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1.0 INTRODUCTION

M-ary differential phase shift keying (MDPSK) and M-ary incoherent

orthogonal keying (MOK) are to be evaluted as possible data modulation options

for a direct PN spread spectrum IFF system. MOK and MDPSK are two basic

modulation techniques which do not require a phase coherent carrier reference

for demodulation and which are compatible with an acousto-electric convolver

based receiver.

The transmitted PN spread spectrum waveform can be represented as

J(Wot + 0(t))
s(t) - A Re {e } (.1)

where

0(t) f i(t) ,(iI)T -C t -c iT (1.2)

and

A is the amplitude of the constant envelope,

Wo is the angular carrier frequency,

0i(t) is one of M possible PN phase waveforms over the ith data symbol

time,

T is the data symbol duration.

In the case of 11OK, fi(t) is one of M orthogonal. PN phase waveforms. In

general, the 11-ary signalling set may consist of 1 distinct PN sequences. If

BPSK spreading is used, then the HOK phase waveform may be expressed as
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OMt- *c(t) + Od(t) (1.3)

where *c(t) is a single PN chipping sequence and 6d(t) is one of M phase

waveforms which are orthogonal over the data symbol period T. For instance,

Od(t) may be one of M distinct Walsh functions which takes on the values 0 or

w radians. This is equivalent to multiplying the BPSK waveform by Walsh

functions which take on +1 or -1 values.

In the case of MDPSK, the phase waveform may be expressed as

2w
*i(t) = *c(t) + - (K - 1) , 1 ( K ( M (1.4)

M

where the data message consists of the Kth phase value.

The performance criteria used to evaluate a particular option include

waveform sensitivity to relative motion (doppler shift) between the

interrogator and transponder, required signal-to-noise ratio per symbol Es/N o

or per bit Eb/No at the output of the matched filters for a fixed symbol error

probability, message length required (with fixed symbol durations), and

implementation complexity (especially in terms of acousto-electric convolver

implementations).
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2.0 CALCULATION OF THE PROBABILITY OF A DATA SYMBOL ERROR PSE FOR
MDPSK AND MOK

The proposed IFF system will employ PN spectrum spreading with N chips

of duration Tc for every data symbol. The performance of a particular data

modulation technique is measured in terms of the probability of the signal-to-

noise ratio Es/N o at the output of the receiver matched filters. Es is the

total signal energy in N chips (per data symbol) and the double-sided noise

spectral density is No/2 watts/Hz.

By considering Es/No, we can compare the modulation techniques while

fixing the total energy available in a T second data symbol interval (T-NTc).

Notice that in the differentially coherent system we are using the energy over

a 2T second interval (2E.) at each decision time (noise is correlated from

sample to sample). It is assumed that the receiver is time synchronized so

that the total signal energy is available at the sample times.

In the differentially coherent system, the phase of the local oscillator

at the receiver is assumed to be constant but independent of the phase of the

transmitted signal. In the coherent orthogonal system, the demodulation

reference signals need only maintain constant phase over each T second

interval.

2.1 M-Ary Differential Phase Shift Keying (MDPSK)

Ignoring the modulation and demodulation of the PN chipping sequence,

3



the transmitted MDPSK signal set can be represented as

si(t) = - sin (wot + edi(t)), (i-l)T 4 t 4 iT (2.1)
T

where Odi(t) is the message phase over the ith time interval and where

2w (k-i)
ek = - for k = 1, 2, ... , M (2.2)

M

represents the M possible message phases. In block diagram form the receiver

can be implemented as shown in Fig. 2.1.

The probability of a symbol error is the probability that the measured

phase difference differs from the actual phase difference by more than w/11;

that is

PSE(MDPSK) = Pr [ii=(T1i - ii1) (ei - 8i-1) I > -ni /]

W/11 W (2.3)
1 - f p*(x) dx 2 f pp(x) dx.

Thus, we need the probability density function of the random variable $.

The received signal during the ith time interval is

r(t) = si(t) + n(t) (i-1)T < t < iT. (2.4)
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The integrator outputs become

iT
Vs(iT) = f /27T sin (wot - *) r(t) dt

(i-1)T

= cos (€ + 61) + n. (iT) (2.5)

and

Vc(iT) = sin (0 + 61) + nc (iT) (2.6)

where

iT
ns(iT) = f i2/T sin (wot - *)n(t) dt, (2.7)

(i-1)T

iT
nc(iT) = f 1-27T cos (wot - 0)n(t) dt. (2.8)

(i-1)T

Notice that the energy per data symbol of duration T is Es . Assuming the

noise samples ns and nc are normally distributed with variances No/2, the pdfs

of the integrator output samples are

1 -(x - [-cos(ei + t))2/N o ,

PVs(iT)(x) - e (2.9)

1 -(y - /-sin(ei + t)) 2 /No • (2.10)

