
?4USC Technical Report 6607

3 0 o~ e b e r 1 MO T I C F I L E C O P Y

Mapping an Adaptable
NElgenstructure Technique

co Onto the Topologix Hypercube
N
M

4M. H. Leonhardt
iSubmarine Sonar Department

Q

DTIC
ELECThTEO 19 u

Naval Underwater Systems Center
NewPort, Rhode Island.New London, Connecticut

Approvedl for Public release; distribution Is unlimited.

912 14 021

PREFACE

This report was prepared under the New Professional Bid and Proposal
Program, NUSC project number 791P15. The title of the project was Implementation
of Minimum Vadance Distortlionless Response Beamformer.

The technical reviewer for the report was Dr. J. Mufloz.

The author would like to thank A. C. Barthelemy, W. R. Bemecky, T. C. Choinski,
and Dr. J. Mufloz, all of NUSC, for providing helpful suggestions during the
preparation of the manuscript.

REVIEWED AND APPROVED: 30 DECEMBER 1990

F. J. Kingsbury
Head, Submarine Sonar Department

Form Akov"

REPORT DOCUMENTATION PAGE [O No. 070418

Puwc reOO rn Wuman for thi ColectiOn of Inforwation is Iestioated tO average I %out w rWlawI. i.nuing tue time for roviewing instt ut'ww . searching ewlsting "ta ~urCm.
gaterng a4 mantainmg the dto need d, and comwiting and reviewing te €0fIEctola of information. Sen comments regding this b~ stimate or ay other aseoc Of this
€_Oil .t. of tfmt I". mcuding tsions for reducing this but n. to wosnington iadauartef Servicl Directorate for Information Operations and eprt. 121S JeffernDa V Mwa. SWre 1304. Admgtono VA 222024302. and to th ie Office f ManagiWt and Iudgt. Pa or t M proct (0I04.0). Wangton, DC 20103

1. AGENCY USE ONLY (Leave blank) I2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I 30 December 1990 Final Oct 89 - Oct 90
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

MAPPING AN ADAPTABLE EIGENSTRUCTURE TECHNIQUE ONTO 791P15
THE TOPOLOGIX HYPERCUBE

L AUTHOR(S)

M. H. Leonhardt

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) B. PERFORMING ORGANIZATION
REPORT NUMBER

Naval Underwater Systems Center
New London Laboratory TR 8807
New London, Connecticut 06320

9. SPONSORING/ MONITORING AGENCY NAME(S) AND AD,,RESS(ES) 10. SPONSORING /MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRINUTIONIAVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

Eigenstructure methods provide accuracy and stability to signal processing
applications, such as the enhanced minimum variance distortionless response
(EMVDR) algorithm. Eigenstructure methods, however, require the high throughput
that is only available in parallel computer systems. One such system is the
hypercube multiprocessor, which, along with high throughput, also provides
distributed memory and efficient networking. This report describes the
implementation of an eigenstructure method on the Topologix hypercube
architecture that will produce the eigenstructure required in the EMVDR
beam former.

14. SUBIECT TERMS 15. NUMBER OF PAGES
Eigenstructure Parallel Computer System 52
EMVDR Signal Processing 16. MCE CODE
Hypercube Mul ti processor Topologix Hypercube

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSI FI ED UNCLASSIFIED UNCLASSI FI ED SAR
NSN 70-01-280.S500 Standard Form 298 (Rev 2.89)

PrtCr~ted byf ANSI $t0 139-18

TR 8807

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS ... ii
LIST OF TABLES ... ii
LIST OF ACRONYMS AND ABBREVIATIONS ... iii
LIST OF SYMBOLS .. iii
INTRODUCTION .. 1

Background ... 1
Resolution ... 2
Parallel Implementation Rationale ... 2

ENHANCED MINIMUM VARIANCE ALGORITHM .. 3
QR FACTORIZATION .. 5
ADAPTIVE QR ALGORITHM .. 9
TOPOLOGIX MULTICOMPUTER SYSTEM .. 13

Hypercube Aichitecture 13
Programming ... 14

Householder Reduction ... 15
QR Factorization ... 16
Matrix-Matrix Multiplication .. 16

Communication Routines ... 17
Broadcast ... 17
Exchange ... 18

CONCLUSIONS AND RECOMMENDATIONS ... 19
REFERENCES q .. 23
APPENDIX A - SOURCE CODE FOR EMVDR APPLICATION A-1
APPENDIX B -- SOURCE CODE FOR BROADCAST AND

EXCHANGE ROUTINES ... B-1

TR 8807

LIST OF ILLUSTRATIONS

Figure Page

1 Rank-One Eigenvalue Update .. 10
2 Adaptive QR Algorithm .. 11
3 Four-Dimensional Hypercube .. 15
4 Communication Flow for Q Matrix Accumulation 16
5 Measured Data Transfer Rates .. 20
6 Order Of Operations and Ideal Speedup .. 21

