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1.0 INTRODUCTION

M-ary differential phase shift keying (MDPSK) and M-ary incoherent
orthogonal keying (MOK) are to be evaluted as possible data modulation options
for a direct PN spread spéctrum IFF system. MOK and MDPSK are two basic
modulation techniques which do not require a phase coherent carrier refe;ence

for demodulation and which are compatible with an acousto-electric convolver

based receiver.
The transmitted PN spread spectrum waveform can be represented as

J(wot + 8(t))
s(t) = A Re {e } a.1l)

where
o(t) = ¢i(t) , U-1)T < t< iT (1.2)

and
A is the amplitude of the constant envelope,
woy 1s the angular carrier frequency,

¢1(t) is one of M possible PN phase waveforms over the 1th gata symbol
time,

T 18 the data symbol duration.

In the case of MOK, ¢1(t) is one of M orthogonal PN phase waveforms. 1In
general, the M-ary signalling set may consist of M distinct PN sequences. If

BPSK spreading is used, then the MOK phase waveform may be expressed as




$L(t) = ¢o(t) + 04(t) (1.3)

where ¢.(t) is a single PN chipping sequence and 84(t) is one of M phase
waveforms which are orthogonal over the data symbol period T. For instance,
84(t) may be one of M distinct Walsh functions which takes on the values O or
n radians. This 1s equivalent to multiplying the BPSK waveform by Walsh

functions which take on +1 or -1 values.

In the case of MDPSK, the phase waveform may be expressed as

2%
ol(t) = ¢o(t) +— (K-1) , 1<K<M (1.4)
M

where the data message consists of the Kth phase value.

The performance criteria used to evaluate a particular option include
waveform sensitivity to relative motion (doppler shift) between the
interrogator and transponder, required signal-to-noise ratio per symbol Eg/N,
or per bit Eb/Nolat the output of the matched filters for a fixed symbol error
probability, message length required (with fixed symbol durations), and
implementation complexity (especially in terms of acousto-electric convolver

implementations).
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2.0 CALCULATION OF THE PROBABILITY OF A DATA SYMBOL ERROR Pgg FOR

MDPSK AND MOK

The proposed IFF system will employ PN spectrum spreading with N chips
of duration 1. for every data symbol. The performance of a particular data
modulation technique is measured in terms of the probability of the signal-to-
noise ratio Eg/N, at the output of the receiver matched filters. Eg is the
total signal energy in N chips (per data symbol) and the double-sided noise

spectral density is N,/2 watts/Hz.

By considering Es/No, we can compare the modulation techniques while
fixing the total energy available in a T second data symbol interval (T=Nt.).
Notice that in the differentially coherent system we are using the energy over
a 2T second iﬁterval (2Eg) at each decision time (noise is correlated from
sample to sample). It is assumed that the receiver is time synchronized so

that the total signal energy is available at the sample times.

In the differentially coherent system, the phase of the local oscillator
at the receiver is assumed to be constant but independent of the phase of the
transmitted signal. In the coherent orthogonal system, the demodulation
reference signals need only maintain constant phase over each T second

interval.
2.1 M-Ary Differential Phase Shift Keying (MDPSK)

Ignoring the modulation and demodulation of the PN chipping sequence,




the transmitted MDPSK signal set can be represented as

2E .
si(e) = — sin (wot + edi(t)), (i-1)T < t < {T (2.1)
T

where edi(t) is the message phase over the 1th time interval and where
2% (k-1)

ek=— fol’ k= 1’ 2’ os ey M (2-2)
M

represents the M possible message phases. In block diagram form the receiver
can be implemented as shown in Fig. 2.1.

The probability of a symbol error is the probability that the measured

phase difference differs from the actual phase difference by more than n/M;

that is
Pgg(MDPSK) = P, [le =l<ni - ni'1> - <ei - ei-l)l > n/li]
M T 2.3)
= 1 - f pw(x) dx = 2 f pw(x) dx.
-n/M n/M

Thus, we need the probability density function of the random variable ¢.
The received signal during the 1th time interval is

r(t) = si(t) + n(r) (1-1)T < t < iT. (2.4)

[




r(t)

\/%'sin(wot -f)

T =T
() de __.X_.&#
V_(iT)
-1 | ®
iT V_(iT)
() dt | —9
(1-1)T

\/,%— cos(wot -0

Delay

L—# Synchronization

|

I

I
)

Fig. 2.1.

i-1

General M-ary DPSK receiver.

