
i LL; ,,, A JPY

December 1990 _ TESIS

SAnalysis of Truss by Method of the Stiffness Matrix
0

N
Ronald Laverne Kruse

i AFIT Student Attending: Arizona State University AFIT/CI/CIA-90-127

AFIT/CI
Wright-Patterson AFB OH 45433-6583

Approved for Public Release lAW 190-1
Distributed Unlimited
ERNEST A. HAYGOOD, 1st Lt, USAF
Executive Officer

DTIC
S ELECTE

iFEB 0 7 1991-I

97

• ''! . . . i . .. B
S T I



ANALYSIS OF TRUSS FRAMES BY METHOD

OF THE STIFFNESS MATRIX

by

Ronald Laverne Kruse

A Thesis Presented in Partial Fulfillment

of the Requirements for the Degree
Master of Science

ARIZONA STATE UNIVERSITY

December 1990

91 2 06 08b



ANALYSIS OF TRUSS FRAMES BY METHOD

OF THE STIFFNESS MATRIX

by

Ronald Laverne Kruse

has been approved

December 1990

APPROVED:

// .. -Chairperson

SApervising Committee

Accession For / AC/', ACCEPTED:" -> -
NTIS GRA&I
DTIC TAB l'*,'
Unannounced 0 , /
Justifficait0 Department 'Chairperson

By - -,

Distribution/- - -

Avlabillty Codes Dean, Graduate Cege
iAvnil and/or

Dist Special



ABSTRACT

I- The development of the general stiffness coefficients

and load constants are presented for the flat Pratt and

gabled Pratt truss frames. The stiffness coefficients and

load constants are derived through the application of the

theorem of least work.

The elemental stiffness matrices for the flat and

gabled Pratt truss frames are assembled using the respective

stiffness ccefficients for each type of truss.

Two examples illustrate the procedures for computing

numerical solutions for each type of truss frame.
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NOMENCLATURE

a Half-length of a truss

A Cross-sectional area of a given member

c Moment arm of the horizontal redundant, H,

CM Cantilever moment due to applied loads

C, C C, Truss framing constants

d Truss height

D,, D D' Truss load constants

E Modulus of elasticity

FH Fixed end horizontal force (thrust)

FM Fixed end moment

Fixed end shear

h Truss depth

H, U Horizontal force

H Horizontal redundant force = 1

i Specified truss element or member property

I Moment of inertia

Kc Column stiffness coefficient

Kt Truss stiffness coefficient

L; Length of a specified member

M, Z Moment

N Total normal force in a specified truss

member

P, Applied external load--horizontal

P Applied external load--vertical

R Reaction
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SN i  Normal force in truss member due to loading

U i  Internal energy

Ue External energy

U, Energy of reactions

U1  Energy of applied loads

V Shear

W Resultant of external loads

Y, Location of the elastic center

ai Influence in a specific member due to H, = 1

Influence in a specific member due to %0 = 1

Y Influence in a specific member due to M. = [

0- Angular rotation of a joint

A, Linear displacement--horizontal direction

IN Linear displacement--vertical direction

A i  Unit deformation of a truss member
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CHAPTER 1

Introduction

1.1 Ccncept of the Truss Frame

The truss frame is described as a structural steel

framing system utilizing a truss as the load carrying

horizontal member supported at its ends by columns. The

truss frame has historically been utilized in what some

authors and designers have referred to as "industrial

buildings." Though these buildings are typically single

story structures in which the roof is supported by the

upper chords of the truss, the truss frame concept can

also be incorporated into multi-story buildings as well.

Figure 1.1 shows several examples.

The truss frames are generally lighter in weight than

the typical beam-column framing system and thus provide a

cost savings in material. In addition, due to the high

stiffness of the truss, truss frame structures typically

can span longer distances and therefore provide for larger

open floor areas free of interior support columns found in

most standard beam-column structural framing systems. The

truss frame structure is generally best utilized when the
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Fig~ure 1.1 Examples--truss frame configurations
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clear span column spacing is greater than 40 feet but not

larger than 120-140 feet (White & Solman, 1987). Normally

for spans of less than 40 feet, many designers recommend

the use of standard wide flange sections in a standard

beam-column frame since these sections are readily

available from standard steel pre-engineered building

supply companies. For shorter spans, the use of the truss

frame in steel weight is normally offset by the increased

cost of labor to manufacture the truss, especially if done

so as a special order. The designer should check with a

standard products supplier to see if the shorter truss is

readily available, if they in fact feel justified in its

use for spans shorter than 40 feet.

1.2 Classification of Truss Frames

There are as many variations of the truss framed

structure as given by the style of truss used. Examples

of the variations include the Warren, Fink (or W), Pratt,

and Howe. Each of these in general refer to the geometric

configuration of the web members of the truss.

There also are variations in the truss frame given by

the geometric shape of the frame, also referred to in some

texts as a bent. These variations include the single

story and multi-story previously mentioned, the multiple

bent given by the use of interior supporting columns, and

geometric shape variation given in the use of the gabled,
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flat, flat-cambered, and arched truss. (See Figure 1.2

for examples of the various shapes and styles of trusses.)

The choice as to which truss frame shape is used is

normally one of architectral aesthetics or simply one of

owner's preference. The selection of which truss type

used is normally a preference of the designer. However,

the Warren and Pratt are used most for flat roofs while

the Fink and Pratt styles are used most for the large rise

gabled roofs (White & Solman, 1987).

1.3 Historical Background

Early examples of truss-frame structures include

steel mills, train-locomotive repair and maintenance

shops, automotive assembly plants, and aircraft

maintenance facilities and factories. Each of these

examples typifies the requirement for a large open floor

space with adequate overhead space to allow the use of an

overhead traveling crane (Grinter, 1955).

Other applications and benefits of the truss frame

can also be seen for smaller scale manufacturing plants,

commercial retail sales buildings, and warehouses.

Through the use of the truss frame, the interior columns

are eliminated or at least significantly reduced. In the

case of its use in a warehouse, this reduces the number of

obstacles which forklift operators and delivery trucks
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navigate around and thus reduces the opportunity for

structural damage to occur to the structure caused by

impact on the columns from forklifts and trucks operating

in the warehouse. In the case of the commercial retail

sales facilities, the use of the truss frame allows the

building owner to erect a clear span facility without the

worry of interior columns dictating the final layout of

equipment or manufacturing processes. In the case of the

commercial property development companies :ho lease their

buildings to other users, the benefit of the clear space

offered by the truss frame allows the developer to

construct the facility without limiting the use or layout

of the facility because of interior column ccnstraints.

It should be pointed out, however, that if the end user

intends to suspend mechanical equipment such as an

overhead hoist from the truss or other special mechanical

systems not initially included in the designer's

calculations, a design investigation will he required to

determine what, if any, structural changes and

modifications will be required to accommodate the special

equipment and associated loadings.



CHAPTER 2

Stiffness Coefficients and Load Functions

2.1 Introduction to the Load and Stiffness Coefficients

The load and stiffness coefficients for a parallel

(flat) Pratt truss and a gabled truss are derived in

Sections 2.2 and 2.3, respectively.

The development of the load and stiffness

coefficients follows the derivation of the slope-

deflection equations contained in the unpublished Masters

of Science theses of Morrisett (1957) and Smith (1957),

prepared at the School of Civil Engineering, Oklahoma

State University, in 1957 under the direction of Dr. J.

Tuma.