PVc(iT)(X) - e
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The next step is to find the pdf of the random variable n ,where

ri s tanl V- (iT) (2.11)

Since V cand V sare independent, the cumulative probability distribution of n i

becomes (dropping the function of iT notation for convience)

P - < tan n]

00 00v tan ni

f P(v ) (Vs)Vc) c vc dv S +f f p~s(vs) pc(-vc) dvcdv
V 8V tan n o -00 (2.12)

Hence, the pdf of n becomes

P i(n) d P [-i < n]= 2f v sec 2n p 5(v ) Pvc (vstan n) dvs - 1T/2 < n < rr/2

0

-I 2_ r EF; cos(n -6-e + E sIN]1d <n<2
{fe 4 22 v~ Sr 0d ~ <

0 (2.13)

0 otherwise

Letting 0e - 6e- it follows that T = T) - e~ - and since n and

T)i1are statistically independent, the pdf of TP becomes
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r

pY(x) fpj (x + y + 6) pi-l (y) dy

- 7-

2 -2 s*~ilEr (r -2r Cos (x + y +
f odr f

-7r t0 0

VEscos (y - 0) +E
.e (2.14)

Using the method of characteristic functions, Fleck and Trabka [2] have shown

that (2.14) can be reduced to

7/ 2 Es (1 - cosx sina)

p (x) f [ E-- (l+ cosx sina) e 0

0

.sinada (2.15)

Using the theory of Bessel functions (2.15) can be integrated to yield

Es- EN 1 o ( LI (Es

p (x) = pY (v/2) + s- .e CoN +I L Co
N00N 0 X)~ 1 CoN X)
o oE

+ cosx [I (E- cosx) + Lo (Eo sinx)j} (2.16)
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where I n(x) and L (x) are the modified Bessel function and Sturve function,n n
respectively. The probability density function of the phase difference

p(x) is plotted in Fig. 2.2 for several values of Es/Jo"

The exact expression for the probability of a symbol error is thus given

by (2.3) with p (x) specified by (2.15) or (2.16).

Several attempts have been made to approximate (2.3) for reasonable large

signal-to-noise ratios. Fleck and Trabka [2] have found

2
-u

PSE (MDPSK) X erfc[u] + ue V7 °I /Nol ;u =siS E ~ ~~4 M / 8 + E s / N ) ; us2 ( 2 * . 7(2.17)

Arthurs and Dym [3] show that

PSE (MDPSK) Z erfc N.s]n (2.18)

Bussgang and Leiter [4] derived an upper bound which approximates closely for

E'/N > 5 dB. It is
so0

-SE (MDPSK)EN erfc [sin n/M 1 (2.19)
1P e + 2Es/N o

The MDPSK probability of a symbol error versus the symbol signal-to-

noise ratio E s/N (at the outputs of the integration filters of Fig. 2.1) is

plotted in Fig. 2.5 for M = 2, 4, 8 and 16.
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2.2 M-ary Incoherent Orthogonal Keying (MOK)

The message set for the MOK technique is defined in terms of the M

possible orthogonal phase waveforms Ok(t), where k - 1, 2, ... , M. The data

phase waveform can be arbitrary, but must have the orthogonal property that

T
f ei(t) 8j(t) dt - 0 for i * j (2.20)
0

where T is the symbol duration.

If we desire to send the kth message during the ith time interval, then

the data phase waveform becomes

edi(t) - ek(t) (i-1)T 4 t iT . (2.21)

The M orthogonal phase waveforms can be formed by bi-phase keying the

transmitted signal over subsections of the T second symbol interval. For

example, with a 4-ary system the phase waveforms could be constructed as shown

in Fig. 2.3.

The general block diagram form of the MOK receiver is shown in Fig. 2.4.
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Let ; i - 1, 2, ... M represent the M envelope samples at time t - T. Given

that the first message was sent, the probability of a correct decision is

PC(MOK) = P I C 2' 1 >3' ... > ' 1i > IE (.22)

Assuming the samples are independent random variables, the joint density is

given by

PC, E2 " M  (el C2' " EM) P F 1 ) 2 2 PE MEM

(2.23)

where

x W (x2 +Es)/2NI 1/ )PEo (x) e o x 0 < x < (2.24)

(Rician)

and

2

Pc (y) y/N e - y /2N i = 2, 3, ... , M 0 < y < 00 (2.25)

i (Rayleigh)

Notice that N - N /2 is the noise variance. The probability of a message0

symbol error is

P SE(MOK) = 1 - PC (MOK)

SE C

1f PC ( f PC (y) dy dx (2.26)

00
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But,

y 2/2N -x 2/2N (.27)
p (y) dy e dy = -e

f O

0 0

Hence, (2.26) becomes

PSE (MOK) 1 - e - ( ° E/2N x )x2/ 2 N]Ml dx.