DIFF MOD 27

Compare and Decision

..IQ,L’

D >




The integrator outputs become

iT
Ve(iT) = Y2/T sin (wot - ¢) r(t) dt
(i-1)T
= /E cos (¢ +6l) +ng (iT) (2.5)
and
V.(iT) = V/E; sin (¢ +61) +n. (4T) (2.6)
where
iT
ng(iT) = f Y2/T sin (ot = ¢) n(t) dt, (2.7)
(1-1)T
iT
nc(iT) = f V2[T cos (wot - ¢) n(t) dt. (2.8)
(i-1)T

Notice that the energy per data symbol of duration T is Ej. Assuming the
noise samples ng and n, are normally distributed with variances NO/Z, the pdfs

of the integrator output'samples are

1 -(x - /i;bos(ai + ¢))2/No,
P (x) = e . (2.9)
Vs(iT) /;ﬁ;

1 ~(y - VEgsin(6l + ¢ )2/N, . (2.10)
P T (x) = e
Ve (iT) /T




The next step 1s to find the pdf of the random variable ni, where

v (iT)
1 -l ¢ . (2.11)

Since V_ and VS are independent, the cumulative probability distribution of n

becomes (dropping the function of iT notation for convience)

i Y
P[n’ < n] = Pltan V—°_<_nJ.
. s
-
VC
=P t < tan n
L
© v_tan n
f[ (v ) Pye (v ) dv dv +Il pvs(vs) pvc(.vc) dvcdvs
—V_t - :
ann (o} 00 (2.12)

i
Hence, the pdf of n~ becomes

<o

d i

pni(n)=a-?[n$n] [ secnpv(v)pV (vtann)dv - 7m/2 <n <72
o

.['TrF e [x 2 No cos(n - 8 : 9 + ES/NOJdr 0<n<2w
o (2.13)

0 otherwise

Letting 6 = Bi - 61-1 it follows that ¥ = ni - ni-l - 6 and since ni and

ni-l are statistically independent, the pdf of ¥ becomes




m

pyd = fo i ey +0)p 1l ) oy
-

xr -(r2-2r\/—_E—s cos (x+y-61_ -ﬁ)+—a-)
T e N

o odr-

o \8
o \‘8
e

2 \/§ _al-l Eg
R 2u N, cos (y - 6 #) +N6) du Vay . (2.14)

Using the method of characteristic functions, Fleck and Trabka [2] have shown
that (2.14) can be reduced to

Es (1 - cosx sina)
1

m/2
p‘l’(X) = o f [1 + -: (1 + cosx sinq)] - N
o

- sinodo (2.15)

Using the theory of Bessel functions (2.15) can be integrated to yield

N o)
o

E Es
l(ﬁi- cos x) + Ll (—- cos x)

E
+cosx| I [£ cosx] +1L Es sinx) (2.16)
o No o No

_Es
p\y(x) = Py n/2) + %Fi e N {I




where In(x) and Ln(x) are the modified Bessel function and Sturve function,
respectively. The probability density function of the phase difference

pw(x) is plotted in Fig. 2.2 for several values of ES/JO.
The exact expression for the probability of a symbol error is thus given

by (2.3) with pg(x) specified by (2.15) or (2.16).

Several attempts have been made to approximate (2.3) for reasonable large

signal- to-noise ratios. Fleck and Trabka [2] have found
2

Pgp MDPSK) ¥ erfclu] + —= s u= /2E_/N sin %
4 \/n‘1/8 +ES/NO)

(2.17)

Arthurs and Dym [3] show that

Pop (MDPSK) = erfe [/€;7Nosin L ] (2.18)
2"

Bussgang and Leiter [4] derived an upper bound which approximates closely for
E/N >5 dB. It is
s o

vV 1+ 2Eg/N,

Py (MDPSK) ¥ erfc [ sin m/M ] . (2.19)

The MDPSK probability of a symbol error versus the symbol signal-to-
noise ratio Es/No (at the outputs of the integration filters of Fig. 2.1) is
plotted in Fig. 2.5 for M = 2, 4, 8 and 16.
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2.2 M-ary Incoherent Orthogonal Keying (MOK)

The message set for the MOK technique is defined in terms of the M
possible orthogonal phase waveforms Oy (t), where k =1, 2, ..., M. The data

phase waveform can be arbitrary, but must have the orthogonal property that

T _
[ e4(t) 65(t) dt =0  for i # j (2.20)
o}

where T is the symbol duration.

If we desire to send the kth message during the ith time interval, then

the data phase waveform becomes
8gi(t) = 6(t)  (4-1)T <t < IT . (2.21)

The M orthogonal phase waveforms can be formed by bi-phase keying the
transmitted signal over subsections of the T second symbol interval. For
example, with a 4—ary system the phase waveforms could be constructed as shown

in Fig. 2.3.

The general block diagram form of the MOK receiver is shown in Fig. 2.4.