The derivations are based on the energy methods of

Castigliano's theorem of least work. In each of the

derivations, the properties of the elastic center are

employed in order to simplify the number of terms

contained in the deformation equations.

The necessary changes have been made to the slope--

deflection derivation to reflect the stiffness sign

convention defined by Dr. J. Tuma (1987). Also, several

symbols in the nomenclature in the original theses are
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changed to simplify or clarify the equations and to once

again conform to the sign convention used by Dr. Tuma

(1987).

The final load and stiffness coefficient equations

are located at the end of each section and are presented

in a tabular form.

The load and stiffness coefficients for the truss

frame columns are not derived in this paper. Their

derivation is contained in several structural analysis

text books offered at the undergraduate level, following

the standard beam analogy. The load and stiffness

coefficients for the columns are presented in tabular form

in Section 2.4.

2.2 Derivation of the Load and Stiffness Coefficients:

Flat Pratt Truss

2.2.1 Statics

A typical flat Pratt truss beam removed from a

continuous elastic system, loaded by a general system of

forces, is shown in Figure 2.2.1. The truss has constant

depth and is fixed at both ends.

In the analysis of this truss, the following

assumptions have been made:

1. All members are connected by frictionless

hinges.
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2. All members are subjected to axial forces only,

and the influence of shear and bending moment is

neglected.

3. The truss and the loads are forming a coplanar

system.

4. All loads are applied at joints.

5. The deformations of the truss are elastic and

small.

The structure has four reactions: two reactive

forces, RAY and R,,, and two reactive moments, FMAS and FML.

The prcblem is statically indeterminate to the second

degree and requires two equations of deformation to form a

soluticn.

The general displacements of the supports are giver

bv A;, , 3A and e. Figure 2.2.2 shows the free body

sketch of segments AC and CB. The resultant of the loads

corresponding to part AC and CB are denoted by W1 and V7,

respectively. The redundant forces at the center of the

cross-section are V. and Mjh. Assuming all displacements

and reactions are positive and using conditions of static

equilibrium, the end reactions of parts AC and CB are:

RA : W. + Vo, MAB = - M0 + aV. + CM c
(1)

R8 :W. -7V, MBA = M0 +aV ° -Cc



vv

M

n r.

Fioure -2.2.2 Free-body trusses AC and CB ..:ith displaced
internal forces



12

CMAC and CMBC are the cantilever moments at c due to W and

W2, respectively. Since there are no horizontal loads

applied to the truss, RAX and RAY = 0.

The normal force for any member in the truss due to

the applied loads and the redundants is:
N i = SN i + iHo + RiV 0 + YiM0 (2)

where SNi = normal force in a given member due to

loading on the truss

ai = normal force in a given member due to

H = 10

j. = normal force in a given member due to

V =1

and y= normal force in a given member due to

M, = 1

Due to the geometry and loadings of the truss, the

axial deformation and normal force due to H will be

neglected. As such, a i Ho = 0 will be eliminated at this

point in the derivation.

2.2.1 Least Work

The Principle of Minimum Potential Energy is given as:

U. = Ue  (3)

where Ue = the external work

and Ui = the internal work

The internal work, U,, is formed by:

U = s + U (3a)
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where U = the strain energy of the structure

U v = the strain energy due to volume change

The energy due to volume change will be neglected. Only

energy of normal forces will be considered. Hence,

Equation (3a) becomes:

B
Ni 2LiUi = Us = z (3b)

2AiE
A

where Ll = length of any member

Ai = cross-sectional area of any member

and E = modulus of elasticity

If we let X= Li , then Equation (3b) may be rewritten as:

A.E

B
Ni2;.

U i = Us = z (3c)
2

A

The external work is given by:

Ue = Ut + Ur (3d)

B B
where UL = Z WA + Z We = work due to applied loads

A A

B B
and Ur = Z RA + Z Me = work due to reactions

A A

The work of the supports in terms of reactions and

displacements given by Equation (1) is:
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U = R AYAAY + MAS(A + RSyABY + M BA0

Substituting the equivalents for each of the reactions

from Equation (1):

Ur = (W I + Vo)AAy + (-M, + aV o + CMAC)E)A

(3e)
+ (W2 - Vo) ABy + (Mo + aV - CMCB) EB

From Castigliano's theorems, the first partial

derivative of the strain energy of a truss with unyielding

supports, with respect to a redundant, is equal to zero.

Allowing displacement of supports, we have:

SU OUS

OV, OV o

The partial derivatives of Equation (3c) with respect to

each red-indant are:

B

M 
A i

eu N.

A

B
U NI  B

= No =X Nioil i  (4b)

aV, aV A

cM A

A

The partial derivatives of Equation (3e) with respect to

each redundant are:
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8u

- A + e B  (4c)

aU

r -A AY +  aGA 
+  a B) -

If we let Ay = A AY A- ABY

then,

au
r A +  eB

(4d)
(3u

-Ay + a (eA + eR)
a V,

2.2.3 Deformation Equations

Equations (4) in terms of Equations (4a, 4b, 4c, 4d)

1a; nc7 be written as:

B B
- . + + , = Z SNiy.i) + M

A A

B
+ V°  E ,iyiX- (4e)

A

B B
.a (EA + 0 6) E SNA3Xi + M 0 yi'

A A

B
+ z l 2

A

From symmetry of the truss and making use of the

properties of the elastic center:

B B
Z yiei i = Z fiyi)A = 0
A A
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The equations in (4e) can be reduced to:

B B
- EA + EB = Z SNiyili + M0  Z 7i2Ai

A A
(4f)

B B
+ a ( A + E)= Z SNi/3iA , + V E 2 A

A A

Denoting:

B B

Do = Z SN y'iX, DI = Z SNflj'
A A

B B
C® -02 1 , = 2 C3;E

A A

,.:here

D= = truss load factor--rotations

D( = truss load factor--shear

C_ = truss framing constant--rotation

C = truss framing constant--shear

Substituting the terms into Equation (4f),

the deformation equations become:

- A + Gs = DO + MoC O
(4g)

+ a ( 0 A + e8) = Dy + V0 C Y

Solving these two equations, the redundants are:

-D o - 6 + 0B
S= - - (5)

00 C Co

AY + a (eA + EB) - Dy

Cy CY Cy
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Substituting the results of Equation (5) into Equation

(1):

M . + a2] "A + [a2-- l l] B + a (AAY - &BY)
MAS = 

CY
(6)

+ Do - a Dy + CMAc

Ce Cy

Ma A [ - 1 E)A + 1 + a2 eB + a (Ay -- ABY)

CY

(7)
- Do - a Dy - CMCB

C0  C y

RAY = W1 + AY - ABY + a (G A + EB) - Dy
C C_

Cy Cy Cy

RBy 2 - AAY - ABY - a (EA + G3) + DY
-- -- (9)

CY Cy Cy

Note:

If the truss is loaded symmetrical with respect to

the axis of symmetry of the truss, the load constant D.

will equal zero.
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Stiffness Matrix Coefficients:

Kt0,AB = Kt0,BA = 0

KtlAB = Kt1,6A = 0

1
Kt2,AB = Kt2,BA =

Cy

a
Kt3,AB = Kt3,BA = -

Cy

1 a 2

Kt AS = Kt,BA = - + -

Cs Cy

1 a 2

Kt 4 ,AS = Kt; = - + -
C Cy

Load Functions:

FHAB =WX FH BA = W2'

Dy Dy
FVAB -- Wy FH BA = W2y + -

Cf Cy

DO Dy 
Do Dy

FNB - a -- + CM c FM BA al B - CMC
C0 Cy CE  Cy

• y, • m m - i al m m mmS• m m m
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2.3 Derivation of the Load and Stiffness Coefficients:

Gabled Pratt Truss

2.3.1 Statics

A fixed end gabled truss removed from a truss-frame

system, loaded by a general system of loads, is shown in

Figure 2.3.1. Once again, the basic assumptions made in

the analysis of the gabled truss are:

1. All joints are pin connected.

2. Truss members are subjected to axial loads only.

3. Truss members and loads are in one plane only.

4. All deformations of the truss are small in

comparison with the dimensions of the truss.