0 (2.28)

As in Arthurs and Dym [3], the binominal expansion can be used to write

2 2 -1 M-1 e- 2 k

- /2N = E (1kk e (2.29)
k-0

Thus, (2.28) becomes

E /11 -1IM-1) OkPSE (MOK) 1-e (-1) k  re 2(l+) 1 ° dr.
k=O k J 0 N)

(2.30)

The integral in (2.30) is

00 2 /s (k\ +1

f rE (k1 (k +1 ) (2.31)fre 2 1 (r+I)i dr --k 1e.

0

Using this result and substituting N - N /2, the average probability of a0

symbol error becomes

15



HES/o1 -1 \ l e Es/No (k + 1)

PSE(MOK) 1 - e I k) (k + 1)k=O

= -e 1 (-l)k e Es/No (k + 1) (2.32)

k=l k(k+1

Noting that

(Ml)k  k + 1  (k 1) I (2.33)

and letting q = k + 1, the final form is

e-Es/N° 1  Es/N°
PSE(MOK) = - I (I) q e (2.34)

The MOK probability of a symbol error versus the symbol signal-to-noise

ratio Es/No at the matched filter outputs is plotted in Fig. 2.5 for Ht = 2, 4,

8 and 16.

As expected, DSPK is 3 dB better than binary orthogonal simply because

the convolution is performed over a 2T second interval with DPSK.

The interesting result is that in the H-ary orthogonal case higher order

symbol alphabets can be used without significant penalty in terms of the

required signal-to-noise ratio. Other practical considerations including ease

of implementation will have to be investigated in order to determine the

optimum value of M.
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In the MDPSK system it is unlikely that one would ever consider going

beyond the 4-ary or QDPSK system simply because of the signal-to-noise ratio

penalties.

2.3 PIDPSK with Doppler Shift

The probability of a symbol error for either the IDPSK technique or the

I1OK technique is a function of the relative motion (doppler shift) between the

interrogator and the transponder.

Suppose the received MDPSK signal is doppler shifted with frequency

offset "d relative to the local reference signal. Then the received signal

over the ith time interval is

r(t) = _ sin [(Wo + wd)t + eil + n(t) (i-l)T 4 t - iT (2.35)
T

where the message phase ei over the ith time interval is one of the It values

defined by (2.2).

The outputs of the interogators in Fig. 2.1 become

iT
Vs(iT) = rVP f r(t) sin (wot - *)dt

(i-l)T

= /-Essinc wdT/2 cos [(i - 1/2) WdT + Oi + *] + ns(iT) (2.36)

18



and

Vc(iT) = /-Essinc wdT/2 sin [(1 - l/ 2 )wdT + Ei *i + nc(iT) . (2.37)

Define the effective energy E' as

E' = Essinc2 udT/2 • (2.38)

Again, assuming the noise samples are normally distributed, the pdf's of the

integrator output samples are

1 -(x - ,N' cos [(i-1/2)wdT + ei + 0]) 2/No  (2.39)

PVs(iT) (x) =- e

1 -(x - N' sin[(i-/2)wdT + ei + 0]) 2/No  (2.40)

PVc(iT) (x) - e
c 7790

The corresponding probability density function of ni is

r - [r 2 -2r E'No cos(n-(i-I/ 2 )wdT - 0i - ,) + E'/N o ]
f - e dr
o it

-i 4 n 4 7r

P~i(n) =

o otherwise (2.41)

19
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Notice that there is a doppler phase shift of wdT between consecutive

integrator output samples. Define the shifted phase differences between

samples as

4' = 4d - wdT (2.42)

where the phase difference in the doppler case is *d - ni- I - i + ei-I.

Using (2.41), it can be shown that the probability density function of 4' is

p ' (x) = p*(x) (2.43)

where p*(x) is zero doppler probability density function given by (2.14) with

E. replaced everywhere by E'. The probability of a symbol error can be

written from (2.3) as

PSE (MDPSK) = 2 f P4 d(x)dx
IT/M

IT

= 2 f p4'w(x-wdT)dx

iT-wdT
= 2 f p*(x)dx (2.44)

r/M -wdT

20



where p*(x) is given by (2.16) with ES replaced everywhere by E'.

The probability of a symbol error PSE (MDPSK) for the binary and 4-ary

cases are plotted in Fig. 2.6 versus doppler shift wdT for fixed signal-to-

noise ratios of 5, 10, and 15 dB.

On a signal-to-noise ratio per bit basis, the solid curves in Fig. 2.6

for QDPSK correspond to 2, 7 and 12 dB. It becomes clear that QDPSK is more

sensitive to doppler than BDPSK.