LIST OF TABLES

Table Page

1 INMOS T800 Transputer Features .. 14
2 Measured Execution Times for Broadcast and Exchange Routines 18
3 Measured Execution Times for QR Algorithms .. 19
4 Order of Operations ... 20

Aocession For

NTIS GRA&I

DTIC TAB A
DTIC lUnannounced 0

Justification

By
Distribution/

Availability Codes

lAvail and/or
Dist Special

TR 8807

LIST OF ACRONYMS AND ABBREVIATIONS

ABF Adaptive Beamforming

BIAS Basic Linear Algebra Subroutines
CSDM Cross-Spectral Density Matrix

EMVDR Enhanced Minimum Variance Distortionless Response
LAPACK Linear Algebra Package
UNPACK Linear Algebra Package (revised)

Mbps Million Bits Per Second

MFLOPs Million Floating Point Operations Per Second
MIPs Million Instructions Per Second
MUSIC Multiple Emitter Signal Location Wavenumber Spectrum Estimator

MVDR Minimum Variance Distortionless Response

SNR Signal-to-Noise Ratio
VLSI Very Large Scale Integration

LIST OF SYMBOLS

A An n x n matrix (always large letter)
S A lxnoran nxl vector

AH Hermitian transpose of matrix A
eH Hermitian transpose of vector x
Ak Matrix A at step k

24i Element i of vector x

Isl Magnitude of scalar s

1121i Euclidean norm of vector x
Amk Square submatrix A comprised of elements of Aij for which

nG <(m+)G ,kG j< , G is number of rows in matrix A,

and p is number of processors.

iii/iv
Reverse Blank

TR 8807

MAPPING AN ADAPTABLE EIGENSTRUCTURE TECHNIQUE
ONTO THE TOPOLOGIX HYPERCUBE

INTRODUCTION

Linear algebra techniques, such as matrix-matrix multiplication and eigenstructure
decomposition, have been studied on sequential computer systems for many years. Some of the

algorithms used in these applications, most of which have been widely published, include BIAS
1, I, and 1II; the Linear Algebra Package (LAPACK); and the revised Linear Algebra Package
(LINPACK). In recent years, it has been determined that parallel implementations of the best
sequential algorithms for linear algebra provide the optimal criteria for measuring the performance
of future algorithms and for evaluating new parallel architectures. Such parallel implementations
also provide accuracy and stability to signal processing applications.

BACKGROUND

The capability of adaptive beamforming (ABF) to maximize signal-to-noise ratio (SNR) is
well-known. One of the many techniques is the minimum variance distortionless response
(MVDR) algorithm.1 First documented in the early 1960s, the MVDR technique was not
immediately accepted because of its computationally intensive nature. This problem was solved
with the arrival of very large scale integration (VLSI) technology, which increased the available
processing power.

Previous MVDR implementations2 showed that the algorithm becomes unstable for large
SNR values. The instability occurs when correlation exists between sensor outputs, making the
covariance matrix ill-conditioned. An ill-conditioned matrix (one where there is a large difference
between smallest and largest eigenvalues) is noninvertible. Eigenstructure techniques, however,
allow some correlation to exist without affecting the stability of the algorithm.3

I

TR 8807

RESOLUTION

Eigenstructure-based analysis methods, which evolved concurrently with MVDR since the
early 1970s, have led to current high resolution procedures. Owsley4 developed a single approach
called the Enhanced MVDR (EMVDR) beamformer that used advantages from both techniques.
This approach provides a compromise between high resolution direction-finding algorithms (such
as the multiple emitter signal location wavenumber spectrum estimator (MUSIC)) and ABF
algorithms (such as MVDR) by using estimated eigenstructures rather than the Cholesky
factorizations of MVDR.

PARALLEL IMPLEMENTATION RATIONALE

As mentioned earlier, signal processing applications requiring linear algebra were limited
by the throughput provided with sequential computer systems. The use of VLSI technology in
sequential computers was still not enough to provide the required speed. However, new highly
parallel architectures can support the high throughput with concurrent processing, distributed
memory, and efficient processor networking.

Parallel processing increases throughput by breaking a problem into subparts and then

executing them concurrently. Multiple processors that achieve high levels of performance with
high levels of interconnectivity have also been developed in the past few years. Many of these

systems use a hypercube pattern,5 such as the one for this project (manufactured by Topologix,
Inc.), which connects 16 INMOS T800 Transputers in the hypercube configuration.

This report describes the implementation of a QR algorithm on the Topologix hypercube

architecture. The QR algorithm, which provides a very fast convergence rate, may be used to

calculatethe eigenstructure for the EMVDR bearnformer. The first section of the report provides
an overview of the EMVDR algorithm. Following sections describe the QR factorization, an
adaptable eigenvector/eigenvalue decomposition using the QR factorization, and the Topologix
hypercube architecture and special software routines. In the final section, observations about the
implementation of the algorithm are discussed. The source code for the EMVDR bearnformer with

the adaptable QR algorithm is included as appendix A. Appendix B contains the source code for

broadcast and exchange routines.