Under the action of loading, the vertical reactions

R A and R. are induced. The end thrust of the truss

produces the horizontal reactions RAX and RBx. Since the

ends of the truss are restrained, the end moments FMAG and

FMBA are also developed.

The truss is then divided at its centerline as shown

in Figure 2.3.2, and the internal forces at the central

section are then replaced by an infinitely rigid arm to

some arbitrary point 0, the elastic center of the truss.

The displaced forces are denoted as Ho, Vo, and M, (Figure

2.3.2). This displacement of the internal forces will

allow the simplifications of the analysis. The general
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Figure 2.3.2 Free-body gabled trusses AC and CB with
displaced internal forces
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system of loads is resolved into two parts, AC and CB,

each corresponding to one-half of the symmetrical truss.

The resultants of the system of loads acting on parts AC

and CB are denoted as W1 and W2, respectively. The

general displacement of the supports are given by A AXIAY

E) A and &x, Asy, B is introduced. If we again assume all

displacements and reactions to be positive, the new

reactions, due to applied loadF and internal forces at the

elastic center, 0 (Figure .3.2), are:

R AX = Wix - Hot

RBX W2x -Ho,

RAY =WIY + Vo, (1)

RBy WLy - Vo,

MAB =- Mo + CH. + aVo + CMA,

MBA =M - CH - aV0 - CMBO

where CMAC and CMBc represent the cantilever moments of the

applied loads at the

There are six unknown reactions in Equation (1).

With only three equations of static equilibrium, the truss

is statically indeterminate to the third degree. The

three additional equations required to solve the problem

must be derived from the deformation relationships

corresponding to Ho, V,, and Mo.
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The normal force for any given member in the truss in

terms of the applied loads and the redundants is:

Ni = SN + a.H0 + piVo + YiMo (2)

where Ni = total normal force in any member,

SNi = normal force in any member due to loading,

a i = normal force in any member due to Ho = 1,

Ri = normal force in any member due to Vo = 1,

yi = normal force in any member due to M° = 1.

2.3.2 Least Work

From the Principle of Minimum Potential Energy:

U i = U e  (3)

where U i = the internal work

and Ue = the external work.

The internal work:

U i = Us + Uv (3a)

where Us = the strain energy of the structure

and Uv = the strain energy due to volume change.

Once again, the energy due to any change in volume will be

neglected and only the energy of normal forces will be

considered, therefore:

B
Ni2Li

Ui =U = 
2AiE

A

I _ _ _ _ _ _ _ _



24

where Li = length of any member,
Ai = cross-sectional area of any member,

E = modulus of elasticity,

Lior in its simpler form when 1.
AiE

B
Ni

2

U i  = u s  1E i . (3b)
2A

The external work,

Ue = U + Ur (3c)

B B
where Ut Z 2 W + Z We = the work due to applied loads

A A

B B
and U = Z R + Z Me = the work due to reactions.

A A

The work of the supports in terms of reactive forces, and

displacements is:
U ~+R ~M +R +R

Ur RAX AAx + RAYAAY M ABA RBXAx R BA ABY

MAeB

substituting from Equations (1):

Ur = HoAAX + (W1 + VO)AAY - Hoa Bx + (W2 - Vo) ABY

+ (- Mo + clio + aVo + CMAC)eA (3d)

+ (Mo - cH° + aVo - CMac)eB

From Castigliano's theorems, assuming unyielding

supports, the first partial derivative of the strain
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energy of a structural system with respect to a redundant

is equal to zero. Allowing displacement of the supports

we have again:

aUs  aU ,

aH aH

- (4)

CI 0 1

The partial derivatives of Equation (3b) with respect to

each redundant are:

B B
Us  aNil i

Z-- N. = Z NZ i. ,

A A

B B
- N. us E N a, (4a)

Cv Ov000
A A

B B

aS al 1x
-= Z ;' N - = Z Ni it i

a o am

A A

The partial derivatives of Equation (3d) with respect to

each redundant are:

i
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aU,
-= AAX - A BX + c (EA - 8B )

aHe

-- AAY - ABY + B) (4b)IVo0 V0
aU

C ( rlc = E)A + E)B

If we let

Ax A AX ASx

y YY -

then Equations (4b) may be rewritten as:

- x + c(GA - 88)

+ a(OA 3) (4c)

1 u
0 - 3 - (DA

0

2.3.3 Deformation Equations

The deformation equations are obtainel by

substituting Equatiors (2), (4a), and (4c) into Equation

(4). The deformation equations are:

B B

A x + C(9A - 06) = Z SNieail + po a i2

A A
(5a)B B

+ V °  E a,3.iX + MO E U iy l,
A A
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B B
+ a( A + 08) = Z SNj,6jA i + Ho  F Piai) I

A A
(5b)

B B
+ V o 0 ZPi 21 i + M 0 Y 'eiyii,

A A

B B
- 9A +eO =0 Z SNi'yi i + Ho  E yiai) i

A A
(5c)

B B
+ V Z y Xi ii + Mo 0 yi2X .

A A

Equations (5a), (5b), and (5c) may now be solved

simultaneouslv to determine H, V o and M o. These equations

may be reduced if Ho, Vo, and M ° are applied at the elastic

center, as shown in Figure 2.3.2. When the three

redundant forces are applied at the elastic center, the

ternis:

A

B B
Z ai'Yii = Z yiaiXi (5d)
A A

B B
iyi.X = Z yiJ3Aii

A A

,.ill equal zero in the case of a symmetrical truss.

For a symmetrical truss, the lateral X location of

the elastic center is always at the mid span.

The vertical, Vol location of the elastic center is

computed by:
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B
Yo= E Y idA

A

B
Z dA
A

where Y = distance from the crown of the truss to the

elastic center

Yi = distance from the crown of the trust to the

centroid of the ith bar

1.

dA -
AiE

There are other variations on the method for locating

the elastic center of a truss or frame that will yield the

same location, however, this is the method used in this

analysis.

Taking advantage of the relationships given in

Equation (5d) resulting from the use of the elastic

center, Equations (5a, 5b, and 5c) reduce to:

B B
S+ C(O - 9) = X SNa + HX a 2;,

A A

B B
AY + a(eA + E) = Z SNiixi + Vo  E gi2x, (5e)

A A

B B
eA + GB = SNiyix i + Mo 0 yi 2x1i.

A A



29

If we denote:

B B
Dx  = Z SNicixi ,C x  = E ai2xi,

A A

B B
Dy = Z SNjP3 Axi Cy = E A iaxi

A A

B B
De = Z SNiyiAi, De = Z yj2Ait

A A

We may then rewrite the deformation equations as:

A 4 c (± A - 8) = Dx + HoCx,

AY + a(eA + es) = Dy + V.CY, (6)

-OA + 05 = Do + MoC0 .

