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1. Introduction

The primary intent of this research is to develop new models for estimating clutter

levels from natural terrain with particular application to surveillance radar. Specific

attention under this contract is to be directed toward estimating the effects of subsurface

volume scattering. For radar frequencies above s-band, most natural surface materials do

not permit much penetration into the subsurface volume. However. for frequencies in the

UHF range, there is the possibility that some penetration of the incident electromagnetic

energy into the subsurface volume will be possible. A good example of this was provided

by NASA's Shuttle Imaging Radar (SIR-B) mission which detected ancient stream beds

beneath the desert in Africa.

The penetration of the radar signal into the volume beneath the surface is important

because of the potential scattering of this energy by discontinuities in the dielectric

constant of the subsurface material. These abrupt changes could be caused by rocks,

moisture, pockets, tunnels, and vegetation roots. If these materials scatter energy back up

through the surface, they comprise yet another source of clutter which must be accounted

for. This is the motivation for considering the possibility of subsurface scattering and

attempting to model it.

The second chapter presents the results of our efforts to use a Lr'neburg-Kline

representation to improve on the physical optics approximation for the clarrent induced on

a rough surface. We find the L-K representation to be flawed beeause of its failure to

properly represent the current in the optical shadow regions of the rough surface. In

particular, the L-K representation predicts that the current will be exactly zero in the

shadow regions irrespective of frequency.

The third chapter discusses a distorted wave Born approximation for the fluctuating

field in a discrete random media. This is the approximation that we will be using to model

the scattering by subsurface objects, so it is very important to this research.



The fourth chapter discusses a way to improve on the standard physical optics

approximation for the field scattered by a rough surface in the high frequency limit. This

is the method that should be used rather than the Luneburg-Kline represent ation.
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2. An Inherent Limitation of the Luneburg-Kline Representation for the Current on a
Conducting Body

2.1 Background

In the field of scattering from randomly rough surfaces, there is a %,cry pressing need

to develop tractable high frequency approximations which are an improvement on physical

optics. Of course, the first candidate that comes to mind is the Fock theory of shadow

boundary diffraction [2.1]. However, because of its dependence upon certain canonical

geometries, it is not obvious how the Fock theory could be beneficially applied to the

randomly rough surface problem. This same statement applies to most of the other

theories that provide some improvement on physical optics [2.2].

Recently, Lee [2.3] corrected and extended the earlier work of Schensted [2.4] in

applying a Luneburg-Kline formalisrmi to scattering from a perfectly conducting body.

Ansorge [2.5] used the same methods developed by Lee to obtain resullts for scattering from

dielectric bodies. What Lee was able to do was to obtain a k- I correction to the physical

optics approximation for the current induced on a peilectly conducting body by an incident

plane wave. Although the results were very complicated from an algebraic point of view,

they did not require any special canonical scatterer geometry. Lee obtained these results

by satisfying boundary conditions on the surface for each field vector expansion coefficient

in the Luneburg-Kline series of inverse powers of wavenumber (k0 ). Lee noted that the

derivation of higher order correction terms was possible but algebraically quite involved.

Lee's results have clearly shown that the Luneburg-Kline formalism is capable of

providing wavenumber dependent corrections to the physical optics current induced on a

conducting scatterer. The next most important question that needs to be addressed

concerns the limitations of this approach and its subsequent results. That is, are there any

fundamental limitations of this approach and what are the significance of these relative to
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the accuracy of the results produced by the technique? The purpose of this paper is to

investigate these questions.

The approach to be taken in this paper will be somewhat different from the one

employed by Lee because he assumed a well-formed shadow zone and no multiple

scattering [2.3]. These assumptions are not necessary if one starts with an integral

equation for the current induced on the surface such as the magnetic field integral equation

(MFIE). Thus, the methodology to be used in this paper is to expand the current,

normalized by the k0 -dependent phase factor contained in the incident field, in a

Luneburg-Kline series and then to use the MFIE to solve for the series coefficients. It will

be shown that each coefficient satisfies an integral equation of the second kind in which the

Born term requires knowledge of all lower order coefficients. Furthermore, these integral

equations can all be solved exactly because of the particular form of the kernel. The

solution shows what appears to be a fundamental limitation of the Luneburg-Kline

representation for the induced surface current, namely, that all the expansion coefficients

are identically zero in the shadow zone. That is, none of the field penetration into the

shadow zone that is known to occur for k0 finite can be recovered using the

Luneburg-Kline formalism. This deficiency is traced to the asymptotic nature of the series

and its inability to represent creeping wave type currents in the shadow zone. The

conclusion of this paper is that the Luneburg-Kline representation for the current induced

on a perfectly conducting body is incapable of accurately predicting the current in the

shadow zone and is therefore limited in its capabilities irrespective of the number of terms

retained in the series.