2

TR 8807

ENHANCED MINIMUM VARIANCE ALGORITHM

The spatial cross-spectral density matrix (CSDM) at a frequency co for an N sensor array

with K sources is written as

C = M MAM H + O o IN'

where M is an N x K matrix of orthonormal eigenvectors of the source subspace, A is a diagonal
matrix of the eigenvalues associated with the eigenvectors, and IN is an N x N identity matrix. The

values a3 and a; are the spectral densities, respectively, of the source and noise. The enhanced

CSDM is defined with the scalar enhancement factor (e)4 as

C(e) = ea2 M + MAIN. (1)

The factor e (t 1) makes the source subspace louder than the noise subspace, thus allowing the
sources to dominate in the CSDM. Equation (1) can be rewritten as 6

C(e,s) = e + 1N (2)

i=1

where

gi = ith eigenvalue,

m = corresponding eigenvector, and

s = dominant number of sources.

Inverting equation (2) yields

C(e,s) " = IN - 1 e(i3)1 + et i mimi (3)

i=3

3

TR 8807

The weight vector for steering direction d is defined by

A ._H..= C(e,s)Y dL (4)w es- anC(e,s).l d"

Combining equations (3) and (4), we get the null steerer equation

S

i=lI

w(e,s) = (5)

I+ eg i
i=l

The solution to equation (5) is used in the EMVDR bearnformer equation

y = w(e,s)H X

where a is the frequency domain input data vector. The EMVDR algorithm exploits the fact that
threshold signals (eigenvalues near noise variance) do not need to be captured by the estimated

CSDM because they are filtered out by the sidelobes. The EMVDR approach requires only high
level signals (interferences) to obtain nearly optimum detection performance. 4 ,7

4

TR 8807

QR FACTORIZATION

The QR factorization is the most popular technique for evaluating the complete set of
eigenvalues and eigenvectors of a Hermitian or symmetric matrix. 8 ,9 10 It is used by most
numerical analysis subroutines because it offers extremely fast convergence rates. The QR
factorization is a matrix realization of the Gram-Schmidt orthonormalization process.8 The
theorem is stated as follows:

If A is a complex n x n matrix, then there is a unitary matrix Q (Q H = Q -1) and an upper

triangular matrix R, such that A = QR. If A is nonsingular (its inverse exists), then Q and R can be

uniquely determined.

Householder transformations are accumulated to form the Q matrix3,9

Q = HIH 2H3...Hk • (6)

Each Householder matrix Hk is calculated according to the form

H

Hk = I- (7)
Pk,

where

Pk = first element in Uk,

-- = column k of identity matrix,

a = column of original matrix (A),
1lai = Euclidean norm of column a, and
a = ±1, depending on sign of first component of a.

Each Hk is chosen such that it will introduce zeros into the last n-k components of the kth column
of A. The original matrix is transformed into an upper triangular matrix R by premultiplying A by
each 1-k. For example, if A originally has the form

5

TR 8807

N X X X

A= FX X X X

X x X

then the transform H, is determined to clear the last n-i components in the first column of H1A.
When the transform is applied to A, zeros are introduced into the boxed elements as follows:

r r,2 r 13 r 14 1
0 X x xHIA = 0 P x x ,

0 N x x

where rij is an element of the final R matrix (upper triangular). The matrix H2 is chosen to

introduce zeros into the n-2 boxed elements in the second column. The first component of W that
determines H2 is zero; therefore, the components labeled rij and 0 are undisturbed by the
application of H2 to HIA. The reduction is complete when the matrix A is upper triangular. The
result is

[rl r12 r13 r14 1
I 0 r2 2 r23 r24H4H3H2H1A 0 r 33 r34

0 00 r44

The basic QR iteration follows:10 Given an n x n matrix A0 whose eigenstructure is
desired, a unitary matrix Qk and an upper triangular matrix Rk are found, such that

Ak = QkRk. (8)

The next matrix in the iterative sequence is formed from the product

Ak+1 = RkQk. (9)

The algorithm is described by the compact equation

RkQk = Qk+IRk+l•

6

TR 8807

The sequence of matrices Ak will converge to a diagonal or upper triangular matrix with the
eigenvalues of the matrix A0 as diagonal entries arranged in descending order.

The QR factorization is very efficient, but it is not directly applicable to an adaptively
updated covariance matrix because each iterative step does not involve the original matrix. In an
adaptive environment, the matrix A0 is estimated by averaging over a sequence of observed
samples and therefore varies with time. After each time update, the QR factorization must be
performed on a fully dense matrix. It is therefore desirable to adapt the estimates of the
eigenstructure (upper triangular matrix) as each new data sample is available.

