
j Technical Report

S AD-A232 045 CMU/SEI-90-TR-5
ESD-TR-90-2o6

- Carnegie-Mellon University

IN Software Engineering Institute

-Survey of Formal Specification
Techniques for
Reactive Systems

Patrick R. H. Place
William G. Wood

'Mike Tudball

, N\ May 1990

ELECTE
7 , MAR 09 1991

N // -- EI

9N-

S1/ 12 9'- 09 -
I1/

AlI

A
-I

A

The tWoimri statement of asurance Is more than a Mttment required to comply with thejed~rattlaw This;. sincere statement by the university to assure that an
peoploe rwtueo in the c~vryty' fnai 4r-aravieMtlon an eitmng place Carnegie Mellon wishes to include peo&l without regard to race. colOr. iatonal
onginrr sex ban Oa wr creed, ancestry, berief. tea n Stts o r64iation,
Carnee w Mello rsity uoes not1 discriminate and CarnegenteWon University is required not to disctnnate in admssins and employment oin the bass of nice
COfo-national origin, sai or handcap an violation oll rdle V1 of thiM Civil Rights Act o1-1964. Title AX of the Edticational Amendments of 1972 and Section 504 of the
RehabNdalonActo a973 of othser federl. t. or tocaltarws or executve orders. In addition. Carnege Mellon does net disciimnate in admissions arid employment on
the basis of rigion. creed. anzesitry, bOO!t age. veteran status or sexual orientationt in aiolator of any federal, state. or local laws or executive orders Inquires concern-
irig aplcation OfthiSPCshpcslud be directed to 1ho Provost, Carnegie Motlon Urwvorril,, 500Forbes Averiu'. Pittsburgh PA 15213 telephone (4t2) 2505084or the
Vice Prwrldnt for Enrofrnent. Carnegie MelorwUiversty, 5000 Foos Avenue, Pirtabufgh. PA 15213, telephone (412) 268 2053

Technical Report
CMU/SEI-90-TR-5

ESD-TR-90-206
[May 1990

I

I Survey of Formal Specification Techniques
Ifor Reactive Systems

Patrick R. H. Place

William G. Wood
Specification and Design Methods

and Tools Project

Mike Tudball
Ferranti Computer Systems Ltd.

31 Approved for public release.
Distribution unlimited.

Software Engineering Institute
I Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Contents

1 Executive Summary 1

2 Introduction 3
2.1 Purpose of the Survey 3
2.2 Background 4
2.3 Organization of This Report 5

3 State of the Industry 7
3.1 Project Information 8
3.2 Key Points 8
3.3 Summary 12

4 Classification Scheme 15
4.1 Representation 16
4.2 Derivation 19
4.3 Examination 21
4.4 Other Criteria 24

5 Application of the Classification Scheme 29
5.1 Approach to Creating Comparable Specifications 29

5.1.1 Advantages of the Cooperative Approach 30
5.1.2 Disadvantages of the Cooperative Approach 30

5.2 Problem Statement 31
5.2.1 Navigation 31
5.2.2 Radar Control 33

6 Corramunicating Sequential Processes 35
6.1 Specification 36

6.1.1 Handling Time 371 6.1.2 The ADC 'nd the INS 38
6.1.3 The Radar 43

!
In

[: - = I / 11 i

6.1.4 The MPD and HUD........................... 44
6.1.5 The Waypoint Manager........................ 51
6.1.6 The Autopilot............................... 52
6.1.7 The Navigation Function 53
6.1.8 The System 55
6.1.9 An Alternate Waypoint Manager. 55
6.1.10 More on Radar Displays. 56

6.2 Comments on the Specification. 60
6.2.1 Uniformity of Style. 60
6.2.2 Interpretation of CSP. 61
6.2.3 Modeling of Time 62

6.3 Classification of CSP 62
6.3.1 Representation 63
6.3.2 Derivation. 64
6.3.3 Examination 65

7 Vienna Development Method 67
7.1 Specification 68

7.1.1 Handling Histories. 68
7.1.2 The ADC and INS. 69
7.1.3 The Radar. 76
7.1.4 The MPD and HUD 77 f
7.1.5 The Wa.ypoint Manager 82
7.1.6 The Autopilot. 83
7.1.7 The Navigation Function. 83

7.2 Comments on the Specification. 85
7.3 Classification of VDM*.. 86

7.3.1 Representation 87
7.3.2 Derivation 88
7.3.3 Examination 88

8 Temporal Logic 89
8.1 Specification 91

=8.1.1 Handling Time 91
8.1.2 The ADC and the INS 93
8.1.3 The Radar. 96
8.1.4 The MPD and the HUD. 97
8.1.5 The Waypoint Manager. 102

8.1.6 The Autopilot 103
8.1.7 The Navigation Function 104

8.2 Comments on Specification 105

8.3 Classification of Temporal Logic 108
8.3.1 Representation 108
8.3.2 Derivation 109
8.3.3 Examinations 109

9 Comparative Evaluation 113
9.1 Comments on the Problem 113

9.1.1 Unexpected Behaviors 113
9.1.2 Design Decisions 114
9.1.3 Choices in the Requirements 115

9.2 Comparison of Classifications 116
9.2.1 Interpretation of Table Data 116
9.2.2 Representations 117

9.2.3 Derivations 119
9.2.4 Examinations 120

9.3 Conclusions Based on Evaluations 121

10 Conclusions 123

10.1 Conclusions 123

10.2 Future Work 124

Aoession For

H~IS GRA&I 0
DTIC TAB 5]
Unannounced -j Justificatio

BY,

Distribution/

Availability Codes

Supercedes AD A223 741 per telecon
Avail and/or

Barbara afas. Carnegie Mellon University Dist Special

Software Engineering Institute. Pittsburgh

Pa. 15213. 2/19/91

|- WIG

:3

-i

I

I

I

I

I
A

I

U
iv U

___ I

List of Figures

5.1 Avionics System to Be Specified 32

6.1 Timer Process 37
6.2 Reliable Device 41

0 6.3 Behavior of the HUD 46
8.1 Processes in Temporal Logic Specification.............. 92I 9

U

I

IIIII IIlI

K

-I

U

I

I

vi £

!I

List of Tables

9.1 Representations. 1
9.2 Derivations. 119
9.3 Exafriinations 120

LII vii

I

i

=

Chapter 1

Executive Summary

Abstract: Formal methods are being considered for the description of
many systems including systems with real-time constraints and multiple con-
currently executing processes. This report develops a set of evaluation cri-
teria and evaluates Communicating Sequentiaw Processes (CSP), the Vienna
Development Method (VDM), and temporal logic. The evaluation is based
on specifications, written with each of the techrdques, of an example avionics
system.

In so. xare-intensive, reactive systems, many of the errors detected in the integra-
tion, testing, and installation stages of a system's development can be traced to
ambiguities, inconsistencies, and incompleteness in the requirements specification.
The removal of these errors often requires a considerable amount of backtracking of
the system to discove- the source of the error, followed by changes at many levels1of the system's description to eliminate the cause of the error. For this reason it is
advantageous to have a more precise, consistent, and complete specification of the
system. The formal specification techniques evaluated in this report are one way of
developing specifications with the desired characteristics. We have restricted our
attention to formal methods for the specification of concurrent systems, since there
are already adequate comparisons of formal sequential techniques. We have further
chosen to look at only three of the currently popular formal concurrent techniques
to ensure that our approach is valid before committing further resources to the
task. Each of the three techniques was applied by a different project team member
to specify the same avionics problem.

In order to gain confidence in the validity of formal methods, we visited a number of
organizations involved in formal software development. These organizations were
variously developing formal methods, or tools supporting such methods, or were1

U

using the methods and tools either on real projects or pilot project case studies.
Our visits were largely to organizations in the United Kingdom, since this is where
most formal specification methods development and usage is taking place. Further,
the Ministry of Defense (MOD) in the UK has recently dictated the use of such
methods for safety-critical systems. Our conclusions from these trips were that
formal methods are being taken seriously, though most usages are pilot projects
and are still at the paper, pencil, and wastebasket level, and that useful automated
tools are slowly being developed.

The comparison and evaluation of each formal method were performed in the fol-
lowing five stages.

1. We developed some evaluation criteria, based on existing taxonomies of meth-
ods and tools.

2. We chose an example avionics problem to serve as a basis for evaluating the
various techniques.

3. We then specified the problem using Hoare's communicating sequential pro-
cesses (CSP) technique. During this specification, we made a number of
assumptions about system operation that were not adequately described in
the requirements document for the example problem.

4. Using the CSP specification as our base, we re-specified the system using
temporal logic and an extended Vienna development method (VDM).

5. We evaluated each method individually against our previously selected crite-
ria, created a summary of our evaluations, and drew some conclusions from
the evaluations.

The results of this evaluation must be taken cautiously, because one important cri-
terion in evaluating a method is the ease with which a design and implementation
can be derived from the specification created by using that method. We developed
neither designs nor implementations from the specifications. Given this limitation,
we preferred CSP, largely because of its ease in composing primitive processes into
larger grained processes. We found temporal logic to be a close second, and were
impressed with the ability to use model checking to verify the consistency of the
temporal formlas. We rated VDM as a rather distant third, mainly because of
the awkwardness of expressing post-conditions on the larger grained composite
processes. Again, our method of mimicking the CSP specification may have hand-
icapped VDM's performance. A radically different approach may have yielded a
better specification.

2

I

Chapter 2

Introduction

This report describes an evaluation of formal techniques for specifying reactive
systems. The term reactive systems' is used in this report to describe systems that
do not terminate but instead maintain continuing interaction with the environment.
Examples of reactive systems are operating systems and industrial control systems.

The report classifies each specification technique using criteria based on the char-
acteristics and development of reactive systems. We also provide an evaluation of
the applicability of the techniques to the specification of reactive systems. The re-
port also includes a summary of our discussions with developers and practitioners
of formal specification techniques.

2.1 Purpose of the Survey

The purpose of this report is threefold: First, to report on the current practice
in applying formal methods to developing software systems; second, to present an
objective comparison and evaluation of three formal methods; and third, to provide

* the basis for further work.

We report on the state of the practice for two reasons. It gave us a picture of the
state of the industry in using formal techniques both in terms of the techniques
being used and the tools used to support the formalisms. It helps us to understand
what is needed to make formal methods vriabc in industry.

I 'Coined by Pnueli [15] in 1985.

1 m 3

The intent of this work was to provide an objective comparison and evaluation of
a number of currently popular formal specification techniques. This comparison
could subsequently be used as a guide to choosing the most appropriate technique
to be applied to the specification of a system. This report also provides some
examples of specification using the various techniques; these examples may be
used as models and, we believe, may help readers understand how to specify their
own systems.

The sample problem and classification criteria reported here can be used to classify
and evaluate other specification techniques. The greater the number of techniques
that can be classified and evaluated, the greater the utility of the work started in
this report. A developer wishing to use the report as a base for selecting a formal
specification technique to apply to some system will have a wide range of techniques
from which to choose. Further, a reader interested in formal specifications would
have a number of model specifications to read.

2.2 Background

Before presenting the results of the survey, it is useful to explain why another
survey is of value when others have already been published [11, 17].

The Software Productivity Consortium (SPC) report [11], which publishes a survey
of formal methods, discusses aspects of development other than specification. A
narrower focus may provide more insight into the nature of the specification tech-
niques. Further, each specification presented by the SPC is of a different software
system, making it harder to compare the specification techniques in an objective
manner. The Sannella report [171 discusses specification of sequential software sys-
tems which, although such systems play an important role, does not address the
harder problems of concurrency found in typical reactive systems. This survey fills
a gap left by the other two.

This report acts as an aid to making a choice of specification technique. We should
be able to examine a system, classify it according to our criteria, and choose the
technique that most closely matches the problem.

Rather than considering techniques applicable to every aspect of a system's devel-
oprrent, we focus on requirements specification alone. This enables us to narrow
the list of available formal techniques, so that thiese techniques can be treated in
greater depth than they could in a study which covered all techniques applicable
at every stage of the development cycle.

4

It should be noted that this report's restriction in scope to only formal methods
does not imply that formal techniques applied to other stages of system devel-
opment are unimportant. Rather, we consider requirements specification to be
the basis of the software development process and that subsequent effort must in-

3vestigate the role of formalism in the other stages of the development life cycle.
We would also like to note that we consider writing a formal specification, even
without doing subsequent formal development, to have advantages over omitting
such a step. Specifically, writing the specification implies that the requirements
become well understood and many problems of conflicting, confusing, and ambigu-
ous requirements may be resolved early rather than late in the development of a
system.

This report, as stated in the title, is a survey of specification techniques. We
do not attempt to provide a tutorial on any of the specification techniques and
recommend that a reader looking for such peruse the appropriate literature. We
also do not justify our belief in the value of formal specification. Such justifications
have already been treated at length in the literature, for example by Turski and
Maibaum (18].

A complete survey would cover specification techniques that are currently popular
or are, in our opinion, of particular importance. Techniques such as Commu-
nicating Sequential Processes (CSP) [7], temporal logic [3], an extended Vienna
Development Method [10], Calculus of Communicating Systems [13], Petri nets
[16], LOTOS [8], and many more should be covered. This report covers the initial
work in this survey effort where CSP, temporal logic, and an extended VDM have
been classified and evaluated.

As a final note on the choice of techniques, it is obvious that we cannot cover the
entire field of specification techniques and we are happy to act as a "clearinghouse"
for other method developers or users who believe that a particular technique has
been unjustly omitted and wish to provide a solution to our problem. We would
then be in a position to periodically update this report by adding new techniques.

2.3 Organization of This Report

This report is organized according to the order of the activities we carried out
while performing our survey.

I- u m. . n '

In Chapter 3 we present the results of a number of visits that we made to both
developers and users of formal specification techniques. To preserve anonymity, we
have omitted the names of the people visited and present a summary of the visits.

In Chapter 4 we describe in detail the classification criteria used on the formal
specifications. This chapter defines the terms used in the cla.sification and the
reasoning behind the organization of the criteria.

The sample problem is presented in Chapter 5. This problem is taken from the
original text of a requirements document of an example avionics system, with
sections of the original text removed. The original text was cut down in order to
create a problem of a manageable size. We have not altered any of the text of the
original document in order to make the work of creating the specifications simpler.
This section of the report also discusses the manner in which we generated the
problem specifications and our aims in this mode of work.

Successive chapters present the formal specifications of the problem. With each
specification are associated comments, both on the specification and on the problem
as determined by the particular specification. We also present with each formal
specification the classification of the technique employed and the justification for
our classifications. The classifications are based primarily upon the specifications
we developed, though additional data from the literature is included.

In Chapter 9 we summarize the technique classifications and also present some
generic statements about the problem. These statements formulate issues that
we believe would need resolution before undertaking development, in that tL.ey
demonstrate potentially unexpected behaviors of the system.

Finally, in Chapter 10 we present our conclusions on this work, discussing the value
of the work as well as the current state of the practice. This chapter also includes
discussion of a number of possible research directions that could be taken based
on the work of this report. We list those that seem of interest and value.

-I

8:

Chapter 3

State of the Industry

In order to substantiate the validity of our efforts, we visited a dozen sites involved
in formal software development. Although most of the sites we visited were in

- Britain, where considerable effort is being put into the use of formal techniques,
we did try to ensure that the visits covered a representative sample of industry and
academia.

The purpose of the visits was twofold: first, to d.scover the current state of in-
dustrial application of formal techniques and second, to discuss and refine our

I classification criteria. In addition to method users, we also visited method devel-
opers so that we could obtain their views on how industrial users were applying

1 their methods.

For various commercial reasons, we were asked by a number of people we visited
to keep their comments anonymous, which we have done. However, we would like
to acknowledge their contributions here and thank them for the time they spent
talking to us and the advice given to us concerning our project.

i The three sections that follow summarize our visits. The first section indicates
the sizes of the projects where formal techniques were used and how the method
users felt about the techniques they used. The second section lists the key points
that were made by the people interviewed. The sentences in bold summarize the
points. The associated paragraphs provide the justification of the point. It should

I be noted that some of the points were made to us by a numbcr of people and that
no importance is to be attached to the order in which the points are listed. The
final section presents our conclusions concerning the points made to us on the trip.

17I

3.1 Project Information

The sizes of the projects on which formalisms were used varied enormously from
a 1 year (2 people for 6 months) project to a project of approximately 100 person
years. The projects covered a wide range of applications, including medical systems
where correctness was of paramount importance, project management tools, the
interface to a laver of a project support environment, a number of applications used
by the security people, and a transaction processing system. All of the people we
spoke to were using formalisms in applications that formed part of their respective
company's product line. These applications were important to the general business
of the company.

All of the people we spoke to felt that using a formal specification had improved
the quality of their code and, in a number of cases, had reduced the time between
product inception and release. In one case, we were told that the company believed
that the product could not have been released on time had it not been for the use
of a formal specification of the system. Generally, the users had only subjective
rather than objective views. One project was keeping data relating the bugs found
in the formally specified release of their product to those found in previous product
releases; however, at the time we visited, these figures were not available. The
subjective view was that they expected to see an improvement with fewer bugs
being reported than for the previous releases.

3.2 Key Points

As has been stated, the points presented in this section are in no particular order.

e Formalism aids in the understanding of the system being built.
One of the main advantages of using a formal technique is that the developer
is encouraged to think abstractly about the system rather than thinking
about how the system will be implemented. This conceptualization enabled
the developers we interviewed to gain insight into th. system that wouid
otherwise have been lost in the details of the implementation. One group,
about to construct a system similar to an existing system, took the object-
oriented design of the existing system and created a more abstract, formal
specification which they subsequently used as the basis for a new object-
oriented design for the new product. They stated that they found the formal

8

T

specification to be invaluable, that it enabled them to produce a better design
for the new product than if they had started by modifying the existing design.

e The manner in which formalisms are introduced is of great im-
portance. A number of people stressed that for greatest success, formal
techniques must be introduced carefully into any new group. Most impor-
tant is that the group should be carefully selected. Specifically, they should
already be using some method, they should recognize the deficiencies in their
current method, and they should be interested in adopting. a better approach.
Such a group is receptive to formalism and by a process of training and con-

] sulting may be gradually introduced to the use of formal techniques. At
first, they will need a great deal of assistance; this effort will decrease as the

group becomes more familiar with, and confident in, their ability to apply
the technique.

* There is much activity in mixing and matching techniques. The
people we visited are using combinations of techniques for industrial-scale
applications more often than they are using a single technique. There are
two main reasons for this mixing and matching of techniques.

1. The introduction of a completely unfamiliar method requires re-training
of development staff and is costly in terms of the time required for
the developers to gain the ability to use the new method effectively.
The use of formalism to overcome specific deficiencies in the existing
method reduces the time needed for the development staff to start using3formalism.

2. There has been a gap in the development of formal techniques in that
som techniques have concentrated on sequential systems and others
have concentrated on concurrency. Until recently, no technique has
looked at both sequential and concurrent aspects of a system. Most
industrial systems contain both concurrent and sequential componentsI and a combination of two formal techniques is required for complete sys-
tems specification. There is interest in using the recently standardized
technique, LOTOS, which may be used to specify both concurrent and
sequential systems.

* For these two reasons, people are m" -ng and matching f^--.al scqucntial
specification techniques with both formal and informal concurrent specifica-
tion techniques.

* Tools are of less importance in practical use of formalism than is
usually assumed. Although a number of practitioners are busy writing

*9

tools of various types, from syntax-checking editors to complicated proof
assistants, evidence suggests that simple tools are sufficient as long as devel-
opers are more concerned with the construction of the specification than with
manipulation and examination of that specification. Many of the people to
whom we spoke felt that for their projects, the greatest benefit was in writ-
ing down the formal specification, and that they had .only limited interest
in performing a full formal proof of development. Their reason was that the
formal specification could be developed at little cost and was very useful, but
that formal proof of the developmnent was to6 expensive and had limited gain
in most cases. It was generally felt that tools become much more important
to a project when a formal development is going to take place from the spec-
ification. Then tools such as proof assistants become important to stop the
development time from growing rapidly. The communities colicerned with
safety:critical and security systems are investing more effort into developing
tools than other parts of the computing community.

The most important part of developing a formal specification tech-
nique is the development of the semantics. A problem arises in the
development of a formal specification technique in terms of the different needs
that people will have of the technique. There are three different requirements
of the technique: the ability to reason with it, its expressive power, and the
tools available to support the technique. All of the people we spoke to agreed
that the semantics of the formal specification technique were of fundamental
importance to the successful application of the technique. The semantics of
the technique have to be such that specifications can be reasoned about using
the technique. The other interests, the expressive power and tool availability,
were of lesser importance, with some people stating that the availability of
tools was of no importance.

* There are now many small examples of formal specifications. Inter-
est in formal techniques has spread from the universities into industry and
there are now a large number of examples of formal specifications of rela-
tively small systems that have been developed. Although these specifications
are small, they provide confidence to the specifiers and are leading to the
development of larger specifications. Further, in a number of cases, formal
specification has moved out of the research departments of large corporations
and into active use by developers throughout those companies.

* Specification execution is becoming an important aspect of formal
specification. Many people consider specification animation as a part of the
specification phase of a system. It is easy to make statements with a formal

10

I[

specification technique that are complete and internally consistent. How-
ever, it is important to ensure that the formal specification delineates the
system described in the requirements document. The technique currently
receiving the most attention for this form of validation is specification execu-
tion in which the specification is, in some sense, executed as though it were
a high-level program implementing the system. This execution allows the
specifier to determine that the specification describes a system that exhibits
the desired behavior. There are a number of forms of animation such as
direct execution, some form of transformation followed by execution, or even
transformation followed by proof. However, no matter what the animation
technique employed, the concept of animation is important both for check-
ing the specification against the requirements and demonstrating unexpected
properties of the specification.

. Formal methods can be taught at the undergraduate level. The
ability to teach formal techniques was discussed a number of times. The
consensus was that there is nothing particularly difficult about introducing
formal methods at an early educational level; indeed, they can be taught from
the very start of an introduction to programming course. This introduction
would give the students a reading knowledge of the techniques and later
courses would teach the students how to write specifications. We were told
that although many universities are not teaching detaiied courses on formal
methods, the general awareness of such techniques is higher in new graduates
than in long-time practicing engineers. This has meant that it is easier to
teach formal methods to the new graduates than to the other engineers in an
industrial setting.

* There is increasing interest in hardware verification. More and more
formal specifications of system hardware components of a system are being
produced. This is happening for two reasons.

1. Hardware specification and verification should be simpler than software
specification and therefore offers a proving ground for the techniques.
This enables the developers to improve the quality of the techniques and
also demonstrates the validity of those techniques.

2. Because of the cost of chip development and testing, it is becoming more
important to know in advance that the implementation of a chip will
meet its requirements.

There is a lot of interest in the hardware specification language ELLA, though
there have also been hardware specifications written in Z.

!1

Z is becoming as popular as VDM. Evidence, in the form of tools be-
ing developed and sold and specifications being written, suggests that Z is
becoming at least as popular as VDM. Tool vendors are concentrating on Z
tools, finding that they have a wider mark.t for these tools than for equiv-
alent VDM tools. Also, many of the specifications alluded to during our
visits were in Z rather than VDM. It was stated, on the other hand, that
the VDM standardization effort may be retarding the process of introd-.-
ing VDM, since tool developers are waiting for the standard to be published
before committing effort to VDM tools.