11
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Let €,; 1 =1, 2, ... M represent the M envelope samples at time t = T. Given

i;
that the first message was sent, the probability of a correct decision is

PC(MOK) = P [el > €5 €1 > €35 o el‘ > eM] . (2.22)

Assuming the samples are independent random variables, the joint density is

given by
(€45 €4y «s &) = p. (e) p. (g)) .. P (&)
pel’ €y +or Ey 1° “2° M gy 1 ey 2 €y M
(2.23)
where
x - (x2 + Eg)/2N
P (x)= e I \xJ=2 0<x <o (2.24)
el N N -
(Rician)
and .
- y2/2N
pe () = y/Ne 5 1=2,3, .., M 0<y<e, (2.25)
i
(Rayleigh)

Notice that N = N°/2 is the noise variance. The probability of a message

symbol error is

=1 - P, (MOK
PSE(MOK) 1 c( )

o X M-1
-1 - f P, (x) [pez (y) dy dx (2.26)
o
0o

14
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-y

But,

X b 4 2 2

fpez (y) dy = f %e'y ’2Ndy=1-e'x /- (2.27)
(8] o]
Hence, (2.26) becomes

® M-1
2 2
PSE (MOK) =1 - f _;_e - (x"+ ES/ZN Io(x ﬁ_;) [1 _ X /ZN] dx.
o

N
(2.28)

As in Arthurs and Dym [3], the binominal expansion can be used to write

2

M-1 M-1 X

2 M-1 ->=k
k=0

Thus, (2.28) becomes

k=0

_ M-1 fM-1 2 _x
P GIOK) =1 - e Eg/2N 7 ( ] )(_1)k f re 2(1+k)10(rJ%>dr.
(o]

(2.30)

The integral in (2.30) is

o 2 Eg
r = (k+ 1)
-5 (k+1) ﬁ_: _ 1 2N (2.31)
fre 2 Io r ' X dr = 1(_'_le .
[+

Using this result and substituting N = NO/Z, the average probability of a

symbol error becomes

15




Eg/N, (k + 1)

“Eg/No M-l /y-1 e
0K) =1 - -1)k
PsE(MOK) ¢ RZO ( k) eOF D

= =-e

Eg/N, M-1 <M_1> Dk e Es/No (k+ 1) (2.32)

k=1 k

Noting that

-1 1 M 1
= - (2.33)
k /Jk+1 k + 1 M

and letting q = k + 1, the final form is

e “Eg/Ng M /M q Es/No
Pgg(MOK) = - ) -1 e (2.34)
M a=2 \q

The MOK probability of a symbol error versus the symbol signal-to-noise
ratio Eg/N, at the matched filter outputs is plotted in Fig. 2.5 for M = 2, 4,

8 and 16.

As expected, DSPK is 3 dB better than binary orthogonal simply because

the convolution is performed over a 2T second interval with DPSK.

The interesting result is that in the M-ary orthogonal case higher order
symbol alphabets can be used without significant penalty in terms of the
required signal-to-noise ratio. Other practical considerations including ease
of implementation will have to be investigated in order to determine the

optimum value of M,

16
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In the MDPSK system it is unlikely that one would ever counsider going
beyond the 4-ary or QDPSK system simply because of the signal-to-noise ratio

penalties.
2.3 MDPSK with Doppler Shift

The provability of a symbol error for either the !NDPSK technique or the
MOK technique is a function of the relative motion (doppler shift) between the

interrogator and the transponder.

Suppose the received MDPSK signal is doppler shifted with frequency
offset wy relative to the local reference signal. Then the received signal

over the ith time interval is

/2E
r(t) =\/=— sin [(wo + wg)t + 61] +n(t) (-1)T < t< T (2.35)
T

where the message phase 81 over the ith time interval is one of the M values

defined by (2.2).

The outputs of the interogators in Fig. 2.1 become

iT
Vg(UT) = VT [  r(t) sin (wt - ¢ Mt
(i-DT
= /?;sinc wqT/2 cos [(1 - 1/2) wqT + ol + ¢] +ng(iT) (2.36)

18
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and

V.(iT) = / Egsinc wyT/2 sin [(1 = 1/2)uwqT + 6L+ ¢] + n (4T) . (2.37)

Define the effective energy E' as

E' = Egsinc? yT/2 . (2.38)

Again, assuming the nolse samples are normally distributed, the pdf's of the

integrator output samples are

1 -(x = /E' cos [(1-1/2)uwyT + 61 + ¢])2/N, (2.39)
Py (iT) (%) = e
8 ™,
1 =(x - /E' sin[(1-1/2)uwyT + 61 + ¢])2/N, (2.40)
Pv_(iT) (%) = e
c(i ) . m;'

The corresponding probability density function of ni is

r - [r2 -2r JE'/NO cos(n-(i—l/Z)wdT - ol - ) + E'/Nol
-e dr
n

O\._.s

-t <n <7

Pni(n) = J

o otherwise (2.41)

19




Notice that there is a doppler phase shift of wyT between consecutive
integrator output samples. Define the shifted phase differences between

samples as

where the phase difference in the doppler case is g = nl - ni-1 - a1 4 pi-1,

Using (2.41), it can be shown that the probability density function of ¢' is
Py (x) = py(x) (2.43)

where pw(x) is zero doppler probability density function given by (2.14) with
Eg replaced everywhere by E'. The probability of a symbol error can be

written from (2.3) as

n
2 Pyd (x)dx
/M

Pge (MDPSK)

m
2 Py’ (x-wgT)dx
/M

T -—uwgT
= 2 py(x)dx (2.44)
/M —wgT

20




where pw(x) is given by (2.16) with Eg replaced everywhere by E'.