2.4 MOK with Doppler Shift

Due to relative motion between the interrogator and transponder, assume

the received 110K signal is doppler shifted (with respect to the carrier

frequency) with angular frequency offset wd" If the transmitted symbol is

matched to the first filter, then with no noise the amplitude of the envelope

sample at time t=T due to the first filter output is

1- = T Isinc Wdr/21 (2.45)

where Es is the symbol energy and T is the symbol duration. In addition to

reducing the amplitude of the true matched filter, the doppler shift also

causes a response to the received symbol in the other 1-i not true matched

filters.

21
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The envelope samples of the outputs of the M matched filters are random

variables with probability density functions (Rician) given by

2x -(x2 + Ei)/No ( 0 i O<x<f~(x) ff - e I o  x j )O~~
f No N0 / i=1,2,...M (2.46)

where ; is the amplitude of the envelope samples due to the doppler shifted

message signal only.

Assuming the message matched to filter 1 is sent, the average symbol

error probability with doppler frequency offset wd is

PSE(IIOK) = 1 - Pc (1OK)

11 x

= 1 - f f (x) w {f f (y) dyldx • (2.47)

o 1 i=2 o

But, we know that

(y 2Ej V (2.48)0 No No

where the Q function is defined as

Co -(a2 + x2)/2

Q(a,b) f Re 10 (ax) dx
b

-(a2 + b2 )/2 b Im

- -e [i(ab) (2.49)

23



Thus,

2 -EI/N o  -x2/No (2ECix M

PSE(MOK) = I - - e fxe Io
NO  o N i=2

( 2Ej 20- dx (2.50)

or normalizing with respect to signal-to-noise ratios, we have

PSE(MOK) = 1 - 2rle f ye Io (2yrj) w Q1-Q 2-'" , 2 {ly dy
0 i=2

(2.51)

where ri = Ei/No and where the values Ei, i= 1, 2, 3, ..., M depend on the

choice of the message waveforms.

In the following section, we will choose some specific signalling sets

and evaluate their performance in the presence of doppler shift.
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3.0 CHOOSING SIGNAL SETS FOR MOK

The choice of the orthogonal signal set for the MOK data modulation

technique becomes important when there is relative motion (doppler shift)

between the transponder and interrogator. At zero doppler shift the choice of

the orthogonal set is not important (from the viewpoint of performance) since

the outputs of the M-i not true matched filters will be zero.

When there is relative motion between the interrogator and transponder,

the choice of the orthogonal signal set determines the effective signal energy

at the outputs of the M-I not true matched filters. An ideal signal set would

remain orthogonal for all doppler shifts (zero effective energy at the not

true filter outputs).

Notice that regardless of the choice of the signal sets, the effective

energy out of the true matched filter is

ET - E. sinc 2 wdT/2 (3.1)

where wd is the relative doppler frequency shift (in radians) between the

received signal and the local receiver oscillator carrier frequencies.

Orthogonal waveform sets such as the Walsh functions are good candidates

because they lend themselves to digital implementation. For instance, the

M-ary signal set can be formed by selecting a single PN spread spectrum code

and multiplying it by an appropriate set of M Walsh functions. The use of

25



Walsh functions also permits a single segmented convolver to perform the

function of M matched filters.

The Walsh function sets can be generated by a set of orthogonal,

antisymetric, square-wave basis functions known as the Rademacher functions.

The first six Rademacher functions appear in Fig. 3.1, and can be represented

by

Rn(t) {ign [sin ()j 0 4 t 4 T(32

0 Otherwise

where T is the data symbol duration. These functions form an incomplete set,

but can be used to generate a complete set, the Walsh functions.

The first 22 Walsh Functions are shown in Fig. 3.2 The Walsh functions

can be formed by considering all distinct combinations of products of the

Rademacher functions. For instance, the first four Walsh functions Wi(t),

i-0,1,2 and 3 can be found by forming all distinct combinations of products of

R1 (t) and R1 (t). Ro(t) naturally arises as the identify element. That is,

Wo(t) - Ro(t)

Wl(t ) - Rl(t)

(3.3)
W2 (t) - Rl(t)R 2 (t)

W3 (t) - R2(t)

where Ri(t)Ri(t) - Ro(t) for any i.

26
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Similarly, the first eight Walsh functions can be formed from all

distinct combinations of products of RI(t), R2(t) and R3 (t). We have

W0 (t) - RO(t)

WI(t) = Rl(t)

W2(t) = R1 (t) R2(t)

W3(t) - R2 (t) R2 (t)

W4(t) - Rl(t) R3(t) (3.4)

W5(t) - R1 (t) R2(t) R3 (t)

W6(t) = R2 (t) R3(t)

W7 (t) - R3 (t)

The Walsh function sets defined in this manner form a group under

multiplication. Notice that the multiplication of any two Walsh functions in

the set yields another member of the set. This prvperty guarantees symmetry

in that the probability of a symbol error is the same regardless of which

symbol is sent.