* MOD (Ministry of Defense) 00-55 will have an effect on British
defense contractors. MOD 00-55 is a draft standard developed by the
British Ministry of Defense in conjunction with some academic and industrial
groups. It requires that all safety-critical portions of a system should be
formally specified and verified. The standard has recommendations about the
formal techniques to use, as well as code constructs that must be avoided.
A related document (MOD 00-56) discusses techniques for identifying the
safety-critical portions of the system. Opinions on MOD 00-55 were mixed,
with most people stating that it would not affect them directly, though they
were convinced that in the long run, either MOD 00-55 or a similar standard
will be enforced and will affect their business. Two groups thought that it was
premature and could not be enforced until at least the mid-1990's, though
another group suggested that the time was now right for the introduction of
the standard and that it could be enforced immediately. Finally, one group
we spoke to is opposed to the standard and believes that it can never be
enforced.

3.3 Summary

It should be stressed that this summary is our view, based on our discussions with
the method developers and users, concerning the state of practice of application of
formal specification techniques and thus differs from the preceding section of this
chapter, which represented the views of the people we visited.

The existence of MOD 00-55 will make a difference to software development in
Britain. We expect that contractors and researchers will pay more attention to
formal developments of large-scale systems. The researchers will look for ways in
which the process of formal development may be made simpler, while the contrac-
tors will be gaining an increasing awareness of formal techniques and will attempt

12

pilot projects. It is questionable as to whether MOD 00-55 will ever be an enforce-
able standard; however, the existence of the draft standard and the support for
that standard by the MOD will mean that developers will position themselves to
be ready to employ formal specification techniques if required. Also, rather than
insisting on complete formality, we expect that there will be more emphasis on rig-
orous development. Although MOD 00-55 may never be an enforceable standard
as it currently exi.'ts, it may well lead to a standard which is enforceable and ac-
ceptable to the cow'ractors, and which requires some level of formality in software
development.

Formal specification and development techniques are beginning to be taught at all
levels in Britain. There used to be a concern that formalism'was difficult to learn
and that teaching these techniques was best left to optional courses at the graduate
level. However, it has since been recognized that formalism is easier to learn than
was previously thought and it can be taught to undergraduates in introductory
programming courses.

IThere are now a number of companies applying formalism and although this has
been happening primarily in research departments, it is now beginning to move
into other branches of the companies so that developers are beginning to use these
techniques on live projects.

There are now businesses which base a significant portion of their business on the
I use of formalism. These companies are promoting formalism through education

and tool sets. Further, established companies are losing business to software houses
with such skills, precisely because of the software houses' ability to apply formalism,
which is becoming increasingly popular in requirements.

1
t
I

- I 13

I

r

I
I

14 1
I

Chapter 4

Classification Scheme

This chapter describes the criteria we use to classify and evaluate specification
techniques. The following sections introduce the terms we use. In some cases, we-have defined a well known term, for example, transformation, in a narrower sense
than is often used and have introduce,, additional terms, in this case elaboration,

ito cover meaning traditionally ascribed to transformation but that is notto ove menin trditonaly scrbe totrasfomaton ut hatis otcovered

in our definition.

A classification scheme for specification techniques requires a set of criteria upon
which the specification techniques may be judged. Earlier work of our project [5]
divided criteria appropriate for specification into three categories:

1. Representation - the concepts of a system that can be described using the

technique.

2. Derivation - the methods for producing one specification from another.

3. Examination - the properties of a system that may be determined using the
specification technique.

We have adopted the same categories within the work described in this report.

There is a further category, miscellaneous criteria, based on subjective rather than
I4 objective judgements. Although we recognize the value of such an evaluaLion,

we do not intend to do more than describe the aspects of this category that,
in our opinion, a good specification notation should exhibit. Judgements based
upon these criteria are only valid when a set of metrics exists against which the
specifications can be measured.

1!1
mmIm mm u m nm mm m

The miscellaneous category also includes some additional criteria which are impor-
tant to the techniques from a technical point of view and which should, perhaps,
be included as part of our survey. As stated in the introduction, we restricted
our investigation to specification alone, and we consider that a number of these
additional criteria are not applicable to the formal techniques when only consid-
ering specification. An investigation considering the role of the formal techniques
throughout the entire development life cycle may well need to investigate a number
of these additional criteria.

4.1 Representation

This category of classifying specification techniques consists of the concepts of
a system that a specification technique could be used to describe. It is not an
exhaustive list of concepts, but rather is a list of concepts that we consider to
be the most important. We consider each of these properties to be orthogonal,
though a specification technique not addressing concurrency is unlikely to be able
to specify communication between processes.

Style - A specification technique will usually either specify an object in the sys-
tem by its behavior or by its function. While there are techniques that can
specify a system either behaviorally or functionally, the manner in which
the techniques are used leads the specifier to develop either a functional or
behavioral specification and not a combination of the two. A behavioral spec-
ification describes the sequences of events that a correctly behaving system
object can exhibit, and otherwise treats the object as a black box, giving no
hint of its internal operation. A functional specification describes the outputs
of an object as a mathematical function of the object's inputs (and possibly
includes some notion of the state of the system). It is possible to derive the
function from a behavioral specification and the behavior from a functional
specification.

A second aspect of style is the manner in which the objects are described; this
is generally either operational or declarative. In the operational style, a recipe
is provided to describe the system in a mechanistic way. These specifications
are programs, and some or all of them may be executable. In the declarative
style, relationships between the objects are described with no thought as to
the order of execution of the statements.

Concurrency - For many systems, especially systems that are highly reactive,
there may be a need to specify the system as a number of conchrrently exe-

16

cuting processes. Although it is possible to specify the behavior (or function)
of a concurrent system at an abstract level using a notation that does not
represent concurrency, we are more interested in whether the specification
notation can describe concurrency directly.

Communication - We are interested in systems in which the concurrently ex-
ecuting processes communicate. Without some form of communication, each
of the processes could be independently specified with no interactions from
other processes. The form of communication that the specification technique
can describe affects the meaning of the specification, so we are interested in
whether or not the communication is synchronous or asynchronous (or both)
and whether it is through shared data or communication channels.

Non-Determinism - A system is said to be non-deterministic if an observer ofI the system cannot predict, given the current state and appropriate inputs,
the next state of the system.

I An example of a non-deterministic system is a system comprising two con-
currently executing processes. If we assume that at all times one or other
of the processes is executing, then we can never predict whether the cur-
rently executing process will in fact perform its next transition, or if some
underlying arbiter will intervene and restart the other process.

Another example of non-deterministic behavior is that of a system which
in some state may make a transition into one of a number of states, with
no observable reason dictating the decision. This is an example of non-
deterministic behavior, since each time the system arrives in this state, an
observer cannot predict what the next state will be.

Other examples that cause non-deterministic behaviors in systems are un-
predictable events, such as events caused by the passing of time.

Fairness - A system is fair if, whenever some non-deterministic choice is to
be made, no choice is postponed forever. This means that if the system
keeps arriving at the point where the non-deterministic choice is to be made,
eventually each of the paths will have been taken. Note that the concept
of fairness should not be confused with the concept of fair scheduling of
processes.

We note that any concept of fairness in a specification exists due to the spec-
ification technique and not due to any wishes of the specifier. A specificationy technique may have no concept of fairness, which simply means that a spec-
ifier can make no assumptions about fairness of non-deterministic events. It
is possible for a specifier to place fairness constraints on the input data (or

17

sequences of environment events - those out of the control of the system);
however, such fairness constraints are placed on the input to the system and
do not affect the fairness of the non-deterministic events of the system.

Francez (61 describes three notions of fairness:

1. Unconditional fairness refers to the concept that for each behavior, each
event occurs infinitely often. An example of this fairness may be found
in a multi-processing system where each process is independent of the
others, in which case, unconditional fairness means that no process will
be permanently blocked.

2. Weak fairness refers to the concept that a process that is continuously
enabled cannot be postponed indefinitely. For example, a process wait-
ing to enter a critical region will eventually enter that region (so long
as the condition for its waiting does not alter).

3. Strong fairness refers to the concept that an infinitely enabled process
will eventually proceed. The difference between this and weak fairness
is that the waiting condition need not be continuously enabled, simply
enabled (and disabled) infinitely often.

Modularity - Many systems are large and complex. Specifications of such sys-
tems also have a tendency to be large and complex. It is important for the
specification technique to be able to construct specifications in a modular
way since it is easier to read small modular pieces of a specification than it
is to read the entire specification as a single unit.

Time - An important aspect of a system is the behavior of its components with
respect to time. We may consider timed events to divide into two categories,
periodic and sporadic events, a periodic event being some event that happens
at regular intervals and a sporadic event being one that happens at apparently
random times. For example, a clock interrupt is a periodic event, whereas a
device interrupt would be sporadic.

It is useful to specify that an event does not occur before a certain time
(either absolute or relative). This may be specified by requiring that some
clock event occurs before the event of interest. Then, the problem becomes
one of being able to specify absolute and relative times. 'o do this, it is
convenient if the specification technique can be used to model both local and
global clocks. Within the specifications, we are interested inboth periodic
and sporadic events, so the notation should be able to specify that an event
occurs every, say, 1 second, as well as being able to specify that an event

I118

z

occurs within, say, 100 ms. of another event. The latter example shows the
typical use of sporadic events, that is, to snecify hard deadlines.

Data - Many large software systems contain complex data structures to store
information reflecting the overall state of the system. The values of this
stored information may affect the behavior of the system.

Techniques with only limited ability to describe data will almost certainly af-
fect the way in which a specification is structured if the system to be specified
contains complex data structures.

For example, a specification language with no ability to describe data would
not be an appropriate choice for the specification of, say, a compiler symbol
table. Further, a specification language with the ability to specify, say, only
lists will treat all problems of data in this fashion, and all specifications will
be biased toward lists.

User Presentation - As well as being able to describe the function of the sys-
tem, the specification technique is sometimes required to describe the manner
in which information is presented to the user. This is both in terms of a user
dialogue, in which the communications between the user and the system are
described, and also in terms of the position of information on the user's
display, that is, in terms of what the user sees when employing the system.

4.2 Derivation

In addition to the importance of being able to represent different aspects of the
system being specified, the way in which the specification technique permits one
specification to be derived from another is also important. This category, deriva-
tion, includes three criteria we examine to classify and evaluate each technique's
capacity for deriving specifications from other specifications.

Transformation is the process whereby one specification is transformed into an-
other specification by means of manipulating the symbols of the notation
using the appropriate transformation rules.

Proof that one specification describes the same system as another specifica-
tion is often performed by applying the transformation rules of the technique
successively until the two specifications are textually identical.
Transformation, as we have defined it, adds no new information, but permits

the specifier to describe the system in a different manner, one which may

19

I!

lead to the design of a more efficient system. Generally, the term transfor-
mation encompasses the addition of information; however, we have found it
convenient to differentiate between change and addition, calling the latter
elaboration.

Elaboration is also known as reification and is the process of deriving one speci-
fication from another specification by describing more details of the system.
This process uses an abstract representation to construct a more concrete
representation of the system. Elaboration may occur in the following ways.

1. By describing details of the system that had been omitted for the pur-
pose of generating a clear, understandable description of the system.

2. By describing the abstract representations of data structures of the sys-
tem in more concrete terms. For example, describing a set (abstract
representation) in terms of an array (more concrete representation).

Proof that one specification is an elaboration of another is performed by
demonstrating that all behaviors (or states) that exist in the abstract spec-
ification also exist in the elaborated specification. However, the elaborated
specification may describe more behaviors (or states) than existed previously.

The reverse of elaboration is abstraction, a process in which details of a
system are successively removed in order to produce a less and less concrete
description of the system.

Composition is the term used for combining a number of specifications to form
the specification of a larger system. This is the inverse of decompos-ition,
which is the term used to describe splitting a specification of a system into
a number of specifications of cooperating subsystems.

Typically, composition of specifications is used as a derivation technique in
large systems that may be broken down into a number of smaller subsystems,
each of which may then, in turn, be further broken down forming a hierarchy
of cooperating specifications, the combination of which describes the entire
system.

These three forms of derivation are all closely connected; often both transformation
and elaboration Lake place simultaneously. It should be noted that a complete for-

mal derivation of a system is rarely performed, due to the cost of such a derivation.
Often, the literature will speak of -rigorous derivation, meaning that proof is not
performed, but that it could be performed if necessary.

20

4.3 Examination

Throughout the specification process, the'specifier may wish to examine the specifi-
cation to determine whether the system described has certain desirable properties.
There is a danger of confusing the things that we can examine in a specification
technique with the things that can be represented. The types of examination that
can be carried out may well be limited by the choice of specification technique.
For example, it might be possible to specify a system using a particular technique
but it is not possible to examine the system to demonstrate absence of deadlock.
In our evaluation, we use the specification of a system as a model of it, and thus
behaviors (or function) of the specified system are assumed to be properties of the
system. We have attempted to ensure that each of these examinations may be
tested, in some way, whether by proof or by observation.

Properties of a system that a specifier may wish to examine are: equivalence,
consistency, safety, liveness, determinacy, and correctness.

Equivalence is a concept that is closely related to that of the derivation. We
have discussed the three types of derivation that may be performed on a
specification. Eacb time such a derivation takes place, the developer is obli-
gated to ensure that the resulting specification equates, at some level, to the
original specification; that is, the developer must demonstrate that the two
specifications are equivalent.

Many different forms of equivalence have been identified, ranging from a very
5strict notion, such as one specification may be transformed into the other

using the transformation rules of the technique, to other, weaker notions. It
is obvious, for example, that if a r' tion by elaboration is performed and
many new events are introduced, 6. - original and derived specifications
cannot be identical in terms of, say, their event histories. However, a suitable
notion of equivalence may be that all of the behaviors (functions) exhibited
by the original specification are also exhibited by the derived specification.

We stress that for a formal derivation to be complete, the developer must
have shown, using an appropriate notion of equivalence, that the derived
specification is equivalent to the original.

I Consistency, as we use it, encompasses a number of conccpts. First, it is most
important that the specification is internally consistent. For example, a spec-
ification that states that a property is true but elsewhere in the specification
states that the property is false is inconsistent. Such a specification is im-
possible to meet.

ij 21

I

We also use this classification to consider the matter of under- and over-
specification. We need to examine the specification to determine whether
enough has been stated about the system being b-'lft and when more than
necessary has been stated. Under-specification mem. q that the specifier has
failed to describe the actions of the system in some way; this can be caused
either by missing some part of the requirements, or, perhaps, by failing to de-
scribe the system in enough detail so that undesired behaviors (or functions)
may be present in the specification.

The following are two examples of over-specification.

1. The specifier makes statements about the system that can be derived
from other statements in the specification. As long as the specification
is consistent, then this type of over-specification is not harmful, and may
even be helpful. The disadvantages are that there is more specification
to read (and check); the advantage is that the additional statements
might make the specification clearer to the reader.

2. Too much detail has been specified, forcing the specifier's view upon
the developer. For example, this sort of over-specification occurs when
the specification specifies additional properties not required by the sys-
tem. An example of this is modeling a set with an array; the array has
additional properties, such as ordering of elements, that are not prop-
erties of the system (in this case a set). An implementor looking at the
specification may not be able to determine if the properties stated are
actually required or if they are artifacts of the specification.

Safety and Liveness are, perhaps, the most commonly checked properties of a
specification.

Safety encompasses a set of properties indicating that "nothing bad will hap-
pen." The method of examination is to construct a statement in the notation
of the "bad thing," say two processes using a monitor at the same time, and
then to demonstrate by proof, or otherwise, that the system implies that the
statement cannot be achieved. Another technique for demonstrating safety
is to construct a statement describing the "good" states of the system, and
then to demonstrate that all of the operations of the system preserve the
statement.

Liveness encompasses a set of properties indicating that "something good will
happen." The specified system is examined to demonstrate that it will reach a
given state (or set of states). In a system intended to execute forever, liveness
examination requires that the system cannot get "stuck" in a particular state

22

I • • • -------.-

I
i

for the rest of its execution. Further, as is the case for fairness, any path of
the system that is enabled an infinite number of times will be taken an infinite
number of times.

Determinacy is a property related to non-determinism, but it should not be con-
fused with it. Determinacy is the property that no matter how the execution
is performed, the same result is produced. For example, we would like a
sorting algorithm to be determinate; that is, every sort of the data yields
the same results. Non-determinism means that we cannot predict the next
action that the system will perform - whether it will execute the next step
in one process or whether some other process will preempt the exiting one
and start executing.

There are cases where we would like our systems to be non-determinate.
For example, we would like a random number generator to generate random
numbers, that is, be non-determinate, so no matter what the input to the
generator, random values would be produced.

Correctness of a specification is something that can only be examined with re-
spect to some other object. As for derivation, correctness is the process of
identifying some notion of equivalence between a specification and some other
object which is intended as a restatement of the specification, whether that
specification be a requirements document and the restatement of a formal
specification or whether the specification is formal and the restatement is in
some programming language.

There are two important forms of correctness.

1. Correctness with respect to the requirements document. The process of
examining a specification for this form of correctness is often referred
to as validation. In a large project, the first document describing the
system will be a customer requirements document; from this the system
specification is constructed. The correctness examination that must be
performed is to ensure that the specification restates the requirements
document. This examination is generally performed by constructing
test scenarios and then demonstrating that the specification behaves as
expected in those scenarios. This demonstration may be by animation
if possible, or by mathematical derivation. It should be noted that the
entire process is an informal process, since the purpose of validation is to
ensure that the specification conforms to the intent of the requirements
which are described informally.

23

I

2. Correctness of the implementation. The process of examining a specifi-
cation for this form of correctness is known as verification, and the ex-
amination may be performed formally, unlike validation, which depends
on the perceptions of the correctness examiner. Once the specification
has been accepted as describing the desired system, it is important to
ensure that the subsequent development generates designs and imple-
mentations that satisfy the specification. Thus, we wish to examine the
design with respect to the specification to ensure that the design restates
the specification. We may even wish to examine the implementation to
ensure that it satisfies the specification.

4.4 Other Criteria

As stated at the beginning of this section, there is a further category that comprises
subjective rather than objective properties of a system. We discuss the properties
that we consider of interest here; however, we do not specifically address these
properties for each specification technique, since the properties cannot be suitabv
quantified. It should be noted that although we do not consider these properties
further, we do not dismiss them as unimportant. We also include impoi tant as-
pects of the formal techniques that may not be of immediate importance in the
specification of a system, but are important when a fully formal development is
being performed.

It seems that for the following categories, there are many parallels between spec-
ifications and programs. Some of the properties discussed are more properties of
the specification than of the specification technique, though we consider that they
may be affected by the technique - hence their inclusion here. Since for the fol-
lowing criteria we consider specifications to be similar to programs, it is possible
that metrics applied to programs may also be applicable to specifications.

Understandability is perhaps the most important subjective aspect of a speci-
fication. It is affected by the specification technique used.

While most specification techniques can be used to represent (to varying
degrees) most aspects of a system, if the technique cannot directly repre-
sent some aspect, then the specifier will have to perform this representation
explicitly, usually by modeling the aspect in terms of the aspects that the
technique can represent. This leads to more complex and less easily under-
stood specifications.

24

3-

The notation used by the specification technique also affects the understand-
ability of the specification. However, it should be noted that different readers
look for different types of notation. For example, a reader with a mathemat-
ical background might look for a terse mathematics-like notation, whereas
someone from another background might consider a pictorial representation
to be more understandable.

Complexity is an important aspect of understandability. It is affected by the
specification technique, though it is not obvious how specification techniques
may be altered to reduce the complexity of the specifications. It is an issue
related to the expressive capabilities of the technique.

A complicated specification is less likely to be understood by other readers
than is a simple specification of the same system. This is not to say that
a specification of a complicated object is, of necessity, a complicated spec-
ification. However, a specification that misses the appropriate abstractions
is more likely to be complicated than a specification that uses such abstrac-
tions. Similarly, a specification attempting to represent some feature of the
system in a notation not designed for such a representation is more likely to
be complex than if the system were specified in an appropriate notation. For
example, specifying a concurrent system in a sequentially based specification
technique is more likely to be complicated than an equivalent specification
written in a concurrency based specification technique..

Unfortunately, reliable measures of complexity are still unknown, and to date
no research has been performed on the complexity of specifications.

Maintainability is obviously dependent upon understandability. If a specifier
finds it hard to understand the specification, then the specifier is going to find
it hard to maintain that specification. This point aside, there are aspects of
the specification technique that affect the maintainability of the specification.

1. A specification technique with no notion of modularity will obviously
be harder to maintain than one with such a notion. This follows from
the fact that large systems tend to have large specifications, and if the
maintainer cannot examine a small piece of the specification in isolation,
then the effort required to maintain that specification will be greater
since the entire specification has to be examined to discover the effects

m of a change, rather than some small piece of the specification.

2. An important aspect of maintainability is the process of altering the
mm specification. Of particular interest is the effect of making a change in

1 25

I

the specification in terms of the effort required to ensure that the result-
ing specification has the same properties as the unchanged specification.

A formal software development process requires that all the examina-
tions previously performed be redone in order to demonstrate that the
specification still supports all properties of interest. Further, the design
that followed from the specification component should be redesigned
with respect to the changes in the specification.

Thus, if the specification technique makes the process of examination
and design difficult, through use of obscure techniques or hard-to-use
examinations, the specification technique will lead to less maintainable
specifications than a technique with easy-to-use examinations and de-
sign processes.

Usability was, in a sense, touched upon under the heading of maintainability,
insofar as the processes required to create, examine, and alter a specification
affect the usability of the technique.

A major factor affecting the usability of a technique is the amount of com-
puter support for the technique. There are three aspects to such support:
the ease of automation, the availability of tool support, and the ease of use
of the tool. A technique for which no computer assistance is possible will be
less usable than a technique for which there are many tools supporting the,
notation, derivation, and examinations. Generally, if all aspects of a tech-
nique are supported by tools, the technique will be easier to use than one
where only some of the technique is supported. Finally, the ease of tool use
is a factor; after all, it is possible to create computer tools that are harder to
use than manual methods.

The following are further criteria which we have not examined within this survey,
but which are important, though not directly in the derivation of a specification.
The manner in which a formal technique measures up to these criteria may well
affect the ease with which the examinations may be performed. A fuller survey
would examine these criteria, as well as those listed in the first three sections of
this chapter.
Whether or not the technique admits subsets of use. There are a number of

important subsets that may be required, for example, a deterministic subset. It is

easier to reason about a deterministic system than a non-deterministic system, and
if a system may be described using only a deterministic subset of the specification
technique, the examinations should be simpler than a technique that does not
admit a deterministic subset. Another important subset is the specification of

26

time; again, reasoning about a system that has no time constraints is simpler than
reasoning about a system that includes time constraints. If the technique does

I not have a non-timed subset, then the examinations will have to take time into
account, even in systems with no time constraints.

Whether or not the technique is more than just a notation. Not all for-
mal techniques have a method for the creation and manipulation of specifications.
Specifically, it is desirable for a technique to encompass a method for the derivation
of a specification, for performing the examinations and, important to a subsequent
formal development, a method of proceeding towards an implementation from the
specification. This latter will involve the notion of the steps to take when perform-
ing either a transformation or an elaboration, and the obligations placed upon the
specifier when such steps are taken. Without a method, there are the dangers of
missing key parts of the system when deriving the specification and of producing
an erroneous implementation.

Whether or not the technique would discuss the reasoning ability (if
any) used by the technique. If, for example, a technique had no calculus,
then none of the examinations described can be carried out in a formal manner,
and the technique does not provide anything more than a recasting of the initial
requirements. The ability to reason about the specification, in addition to enabling
the examinations, also permits the specifier to predict the behavior of the system
in a given set of circumstances; this enables the specifier to detect undesirable

-behaviors based on the specification rather than on the implementation.