The probability of a symbol error Pgp (MDPSK) for the binary and 4-ary
cases are plotted in Fig. 2.6 versus doppler shift w4l for fixed signal-to-

noise ratios of 5, 10, and 15 dB.

On a signal-to—noise ratio per bit basis, the solid curves in Fip. 2.6
for QDPSK correspond to 2, 7 and 12 dB. It becomes clear that QDPSK is more

sensitive to doppler than BDPSK.

2.4 MOK with Doppler Shift

Due to relative motion between the interrogator and transponder, assune
the received MOK signal is doppler shifted (with respect to the carrier
frequency) with angular frequency offset wy. If the transmitted symbol is
matched to the first filter, then with no noise the amplitude of the envelope

sample at time t=T due to the first filter output is

YE = VE; Isinc wyT/2] (2.45)

where Eg i1s the symbol energy and T 1s the symbol duration. In addition to
reducing the amplitude of the true matched filter, the doppler shift also
causes a response to the received symbol in the other M-1 not true matched

filters.

21
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The envelope samples of the outputs of the M matched filters are random

variables with probability density functions (Rician) given by

2x  =(x2 + E{)/N VE; | 0<x<w
fe x) =— e IO 2 x ——
1 N, N, / 1=1,2,...M

(2.46)

where /Ta is the amplitude of the envelope samples due to the doppler shifted

message signal only.

Assuming the message matched to filter 1 is sent, the average symbol

error probability with doppler frequency offset wy is

Pgg(HMOK) = 1 - P, (MOK)
L M X
=1 - f fe (x) {f fe (y) dyldx .
(o] 1 i=2 [o] 1

But, we know that

X
[ £ () dy
o

2E; 2
1-0Q -, - x
NO NO

where the Q function is defined as

w  —(a2 + x2)/2
Q(a,b) = f ze Io(ax) dx
b

=] -e¢e

~(a2 +b2)/2 = [Db\
<-—> I, (ab) .

m=1 a

23
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(2.49)




Thus,

2 -E}/N, = -x2/N, 2/E x M
Pgp(MOK) = 1 -~ — e [ xe Ig|——] =
No o No 1=2

2Ei 2
1 -Q — , [ — X dx (2.50)
N, Ng

or normalizing with respect to signal-to~noise ratios, we have

-r] « -y2r1 M
Pgp(MOK) = 1 - 2rje [ ye Io (2yr)) = <L42 </§? , /2ryy dy>>
0 i=2

(2.51)

where ri{ = E{/N, and where the values E4, i=1, 2, 3, ..., M depend on the

choice of the message waveforms.

In thé following section, we will choose some specific signalling sets

and evaluate their performance in the presence of doppler shift.

24




3.0 CHOOSING SIGNAL SETS FOR MOK

The choice of the orthogonal signal set for the MOK data modulation
technique becomes important when there is relative motion (doppler shift)
between the transponder and interrogator. At zero doppler shift the choice of
the orthogonal set is not important (from the viewpoint of performance) since

the outputs of the M-l not true matched filters will be zero.

When there is relative motion between the interrogator and transponder,
the choice of the orthogonal signal set determines the effective signal energy
at the outputs of the M-1 not true matched filters. An i1deal signal set would
remain orthogonal for all doppler shifts (zero effective energy at the not

true filter outputs).
Notice that regardless of the choice of the signal sets, the effective
energy out of the true matched filter is
Ep = Eg sinc? wgT/2 (3.1)
where wy is the relative doppler frequency shift (in radians) between the
received signal and the local recelver oscillator carrier frequencies.

Orthogonal waveform sets such as the Walsh functions are good candidates
because they lend themselves to digital implementation. For instance, the
M-ary signal set can be formed by selecting a single PN spread spectrum code

and multiplying it by an appropriate set of M Walsh functions. The use of

25




Walsh functions also permits a single segmented convolver to perform the

function of M matched filters.

The Walsh function sets can be generated by a set of orthogonal,
antisymetric, square-wave basis functions known as the Rademacher functions.
The first six Rademacher functions appear in Fig. 3.1, and can be represented

by

20qt
Rp(t) = sign sin 0<t«T

T (3.2)

(o} Otherwise

where T is the data symbol duration. These functions form an incomplete set,

but can be used to generate a complete set, the Walsh functions.

The first 22 Walsh Functions are shown in Fig. 3.2 The Walsh functions
can be formed by considering all distinct combinations of products of the
Rademacher functions. For instance, the first four Walsh functions Wj(t),
i=0,1,2 and 3 can be found by forming all distinct combinations of products of

R1(t) and Rj(t). Rg(t) naturally arises as the identify element. That is,

Wo(t) = Rp(t)
Wi(t) = Ry(t)

(3.3)
Wa(t) = Ri(t)Ry(t)

W3(t) = Rp(t)

where Rj(t)Ry(t) = Rg(t) for any {i.
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Similarly, the first eight Walsh functions can be formed from all

distinct combinations of products of Rj(t), Ra(t) and R3(t). We have

Wo(t) = Ro(t)

Wi(t) = Ry(t)

Wa(t) = Ry(t) Ry(t)

W3(t) = Ro(t) Ro(t)

W4(t) = Ry(t) R3(t) (3.4)
Ws(t) = Ry(t) Ryp(t) R3(t)

We(t) = Rp(t) R3(t)

W7(t) = R3(t)

The Walsh function sets defined in this manner form a group under
multiplication. Notice that the multiplication of any two Walsh functions in
the set ylelds another member of the set. This property guarantees symmetry
in that the probability of a symbol error is the same regardless of which

symbol is sent.

