1 is considered. The

modulus of elasticity is constant for all members.

A C
s

e

[

v

i

mn

(]
3

x

I
2
f

s
L
Ly
.

-

—_—
.

h¢
i

p

Figure 4.1.1 Flat Pratt truss frame

This flat Pratt truss frame is analyzed by the procedure
given in Section 3.

1. Figure 4.1.2 shows the left half of the truss
girder. Since the truss is symmetrical, only one-half of

it must be evaluated.
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A&
M <
0 2 4 6 8 10 12 3
J 4
. g 7 S \ v 4,
18 o 3
B = ) F I
] 1S '

Figure 4.1.2 Left half--flat truss girder

Top Chords/Bottom Chords

A= 7.5 in? L = 30 ft.
2 L 4 x 4 % % a = 15 ft.
E = 29 E6 psi

Vertical and Diagonal Members
A= 2.3 in?
2L 2 x 2 x &
2. The elastic center of a flat Pratt truss is
located at the center of the truss span at a depth of h/2,

or in this case 2 feet below the top chord.

3a. Truss Constants. The truss constants are given
by:
¢ = 0
N ,
CY= Zﬁik‘
0
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Table 4.1.1 shows the properties for each member and the
evaluation of the truss constants.

Since these values represent the truss constants for
only half of the frame, they must be multiplied by 2 for

the entire frame. Therefore the truss constants are:

c, = 0

1071.6
c, =

E

6
Co = —

E

3b. Load Constants. The fcrces acting on the truss

are shown in Figure 4.1.3 below. The original distributed

load is shown as a series of equivalent concentrated load

acting at the joints.

Figure 4.1.3 Forces acting on the flat truss

The load constants are given by:

D, = O

SN;B;4;

O
i
oMz
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N
D, = I SN.y,A,
0
Table 4.1.2 shows the elemental properties, influence
factors, normal force in the truss member due to loading,
and the load constants.
3¢c. The cantilever moments acting at the center of
the truss span are:
CM,. = [750(15) + 1500(10) + 1500(5)] 12
= 405000 in.-1lbs.
CM,, = [(750(15) + 1500(10) + 1500(5)] 12
= 405000 in.-1lbs.

The forces acting on the basic structure are:

W, = 300 lb./ft. (15 ft.) = 4500 lbs.
W, = 0
W,, = 300 lb./ft. (15 ft.) = 4500 lbs.
W, = 0

4a. The truss stiffness coefficients are:

Kt, = 0
Kt, = 0

Kt, = 1/C, = 1/(1071.6/E)

Kty = a/C, = 180/(1071.6/E)

Kt, = 1/C, + a%/cC, = 1/(6/E) + (180)2/(1071.6/E)
Kty = - 1/C, + aZ/CY = -1/(6/E) + (180)?/(1071.6/E)

Therefore, if we use E 29E6 psi,
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=0

=0

It

27062

4871220

it

il

881653042

It

871986375

The fixed end forces and moments are:

= w)( = 0
=W =0
D, 0
=W, - = 4500 - ——————— = 4500 lbs.
c, (1071.6/E)
D, 0
=W, - — = 4500 +
c, (1071.6/E)
D, D,
= — - a— + oM,
Cq C,
(71440/E)
= ————— - 180(0) + 405000 = 416906
(6/E)
DG DY
= - " -a-— + CM,
C@ CY
(71440/E)
= - ———— - 180(0) + 405000 = - 416906
(6/E)

The elemental stiffness matrix for a parallel

Pratt truss is given in section 3.1.3. The elemental

stiffness matrix is given in Figure 4.1.4.
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6. The stiffness coefficients for the columns are:

EA 29E6(13.2)

Koy = — =——— = 1678947
L 19(12)
12EI  12(29E6) (350)
K, = = = 10276
3
L 19(12)
6EI  6(29E6) (350)
K, = = = 1171514
2 2
L (19(12))
4EI 4 (29E6) (350)
Ky = = = 178070175
L 19(12)
2EI  2(29E6) (350)
K, = = = 89035087