I
I

1 2

S I 2

28 -I

I

Chapter 5

Applcation of the Classification
Scheme

In this chapter, we discuss two issues relating to the classification of the specifica-
tion techniques. First, we discuss the approach we took, describing our intentions
and our expectations of the value of this approach, as well as problems that may
arise from the approach. Second, we present the text of the sample problem, which
we used as the starting point for our formalpecifications.

j 5.1 Approach to Creating Comparable Specifi-
cations

I We wanted each of the formal specifications to describe the same system, mini-

mizing (preferably eliminating) any differences between descriptions. In order to
I achieve this, the first specification written was used as the arbiter when ambiguities

in the requirements had to be resolved for subsequent specifications. Specifically,
where there was ambiguity in the problem requirements, the first specification be-
came the arbiter. The first specification technique used was CSP. We consider
that our approach, however, would have been as successful no matter which formal

£specification technique was the first to be chosen.

We met to discuss all of the specifications and agree that the system described
in the specifications met the requirements as stated in the sample problem. More
importantly, we discussed each of the specifications in detail in order to ensure
that the systems being described were, in fact, identical. On the basis of these

1 29
I

discussions, the specifications were modified. This process was repeated until we
became satisfied with each of the formal specifications. It should be noted that,
due to lack of resources, we performed this validation by inspection and discussion
rather than by formal arguments.

Finally, we discussed the classifications and evaluations of the formal specification
techniques. Using the experience we gained from performing the example specifi-
cation, in addition to available literature, we evaluated the techniques.

5.1.1 Advantages of the Cooperative Approach

One of our early decisions was that each of the specifications should be as close
to the others as possible. We consider that this makes each specification easier to
compare in terms of the classification, especially where there is some element of
subjective judgement.

Because we generated the problem before starting to write any specification, we
avoided omitting pieces of the system simply because they were awkward to specify.,
Had we omitted parts of the system for such reasons we believe that our evaluations
of the specification techniques would have been seriously weakened, as we would
be presenting an optimistic ratter than an accurate evaluation of the techniques.

A further advantage of the approach was the elimination of personalities. We
removed the possibility of the different specifiers interpreting the original problem
statements in ways that were most advantageous to the notations they were using
at the time. Also, the discussions and agreement on the classifications reduced the
level of personal bias introduced into the classifications.

5.1.2 Disadvantages of the Cooperative Approach

Using the CSP specification as a basis for other specifications biases subsequently
created formal specifications. Specifically, they are limited to only the parts of
the system that were specified in CSP (which does not handle some components
well). This bias did occur in our work, in that the VDM specification could have
bcen used to describe more of the details of the values computed by the navigation
unit. We somewhat reduced the effects of this bias through changes late in the
development of the specifications. Specifically, sections of the CSP specification
were altered after they had originally been written in order to suit the approaches
taken in the other specifications.

30

The second form of bias introduced is that of seeing a problem solution and being
unable to think of the problem in a way other than that of the solution already pre-
sented. An attempt to reduce this bias has been made by use of the best approach
possible throughout the specifications, using the CSP solution as a description of
the problem rather than as a guide to the solution.

5.2 Problem Statement

The following sample problem is taken from the text of an example system provided
to the SEI [12] - a specification of a generalized avionics system. Rather than
specify the entire avionics system, we have chosen the parts of it. The text that
follows (Subsections 5.2.1 and 5.2.2) is a direct copy of the requirements
document, we have not altered the text in any way. We have, however,
omitted some devices that were part of the original requirements document in order
to make the problem a manageable size. We have not simplified in any way the
components that we chose to maintain as part of our problem.

Figure 5.1 is an informal, pictorial representation of the major components and
information flows of the system that we have produced as an aid to understanding
the avionics system. The arrows in the diagram represent information flow and
the shaded box represents the function of the mission control computer., As can be
seen, the mission control computer can, at times, perform functions of the physical
devices.

5.2.1 Navigation

The mission control computer (MCC) shall utilize the Air Data Computer (ADC)
and the Inertial Navigation System (INS) equipment to determine the aircraft's
position at periodic intervals throughout the flight. The required precision of this
position will be 100 feet at all times. When the INS is operating, the accuracy
shall be at least 100 feet, which shall be further maintained in the event of the

Sloss of the INS, assuming that the computed wind velocity does not change when
che INS is not operating. The MCC shall compute the aircraft position based

j on air mass dead reckoning when the INS is inoperative, using the last computed
wind velocity. In addition to position, the navigation function shall compute the
following parameters for use by any other functions requiring them.

31

I

ADC Air Data Computer
AUTO Autopilot
HUD Heads Up Display
INS Inertial Navigation System

MPD MCC Mission Control Computer
MPD Multi-Purpose Display
NAV Navigation Function
RADAR Radar Device
WPM WayPoint Manager

Figure 5.1: Avionics System to Be Specified

* Ground track angle (i.e., True course)

9 Ground speed

* True heading

* True airspeed

* Altitude

* Magnetic variation

Lat/Long

* Aircraft-target geometry j
* Wind course and speed. I

To achieve this accuracy, the position must be computed at least every 59 millisec-
onds, based on an upper aircraft velocity bound of 1000 kt.

Associated with the navigation requirement is the management of waypoints, which I
are pre-planned ground locations defining the route for the flight for the current

32

mission. Up to 20 waypoints, assumed to have been inserted into the MCC during
mission initialization, are managed by the MCC, which provides steering commands
to the pilot and autopilot sufficient to permit the aircraft to cross the waypoint
within a radius of 200 feet. Certain of the waypoints may have been designated
as requiring avoidance; the pilot and autopilot steering commands, while flying
between the other waypoints, shall cause the pilot to avoid these by at least :30
miles. The pilot steering commands must be updated on the Pilot's Horizontal
Situation Indicator (HSI) and to the autopilot at least every lOOms.

In addition, the current status of the navigation equipment, including both the
ADC and the INS, shall be continuously monitored, and shall be updated on the
pilot's Multi-Purpose Display (MPD) at a lhz. rate, within .25

sec. When there is a change in status, an indicator on the Heads Up Display
(HUD) shall be caused to blink until the next switch is depressed by the pilot,
with a minimum of 2 seconds.

5.2.2 Radar Control

The Pilot shall use the keyset to start and stop the radar display on the MPD
and HUD. Radar target information shall be updated whenever it is reported by
the radar, and shall be maintained by the MCC when not reported by the radar,
assuming that its last computed course and speed has not changed. Once a velocity
has been established, the position of each target shall be updated at least every
200 ms. by the MCC.

I

I
!
1

• 33
I

r -

-I
I

34 ?1
I

Chapter 6

Communicating Sequential
Processes

This chapter of the survey discusses a specification of the previously described
avionics system using Communicating Sequential Processes (CSP), as defined by
Hoare in his book of that title [7].

The system components were specified separately both in terms of constraints on
the observable events (traces) in the component's behavior and in terms of a CSP
model that exhibits the desired behavior. For a number of the components, we
have modeled more than one level of the component, elaborating on the initial
specification to derive a more detailed specification of the system.

CSP operators

We use bold font in the following descriptions when using an English word that
has a specific meaning in CSP. This meaning may often be the same as that of
English.

The usual logical operators and (A), or (V), equivalence (=), implication (=)
and universal quantification (V) are used throughout the specification.

Set operations used in the specification are membership (E) and distributed
union (U).

35

I

The following are the CSP trace operations used in the specification.

< ... > - The trace comprising the named events.

s't - The concatenation of two traces, that is, the events of s followed by the
events of t.

,n - The trace s repeated n times. This repetition is in the form of s, followed
by s, and so on.

s T A - The trace s restricted to the elements of the set A.

s _< t - The trace s is a prefix of the trace t.

#s - The length of the trace s.

s[i] - The ith element of the trace s.

The following are the CSP process operations used in this specification.

a -- P - The event a then process P.

a -- P I b - Q - Means (a then P) choice (b then Q) as long as a 34 b.

yX : A.F(X) - The process X which has alphabet A where X = F(X).

P 11 Q - Process P in parallel with process Q.

1 " P - Relabels the events of process P by prefixing each event name with I
and a point (.).

P l Q - Process P non-deterministic or process Q.

P \ C - Process P without the events of C. This is the method of hiding
events.

P; Q - Process Q follows process P's successful completion.

6.1 Specification

We have not attempted to kecp a uniform style of use of CSP throughout our
specification of the problem example, but have instead used this as an opportunity

to experiment with specification style. Obviously, in a real development project,
there would be some pressure to maintain a consistency of style.

:36

TIMER

HTIMER

STIMER

TIMEOUT l.p

Figure 6.1: Timer Process

6.1.1 Handling Time

One of the important, recurring themes of this specification is that of a timer. The
timer acts as a "guard" around some event. The intent is that either the event
will occur within a given period of time, or a special timer expiry event will occur
within that same period of time. For example, we might send a message to some
process and set a timer such that either the process responds or the timer expires.

We will define a generalized TIMER process that is initialized and then is either
explicitly terminated or produces some timeout event. Figure 6.1 is a picture of
our timer process.

Therefore, the alphabet of TIMER is:

stimer - The event that explicitly starts the timer.

htimer - The event that explicitly stops the timer.

imeout - The event indicating that the timer is expiring.

Therefore, with our definition of the timer and the alphabet, we can constrain the
possible sequences of events in which the timer engages by the following. If S is
any trace of TIMER, then

Vi.i > 0 (s[ij = htimer V s[i] = timeout) = s[i - 1] = stimer

This specification states that if either an. htimer or timeout event occurs, it was
preceded by a stimer event, and that every other event of the timer will be the
stimer event.

37

IJ
IUl m m m m um i

The following specification of a generalized timer can be shown to satisfy the above
constraint.

TIMER = stimer --+ (htimer --+ TTMER I timeout -- TIMER)

We will use the TIMER process throughout the specification and will distinguish
between different timers by labeling the process.
The timer still lacks a notion of the length of time that should elapse between the

stimer and timeout events (assuming no intervening htimer event). As a notational
convenience, we will use the process label to indicate the length of time to wait
before the timer process should generate an interrupt.

6.1.2 The ADC and the INS

On examination, both the air data computer (ADC) and the inertial navigation
system (INS) have essentially the same interface to the outside world. They both
provide data to the navigation function (NAV) and, should they fail, status in-
formation is displayed to the pilot. Because of this similarity, we will specify a
generalized process that has the necessary interface and then label the process
appropriately.

Thus, we will specify a physical device (PD) that responds' to requests for data
with appropriate data. Note that we will not be discussing the actual content of
the data or even its structure, we are simply interested in its existence. Should PD
fail, a software function in the mission control computer (MCC) will be invoked to
estimate data values based upon certain assumptions. We have also assumed that
PD requires an explicit initialization event, without which nothing will happen.
This corresponds to, say, the pilot's information check where if on start-up a device
is shown to have failed, the mission would be aborted.

Further, we only consider a single mission (which with the additional assump-
tion that we do not care about the termination of the system, corresponds to the
system's being switched off after landing). This assumption simply means that
we treat each mission as identical, in terms of the actions of the software sys-
tem, though of course many other factors will cause variances in the mission (for !
example, different flight plans or mission goals).

A Perfect Device

The perfect interface between PD and NAV would be one where every request I
from NAV is responded to with appropriate data by PD. Thus, we will specify this

38

I

interface and assume that any subsequent specification will be either a refinement
or an elaboration of this specification.

i We now have the following alphabet for PD:

start - The explicit initialization event.

req - The request for data from some other process.

data - The data produced by PD.

PD, having been initialized, responds to every request for data with some data
values. Once a request has been accepted, it will not accept any more requests
until the data has been produced; similarly, it will not produce any data unless
requested. The request/data cycle repeats indefinitely (in fact, until the system
is terminated). Further, we would like to specify that PD always responds within
a given time; to ensure this, we start a timer after the request has been accepted
and require that the data be produced before the timer expires. We will, in fact,
explicitly halt the timer.

I Given the above assumptions, we can state that if s is any trace of PD, then

s <<start> ̂ <req, max.stimer, data, max.htimer>*

j This states that all behaviors of PD begin with a start event and then continue
with a repeating sequence of req, max.stimer, data, and ma.htimer events. If the
timer should expire, the system will be in error and will halt.
As well as the specification of the traces of events, we can write a process that
engages in the same sequence of events.

TPD = start -+ PDOP

PDOP = req - max.stimer -- (data -+ max.htimer -- PDOP

I max.timeout --- STOP)

This states that TPD engages in a start event and then behaves like the process
PDOP. And that PDOP engages in a req event, starts a timer, and then, if data is
received (the data event) the timer is halted. Otherwise, the timer will expire and

* TPD is itself haltcd since it has failed to meet its specification.

Finally, we may construct the perfect device by using

PD = (TPD 11 max: TIMER) \ {max.stimer, max.htimer, max.timeout}

| .39
!
In u Ill ull ll ln nl nl a a I ml III II 1 111 11I I • I IIlIIIII

A Physical Device

The physical device is similar to the ideal device we specified previously, in that
it accepts requests for data, and having done so returns the measured data values.
However, we will consider the possibility that the device may fail, in which case a
request may be accepted, but no data will be returned. A possibility we will not
consider is that the device generates data without a prior request.

We have the following alphabet for the actual physical device, APD:

preq - The request for data.

pdata - The physical device returning data values.

Given the above alphabet and the description of the physical device, we may write a
constraint on the possible behaviors of APD describing the desired set of behaviors.
If s is any trace of APD, then

Vi.i > 0 A s[i] = pdata =: s[i - 1] = preq

This specification states that every occurrence of the pdata event is preceded by at
least one preq event.

This leads us to the following process specification, which satisfies the above con-
straint.

A PD = preq -- APD n preq -+ pdata -+ APD

The above process 113 simulating the situation where a device accepts a request for
data (preq) and then either does nothing or returns the appropriate data (pdata).
Having made this choice, the process repeats itself. Non-determinism is used to
indicate that the behavior is affected by some external event (in this case, the
device breaking).

A Reliable Device

The specification of PD is one in which every component works correctly all the
time; that is, the physical device always responds to every request. We must also
consider the more realistic situation where the physical device m,,y accept requests
and not produce any data, or where it will not even accept requests. In these latter I
cases, some software function will be invoked which will generate appropriate data
for subsequent transmission to the requester. Figure 6.2 illustrates the completed
reliable device, including the components of the physical device and the timer.

40 1
!

i RPD

TIMER

I DATAA
I }~P ip :I TM ...

Figure 6.2: Reliable Device

The alphabet used for this process will be that of the ideal devfce, the timer labeled
with a suitable timeout value, and the real physical device. We will also add the
following additional value:

compute - The event of computing data when the physical device has failed.
This event will also be the signal to the pilot's display indicating that the

iiii ,,

device failed.

We will also extend the meaning of the pdata event to indicate to the pilot's display
that the device has behaved normally. We can now express the constraints on thebehavior of the reliable device, RD.

I Before the timer is started, a request must have been made of the physical device
for data (preq), and this request must have been preceded by an external request

I for data, where mdev is the label that will be applied to the TIMER process.
Vi.i > 0 A s[i] = mdev.stimer =o- s[i - i] = preq A .s[i - 21 =req

If the software has to compute some data values, then the physical device has failed
to respond with some data and the timer has expired.

3 Vi.i > 0 A s[i] = compute =; s[i - 11 = mdev.timeout

* 41

I

If the physical device returns data before the timer has expired, then the timer
should be terminated.

Vi.i > 0 A s[i] = mdev.htimer = .s[i - 1] = pdata

After the timer has been started, the reliable physical device will do nothing until
either the physical device returns some data, or the timer expires.

Vi.i > 0 A (s[i] = pdata V s[i] = mdev.timeout) #- a[i - 1] = mdev.stimer

If the reliable device produces data, then either the data was computed (since
the physical device failed to respond) or the data returned is that of the physical
device.

Vi.i > 0 A s[i] = data = s[i - 1] = mdev.htimer V s[i - 1] = compute

Given these constraints, which describe a reliable physical device, we can now
construct a process that satisfies the requirements: that is, a combination of both
software and hardware functions that, when combined, produce a result on demand,
and such that if the hardware device should fail, will compute appropriate values.

RPD = req --+ preq --* mdev.stimer --+
(pdata -+ mdev.htimer --+ data -4 RPD

I mdev.timeout -- compute -+ data -- RPD)

The above process, RPD, describes the behavior of the reliable physical device,
which accepts a request for data that is passed on to the physical device. A timer
is started so that if the physical device fails to respond, due either to its being
slow or having failed, the entire system will not wait on the failed device. If the
physical device responds in time, then the timer is halted and the data is returned
to the requester. Otherwise, the timer will expire, at which point the software will
compute values, based on characteristics of the device and previous values, and
then this computed data will be returned to the requester.

We described a process, PDOP, in our specification of the perfect system that may
be constructed from the processes we have just specified. A truly perfect device
would not require any timing events, so our construction will hide such events.

PDOP \ {max.stimer, max.htimer, max.timeout}

= (RPD 11 APD 11 mdev: TIMER) \

{ mdev.stimer, mdev.^timer, mdev.timeout, compute, preq, pdata}

42

The above equation states that PDOP with no timer events behaves identically
to the parallel combination of the RPD, APD, and TIMER (suitably relabeled)
processes when the named list of events is hidden. In fact, the only events visible
in each of the above processes are req and data.

Completed Devices

The final stage of the specification of the ADC and the INS is to use a process
labeling of the generalized physical device specification to specify the different
devices.

11 Therefore,

V ADC = (start -- adc: RPD 1I mdev: TIMER)

\ {mdev.stimer, mdev.htimer, mdev.timeout}

INS = (start --+ ins : RPD I mdev , TIMER)

\ {mdev. stimer, mdev. htimer, mdev.timeout}

From the above, it can be seen that both INS and ADC are specifications of reliable
devices, which engage in the same start event, and then perform as the reliable
physical devices previously specified.

6.1.3 The Radar

We will consider the radar to be a simple device that provides data on request. The
output of the radar will be data indicating the targets visible at the time. Unlike
the devices ADC and INS, the radar will not be specified as a perfect device, andIthen mimicked by software. Rather, for the radar we will define a device that may
respond to a request with data, but if it does not respond, it will not accept any
further requests for data. We will use the description of the radar display to specify
actions in the event of a failure.

Let the alphabet of the radar be:

rreq - A request for radar data.

rdata - The event of returning data on the targets currently visible to the radar.

With these events, we may state that if s is any trace of the radar (RAD) then

s <<rreq, rdata>*

43

U

f

Simply stated: the radar will engage in an alternating sequence of requests and
responses, starting with a request for data.

The above constraint may be simply satisfied by the following process.

RAD = rreq -+ rdata -- RAD

6.1.4 The MPD and HUD

In the specification of the ADC and the INS, we made statements concerning
the fact that a change of status in either device would be displayed to the pilot.
This section describes the heads up display (HUD) -nd the multi-purpose display
(MPD) with regard to the device status information.

As we did for the ADC and INS, we will specify a generalized process that may be
relabeled as appropriate.

Recall also that the pilot's displays also engage in the compute and pdata events,
in that these are used as the continuous monitoring of the devices as described in
the requirements.

Generic MPD Device Status Display

First, we will consider the MPD, which simply displays the status of the device.

Let the alphabet for MPD be:

compute - The previously described event of the MCC having to perform a
computation due to the device's not responding to a request for data.

pdata - The previously described device event producing some data due to a
request.

dbroken - An event associated with changing the MPD to indicate that the
device is broken.

dwork - An event associated with changing the MPD to indicate that the device
is working.

We cannot describe the actual display with CSP, so we will assume that the dbroken
and dwork events display appropriate messages at appropriate locations on the
MPD. We will also assume that these messages are persistent and do not need a
command to indicate that they should be redisplayed.

44

From these assumptions, we can state that the change of MPD to indicate that
the device is broken must be preceded by the event indicating that the device is
ibroken.

Vi.i > 0 A s[i = dbroken #, s[i - 1] = compute

Similarly, every time the MPD is changed to indicate that the device is working it
must have been preceded by some data from the device.

Vi.i > 0 A s[i] = dwork '. s[i - 1] = pdata

The above constraints do not forbid the redisplay of, say, a "device broken" icon
every time the compute event occurs. We could do this by requiring that if the
ith event were dbroken then the (i - 2)th event be a pdata event. However, we do
not consider it an error to attempt to redisplay the message so long as the correct
message is being displayed. So we will not add further constraints.

A process that satisfies our constraints is

MPD = dwork -MPDWD
MPDWD = pdata MPDWD I compute - dbroken -- MPDBD
MPDBD = compute -- MPDBD I pdata - dwork -- MPDWD

This states the assumption that the device starts in a correctly functioning state
and that such a message is displayed on the MPD. Then as long as the device
behaves correctly, the display does not change. If the device fails, as signaled by
the MCC having to compute some data, the message is changed to indicate the
device failure, and the system remains in this state for as long as the MCC has to
continue to compute data. If the device should start operating again, the display
is altered and our system reverts to its previous state.

MPD for INS and ADC

We may now specify the ADC and INS status displays on the MPD by:

JMPDADC = adc: MPD
MPDINS = ins : MPD

This labels the generalized MPD system appropriately. This labeling also matches
that used by ADC and INS, thus ensuring that the .compute and pdata communi-

cations occur appropriately.

45

I

Working SIC

COMPUTE

COMPUTE

Flashing learabie Clearable IMEOUT Flashingnot I not Wc oe rkigb orin
Working Working

WororkingSWITCH PATA

Figure 6.3: Behavior of the HUD

Generic HUD Device Status Display

The heads up display (HUD) should display the same sort of status information as
the MPD; however, to ensure that the pilot sees the information, it should to flash
for a period of time. Figure 6.3 illustrates a state machine-like representation of
the behavior of the HUD when switched on. To avoid confusion, only the major
transitions are displayed.

As with the MPD, the devices will signal their state by means of the compute and
pdata events. The HUD will also use a timer to ensure that the flashing message
stays on the screen for at least two seconds. In addition to these events, are the
following events:

switch - A switch that the pilot may depress; it signals the pilot's intent to clear
the HUD.

hclear - The action of clearing the HUD status information.

hbroken - The writing of the message indicating that the device is broken.

hwork - The writing of the message indicating that the device is working.

46

=

The following are constraints on the manner in which the HUD can behave.

If the HUD displays the message indicating that the device is working, then it must
have previously received an indication that the device is working.

Vi.i > 0 A s[i] = hwork 0 s[i - 1] = pdata

Similarly, if the HUD displays a message indicating that the device has failed, then
it must have just received an indication that the device is broken.

Vi.i > 0 A s(i] = hbroken #- sji - 1] = compute

The HUD display can only be cleared after a switch has been depressed.

Vi.i > 0 A s[i] = hclear =#, s[i - 1] switch

If the HUD displays a message, then the timer should be started to enforce the
requirement of messages flashing for at least 2 seconds.

Vi.i > 0 A s[i] = hudd.stimer #- (s[i - 1] = hbroken V s[i - 1] = hwork)

The timer in use by the HUD is never stopped explicitly, but always generates a
timeout.

traces(HUD) T {hudd.stimer, hudd.htimer, hudd.timeout}

- U hudd.stimer, hudd.timeout*

We can describe a collection of pr'-cesses that describe the desired behavior of the
HUD. As for the MPD, we cannot describe the form of the data on the display,
merely the event of writing to the screen.