By choosing higher frequency basis or Rademacher functions, the Walsh

function sets will have better doppler performance. For example, suppose the

8-ary signal set is formed by all distinct combinations of products of

R2(t), R3 (t) and R4 (t). This alternate Walsh function signal set becomes
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W0(t) - R0(t)

W3(t) = R2(t)

W4(t) = R2 (t) R3(t)

W7(t) - R3 (t)

W8(t) - R3(t) R4(t) (3.5)

W11 (t) = R2(t) R3(t)R 4 (t)

W12 (t) = R2 (t) R4(t)

W15 (t) = R4 (t)

The doppler performance of a particular Walsh function signal set is

limited by the lowest frequency Rademacher function (excluding the identity

function R0(t)); in this case, R2(t).

The error performance in the presence of doppler shift of a particular

signal set is given by Eq. 2.50 where the values Ei, i=2,3,...M are determined

the choice of the signal set.

In general, the effective energy out of the ith not true matched filter,

which is matched to the Lth Walsh function, given that the received signal is

phase modulated by the rth Walsh function is

I T JwdA
Ei Es I- f Wi(m) Wr(x) e dX1 2  (3.6)

T o
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The doppler performance of ideal BOK and sum-difference BOK where the

signal set consists of the lowest order Walsh functions WO(t) and W1(t) is

compared against that of QDPSK and DPSK in Fig. 3.3 Notice that the amount of

improvement that is possible between sum-difference BOK and ideal BOK (about 3

dB at wdT = 1.5). Thus, proper choice of the signalling set is important.

The MOK, M=4 probability of a symbol error is plotted in Fig. 3.4 versus

doppler frequency shift for several symbol signal-to-noise ratios using the

4-ary signal set defined by Eq. 3.3. This signal set consists of the first

four natural Walsh functions.

Similarly, the MOK, M=8 probability of a symbol error is plotted in

Figs. 3.5, 3.6 and 3.7 versus doppler frequency shift for several symbol

signal-to-noise ratios using the 8-ary signal set defined by Eq. 3.4, the

alternate 8-ary signal set defined by Eq. 3.5 and the ideal 8-ary signal set

(orthogonal for all doppler shifts), respectively.

The three 8-ary signalling sets are more clearly compared in Fig. 3.8

where the signal-to-noise ratio per bit required in order to maintain a 1%

symbol error probability is plotted versus doppler shift for each of the three

signal sets. We see that at wdT = 2, the alternate signal set performs over 3

dB better than the low order Walsh function set.

Finally, in Fig. 3.9 the doppler performance of MOK for each value of

M - 2, 4, 8 and 16 is compared for a signal set consisting of the first M
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functions and for an ideal (orthogonal for all doppler shifts) M-ar! signal

set. Again, the signal-to-noise ratio per bit required to maintain a 1%

symbol error probability is plotted versus doppler shift for each of the M-ary

signal sets.

3.1 Signal Sets for BOK (MOK, M=2)

Of course, the binary signalling set is included in the previous

discussion of MOK signalling sets. However, since the signal set is comprised

of only two orthogonal signals, there are more options available. For

instance, there is always the option that two independent PN chipping

sequences be used for each data symbol. This would allow essentially ideal

BOK performance (i.e., waveforms remain orthogonal for all doppler shifts of

interest).

If a single PN chipping sequence is to be used, then the previous Walsh

(Rademacher) function approach would dictate that the two phase waveforms be

RO(t) and Rj(t) where j > 1. In order to minimize the doppler degradation, j

should be chosen as large as possible.

Suppose the signal set consists of 01(t) - Ro(t) and 02(t) = Rj(t) where

J - log2N as shown in Fig. 3.1.

Consider the response of the filter matched to 02(t) when 01(t) is sent.

After demodulation with respect to the PN chip sequence and the data 01(t),

the matched filter output at the sample time ts becomes (noiseless case)
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/E N-1 (i+I)T/N Jwdt
yo(ts ) = I (-I) i  f e dt

T 1-0 iT/N

s /dT\ JwdT/2N N-I JwdTi/N (3.7)
-- sinc - e' (1 e
N N 1-0

The output of the envelope detector becomes

/EswdT 'N Ni(d
1yo(ts)I - Isinc - 1 + 2 (N-i)(-l)1 cos - . (3.8)

N 2N V N

It can be shown (see Appendix A) that in the limit as N + - the response of

the not true filter (3.8) approaches zero. As a practical limit, N can be

made as large as the number of chips per data symbol. For values of N much

greater than 16 (see Fig. 3.11), the response of the not true filter is

essentially zero for realistic doppler shifts.

Thus, by choosing a waveform 02(t) with a large enough value of N, the

waveforms maintain orthogonality regardless of the doppler shift. Of course,

remember that the effective energy out of the true channel matched filter is

E' Es  sinc
2 uhT/2 . (3.9)
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The effective energies out of the true matched filter and the not true

matched filter are plotted in Fig. 3.11 as a function of the doppler shift for

several values of N. Notice that the effective energy out of the not true

filter is just the square of (3.8) with Es - 1.