2.2 Analysis

The problem to be addressed here is the determination of the electric current

density Is induced oin the surface z = ((;t) by an incident magnetic field I. (The

generalization of these results to a arbitrarily shaped closed body is not difficult.) The
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surface z = t() separates free space (z > () from a perfectly conducting medium (z <

The unit vector ki specifies the direction of travel of the incident field. The electric surface

current density is must satisfy the magnetic field integral equation (MFIE) as follows;

1,(-r) = 2fi( Wl(-r) + 2fi()× flPS' 0 ) - VoG(- 0 )dS0  (2.1)

In (1), fi( ) is the unit normal to the surface at the point r = rt + ((;t ) and is given by

r -2 + z + (2+ (2(2.2)

where ( = O /9x and (y = 9/y are the x and y surface slopes at the point r on the

surface. G(-r 0 ) is the free space Green's function, i.e.

G(r- ;o) = exp(-jko -0 1 r )/47rJr- ,1o, (2.3)

and V0 is the conventional three-dimensional gradient evaluated on the surface (z = ( and

zo = (0). Noting that the area integration over the surface can be converted to one over

the z = 0 plane through

dsO = (1 + (2+ (2)1/2 d_

x tY 0

where dr t = dx0 dyo, (1) can be rewritten as follows;
0

= 21qxl + 21qxfl(ro)xVoG(Ir- o0J)d-t (2.4)
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where

+ (2 + 2)(2.5)

and

=- - + (2.6)

If !(r) can be determined from (2.4), the scattered field can be found from the following

integral expression;

1-i(it) = vfJ(-)G(Ift - _ I)dt (2.7)

As a preparatory step to introducing the Luneburg-Kline expansion, the k

dependence introduced by the incident field is removed. That is, with

1($) = t(;) exp (-i.-), (2.8)

A~i (r) = t i exp (j.),(2.9)

and l a constant, (2.4) may be rewritten as follows:

L(-r) = 2N- × ri + 2N x f f,(r) xVoG( Jt--- ; 0 ) exp (j-i.A-r)drto (2.10)

where Ar = r - _0 The purpose of (2.8) is to remove the known high frequency behavior

or dependence on k0 from the current. That is, as ko--w it is known that t(;) is

independent of ko. The modified current t(-r) is expanded in a Luneburg-Kline series, i.e.
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=n( (2.11)
n=o k(1

where the vector expansion coefficient n(r), n = 0. 1 ... , are independent of tihe

electromagnetic wavenumber ko. (2.11) is next substituted iwto (2.10) and it is assumned

that term by term integration is permissible so that the following results

E J n ( r ) k
- n = 2 . i + 21x k-n f n(; ) - VoG exp i.A - t  (2.12)

n=o n=o 0

In order for (2.12) to be satisfied, the integral term must also have a Luneburg-Klinc

expansion. That is, if

n(r, k0 ) = f -n x VoG exp (jA .A)d-; (2.13)

then it may be written as follows;

'Tn(r, ko):= F Tnn(;)/km (2.14)

where the 'Tnm expansion coefficients are independent of ko. Combining (2.13) and (2.14)

yields

k +-n1 2 +"2 = () X VG(IArI)exp (jr.A)d-t (2.15)nO k + f 0 it
k0 0 0

so that the vector coefficients can be determined as follows;
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Tn I kin (-) G o(Ar exp(j . A-r)d r (2.16a)
no k. tO in0) 0a)

FT I-unoko[f x VOG exp~ii A)dr 1t (2,161j)ni k t 0~[j ~- '110100

[ m.-i k
nil] r km -i x V0 G Pxp(j. \r)d; - (2.16c)
fl.l k [ n o to p.o k

Substit uting (2.15) into (2.12) yields
Y:jntr)k'°  = Nx [f+ = Y Fm (r)ko1  (2.17)

= 011=0 ,=O nr 0

so that equat ing like powers of k yields

j = 2N x 15i + t}00 (2.1Sa)

j](r) I A 6 {l( ) + To1(-r} (2.18b)

j(ib = 2 t x {I' () + T20 (r) + t(02()} (2.1Sc)

0

Substituting from (2.16) into (2.18) yields the following sequence of integral equations for

the vector expansion coefficients;

j (-) 2 x 1. + 2" x lirn f>o) VoG(IA )cxp(jIi.A-))dto (2.19a)
0 k o0
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= 2 xL {ko[f-]o(-Io) X VoG(I&rI) exp(jfi A;)drt -k 0

+ 2N x Ii JIr) irfG( I( A I)exp(jk- -)d (2.1%)
ko 0

* S

This sequence of integral equations has a number of interesting properties. First,

except for the source or Born term, all the integral equations are identical in form in that

they appear as

jp (r)=2N x ;p(r) + 2 x]im. fJ (-r) - VoG(LArI)exp(j- i .A r)drt
00

p = 0,1,2, ... (2.20)

Also, since the source term, 2,q x p (W), in (2.20) depends on +0 T .. , and 4 p-1' the

integral equations are recursive. Thus, if j can be determined then it should be possible

to determine all higher order vector coefficients. Because the vector expansion coefficients,

in ( ), are independent of ko, it is further noted that the source term p(-) is determined

almost completely by a Luneburg-Kline series representation for the following integral

f VoG (I A; I )exp(j i • A-r)d- to.*

For example, from (2.19a) it follows that

so(r ) =rli (2.21 a)
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while from (2.19b)

1( ) = kli m .ko  [f jo(ro)× VoG (j A -1) exp(jI .A )d

-m f VoG( A7 I)exp(ji-. A-r)d-rt (2.211))
k 0 0J

It should be noted that the presence of 10(%o) under the integral signs in (2.21b) has a very

minimal effect because the dominant terms are the ones which depend upon ko.