L 19(12)
The fixed end forces for column AC are calculated
using the equations given in section 2.4.2 for a

distributed load acting perpendicular to the length of the

colunmn:
U, =1/2 L P, = 1/2 (19)(12)(60/12) = - 570 1bs.
Vig = 1/2 L P, = 1/2 (19)(12)(0) = 0 1bs.
Z., = 17/12 L2 P, = 1/12 ((19)(12))% (-60/12)
= =-21660 in-lbs.
Uy = 1/2 L P, = 1/2 (19)(12)(-60) = - 570 lbs.
Vgy = 1/2 L P, = 1/2 (19)(12)(0) = © lbs.
Zg, = -1/12 L2 P, = -1/12 ((19) (12))% (-60/12)

= 21660 in-lbs,.
The elemental stiffness matrices for columns AC and PN

are shown in Figures 4.1.5 and 4.1.6, respectively.
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In the case of column PN, since no loads are applied on

the column, all the fixed end moments are equal to zero.

7. The unknown displacements for the truss frame are:
u. = ? u, = ? u =0 u, = 0
Ve = ? vy =7 v, =0 v, =0
0. = 7?2 e, =7? &, =0 @, =0

Since the truss frame is loaded asymmetrically, there

are no continuity relationships between the unknown

displacements.

8. The joint equilibrium equaticns are:
Joint C

U + Uy - E70 =0

Voo + Vo = 4500 =0

Zoo * Zoy + 395246 = 0
Joint N

Cve * Upp =0

Ve * Vp + 47500 =0

Zye * 2y - 4-6906 = 0

9. Rewriting the joint equiiibrium equations in terms
of their corresponding elemental stiffness ccefficients:
Joint C:

U:

10276 U, + Ov,, + 1171514 9“ - 10276 u,. + 0Ov

CA AC AC

+ 1171514 ©,, + Oug, + Ov, + 08, + Ou,.

+ 0V + 08, - 570 = 0
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V:

0 ug, + 1678947 v, + 08, + Ov,. - 1678947 Vie T 00,
+ 0u,, + 27062 v, + 4871220 o, + 09,
- 27062 v, + 4871220 ©, -~ 450C = 0

Z:

1171514 ug, + Ov,, + 178070175 @, - 1171514 u, + Ov,,

CA

+ 89035087 ©,, + Ou, + 4871220 v,

CA

-+

881653042 @, + Ou, - 4871220 v,,

+

871966375 ©,, + 395246 = 0

Joint N

U:

10276 u,, + Ov,, + 1171514 O, - 10276 u, + OV,

NP

+ 1171514 @, + Ou, + Ov, + 00, + Ou,

+ OvNC + O@NC =0
Ou, + 1678947 Ve T 00, OupN - 1678947 Vey GOy
+ Ou, - 27062 Ve ~ 4871220 eCN + Oum + 27062 Ve
- 4871220 ©,, + 4500 = O
Z:

1171514 u,, + Ov,, + 178070175 ©,, - 1171514 u, + OV,

+

89035087 6, + Ou, + 4871220 v,

+

871986375 @, + Ou, - 4871220 v,

+

881653042 ©,. - 416906 = 0
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Making use of the known displacements determined in

step 7 above, namely, v, =V, =6, = u, = v, = 0, = 0, the

joint equilibrium equations become:

Joint C
1.

2.

Joint N

£

10.

10276 u, + 1171514 6, - 570 = 0
1706010 v, + 4871220 ©, — 27062 v, + 4871220 ©,
+ 4500 = 0

1171514 u. + 4871220 v

) ¢ + 1039723217 o,

- 4871220 v, + 871986375 O, + 393246 = 0

10276 u, + 1171514 ©, = 0

-27C62 v, - 4871220 ©, + 1706010 v, - 4871220 ©,

o

500 = 0

o>

-+
4871220 v, + 871220 o, + 1171514 u - 4871220 v,
+ 1059723217 ©, - 416906 = 0

Placing these six equations into matrix format as

showri in Figure 4.1.7 and solving for the six unknown

displacements:
u. = 0.979738 in. u, = -0.921436 in.
Ve = -0.002610 in. vy = -0.002750 in.
©. = -0.008107 Rads ©, = 0.008082 Rads

C
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11. Having solved for the unknown displacements, the
end forces and moments for each truss frame element may be
found by substituting the displacements into the elemental
stiffness matrices given in Figures 4.1.4, 4.1.5, and 4.1.6.