7/8
Reverse Blank

TR 8807

ADAPTIVE QR ALGORITHM

We can examine the role that the initial matrix Ao plays in the QR iteration to develop an
adaptive version of the QR algorithm. 10 From equation (8), we know that

QH Ak =Rk. (10)

Using equation (10), we express the QR sequence of equation (9) as

Ak+1 ._ RkQk=QkAkQk (11)

Repeated application of equation (11) shows the relationship of Ak+1 to the original matrix

Ao as

Ak+1 = Tk A0 T (12)

where Tk is the accumulation of Q factors, Tk = QoQ1...Qk. In the limit k -4 infinity, the columns

of T converge to the eigenvectors of the original matrix (AO). When k = K, where K is an arbitrary
number greater than zero, the eigenvalues (AK) and the eigenvectors (TK) of the original matrix A0

can be used in the EMVDR null steerer shown in equation (5).

The matrix A0 varies with time as new data samples become available in an adaptive
application such as EMVDR. It can be updated by means of an additive rank-one modification:

A0.t+l = (1 - a)Ao.t + a _H (13)

where

t = update time,
x+l = new data vector from sensors, and

0 < a < I = constant exponential weighting factor.

9

TR 8807

When the QR iteration has reached step k = K, the current QR product matrix AKt can be replaced

by the updated matrix Ao0t+l by use of equation (12):

AK, t+1 = THK-.t A0,t+1 TK-., t (14)

The second subscript on T indicates that it now depends on the update time; i.e., TK't is the

transformation from Aot to Arct.

Use of equation (13) allows the new data update of equation (14) to be written in the form

+TH . (15)

Akt+l = (1 - Ux)Akt + Hzt+ H

which is shown graphically in figure 1. Premultiplying the new data vector ,+ by the

accumulation matrix T-et ensures that the next iteration will converge to an upper triangular result

that is similar to the original matrix. The complete adaptive QR algorithm uses two simultaneous

recursions. The first set of recursions performs the QR iteration:

Aj~t- QktRk,t

Ak+1,t =RtQkt (16)

Tkt = Tk-l.tQkt.

The second recursion is given by equation (15) and is invoked whenever a new data vector

becomes available. The entire process is illustrated in figure 2.

A

IO -a)A,

z z H Z

z

Figure 1. Rank-One Eigenvalue Update

10

TR 8807

T= Hl*H2* ... *HN

Fiur 2 AapabQR Aloih

11/1

ReereBln

TR 8807

TOPOLOGIX MULTICOMPUTER SYSTEM

HYPERCUBE ARCHITECTURE

The hypercube architecture was chosen because it has unique qualities that are appropriate
to both the QR and EMVDR algorithms:

1. Multiple instructions and multiple data
The architecture enables all processors to execute similar application programs on different
data sets without instruction synchronization. The program and data are stored in local
memory, so that computation is within the individual processor. This particular advantage
allows each processor to perform the reduced dimensioned EMVDR (using largest
eigenvalues/eigenvectors) algorithm for a different beam direction, which produces n
weight vectors (for an architecture with n processors) simultaneously.

2. Multiple topologies
The architecture can emulate other network topologies, such as linear, mesh, torus, or
tree, which allows programs to change the topology "on-the-fly" so that functions are
performed more efficiently. For example, the architecture could be configured as a mesh
(through software) to perform the QR algorithm, but could still use the hypercube network
to broadcast global information.

3. Global data passing (with minimal communications)
Another advantage of the architecture is its small diameter. Any processor can send data to
any other in, at most, d steps (for a d-dimensional hypercube). Consider a 13-dimensional
hypercube containing 8192 processors. The maximum number of steps for a message to
travel between any two processors is 13. Compared with either a linear or mesh
configuration, communication is significantly reduced for broadcasting data.

The Topologix is a multicomputer system that can be configured into a hypercube
interconnection network. The address of a processor is a binary number of length d. Each

13

TR 8807

processor has a link to its nearest neighbors. A nearest neighbor is a processor whose address

differs by exactly 1 bit (Gray code). The topology guarantees that no two processors are more
than d links apart. Table 1 identifies features of the INMOS T800 transputer chip used in the
Topologix system. Figure 3 shows the Topologix four-dimensional hypercube configuration and
corresponding binary addresses.

Table 1. INMOS T800 Transputer Features

T800 Features
20 MHz clock rate
32 Bit word
4 Communication links

20 Mbits/sec 1/0 per link
4 Mbytes RAM per processor

14 RISC MIPs (peak) instruction rate, single precision
2.2 MFLOPs (peak) instruction rate, single precision

PROGRAMMING

Converting a problem from a sequential system (single computer) to a multicomputer
system is not a straightforward task. On a sequential machine, there is no concern over message
passing, synchronization, or load balancing, whereas on a multicomputer, these factors are
important. 1 Mapping an algorithm onto a multicomputer includes making decisions dependent on
communication and processing operations. 12 For example,

* How should data be distributed across local memories?

" Should each processor repeat identical computations or share results?

" How many processors should be used for the problem?