HUDWO = switch --+ HUDWO I pdata -+ HUDWO

I compute - hbroken -+ hudd.stimer -- HUDBF
HUDBF = compute - HUDBF I pdata -* HUDBF

I I switch - HUDBF I hudd.timeout -- HUDBC
HUDBC = compute - HUDBC I switch --+ hclear --+ HUDBR

I pdata - hwork -* hudd.stimer -- HUDWFI HUDBR = switch - HUDBR I compute --- HUDBR

I pdata -- hwork -+ hbdd.stirer - HUDWF

HUDWF = compute -- HUDWF I pdata -+ HUDWF
I switch -- HUDWF hudd.timeout - HUDWC

I HUDWC = pdata -- HUDWC I switch -+ hclear -. HUDWO

[compute -+ hbroken -- hudd.stimer -- HUDBF

* 47

U

The above sequence of processes describes a process which, .on a change of state
in the physical device, starts to flash an appropriate message on the HUD. The
message is that the device is now working (if previously it was broken) or that it is
now broken. This message will continue to flash until (1) a timer has expired and
(2) the pilot presses some switch. There is one additional case where the message
can change: when the HUD is displaying some flashing message and the timer
has expired, but before the pilot has pressed an appropriate switch to clear the
message, the device changes state. If this occurs, then the message will be changed
from broken to working (or vice versa) and a new timer will be started. This sort
of situation can occur if the device has a failure and immediately restarts itself, in
which case the message will flash broken for two seconds, and then flash working
for two seconds before the pilot can clear the HUD.

HUD for ADC and INS

As for the MPD, we may now describe the different messages displayed on the
HUD by a relabeling of the processes above.

HUDADC = adc: HUDWO jj hudd: TIMER \ {timeout}

HUDINS = ins : HUDWO hudd : TIMER \ {timeout}

These two processes describe the manner in which the messages about the status
of the INS and ADC are displayed on the HUD.

A Special Clock Process

Let us assume that the computation of radar data (in the event that the radar is
not working) takes less than c ms. We will introduce a new timing process that
emits a pulse(pl) 200 - c ms. after it has been initiated (event pn) and a second
pulse(p2) a further c ms. later, which is, of course, 200 ms. after being initiated.
If s is any trace of the double pulse process, DTP, then

s <<pn,pl,p2>"

A--A process that saLisfies the above constraints may be constructed using two timers,
as in the following description.

DT = pn --- mnc.stimer --+ mnc.timeout - pl -4 mc.stimer

-4 mc.timeout - p2 -+ DT

48

Then, to get the desired behavior, we use

DTP (DT II mnc: TIMER mc: TIMER)

\ {mnc.stimer, mnc.timeout, mc.stimer, mc.timeout}

The Radar Display

The requirements presented in Chapter 4 state that the radar information will be
displayed on both the MPD and the HUD and make no distinction between these

I two devices. We will therefore describe a general display process, and intend that
I both the HUD and the MPD may be described by a relabeling of this process.

The difference between the two will be in the manner in which the information is
displayed, which cannot be described in a convenient manner using CSP.

The pilot controls the radar display using some keyswitch, and we will assume that
when the radar display is switched off that the display will be cleared. To ensure
that everything happens in a timely manner, we will use the clock process just
described.

In addition to the alphabets of the radar device previously described (rreq and
rdata) and the special clock(pl, p2, and pn), these are the following events in the
alphabet of the display:

ron - The pilot turning on the radar display.

roff - The pilot turning off the radar display.

rdisp - The act of displaying the current data on the device.

I rclear - The act of clearing the displayed radar data when the display is turned
off by the pilot.

I rcomp - The computation of current data if the radar did not respond in time.

IThe pulse device is started after a request has been made for data from the radar.

Vi.i > 0 A s[i] = pn . s[i - 1] = rreq

I In order to ensure that data is displayed every 200 ms., the display will always wait

for the second pulse before displaying the data (the double timer will be initiated3 at the start of the cycle). Note that we are assuming that it takes no time to
display the data; if the time for display is significant, then the second timer pulse

U 49
I

p2 should occur sooner than 200 ms. so that the interval p2 plus the length of time
to display data is a totai of 200 ms. This change would be made by altering the
intervals of the clock process DTP.

Vi.i > 0 A s[i] = rdisp = -s[i - 1] = p2

If the system has to compute the data, then the radar device has failed to produce
data before the first pulse occurred.

Vi.i > 0 A s[i] = rcomp 0 s[i - 1] = pi

Alternatively, the system may have received the second pulse directly after the first
pulse, in which case data must have been returned from the radar device before
the first pulse.

Vi.i > 1 A s[i] = p2 A s[i - 1] = pl = s[i - 2] = rdata

The following process describes the state when the system is switched off; the
process will ignore every signal except the on signal, at which point it will behave
as RADON.

RADOFF = rdata - RADOFF I pl - RADOFF I p2 --+ RADOFF

I ron -- RADON I roff -- RADOFF

Finally, we may describe a process RADON which satisfies the above constraints.

RADON = roff - rclear -- RADOFF

rreq -pn -+

(rdata -+ pl --* p2 -+ rdisp -+ RADON

Spl -+ rcomp -+ p2 -+ rdisp -+ RADON)

This leads to a final specification, assuming the radar is initially off, for the radar
display device of

RADISP = (RAD 11 DTP 11 RADOFF)
\ {pl,p2,pn, rreq, rdata, rcomp}

.50

Ir

Final Description of HUD and MPD

IWe have now specified all of the components of the HUD and the MPD, in that
we have descriptions of how the INS and ADC and radar interact with the display

-devices. Putting these specifications together, we arrive at the following specifica-
tions of HUD and MPD.

HUDISP = HUDADC 11 HUDINS I hud: RADISP
MPDISP = MPDADC 11 MPDINS Ij mpd: RADISP

6.1.5 The Waypoint Manager

The waypoint manager maintains a number of waypoints whih are used to guide
the aircraft through a flight. Each waypoint has an associated indication as to
whether the aircraft must arrive within 200 feet of the point or must avoid it by
at least 30 miles. The initialization of the waypoint manager is of no concern to
this specification, and we will therefore assume that it has been achieved at some
stage during the initialization of the aircraft.

We will assume that each time the aircraft has successfully navigated towards a
waypoint, it will ask for the next waypoint. As stated in the requirements (Chapter
4), there are a maximum of 20 waypoints that will be entered into the system. We
will assume that within these 20 waypoints there is one that terminates the mission,
which is to say that it is an appropriate runway on which the aircraft may land.
Using this latter assumption, we will specify the waypoint manager with limited
regard to the maximum number of waypoints.

We will use the following alphabet for the waypoint manager, WPM.

start - The event of initializing the waypoint manager.

]wreq - A request for the next waypoint in the sequence.

wdata - The production of the pair of data values, the waypoint, and whether
Sor not it must be avoided.

Given these assumptions and the listed events, we can specify the -aypoit man-
I ager. Let us assume that s is any trace of WPM; then we have

s <<start> <wreq, wdata>20

IT

This states that the any non-empty trace of the waypoint manager will begin with
the start event, initializing the system, and will then continue with an alternating
sequence of up to twenty requests, wreq, and responses with data, wdata.

A process that may be used to implement the above specification is

WPM = start --- uX: {wreq, wdata}.(wreq -+ wdata -- X)

Although in general the process does not satisfy the specification, since the process
describes behaviors with more than 20 iterations of the request/provide' data cycle,
the assumption that we made implies that there will be no more than 20 requests
of the WPM process.

6.1.6 The Autopilot

For the purposes of this specification, we will assume that the autopilot is a simple
device that accepts commands from the navigation unit and translates these into
appropriate movements of the rudder, flaps, and other devices for steering the
plane.

The autopilot will b-.ve the following alphabet:

course - The transfer of data from the navigation unit giving directions such as
course, altitude, velocity, etc.

comms - The autopilot emitting appropriate. commands to the physical devices
for controlling the plane's course.

We will assume that the autopilot will always be in a position to accept commands,
though it may not respond appropriately (by emitting control commands). How-
ever, we will state that the autopilot will not emit control commands unless it has
been previously instructed to do so by the navigation unit. So, if s is any trace of
the autopilot (AUTO), then:

Vi.i > 0 A s[i] = comms =; s[i - 1) course

This simply stte that every time controlling commands are emitted (comms), the
event is preceded by at least one instruction on course (course).

A process that satisfies this constraint is

AUTO = course -+ comms -- AUTO n course -- AUTO

.52

6.1.7 The Navigation Function

The purpose of the navigation unit (NAV) is to control the other devices as ap-
propriate and, using some function of navigation, emit commands to the pilot and
the autopilot.

Timing Control

The requirements state that the position of the aircraft should be updated at least
every 59 ms. In order to do this, we introduce a clocx that will emit a pulse at this
frequency.

Let the alphabet of the clock include a timer and the following event:

pulse - A clock tick to be emitted every 59 ms.

The clock will use the timer by starting a 59 ms. timer and then waiting for the
timer to expire, at which point our clock will emit its pulse event (pulse).

The clock will not be stopped at any time, so if s is a trace of the clock, GP, then

s <<m59.stimer, m59.timeout, pulse>*

A process that satisfies this statement:

j GP = m59.stimer -+ m59.timeout -+ pulse - GP

However, we are only interested in the clock ticks. For this, we would like s, anyj trace of CONTROL, to satisfy

i s <<Pulse>*

This may be constructed as follows:

I CONTROL = (GP 11 m59: TIMER) \ {m59.stimer, m59.tim, ovt}

* Navigation function

The navigation function becomes a simple loop in which data is accepted from the
devices and a computation is performed to instruct the pilot and autopilot; then
the loop repeats itself. This may be constructed as follows: There is no requirement

!.3

stating behavior in the event that the navigation function should fail, so we assume
that the pilot will navigate by non-mechanical means - for example, steering by
whatever landmarks are available.

The alphabet for NAV is:

atwayp - An event representing the determination as to whether the aircraft
has reached its current waypoint and therefore needs to start flying towards
the next waypoint in the predetermined flight plan.

ncomp - The event that performs some function based upon available data and
computes the appropriate course commands.

course - The event that displays on the pilot display and to the autopilot the
appropriately computed course.

pulse - The 59 ins. clock tick.

By the time a clock pulse pulse is emitted, the navigation function must have
transmitted the course commands just computed.

Vi.i > 1 A s[i] = pulse =4. s[i - 1] = course A s[i - 2] = ncomp

If the navigation unit detects that a waypoint has been reached, it will make a
request for the next waypoint from the waypoint manager, which will respond
with the appropriate data.

Vi.i > 1 A s[i] = wdata =* s[i - 1] = wreq A s[i - 2] = atwayp

To calculate the new course, NAV must have determined whether or not the aircraft
has reached a waypoint, and if it has, a new waypoint must be selected before
computation can occur.

Vi.i > 0 A s[i] = ncomp = s[i - 1] = atwayp V s[i - 1] = wdata

Before determining whether the aircraft has reached a waypoint, its position must
be known. Further, the current air data should be known before attempting to
compute the new course.

Vi.i > 4 A s[i] = atwayp = 3 Bp.(3q.(

p^q^ <atwayp>< s

.54I

A #(pq)_i

A #q=4

A q E traces(adc.req - adc.data - STOP

U ins.req -* ins.data -4 STOP)))

Note that the length of p~q is i since sequence indexing considers the first element
to be indexed by 0 and # provides the length of the trace. An appropriate process
description is:

NAV = (adc.req - adc.data -+ STOP 11 ins.req - ins.data - STOP)

(atwayp -- wreq - wdata - DIR

n atwayp --, DIR)

DIR = ncomp -4 course - pulse NAV

It should be noted that we have used a non-deterministlc choice between ncomp
events. What we are trying to indicate is that an observer of the system will not
be able to determine why one path or the other is taken simply by looking at the
events that occur. However, we believe that it is sufficiently clear that the choice
will be made to engage in wreq and wdata events only when the aircraft has reached

~its current waypoint.

6.1.8 The System

IHaving described each of the components of the problem, we may now describe
the entire system by composing the component process specifications.

jThus,
SYSTEM = MPDISP 11 HUDISP 11 NAV 11 CONTROL

j I WPM 11 ADC 11 INS 11 RAD 11 AUTO

1 6.1.9 An Alternate Waypoint Manager

During the development of the specification, we had a number of choices open to
us. One such choice, examined briefly after the initial specification was written,
was the introduction of an explicit termination event. We decided not to imple-
ment such an event, but as an experiment introduced explicit termination to theIwaypoint manager. The following specification is the result of introducing explicit
termination.

3 .55

I

We use the same alphabet as the previously described waypoint manager (WPM),
but add the following event:

finish - An explicit event indicating that the flight is over and that there will
be no more requests for waypoints from the manager.

Now, a correctly terminating flight will be initialized (start), will perform up to
20 sequences of request (wreq) and response (wdata), and will end with an explicit
event (finish). Then, if s is any trace of WPM,

3i.i < 20 A s <start> ̂ <wreq, wdata>' ^ <finish>

We will now construct a process that describes the WPM. As in the previous de-
scription, the process that follows will not in general satisfy the above specification.
However, based on the same assumption made in Section 6.1.5 concerning the ex-
istence of a waypoint which terminates the mission, we may describe the manager
as

WPM = start -+ IX: {wreq,wdata, finish}.

(wreq -+ wdata -- X I finish -- STOP)

6.1.10 More on Radar Displays

The radar display presented in the specification was not the first specification
developed. In this section, we present the two alternative displays and give the
reasons for their rejection.

Both of the radar displays use the same alphabet introduced for the radar display
in the main specification. The first of the two alternative displays requires a special
clock process, the specification of which is given here.

A Clock

The radar display on the MPD and HUD must be updated every 200 ms., and a
convenient specification component is a clock that emits a pulse every 200 ms.

Let the alphabet of the clock include a timer and the following event.

pulse - A clock tick emitted every 200 ms.

.56

I

Since this clock process is almost identical to the one given in the main body of the
specification for the process CONTROL, we will not give the entire specification
here, simply the process specification of the clock.

CLOCK = {m200.stimer, m200.timeout, pulse}
, !(m200.stimer -4 m200.timeout

-- pulse --* X)

\ {m200.stimer, m200.timeout}

First Radar Display

The radar display clears only after the previous action has been the depression of
the switch to turn off the display.

'Vi.i > 0 A s[i] = rclear . s[i - 1] = roff

Similarly, when the display is updated, either the data has been generated by the
radar device or has been computed because the radar failed to respond in the
appropriate time.

Vi.i > 0 A s[i] = rdisp = s[i- 1] = rdata V s[i- 1] = rcomp

Also, if the system has to compute the radar data, it means that the radar device
has not responded to a request before the clock has emitted another pulse.

Vi.i > 0 A s[i] = rcomp =: s[i - 1] = pulse

The radar will not randomly produce data, so if the radar display receives somej data, there must previously have been a request for that data.

Vi.i > 0 A s[i] = rdata = s[i - 11 = rreqISimilarly, the radar display process only makes a request of the radar device after

one of the pulses has been received.

Vii > 0 A s[ij = rreq s[i - 1] = pulse

When the radar is switched off, the only action of interest to the display process is
the switching on of the radar, so the behavior of the radar in the off position may
be described by the following process.

RADOFF = rdata -- RADOFF pulse -- RADOFF
I ron -+ RADON I roff - RADOFF

* .57

I

This states that the system will do nothing until such time as the pilot turns on the

radar display (ron), at which point the system will behave as the process RADON.

RADON = roff -+ rclear - RADOFF

I pulse -+ rreq
(rdata -- rdisp -- RADON

[pulse -, rcomp -- rdisp -- RADON)

We may now describe the radar display device as

RADTSP (CLOCK II RAD 11 RADOFF)

\ {pulse, rreq.,rdata, rcomp}

where RAD is the radar process description described in Section 6.1.3.

Unfortunately, this description does not exactly meet the stated requirements in
that it is possible for the system to fail to update the display within the required
200 ms. Consider the following case. Let us assume that the radar takes r (where
r < 200) ms. to respond. Also, let us assume that the computation takes c (where
c < 200) ms. to respond. Then, if the radar is working, the display will be updated
at r ms. after the pulse. Let us assume that the radar now fails. The system will
start a request on the next pulse and will detect on the succeeding pulse that the
radar has not responded, so the system will perform the computation and start
displaying the computed data; this will be at 200 + c ms. after the initiating pulse.
Let r,; now consider the sequence of events starting at the last pulse for which the
radar was working; we will count this as time 0. Then the following table explains
the sequence of events

Event Number Relative Time Event Explanation
1 0 pulse occurs, sequence starts
2 r radar responds, data is displayed
3 200 pulse occurs, sequence restarts
4 400 timeout occurs, computation begins
5 400 + c computation completes, data is displayed

Therefore, the total elapsed time between display updates will be 400 + c - r ms.,
since r < 200 ms. is greater than the required 200 ms.

58 -

]11 i If I II I |llll

L- Second Radar Display

As stated, our previous description of the radar did not meet the specification;
thus, the following specification has been written so that it does redisplay the
screen every 200 ms.

Let us assume that the label on the timer indicates a delay between starting the
timer and the timeout of 200 - c ms., where c is the length of time it takes to
compute the radar data. We will use mnc.timer to represent a timer that expires
at this interval.

The timer is always started after a request has been made of the radar device for
data.

Vi.i > 0 A s~iJ = mnc.stimer = . s[i - 1] = rreq

_If the display process has to compute data, then the radar device must have failed
to produce data before the timer expired.

Vi.i > 0 A s[i] = rcomp =. s[i - 1] = mnc.timeout

The radar will be requested for more data whenever the display has just been
updated, or the radar display has been switched on by the pilot.

Vi.i > 0 A s[i] = rreq = - s[i - 1] = rdisp V s[i - 1] = ron

If the radar produces data in a timely fashion, then the timer should be halted.

Vi.i > 0 A s[i] = mnc.htimer s[i - 1] = rdata

Every time data is displayed, either the data has just been computed, or it was
returned from the actual device (in which case the timer has just been halted).

I Vi.i > 0 A s[i] = rdisp = s[i - 11 = rcomp V s[i - 1] = mnc.htimer

After the timer has been started, either the radar will return some data, or it will
riil to do so and the timer will expire.

V; i > 0 A sfil = rdata V3AIl = mn .timout s 3[i1] ,c.tier

We have the same constraint on the pilot switching off the radar, in that if the
radar display is cleared, the pilot must have just operated the off switch.

I Vi.i > 0 A s[i] = rclear ' s[i- 1] = roff

5 5

We will use a similar RADOFF process as that in the first specification; however,
this RADOFF t)rocess will ignore any timer expiration events and will not receive
any clock pulses.

RADOFF = rdata - RADOFF I mnc.timeout - RADOFF

I ron --+ RADON I roff -- RADOFF

With this specification of RADOFF and the above constraints, RADON becomes:

RADON - rof f - rclear -. RADOFF

rreq -- mnc.stimer --

(rdata -- mnc.htimer -- rdisp -- RADON

I mnc.timeout -- rcomp -- rdisp --+ RADON)

We may now describe the radar display device as:

RADISP = (mnc : TIMER 11 RAD 1 RADOFF)

\ {rreq, rdata, rcomp, mnc.stimer, mnc.htimer, mnc.timeout}

The above specification satisfies the requirement that the radar display is updated
at least every 200 ms. However, it should be noted that the display will in fact be
updated more often than 200 is. for as long as the radar is working. Every time
the display has been updated a request will be sent immediately to the radar for
more data and the display will be updated again. Again, on the assumption that
the radar takes r (where r < 200) ms. to respond, the display will be updated
e, -ry r ms., which satisfies the requirement but may not be the desired system.

6.2 Comments on the Specification

This section includes notes about the specification that are not covered by the
classification criteria.

6.2.1 Uniformity of Style

Af first sight, the CSP specification appears confused, in that there are a number
of occasions where two similar objects have been specified in different ways. This

60

occurs both at the level of the specification (that is, using two different CSP con-
structs to specify similar processes) and at the level of the system where potentially
similar components have been deliberately made into different components.

The reasons behind this lack of uniformity are that we wished to experiment with
the notation and to provide numerous examples. The experimentation provided
experience in using CSP on different types of components found on typical sys-

tems. Many examples of different types of use of CSP were desired to make the
specification more interesting to read and to demonstrate the power of the notation.

We recognize that in a commercial development, our specification would be inap-
propriate and that there would be much greater emphasis on uniformity of style.
We would expect that this uniformity would be achieved by concerted effort on
behalf of the developers and by standards for specification style.

6.2.2 Interpretation of CSP

In order to write the specification and have it convey our intended meaning, we
have used a slightly different interpretation of the meaning of the -- construct of
CSP. We believe that this change in interpretation does not affect the underlying
formality of the technique, but simply the interpretation of what the system is
expected to do. Specifically, a CSP process a --+ X is able to perform action a
and then proceed like the process X. However, the process need not do anything
immediately, or even at all. Our change in interpretation is that a process able to
perform an event will do so without delay. This change in interpretation permits
the interpretation of the specification of the timer process to model the expected
process - a component that, after some delay period, emits a timeout signal (the
delay being caused by the length of the timer and not because the process chooses
to ignore an event that it may perform). The change in interpretation does not
affect the analyses that have to be performed, in that we still have to examine the
possibilities of the timeout event's occurring before or after some other event of
interest.

Further, with respect to timers, we wish the delay between the stimer and timeout
events to be described by the specification assuming no intermediate htimer event,
According to our statements above, the timeout event should happen immediately
after the timer is started. This, however, would not suit our purpose, and instead
we use a standard relabeling of the timer process to indicate the length of delay
between the initiation and ex.iration of the timer.

There are a number of occasions where, in our specification, we have used the

non-deterministic choice operator, n. The semantics of CSP state that the system

61

U

may make either choice, and we cannot restrict that choice. However, in our spec-
ification, we are using non-determinisnr to model certain behaviors of the avionics
system where there is clearly a "right" choice. Typically, there is cne path that is
to be chosen when the system is behaving normally and the other path is chosen
only when the system is behaving abnormally, at which time the previously uncho-
sen path becomes the "right" path. Thus, we are using non-determinlism to model
events over which we have no control, such as a device breaking, but our intent is

for the model to be used to choose appropriate behaviors depending on whether
or not the system is operating correctly.

We have often used an event as part of the history of a number of different processes.
This event becomes a synchronization point for all of the processes, as opposed to
simply the first two that could communicate. It may be seen that this extension
can be simulated almost exactly by the use of a number of "sub-events" that
synchronize the individual processes where a collection of sub-events forms the
event in question and each sub-event synchronizes exactly two processes. However,
we have used the single event as a total synchronization, since this leads to a more
readable and understandable specification without, we believe, losing formality.

6.2.3 Modeling of Time

We have chosen to model the timer process in a very explicit way, and wherever we
consider the interaction of a process with a timer we have modeled the combination
of both processes. It might have been more appropriate to model the process of
interest as though it would not fail and to model the timer as before. We would
also need to model the sequence of events on the occurrence of the timer expiring
(the timeout event). This latter sequence could be modeled as a separate process
and then the entire system would be modeled by the combination of the "working"
process interrupted by the "timeout" process.

Such an approach may well lead to specifications of the system that are easier
to read and understand, though it might make reasoning about the spe..:ification
harder.

6.3 Classification of CSP

We now present the classification of CSP according to our criteria. Each of the
classification decisions is based both on the specification described in this chapter
and on other published work on CSP.