Solving for the three redundants:

A~x  C (e A  - e) Dx
H, - + -DI

o C× Cx  C
cx x cx

el Y a (eA + 06) DY
V C - + - - , (7)

CY CY Cy

-0 A + 0 B Do

M - -
o Co  Ce

Substituting the results of Equation (7) into

Equations (1),

x c D x
RAY = Wix + + -- (eA - GO - D (8)

C x  C x  C
cx x cx

AY a D

RAY = Wly + -+- (EA + ea) - y (9)
Cy Cy Cy

V V VHmm m mmm - am
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G)A BG De C AX C2  (G)A -08) C DX

C a C 0 C X C CX

a a 2  Dy 10
+ -Ay+ - (G)A + 0 8) - a A CA
C yC yCY

Ax C DXR = W 2X(0A - 8) +(1
C X C XC

w Y a ( + ) + Dy
R6 By 2Y - - (A +G)+ -(12)

CY CY C

E)A - )B D0 C2
Mi GA Ax - (eGA - 3

C a Ce0 C XC

DX a a 2
±~ ~+ - (G) + 0- -a -CM,yA 8/

CX C C yC

Equations (8) through (13) are the stiffness equations for

the gjabled truss.

Stiffness Matrix Coefficients:

Kt 0,6 Kt = -A

C
Kt1,AB Kt1,BA
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1

Kt2,AB = Kt2,BA =
C y

a
Kt3,AB = Kt3,BA = -

CY

1 az  C2

Kt,AS = Kt 4, BA =- + - + -
Ce CY CX

1 a2  C2

Kt5,AB = Kt5,BA =- +

C CY CX

Load Functions:

Dx  DX
FH-{ = -Ix FH BA = W2 X + -

Cx Cx

Dy Dy

FVAZ = W"y FHBA = W2Y + -
C, Cy

DD_ Dx  Do  Dx  D,

FM,5 = 3 - - FMOA = c -a ----.. CMcs
Ca  Cx  CO Cx  C;

Dy

- a - + CMAC
Dy

2.4 Column Stiffness Coefficients and Load Functions

As previously stated in Section 2.1, the column

stiffness coefficients will not be derived in this paper

as they are readily available in various undergraduate

structural analysis text books. The column stiffness

coefficients are the same as those for the standard beam
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element. The coefficients are shown in Section 2.4.1,

accompanied by their orientation diagrams.

Four column load cases are shown in Section 2.4.2.

These four load cases are taken from class notes given by

Dr. J. Tuma during his lectures in the Theory of

Structures course, taken by the writer while attending

Arizona State University. These same four column load

cases, along with numerous other variations of the load

functions, may be found in Dr. J. Tuma's Handbook of

Structural and Mechanical Matrices (1987). In using this

handbook, the reader must remember to make the appropriate

changes in the load applications orientation due to the 90

degree rotation of the member axis.

2.4.1 Column Stiffness Coefficients

EA 4E1
Kc 0 = - Kc 3 =

L L

12EI 2EI
Kc. - Kc. -

L3  L

6EI
Kc =-

L
2
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2.4.2 Column Fixed End Forces

Px, Py = Concentrated loads m = a/L n = b/L

ZT S

UTE .Al

UTS= + (l+2mi)n 2P -- >ST = +(l+2n)m2 P 

TB T ziV5  ST

TB It

=S +l/nP I Ix T +

ZTS= + nb Px -> S ZBT = - 1/12 Px

Z BT

-rB

T v T

U = + 112 L Px u 13UT + 1/2 L Pn

L Px
V = + 112 L Py L { VBT = + 1/2 L Py

1/1 P= - (6-8n+3n1/12 L2  P

SI/- ST

x ~ 7 BT zB

-.B

, z T9
T.- __ v "TB

U = + (2n) n b P /2 + 7M nL b P=ITB BT =+ lx

TB = + n b Py/2 L py P-x ST =+ 1/2 (2-n)b Py,2

Z-3 + (4-3n)nb'Px/12 "->"BTs i= (6_8n+3n )bIP /1 2

u +- 3Z Y2 " V7 BT 7L x2

V TB =+ L Px/ 6 Pr B + L Py/3

1BT

Z = + LPx/3 SfvT Z BT L - 2x/20



CHAPTER 3

Method of Analysis

3.1 Construction of the Structural Stiffness Matrix

The structural stiffness matrix is formed by merging

the elemental stiffness matrices for the specified truss

configuration and the elemental column stiffness matrix

together to form a single stiffness matrix (also referred

to as the stiffness matrix equations).

Up to this point, the reaction and deformation

notation used in the derivation of the truss stiffness

equations have been Rx, Ry, M, AX, Ay, and e. We now wish

to change this notation in order to conform with that used

by Dr. Tuma (1987). The modified nomenclature is:

RAX =UAB RBX = UBA &AX = UA ABX = UB

RAY VAB RBy = VBA AAY = VA BY = VB

M A ZB MBA = ZBA eA = 'A eB = eb
In the case where two subscripts are used, the first

denotes the local joint of interest and the second

identifies the terminal end of the merber.

In a more general form, the subscripts L and R are

used to define the left and right end of a structural

element since the actual subscripts used in the analysis
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of a truss frame depend on the manner in which the joints

are identified.

In the case of the nomenclature used above, UAB is

the same as ULR and UBA is the same as URL in more general

terms.

3.1.1 Procedure of Analysis

The following is a step by step procedure for the

analysis of a truss frame using the stiffness matrix

method.

1. Determine the geometry of the truss-frame:

a. label all joints alphabetically and number

all members.

b. identify all external dimensions, ensuring

the truss frame is symmetrical as for the

cases derived in Sections 2.2 and 2.3.

c. identify the length, cross-sectional area,

moment of inertia (I) of the columns, and

the modulus of elasticity for all members.

2. Calculate the elastic center of the truss:

a. for a parallel truss the elastic center is

located at the mid-depth of the truss, h'2,

and at the center of the truss span for a

symmetrical truss-frame.

b. for a gabled truss the elastic center must

be calculated from the equation:
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-Zyj dAYo

ZdA

3. Based on the truss shape given in either

Sections 2.2 or 2.3, calculate:

a. truss constants CX, Cy, and Ce

b. load constants Dx, Dy, and D.

c. cantilever moments at C due to loads

applied only to the truss.

4. Using the load and truss constants from Step 3,

calculate for the specific type of truss shape:

a. truss stiffness coefficients

b. fixed end forces and moments

5. Substitute the stiffness coefficients and fixed

end forces and mome ,ts for the given truss into

the appropriate elemental truss stiffness

matrix, Kt.

6. Calculate the stiffness coefficients and the

fixed end forces and moments of the elemental

column stiffness matrix and substitute them into

the elemental into the matrix, Kc.

7. Identify the unknown displacements for the truss

frame in terms of u's, v's, and e's. Establish

displacement relations. These exist only in the

case of the symmetrically loaded truss frame.

i



38

8. Write the joint equilibrium equations for each

joint in the truss-frame.

9. Using the joint equilibrium equations, assemble

the structural stiffness matrix, K', by

algebraically adding the elemental stiffness

matrices for the truss and columns.

10. Solve for the unknown displacements in terms of

u's, v's, and O's.