Algorithms requiring frequent data exchanges may not perform well on some hypercube
multicomputers because of low communication bandwidths. Replicating data and operations
across processors or decomposing the problems into larger parts can reduce communications. 13

14

TR 8807

01N 0

N N

0010 0011

Figure 3. Four-Dimensional Hypercube

HOUSEHOLDER REDUCTION

Communication in the sequential QR algorithm is quite intensive because of the
Householder reduction. 9 Columns of the original matrix were mapped onto processors in a
wrapped fashion to reduce communications. Wrapping resulted in columnj residing in processor
(jmod p), where p is the number of processors used for the problem (16 in this case).

Communication is needed to distribute the vector uk to all processors. Sending 1k to all
processors enables the calculation HkC to be performed in a parallel fashion. In the sequential
version of the reduction operation, equation (7) must be multiplied by the (n-k) columns to the
right of column k. The parallel version performs most of the reduction simultaneously. Every

processor takes its turn to generate the vector Uk and to broadcast it to every other processor. Each
processor holds n/p columns of the upper triangular matrix R when the reduction is complete. An
exchange routine (discussed later) assembles the completed R matrix in each processor.

15

TR 8807

QR FACTORIZATION

The number of multiplications necessary to solve equation (6) is on the order of n4

operations. It is desirable to perform most of the matrix multiplications simultaneously. To

perform the accumulation process of equation (6), the Topologix was configured in a mesh

topology through software controls. With a mesh topology, multiple pipelines can perform the

process in parallel. Figure 4 illustrates the mesh topology used for the accumulation. Each

processor multiplies HkHk+l (except right boundary processors). Once the accumulation is

complete, processor 0 holds the entire Q matrix, which is then sent to all processors. Since each

processor holds the entire Q and R matrices, the communication costs of using these results in later

steps of the algorithm are reduced.

Figure 4. Communication Flow for Q Matrix Accumulation

MATRIX-MATRIX MULTIPLICATION

Matrix multiplication is one of the simplest parallelization problems and has been studied

extensively for execution on parallel architectures using various decomposition methods.

Decomposition involves dividing a matrix into subunits and assigning each subunit to a processor.

A subunit can be a row, column, element, or smaller matrix.

16

TR 8807

A square sub-block decomposition 14 was performed because the Topologix was already

configured in a mesh topology (to perform Q accumulation). The sub-block decomposition did not

requirm communication because each processor already held the R and Q matrices. Each processor

performed the following matrix multiply:

Amk= Rmn Qnk,
n

where An , Ram, and Qnk are all square submatrices. Each processor performs n3/16 operations
to obtain the submatrix result. The submatrices are then assembled and the resulting matrix is
broadcast to all processors.

COMMUNICATION ROUTINES

To perform the QR algorithm, it was necessary to devise efficient ways to pass and
exchange data among processors on the Topologix system. Two routines were developed to aid in
data movement.

Broadcast

In this scenario, where one processor must efficiently distribute results to all processors,
the hypercube configuration solves the problem. In a hypercube, each node has d neighbors (d-
dimensional) with addresses that differ by exactly 1 bit. The bit positions correspond to port
numbers (e.g., 0000 to 0001 over port 0 and 0000 to 0100 over port 2). The broadcast routine
uses these bit positions to send data out all ports:

For b= Otod-1

1. Processors are divided into cubes according to the value of bit position b.

2. Processors in corresponding positions send/receive data.

The broadcast routine begins with one processor (20) having the correct data. After each iteration,
b, the correct data is held in 2b processors. After four iterations, 16 processors hold the correct
data. Table 1 shows the measured execution times for various matrix sizes. The source code for
the broadcast routine is included in appendix B.

17

TR 8807

Exchange

An operation to assemble scattered data and then distribute the result to every processor will

reduce overall communications. The exchange routine performs both steps simultaneously using a

concept similar to the broadcast routine:

For b= Otod-1

1. Processors are divided into two (d-1) cubes according to value of bit b.
2. Processors in corresponding positions exchange data.

3. Each processor concatenates its own data with the received data to form new data.

The exchange routine assumes that the data held in each processor are one or more columns of the

resultant matrix. The concatenation is performed by adding the column vectors to a matrix

(originally full of zeros). After four iterations, every processor holds the completed matrix. Table

2 shows the measured execution times for various matrix sizes. The source code for the exchange

routine is included in appendix B.

Table 2. Measured Execution Times for Broadcast and Exchange Routines

Matrix size Bytes Broadcast (sec) Exchange (wee)

4 x 4 128 .0032 .0102

8 x 8 512 .0034 .0208

16x16 2048 .0072 .0498

32 x 32 8192 .0144 .1654

18

TR 8807

CONCLUSIONS AND RECOMMENDATIONS

The parallel adaptive QR algorithm was run on the Topologix, and the execution times are

summarized in table 3. The table shows only two matrix sizes because the Topologix has a

communication capacity of 8-kbyte blocks; therefore the QR algorithm (as implemented) could not

handle complex matrices larger than 32 x 32. Even with the small size used for the test problem,

the results showed improvement over the best sequential method. The sequential method was

executed on a single Topologix processor.