62

6.3.1 Representation

Style - CSP specifies the objects of the systems by behavior rather thdn func-
tion. The specifications may be either declarative or operational, depending
on the specifier's wishes. It is possible for any object. to provide both the
declarative and operational specifications and subsequently for the specifier
to determine that the two specifications do indeed match. If the sequential
process component of CSP is used, it is possible to specify processes that
behave similarly to functions, in that they accept some input values, perform
some computations and subsequently emit some output values. These are,
however, processes and not functions.

Concurrency - CSP was designed for the specification of concurrent systems.,
Thus, the technique is able to express concepts of concurrent execution,
though it does not specify the notion of two separate events occurring simul-
taneously. CSP may also be used in the specification of a single sequential
process, though we have not shown this feature in any of our specifications.

Communication - CSP is modeled on the notion of unbuffered, synchronized
communication between processes. This means that any process wishing to
perform some communication will wait until the other process is also ready
to communicate. Although we have not done so in our example, it is also
possible to describe the data that is communicated between processes.

Non-Determinism - Non-determinism may be introduced if wished and the

specifier may use one of the choice operators to indicate a non-deterministic

choice between two processes. It should be noted that CSP does permit
specifications of many concurrent systems without the introduction of non-

j determinism.

Fairness - CSP has no built-in notion of fairness and any notion that the user
requires must be stated explicitly.

Modularity - CSP, with the ability to separately develop process specifications
has, in some sense, a strong notion of modularity, in that components of a
process that do not appear as part of the external interface may be hidden
from other processes. However, at the level of a single sequential process,
there is no concept of modular specification. Generally, the sequential pro-
cesses are small and easily understood. The composition of such processes
with appropriate use of hiding leads to a hierarchical structure of the sys-

tem, with each level of the hierarchy comprising a number of processes with
a limited number of interactions between them.

63

!

Time - CSP does not have any built-in notion of time, and if time should be
included n1 the specification, it has to be modeled explicitly. However, it is
possible to model time either as a global'clock process emitting events as
appropriate or, as we have done, by introducing a number of timer processes
that provide an alarm at an appropriate point. It can also be used to model
exceptional conditions such as failing components by introducing alternate
behaviors depending on whether a clock timeout event occurs before or after
a desired event. Using one or other of these approaches, both periodic and
sporadic events may be represented.

Data - CSP has a limited notion of data, and the values passed between pro-
cesses during the communication events have not been discussed at all. It
is not possible to model complicated data structures using the CSP nota-
tion; rather some other notation must be used to formulate the appropriate
structures.

User Presentation - As shown in the example specification, CSP is applica-
ble to the specification of the interaction between the user and the system.
However, it is not clear how CSP could be used to specify the format of the
data that a user might see on a particular display.

6.3.2 Derivation

Transformation - CSP has many rules for transforming specifications, These
rules maintain the semantics of the specification. The process of transform-
ing the specification is guided by the choice of rule to apply. This is a matter
for the specifier since there are no guidelines as a part of CSP. However,
once chosen, a rule does, in the sense we have defined the word, transform a
specification. We have not done this as part of our example; however, trans-
formations could be used to show that, for example, PDOP is modeled by
the appropriate composition of RPD, APD, and a suitably labeled TIMER.

Elaboration - The specification may be elaborated according to the specifier's
design principles. The specifier then has an obligation to demonstrate that
the new specification correctly meets the intent of the original specification. If
the elaborated specification simply has new events added without changing
the meaning of the original events, then the elaborated specification may
be shown to meet the original- by a combination of event restriction and
application of the transformation rules. If the elaboration involves refinement
of an event to a number of sub-events, in the process removing the original

64

T

- event, there does not appear to be a suitable mechanism for demonstrating
that the elaborated specification meets the in .ent of the original.

Composition - CSP has a powerful parallel combination operator which makes
composition of processes a simple matter. Further, CSP has rules that de-
termine the meaning of a process that is the combination of two processes

2 whose meaning is known. One important feature of the parallel combina-
tion operator is that it need not introduce non-determinism. Events may be
hidden, so internal communications of a process need not be visible to other
processes.

6.3.3 Examination

Equivalence - In CSP, equivalence is shown by demonstrating that one process
i s a transformation of another process, This may be done by application
of the transformation rules, or by demonstrating that the set of possible
behaviors of one process is the same as the set of possible behaviors of the
other process.

Consistency - Internal consistency of a. specification is guaranteed in a sequen-
tial process, since a model-specified process has some meaning (though it may
not be the desired meaning). In a system comprising a number of processes,

jinternal consistency at the model level cannot be checked, other than de-
termining whether the system violates certain other properties, for example
safety and liveness properties.

I| At the level of specification using traces, it is possible to determine that
two or more predicates over the traces of a process are consistent with each
other. Eac. predicate makes requirements on the sequences of events that
may occur in a correctly executing system. For example, a predicate may
specify that the events a, b, and c occur in a specific order. If some other

I predicate requires that the events occur in a different order, then the second
predicate is inconsistent with the first. Thus, a way to prove consistency is
to pick a predicate and use it to describe the set of valid traces of a process

I satisfying the predicate. Then for each of the remaining predicates, remove
those traces invalidated by the newly chosen predicate. If, after all predicates
have been applied, the set of valid processes is empty, then the predicates are
inconsistent with each other - there is no process that can satisfy all of the
requirements expressed by the predicates.

3 There are no obvious ways of using CSP to check for under-specification.,
Checking for over-specification may be simpler in that at the level of specifi-

1 65

!

cation of traces, it is possible to determine that a number of predicates imply
another predicate, thus implying that the latter predicate is unnecessary.

Safety and Liveness - In order to check a system for safety, the desired prop-
erty must be described in terms of some sequence of events that must not
occur. Then if none of the traces of a process includes that sequence of
events, the process preserves the safety property. The check is performed by
examining all events preceding the current event in the trace.

The liveness properties that may be demonstrated are that the system is free
of deadlock and livelock. Absence of deadlock may be proved by taking any
trace of the system and showing that in every case there is at least one event
which can extend the trace such that the extended sequence of events is still
a trace of the system.

Determinancy - Because at this level of specification CSP does not discuss
input or output values, but rather sequences of events, it is not possible to
examine a system to see whether the results are determinate. It is, of course,
possible to show that a system given the same sequence of events by the
environment is determinate.

Correctness - CSP is able to discuss correctness, both with respect to the re-
quirements as well as with respect to an implementation.

As shown in the specification, it was a simple task to predict behaviors of the
system from the specification and therefore determine whether or not they
met the user's requirements. CSP can be animated; the rules for animating
a CSP specification have been described using Lisp as an implementation
language [71.

Correctness with respect to the implementation may be determined at all
levels for which a CSP specification exists. The requirement on the designer
is to demonstrate that an implementation satisfies its specifications. CSP
has algebraic laws concerning satisfaction that may be applied for a proof
of correctness. Although no proof was performed in our example, it would
have been possible, assuming the example is correct, to prove that the CSP
process models satisfied the constraints on the traces.

66

7

Chapter 7

Vienna Development Method

This VDM specification of the avionics example is based on the CSP specification,
Since the CSP specification has been used as the basis for the other specifications,
this description of the VDM specification assumes that the reader is familiar with
the overall problem, with the terminology of the problem domain, and with the
expected behavior of the components.

The dialect of VDM used in this specification is based on the April 1989 draft of
the British Standards Institute VDM standard [1], which is based on the syntax
used by Jones [10]. The draft of the standard has been changed since then and
features such as modules have been reduced to an annex as opposed to being part
of the main text of the standard. It should be noted that since this specification is
based on a draft standard that the VDM used may differ from the final standard.

VDM operators

VDM uses the usual logical operators of and (A), or (V), universal quantifica-
i tion (Vx E T E) and existential quantification (3x E T E).

VDM has operaitors for the specification of sequences (objects with type seq
TYPE). The following are used in the specifization.

[] - The empty sequence.

* A B - Concatenates the sequences A and B.

VDM uses decorated identifiers in the specification of post-conditions for operations
and functions to indicate that the value being considered is the value before the

* 67

U

operation or function is invoked. For example, if the post-condition of an operation
were x = " + 1, it would mean that the effect of invoking the operation would be
to increment the value of x by one. Similarly, if the post-condition were = x + 1,
it would mean that the operation decrements the value of x by one.

7.1 Specification

7.1.1 Handling Histories

VDM is a model-oriented specification method. The state is modeled in terms of
well-understood mathematical structures, such as sets and sequences. Operations
on the state are then specified as transformations on this model.
In the CSP version of the avionics problem, a number of events are described,

some of which cause state transitions in the model (and therefore the system).
These events may also have certain timing constraints. For example, a device
must respond with some data within a given period of time, or a light must flash
for at least two seconds before the pilot can clear the light.. To model the state
of the system, we must consider the events that occur within the operation of the
system. There are cases where it is convenient to view the state of the system
as a history of events, as in Pedersen and Klein [14]. In other cases, it is more
convenient to view the system in terms of the history of state transitions caused by
the occurrence of the events. Of course, it can be argued that a state transition is in
itself an event. However, we are trying to maintain the distinction between events
that are part of the problem statement and events arising from this specification.
In any case, what is required is a theory of histories, independent of the subject
of the histories. The most obvious approach is to use parameterized types, but
VDM as presented in [10] does not admit parameterized types. Jones does use
parameterized types informally.

At the time the specification was written, the standard [1] included module speci-
fications. These are no longer part of the formal standard, but are used here in an
obvious way. j
A history of X is a time-stamped sequence of X:

Time.Stamp = N 1

Time.Stamped(X) type X

time Time.Stamp

68

History(X) :: seq of Time.Stamped(X)

where
iinv-&itory(h) Vi~jE domh i <j h(i).time <h(j).time

The invariant ensures that the sequence is time-ordered and this is analogous to
the function Time.Stamps.Non.Decreasing in [14].

It is useful to know the most recent item in a history:

last : History(X) Time.Stamped(X)
" lasit(h) h(lenh)

pre h#[

Where components of the specification have behaviors that are dependent upon
timing constraints (for example the devices that have to respond within a given
time), we will model the state of these components in terms of a history of events.
The state of other components, such as the multi-purpose display, that have no
timing requirements, will be modeled much more simply, in this particular case in

=terms of a single variable with two possible values.

The convention adopted is that a state ending in '.EH' is an event history, and a
4state ending in '.SH' is a state transition history.

A 7.1.2 The ADC and INS

A device is modeled by the sequence of time-stamped events (the history) in whichJit has participated. This model describes the device whether working or not. It
is possible to deduce that a device has failed if the timestamp of the last event is
significantly earlier than the current time. We are modeling the sequence of events

I corresponding to a request for data and the return of appropriate values as a VDM
operation. Although the request is an event in terms of the system, it was found
to be unnecessary to add a request event into the device history. In the system, the
request is followed by data being returned from the device which could be modeled
in our specification. However, our specification (following the CSP specification) is

I concerned with the sequence of events that occur in the system as opposed to the
Uactual content (or even structure) of the data values. First, we specify a perfect

device that always responds within a certain time. We then refine this specification
I to model an unreliable device (that may not even accept a request) in conjunction

I 69

I

with a timer and a computer that will calculate an approximation to the result
when the unreliable device fails to respond in time.

The relationship between the perfect device and its realization can be expressed
formally in terms of a retrieve function. VDM provides the proof obligations which
must be discharged to demonstrate that the realization correctly models the per-
fect device (essentially by showing that the retrieve function is a homomorphism).
These proofs are beyond the scope of the present exercise, but the retrieve function
and the proof obligations are outlined for completeness.

The INS and ADC display essentially the same behavior, so the specification here
is for an arbitrary device of which the INS and ADC are instances. The way
in which this arbitrary device becomes the INS or ADC is through the state on
which it operates. The state is declared in the operations on the device and is an
explicit paiameter to the pre- and post-conditions of these operations as used by
Jones.' Therefore, for example, the reliable device specified in the following section
is described in terms of an event history RD.EH, but when the NAV function uses
it to model the INS, it declares an INS event history, INS.EH, used when quoting
the pre- or post-conditions of operations involving the INS.

A Perfect Device

Our first specification will be of a device that works perfectly. The device will be
explicitly initialized by invocation of the PD.START operation, and subsequently
requests for data will be made by invocation of the PD.REQ operation, the latter
returning the appropriate data values. We will keep a history of the events in
which the perfect device engages.,

The events recorded are:

START - The explicit initialization event for the device.

DATA - The event of returning data to the requester.

Note that, unlike the CSP specification, it is not necessary to record the event of
requesting data from the device. The CSP specification used this event as a means
of delimiting the beginning and end of the data request cycle in order to make
appropriate comments with respect to the length of time between the request and
the return of the data. Throughout this specification, we do not use an equivalent
event to delimit the start of the operation, since we may achieve the same result

'See page 142 of Jones (10].

70

by using the initial and final values of a timestamp variable, which will be used
whenever necessary.

After a request, a perfect device always returns with some data within the required
time interval max.delay.

PD.Event. Type = {START, DATA}

PD.Event = Time.Stamped(PD.Event. Type)
i

PD.START (t: Time.Stamp)
ext wr PDEH History(PD.Event. Type)

pre PD.EH = []
post PD.EH = [mk-PD.Event(START, t)]

PD.REQ (t,max.delay: Time.Stamp)

ext wr PDEH ' History(PD..Event. Type)

pre (hd PD.EH).type = START A
last(PD.EH).time < t

post 3t' E Time.Stamp.

PD.EH = PD.EH ' mk-PD.Event(DATA, t') A
t < t' < (t + max.delay)

A Physical Device

Our second specification is of a physical device that is unreliable. It may notIaccept a request, or may accept the request but not reply with the data within
the required time. As with the CSP specification, we do not assume that this
device needs any initialization; thus we do not show the START event used in the

I specification of the perfect device.

We considered using common events across histories; for example, much of APD.
If REQ may be described by the previously specified PD.REQ operation. However,

problems arose with the generic history when instantiated for different devices.
Instead, we chose to use disjoint sets of event names. A consequence of this decision

I is that the post-codiLion of operations is no longer possible, due to the state
variables being of different types. We use the approach of disjoint event names

again with START and RSTART, as well as PDATA and ADATA later in this
specification.

1 71
I

The actual physical device has only one element in its history.

PDATA - The event of returning physical data to the requester.

Unlike the perfect device, a request for data from the actual physical device (in-
vocation of APD.REQ) may fail, in which case the history will be unaltered. We
use a disjunction to separate the two possible outcomes of the operation, data
or no data. This use of disjunction is common throughout this specification and
introduces a non-deterministic element to the specification.

A PD.Event. Type = {PDATA}

APD.Event = Time.Stamped(APDEvent. Type)

APD.REQ (t, max. delay: Time.Stamp)

ext wr APD.EH : History(APD.Event. Type)
pre last(APD.EH).time < t

post APD.EH = APD.EH
V 3t' E Time.Stamp•

APD.EH = APD.EH " mk-APD.Event(PDA TA, t') A
t < t' < t + max.delay

The Timer

A timer is started when a request is made on a device, and is used to inform the
requester that the device has not responded within the required time interval. If
the device responds before the timeout, the requester must cancel the timer.

The events recorded in the timer history are:

HTIMER - The event of canceling the timer before it expires.

TIMEOUT - The event of the timer expiring.

Timer.EventJType = f HTIMER., TIMEOUT)

Timer.Event = Time.Stamped(Time r.Event. Type)

72

4

STIMER (t, max.delay: Time.Stamp)

ext wr Timer.EH : Histoy(Timer.-Even .- Type)

pre last(Timer.EH).time < t

post Timer.EH = Timer.EH
mk-Timer.Event(TIMEOUT, t + max.delay) V
3t' E Time-Stamp.

Timer.EH = Timer.EH " mk- Timer.Event(HTIMER, t') A
t < t' < t + max.delay

A Reliable Device

A reliable approximation of the perfect device is implemented by the physical
device, a timer, and a computer. The reliable device requests data from the physical
device and at the same time starts the timer. If the physical device has not
responded before a timeout, the computer is used to calculate the approximate
values of the data, based on older data.

The event history of the reliable device is similar to that of the perfect device,
except that what is just DATA in the perfect device is now ADATA or CDATA,
depending on how it was obtained.

The events recorded in the history of the reliable device are:

RSTART - The event initializing the reliable device.

ADATA - The event returning data from the actual physical device. If this
event is recorded it implies that the device is working.

ICDATA - The event indicating that the returned data has been computed The
implication of this event is that the physical device has, for whatever reason,

~failed to respond in a timely fashion.

First, we specify the operation RPD.START, which initializes the reliable physical
device.

RPDEvent. Type = {RSTART, ADA TA, CDATA}

I ~RPD.Event = Time-.Stamped(RPD.Event. -Type)

1 73

U

RPD.START (t: Time.Stamp)
ext wr RPD.EH History(RPD.Event. Type)

pre RPD.EH = []
post RPD.EH = [mk-RPD.Event(RS TART, t)]

The RPD.REQ operation is the specification of the system's requesting data from
a physical device and getting some data returned; the data may be either genuine
or have been computed. We use the actual physical device specification and a
timer to describe this operation. The effect of the post-condition in the RPD..REQ
operation is to assert that both the APD.REQ and STIMER operations have been
invoked. The new state of the RPD.EH then depends on the last timer event -
an HTIMER means that the APD responded with data and a TIMEOUT means
that the data had to be computed.

RPD.REQ (t, max-delay: Time.Stamp)
ext wr RPD.EH History(RPD.-Event. Type)

wr APD.EH History(APD..Event. Type)
wr TimerEH: History(Timer.-Event- Type)

pre (hd RPD.EH).type = RSTART A

last(RPD.EH).time < t

post post-APD.REQ(t, max-delay, APD.EH, APD.EH) A

post-ST[MER(t, max.delay, Timer.EH, Timer.EH) A
cases last(Timer.EH) of

mk- Timer.Event(HTIMER, t') - last(APD.EH) =
mk-APD..Event(PDA TA, t') A

RPD.EH = RPD.EH
mk-RPD.Event(ADA TA, t')

ink-Timer.Event(T[MEOUT, t') -- RPDEH = RPDEH
mk-RPD. Event (CDA TA, t')

end

Correspondence between Reliable and Perfect Devices

The reliable device is a.-ant to be an implementation of the perfect device. The
retrieve function retr-PD.EH maps a reliable device event history (RPD. EII) back

74

I

i
to its equivalent perfect device event history (PDEt), and the operation of the

reliable device models that of the perfect device if retr-PDEHis a homomorphism.

The retrieve function retr-PD.EH makes a copy of RPD.EH with RSTART re-
placed by START and either ADATA or CDATA replaced by DATA.

one.rpd: RPD.Event.Type - PD.Event.Type

Ione.rpd(r) L cases r of
RSTART-- START

ADATA -4 DATA
CDATA- DATA

end
"I

retr-PD.EH History(RPD.Event. Type) - History(PD-_Event_ Type)

retr-PD_EH(rpd. eh)
if rpd.eh= []
then [1
else

let mk-RPD..Event(x, t) rest - rpd.eh in
mk-PD.Event(one.rpd(x), t) "' retr-PD_ EH (rest)

Jones [10] describes in detail the proof obligation to demonstrate that one speci-
fication models anotler, As an example, we will demonstrate the proof of part of
the obligation. Specifically, we want to show part of the obligation arising from a
proof that "concrete" operation R models "abstract" operation A with the retrieve
function retr.

gen-prf-obl()
V' , r E R.pre-A(retr(')) A post-R('?, r) =

post-A(rtr(-7), retr(r))

Plugging in PD.REQ for A and RPD.REQ for R, we can take advantage of the
fact that rcfcrences to APD.REQ are not needed for the proc.f. In a strictly formal

I proof these would need to appear and then be removed by the A-Elimination proof
rule, but here they are omitted altogether for clarity.

7

ii 75

pd-prf-obl()

Vreh, reh E History(RPD.Event. Type)•

Vteh, teh E Hi.story(Timer.Event. Type).
Vt, max.delay E Time-Stamp•

(hd retr-PD.EH(reh)).type = START A

last(retr-PD.EH(reh)).time < t A

post-STIMER(t, max.delay, teh, teh) A
cases last(teh) of

mk- Timer.Event(HTIMER, t') - reh = reh
mk-RPD.Event (

ADATA, t')

mk-Timer.Event(TIMEOUT, t') - reh = reh
mk-RPD.Event(

CDATA, t')

end

3t' E Time.Stamp.

retr-PD.EH(reh) = retr-PD.EH(reh)
mk-PD..Event(DATA, t') A

t < t' < t + max.delay

7.1.3 The Radar

The behavior of the radar can be thought of as the same as a perfect device,
though there may be an indefinite delay between successive data values being
returned. This indefinite delay corresponds to the radar device being switched
off, and therefore no requests would be made of the device and thus the history
would not change. In specification of the radar display, we treat the radar as a
perfect device with a specific delay. We could specify the physical radar using an
instantiation of the reliable device specification.

76

i:

T The aHUD

SThe. MI~~t PurpoAs ,ay
In the folowng p,, 0eof the spe cation , we model the MPD in a simper manner

than that Aseief6r the devices orevi6usly specified. As previously explained, the
MPD has no explicitly described timing constraints, and we will assume that the
systemoperation tolupdatethe device.status display on the'MPD is, invoked at an
appropriate time and that. the time taken for this system operation is negligible.
We have assumed that the MPD does not break and the state variable MPD.State
refers not to whetheror not the MPI)is working,but to whether or not the actual
device is working.

The state of the MPD may have one of two values.

WORKING - indicating that the device is functioning normally.

BROKEN - Indicating that the device is not functioning normally.

The operation MPD. UPDATE specifies the action of updating the MPD to de-
scribe the state of the device.

Device.State = { WORKING, BROKEN}

MPD. UPDATE (new.state: Device.State)Jext wr MPD.State Device.State
post MPD.State = new.state

IThe Heads Up Display

Although the behavior of the HUD is essentially the same as the behavior of the

MPD in that the HUD displays the status of the devices, there is a difference;
the actions of the HUD are governed by timing constraints. As we stated inI Section 7.1.1, we used a history to model the state. In the case of the HUD, it
is more convenient to use a state-history rather than the event-histories used for
the devices. This state-history is a sequence of (siate,time) pairs, where the time
component is the time at which the device entered the state specified by the state
component. We used the state-history because.several of the system's events can

g cause the same state transition of the system, and we tried to specify the essential
I behavior of the HUD, so the particular system event that caused the transition is

of lesser impotance,

+1 77

< I i |• RIMHmI iIIIIlIIt llo |•II IRmlII ibI

Apart from receiving informrtion from the reliable device, a state transition can
be caused by a switch operated by the pilot. Thus, there are three operations
on the HUD, one to inform it that a device is working, one to inform it that the
device is broken, and one to inform it that the pilot has pressed the switch. These
operations are described as "informing" rather than doing because following some
state changes there is a refractory period (hud..delay) during which the incoming
information is ignored.

The events recorded in the HUD history correspond to the processes described 'in
the CSP specification.

WO - The HUD is displaying no information about the device and the device
is working.

WF - The device has changed from being broken to working and the HUD is
flashing an icon indicating that the device is working.

WC - The device is working and more than 2 seconds have elapsed since the
HUD started flashing a icon indicating that the device is working. The pilot
can now clear the display by pressing the appropriate key.

BR - The HUD is displaying no information about the device and the device is
broken.

BF - The device has changed from working to broken and the HUD is flashing
an icon indicating that the device is broken.

BC - The device is broken and more than 2 seconds have elapsed since the HUD
started flashing a icon indicating that the device is broken. The pilot can
now clear the display by pressing the appropriate key.