11. Substitute the values of the now known u's, v's,

and O's into the elemental stiffness matrices

and solve for the end forces and moments of each

of the members.

It should be noted that at this point all of the bar

forces in the truss were previously calculated in Step 3

above, therefore, their analysis has been already

completed.

3.1.2 We begin the construction of the structural

stiffness matrix by first defining the elemental stiffness

matrices for each type of truss identified in Section 2

and for the columns, all in terms of the redefined

nomenclature.

All of the elemental stiffness matrices are presented

in terms of the global X-Y axis system (X axis horizontal,
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Y axis vertical), therefore, no rotational transformation

of the elemental matrices are required in the analysis.

In the end, the solutions for the unknown displacements in

the global system are also the same in the local axis

system.

3.1.3 Parallel Truss Elemental Stiffness Matrix

Before assembling the elemental stiffness matrix for

the parallel truss, we will first rewrite the stiffness

equations, Equations 6 through 9 of Section 2.2, in terms

of the new nomenclature and the stiffness factors given by

Kt0 , Kt1 , etc. We will also introduce the horizontal

reactions UAB and UBA which were initially left out of the

derivation by neglecting any axial deformation.

The slope deflection equations may be rewritten as;

UA = FHAB

VAB = Kt 2  (VAS - VSA) -Kt 3  (EA + e8 ) + FVBA

= Kt 3 (VAB- VA) + KtA+ Kt + FM

U = : FHSA

VBA = Kt 2 (VAR - VBA) - Kt 3 (eA + E8 ) + FVBA

ZSA = Kt3 (VA - VBA) + Kt5 eA + Kt4 e + FMEA

Writing these six equations in matrix form becomes:
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UAB 0 0 0 0 0 0 UAI] rHAB

VAS 0 Kt 2  Kt 3  0 -Kt 2  Kt 3  VAS FV AS

ZAS 0 Kt 3  Kt 4  0 -Kt 3  Kt 5  EA FMAS

U BA 0 0 0 0 0 0 USA FHSA

VS 0 -Kt 2  -Kt 3  0 Kt 2  -Kt 3  VBA FVBA

z SA 0 Kt 3  Kt 5  0 -Kt 3  Kt 4  0 6 FM jL

3.1.4 uabled Truss Elemental Stiffness Matrix

Rewriting the stiffness equation for the gabled truss

in terms of the new notation and K's:

UAS = Kt 0  (UAS - UBA) + Kt, (GA - Os) + FHAB

%r = K t 2 (VA+ - VSj + Kt 3 (EA + -G) + F

Z_ Kt I (UA- USA ) + K3A -V + KtA + F, E

USA - -Kto (U48  - UFA) - Kt I  (OA - 8 3 ) + FH3A

SKt 2 (VA - V 5 .) - Kt 3 (GA + B) +

Z,. Kt (v -+ K Kt E) K E)

SFM3A

Writing these six equations in terms of its matrix form

becomes:
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*UAB Kt o  0 Kti  -Kt o  0 -Kt i  UAB FHAS1

VAB 0 Kt 2  Kt 3  0 -Kt 2  Kt 3  VAB FVAS

ZAB Kt i Kt 3 Kt -t -Kt 3  Kt 5  e A FMAS

UBA -Kt O 0 -Kt I Kt o  0 Kt 1  uBA FHBA

VBA 0 -Kt 2  -Kt 3  0 Kt 2  -Kt3 VSA FVBA

ZBA J -Ktl Kt 3  Kt 5  Kt -Kt3 Kt4 e J FMBA

3.1.5 Column Stiffness Matrix

The column stiffness matrix will not be derived in this

paper. Simply stated, the column stiffness matrix may be

obtained by applying the rotational transformation natrix to

the general case of the stiffness matrix equation for the

straight-horizontal bar. The general stiffness matrix for a

horizontal bar may be found in Tuma (1987), along with an

explanation of the transformation matrices. The column

stiffness matrix is:

U TB oc10 K -Ko K FT oFHTB
VTB 0 Kc0  0 0 -Kc o  VTB FVTB

Z T Kc 2  0 Kc3  -Kc 2  0 Kc 4  ET3 FMTB

UBT -Kc 1 0 -Kc 2  Kc 1  0 -Kc 2  UBT FHST

VBT ,  0 -Kc 0 0 0 Kc 0  0 VBT FV BT

Z Kc 2  0 Kc 4  -Kc 2  0 Kc 3 j e8 T FMBTj
_ L
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where:

1. Kc represents the specific column stiffness

coefficients as opposed to the previously defined

truss stiffness factors, Kt.

2. U, V, Z, u, v, and e are in the global axis system

of the truss frame.

3. The subscripts, TB and BT refer respectively to

the near end and far end of the column with

regards to the member and forces or displacements

we are working with. More specifically, the top

or bottom.

The fixed end forces and moments for a column are

presented in Section 2.4 along with the column stiffness

coefficients.

3.1.6 Construction of the Structural Stiffness Matrix

The overall construction of the structural stiffness

matrix for a single truss frame is contained in Steps 1

through 9 of the Procedure of Analysis (Section 3.1.5).

Steps 1 through 6 deal with the calculation of the

truss and column stiffness coefficients and load factors,

and assembly of the elemental stiffness matrices. Steps 7

and 8 are key to the actual construction of the structural

stiffness matrix.

Step 7 identifies the unknown displacements for a given

truss frame in terms of u's, v's, and e's and establishes
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the displacement relationships. From the symmetry inherent

in our particular truss frame, the displacements of a joint

on the right half of the truss frame can be related to the

displacement of the corresponding joint in the left half of

the truss.

The joint equilibrium equations in Step 8 form the

basis for the structural stiffness matrix.

The joint equilibrium equations are the summation of

the forces acting on each of the members connected to a

specific joint plus the fixed end forces and moments due to

any loads applied to those same members or in simple format,

for any given joint in a truss frame:

E U. + Z FHi = 0

E Vi + E FV i = 0

E Zi + Z FMi = 0

In the case of a single bay truss frame, the term Z Ui

will equal the sum of UT (due to the truss) and U. (due to

the column) at the joint where the truss and column are

connected. Likewise, 2 FH is the sum of the horizontal

fixed end force acting on both the column and the truss at

the joint in question.

Once the joint equilibrium equations have been written

for all joints in the truss frame (in terms of U, V, and Z),

they are rewritten in terms of their corresponding elemental
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stiffness equations given by the truss/column stiffness

coefficients, u's, v's, and O's.

Next, we make use of the displacement relationships and

the symmetry of the truss frame previously found in Step 7.

Selecting either the left or right half of the structure to

work with, substitute the displacement equivalents into the

joint equilibrium equations such that all displacements

contained in the equilibrium equations represent only the

left or right half truss frame displacements.

The structural stiffness matrix can now be assembled by

placing the rewritten joint equilibrium equations into

matrix format. For a general truss frame, symmetrical

about the center line, as shown in Figure 3.1.1, the center

line, as shown in Figure 3.1.1,

L/ 2

Figure 3.1.1 Symmetrical truss frame
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the structural stiffness matrix becomes:

UA UA Z FHAS

VA KLL KLR VA Z EVAB

ZA EA K FMA
+

V RL KR Z

where Kxx represents a 3 x 3 coefficient matrix.