Table 3. Measured Execution Times for QR Algorithms

Matrix size Processors Paralel (sec) Sequential (see)

16 x 16 16 1.24 1.21

32 x 32 16 9.12 15.11

Table 4 shows the order of operations for the parallel and sequential QR algorithms

(including two matrix multiplies). Estimates of larger matrix decompositions were not made

because the cause of the overhead time (measured - ideal) was unknown. The table shows that the

computation grows faster than the communication for increasing n. However, because there are

many other sources of overhead that also appear when larger problems are distributed over

concurrently operating processors, 13 estimating the execution time of these problems becomes

difficult. One major source of overhead is processor communication. Communication between
Topologix processors is very inefficient, as shown in figure 5, which depicts measured data rates

versus number of bytes. The data channels are rated at 20 million bits per second (Mbps). The

channel is only 31 percent utilized with the maximum amount of data (8 kbytes). The poor channel
utilization is related to the Topologix operating system and is not inherent to hypercube

architectures.

The speedup of an ideal algorithm implementation would be p (number of processors

used), with each processor performing 1/p operations of the total problem (load balanced). Figure

6 is a graphical representation of table 4. It shows the ideal speedup that could be achieved with

19

TR 8807

the QR algorithm. The speedup curve in the figure is ideal because it does not include any

overhead (i.e., interprocessor communication, memory accesses, or synchronization).

Table 4. Order of Operations

Algorithm Type Calculations Communications

Sequential 2n4 --

Parallel n4+ 45n 3 5n

The QR implementation described is not load balanced because of the Householder

reduction; there are not enough matrix elements, after the reduction, to spread over the processors.
Fox 14 proposes a scattered decomposition for performing the Householder reduction to preserve
load balance. The scatter method, however, adds more communication, O(n2), which can be
devastating for a high overhead system like the Topologix.

S6-

4

0 2000 4000 6000 8000 10000

Number of Bytes

Figure 5. Measured Data Transfer Rates

20

I TR 8807

Sequential -

W

Ideal
2- Speedup

LwParallel 4

~0

U,,

0 16 32 48 64

Number of Matrix Elements

Figure 6. Order Of Operations and Ideal Speedup

The QR factorization uses eigenstructure techniques that need at least an order of magnitude

more computations than the calculation of the adaptive weights. Therefore, concentrating on the

eigenstructure techniques is one approach to a parallel implementation of the EMVDR application.

The QR decomposition (preceded by Householder reduction) described above does not provide

load balancing. In reference 15, the QR algorithm is replaced by an iterative sequence that

converges to the source subspace eigenstructure. This method requires many iterations and

appears to be difficult to program onto a hypercube architecture efficiently; however, research into

other eigenstructure methods for hypercube architectures is proceeding 16 and should be studied for

use in the EMVDR application.

The hypercube architecture can solve linear algebra algorithms efficiently (such as those

used in signal processing applications) as well as provide modular growth for future computing

needs. The continuing study of these architectures should focus on such systems as the

Connection Machine and the NCUBE 6400 Series. These systems use faster processing engines,

faster communication paths, and different operating systems than the Topologix system.

Future research should also concentrate on the relationship between parallel architectures

and eigenstructure methods. Eigenstructure algorithms should be tailored to architectures to exploit

hardware assets (e.g., processing power, distributed memory, or networking ability). Ongoing

21

TR 8807

work in linear algebra algorithms (including eigenstructure techniques) on various architectures in
the academic and industrial communities should continue to be supported by the Navy.

22

TR 8807

REFERENCES

I. N. L. Owsley, "Systolic Array Adaptive Beamforming," NUSC Technical Report 7981,
Naval Underwater Systems Center, New London, CT, 21 September 1987.

2. M. H. Leonhardt, "Implementation of Minimum Variance Distortionless Response

(MVDR) Adaptive Beamforming Algorithm," NUSC Technical Document 8543, Naval

Underwater Systems Center, New London, CT, 19 July 1989.

3. G. Golub and C. Van Loan, Matrix Computations, John Hopkins University Press,
Baltimore, MD, 1983.

4. N. L. Owsley, "Enhanced Minimum Variance Beailforming," NUSC Technical

Report 8305, Naval Underwater Systems Center, New London, CT, 18 November 1988.

5. J. P. Hayes, "Hypercube Supercomputers," Proceedings of the IEEE, vol. 77, no. 12,

12 December 1989, pp. 1829-1841.

6. W. Beyer, CRC Standard Mathematical Tables, CRC Press, Boca Raton, FL, 198 1.

7. S. Haykin, ed., Array Signal Processing, Prentice Hall , Englewood Cliffs, NJ, 1985,

Chapt. 3.

8. D. S. Watkins, "Understanding the QR Algorithm," SIAM Review, vol. 24, no. 4,

October 1982, pp. 427-440.