The operation HUD..BROKENis invoked when the device changes state from work-
ing to broken; after the 2-second period has elapsed, the operation HUD.SWITCH
may be invoked, which clears the display. The operation HUD- WORKING is
equivalent to HUD,.BROKEN but is invoked when the device changes state from
broken to working.

HUD.Statc. Type { WO, WF, WC, BR, BF, BC

HUD..State = History(HUD.State. Type)

78

HUD.BROKEN (t: Time.Stamp)

ext wr HUD.SH : History(HUD.State Type)
post if last(HUD.SH).type E { WO, WC}

then HUD.SH = HUD.SH mk-HUD.State(BF, t)
mk-HVD.State(BC, t + hud.delay)

else HUD.SH = HUD.SH

HUD. WORKNG (t: Time.Stamp)
ext wr HUD.SH : History(HUD State. Type)
post if last(HUD.SH).type E {BR, BC}

then HUD.SH = HUD.SH " mk-HUD.State(WF, t)
mk-HUD.State(WC, t + hud.delay)

else HUD.SH = HUD.SH

HUD-SWITCH (t: Time.Stamp)
ext wr HUD.SH : History(HUD.State. Type)
post cases last(HUD.SH).type of

WC - HUD.SH = HUD.SH '" mk-HUD.State(WO, t)

BC --+ HUD.SH = HUD.SH " mk-HUD.State(BR, t)

otherwise HUD.SH = HUD.SH

end

Updating the MPD and HUD

The UPDATE.D!SPLA YS operation offers a single operation to update both the
MPD and HUD. It is invoked by the navigation function immediately after a re-
quest to the INS or ADC has returned some data and uses the fact that the last
item in the device's history is ADATA or CDA TA, according to whether the device
responded or not.

UPDATE.DISPLAYS (t: Time.Stamp)
ext rd RPD..EH : History(RPD.Event. Type)

i wr MPD.State : Device.State
wr HUD.SH : History(HUD.State. Type)

79

I

post cases last(RPD..EH). type of

ADATA -+ post-MPD. UPDATE(WORKING, MPD.State,
MPD.State) A

post-HUD. WORKING(t, HUD.SH, HUD.SH)

CDA TA -4 post-MPD. UPDATE(BROXEN , MPD.State,
MPD.State) A

post-HUD.BROKEN(t, HUD.SH, HUD.SH)

end

The Radar Display

The operation RADAR. ON specifies the events that must occur when the pilot
switches the radar display on, and the operation RADAR- OFF specifies the events
that occur when the radar display is switched off. The RADAR.DISP operation
specifies the events involved in updating the radar display.

There is a separate event history indicating whether at time t the radar display
is on or off; this history is updated by the operations RADAR-.ON and RADAR.
OFF. The actual cycle of requesting data from the radar, doing a computation if
necessary, and displaying the data, is specified by the RADAR.DISP operation.
This is invoked by RADAR-.ON and continues cycling until RADAR- OFF updates
the on/off history to off. At this point, RADARDISP generates an RDCLEAR
event and stops.

The radar must supply data for display every 200 ms. and if this data is not
forthcoming an approximation must be computed. If it takes c ms. to compute
the approximation, the computation must start no later than 200 - c ms. after
the previous display to ensure the data is available in time for the next display.
For this reason, the radar itself is treated as a perfect device with maximum delay
200 - c ms.

The events recorded in the radar history display are:

RDDATA -The event of the radar returning data in a timely fashion.

RDDOMP - The event of the radar failing to return data in a timely fashion
and some computation to estimate data.

RDDISP - The event of updating the radar display.

80

I

RDCLEAR - The event of clearing the radar display; this event is recorded
* when the radar is switched off.

RD-Event. Type = {RDDATA, RDCOMP, RDDISP, RDCLEAR}

RD.EVENT = Time.Stamped(RD.Event. Type)

RD.Status. Type = {RDON, RDOFF}

RD.Status = Time.Stamped(RD.Status. Type)

RADAR.ON (t: Time.Stamp)
ext wr RD.EH History(RD.Event. Type)

wr RD.ST History(RD.Status. Type)

post RD.ST = RD-ST ' mk-RD.Status(RDON, t) A

post-RADAR.DISP(t, RD.EH, RD.ST, RD.EH, RD.ST)

RADAR.OFF (t: Time.Stamp)
ext wr RD.ST History(RD.Status.-Type)

post RD.ST = RD.ST ' mk-RD.Status(RDOFF, t)

RADAR.DISP (t: Time.Stamp)
ext wr Radar.EH Htistory(PD.Event. Type)

wr RD.EH History(RD.Event. Type)I wr RD:ST History(RD.Status Type)
pre RD.EH [l last(RDST).type # RDOFF

8I
I

I
I 81

I

post post-PD.REQ(t, 200 - c, Radar.EH, Radar.EH) A
3tail E History(RD.Event. Type).

RD.EH = RD.E!H
mk.RD. Event(RDDISP, t + 200) tail

A
(last(RD.ST).type = RDOFF A

tail = mk-RD.Event(RDCLEAR, t + 200)
V

last(RD.ST).type = RDON A tail = (]A
3RD.EH' E History(RD.Event. Type).

3RD.ST' E HistoirY(RD.Status. Type).
post-tiADAR.DISP(t + 200, RD.EH, RD.ST,

RD.EH', RD.ST'))

7.1.5 The Waypoint Manager

A waypoint is a Position (we do not define Position any further in this specification)
along with an indication of whether that position is to be approached or avoided.

Waypoint :: pos Position
ind {APPROACH, AVOID}

The waypoint manager maintains an ordered list of up to 20 waypoints.

Waypoint.List :: seq of Waypoint

where

inv-Waypoint.List(w) ' carddom w <20

There are several possible operations that could be performed on the waypoint list,
for example, create and update. The only operation specified here, WREQ, is an
)peration that removes the first element of the list of waypoints indicating that
the pilot has just passed the current waypoint, so that the next waypoint is now at
the head of the list of waypoints, corresponding to the CSP wreq event. A function
w.curr returning the current waypoint is also provided.

w.curr: Waypoint.List - Waypoint

w-curr(w) a hd w

82

A

W.REQ
ext wr w: Waypoint.List

I pro#[I

post W = tl W

7.1.6 The Autopilot

We have minimal information from the requirements with respect to the autopi-
lot; thus we have specified a device that simply emits appropriate course control
commands on invocation.

The autopilot is treated as a device with a single operation, corresponding to the
CSP course event from the navigation unit. As a result of invoking this operation,
the autopilot either does nothing or emits commands to steer the plane. The
autopilot operation, AP. COURSE, is invoked every time the navigation function

Fn has performed its computation. The history of the autopilot is just the sequence
of COMMANDS events issued.

COMMANDS - The event corresponding to issuing commands.

AP. vent. Type = { COMMANDS}

AP.Event = Time. Stamped(AP.Event. Type)

AP.COURSE (t: Time-Stamp)
ext wr AP.EH : History(AP.Event. Type)

pre last(AP.EH).time < t

post AP.EH = AP.EH " mk-AP.Event(COMMANDS, t) V

AP.EH = AP.EH

1 7.1.7 The Navigation Function

The navigation operation controls the operations described in this specification.
The state of the navigation operation consists of the states of the previously de-
scribed operations, and we will not list the events occurring in the history here. The
interpretation of these events may be found in the description of the appropriate
piece of specification presented previously in this chapter.

S83
!

The operation of the navigation function is to request data from the ADC and
the INS and to perform some computation ncomp on the data, which returns the
course information to be transmitted to the pilot (via displays) and the autopilot.

This cycle of requests, data, and computations must be repeated every 59 ms. The
cyclic nature of the operation is specified by quoting the post-condition recursively.
In this case there is no termination condition for the recursion, since there are no
start or stop operations which, if present, would allow termination to be handled
in a similar manner to that of the radar display.

The ADC and INS are treated here as instances of the reliable device described
earlier, with maximum delays of adc.delay and ins.delay respectively. The function
ncomp assumes there is some actual data content in the ADA TA and CDATA events
of the perfect device.

The course information is of type course, which is not further defined. The pa-
rameterless function atwaypt, corresponding to the event of the same name in the
CSP version, indicates whether the current waypoint has been reached, and hence
whether the next waypoint is to be requested.

To simplify some of the expressions, we introduce a single type, RPD.State, em-
bracing all facets of the reliable device. The actual ADC and INS are then repre-
sented as objects of this type in the navigation function.

RPD.State rpd.eh History(RPD.Event. Type)
apd.eh History(APD.Event. Type)

timer History(Timer.Event. Type)
hud.sh History(HUD._State. Type)

mpd.state Device.State

NAV (t: Time.Stamp) c: Course
ext wr ADC RPD.State

wr INS RPD.State
wr WL Waypoint.List

pr? pre-RPD.REQ(t, ADC.rpd.eh, ADC.apd.eh, ADC.timer) A
pre-RPD.REQ(t, INS.,rpd.eh, INS.apd.eh, INS.timer) A
pre-W.REQ(t, WL)

84

ik

post 3t', t" E Time.Stamp, w E Waypoint.

post-RPD.REQ(t', adc delay, ADC. rpd.eh, ADC.avd.eh,

ADC. timer, ADC.rpd.eh,
ADC.apd.eh, ADC.timer) A

post-RPD.REQ (t", ins. delay, INS. rpd. eh, INS. apd. eh,

INS.timer, INS .rpd. eh,
tt + AINS. apd.eh, INS. timer) A

-"t < t' < t + 59 ^A

t < t" < t+59A

post- UPDA TE.DISPLA YS(t, ADC.rpd. eh,

ADC.mpd.state, ADC.hud.sh,
ADC.rpd eh, ADC. mpd.state, ADC.hud.sh) A

post-UPDATE.DISPLA YS(t, INS.rpd .eh,

INS. mpd.state, INS. hud. sh,
INS. rpd..eh, INS. mpd.state, INS. hud.sh) A

(atwaypt A post-W..REQ(WL, WL) V
-,atwaypt A WL = WL) A
c = ncomp(last(ADC.EH), last(INS.EH), w.curr(WL)) A
3ADC', INS' E RPD.State .

3 WL' E Waypoint.List, c' E Course.
post-NAV(t + 59, ADC, INS, WL,

ADC', INS', WL', c')

7.2 Comments on the Specification

The avionics example is not typical of the class of problems to which VDM is
I normally applied in that it exemplifies concurrency and requires explicit modeling

of time.

Event histories were introduced to enable us to write specifications with statements
about time. Although these are similar to CSP traces, we tried to avoid simply
reproducing the CSP specification in VDM. Nevertheless, taking the CSP as the

I starting point is bound to have had an effect on the end product.

Similarly, the decomposition of the problem has inevitably been influenced by the
CSP decomposition in order to maintain a visible correspondence between the

1an85

specifications. Other decompositions are possible, and indeed might be considered
more natural to the VDM style.

Polled devices, that is devices which receive a request and then return some data,
are treated as objects on which a REQUEST operation may be performed, and
this seems a fairly natural way to handle them. A consequence of this is that an
operation now takes a finite time to execute, during which other events may have
occurred. This in turn gives rise to a need for some form of protection of that part of
the state being updated. In the past, constructs such as rely/guarantee conditions
have been proposed. In this example, we have avoided rely/guarantee conditions
by having predicates over the history of the state rather than just the current
state. A concurrent state change affected by an operation executing in parallel is
detected by inspecting the last item in that state's history and comparing it with
the current time (that is, the time parameter to the operation).

The handling of cyclic processes like the navigation function and radar display is
not entirely satisfactory. The method used to specify cyclic repetition is to quote
the post-condition of the operation recursively. In the case -of the radar display,
there are ON and OFF operations with their own history. If an OFF operation has
occurred during one of the cycles, this causes termination of the function. In the
navigation function there are no such ON/OFF operations and so there is no guard
on the recursion to ensure termination. It has been assumed that, at some stage,
some kind of ON/OFF facility would have to be introduced into the requirements
to allow orderly start-up and shut-down.

One area in which VDM could have demonstrated its superiority a. in the repre-
sentation and manipulation of data. In several cases a process returns either some
actual data or some computed data depending on whether a device has responded
in time or not. Following the CSP specification (with no further informatiol. avail-
able) the data is simply treated as an event. VDM has the capability of defining
both the structure of the data and the computation performed to produce the data.
The waypoint manager is the component that comes closest to illustrating this, the
most conventional use of VDM.

7.3 Classification of VDM

This section presents the classification of VDM according to our criteria. Note that
although most of the classification is based on our example specification, part of
the classification is based on available VDM literature.

86

7.3.1 Representation

Style - VDM is model-oriented and specifies objects by their functions. It allows
both implicit and explicit specification, and explicit specifications may be
declarative or procedural.

Concurrency - VDM as generally used has no notion of concurrency. Thus the
aspects of concurrency that occur in reactive systems have to be modeled
explicitly. The variation of VDM used to specify our example us es event
and state histories to model the concurrent behavior of the system. Other
approaches that have been used are to introduce rely and guarantee condi-
tions for VDM operations [9] and then to model communication between
concurrently executing processes by means of shared variables.

Communication - Communication may only be introduced into VDM by ex-
plicit modeling. Shared data is probably the easiest approach to such mod-
eling, but no approach is elegant.

Non-Determinism - An operation that has non-deterministic behavior may be
represented in VDM by means of disjunctions in the post-condition of the
operation. If we assume that an operation will either terminate resulting in
post-condition P1 or will terminate resulting in P2 then P1 V P2 describes

jthe post-condition of the operation without stating what determines which
state will result.

Fairness - There is no concept of fairness.

Modularity - In the draft version of the standard [1], a form of parameterized
modules was described. Subsequently, doubt has been cast on the soundness
of these parameterizations and the constructs have been removed from the
main body of the standard. It is true that the definition of functions pro-
vides some modularity. However, for specification of large systems a stronger

notion of modularity is needed, perhaps something closer to abstract data
types is appropriate.

Time - Time must be modeled explicitly. In the avionics example, sporadic
events are easier to handle (by treating them as operations) than periodic
events.

Data - Although the capability is not used within our example, VDM has a very
rich notation for modeling data structures.

87

User Presentation - Not addressed in the avionics example, but we believe
that VDM should be good for representing the user interface.

7.3.2 Derivation

Transformation, Elaboration, & Equivalence - VDM is a general purpose
formal language so that both transformations and elaborations can be per-
formed within the same language and are hence subject to the same proof
rules and proof obligations.

Composition - Composition of operations by operation quotation is made awk- I
ward because post-conditions tend to have large signatures. There is little
else to allow composition of specifications.

7.3.3 Examination

Consistency - The construction of the state model is useful in removing incon-
sistencies from a natural language specification. Under- and over- specifica-
tion are addressed by Jones [10 in terms of the ability to provide a retrieve
function and in the many-oneness of the function.

Safety & Liveness - These are not built-in concepts, and proofs of such prop-
erties depend on how concurrency and communication are being modeled.

Determinacy - It is possible in VDM to specify the requirement for a deter-
miiate solution to a problem with a non-deterministic implementation. For
example, it would be possible to specify a function that given a set returned
the maximal element in the set. By the definition of sets in VDM, the im-
plementation will be non-deterministic, but the result will be determinate.

Correctness - Validation is a problem in all specification methods. It is pos-
sible in principle to animate some VDM specifications or to paraphrase the
VDM back into natural language, but there is nothing in the method which
specifically addresses validation. Verification, on the other hand, is VDM's I
raison d'itre and it defines its own set of proof rules and proof obligations.

881

Chapter 8

Temporal Logic

This chapter specifies the avionics problem using temporal logic and model check-
ing. The system is specified in temporal logic, describing its operation by the set
of logical conditions which are disallowed (the safety conditions) and the set of log-
ical conditions which are allowed (the liveness conditions). Pnueli first introduced
the application of temporal logic to concurrent software specification, and his later
paper [15] is a good survey of the field. The specification in this section, however,
follows the CTL model of Clarke, and this is described in (4]. The model &iecking
part of the specification consists of building a finite state machine, against which
the temporal logic specifications can be checked for consistency. Although we only
show the temporal formulas in this example, we consider both the formulas and

I

the finite state machine model to be a part of the specification of the system. The
steps in the development of a specfication are outlined below.

1. Organize the system into a collection of processes and communications be-
tween the processes. The organization of the system into smaller components

ii

(the processes) makes it easier to understand the operation of the system.

2. Specify the operation of each process as temporal logic formulas, adhering to
lsome naming convention for information exchanged between processdeds.

3. Build a finite state machine representing a model of the process' operation
Ssh for cach process separately. Check the temporal formulas for each process

against the model, to verify the consistency of the formulas.

89

I(

4. Coalesce the process models into a system representation, checking against
the formulas involving the inter-process communications conditions, and then
verify the system operations.

The temporal logic used throughout is Clarke's CTL, though the syntax used differs
from this, since we prefer to use icons rather than alphabetic characters, believing
that this is more easily readable to the uninitiated and is more in keeping with
other temporal logic specifications.

Temporal Operators

The expected iogical operators used throughout are and (A), or (V), not (-i),

equivalence (-), and implies (-.).

The temporal operators to be used are listed below, and the bold word in the
description of the operator is the word to be visualized when reading the formula.

3a - This means that henceforth a is always true.

Oa - This means that in all cases eventually a will be true.

Oa - This means that in some cases eventually a will be true.

oa - This means that in all cases at the next state (instant in time) a will be

true.

oa - This means that in some cases at the next state (instant in time) a will be
true.

ea - This means that at the previous state (instant in time) a was true.

a = b - This is read as strictly implies, and it means that henceforth, if a is
true, then b is true. (a =- b) =df O3(a -+ b).

a U b - This means that in all cases, a is true until the state (instant in time)
when b occurs. The strong until implies that b will eventually occur.

a = b-This means that a is strictly equivalent to b. (a = b) =dr 3(a b).

90

"V

Conventions

Temporal logic is useful for specifying the system as a set of formulas which must
be satisfied. The problem we are dealing with is one in which the same conditions
are repeated over many cycles of operations. Temporal logic does not distinguish
between events occurring at different cycles, but restricts itself to describing what
logical conditions must always be true, and in general this leads to describing the
le3ical conditions which may repeat during a cycle.

The occurrence of an event is mimicked in temporal logic by stating that a logical
condition changes state.

8.1 Specification

Figure 8.1 shows an overview of the processes specified (the MPD is not shown
to avoid clutter) and the interfacing conditions between processes. The processes
specified in the figure relate directly to those represented as processes in the model-
building language SML. Temporal logic per se has, of course, no concept of a
process, but it is a useful way of organizing the problem. Each of the processes in
the diagram is specified using temporal logic in this section.

8.1.1 Handling Time

'rime is not represented explicitly in temporal logic. It is extremely convenient
in temporal logic to discuss the changes in logical conditions which occur, and to
relate these to the eventuality of other conditions at some later time. The problem
we are specifying, however, does depend on real time intervals, and we get around
this by using the following tricks.

S1. In cases where one event must occur before a timer completes, we can state
that the timer will always eventually recur. This does not, of course, explicitly
state that the timer occurs at exact intervals. But in the FSM modeling we
can introduce real time intervals, and if the formulas are true against this
model, then we know that they are true over the real time intervals.

j 2. In other cases, we make use of the power of the until operator, which states
that the condition following the operator will always occur.

* 91

I

|ins sienslors mldcsensors

INS Ins wo*i*n,_,, .HUD~ns

reN A V

ad* ADC sdcworlnqC-w thin loon

HUade
o u t "e w p , d a d e -I o k n jlo n

,0 M Autopflo

RadesHUD

> r da t r dos

Figure 8.1: Processes in Temporal Logic Specification

92

i l ~lii umiilimla mi'-||laim Irol mia'm i m i " amm muinn el • an ia a

I

8.1.2 The ADC and the INS

This subsection specifies the operation of a device, and this device describes the
behavior of the inertial navigation system (INS) and the air data computer (ADC).
We first specify the generic device, and then distinguish the logical variables which
are 'local' to each device, and those which are 'shared' with other subsystems.
Obviously, we need to supply distinguishing names for those shared variables, and
this is done at the end of this subsection.

The generic device is specified first as a perfect device, which includes all of the
behavior to supply a response to a request for data. In a real system, this would
encompass the response of the device, some timers, and a computation if the actual
device fails to respond. We then proceed to introduce the actual device and the
computation.

Perfect Device

The perfect device does not exist. It is valuable, however, to model a perfect
device; we may then compare the specification of the combination of a device and
MCC software to the model. When a request 's received by this device, it will
always respond with data within a predefined maximum time interval, Of course,
the device must be used by a disciplined user, who will not issue a further request
within the maximum response time.

No request will be made of the perfect device until a start has been issued.

Q-,requ U sttrt

Once the condition start is set, it will always remain set.

start =o- Ostart

When the request is received by a perfect device, the data will eventually be sup-
plied by the device before the maxtimer has expired. This implies that the max-
Limer is false until the data becomes set.

*-,requ A requ * o-,maxtimer U data

57 When the data signal is set, it remains set until the next request.

data = data U requ

4 93

I

The next request can only be raised after completion of the maximum time interval.

requ =* o-'requ U maxtimer

There is no mechanism required for the maxtimer quantity. In the previous
formula, however, it is explicitly required that maxtimer must occur, and the
sequence of states leading to its occurrence is specified. We could have introduced
a startimer, which led eventually to a maxtimer, but this would have no effect
on the specification completeness, though it may have made the intention more
obvious. In the model building of a process in SML, there is the ability to measure
time explicitly as a number of cycles of operation. This allows us to determine
that the formulas are true with an explicit timing considerations.

Actual Physical Device

An actual physical device can, of course, fail to return a signal, since it will often
break or lose its communication channel. This is represented by stating that for
some paths eventually the data will be returned.

When a request is generated, the actual physical device will sometimes respond
with a physical signal.

*-,apd.requ A apd.requ , 2apd.data

Reliable Device

A reliable device mimics a perfect device by requesting the data from the actual
physical device and computing an estimate if the device does not respond within a
certain time period. Before describing the safety and liveness conditions, a strict
equivalence is specified. The data response of the perfect device is strictly equiva-
lent to either the data signal or the estimated data.

data = apd.data V est.data

Safety Condition

One condition which should never occur is to have both the device data and the
estimated data present at the same instant.

O-'(apd.data A est.data)

94

I

Liveness Conditions

The request for a data value generates a request to the actual physical device, and

eventually either the data arrives or a timeout occurs.

-requ A requ = oapd.requ A C'(timeout V apd-data)

If the actual physical device responds, the timeout signal is lowered and remains in
this state until a new request to the device is issued. In addition, the data signal

-. remains raised until a new request is received.

apd.data -o((-,timeout A apd.data) U apd.requ) A (-est-data U apd.requ)

If the timeout occurs, then the actual data will not be accepted, and an estimate
will be made and maintained until the next request.

-'apd-data A timeout =, (-napd.data U apd.requ) A (timeout U est-data)

The estimated data is ready before the next request is issued.

est-data =P (est.data U requ) A o(-,timeout U apd-requ)

There is a need to maintain a persistent variable describing whether the device is
working or broken. If it is working, it will remain working until the est-data is
computed. If it has failed, it will remain -'working until apd data is available.

apd.data =,: o(devworking U est-data)

est.data = o(-'dev.working U apddata)

The strong until used in the previous formulas implies that the device will fail
and be restored to operation time after time. Although these conditions seem
rather strange, they are a consequence of the lack of a stopping condition as are
the fairness conditions listed in the next section. The awkwardness caused by the
lack of a stopping condition recurs throughout the specification.I
Fairness Conditions

IThe manner in which the devworking condition is specified requires the repeated
recurrence of both est.data and apd.data. This, of course, will only happen if thej device can be restored after failure and can fail after each restoration.