One very important point about the sequence of integral equations in (2.19) is that

their solutions are known. In fact, (2.19a) is essentially the magnetic field integral equation

in the high frequency (ko-o) limit, so its solution is given by [2.6]

21 x i (x not shadowed)

0 (-r in shadow)

There is also the possibility of a multiple scattering contribution to 1o(r) from other points

on the surface [2.61. Thus, for the nth vector expansion coefficient, the solution is (except

for the contributions of multiple ray bounces on the surface)

2N x sn (; not shadowed)

(2.22)

0 ( in shadow)

The complete surface current density is thus obtained by combining (2.5), (2.8), (2.11), and

(2.22), i.e.

10



(1+ (+ () exp(-A~ r) E - (2.23)

The reader is cautioned not to expect a one-to-one relationship between a specific

in coefficient in (2.23) and the nth order iterate of the original integral equation in (2.4).

It can be shown that a direct relationship does exist for n = 0 and 1 but it breaks down for

n > 2. This results is a consequence of the fact that any one iterate contains, in general, all

orders of 1/ko .

2.3 Discussion

One of the immediate consequences of (2.23) is that the current on any shadowed

portion of the surface is identically zero. This is obviously a high frequency approximation,

but the analysis presented above makes no explicit approximations and, in fact, appears to

be exact. Clearly, an exact analysis cannot lead to an approximate result. What is

happening in this case is that the L-K series is dong the best job that an asymptotic series

can do in representing the current in the shadowed parts of the surface. The failure of the

L-K asymptotic series is linked to the fact that the current in the shadow zones of the

surface cannot be represented by an asymptotic series of the L-K form. To prove this,

recall that the definition of an asymptotic series such as (2.11) is that if Sm represents the

partial sum of the first m + 1 terms * then

likm. m .[t(ko,) - m . = 0 (2.24)k o0

0

m
, = Z -

n=o n(r 0
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for all values of m. In the limit as ko-,the current in the shadow zones of the surface is

zero. Thus, from (2.24) with m = 0, = 0 or -o (r) = 0. For m = 1, (2.24) yields

lirm. (koL) = Iim.(ko)
k 0 k

0 0

but -= 1 /k0 because 10 = 0, so this leads to

j = li m (ko]) (2.25)
0

It is well known that the current in the shadow zone has the form of a creeping wave [2.1]

L i Cfexp{-j[k 0 6 + exp( -jr/3)/3ko/2)/3 f K d6 (2.26)
f=l 0

where C , are the launching amplitudes, 6 is the distance measured along the surface, /3t is a

root of the Airy integral [2.1], and K is the curvature of the surface at the distance 6

measured along the surface. Thus, in the limit as k0-t, each term in the series of (2.26)

exhibits an exponential dependence on ko. Furthermore, since the real part of this

dependence leads to an exponential decay with distance, it is clear that

jI= I inim (k01t) = 0k 0
0

and, in fact all of the higher ' 'n's will vanish. Thus, the only acceptable asymptotic series

for the current in the shadow region is the null series. The reason for this is contained in

the definition of the asymptotic series, e.g. (2.24). That is, the only series of the form

12



m

m
9M= EJn (r)Iko

n=o

which can satisfy (2.24) for all m in the shadowed regions of the surface is the null series.

Note that it is the constraint imposed by the form of the asymptotic series which dictates

the end result. Thus, other than the null series result, the current in the shadow region does

not have an asymptotic series representation. This is an important result because it is the

first time (to the author's knowledge) that the failure of an L-K series in the shadow

region has been both demonstrated and explained.

While the L-K series does not lead to an exact result for the surface current density,

it still holds the potential for providing a tractable improvement to a pure geometrical

optics solution. This fact is demonstrated by Ansorge's [2.51 calculations for scattering by

a dielectric sphere using the ray optics field approach. The attractiveness of the current

approach as developed here is due in large part to the fact that the complete L-K

representation can be developed entirely from an integral of known functions, i.e.

f VoG (I A- I) exp(jI i r d'o

While a complete L-K series development for this integral is prohibitive, it may be

-2possible to obtain the terms up to and including ko [2.7]. One of the primary advantages

of obtaining the k and k- 2 corrections to the k0 asymptotic expansion of this integral is0 0t
the recovery of some of the cross polarizing properties of a rough surface in the high

frequency (but not optical) limit.

The results obtained in this paper raise an interesting point. Usually, the first

frequency dependent correction to physical optics comes from the non-zero width of the

transition zone between the illuminated and shadowed regions on the scatterer and the

propagation of creeping waves into the shadow zone. If the L-K series produces a result
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that is identically zero in the shadow zone, what is the physical source of the kon, n=1, 2,

... terms in the illuminated zone? It would appear that this may be due to the transition

zone encroaching into the illuminated zone as the frequency is decreased. This is the kind

of question that needs to be answered if there is to be a full understanding of the

Luneburg-Kline asymptotic representation.