For large N the performance of this BOK scheme can be found by using the

original zero doppler probability of error curves where Es is replaced by E'

(see Fig. 2.5 of Section 2.2).

The question remains as to whether the waveform Rj(t) can be implemented

for large values of J. It if adds too much complexity to the matched filter,

then an alternative waveform must be chosen.

An alternative choice of the second BOK signal 02(t) is given in Fig.

3.12.

The idea is to choose k in such a way that the doppler degradation is

minimized.

Consider the response of the filter matched to 02(t) when e1(t) is sent.

The matched filter output at the sample time ts becomes (noiseless case)

rEI (Tlk/2Jd T(1+k)/2 iCLdt T iwdt

Yo(ts) f e dt - f e dt + f e d
T 0 T( l-k)/2 T( +k)l2
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(1-k) [J (1-k) J (+k 1

- -- - sinc(1-k) e + e
2 1 J

- k sinc~k [e (2k)+ e i.(2+k (3. 10)
2

where f - wdT/4 .

After some manipulation, we see that the matched filter output (3.10)

will be zero is k is given by the optimum value

k* - sin- 1

2

2 (sin wdT/2)
- sin- I  (3.11)

(OdT  2

The optimum value k* is plotted in Fig. 3.13 as a function of the doppler

frequency shift.

Unfortunately, the choice of k* guarantees orthogonality only at a

particular doppler frequency shift. However, by identifying the range of

possible doppler shifts, one can choose a value of k that minimizes (3.10)

over the region of interest. For instance, if the worse case doppler shift

corresponds to 2.5 radians, then a compromized value of k between .5 and .4

could be chosen.
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In Fig. 3.14, the effective energies out of the true and not true

matched filters are plotted versus doppler shift for several values of k. The

effective energies out of the not true filter for the signal set of Fig. 3.10

with N=2 and 4 are also plotted for comparison. Note that 0 < k < .5

essentially offsets the null of the not true filter from zero doppler.

The relative performance of these special case BOK signal sets are shown

in Fig. 3.15 where the signal-to-noise ratio per bit required in order to

maintain a 1% symbol (bit) error probability is plotted versus doppler shift.
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4.0 ACOUSTO-ELECTRIC CONVOLVER IMPLEMENTATIONS

This section is devoted to acousto-electric convolver implementations of

the various data modulation techniques under consideration. Implementation of

MDPSK for M-2 and 4 is also presented here, although their doppler performance

precludes them from serious consideration.

The structures of the convolver based receivers are of the matched

filter/greatest of form (as shown in Fig. 2.4). A general M-ary convolver

based receiver structure is given in Fig. 4.1 whereby the convolver and sum-

difference hybrid matched filter connections will be supplied for each of the

modulation schemes.

The convolver/sum-difference hybrid matched filters for DPSK and QDPSK

are shown in Fig. 4.2 Notice that sum-difference BOK is implemented in the

same manner as DPSK.

In Fig. 4.3, three possible signal sets for MOK, M-4 are shown. The

three sets are formed by considering all possible distinct multiplicative

combinations of (a) Ro(t), R 1 (t) and R2 (t), (b) Ro(t), R 2 (t) and R3 (t), and

(c) R0 (t), R 3 (t) and R4 (t). Remember that the sets formed from the higher

order Rademacher functions will have better doppler performance.

As mentioned earlier, sum-difference BOK can be implemented with a two

segment convolver and one sum-difference hybrid (this corresponds to a signal
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set consisting of Ro(t) and R1(t). Figure 4.4(a) shows a straightforward

implementation of BOK, where the signal set consists of Ro(t) and R2(t), using

a single four segment convolver with four sum-difference hybrids.

Figure 4.4(b) shows an implementation of the 4-ary signal set given in

Fig. 4.3(b) using a single eight segment convolver and 12 sum-difference

hybrids.

In general, to implement an M-ary signal set with a single convolver we

require at least an M segment convolver. If we choose to improve the doppler

performance by choosing a signal set which requires 2n, n > I times as many

segments, then for an M-ary signal set we require

2n M (4.1)

segments. Using the straightforward implementation approach, we would

require,

2n-1 H log 2(2nM) (4.2)

sum-difference hybrids.

Assuming that we do not want to build 4-ary convolvers with more than 16

segments, then there are three possible choices for n, namely, n-O, 1 or 2.
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Fig. 4.4 Straightforward sum/difference hybrid implementation of
segmented convolvers for enhanced doppler performance.
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However, for n-i, there are 8 segments and by (4.2) we would need 12 sum/

difference hybrids. Similarly, for n-2 there are 16 segments and by (4.2) we

would need 32 sum/difference hybrids. Clearly, the number of sum/difference

hybrids required becomes prohibitive. The following examples will illustrate

an alternative approach.