Doing so, the end forces and moments become:

Member AC

U, =0 U, = -1140 1bs.

V., = -4382.7 lbs. V,e = 4382.7 lbs.

Z.,, = —317547 in.-lbs. Z,e = 447604 in.-1lbs.
Member CHN

Uy = 0 Upe = O

VCN = 4382.7 lbs. VNC = 4617.3 lbs.

ZCN = 317547.4 in.-1lbs. ZNC = -359764.1 in.-1lbs.
Member NP

Up = —0.5 lks. U, = 0.5 1bs.

Ve = —4617 1bs. Vo = 4617 1bs.

Z2.. = 359687 1in.-1lbs. 2, = —3£9893 in.-lbs.

NP PN

12. The free body diagram of the truss frame analyzed

in Example 4.1 is shown in Figure 4.1.8.
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Figure 4.1.8 Free-body diagram--exanple 4.1
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4.2 Example 2--Gabled Truss Frame

A single span gabled truss-frame with dimensions and
loads shown in Figure 4.2.1 is considered. The modulus of

elasticity is constants for all members.

<00 I/t
—ee ey ey PV
h —
G K “}‘
DI ’ L =
c///f(\\1:>><:: N7
=0 T ) 7
5 \. 7 P // P
i / .. 4
i F/ = M —~ ‘<
£ O
|
|
=% 2 x BT —_ |
AN Lo |
A= 25 £ =5 in [,
L s P
. v = 740 in !
4 i !
i vl :
i : [
T
— PO

Figure 4.2.1 Gabled Pratt truss frame

This truss frame is analyzed by the procedure given in
Section 3.

1. Figure 4.2.2 shows the left half of the gabled
truss girder. Since the truss is symmetrical, only one-

half of it must be evaluated.




€7

Figure 4.2.2 Left half--gabled truss girder

Top Chords/Bottom Chords
A = 7.5 in? L = 30 ft.
2 L 4 x4 x X a = 15 ft.
c = 0.5 ft.
E = 29 E6 psi
Yertical and Diagonal Members
A = 2.3 in¢

2L X 2 X j

[\9]

2. The elastic center of a gabled Pratt truss is

lccated by:

z dAa
Where dA may be taken as 4, = L./A,
- 11904 in.

y, = ———— = 4.5 ft.
220.4
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The elastic center is located 4.5 feet below the

crown of the truss girder.

3a. Truss Constants. The truss constants are given
by:

C, = T afh,

C, = T B,

C, = Z yfk.

1

Table 4.2.1 shows the properties for each member and
the evaluation of the truss constants.
Since these values represent the truss constants fcr

only half of the frame, they must be multiplied by 2 for

the entire fram:. Therefore the truss constants are:
c, = 70.92/E
c, = 10i5.12/E
C, = 8.58/E
3b. Load Constants. The forces acting on the truss

are shown in Ficure 4.2.3 below. The original distributed
lcad is shown as a series of equivalent cencentrated iocads

acting at the joints.

Figure 4.2.3 Forces acting on the gabled truss
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The load constants are given by:

N
D = I SNgyli
0

jw)
i
oM

SN;B;4;

SN ¥4,

]
N
oM™=

Table 4.2.2 shows the elemental properties, influence
factors, normal force in the truss members due to lcading,
and the load constants.

The load constants are:

D, = -511748/E
D, = 0
D, = -117244/E

3c. The cantilever moments acting at the center cf
the truss span are:

CM,. = [1000(15) + 2000(15)ji2 = 540000 in.-lbs.

0
=
1

[1000(15) + 2000(15)] 12 = 540000 in.-1bs.