By choosing higher frequency basis or Rademacher functions, the Walsh
function sets will have better doppler performance. For example, suppose the
8-ary signal set is formed by all distinct combinations of products of

Ro(t), R3(t) and R4(t). This alternate Walsh function signal set becomes
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Wo(t) = Rp(t)

W3(t) = Rz(t)'

W4(t) = Rp(t) R3(t)

W7(t) = R3(t)

Wg(t) = R3(t) Ry(t) | (3.5)

Wi1(t) = Ra(t) R3(t) R4(t)
Wi2(t) = Ra(t) Ry(t)

Wis(t) = Ry4(t)

The doppler performance of a particular Walsh function signal set is
limited by the lowest frequency Rademacher function (excluding the identity

function Rg(t)); in this case, Rp(t).

The error performance in the presence of doppler shift of a particular
signal set is given by Eq. 2.50 where the values Ej, i=2,3,...M are determined

the choice of the signal set.

In general, the effective energy out of the ith not true matched filter,
which is matched to the £th Walsh function, given that the received signal is

phase modulated by the rth wWalsh function is

1 T juwgA
Ef = Eg |- [ Wa(d) wy(A) e a2 . (3.6)
T o
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The doppler performance of ideal BOK and sum-difference BOK where the
signal set consists of the lowest order Walsh functions Wp(t) and Wj(t) is
compared against that of QDPSK and DPSK in Fig. 3.3 Notice that the amount of
improvement that is possible between sum-difference BOK and ideal BOK (about 3

dB at wyT = 1.5). Thus, proper choice of the signalling set is important.

The MOK, M=4 probability of a symbol error is plotted in Fig. 3.4 versus
doppler frequency shift for several symbol signal-to-nolse ratios using the
4-ary signal set defined by Eq. 3.3. This signal set consists of the first

four natural Walsh functions.

Similarly, the MOK, M=8 probability of a symbol error is plotted in
Figs. 3.5, 3.6 and 3.7 versus doppler frequency shift for several symbol
signal-to-noise ratios using the 8-ary signal set defined by Eq. 3.4, the
alternate 8-ary signal set defined by Eq. 3.5 and the ideal 8-ary signal set

(orthogonal for all doppler shifts), respectively.

The three 8-ary signalling sets are more clearly compared in Fig. 3.8
where the signal-to-noise ratio per bit required in order to maintain a 1%
symbol error probability is plotted versus doppler shift for each of the three
signal sets. We see that at w4qT = 2, the alternate signal set performs over 3

dB better than the low order Walsh function set.

Finally, in Fig. 3.9 the doppler performance of MOK for each value of

M =2, 4, 8 and 16 is compared for a signal set consisting of the first M
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functions and for an ideal (orthogonal for all doppler shifts) M-ary signal
set. Again, the signal-to-noise ratio per bit required to maintain a 1%
symbol error probability is plotted versus doppler shift for each of the M-ary

signal sets.
3.1 Signal Sets for BOK (MOK, M=2)

0f course, the binary signalling set is included in the previous
discussion of MOK signalling sets. However, since the signal set is comprised
of only two orthogonal signals, there are more options available. For
instance, there is always the option that two independent PN chipping
sequences be used for each data symbol. This would allow essentially ideal
BOK performance (i.e., waveforms remain orthogonal for all doppler shifts of

interest).

1f a single PN chipping sequence is to be used, then the previous Walsh
(Rademacher) function approach would dictate that the two phase waveforms be
Ro(t) and Rj(t) where j » 1. In order to minimize the doppler degradation, j

should be chosen as large as possible.

Suppose the signal set consists of 8;j(t) = R,(t) and 6(t) = Rj(t) where

3} = logoN as shown in Fig. 3.1.

Consider the response of the filter matched to 05(t) when 8;(t) is sent.
After demodulation with respect to the PN chip sequence and the data 6;(t),

the matched filter output at the sample time tg becomes (noiseless case)
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VEg N-1 (1+1)T/N  jugt

Yoltg) = — I (-Di / e dt
T 1=0 iT/N
VEg wgT\  JugT/2N N-1 JugTi/N . (3.7)
= = ginc| — | e Y (- e
N 2N i=0

The output of the envelope detector becomes

/E wgT N-1 wgT
lyo(tg)] = = [|sinc —| N+2 §  (N1)(-1)icos — . (3.8)
N 2N i=1 N

It can be shown (see Appendix A) that in the limit as N + « the response of
the not true filter (3.8) approaches zero. As a practical limit, N can be
made as large as the number of chips per data symbol. For values of N much
greater than 16 (see Fig. 3.11), the response of the not true filter is

essentially zero for realistic doppler shifts.