1O3est-data

OC<apd.data

1 95

I

INS subsystem

The INS subsystem communicates with the rest of the world through the variables
defined below. These are equivalent to the variable requ, data, and dev.working in
an instantiation of the generic device specification. The INS subsystem is viewed
as a perfect device by the NAV process, and as a reliable device by the HUD and
MPD processes.

ins-requ - True when data is requested of the INS.

ins.data - True when data is available from the INS.

ins.working - True when the INS sensor is working.

ADC subsystem

The ADC subsystem communicates with the rest of the world with the variables
defined below. These are equivalent to the variable requ, data, and dev..working in
an instantiation of the generic device specification. The ADC subsystem is viewed
as a perfect device by the NAV process, and as a reliable device by the HUD and
MPD processes.

adc..requ - True when data is requested of the ADC.

adc-data - True when data is available from the ADC.

adc.working - True when the ADC sensor is working.

8.1.3 The Radar

The radar subsystem communicates with the rest of the world through the variables
defined below. These are equivalent to the variable requ and data in an instantiation
of the generic device specification. The radar is viewed as a perfect device by both
the HUD and the MPD.

r.requ - True when data is requested of the radar.

r.data ' True when data is available from the radar.

96

8.1.4 The MPD and the HUD

This section describes the display of data on the HUD from all devices. Information
from the INS, ADC, and radar is displayed on the HUD. The ADC and the INS
behave in the same manner, though presumably in different windows on the HUD.

2.. The radar has a somewhat different behavior.

IINS and ADC Displays on the HUD

jThis section describes the display of information on the HUD from the INS and
ADC processes.I
Definitions

I switch - Indicates whether a switch was touched.

1 dev.working - True whenever the device is working.

disp.broken - True when the "device broken"I icon is flashing on the HUD.

f disp-working - True w a the "device working" icon is flashing on the HUD.

timeout - True when 2 seconds or more have elapsed since the last device icon
started to flash on the display.

IPreliminaries
remove - This is the condition for removing the icon currently flashing on the3 screen.

remove = switch A timeout

Safety Conditions

I The "device working" and "device broken" icons can never be displayed simulta-
neously.

i 0-O(disp-working A disp.broken)

97

I

Liveness Conditions

When neither icon is flashing and the device fails, the disp.broken icon is displayed.
Ths seems rather simple and straightforward, but it turned out to be somewhat
more complicated when the model was built and verification attempted. In fact, the
formula chosen (given below) differs somewhat from the simple statement above.
The reason for this restatement is to cover the condition where simultaneously
the device fails and the icon denoting device failure is removed (implying that the
device recovered temporarily and then failed again).

(*(devworking A -'dispbroken) A
(-,dev.working A -,disp-working)) =* (displbroken U remove)

When the "device broken" icon is flashing and the remove condition arises, then the
display must remove the "device broken" icon. The "device broken" icon cannot
be redisplayed until after a "display working" signal occurs.

remove A disp.broken = o(-idisp.broken U di.sp.working)

When the "device broken" icon disappears and the device is working, then the
"device working" icon must start flashing.

odisp-broken A -'disp.broken A dev.working =o disp.working U remove

When neither icon is flashing and the device starts working, the "device working"

is displayed.

(@(-devworking A -'disp.working) A
(dev-working A -'disp.broken)) =* (disp-broken U remove)

When the "device working" icon is flashing and the remove condition arises, then
the display must remove the "device working" icon. The "display working" signal
cannot be redisplayed until the "display broken" icon has been displayed.

remove A disp-working =, o(-,disp.wor king U disp-broken)

When the "device working" icon disappears and the device is broken, then the
"device broken" icon must start flashing.

odisp.working A -,disp.working A -,dev.working . disp.broken U remove

98

Fairness Conditions

The strong until used in two of the preceding formulas is incorrect for all con-
siderations, since the device may never again fail (or start to work). This can be
circumvented by adding fairness conditions such that the device fails and recovers
infinitely often.

0Q-,dev.working

i QOcdev.working

i. Display of Radar Data on the HUD

The display of radar data on the HUD is under the pilot's control. He can select
the radar to be on or off. When the radar is switched off, the display is cleared.
When the radar is switched on, the data from the radar is updated on the HUD
every 200 ms.

Definitions

r-on - True when the radar display is switched on.

Sr.maxtimer - True when the maximum time interval between displays has ex-
pired.

r-requ - True when a request to the radar for data is issued.

r.data - True when the radar data is available.

r-disp - True when the radar display has been updated.

j 1 r.clear - True when the radar display is to be cleared.

j Liveness Conditions

1When the radar display is switched off, a clear signal is sent and the timer is
disabled.

or-on A -,ron o(r-dear A (-'r.disp 1U r.on))

1 99

"N

A maxtimer signal is generated autonomously on a periodic basis.

30$r4naxtimer

When the r.maxtimer is set and the radar is on, eventually a request to the radar
subsystem is generated.

r.maxtimer A r.on =€, o(-r..maa;timer U (r.disp V r.clear)) A O$r-requ

When a request is made, eventually the data will be available; it will then be
displayed.

r.requ = . 0(r.data Ui (r.disp V r-clear))

Notes

1. It may seem to the reader on initial inspection that the raising of the r..on
signal should trigger the starting of the timer, which should then occur peri-
odically until the -'r.on condition arises. Indeed, this was the approach we
took initially; however, the problem with this approach was that the condi-
tion could change from on to off to on to off within a display cycle, and the
model to handle those situttions, while still satisfying the temporal formulas
(which obviously differed from those above), was becoming quite complicated
and still did not work. We compromised, changed the original formulas until
we derived those presented above, and were able to verify them against the
new (simple) model quite easily. The only compromise to system operation
is that the display of data to the pilot after he switches the radar on will be
delayed by (at most) the interval of the radar update (200 Ms. in this case),

2. The maxtimer signal can be modeled exactly, if awkwardly, by using the next
(o) construct repeatedly. For example, if an individual cycle in the model
took 50 ms., then a delay of 4 cycles between maxtimers could be expressed
a,,*

maxtimer = o(-,maxtimer A o(-maxtimer A o(-'maxtimer A omaxtimer)))

We were not especially comfortable with this particular expression of the

problem and did not rise it.

1001

Multi-Purpose Display (MPD)

The multi-purpose display is another display available to the pilot. Once again,
the behavior of the INS and ADC components is exactly the same on this display,
though they differ somewhat from the displays on the HUD. There is also a radar
display on the MPD, but this is exactly the same as that of the HUD.

INS and ADC displays on the MPD

The MPD display for both these devices shows the device as either working or
broken. There are no particular timing requirements. In this section, the generic

9variables are denoted by xTx, which is replaced by adc or ins.

xxx-icon.working - The icon showing that device xxx is working is currently
being displayed.

xxx-icon-broken - The icon showing that device xxx is broken is currently
being displayed.

Safety Condition

The device cannot display working and broken simultaneously.

O-n(xxx.icon.wor king A xxx.icon.broken)

Liveness Conditions

When the icon designating the device is working is displayed, then the device must

have been working in the previous state.

xxx.icon-wor king ; oxxxworking

When the icon designating the device is broken is displayed, then the device must

t have been broken in the previous state.

XXX.icon.broken =, *-'xxx.working

101

8.1.5 The Waypoint Manager

This is an initial description of the waypoint manager. The waypoint manager
nandles a sequence of waypoints (up to 20). It Teceives a request for a waypoint,
and responds by giving the next waypoint in the sequence. We assume that the
new waypoint given by the waypoint manager allows the navigation subsystem to
determine when to ask for a new waypoint. Hence, the waypoint manager merely
accepts a request for a new waypoint and returns a new waypoint from a sequence
of waypoints.

Definitions

In this section, we are dealing with a sequence K of waypoints, and each waypoint
is denoted by an index (1 < k < 20). It is convenient to introduce a second
sequence, K-, that is the same as sequence K, except that it is missing the last
element.

Vi.1 <i < 19 1 Ki = If.

beyondk - When this is true, the aircraft is beyond waypointk.

wrequ - The next waypoint in the sequence is requested.

w.data - The next waypoint is available.

Safety Conditions

When the aircraft has not yet reached waypointk1 , it obviously has not reached
any of the waypoints beyond waypointk1 in the sequence.

Vk, k1 E K, k > kl-beyondkl =o -beyondk

When the aircraft is beyond sectorkl, it must also be beyond the previous way-
points.

Vk, k1 E K, k < kl, beyondkl = beyondk

102

Liveness Conditions

When a request for the next waypoint is issued, then the w.data signal will be false
during the computation of the new waypoint.

w.requ A (3k C K-, beyodk A -beyondk+) =O -'w.data U beyondk+l

When the new waypoint is available, the appropriate beyond signal is raised at the
same ti'ne as the data available signal.

Vk E K, o-beyondk A beyondk w..data

If there is a request for a waypoint after the maximum number have been given,
the request is ignored by leaving the value w.data set.

w.requ A beyond2o = w.data

8.1.6 The Autopilot

The autopilot accepts commands from the navigational unit and turns them into
control actions.

Definitions

]I course -- Data from the navigatic nal unit is available.

I comms - Commands are to be sent to the autopilot.

Liveness Conditions

The autopilot performs these actions by awaiting the navigational unit's signal,I changing state, then initiating the commands before the course signal is changed

again.
*-'course A course #- course U comms

1 103

I

8.1.7 The Navigation Function

The navigation subsystem computes the course to be followed, after collecting data
from the INS, ADC, and waypoint manager subsystems. Hence, the navigation
process has to issue commands to each of the above perfect devices, receive all
results, and compute a course.

Definitions

n-maxtimer - Maximum time interval between invocations of navigation.

ins.req - Request for data from the INS.

adc-req - Request for data from the ADC.

ins-data - Data is available from the INS in response to the request.

adc-data - Data is available from the ADC in response to the request.

course - The course heading has been computed.

w-requ - Request for a new waypoint.

w-data - A new waypoint has just been delivered.

Liveness Conditions

The n.maxtimer signal is always repeated.

0cvn-maxtimer

When the n-maxtimer occurs, it is reset, and the course must be computed before
it is again set. In addition, the requests to the INS and ADC are eventually issued.

The use of eventually when issuing commands is deliberate, since it allows the
designer the maximum flexibility in communicating with the two devices.

n.maxtimer # o(-n-nrmaxtimer t course) A 0insrequ A C'adc.requ

104

4

When the ins.requ signal is set, the ins.data signal must be reset at the next state,
and eventually the ins.data signal will set. This corresponds to communicating
with the perfect device described previously.

ins-requ = o-'insadata A Oins.data

When the adc.requ signal is set, the adc.data signal is reset, and eventually the
adc..data signal will be set. Once again, this is a communication with a perfect
device.

adc.requ =*- o-'adc.data A Oadc.data

WLen both requests have been made, the course signal must be reset and remain
reset until the data signals arive and the waypoint data is available.

adc.requ A ins.requ #- o(-,course 1U (ins.data A adc.data A ow..data))

When the ins.data and adc- data are both determined, it is now also known if the
alrcraft is at a waypoint. If it is, a new waypoint is requested from the waypoint
manager. This can be expressed by stating that some of the time, a waypoint
manager request will be issued in the next time interval. When the waypoint
request is issued, the waypoint data will be available eventually.

ins.data A adc.data =, o.w..requ

w-requ = , --,w.data A Ow-data

7When the adc-data and ins-data signals are available, and the waypoint data is
4also available, then eventually the course signal will be computed

ins-data A adc-data A ow.-dta =* 0(course U n.maztimer)

Note that we need the next symbol in the above formula because we use the nextI symbol when setting w.req in the previous formulas.

1 8.2 Comments on Specification

i General

The previous section specified the problem in temporal logic, with an overview
I g~aphical model showing the breakup into large-grained communicating processes.

The model-checking part of the method consists of two parts:

1 105

U

* Building a Finite State Machine (FSM) model of the system using the tool
State Machine Language (SML); and

* Checking the consistency of the temporal logic formulas against the con-
structed model using the Model Checking Tool (MCB).

Both of these tools were developed by Ed Clarke and others at CMU.

The preceding description is deceptively simple, and the FSMs have to be built in a
modular fashion. This was done by building a model for each process, and checking
the formulas against the standalone models. In some cases, of course, stubs were
needed in these models of individual processes to account for external conditions.
Once all of the models for each individual process were checked, larger grained
subsystems were formed by composing (and changing) the individual process mod-
els. Each of these subsystems could then be checked in turn against the applicable
temporal formulas. It was not possible to compose all of the models into a single
system model, since this exceeded the capacity of the modeling tools. However,
one model included the INS, ADC, waypoint manager, navigation, and autopilot.
Another included the HUD display for the INS, and yet another included the radar t
display.

Lack of a "stop" condition

One of the obvious flaws in the requirements is the lack of a "stop" condition com-
plementing the "start" condition for devices. This oversight caused some problems
in two ways. First, the strong until (U) as used in a number of the formulas states
that the device must eventually fail and then eventually work again, which is
not a particularly comfortable representation of reality. A "stop" condition would
have made these conditions more reasonable. For example, we could state that
the device was working until it failed or a "stop" condition arose. The fairness
conditions would also have made more sense if a "stop" condition were present.,
We considered using a weaker form of until but resolved that if changes were to
be made, the introduction of a "stop" condition would make more sense.

Understatement

One of the convenient properties of temporal logic is that one can in any formula
understate the conditions on the expected until' operator. For example, in the

106

formulas for the display of the INS and ADC data on the HUD, it was straight-
forward to declare that when the icon representing the device is broken is being
displayed and the remove condition arises, the "device broken" icon will be reset
until the "display working" icon has been displayed. In actual fact, of course, the
"device broken" icon cannot be redisplayed until the "display working" icon has

R disappeared. However, there is no need to state this more complicated condition,
since it is implied by other conditions. For example, the safety condition does
not allow the "device broken" icon and the "device working" icon to be displayed

4 simultaneously.

Independence

In deriving a set of temporal formulas for a particular process, it is best to state the
formulas as independently from the other formulas as possible, such that changes
to the other processes will have minimal affect on the process being specified.

Generality

In deriving the specification for any process, it is best to state the formulas in the
most generally applicable fashion. This allows the engneer doing the refinement
the greatest degree of freedom in his optimization choices. For example, in the
navigation subsystem, the second formula states that after the maxtimer has been
set, eventually a request for data will be issued to the INS and ADC. It leaves the
designer at the next stage the freedom of deciding the order of the two requests, and
whether to do them in parallel or sequentially. If, for example, at a later stage in

I the development the two must be requested sequentially (for example, because they
shared some hardware channel), then this can be done within the context of this
formula, and the restriction can be added as a further formula at the appropriateftime. This allows for postponement of design decisions until as late as possible
in the development. The advantage of this is obviously that when maintenance
changes occur, the highest level specifications should remain relatively untouched
(since they are very general), and the changes can be introduced at the appropriate
lower level.

1
I

I 107

I

8.3 Classification of Temporal Logic

8.3.1 Representation

Style - Temporal logic specifies the behavior of the system by describing how
the logical conditions associated with the system change over time. In order
to prove consistency between the formulas, a model of the system rust be
built in the form of a finite state machine. The temporal logic manner of
description is declarative, while the model-building language is procedural.

Concurrency - There is no direct representation of processes or events in tem-
poral logic, but the FSM models represent concurrent processes and the
events are easily mimicked as changes in logical conditions. Each formula
has to hold independently of the other formulas at all times, and many con-
ditions can change in each instant in time. The formulas represent conditions
which hold across a number of processes.

Communication - Temporal logic communicates by shared data, and other
types of communication have to be modeled.

Non-Determinism - Temporal logic is non-deterministic, and the "for some
paths" operators are especially usefudin this regard, though non-determinism
can also be achieved without using these operators.

Fairness - Temporal logic can explicitly express the fairness conditions required
to constrain the non-deterministic behavior. Although fairness plays only a
small part in the avionics example specification, there are many applications
in which it has a significant role.

Modularity - The modularity of the temporal logic is at the level of individual
formulas, while that of the modeling language is at the level of processes. The
specifier is forced by the dual nature of the technique to break the system
into processes to be modeled by FSMs, to apply the temporal logic formulas
to these models for verification, and to compose the models into larger units
which satisfy the combined formulas. Formulas obviously apply to different
processes.

Time - The purpose of temporal logic is to describe sequences of changing con-
ditions over time, and it is a perfect instrument for this purpose. However, it
does not handle explicit timing requirements comfortably. The FSM model
does, however, explicitly represent time as a sequence of clock ticks. Hence

108

explicit wall clock requirements can be loosely specified in the logic and ver-

ified against the FSM.

Data - Temporal logic is restricted to representing logical conditions.

User Presentation - Temporal logic can describe only those aspects which can
be described as logical conditions.

8.3.2 Derivation

Transformation - This does rot seem to be particularly applicable to temporal
logic. Transforming the FSM into an application would seem like a reasonably
easy step to achieve, though it was not done in this study.

Elaboration - There are numerous places in the specification where a specifi-
cation was created at one level and then elaborated to include more func-
tionality, for example, by defining a perfect device, then an actual device,
and finally a reliable device. This was done without changing in any way the
perfect device definition, and the reliable device still satisfies the properties
of the perfect device.

Composition - The specification is produced incrementally, with the temporal
logic specifying the behavior of each part, an FSM model for the part being
built, and the formulas verified against the model. The composition of the
FSM models usually included making small changes to one or other of theimodels. The major problem, however, is one of scale; a single FSM represent-
ing the whole system could not be generated, since it exceeded the capability
of the toolset. (One partial FSM was about 2200 nodes.) This problem
may be alleviated with a new toolset, compositional state machine language
(CSML) completing development, but we have not yet used the new method.
In addition, the temporal logic is propositional rather than predicate, and
hence lacks the ability to deal with enumerated quantifiers- this was not a
problem in the chosen example, but is a problem in many systems.

- 8.3.3 Examinations

Equivalence - This is demonstrated by the verification that formulas are con-
sistent against an FSM. Two sets of formulas can be true against a single
FSM,.yet still allow different behaviors. Similarly one set of formulas can be

I -109

I

true against two different FSM models. There is no strong evidence that such
equivalencing is particularly meaningful. On the other hand, we were able to
demonstrate that the behavior of the comibination of the actual device and
the reliable device was equivalent to the behavior of the perfect device.

Consistency - The consistency of the temporal formulas may be verified by
checking them against a finite state machine. This may be done by consid-
ering the system to consist of a number of processes, specifying the behavior
of each process and its interaction with other processes in temporal logic,
building FSMs to model each process, and verifying the truth of each for-
mula against the corresponding FSM. The FSMs may be coalesced into larger
models and the verification continued. This approach allows the verification
of consistency as specification proceeds. Unfortunately for this approach,
problems of scale arise and it is often impossible to check a complete speci-
fication for consistency.

Over-Specification - In principle, once the engineer has a consistent specifica-
tion, he can then determine if any parts of the specification can be derived
from other parts. But we did not attempt to do this and believe that the
difficulty of doing this outweighs any foreseeable advantages.

Implementation Bias - With a little self-discipline, the specifier can easily
avoid adding too much detail to the specification, and it is straightforward
to express the problem in a very abstract manner, so that decisions can be
delayed until the appropriate point where optimization is based on obvious
choices.

Ambiguity - Temporal logic allows the specifier to mimic any desirable ambi-
guity in the requirements, thus allowing a decision to be made at a later stage
in the life cycle, when the grounds for an optimal decision may be clearer.

Under-Specification - We consistently under-specified parts of the system ini-
tially, and proceeded to improve the specification as we went along. There is
no explicit way in which under-specification reveals itself; one has to rely on
the good judgement of the specifier. It is reasonable to expect that guidelines
to avoid under-specification could be generated.

Safety - Temporal logic encourages the separation of safety conditions from live-
ness conditions. Since the safety conditions express conditions which must
not occur, this is very useful. It forces the specifier to organize his thoughts in
terms of the conditions which should not arise in the system. The safety con-
ditions were not very useful in deriving an FSM model of system operation,

110

I

Isince they merely state the conditions which must not happen. However,
they insure that the model built does not accidently have an undesirable side
effect.

Liveness - Temporal logic allows one to express the liveness conditions describ-
Iing the desired operations of the system, and its responses to changes in input

conditions. The liveness conditions were useful in building the FSM model.

j Validation - The duality of the specification, in terms of developing both a
temporal logic specification and an FSM model helps in the validation pro-
cess. One can demonstrate to the user both a declarative and a procedural
description of the system. It is straightforward to have the customer express
further scenarios, write these as temporal logic formulas, and verify them
against the model for consistency.

Correctness - The correctness of the formulas against the model is a given in
this process of creating both a specification and a model. Since no devel-
opment of lower level objects (design, code) was attempted, it is not clear
whether this is easy or difficult. The fact that an FSM- model of the system
was built and verified would lead one to expect that further development
would be started from the FSM.

I

1111

A ie|| lu nm nne n n rm u u nn ianmia lI

/

.1

I

i

'I

112 I

Chapter 9

Comparative Evaluation

This chapter summarizes our comments on the problem defined in Section 5 and
presents a tabular summary of the classifications.

9.1 Comments on the Problem

The features of the avionics system that we believe are ambiguous or at least need
some dialogue between the specifiers and the developers of the requirements are
organized into three groups: unexpected behaviors, design decisions, and changes
in requirements,

19.1.1 Unexpected Behaviors

As stated in the requirements, the HUD and MPD get updated when a deviceIchanges status from working to broken or vice versa. However, there is an addi-
tional requirement that the HUD will blink for at least 2 seconds when such an
event occurs. We have assumed from the text that the display will not be changed
for a minimum of those 2 seconds. This can lead to an anomalous and perhaps
unexpected behavior. We made this discovery while creating the specification and,
though we cannot say that we would not have discovered this anomaly when de-

AL signing the system, we can say that we discovered the problem before any design
occurred (and, in a real development, before any effort would have been wasted).

~113
, ~ mi in" U iI I i a mmmuu nnnn mn i n uu m nu um il N n i • H l • n m ni u m

Consider the case, for example, when the INS fails to provide data on time (for
whatever reason). Both the HUD and MPD in this case display that the INS is
broken, the HUD flashing the information. Now, assume that before the 2 seconds
have passed, the INS starts responding normally. At this point, the MPD starts
displaying that the INS is working, but the HUD still flashes the message that the
INS is broken. Thus, the pilot is presented with inconsistent information that may
not be a desirable consequence of the requirements. Such anomalies are recognized
during the process of validating the specification, a process we only carried out
loosely. During the validation process, the validators will create scenarios and
use the specification as a model to predict the behavior of the system. Once the
scenario has been created, the system behavior can be accurately predicted. This is
different from the case in which the requirements document is being validated, since
ambiguities in interpretation of the document may lead to inaccurate predictions
of behavior.

It may be that the requirements should be altered in order to eliminate this
anomaly.

An interesting and unexpected (though not harmful) behavior was the discovery
that the INS and ADC devices could be treated as having identical behaviors.
Using the specification techniques to create an abstract specification of the system
makes this similarity in behavior obvious. Such a clear statement of common
behavior has benefits for implementation where communication between the MCC
and, say, the INS may reuse the code implementing communication between the
MCC and the ADC.