It should be noted that s1(r) in (2.21b) has essentially been computed by

Chaloupka and Meckelburg [2.8] in a very clever application of integration by parts. Their

results should provide the basic ingredients to study the question raised in the previous

paragraph.
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3. An Application of Smoothing To Wave Propagation
Through Discrete Random Media

3.1 Background

The distorted wave Born approximation (DWBA) is one means for improving on

the standard Born approximation anO it is particularly useful &',en the latter fails [3.81. It

is based on splitting the unknown into the sum of two parts in such a way that one part is

very accurately known while the second, and yet to be determined part, is small compared

to the known term. This method had its origins in nuclear physics [3.8] and has recently

been used in electromagnetic wave propagation through particulate media to obtain a first

order estimate of the incoherent power scattered by a randomly positioned collection of

objects [3.6, 3.9, 3.7].

In the em propagation problem, the total field is split into the sum of an average or

coherent field and an incoherent or fluctuating part having zero mean. For sparsely

populated media, the average field is known to be the solution of the Foldy-Twersky

integral equation [3.4]. Similarly, the fluctuating field in this limit is small compared to

the average field provided one does not progress too far into the particulate medium.

Thus, assuming that one can solve the Foldy-Twersky equation for the average field and

that one restricts interest to those regions of parameter space where the fluctuating field is

small compared to the mean field, it should be possible to use the DWBA to estimate the

fluctuating field and, hence, the incoherent scattered power.

In the previous em propagation studies [3.6, 3.9, 3.7], it was assumed that the

DWBA was equivalent to embedding the particulate scatterers in the average medium,

illuminating them by the average field, and then letting them scatter into the average

medium, (the effective parameters of the average medium were obtained from the

wavenumber of the average field). There is a problem with this approach; the average

medium only has meaning relative to the average field. That is, scattering is the process

whereby the average field is converted into the fluctuating or incoherent field and this
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latter field does not propagate in the average medium. It would seem then that the

previous studies claiming to use the DWBA have, in essence, double counted for the

average medium. The error stems from postulating how the DWBA applies to the problem

rather than deriving this result from basic scattering relationships.

The purpose of this paper is to show that the DWBA follows directly from an

application of the method of smoothing. In particular, the DWBA will be shown to be

equivalent to the lowest order smoothing approximation for the fluctuating field.

Furthermore, this result will confirm the suspicion that previous results have essentially

double counted for the average medium. Given the conditions under which the DWBA is

applicable, a similarly constrairled equation for the average field will also be obtained. In

the absence of correlations between scatterers, this equation reduces to the Foldy-Twersky

integral equation. All of these results, for both the average and fluctuating fields, are

obtained by a straightforward application of the method of smoothing to the discrete media

and do not require the introduction of an equivalent continuous random media [3.5].

3.2 Analysis

The approach to be used herein is the application of the method of smoothing to the

integral equation describing the scattering process in the discrete random medium. It

should be noted that the same analytical procedures apply equally well to the problems of

propagation in a continuous random medium or scattering by a random interface. This

generality of the procedure follows from the fact that smoothing can be applied to any

Fredholm integral equation of the second kind describing a stochastic process [3.3].

Consider a volume V in which there are N randomly located objects having possibly

random volumes (V n). orientations (Qn ), and relative dielectric constants [Er] and where

n = 1, 2, ..., N. The total electric field at any point in space (9t) may be expressed as the

sum of the incident field (Pi) which would exist in the absence of the objects and the
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scattered field due to the objects (t s), e.g.

t(= f() + 98() (3.1)

The scattered field may be related to the total field inside each object as follows;

= IK ( n + o) (3.2)

where L is the three dimensional integral over all space, i.e.,

L=fff dr o

and the dyadic operator KE is given by

k E rr_ nro VnrI [j-n-ro (3.3)
0 n= 1 rn1 n[ nn = Ln o

The i superscript on 9 t denotes the total field interior to the scatterer. In (3.3), k0

is the free space wavenumber ( = 2r/Ao) while Sn(-o, V n, Q n) is the support of the n th

scattering object whose centroid is located by the position vector r n" Sn is given by

r_. - 1,- inside Vn
S n [ r,0 V , 9) n] = (3.4)

Srf 0 uotside Vn

and depends only on the volume (Vn) and orientation (Q n) of the nth object and the body

centered position vector ro" The dyadic G is given by
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G =-V. I + ko VoVo r[- -o r I r -rn- o/3k0  35

where I is the unit dyad, 6(.) is the three dimensional delta distribution, and P.V. denotes

the principle value which excludes a small spherical volume centered at r - rn - ro = 0.