Thus, by choosing a waveform 65(t) with a large enough value of N, the
waveforms maintain orthogonality regard less of the doppler shift. Of course,

remember that the effective energy out of the true channel matched filter is

E' = Eg sinc? wT/2 . (3.9)
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The effective energies out of the true matched filter and the not true
matched filter are plotted in Fig. 3.11 as a function of the doppler shift for
several values of N. Notice that the effective energy out of the not true

filter is just the square of (3.8) with Eg = 1.

For large N the performance of this BOK scheme can be found by using the
original zero doppler probability of error curves where E; is replaced by E'

(see Fig. 2.5 of Section 2.2).

The question remains as to whether the waveform Rj(t) can be implemented
for large values of j. It if adds too much complexity to the matched filter,

then an alternative waveform must be chosen.

An alternative choice of the second BOK signal 87(t) is given in Fig.

3'12.

The idea is to choose k in such a way that the doppler degradation is

minimized.

Consider the response of the filter matched to 07(t) when 6;(t) is sent.

The matched filter output at the sample time tg becomes (noiseless case)

VEg [T(1-k)/2 juqt T(1+k)/2  jugt T Jugt
Voltg) = — / e at - e ac + e dt
T o T(1-k)/2 T(1+k)/2
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Fig. 3.12. Alternative choice for 62 ().
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(1-k) [ Jo(1-k) j¢(3+k)]
= JE, =———— sinc¢(l-k) |e + e
2

je(2-k) j¢(2+k)]
(3.10)

k
- JE_ 5 sincék [; + e

where ¢ = wgT/4.

After some manipulation, we see that the matched filter output (3.10)

will be zero is k is given by the optimum value

1 sin24¢
k* = — gin~l
2¢ 2
2 sin wgT/2
= ——— gin~! (3.11)
wdT 2

The optimum value k* is plotted in Fig. 3.13 as a function of the doppler

f requency shift.

Unfortunately, the choice of k* guarantees orthogonality only at a
particular doppler frequency shift. However, by identifying the range of
possible doppler shifts, one can choose a value of k that minimizes (3.10)
over the region of interest. For instance, if the worse case doppler shift
corresponds to 2.5 radians, then a compromized value of k between .5 and .4

could be chosen.
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In Fig. 3.14, the effective energies out of the true and not true
matched filters are plotted versus doppler shift for several values of k. The
effective energies out of the not true filter for the signal set of Fig. 3.10
with N=2 and 4 are also plotted for comparison. Note that 0 < k < .5

essentially offsets the null of the not true filter from zero doppler.

The relative performance of these special case BOK signal sets are shown
in Fig. 3.15 where the signal-to-noise ratio per bit required in order to

maintain a 1% symbol (bit) error probability is plotted versus doppler shift.
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4.0 ACOUSTO-ELECTRIC CONVOLVER IMPLEMENTATIONS

This section is devoted to acousto-electric convolver implementations of
the various data modulation techniques under consideration. Implementation of
MDPSK for M=2 and 4 is also presented here, although their doppler performance

precludes them from serious consideration.

The structures of the convolver based receivers are of the matched
filter/greatest of form (as shown in Fig. 2.4). A general M-ary convolver
based receiver structure is given in Fig. 4.1 whereby the convolver and sum-
difference hybrid matched filter connections will be supplied for each of the

modulation schemes.

The convolver/sum-difference hybrid matched filters for DPSK and QDPSK
are shown in Fig. 4.2 Notice that sum~difference BOK is implemented in the

same manner as DPSK.

In Fig. 4.3, three possible signal sets for MOK, M=4 are shown. The
three sets are formed by considering all possible distinct multiplicative
combinations of (a) Rp(t), Rj(t) and Rp(t), (b) Ro(t), Rp(t) and R3(t), and
(c) Rp(t), R3(t) and R4(t). Remember that the sets formed from the higher

order Rademacher functions will have better doppler performance.

As mentioned earlier, sum-difference BOK can be implemented with a two

segment convolver and one sum-difference hybrid (this corresponds to a signal
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set consisting of Rp(t) and Rj(t). Figure 4.4(a) shows a straightforward
implementation of BOK, where the signal set consists of Rg(t) and Rp(t), using

a single four segment convolver with four sum-difference hybrids.

Figure 4.4(b) shows an implementation of the 4-ary signal set given in
Fig. 4.3(b) using a single eight segment convolver and 12 sum-difference

hybrids.

In general, to implement an M-ary signal set with a single convolver we
require at least an M segment convolver. If we choose to improve the doppler
performance by choosing a signal set which requires 2%, n > 1 times as many
segments, then for an M-ary signal set we require

2n M (4.1)
segments. Using the straightforward implementation approach, we would
require,

2n=1 ¥ 1og,(27M) (4.2)

sum~-difference hybrids.