3.2 Solution for Unknown Displacements

The unknown displacements may be found by using the

structural stiffness matrix developed in Section 3.1.6:

F U uA FHA

VA KLL KLR VA FV A

7 0-___ A'M

A 
A + M+-=I " j (1)

U3  1 3  E FH 6

V3  KRL KRR Vs E FVS

Zj E FMU

or

(S) = (K') x (A) + (FEF) (2)

The unknown displacements are found by considering

displacements caused by applied loads or fixed end forces.

As such, Equation 1 may be rewritten as:
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UA -FHA

KLL KLR VA -FVA

- --A  -FMA
(3)

-FHB

KRL KRR V B  -FV B

E -FMS

or

(K') x (a) (-FEE) (4)

The unknown displacements may be found by solving

Equation 4 in which:

A = K')-1 (-FEF)

The solution may be to obtain by Gauss elimination, hand

held calculator capable of matrix operations, or by means of

a computer program for matrix algebra.

After the unknown displacements have been calculated,

the remaining unknown displacements of the truss frame are

found using the displacement relationships defined in Step 7

of the procedure of analysis if the displacement

relationships exist.

3.2 Calculation of End Forces and Moments

Calculation of the end forces and moments, Step 11 of

the procedure of analysis, is accomplished by inserting the

solutions for the unknown displacements (Step 10) and the

known (or zero) displacements into the elemental stiffness

matrices created in Steps 5 and 6, earlier in the analysis.
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The end forces and moments are the algebraic sum of the

appropriate stiffness coefficients multiplied by the

displacements plus the fixed end force or moment.

After obtaining the end forces and moments for each

member of the truss frame, an equilibrium check should be

made at each joint to ensure equilibrium conditions do in

fact exist. A free body diagram is most useful to

accomplish this.

3.4 Calculation of Bar Forces

The forces acting in the bars making up the truss were

previously calculated during the calculation of the truss

stiffness coefficients and load functions. The designer is

strongly encouraged to make use of a table format during the

calculation of the truss stiffness coefficients and load

functions in order to better organize and retain the

calculation of the bar forces, SNi.



CHAPTER 4

Examples

4.1 Example 1--Parallel Truss Frame

A single span flat Pratt truss frame with dimensions

and loads shown in Figure 4.1.1 is considered. The

modulus of elasticity is constant for all members.

3Cc tb/ f tL
J, I. T 7.] . T.J. [ ... b .. [

D G H K L

F i M

15[----5'

Figure 4.1.1 Flat Pratt truss frame

This flat Pratt truss frame is analyzed by the procedure

given in Section 3.

1. Figure 4.1.2 shows the left half of the truss

girder. Since the truss is symmetrical, only one-half of

it must be evaluated.
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C D G H

0 N,2 4 6 a 10 12,

B E F

Figure 4.1.2 Left half--flat truss girder

Top Chords/Bottom Chords

A = 7.5 in' L = 30 ft.

2 L 4 x 4 x a = 15 ft.

E = 29 F6 psi

Vertical and Diagonal Members

A = 2.3 inZ

2L 2 x 2 x h

2. The elastic center of a flat Pratt truss is

located at the center of the truss span at a depth of h/2,

or in this case 2 feet below the top chord.

3a. Truss Constants. The truss constants are given

by:

C x = 0

N
c = Gj2)

0

N
ca = E Yi2Xi

0
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Table 4.1.1 shows the properties for each member and the

evaluation of the truss constants.

Since these values represent the truss constants for

only half of the frame, they must be multiplied by 2 for

the entire frame. Therefore the truss constants are:

Cx = 0

1071.6
Cy -

E

6
CO 

-

E

3b. Load Constants. The forces acting on the truss

are shown in Figure 4.1.3 below. The original distributed

load is shown as a series of equivalent concentrated load

acting at the joints.

I .c 5 D Z 15 CD C-7 15CC 5 0

- "-A
K'. -. -'.-

.1 -

Figure 4.1.3 Forces acting on the flat truss

The load constants are given by:

Dx = 0

N

D = Z SNAii
0
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N
Do= SNiyix i

0

Table 4.1.2 shows the elemental properties, influence

factors, normal force in the truss member due to loading,

and the load constants.

3c. The cantilever moments acting at the center of

the truss span are:

CMIC= [750(15) + 1500(10) + 1500(5)] 12

405000 in.-lbs.

C NI = [750(15) + 1500(10) + 1500(5)] 12

405000 in.-lbs.

The forces acting on the basic structure are:

WCy =300 lb./ft. (15 ft.) = 4500 lbs.

WCl A 0

WINy = 300 lb./ft. (15 ft.) = 4500 lbs.

W = 0WINA

4a. The truss stiffness coefficients are:

Kt0  0

Kt, = 0

Kt 2 = l/Cy = 1/(1071.6/E)

Kt 3 = a/Cy = 180/(1071.6/E)

Kt4 = 1/Ca + a 2/Cy = 1/(6/E) + (180) 2 /(1071.6//E)

Kt 5 = - 1/C a + a 2/Cy = -1/(6/E) + (180) 2/(1071.6/E)

Therefore, if we use E = 29E6 psi,
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Kt0 = 0

K l -= 0

Kt2 = 27062

Kt3 = 4871220

Kt4 = 881653042

Kt5 = 871986375

4b. The fixed end forces and moments are:

FHCN = Wx = 0

FHNC = Wx = 0

D, 0
FV:N = Wy - 4500 - = 4500 lbs.

CY (1071.6/E)

Dy0
FVNc - Wy - 4500 +

cy (1071.6/E)

Do  DFM-% = - - a -- +CMc
cc CY

(71440/E)
FM -- - 180(0) + 405000 = 416906

(6/E)

Do D
FMNc

Cc Cf

(71440/E)
FM, - 180(0) + 405000 = - 416906

(6/E)

5. The elemental stiffness matrix for a parallel

Pratt truss is given in section 3.1.3. The elemental

stiffness matrix is given in Figure 4.1.4.
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6. The stiffness coefficients for the columns are:

EA 29E6(13.2)
KCO = - = = 1678947

L 19(12)

12EI 12(29E6) (350)
K = - - = 10276L3  

19(12)

6EI 6(29E6) (350)
K = - = 1171514L 2  

(19(12))2

4EI 4(29E6) (350)
Kc 3  - - = 178070175

L 19(12)

2EI 2(29E6) (350)
Kc4  = - = = 89035087

L 19(12)

The fixed end forces for column AC are calculated

using the equations given in section 2.4.2 for a

distributed load acting perpendicular to the length of the

column:

UTB = 1/2 L P× = 1/2 (19)(12)(60/12) = - 570 lbs.

VTS = 1/2 L Py = 1/2 (19) (12) (0) = 0 lbs.

Z's = 1/12 L2 Px = 1/12 ((19) (12))2 (-60/12)

= -21660 in-lbs.

UBT = 1/2 L Px = 1/2 (19)(12)(-60) = - 570 lbs.

VBT = 1/2 L Py = 1/2 (19)(12)(0) = 0 lbs.

ZST = -1/12 L' Px = -1/12 ((19) (12))2 (-60/12)

= 21660 in-lbs.

The elemental stiffness matrices for columns AC and PN

are shown in Figures 4.1.5 and 4.1.6, respectively.
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In the case of column PN, since no loads are applied on

the column, all the fixed end moments are equal to zero.

7. The unknown displacements for the truss frame are:

uC = ? UN = ? A = 0 U' = 0

V c = ? vN = ? v A = 0 vp = 0

GC = ?  EN = 
?  EA = 0 EP = 0

Since the truss frame is loaded asymmetrically, there

are no continuity relationships between the unknown

displacements.