The forces acting on the basic structure are:

WCIA =0
WUY = 400 1lb./ft. (15 ft.) = €000 lbs.
Wy =0
Wy, = 400 lb./ft. (15 ft.) = 6000 lbs.
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4a.,
Kt0

Kt,
Kt,
Kt,

Kt,

Kt

il

1l

It

I

The truss stiffness coefficients are:

1/¢, = 1/(70.92/E)
c/c, = 6/(70.92/E)
1/¢, = 1/(1015.12/E)
a/C, = 60/(1015.12/E)
1/C, + aZ/Cy + Cc¢/C, = 1/(8.58/E)

+ (60)2/(1015.12/E) + (6)2/(70.92/E)
- 1/C, + az/Cy - ¢¥/c = -1/(8.58/E)

+ (60)%/(1011.12/E) =~ (6)%/(70.92/E;

If we take E = 29E6 psi,

FV.,

FVye

= 408911

= 2453468

= 28568

= 1714083

= 120945750

84744220

The fixed end forces and moments are:

D, (~511748/E)
=W, - —=- = 7215 1bs.
c, 70.92/E
D, -511748/E
=W, +—= —————— = -7215 lbs.
c, 70.92/E
D, 0
= W, - — = 6000 - ————— = 6000
c 1015.12/E

D
= W, + — = 6000 + 0 = 6000
Y c

73
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FM,, = - — - c — - a + CM,
Co C, c,
-(-117244/E) 6(-511748/E) 0
= - - 180
8.58/E 70.92/E 1015.12/E
+ 540000 = 596960
Sk LY
FM,, = - — +c — - a - oM,
Co c, c,
-(~117244/E) 6(-511748/E)
= + - 180(0)
8.58/E 70.92/E
-~ 540000 = 596960
5. The elemental stiffness matrix for a gabled
Pratt truss is given in section 3.1.4. The elemental
stiffness matrix is shown in Figure 4.2.3.
G. The stiffness coefficients for the columns are:

K, =—=—————= 2577780
L 24(12)
12EI 12 (29E6) (740)
K, = = = 10780
L3 ((24(12))°?
6EI 6 (29E6) (740)
K, = = - = 1552370
2 2
L ((24(12))
4ET 4(29E6)(740)
Ky =— = = 298055550
L 24(12)
2EI 2(29E6) (740)
K“ = = = 149027780

L 24(12)
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The fixed end forces for columns AC and PN are equal
to zero since no load is acting on either column.
The elemental stiffness matrices for columns AC and
PN are the same and shown below in Figure 4.2.4.
In the case of cclumn PN, the subscripts CA are

replaced with NP and similarly AT are replaced with PN.

7. The unknown displacements for the truss frame
are:

u, = ? u, = ? u =0 u, = 0

Ve = 7 vy = 7 v, = 0 v, = 0

e, =2 0, = ? e, =0 8, = 0

Since the truss frame in this case is loaded
symmetrically, the following displacement relationships

exist in the truss frame:

u. = -y,
Ve = vy
e. = - o,
8. The joint equilibrium equations are:
Joint C
Uy + W + 7215 =0
V., + V., + 6000 =0

CA CN

2., + 2

” + 596960

It
o

CN
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Joint N
Uge + W, - 7215 =0
Ve + Vyp + 6000 =0
Zye + 2y — 596960 = 0
9. Rewriting the joint equilibrium equations in
terms of their corresponding elemental stiffness
coefficients:
Joint C
U:
10780 u,, + Ov, + 1552370 ©, - 10780 u, + 0v,
+ 1552370 @, + 408911 u, + Qv
+ 2453468 O, - 408911 u, + OV,
- 2453468 @NC + 7215 = 0
Ve
ou, + 2577780 v, + 09, + Ou,, - 2577780 v, + 00,
+ Ou,, + 28568 v, + 1714083 o, + 0y, - 28568 v,
+ 1714083 ©,. + 6000 = 0
Z:

1552370 u,, + OV, + 298055560 O, ~ 1552370 u,. + OV

ca AC

+ 149027780 @, + 2453468 u, + 1714083 v,
+ 120945750 @, - 2453468 u, - 1714083 v,

+ 84744220 ©,, + 596960 = 0




Joint N
U:
- 408911 u, + Ov, - 24534
+ 0V + 24534
+
+ 1552370 ©,,
vV
Ou,, - 28568 v, - 1714083
- 1714083 ©, + Oy, +
= Op + Ou, = 2577780
Z:
- 2453468 ug, + 1714083 v,
- 1714083 v,,
+ 1552370 u,,
- 1552370 u,,
- 596960 = 0

Making use of the knocwn d

1552370 ©,, - 10780 u, + OV

79

68 ©, + 408911 u,

68 9, + 10780 u,, + Ov,,

PN

- 7215 0

AV
NCT

0. +

N Oou

« + 28568

2577780 v,
P

Vey T 08, + 6000 0

84744220 O, + 2453468 u,

120945750 0,

OV, + 28905556C @,

Ov,, + 149027730 ©

PN PN

isplacements determined in

step 7 above and the displacement relationships:

Joint C
U:
828602 u, + 6459306 O,
Ve
2577780 v,

Z:

6459306 u. + 334257090 O,

~-7215

~600C0

-596960
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Joint N
Since we are making use of the symmetrical properties
of the truss frame, we do not need to complete the joint
equations for joint N.
10. Placing the three equations from Joint C into
matrix format as shown in Figqure 4.2.5 and solving for the

three unknowns:

| 828602 o0 6459306 1 u. 1 [ -7215

1 0 2577780 0 Ve i = ! -6000

i l i

L 6459306 0 334257090 || e, | L - 596960_J

Figure 4.2.6 Truss frame structural stiffness matrix

u. = 0.00614 in.
V. = -0.00233 in.
6. = -0.0019 Rads

Having solved for the unknown displacements at Joint C,
the displacements at Joint N may be assigned by the

displacement relationships given in step 7. Therefore,

U, = 0.00614 in. u, = -0.00614 in.
Ve = -0.00233 1in. vy = -0.00233 1in.
©. = ~-0.0019 Rads ®, = 0.0019 Rads

11. With the unknown displacements now known, the end
forces and moments for each truss frame element may be found

by substituting the displacements into the elemental




81
stiffness matrices given in Figures 4.2.3 and 4.2.4. Doing
so, the end forces and moments become:

Menmber AC

U, = -2883 lbs. Uy = 2883 1bs.

V., = —6006 lbs. Ve = 6006 lbs.

ZCA = =-556774 in.-1lbs. ZAC = =273621 in.-lbs.
Member CN

U, = 2913 lbs. Uy = -2913 1bs.

V., = 6000 1lbs. Ve = 6000 lbs.

Z,, = 555774 in.-lbs. Zyc = —558305 in.-1lbs.
lember NP

U, = 2883 lbs. U,, = —2883 lbs.

Vi = —6006 lbs. V,, = 6006 lbs.

Zyp = 556774 in.-lbs. Zp, = 273621 in.-lbs.

12. The free body diagram of the truss frame analyzed

in Example 4.2 is shown in Figure 4.2.7,
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CAAPTER 5
Conclusions and Re-ommendations

5.1 Conclusions

The derivation of the stiffness coefficients, load
functions, and stiffness matrices for the flat Pratt and
gabled Pratt truss frames are presented. The stiffness
coefficients and load functions are developed through the
application of the theorem of least work for a general
flat and gabled Pratt truss. The standard sign convention
used in the development of the elemental stiffness
coefficients, load functions, and stiffness matrices are
taken from Tuma (1987). The column stiffness coefficients
are taken from the Theory of Structures lectures given by
Dr. Tuma at Arizona State University. The application of
these two truss stiffness matrices and the column
stiffness matrix in the solution of the truss frame
problem are illustrated by two numerical examples.

5.2 Recommendations

This methodology can be automated intc a computer

method of analysis.
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