9. J. J. Dongarra et al., UNPACK User's Guide, SIAM, Philadelphia, 1979, Chapt. 9.

10. K. C. Sharman, "Adaptive Algorithms for Estimating the Complete Covariance

Eigenstructure," Proceedings of the JCASSP 86, 1986, pp. 1401-1404.

11. D. Sweetman and J. Mufioz, "Measures Of Effectiveness (MOEs) For Parallel

Architectures," Proceedings of the IEEE Conference on Systems, MAN, and Cybernetics,

vol. H, 1989, pp. 630-635.

23

TR 8807

12. S. Ranka, Y. Won, and S. Salni, "Programming a Hypercube Multicomputer," IEEE

Software, September 1988, pp. 69-77.

13. A. Frey, "Hypercube Architectures and Their Application to Signal Processing,"

Proceedings of SPIE: Highly Parallel Signal Processing Architectures, vol. 614, 1986, pp.

74-81.

14. G. Fox et al., Solving Problems on Concurrent Processors, vol. I, Prentice Hall,

Englewood Cliffs, NJ, 1988.

15. M. Kaveh and J. Yang, "Adaptive Eigensubspace Algorithms for Direction or Frequency

Estimation and Tracking," IEEE Transactions on ASSP, vol. 36, no. 2, February 1988,

pp. 241-251.

16. I. Ipsen and E. Jessup, "Two Methods for Solving the Symmetric Tridiagonal Eigenvalue

Problem on the Hypercube," Hypercube Multiprocessors, SIAM, 1987.

24

TR 8807

APPENDIX A

SOURCE CODE FOR EMVDR APPLICATION

A-1/A-2
Reverse Blank

TR 8807

EMVDR IMPLEMENTATION ON THE TOPOLOGIX HYPERCUBE

AUTHOR: Manfred Leonhardt

THIS PROGRAM PERFORMS THREE MAIN FUNCTIONS:

1) GENERATES RANDOM GAUSSIAN DATA TO BE USED AS SENSOR
OUTPUT,

2) PARALLEL: QR DECOMPOSITION, RQ MULTIPLY, AND TQ
MULTIPLY TO GET EIGENVALUES AND EIGENVECTORS, AND

3) ENHANCED MINIMUM VARIANCE DISTORTIONLESS RESPONSE
ADAPTIVE BEAMFORMING AS SPECIFIED IN NUSC TR 8305

NOVEMBER 1988.

THIS PROGRAM EXECUTES ON THE TOPOLOGIX SYSTEM WITH 16
PROCESSING NODES (4-DIM HYPERCUBE). IT IS LOADED WITH

THE COMMAND:
loadgo a15-0 -w 2500000 EMV

#include <logixos/events.h> /* TOPOLOGIX EVENTS FOR MESSAGE PASSING */
#include <logixos/net.h> /* MESSAGE PASSING NETWORK MESSAGES */
#include <stdio.h> /* OUTPUT VARIABLES AND FLAGS /
#include <math.h> /* MATH FORMULAS ASSIGNED VALUES */
Winclude <sys/time.h> /* TIME OF DAY FOR RANDOM SEED */
#include "complex.h" /* COMPLEX NUMBERS AND MATH ROUTINES 1
#include "matrix.h" /* MATRICES AND VARIOUS ROUTINES */
#include "QR.h" /* ROUTINES FOR THE HOUSEHOLDER ALGORITHM */
#include "QRparallel.h" /* ROUTINES & STRUCTURES FOR TOPOLOGIX *1
#include "bcast.h" /* BROADCAST AND COLLECT DATA ON TOPOLOGIX */

/* DEFINITIONS THAT ARE NEEDED FOR THE EMVDR ALGORITHM */
#define freq 100.
#define wavelength 1500. / freq
#define spacing wavelength / 2.
#define degrad *MPI / 180. /* DEGREE TO RADIAN CONVERSION */
#define p 16 /* NUMBER OF PROCS PROGRAM WILL EXECUTE ON */
#define prcs 4 /* NUMBER OF ROWS FOR PROCS: SQRT (P) ABOVE */

enum boolean (TRUE, FALSE);

CalculateH (Umat, col, Hmat, n)
complex_matrix Umat, Hmat
int col, n;

i
THIS ROUTINE WILL GENERATE THE H MATRIX NEEDED TO
CALCULATE THE Q MATRIX TO SOLVE THE QR DECOMPOSITION.

INPUT:
Umat: type complexmatrix

A-3

TR 8807

Contains the columns that will be multiplied
to form the H matrix.

col: type integer
Column of interest in the U matrix.

n: type integer
Number of columns/rows in the H matrix.

OUTPUT:
ilmat: type cornplex matrix

Contains the result of: I-(U*Uh)IU(1,1).