8. The joint equilibrium equations are:

Joint C

UCA + UCN E 0

VCA + V - 4'-00 = 0

ZCA + ZcI + 3'5246 = 0

Joint N

UNC + U NP 0

VNC - v -r 4-)00 = 0

ZNC + Z - 4 -6906 0

9. Rewriting the joint equiiibrium equations in terms

of their corresponding elemental stiffness coefficients:

Joint C:

U:

10276 u CA + OVCA + 1171514 eCA - 10276 uAC + OVAC

+ 1171514 EAC + OUCA + OVC. + OECN + OuNC

+ Ov NC + 00 NC - 570 = 0
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V:

0 UCA + 1678947 VCA + OECA + Ov AC - 1678947 VAC + OeAC

+ OUCA + 27062 VCM + 4871220 ECN + 00NC

- 27062 VNC + 4871220 eNC - 4500 = 0

Z:

1171514 UCA + OVCA + 178070175 ECA - 1171514 UAC + OVAC

+ 89035087 eAC + OuCA + 4871220 VCN

+ 881653042 eC0 + Ou NC - 4871220 vNC

+ 871906375 eN' + 395246 = 0

Joint N

U:

10276 UNP + OVNP + 1171514 ENp - 10276 UPN + OVPN

+ 1171514 8pN + Ou + Ov + oe + Ou.,

+ OvNC + OENC = 0

V:

Oup + 1678947 VNP + ONp OUPN - 1678947 VPN + GE) EN

+ OUcN - 27062 VCN - 4871220 ECN + Ou,: "- 27062 Vc

- 4871220 8NC + 4500 = 0

Z:

1171514 up + OVNP + 178070175 NP - 1171514 UPN + OVPN

+ 89035087 0pN + OUCN + 4871220 VCN

+ 871986375 eCN + OUNC - 4871220 NC

+ 881653042 8 NC - 416906 = 0
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Making use of the known displacements determined in

step 7 above, namely, uA = vA = EA = up = v; = Ep = 0, the

joint equilibrium equations become:

Joint C

1. 10276 u C + 1171514 ec - 570 = 0

2. 1706010 vc + 4871220 Oc - 2706-1 vN + 4871220 GI

+ 4500 = 0

3. 1171514 u c + 4371220 vC + 1059723217 GC

- 4871220 vN + 871986375 eN + 395246 = 0

Joint N

4. 10276 uN + 1171514 eN = 0

5. -27062 v C - 4871220 G, + 1706010 vN - 4871220 GN

+ 4500 = 0

6. 4871220 Vc + 871220 eC + 1171514 UN - 4371220 vN

+ 1059723217 GN - 416906 = 0

10. Placing these six equations into matrix format as

shown in Figure 4.1.7 and solving for the six unknown

displacements:

u, = 0.979738 in. uN = -0.921436 in.

vC = -0.002610 in. vN = -0.002750 in.

Gc = -0.008107 Rads GN = 0.008082 Rads
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11. Having solved for the unknown displacements, the

end forces and moments for each truss frame element may be

found by substituting the displacements into the elemental

stiffness matrices given in Figures 4.1.4, 4.1.5, and 4.1.6.

Doing so, the end forces and moments become:

Member AC

UCA = 0 UAC = -1140 lbs.

VCA = -4382.7 lbs. V = 4382.7 lbs.

ZCA = -317547 in.-lbs. ZAC = 447604 in.-lbs.

Member C1

UCN 0 UNC 0

VCN = 4382.7 lbs. VNC = 4617.3 lbs.

ZCN = 317547.4 in.-lbs. ZNC = -359764.1 in.-lbs.

Member NP

U= -0.5 lbs. UPN = 0.5 lbs.

VNP = -4617 lbs. VpN = 4617 lbs.

ZNP = 359687 in.-lbs. ZPN = -359893 in.-lbs.

12. The free body diagram of the truss frame analyzed

in Example 4.1 is shown in Figure 4.1.8.
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300 lb/ft

0 lbs 0 1 bs
n ~ ISflS- ri iY~~N K9 ' '01, in-lb3

I436 lbs 617 lbs IJ __l

H 0  0~

Figure 4.1.8 Free-body diagrari--exanple 4.1
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4.2 Example 2--Gabled Truss Frame

A single span gabled truss-frame with dimensions and

loads shown in Figure 4.2.1 is considered. The modulus of

elasticity is constants for all members.

'4OO IO/1 z

I L

7-4C

M

Figure 4.2.1 Gabled Pratt truss frame

This truss frame is analyzed by the procedure given in

Section 3.

1. Figure 4.2.2 shows the left half of the gabled

truss girder. Since the truss is symmetrical, only one-

half of it must be evaluated.
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H

i hi21

S15

<<

Figure 4.2.2 Left half--gabled truss girder

Top Chords/Bottom Chords

A = 7.5 in 2  L = 30 ft.

2 L 4 x 4 x a= 15 ft.

c = 0.5 ft.

E = 29 E6 psi

Vertical and Diagonal Members

A = 2.3 in2

2L 2 x 2 x

2. The elastic center of a gabled Pratt truss is

located by:

E y, dA

Z dA

Where dA may be taken as Ii = L,/Ai

- 11904 in.
yo = = 4.5 ft.

220.4
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The elastic center is located 4.5 feet below the

crown of the truss girder.

3a. Truss Constants. The truss constants are given

by:

C x  : E 0!i1-2 x i

= z

Table 4.2.1 shows the properties for each member and

the evaluation of the truss constants.

Since these values represent the truss constants for

only half of the frame, they must be multiplied by 2 for

the entire framo. Therefore the truss constants are:

C., = 70.92/E

C, 10i5.12/E

Ci = 8.58/E

3b. Load Constants. The forces acting on the truss

are shown in Figure 4.2.3 below. The original distributed

load is shown as a series of equivalent concentrated loads

acting at the joints.

2': C C

FiQure 4.2.3 Forces acting on the gabled truss
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The load constants are given by:

N
Dx  = E SNiail i

0

N

D¥ = Z SNji3 1 iX
0

N
D = Z SNi'yi i

0

Table 4.2.2 shows the elemental properties, influence

factors, normal force in the truss members due to loading,

anJ the load constants.

The load constants are:

Dx  :-511748/E

D¥ = 0

= -117244/E

3c. The cantilever moments acting at the center of

the truss span are:

CM~c [1000(15) + 2000(15)j12 = 540000 in.-lbs.

CM:,4 = [1000(15) + 2000(15)] 12 = 540000 in.-lbs.

The forces acting on the basic structure are:

W, = 0

Wc I Y 400 lb./ft. (15 ft.) = 6000 lbs.

S =0
4'll N Ix (

V'Nly 400 lb.!ft. (15 ft.) = 6000 Ibs.
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4a. The truss stiffness coefficients are:

Kt 0 = I/CX = 1/(70.92/E)

Kt, = C/C x  = 6/('70.92/E)

Kt 2 = i/C y = 1/(1015.1.2/E)

Kt 3 = a/Cy = 60/(1015.12/E)

Kt4 = 1/Co + a 2/Cy + C2 /C = 1/(8.58/E)

+ (60) 2/(1015.12/E) + (6) 2/(70.92/E)

Kt 5 = - 1/C 0 + a 2/Cy - CZ/Cx = -1/(8.58/E)

+ (60) 2/(1011.12/E) - (6) 2/170.92/E)

If we take E = 29E6 psi,

K.. 408911

Kt. = 2453468

K, = 28568

K t3 = 1714083

K., = 120945750

K t5 = 84744220

4b. The fixed end forces and moments are:

D, (-511748/E)
FH 4 = W_ - - = 7215 lbs.