The g in (3.5) is the free space scalar Green's function,

g[rrnr ro =exp [-Jko-. -nr0n]oJ/ 4 rl; rn--oI (3.6)

Substituting (3.2) into (3.1) yields the following integral equation of the second kind

for the total field in the presence of the scatterers;

t= i() + L [ ' n+ r o] it [rn+ ro] (3.7)

The first step in applying the method of smoothing to (3.1) is to decompose 9t into the

sum of an average or mean value I<t>1 and a zero mean fluctuating part [5i1t. That

is, with

9 t = <n t> + t  (3.8)

(3.7) becomes

<E>+ t => + t+ Lk < t'> + LK= 6ni (3.9)t t I Y :t Y

and averaging this equation yields
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<9> + LP {E <i>} + LP {R (j3.10)
t 1 t 1 E0t

where P = < > is the averaging operator. It should be noted that in (3.10),

because it is implied that when <91> appears next to it contains a dependence on the

random positions of the scattering objects, as (3.7) shows explicitly. Subtracting (3.10)

from (3.9) gives the following result;

= L(1-P) Kr <Vt[> + L(1-P) K oft (3.11)

The fluctuating part of the total field is also equal to the fluctuating part of the scattered

field because

lt - i+ s (3.12)

and the incident field, 9i , has no fluctuating part so that 6pt = 6Ps .

If the point of observation r is successively taken to be inside each of the N
scatterers, (3.10) and (3.11) will result in 2N coupled integral equations for the fields <4 >

and inside each of the N scatterers. A solution of these equations gives the fields inside

all of the scatterers and then the average and fluctuating fields outside of the scatterers can

be computed from (3.10) and (3.11). The need to deal with interior and exterior fields,

even in a statistical description, is simply a consequence of the boundary value nature of

this problem and has been noted previously [3.2].
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The goal of this research is to obtain an approximate solution of (3.11) and then

find the corresponding equation for < t> that is self-consistent with this level of

simplification. The most straightforward approximation is to ignore the term

L(1-P)Kbt in (3.11) because it appears to be the source of multiple scattering in so far

as 69t is concerned. We use the word aTnearq because, without this term, t1ft will indeed

be determined by <I> alone but 4t> depends on t through (3.10). To resolve this

quandary, it is necessary to substitute for 6' in (3.10) using (3.11), i.e.t

4>= It~ + LPtK <fi>1 + LPfK L(I-P)K <ft>j

+ LP {Kj][L(1-P)RKW6']} (3.13)

Now, if the suspicious multiple scattering term L(1-P)I=6otK is ignored in both (3.11) and

in (3.13), there results

t  (I-P) LK=E<ni> (3.14)

and

<9> + PfL ~1 + L(I-P)Rjf>j(.5

which are both to the same order of approximation and therefore self-consistent

relationships. Note that in (3.15) <9 t> is determined independent of o t which means

that, indeed, (3.14) is a single scattering approximation for t t insofar as "t is concerned.
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This last phrase "in so far as t t is concerned" must be added because we are dealing with

two field quantities here and we must be precise in defining exactly what we mean by the

term multiple scattering.

It is clear from the way in which (3.11) and (3.13) were simplified to (3.14) and

(3.15) that the latter two equations for 69t and < t > will be valid whenever

j(1-P) LRKE<f{>I > I(1-P) Lky6t'i (3.16)

This inequality says that the fluctuating part of a one-time-scattered (by all objects)

average interior field must be large compared to a one-time-scattered (by all objects)

interior fluctuating field. It would seem that if I<E1> I  > I 6Vi I then this inequality is

surely satisfied. However, there may be instances where the average and fluctuating fields

are comparable in magnitude but (3.16) is still satisfied. The point of this discussion is to

emphasize that it is (3.16) that must be satisfied in order for (3.14) and (3.15) to be valid.

3.3 Discussion

Eqn. (3.14) represents the lowest order non-trivial approximation for the

fluctuating field scattered in and out of the random media. This field quantity is the

source of the incoherent power due to the randomness in the media. According to (3.14)

lt is obtained by taking the fluctuating part of the field resulting from N objects

scattering the interior coherent or average field into free space. This result reconfirms the

physical intuition that the fluctuating field is caused entirely by scattering of the coherent

field. Contrary to what is postulated in some earlier works, the scattering is into free space

and not into an average medium. Egn.(3.14) is the distorted wave Born approximation

(DWBA) for the fluctuating field in a random media comprising discrete scatterers. If

(3.14) is used to compute the incoherent power scattered by a half-space filled with
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randomly positioned scatterers, it can be shown that whenever there is a phase retarding or

an attenuation effect of the randomness it is halved relative to the erroneous double

counting previously reported. It should be remembered that (3.14) is a single scattering

approximation for the fluctuating field. Hence, the DWBA is a single scattering

approximation for the fluctuating field and, consequeitly, the incoherent power.

Hopefully, this result answers the question of whether the DWBA is a single or multiple

scattering approximation.

An interesting sidelight of this study is the equation that was obtained for the

average or coherent field, i.e., eqn. (3.15). This equation was obtained by retaining the

same order terms as were kept in the DWBA for ft . This does not mean that all the

terms in (3.15) are of equal importance. For example, if only one interaction between Kv

and <ft> is retained, i.e.
t

<- >  t + PLI <9i> (3.17)

the resulting equation is the Foldy-Twersky integral equation for the average field. To

show this, it is first necessary to split the averaging operator into the product of an average

over the random positions of the scatterers and the conditional average over all other

random properties of the objects such as dielectric constant, volume, and orientation, i.e.