9.1.2 Design Decisions

For the purpose of developing our specifications, we have assumed that all of the
devices work in some polled manner. This may be an incorrect decision on our
part. Equally well, the devices could operate by placing somewhere into memory
the required information and potentially even reporting on their own status. This
would fundamentally change the specification. Were we developing a real system,
we would expect to query the system architects to discover how the devices actually
work before progressing very far in writing the specification.

Similarly we have assumed that we may have as many timers, of varying lengths
as we need. Again, were we developing a real system specification, we would have
to query the system architects concerning the nature of clock interrupts and the
granularity of the timers that could be -derived. It might. be the case that the

114

only interrupt available would be a simple cyclically generated pulse. This would
fundamentally alter the structure of our specification.

The second of these decisions may be thought of as a specification convenience, in
that it is possible to model all of these independent clocks using a single clock
process generating interrupts to appropriate processes at the desired intervals.
However, the issue of the manner in which we have assumed that the devices
communicate information is a more fundamental issue. Our specification assumes
that the devices have to be requested to provide information; an alternative form
of device is one that continually updates an information store and that the MCC
reads this store when it needs the information. Such a device behavior would alter
(perhaps simplify) the structure of the specification and we would not expect it to
be modeled by the behavior described in our specifications.

We had to resolve an ambiguity in the requirements document. The text

the pilot and autopilot steering commands

in the system statement is ambiguous. It is not clear whether these are commands
given to, or accepted from, the pilot and autopilot by the rest of the system. We
decided that these were commands sent to the pilot and autopilot.

9.1.3 Choices in the Requirements

As was shown in the CSP specification, there were a number of alternative speci-
fications for the iadar displays. On the assumption that the requirements meant
that the display had to be updated precisely every 200 ms., the most complicatedI specification was the one that most closely satisfied our interpretation of the re-
quirements. However, this specification required the use of two timers that would
make the resultant developed system more complicated, place a higher burden on
interrupts, and would therefore be harder to test (or verify) for correctness. We
could offer the system architects the alternative specifications pointing out the
consequences of each of the alternatives, and an appropriate change in the require-
ments could simplify the specification and resultant system, potentially leading to
a cheaper system.

I

I
=_ 115

I

9.2 Comparison of Classifications

We have, in the previous chapters, presented our specifications of the sample prob-
lem and classified the techniques according to our criteria. This section collates
those classifications and presents them in a tabular form. We intend this section
to provide a rapid way of searching for the technique most suited to a problem.

We repeat that the data for these tabulations arises from two major sources: first,
from the sampie problem specifications and, second, (to evaluate the techniques
against criteria not addressed by our example system) from available literature
describing the techniques. We would also like to state that the data does represent
a value judgment on our part. We have attempted to maintain a consensus opinion
for each of these data values in order to minimize the personal bias of each of the
authors. Because each author wrote one of the specifications, each of us would
have probably evaluated the specification techniques we used higher than deserved.
Further, a consensus made a genuine comparison bctween the techniques in each
of the classification criteria easier.

Before we describe the tabulations, we stress that it is easy to misinterpret the
results presented, and so we will attempt to convey what information may be
inferred from the tables, as well as the information that could be incorrectly inferred
from the tables.

We use a numeric scheme to compare the techniques on specific criteria, not to score
them. We use higher values to indicate a better performance of the technique in the
particular classification. It would not be correct to sum the values for a technique
and compare that sum against the equivalent value for some other technique and
then to state "technique A is better than technique B." Differences in data values
imply differences in the techniques and are not a precise measure of quality. It
is fair to say that a higher value in a specific category does imply that, in our
opinion, the technique performs better in that category than a technique with a
lower value.

9.2.1 Interpretation of Table Data

As stated, we use numeric values to compare the techniques in each category. The
following are the interpretations to be assigned to the numeric values.

0. The specification technique has no capability in the particular classification

category.

116

,:

1. The specification technique can be used to address the concerns of the cat-
egory, but the manner of doing so obscures the expression of the system
requirements.

I2. The specification technique addresses the concept in a natural manner, but
comments in the form of annotations to the specification may be required
or a non-standard interpretation of the meaning of the constructs of the
specification language might have to be used.

3. The specification technique addresses the concept in a natural manner, and
3there is no need for changes to the meaning of the constructs.

After each table, we discuss the relative importance of the fields and compare the
specification techniques.

9.2.2 Representations

Table 9.1 is a collection of the criteria in the representation category for the three
techniques evaluated in this report. Concepts such as "style" and "communication"
are not evaluated numerically because it makes no sense to state, for example, that
synchronous message passing is better than use of shared data.

Category CSP VDM Temporal Logic
Style Behavioral Functional Behavioral
Concurrency 3 1 3
Communication Synchronous None Shared Data

message passing
Non-determinism 3 3 3
Fairness 0 0 3
Modularity 3 1 1
Time 2 1 2
Data 0 3 0
User Presentation 0 2 0

Table 9.1: Representations

Concurrency - Both CSP and temporal logic were designed for the specification
of concurrent systems, whereas with VDM we had to explicitly model the

U117

In n m n mu • u m a n nn mn iua m n mm mm ll au mmm u mu |m u u no n nuum • umu un m mn u n u uum

concurrent aspects of our sample system, thus obscuring the description of
the function of the system. This explicit modeling led to specifications that
we consider to be harder to read than the specifications in CSP and temn,." al
logic.

Non-Determinism - The three techniques evaluated are well able to specify
non-deterministic systems. In CSP, the user must explicitly introduce non-
determinism through the use of the appropriate operator. This means that if
a system is to be deterministic, the specifier may use a deterministic subset
of the notation.

Fairness - CSP treats fairness as an implementation issue, and thus the concept
cannot be expressed using the CSP notation. VDM does not explicitly ad-
dress issues of fairness. However, since VDM has to model concurrency, any
notion of fairness required can be added to the language. Temporal logic al-
lows the expression of fairness constraints, both in the logic and in the model
checking language SML. It should be noted that we did not find the inability
to represent fairness to be a problem in the CSP and VDM specifications, in-
dicating that fairness is not an issue in the creation of a specification, though
it may become more important when examining the specification.

Modularity - Only CSP had a true notion of modularity with the division of
the specification into a number of processes. There are some experimental
ways to represent modularity in temporal logic and VDM; however, we have
not considered such variants in this report due to lack of resources and an
attempt to evaluate stable specification techniques. Modularity, however,
was an important factor in the specification, and the ability to break the
specification into a number of units was helpful.

Time - None of the techniques explicitly discusses time. We found that mod-
eling timing concepts was straightforward in both CSP and temporal logic.
Again, in VDM time had to be explicitly modeled; however, this was less
natural than in CSP or temporal logic. We would add that although the
expression of time used in the specifications might not be considered as fully
formal, we do consider that the specification accurately and unambiguously
expressed our requirements.

Data - Of the techniques investigated, only VDM has the capability of express-
ing complex data constructs. We note, though, that the problem itself does
not contain many requirements for the specification of data constructs; the
waypoint manager would have been the component to benefit most by such7
a capability.

118

" , m ~ U nl mml ia ~ m mii m~u i |m• U, ,

4User Presentation O Only VDM has the capability of specifying 'screen real-
estate," that is, the position of icons or characters on a screen. Our speci-
fication does not do this. We believe that we have specified the important
information, the type of data to be displayed and the circumstances under
which such data should be displayed. We consider that it is inappropriate to
make explicit decisions about specific screen displays at this early stage in
the development of a system.

9.2.3 Derivations

I. Table 9.2 displays the collected classification for the ways in which a specification
may be manipulated.

Category CSP VDM Temporal Logic

; Trz nsformation 3 3 3
Elaboration 2 3 1
Composition 3 1 1

Table 9.2: Derivations

Transformation - All the techniques are well able to transform specifications
j and provide appropriate transformation rules.

Elaboration - VDM was designed as a language for expressing both specifica-
tion and design issues, so it is able to elaborate specifications easily. With
some restrictions, CSP is also able to elaborate specifications, as we have
shown in our specifications. However, using CSP for refinement of events re-jquires the specifier to introduce into a design the same event names as were
used in the specification, or at least some sequence of events in the design
that represents the event described in the specification.

Composition - The use of the CSP parallel combinator proved to be important
in the specification. Given the modular construction of the specification, a

Iform of composition was important. It should be stated that we found this a
natural way to develop the specification of the system. Since neither VDM

1 nor temporal logic expresses concepts of modularity, each has only limited
capability for composing pieces of specification to form new specifications.

1 119

I

9.2.4 Examinations

Table 9.3 lists the classifications for the types of examination that may be per-
formed on the specifications.

Category CSP VDM TemporalLogic

Equivalence 3 3 3
Consistency 3 3 3
Over Specification 1 2 2
Safety and Liveness 3 1 3
Determinacy 1 2 2
Validation 2 1 1
Verification 2 3 2

Table 9.3: Examinations

Equivalence- Since all of the techniques use transformation as a derivation
process, they all provide mechanisms for determining that two specifications
are equivalent.

Consistency - In all three methods, the consistency of the specification can be
checked.

In principle, both CSP and temporal logic have sufficient rules to determine
if any portion of the specification can be derived from some other portion of
the specification. However, this is difficult to do and not easily automated.
For VDM this may be performed in a localized fashion. For example, it is
possible to show that part of a pre-condition is implied by other parts of
the pre-condition. However, in the more global case of considering the entire
specification, it is not clear how examinations for over-specification may be
performed.

In terms of implementation bias, a CSP model-based specification introduces
a great deal of implementation bias since it may be too explicit; trace-based
specifications should introduce less bias. Both temporal logic and VDM, by
use of more abstract specification styles, introduce less bias than the CSP
model-based specifications.

Safety and Liveness - Temporal logic encourages the specification to contain
standalone safety conditions describing what the system is not allowed t6

120

do. For example, the device working and device broken icons cannot be dis-
played simultaneously. This is stated quite independently of the liveness
conditions specifying how these two icons are to be displayed as the device
changes state. Since the liveness conditions in most significant snecifications
are quite complicated, the safety conditions allow the explicit and straightfor-
ward specification of conditions that must not arise. This can also be done
using traces in VDM and CSP; however, these methods do not especially
encourage the specifier to write separate safety conditions.

All three methods allow the liveness conditions to be expressed, though the
traces have been grafted on to VDM, making it more cumbersome.

Determinacy - The manner in which we have used CSP in our specification
does not describe data values or the notion of passing data between processes.
Thus, we cannot examine a process to see if it is determinate. For VDM and
temporal logic we can perform some tests of the systems being determinate,
though these examinations have not been performed in our example.

Validation - CSP validates that the specification meets the intentions of the re-
quirements. This is true because CSP was developed to deal with processes
and events, does so in an obvious way, and the composition of different mod-
ules is relatively painless.

Verification - One of the strengths of VDM that is not demonstrated in this re-
port is the ability to refine a specification through design and implementation
levels and to verify that the lower levels satisfy the upper level specifications.

j 9.3 Conclusions Based on Evaluations

Looking at the evaluations, we can conclude that the three techniques seem fairly
equal. They each have strengths (or weaknesses) in different criteria. We note that
some of the judgements such as user presentation are based on available literature
rather than on our example specifications and may not be born out in practice.

Although the techniques appear relatively equal in terms of applicability to the
specification of reactive systems, we do not believe this to be the case. Thisj appearance of equality arises from giving each of the criteria equal weight, which
may not be appropriate for all classes of system.

I For example, we consider that the specification of the user's view of data being
presented may not be appropriate at this level of specification when describing

121

nm nu In nn a i u nn • n muu u nn m m n n n uo

reactive systems. Indeed, to attempt to do so at this stage may be a case of making
decisions too early in bhe life of the project and certainly a case of making the
decision before other considerations that affect that decision are fully understood.
We restate that for reactive systems, user presentation may not be an important
criterion at the specification stage; obviously, if the system being specified were a
user interface system, the user presentation would be very important.

Similarly, in the avionics example, there was only one relatively uncomplicated
data structure (the waypoint manager). We consider this to be typical of reactive
systems; that description of data structures may not be as important a factor as
the description of interactions between processes.

In the derivations category, we found that perhaps the most important of the
criteria, in terms of constructing a specification, was the ability to compose pieces
of specification to fom a specification of larger systems.

Based solely on the work performed in developing the example specifications, we
considered CSP to be the easiest technique to use, with temporal logic a close
second. We felt that the extended VDM was not appropriate for this type of
specification, though we believe that this may be a biased opinion and that a
specification developed independently of the CSP specification may have provided
better results for VDM.

t22

tI

A

Chapter 10

Conclusions

In the preceding chapter, we presented our evaluations of the three techniques
7investigated in this report. This chapter presents our conclusions with respect to

the applicability of formal specification techniques based on our examples and our
discussions with method developers and users. We also discuss possible extensions
to this work, both in terms of widening the survey effort to cover more techniquee
and in terms of deepening the investigation into those techniques covered so far.

10.1 Conclusions

Our experience with the sample problem gives us confidence that use of an appro-
priate formal specification technique clarifies issues at the specification phase of
a system's development and that formal specification techniques are applicable to
the domain of avionics systems. Indeed, based on our work and the result of the
survey of practitioners, we believe that formal specification techniques are readyIfor application to real systems.

Formal specifications provide a good basis for communication between team mem-
bers. When we were comparing our specifications it was easy to understand exactly
what other authors had written due to the precise nature of the descriptions, Thus,
we were able to quickly see differences between the systems specified using the dif-

1ferent techniques and to remove these differences.

There is a growing interest in the use of formal specification, especially in Europe.
jTo date, formalists in the U.S.A. have concentrated on verifying pieces of systems;

there is a growing interest in the use of fornalism to specify entire systems.

1123

I

That the classifications of the three techniques presented in this report showed
differences between the techniques gave us some confidence in our classification
criteria as being a useful guide to distinguishing between specification techniques.

There are differences between specification techniques. The choice of formalism
will affect the structure of the specification, which will in turn probably bias the
program developed from the specification. Thus, the initial choice of specification
technique is a very important step in the development of a system.

In Chapter 9 we presented a summary of the classifications of the techniques we
investigated. Based on this summary we would choose CSP for the specification of
real-time, software dependent systems. However, we do not consider that CSP is so
much better than temporal logic that developers already versed in temporal logic
should switch to CSP. A second issue is that we have not considered the process
of constructing a design from the specification. It is unclear how to construct a
system design from a CSP specification, whereas the use of state machine models
and temporal logic provide a more familiar method for the construction of a design.
So although we prefer CSP for the construction and manipulation of a specification,
considering the entire development life cycle, temporal logic may prove to be a more
worthwhile approach.

10.2 Future Work

In this section we attempt to capture some of the ideas for future effort that
occurred to us while performing this survey. These ideas seem to form natural
extensions to the survey.

The most obvious extension is to construct more specifications of the same example
using yet more specification techniques, specifically, techniques such as Petri nets
and LOTOS, both of which are being used in the field of telecommunication proto-
col specification by various companies and researchers. Although LOTOS is similar
in some ways to CSP, the addition of an algebraic style of specifying abstract data
would mean that a LOTOS specification should be able to describe more of the
system than the CSP specification. LOTOS is based in part on Milner's Calculus
of Communicating Systems (CCS) [13], and an investigation into the differences
between a LOTOS specification and a CCS specification would prove interesting.
Another promising technique that should be applied to our problem is the UNITY
approach [2].

124

7 ,

While answering our survey questions, a number of specification technique devel-
T opers suggested that they would like to anply their methods to our problem. So

a related possibility is to pass out this report to anyone who wishes to use My
Favorite Method (MFM). We would then act as a "clearinghouse" and at intervals
produce updates to this report with the additional specifications and classifications
of the techniques. We will attempt to keep the report object'-,e by examination of
the additional specifications and stating our views with respect to the evaluation
of the technique.

In our classification criteria, we list a number of miscellaneous criteria which,
though important, we did not intend to use in classifying the techniques. SomeIof these criteria, such as whether or not interesting subsets of the technique exist,
could be investigated. If such subsets existed and the system could be specified
using such a subset, then the effort involved in developing and subsequently rea-
soning about the specification might be reduced. Similarly, investigations into the
differences in the reasoning systems of the specification techniques would prove
valuable, since these differences may affect the information that can be determined
about the behavior of the system from the specification.

Our classification shows that there are differences between the specification tech-I niques investigated. To determine whether or not these differences are significant,
we should take a system and classify the system according to our criteria. This
should then provide us with some sort of suitability index of the specification tech-
niques. We could then use the specification techniques on the problem to determine
whether the different techniques match our expectations. If they did, we would
have greater confidence that the selection of technique could be made on the basis
of classifying the problem according to our criteria.

The problem we chose was sufficiently small that it could be specified in a number of
different ways. It would be interesting to take a larger, more realistic problem and,
using just one of the specification techniques, perform a more in-depth study of the
use of the technique. This would determine both the strengths and weaknesses of
the chosen technique, but would also provide an example of a formal specification
of a real system.

The process of deriving a specification needs to be investigated. In our example,
we first wrotc a specification in CSP and the other specifications were derived, to
some extent, from that CSP specification. However, the process of deriving the
CSP specification was not studied and was, in fact, carried out fairly informally.

- An investigation into the process of deriving a specification and validating that the
3 specification matches the user's requirements should suggest requirements on the

language of the technique as well as the manipulations that may be performed.

125

For example, it would seem that a technique that lends itself to animation may be
easier to validate than a technique that cannot be animated. However, this matter
needs some experimentation.

Finally, we mentioned at the start of this report that we consider formal specifica-
tion to be the basis of a formal development. A study should be made of how each A
of the techniques fits into the entire life cycle. For example, having derived the
formal specification, how may it be developed into an executable program? How
does the specification assist other parts of the entire development team, such as the
quality assurance and maintenance groups? These questions need to be answered
so that specification becomes not an end in itself, but a means of developing higher T

quality systems at a reduced total development cost.

1
I

126

• i n • tal N il~iin i im ~oe l NNnaaDINImll i I i iiiallil In i in Ul I i

Bibliography

[1] British Standards Institute BSI IST/5/50. VDM Specification Language
(Draft), April 1989.

[2] K.M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-
Wesley, 1988.

[3 E.M. Clarke, M.C. Browne, E.A. Emerson, and A.P. Sistla. Using Temporal
Logic for Automatic Verification of Finite State Systems. In K.R. Apt, editor,
Logics and Models of Concurrent Systems, pages 3-26. Springer-Verlag, 1985.

[4] E.M. Clarke and 0. Griimberg. Research on Automatic Verification of Finite
State Concurrent Systems. Annual Review of Computer Science, 1987.

t [51 Robert Firtb, Bill Wood, Rich Pethia, Lauren Roberts, Vicky Mosley, and
Tom Dolce. A Classification Scheme for Software Development Methods. Tech-
nical Report CMU/SEI-87-TR-41; DTIC: ADA200606, Software Engineering
Institute, Carnegie Mellon University, November 1987.

[6] N. Francez. Fairness. Springer-Verlag, 1986.

[71 C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

j [8] International Organization for Standardization ISO 8807. LOTOS - A For-
mal Description Technique Based on the Temporal Ordering of Observational
Behaviour, 1989.

[91 C.B. Jones. Development Methods for Computer Programs Including a Notion
of Interference. PhD thesis. Oxford University, June 1981.

[101 C.B. Jones. Systematic Software Development Using VDM. Prentice-Hall,
1986.

127

[11] J.A.N. Lee and Karl A. Nyberg. Strategies for Introducing Formal Methods
into the Ada Life Cycle. Technical Report SPC-TR-88-002, Software Produc-
tivity Consortium, January 1988.

[12] C. Douglass Locke, David R. Vogel, and Lee Lucas. Generic Avionics Software
Specification. IBM Draft for the SEI, November 1988.

[13] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[14] Jan Pedersen and Mark Klein. Using the Vienna Development Method (VDM)
to Formalize a Communication Protocol. Technical Report CMU/SEI-88-TR-
26; DTIC: ADA204757, Software Engineering Institute, Carnegie Mellon Uni-
versity, November 1988.

[15] A. Pnueli. Applications of Temporal Logic to the Specification and Verification
of Reactive Systems: A Survey of Current Trends. In Current Trends in
Concurrency, pages 510-584. Springer-Verlag, 1985.

[16] W. Reisig. Petri Nets, An Introduction. Springer-Verlag, 1985.

[171 Donald Sannella. A Survey of Formal Software Development Methods. Tech-
nical Report ECS-LFCS-88-56, Edinburgh University, July 1988.

[18] Wladyslaw M. Turski and Thomas S.E. Maibaum. The Specification of Com-
puter Programs. Addison-Wesley, 1987.

128

- SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED NONE
2.L SECURITY CLASSIFICATION AUTHORITY 3. OISTRIBuTION/AVAI ABILITY OF REPORT

N/A APPROVED FOR PUBLIC RELEASE
2b. OECLASSIFICATION/OOWNG RAOING SCHEOULE DISTRIBUTION UNLIMITED

N/A
4 PEOFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-90-TR-5 ESD-TR-90-206

6.. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7&. NAME OF MONITORING ORGANIZATION(If appcablel

SOFTWARE ENGINEERING INST. SEI SEI JOINT PROGRAM OFFICE
6c AOORESS (City. State and ZIP Code) 7b. ADDRESS (City. State and ZIP Code)

CARNEGIE-MELLON UNIVERSITY ESD/XRS1
PITTSBURGH, PA 15213 HANSCOM AIR FORCE BASE

..__ __ _~__ _ _ __ _ RA ,rnm - MA nl"1 ..
S& NAME OF FUNOING/SPONSORING Ib. OFFICE SYMBOL *.-PROCUREMENT INSTRUMENT IOENTIFICATION NUMBER

ORGANIZATION (if applicable

SEI JOINT PROGRAM OFFICE ESD/XRS1 F1962890C0003

Sc. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNOING NOS.
CARNEGIE-MELLON UNIVERSITY PROGRAM PROJECT TASK WORK UNIT

PITTSBURGH, PA 15213 ELEMENT NO. NO. NO. NO.

11. TITLE Secun ty Cianificatgon) 63752F N/A N/A N/A
SURVi ',F FORMAL SPECIFICATION TECHNIQUES FO REACTIVE Sf TEMS

12. PERSONAL AUTHOR(S)

Patrick R. H. Place, William G. Wood, Mike Tudball
13. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr.. Mo., Day) 15. PAGE COUNT

FROM _ TO May 1990 128

1 16. SUPPLEMENTARY NOTATION

17. COSATI COOES I1. SUBJECT TERMS (Continue an mvere if neceawry and idennfy by block number)
FIELD GROUP SUB. GR. avionics formal methods survey

concurrency reactive systems
I formal methods specification

1 9. ABSTRACT (Continue on reverse it ne"ary and identify by block number)
Formal methods are being considered for the description of many systems including systems

I with real-time constraints and multiple concurrently executing processes. This report
develops a set of evaluation criteria and evaluates Communicating Sequential Processes
(CSP), the Vienna Development Method (VDM), and temporal logic. The evaluation is based

on specifications, written with each of the techniques, of an example avionics system.

I

20. OISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASStFI CATION

I UNCLASSIFIEO/UNLIMITEO 0J SAME AS RPT. 0 OTIC USERS 0 UNCLASSIFIED, UNLIMITED DISTRIBUTION
22. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22c. OFFICE SYMBOLI KARL H. SHINGLER (l ue Ao Code)

1412 268-763C SEI JPO

DD FORM 1473, 83 APR EDITION OF I JAN 73 IS OBSOLETE.
q :(IlRITY C.LASSIFIC.ATICON OF: THI.S PA(";F