C 70. 92/E

D, -511748/E

FH,,c = WIx ± - = -7215 lbs.
C 70.92/E

D 0y
FV(N WCly - = 6000 -- 6000Cy 1015.12/E

Dy
FVNC =W Ny + -= 6000 + 0 = 6000

Cy
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Do Dx  Dy
FMCN = c - - a + CMCx

Ce  Cx  Cy

-(-117244/E) 6(-511748/E) 0
- - -180

8.58/E 70.92/E 1015.12/E

+ 540000 = 596960

De Dx  Dy
FMN. = - - + c - - a CMNI

Ce Cx  Cy

-(-117244/E) 6(-511748/E)
+ - 180(0)

8.58/E 70.92/E

- 540000 = 596960

5. The elemental stiffness matrix for a gabled

Pratt truss is given in section 3.1.4. The elemental

stiffness matrix is shown in Figure 4.2.3.

6. The stiffness coefficients for the columns are:

EA 29E6(25.6)
K-0 =- = = 2577780

L 24(12)

12EI 12(29E6) (740)
Kc1 = - - = 10780

L 3  ((24(12))
3

6EI 6(29E6) (740)
K = - - = 1552370L2  

((24(12))2

4EI 4(29E6) (740)
Kc3 = - = = 298055560

L 24(12)

2EI 2(29E6) (740)
KC4 = - = 149027780

L 24(12)

i ,,,,,, ~ m mnmumm•nmi
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The fixed end forces for columns AC and PN are equal

to zero since no load is acting on either column.

The elemental stiffness matrices for columns AC and

PN are the same and shown below in Figure 4.2.4.

In the case of column PN, the subscripts CA are

replaced with NP and similarly AC are replaced with PN.

7. The unknown displacements for the truss frame

are:

UC = ? uN = ? u A = 0 up = 0

vC = ? VN = ? vA = 0 vp = 0

Oc = ?  
ON = ? 8A 

= 0 OP = 0

Since the truss frame in this case is loaded

symmetrically, the following displacement relationships

exist in the truss frame:

U - UIN

V C = V N

0C e N

8. The joint equilibrium equations are:

Joint C

UCA + WCN + 7215 = 0

VCA + VCN + 6000 = 0

ZCA + Z + 596960 = 0
'A CN
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Joint N

U + WN- 7215 - 0

VNC + VNP + 6000 = 0

ZNC + ZNP - 596960 = 0

9. Rewriting the joint equilibrium equations in

terms of their corresponding elemental stiffness

coefficients:

Joint C

U:

10730 UCA + OvCA + 1552370 eCA - 10780 u C + OvAc

1552370 eAC + 408911 UCN + OVC%

+ 2453468 0
CN - 408911 UNC + OVNC

- 2453468 eNC + 7215 = 0

V:

OUCA + 2577780 v + oeCA + Ou - 2577780 v c + 0GA

OUCN + 28568 VCN + 1714083 ECN + Ou NC - 28568 VNC

+ 1714083 0 NC + 6000 = 0

Z:

1552370 UCA + OVCA 1 298055560 0 CA - 1552370 UAC + OVAC

+ 149027780 eAC + 2453468 UCN + 1714083 VCN

+ 120945750 eCN - 2453468 UNC - 1714083 NC

+ 84744220 ENC + 596960 = 0
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Joint N

U:

- 408911 ucN + Ov C - 2453468 GCN + 408911 uNC

+ OVNC + 2453468 GE + 10780 u NP + OvNP

+ 1552370 eNP - 10780 UPN + OVPN

+ 1552370 E) - 7215 = 0

V:

Ou.1 - 28568 v - 1714083 Ec + OUNc + 28568 vNZ

- 1714083 0NC + OUNP + 2577780 V N

* O0p + OUpN - 2577780 VpN + O0 + 6000 = 0

Z:

- 2453468 u CN 4- 1714083 v CN + 84744220 eCN + 2453468 UNC

- 1714083 VNC + 120945750 ONC

+ 1552370 u.; + OvNP + 28905556C @0

- 1552370 UPN + Ov PN + 149027780 E PN

- 596960 = 0

Making use of the known displacements determined in

step 7 above and the displacement relationships:

Joint C

U:

828602 u C + 6459306 -C  = -7215

V:

2577780 v, = -6000

Z:

6459306 u c + 334257090 ec = -596960
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Joint N

Since we are making use of the symmetrical properties

of the truss frame, we do not need to complete the joint

equations for joint N.

10. Placing the three equations from Joint C into

matrix format as shown in Figure 4.2.5 and solving for the

three unknowns:

828602 0 6459306 1 uc] -7215

0 2577780 0 V -6000

6459306 0 334257090 J_ L - 596960 

Figure 4.2.6 Truss frame structural stiffness matrix

uz = 0.0U614 in.

v c = -0.00233 in.

8, = -0.0019 Rads

Having solved for the unknown displacements at Joint C,

the displacements at Joint N may be assigned by the

displacement relationships given in step 7. Therefore,

uC = 0.00614 in. uN = -0.00614 in.

vC = -0.00233 in. vN = -0.00233 in.

ec = -0.0019 Rads EN = 0.0019 Rads

11. With the unknown displacements now known, the end

forces and moments for each truss frame element may be found

by substituting the displacements into the elemental
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stiffness matrices given in Figures 4.2.3 and 4.2.4. Doing

so, the end forces and moments become:

Member AC

U CA = -2883 lbs. UAC = 2883 lbs.

VCA = -6006 lbs. V = 6006 lbs.

ZCA = -556774 in.-lbs. ZAC = -273621 in.-ibs.

Member CN

UCN = 2913 lbs. UNC = -2913 lbs.

V", = 6000 lbs. VNC = 6000 lbs.

ZC-N = 556774 in.-lbs. ZNC = -558305 in.-lbs.

'Member NP

UNP = 2883 lbs. UPN = -2683 ibs.

VNP = -6006 ibs. VPN = 6006 lbs.

ZP = 556774 in.-lbs. ZPN = 273621 in.-lbs.

12. The free body diagram of the truss frame analyzed

in Example 4.2 is shown in Figure 4.2.7.
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400 Ib/ft

2 913 1 t: A 293

22 r- t, 23-7521 r

Figure 4.2.7 Free-body diagram--example 4.2



CHAPTER 5

Conclusions and Rezommendations

5.1 Conclusions

The derivation of the stiffness coefficients, load

functions, and stiffness matrices for the flat Pratt and

gabled Pratt truss frames are presented. The stiffness

coefficients and load functions are developed through the

application of the theorem of least work for a general

flat and gabled Pratt truss. The standard sign convention

used in the development of the elemental stiffness

coefficients, load functions, and stiffness matrices are

taken from Tuma (1987). The column stiffness coefficients

are taken from the Theory of Structures lectures given by

Dr. Tuma at Arizona State University. The application of

these two truss stiffness matrices and the column

stiffness matrix in the solution of the truss frame

problem are illustrated by two numerical examples.

5.2 Recommendations

This methodology can be automated intc a computer

method of analysis.
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