Consider the original signal set shown in Fig. 4.3(a) which consists of

all multiplicative products of the Rademacher functions RO, R 1 and R2. The

corresponding standard 4-segment convolver implementation (n=O) is shown in

Fig. 4.5(a).

Now consider the alternate signal set shown in Fig. 4.3(b) which

consists of all products of R0 , R2 and R3 . This signal set has much better

doppler performance than the original set and requires an 8-segment convolver

(n-i). However, by tieing appropriate segment pairs together we can implement

this alternate signal set with only 4 sum/difference hybrids as shown in Fig.

4.5(b).

For even better doppler performance (close to ideal even at high band)

this approach can be extended to the signal set which requires a 16-segment

convolver (n2). The waveform set is shown in Fig. 4.3(c) and consists of all

multiplicative products of R0 , R3 and R4 . By tieing together the appropriate

groups of segments, we can implement this waveform set with only 4 sum!

difference hybrids as shown in Fig. 4.5(c).
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Fig. 4.5. Convolver implementations of the 4-ary
signal sets of Fig. 4.3. (a) First four Walsh
functions; (b) all combinations of R0, R2 and R3;
and (c) all combinations of R0 , R3 and R4 -
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Thus, in general we can implement an M-ary convolver which has 2nM

segments with M/2 log 2M sum-difference hybrids.

Figure 4.6 shows three possible signal sets for BOK, including the

original sum-difference set. The corresponding convolver implementations are

shown in Fig. 4.7.

Finally, in Fig. 4.8 we show the construction of higher order M-ary

m
convolver matched filters using n lower order - -ary convolver matched

n

filters. Examples are shown for constructing a 4-ary or 8-ary matched filter

using two binary or two 4-ary convolver matched filters, respectively, and for

constructing a 8-ary or 16-ary matched filter using four binary or four 4-ary

convolver matched filters, respectively. The reference modulating Rademacher

functions Rj depend on the desired signal set and the number of segments per

convolver.
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four binary convolvers, respectively.

Fig. 4.8. Construction of higher order M-ary convolver matched

filters using several binary or 4-ary convolvers.
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5.0 RELATIVE COMPARISON OF MOK FOR M=2, 4, 8, 16 AND 32

This section makes a relative comparison of several data modulation

schemes on the basis of the required energy per bit Eb and of the required

time per bit Tb for a given message reliability. Specifically, a comparison

of binary differential phase shift keying DPSK and M-ary incoherent orthogonal

keying MOK for M = 2, 4, 8, 16 and 32 is made. Also, the performances of

these modulation schemes are compared for two fixed values of carrier

frequency doppler shift in terms of the choice of the message waveforms. As

in the previous memos, the transmitted signals are assumed to be corrupted

only by white Gaussian noise of two sided spectral density No/2 watts/Hz.

In order to compare the doppler performance of DPSK on an equal basis

with that of the MOK schemes, we do so on the basis of time per matched filter

TMF. In the case of DPSK, TMF is twice the time per data symbol or bit.

Thus, the time per bit Tb for DPSK is equivalent to that of MOK, M = 4 or

TMF/ 2.* Note that for the MOK schemes TMF is equivalent to the time per data

symbol Ts. Hence, for MOK we have

Tb = Ts/log 2M = TMF/og12M. (5.1)

Therefore, for MOK

*In other words DPSK is run at twice the bit rate of BOK.
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Tb/TMF = 1/log2M. (5.2)

Similarly, if E. is the signal energy in time TMF, then the energy per

bit is

Eb = Es/2 for DPSK, (5.3)

Eb = Es/log 2M for MOK. (5.4)

It is desirable to minimize the required Eb/No and Tb/TMF for a given

message reliability, since signal detectability and message length are

important in the IFF context.

With these parameters defined, we want to make a realistic comparison of

the various modulation schemes. Suppose we have a message of L bits which

must be encoded into symbols and transmitted over the noisy channel. The

probability of a message error PME for MOK in terms of the probability of a

symbol error PSE becomes

L/log2M

P 1E -(I - PSE) (5.5)

since L/log2M is the number of symbols required to send L message bits.
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For comparison purposes, we will choose L = 60 bits in order that the

message can be sent by an integer number of symbols for the MOK, M - 2, 4, 8,

16 and 32 modulation schemes. Also, we will assume a message reliability of

99% or PME - .01. The corresponding symbol error probabilities for this

message length and reliability are given in Table 5.1

Table 5.1

Probability of a symbol error
required for PME = .01

M 60/log2M PSE(MOK)

2 60 1.675 x 10- 4

4 30 3.350 x 10- 4

8 20 5.024 x 10- 4

16 15 6.698 x 10- 4

32 12 8.372 x 10- 4
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The required signal-to-noise ratios per bit Eb/No were calculated for

the corresponding required symbol error probabilities listed in Table 5.1 and

plotted in Fig. 5.1 for the zero doppler case. Notice that we gain both in

terms of Eb/No and Tb/TMF for the higher order M-ary systems. Of course, we

gain at the expense of added complexity of the receiver.