Assuming that we do not want to build 4-ary convolvers with more than 16

segments, then there are three possible choices for n, namely, n=0, 1 or 2.
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However, for n=1, there are 8 segments and by (4.2) we would need 12 sum/
difference hybrids. Similarly, for n=2 there are 16 segments and by (4.2) we
would need 32 sum/difference hybrids. Clearly, the number of sum/difference
hybrids required becomes prohibitive. The following examples will illustrate

an alternative approach.

Consider the original signal set shown in Fig. 4.3(a) which consists of
all multiplicative products of the Rademacher functions Rg, Ry and Ry. The
corresponding standard 4-segment convolver implementation (n=0) is shown in

Fig. 4.5(a).

Now consider the alternate signal set shown in Fig. 4.3(b) which
consists of all products of Ry, Ry and R3. This signal set has much better
doppler performance than the original set and requires an 8-segment convolver
(n=1). However, by tieing appropriate segment pairs together we can implement
this alternate signal set with only 4 sum/difference hybrids as shown in Fig.

4.5(b).

For even better doppler performance (close to ideal even at high band)
this approach can be extended to the signal set which requires a l6-segment
convolver (n=2). The waveform set is shown in Fig. 4.3(c) and consists of all
multiplicative products of Ry, R3 and R4. By tieing together the appropriate
groups of segments, we can implement this waveform set with only 4 sum/

difference hybrids as shown in Fig. 4.5(c).
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Fig. 4.5. Convolver implementations of the 4-ary
signal sets of Fig. 4.3. (a) First four Walsh
functions; (b) all combinations of Ry, Ry and Rj3;
and (c) all combinations of Ry, R3j and Ry4.
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Thus, in general we can implement an M-ary convolver which has 2%M

segments with M/2 logoM sum-difference hybrids.

Figure 4.6 shows three possible signal sets for BOK, including the
original sum-difference set. The corresponding convolver implementations are

shown in Figo 4.7.

Finally, in Fig. 4.8 we show the construction of higher order M-ary
m

convolver matched filters using n lower order ; -ary convolver matched

filters. Examples are shown for constructing a 4-ary or 8-ary matched filter
using two binary or two 4-ary convolver matched filters, respectively, and for
constructing a 8-ary or l6-ary matched filter using four binary or four 4-ary
convolver matched filters, respectively. The reference modulating Rademacher

functions Rj depend on the desired signal set and the number of segments per

convolver.
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(b) 1l6-ary or 8-ary convolver matched filters from four 4-ary or
four binary convolvers, respectively. ‘

Fig. 4.8. Construction of higher order M-ary convolver matched
filters using several binary or 4-ary convolvers.
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5.0 RELATIVE COMPARISON OF MOK FOR M=2, 4, 8, 16 AND 32

This section makes a relative comparison of several data modulation
schemes on the basis of the required energy per bit Ej and of the required
time per bit T} for a given message reliability. Specifically, a comparison ;

of binary differential phase shift keying DPSK and M—ary incoherent orthogonal

(R}

keying MOK for M = 2, 4, 8, 16 and 32 is made. Also, the performances of
these modulation schemes are compared for two fixed values of carrier
frequency doppler shift in terms of the choice of the message waveforms. As
in fhe previous memos, the transmitted signals are assumed to be corrupted

only by white Gaussian noise of two sided spectral density No/2 watts/Hz.

In order to compare the doppler performance of DPSK on an equal basis
with that of the MOK schemes, we do so on the basis of time per matched filter
Tyre In the case of DPSK, Tyr is twice the time per data symbol or bit.

Thus, the time per bit Ty for DPSK is equivalent to that of MOK, M = 4 or
Typ/2.* Note that for the MOK schemes Tyr is equivalent to the time per data

symbol Tg. Hence, for MOK we have

Tp = Tg/logoM = Typ/logoM. (5.1) .

Therefore, for MOK

*In other words DPSK is run at twice the bit rate of BOK.
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Similarly, if Eg is the signal energy in time Typ, then the energy per

bit is

Ey = Eg/2 for DPSK, (5.3)

Ep = Eg/logyM for MOK. (5.4)

It is desirable to minimize the required Ep/N, and Tp/Tyr for a given
message reliability, since signal detectability and message length are

important in the IFF context.

With these parameters defined, we want to make a realistic comparison of
the various modulation schemes. Suppose we have a message of L bits which
must be encoded into symbols and transmitted over the noisy channel. The
probability of a message error Pyg for MOK in terms of the probability of a
symbol error Pgg becomes

L/logoM
Pyg = 1-(1 - Pgg) s (5.5)

since L/logoM is the number of symbols required to send L message bits.
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For comparison purposes, we will choose L = 60 bits in order that the
message can be sent by an integer number of symbols for the MOK, M = 2, 4, 8,
16 and 32 modulation schemes. Also, we will assume a message reliability of
99% or Pyg = .01. The corresponding symbol error probabilities for this

message length and reliability are given in Table 5.1

Table 5.1

Probability of a symbol error
required for Pyg = .0l

M 60/1logoM Pgg (MOK)

2 60 1.675 x 10~4
4 30 3.350 x 10~4
8 20 5.024 x 10™4
16 15 6.698 x 10™4
32 12 8.372 x 1074
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The required signal-to-noise ratios per bit Ep/N, were calculated for
the corresponding required symbol error probabilities listed in Table 5.1 and
plotted in Fig. 5.1 for the zero doppler case. Notice that we gain both ‘in
terms of Eu/N, and Tp/Typ for the higher order M-ary systems. Of course, we

gain at the expense of added complexity of the receiver.