P = < < rn> >,
r n

Thus, (3.17) becomes

<t > =i + L < < y > r (3.18)

r
n
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because only K E depends on the other random parameters. From the definition of KE, i.e.,

(3.3). the conditional average becomes

where <Er >' <V n>, and <Q>, and <S( -)> represent the mean relative constant, volume,

orientation, andl spatial support, respectively, for the N scattering olbjects. Assurning a

uniform probability density function for the ;n) ri = 1, 2, ...N, i~.

I /V n inside V

n

and substituting (3.19) and (3.20) in (3.18) yields

t -01k HEV> -1II L<S> n~1 [- n - to ;n[n+ o>d/V
or

2 -N f6 ;1 H0 C 1> - 13 i 1<S>[~J [V r 1 ' r 11 + ;0]> dn (3.21)
V

hocause all N integrations are identical and the series can be suTm-med. Since

L<S> f d;

< V 11>

(3.21) becomes
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-kf < E >-3> d-nd% (3.22)
t i 01 r--n--]<t r

<V >Vn

where p = N/V is the density of scatterers in the volume V. This is identical to the

Foldy-Twersky equation; see eqn. (3.4) of [3.2].

The next term in (3.15), i.e.

PLK=SL(1-P)IS <9it>

clearly involves correlations between scatterers so it must be akin to the Lax-Twersky

approximation for < t > [3.1, 3.10]. This term and its meaning is presently under study.

3.4 Summary

The original intent of this work was to rigorously derive a low order approximation

for the incoherent or fluctuating field in a discrete random medium using techniques that

did not require the use of an equivalent continuous random medium or were not largely

numerically oriented. The purpose of the work was twofold with the primary reason being

to check some earlier calculations supposedly based on the distorted wave Born

approximation. A secondary purpose was to attempt to develop a relatively simple, self

consistent, low order approximation for both the fluctuating and average fields. The

method of smoothing was chosen to accomplish this because of its ability to

straightforwardly provide accurate low order approximate solutions.

The results obtained for the fluctuating field, in the lowest order of approximation,

were found to be equivalent to the DWBA but without the double counting for the average

medium erroneously postulated in earlier efforts. A consequence of this result is that the
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incoherent power scattered from a volume of randomly located discrete scatterers is larger

than predicted by these earlier results. This is because the double counting for the

attenuation effects of the average medium effectively masks the scattering from the objects

deep in the medium. A secondary result of this study of the fluctuating or incoherent field

was that it could be clearly shown that the DWBA does not contain any multiple

scattering of the fluctuating field. This result answers the old question of does the DWBA

include multiple scattering by first forcing one to carefully define multiple scattering.

Finally, if the equation for the average or coherent field is developed to exactly the

same order of approximation as used in the fluctuating field, an apparently new integral

equation is obtained. If scatterer-to-scatterer correlations are small or can be ignored,

this equation is shown to reduce to the Foldy-Twersky integral equation. If correlations

cannot be ignored, the result appears somewhat similar to the Lax-Twersky equation but

this situation is till under investigation.

In regard to a secondary purpose of this paper, it was found that the method of

smoothing is a very simple means for analyzing the propagation characteristics of discrete

random. This statement applies to both the average and fluctuating fields. Furthermore,

it is not necessary to use an equivalent continuous media representation for the discrete

scattering process because the discrete character of the problem is easily dealt with by the

method of smoothing.
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4. A Distorted Wave Born Approximation for High

Frequency Scattering From Rough Surfaces

4.1. Background

Recently, it has been shown [4.1] that, for random surface scattering, first order

smoothing is capable of providing an improvement to the classic Rayleigh-Rice first order

boundary perturbation result. In particular, first order smoothing yields a result which

depends only on the dominance of the average or coherent scattered field over the zero

mean fluctuating field. Consequently, it is valid for small surface height (relative to the

electromagnetic wavelength) but arbitrary slopes, curvatures, etc. The absence of any

restrictions on the surface height derivatives is why the first order smoothing result is

superior to the boundary perturbation approximation; in the case of small slopes, the

former reduces to the latter [4.1]. It was also noted in [4.2] that whenever it is the

fluctuating

scattered field to be determined, first order smoothing and the distorted wave Born

approximation (DWBA) produce equivalent results. This is true for scattering by random

surfaces or by volumes comprising randomly varying discrete or continuous constitutive

properties.

For random media problems, first order smoothing is essentially a low frequency

approximation because it is dependent upon the dominance of the coherent or average

propagating or scattered field. At high frequencies, the coherent field becomes vanishingly

small so first order smoothing totally breaks down in its accuracy. However, there is the

possibility of still using the distorted wave Born approximation (DWBA) to obtain an

accurate description of the scattering process in this limit. The key to success in using this

approximation is to start with an aprooriate Born approximation; it need not be the Born

term appearing in the integral equation for the unknown scattered field or the current.