Notice that DPSK gains 3 dB over BOK while operating at twice the bit

rate. Also, DPSK is approximately .2 dB better than MOK, M-4 for the same bit

rate. It appears advantageous to consider a 16-ary system since the gain from

M-8 to M-16 is substantial. A 32-ary system seems less feasible since the

added complexity yields less than 1 dB improvement in Eb/No and only a 5%

decrease in message length over the 16-ary system.

Figure 5.2 compares the same modulation schemes for a fixed doppler

shift of wdT - 1 radian. The zero doppler points are included to give a

relative perspective of the effect of the doppler shift. The MOK schemes are

also compared for the ideal case when the phase waveforms are chosen to

maintain orthogonality for all doppler shifts. Notice that in this ideal case

the relative positions of the MOK schemes remain the same.

DPSK does not perform as well as MOK, M-4 at wdT - 1 radian. In fact,

MOK, M-4 is approximately .3 dB better than DPSK with the message set defined

as the first four Walsh functions and 1.3 dB better than DPSK when the message
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set consists of the alternate choise waveforms (WAL(i,t), 1i0,3,4 and 7)*.

Notice that the altnernate choice waveforms gain approximately .65 dB for the

MOK, M-8 case.

Figure 5.3 compares the same modulation schemes for a fixed doppler

shift of WdT = 2 radians. As expected, there is a substantial increase in the

required Eb/No for all of the modulation schemes. The most noticeable feature

of this plot is the dramatic improvement in Eb/No obtained using the alternate

choice waveforms in the MOK, M=4 and 8 cases. In both of these cases there is

about a 4 dB gain in Eb/No.

Significant performance improvements can be obtained by going to a M-ary

system for log2M 
= 2, 3, or 4. For log 2 M > 5, the increase in performance

may not be worth the added receiver complexity. DPSK has close to the same

performance as MOK, 11=4 when operated at twice the bit rate of BOK.

Proper waveform design yields significant performance improvement in

proportion to the value of the doppler shift parameter WdT.

*See Fig. 4.3(b).
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6.0 CONCLUSIONS

A performance comparison of MDPSK and 11OK shows that MOK is much better

for It > 4 due to the non-orthogonality of the I1DPSK signal sets. Furthermore,

the degradation of MDPSK, I - 4 due to carrier frequency offsets (doppler

shift) is greater than the corresponding degradation -f MOK, 1 - 4. DPSK

(i.e., MDPSK, It = 2) has close to the same performance as MOK, M = 4 when

operated at twice the bit rate of BOK.

Significant performance improvements can be obtained by going to an MOK

modulation scheme for values of M greater than four both in terms of the

signal-to-noise ratio per information bit Eb/No required for a fixed message

error performance and in terms of shorter messages. Short messages are

important in reducing self interference. For M > 32, the increase in

performance may not be worth the added receiver complexity.

The choice of the orthogonal signal set is important in evaluating the

sensitivity of 110K to doppler frequency shift. When a Walsh function signal

set is chosen, the ultimate performance obtainable wit'- a carrier frequency

offset (due to doppler shift) is limited by the lowest frequency Rademacher

function in the set (excluding the identify function, RO(t)). r

By using Walsh function signal sets, a single HI segment synchronized

convolver can be used as a M-ary matched filter. A single PN code is used to

spread the signal with one of M Walsh functions providing the additional phase
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modulation for M-ary data signalling. In section 4.0 a unique method is shown

for implementing an M-ary signal set with a convolver which has 2nH segments

(for good doppler performance) with only 1/211 log2M sum-difference hybrids.
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APPENDIX A

Note the following identities:

m ncos n + (l)m cos(m+i/2)0 (A-i)
n -n 2 (2cosO/2
n1l

. (- 1 ) n n cosnO = 4(1 + cosO) z  2(l + cosO) + (-l) m  m-l) cos(m-1)O
n=I

+ (3m + 2) cosino + (3m + 1)cos(m + 1)0 + mcos(m + 2)011 (A-2)

The output of tne envelope detector from (2) is

y ) T 1 2 N I-i (li os cT
YO (ts) = /Isinc- (N-i) (-1) cosi - " (A-3)

2 N N 2i=l N

For large values of N the identities (A-i) and (A-2) can be used to

yield

E/N2 sin2  w T/2 N evenc (A-4)
l~o~ts I2 2 2Nod

E/N2 cos w T/2 N odd
cr

Thus, regardless of the doppler frequency shift, the output squared (or

effective energy) of the not true matched filter goes to zero as I/N2 as

N -) -. Note that the approximation given by (A-4) is very good for N > 8.
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