Notice that DPSK gains 3 dB over BOK while operating at twice the bit
rate. Also, DPSK i{s approximately .2 dB better than MOK, M=4 for the same bit
rate. It appears advantageous to consider a l6-ary system since the gain from
M=8 to M=16 is substantial. A 32-ary system seems less feasible since the
added complexity yields less than 1 dB improvement in Ep/N, and only a 5%

decrease in message length over the l6-ary system.

Figure 5.2 compares the same modulation schemes for a fixed doppler
shift of wyT = 1 radian. The zero doppler points are included to give a
relative perspective of the effect of the doppler shift. The MOK schemes are
also compared for the ideal case when the phase waveforms are chosen to
maintain orthogonality for all doppler shifts. Notice that in this ideal case

the relative positions of the MOK schemes remain the same.

DPSK does not perform as well as MOK, M=4 at wyT = 1l radian. In fact,
MOK, M=4 {s approximately .3 dB better than DPSK with the message set defined

as the first four Walsh functions and 1.3 dB better than DPSK when the message
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set consists of the alternate choise waveforms (WAL(i,t), i=0,3,4 and 7)*.
Notice that the altnernate cholce waveforms gain approximately .65 dB for the

MOK, M=8 case.

Figure 5.3 compares the same modulation schemes for a fixed doppler
shift of wyT = 2 radians. As expected, there is a substantial increase in the
required Ey /N, for all of the modﬁlation schemes. The most noticeable feature
of this plot is the dramatic improvement in Eb/No obtained using the alternate
choice waveforms in the MOK, M=4 and 8 cases. In both of these cases there is

about a 4 dB gain in Ey/N,.

Significant performance improvements can be obtained by going to a M-ary
system for logyM = 2, 3, or 4. For logo M > 5, the increase in performance
may not be worth the added receiver complexity. DPSK has close to the same

performance as MOK, M=4 when operated at twice the bit rate of BOK.

Proper waveform design yields significant performance improvement in

proportion to the value of the doppler shift parameter wyT.

*See Fig. 4.3(b).
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6.0 CONCLUSIONS

A performance comparison of MDPSK and MOK shows that MOK is much better
for M > 4 due to the non-orthogonality of the MDPSK signal sets. Furthermore,
the degradation of MDPSK, M = 4 due to carrier frequency offsets (doppler
shift) is greater than the corresponding degradation :f MOK, M = 4, DPSK

(i.e., MDPSK, M

2) has close to the same performance as MOK, M = 4 when

operated at twice the bit rate of BOK.

Significant performance improvements can be obtained by going to an MOK
modhlation scheme for values of M greater than four both in terms of the
signal-to—noise ratio per 1nf;rmation bit Ep/N, required for a fixed message
error performance and in terms of shorter messages. Short messages are
important in reducing self interference. For M » 32, the increase in

performance may not be worth the added receiver complexity.

The choice of the orthogonal signal set is important in evaluating the
sensitivity of MOK to doppler frequency shift. When a Walsh function signal
set is chosen, the ultimate performance obtainable witl a carrier frequency
offset (due to doppler shift) is limited by the lowest frequency Rademacher

function in the set (excluding the identify function, Ry(t)).

By using Walsh function signal sets, a single M segment synchronized
convolver can be used as a M-ary matched filter. A single PN code is used to

spread the signal with one of M Walsh functions providing the additional phase
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modulation for M-ary data signalling. In section 4.0 a unique method is shown
for implementing an M-ary signal set with a convolver which has 2™M segments

(for good doppler performance) with only 1/2M logyM sum-difference hybrids.
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APPENDIX A

Note the following identities:

m

I (-D%cosnd = -1 + ()" %fé;ie}z/l)—q (a-1)
n=1

n n _ 1 m

L (-1)" n cosn® = 7 T cos0)? -2(1 + cos®) + (-1) |(m+l) cos(m-1)0
n=1

+ (3m + 2) cosm® 4+ (3m + 1l)cos(m + 1)® + mcos(m + 2)6]} . (A-2)

The output of tne envelope detector from (2) is

w T N-1 w
yo(ts) = JE]sinc-—E—| \/CL + 2 L (N-1) (-1)i cosi <L . (A-3)
2N R R N

For large values of N the identities (A-1) and (A-2) can be used to
yield

E/N2 sin? w T/2 N even

2

2 - . (A-4)
‘yo(ts)! = N odd

E/N2 cos wcT/Z

Thus, regardless of the doppler frequency shift, the output squared (or
effective energy) of the not true matched filter goes to zero as 1/N2 as

N + «, Note that the approximation given by (A-4) is very good for N > 8.
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