The purpose of this note is to apply the above methodology to scattering by an

arbitrarily roughened planar conducting surface in the high frequency limit. By selecting
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the appropriate Born term to be the exact high frequency scattering limit, which is known,

it will be possible to develop an approximation which resurrects frequency dependent

diffraction effects. This approximation comes from the Born term in the integral equation

for the difference between the unknown quantity and its (known) high frequency limiting

behavior. The key element in this DWBA methodology is accurate knowledge of the

behavior of the scattered field in the ray optic limit (ko = 27r/A 0- oo). In the case of

random surface scattering, the high frequency problem is less complicated than the low

frequency limit because there is no need to worry about the average or coherent scattered

field since it is usually vanishingly small as k0 -4 oD.

The net result of this analysis is a rigorous methodology for taking known high

frequency scattering results and extending them down to lower frequencies.

4.2. Analysis

To illustrate the method, the problem of scattering by an arbitrarily roughened

planar interface will be considered. Above the interface defined by z = ((x,y) is free space

while beneath it (z < () is a perfectly conducting medium. The current induced on the

surface satisfies the magnetic field integral equation given by

1s (r) =11(r) - 2fi(;) x fV rg( - 0 x Is(-o)ds°  (4.1)

where

26( x fl), (4.2)

g(-r - -o) 0 exp(-jko I - -r 0 1)/47rl r -r 0o 1,

k is the wavenumber, and fi(r ) is the unit normal to the surface at the point r
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r= +(V )2 . (4.3)

and f1i is the incident magnetic field. It is convenient to convert the integral in (4.1) to

one over the z=O plane and to multiply both sides of (4.1) by the factor exp(jk sz); the

resulting current can then be Fourier transformed with respect to x and y to yield the far

zone scattered field. The factor ksz is the z--component of the vector wavenumber pointing

in the scattering direction. With these manipulations, (4.1) can be written in the following

operator form;

I(+) = i()+LG(,o) • 0 I(0) (4.4)

where

( (- ) exp (jks$) +() (4.5a)

1V = is () exp (jksz ) 1+(VC)2  (4.5b)

L = ff(.)dxody°  (4.5c)

G= -2() xVog(_ ) exp [jk5z ((-)]x (it.5d)

and

-( -i-( y +z (4.5e)

where (x and (y are the x and y--components of surface slope. Eqn. (4.4) is the integral
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equation that will be considered since its solution essentially determines the scattered field.

4.2.1 The Distorted Wave Born Anroximation (D\VBA)

The key step in developing the distorted wave Born approximation (D\WBA) is to

write the unknown current I as the sum of a known term (1a) , whose range of validity is

also well known, and an unknown term (El) which is small in a region where Ia is very

dominant [4.3], e.g.

I =Ia + El (4.6)

This sum is substituted in (4.4) to produce the following integral equation for El;

= ( +i-ja ) L=G-ia + L -E (4.7)

The Born or source term in this equation is

(I - a ) + LG".a (4.8)

substituting this approximation i' (1.6) for EJ yields what is usually called the DWBA,

i.e.,

+ LG.I a  (4.9)

It is interesting to note that (4.9) is potentially very different from a first order

interative solutiGa of (4.4) such as
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+ LG.I' (4.10)

This is because Ia and :V may be different oi they may have differing domains of validity.

The DWBA hinges on the accuracy of Ja within a given region of parameter space and it

attempts to extend this region by iterating 'a" The first order iteration in (4.10) is

generally less accurate or even well understood because one seldom knows when i' by itself

is accurate. Of course, when 31 a then both methods produce the same approximation.

Another point of note about (4.9) occurs when Ja and 11 differ significantly. In this case, it

will probably take many interations of (4.4) to produce the same effect as the single term

LG-. a in (4.9). Thus, the DWBA is effectively a resummation of the standard iterative

solution of (4.4), i.e.

N =

a [LG.] n iP (4.11)

where N may be infinite or finite.

The DWBA is not without its own set of drawbacks. For example, having both an

accurate solution and knowing the region of parameter space over which the solution is

valid are very difficult conditions to satisfy. Further compounding the problem is the need

to know just how much (4.9) will extend the region of validity of I a Nevertheless, it

appears to be a method for which a bit of knowledge can go a long way. As proof of this,

one need only turn to low frequency scattering by a rough surface where the DWBA is

much more robust than the boundary perturbation method [4.1], as previously noted.

Finally, although (4.9) was derived for a roughened planar surface, it is clear that it is

much more general than this. That is, (4.9) is valid for scattering by any arbitrarily

shaped body if the operator L in (4.5c) is replaced by an integration over the x and y

extent of the scatterer.
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4.2.2 AnDlication to High Frequency Scattering

In the limit of ko- oo, it is well known [4.4, 4.5] that the exact solution of (4), and

also (4.9), comprises the sum of two currents. The first of these is the shadowed Kirchhoff

result, e.g.

Jsh(r) = siJi(r) (4.12)

where si is unity if the point on the surface is illuminated by the incident field and zero

if it is shadowed by another part of the surface. The second contribution is due to multiple

ray bounces on the surface and it will be denoted as simply Im because it has a rather

complicated form in general [4.5]. It can be obtained by solving (4.4) via iteration in the

limit as ko-. o and considering only the stationary phase points in the evaluation of the

integral term which give rise to multiple scattering [4.5]. Thus, the appropriate high

frequency asymptotic solution for the current is given by

3a lim I = si', + m (4.13)

ko 10

This result is the exact solution of both (4.4) and (4.9) for the limiting case of ko o.

Substituting (4.13) in (4.9) yields the following high frequency DWI3A for the

current induced on the rough surface

I = I+ LG.s i' + IG.Im (4.14)

in terms of the known limiting forms for the current. In this case, it seems clear that the

DWBA is taking the exact limiting behavior for the current and extendng it to lower

frequencies. Thus, the integrals in (4.14) should be evaluated accurately as possible and
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certainly not by asymptotic means (as ko-. ¢o) for this would just lead to the obvious result

in (4.13). There is another interpretation of (4.14) which is probably more meaningful for

the rough surface scattering case. Taking the limit as k 0o can also be viewed as being

equivalent to dealing with rough surfaces which have no frequency components that are

larger than the electromagnetic wavenumber ko . Solving (4.14) by non-asymptotic means

has the effect of allowing some frequency components on the surface which are larger than

(the now finite) ko . Unfortunately, it is not possible to predict just how much high

frequency (>k ) structure is accurately accounted for by (4.14). This is a limitation

common to most finite order iteration schemes.

The DWBA is clearly superior to the first order interative Born result in (4.10)

when dealing with near grazing incidence. In addition, (4.14) may be one of the few

approximate results capable of estimating high frequency scattering from surfaces having

correlation lengths which are the order of ko [4.6]. (For these surfaces, the term high

frequency denotes a large height to wavelength ratio). This is because the DWBA is based

on an exact resummation of multiple scattering effects in the limit as ko- o. In contrast,

the integral term in the first order iterative Born approximation in (4.10) may not even

converge to a meaningful result due to all of the multiple scatterings taking place on the

surface.

4.3. Conclusions

The distorted wave Born approximation is an attractive alternative to the first

order iterative Born approximation under certain conditions. The purpose of this paper is

to point out these conditions when one is interested in high frequency scattering from

roughened planar conducting surfaces. To accomplish this purpose, a DWBA is developed

for scattering from arbitrary surfaces and contrasted to the first order iterative Born

approximation. In the case of high frequency scattering, it is shown that the DWBA is

capable of extending a ray optic solution into the finite frequency domain. The potential
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for this approximation to predict scattering from very rough surfaces is also of note.

Consequently, it may well be capable of dealing with the backscattering enhancement

problem [4.6] associated with such surfaces.
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5. Summary

The goal of this research is to advance the understanding of clutter and to thereby

lead to better models for predicting clutter. The first chapter points out and explains a

basic limitation of the Luneburg-Kline expansion for the current on any perfectly

conducting body or surface. Although not specifically shown, this result also applies to

imperfectly conducting surfaces. It is found that the Luneburg-Kline representation in

inverse powers of the electromagnetic wavelength always leads to zero current in the

optical shadow zone of the surface. Hence, the Luneburg-Kline representation is limited in

its ability to produce the correct diffraction effects associated with finite frequencies. This

means that there is an uncertainty associated with the use of the Luneburg-Kline

expanision in that it is not clear when it starts to produce false results. Given this

limitation, it is not clear that the L-K representation is worth further development or

study.

The second chapter investigates ways to most easily and straightforwardly represent

the scattering by a volume distribution of randomly located, shaped, and electrically

constituted objects. The primary finding of this chapter is that the method of smoothing is

a very robust approach for providing both low and high order approximations for the

average or mean field and the fluctuating field. The average field is important becAuse it

acts as the source of the fluctuating field which, in turn, is the source of the incoherent

scattered power. The smoothing approach shows that, to lowest order, the fluctuating field

is formed by all the objects in the medium scatteiing the mean incident field into free

space. This result is contrary to previous postulated results wherein the fluctuating field

scatters into the average medium. The importance of this latter result is its prediction

that objects deep in the scattering volume will be more significant contributors to the

backward scattering process than previously thought.

Finally, the last chapter investigates how one goes about obtaining an improvement
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to the Kirchhoff approximation for the surface current. First. it is pointed out that the

pure Kirchhoff approximation is neither a low frequency or a high frequency asyniptote.

That is, it lacks the effects of shadowing to make it a true high frequency result, and it

does not contain the proper polarization dependence for a low frequency limit.

Consequently, if one starts with the Kirchhoff approximation, it is difficult, at hsl. to

estimate just how accurate such a starting point is. The material in the last chapter

recommends starting with the shadowed Kirchhoff approximation because it is an exact

result in the optical limit. In fact, iteration of this approximation appears to be one way

for recovering some lower frequency diffraction effects. Of course, it is also recognized that

the inclusion of shadowing at the level of the current is easy to write down. but it is

difficult to actually implement. Nevertheless, this chapter does provide some rationale for

improving on the standard Kirchhoff approximation.
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