THIS ROUTINE USES THE FOLLOWING EXTERNAL ROUTINES:

conj, cmult, and cdiv.

complex temipc;
int i, j;

/*---------------.. ftPERFORM I f (U * Uh/Uii) ------------
if (col != n-1)
I
for (i = col; i < n; -H-i)

for (j = col; j < n; ++j)

tempc = conj (Umatfcol]);
Hmat[i]UI = cmult (Umat[i] [col, teinpc);
Hxnatfi][j = cdiv (Hmatfi][j, Uniaticol] [coil);
/* -- SUBTRACT RESULT FROM THE IDENTITY MATRIX *
Hxnat[i]UI.im = -Hmat[i][j].im;
if0i== j)

Hrnat[i]fi].re = 1. - Hrnat[i][i].re;
else

Himat[i]W.re = -Hmat[ijU].re;

/*--FILL IN OTHER PART OF H MATRIX TO IDENTITY MATRIX. *
for (i = 0; i < col; -H-i)

for = 0; j <n;++j)

Hniat[i]U].im = 0.;
HmatU] Ii].im = 0.;
if0i== j)

Hmatfi][iJ.re = L.;
else

HmtiUIr .
Hmato[il].re = 0.;

A-4

TR 8807

ParallelMatrixjvlult (first~matrix, second-matrix, result, rows, poc-numbers)
complex-matrix first~matrix, second-natrix, result
jut proc-.numbers;
I*

THIS ROUTINE WILL PERFORM MATRIX-MATRIX MULTIPLICATION
IN PARALLEL BY USING MULTIPLE PROCESSORS ON THE
TOPOLOGIX SYSTEM. THE TOTAL MATRIX IS ASSUMED TO BE IN
EVERY PROCESSOR. EACH PROCESSOR WILL WORK ON A SQUARE
SUBBLOCK (size: # of rows in matrix / # of processors in row) OF THE
ORIGINAL MATRIX.

INPUT:
first matrix : type complex matrix

Upper triangular matrix from QR decomposition.

second-matrix : type complex matrix
Normalized miatrix from QR decomposition.

rows : type integer
Number of rows that are in the Q or R matrices.

proc numbers : type integer
Number of rows or columns of processors (sqrt(p)).

OUTPUT:
result: type complex matrix

Diagonal contains the eigenvalues of the matrix
that was decomposed by the QR decomposition.

THIS ROUTINE USES THE FOLLOWING EXTERNAL ROUTINES:

Meshid,, cmult, and cadd.

int Ablockcol, Ablockrow, Bblockcol, Bblockrow-
int icol, irow, ii1, i2, ji1, j2, count, sp;
complex tempc;

Meshid (&row, &icol);
Ablockrow = irow;
Ablockcol = irow;
Bblockrow = irow;
Bblockcol = icol;
sp = rows / proc-numbers;
for (count = 0; count < procjiumnbers; ++count)

for 01i= Ablockrow*sp; il < (Ablockrow*sp)+sp; ++il)
for (j2 = Bblockcol*sp; j2 < (Bblockcol*sp)+sp; ++j2)

for (i2=Bblockrow*spj 1 =Ablockcol*sp;i2<(Bblockrow*sp)+sp; ++i2,++jlI)

tempc = cmult (firstmatrix[ilJU I], seconct.matrix[i2]U2]);
result~il1102] = cadd (tempc, result~ill]j2J);

A-5

TR 8807

++Ablockcol;
if (Ablockcol >= proc_numbers) Ablockcol = 0.;
++Bblockrow;
if (Bblockrow >= proc-numbers) Bblockrow = 0.;

QRjteration (Cmnat Truat, n)
complex-matrix Cmat, Tmat;
int n;
/*..

THIS ROUTINE WILL PERFORM A QR DECOMPOSITION USING p
PROCESSORS IN A PARALLEL FASHION. THE MATRIX IS
BROADCAST TO ALL PROCESSORS WITH EACH WORKING ON A
SMALL PART OF THE MATRIX. WHEN THE ROUTINE IS COMPLETE
ALL THE PROCESSORS WILL CONTAIN THE Q, R, T (accumulation of
Qs), and Eigs (eigenvalues of matrix). THIS ROUTINE WAS TAKEN FROM
THE LINPACK USER'S GUIDE, CHAPTER 9.

INPUT:
Cmat : type complex-matrix Current covariance matrix

Tmat : type complex matrix
Identity matrfi' first time through and, accumulation of Qs
for every other time.

n : type integer
Number of rows in the Cmat matrix.

OUTPUT:
Cmat : type complex matrix

Matrix with diagonal values being the eigenvalues
of the covariance matrix.

Tmat : type complex matrix
Matrix containiing the accumulation with the new Q
matrix. The eigenvectors of the covariance matrix.

THIS ROUTINE USES THE FOLLOWING EXTERNAL ROUTINES:

Broadcast, Calculate H, cassign, cdiv,, cmat equate, cmat mult,
cmult, Exchange, Parallel MatrixMult, receive, send, zaxpy,, zdot,
znrm2, and zscal

.. *

int k, 1, i, j, Ioopstart, xcount;
int iam, usize, prow, pcol, ihave;
float temp, Enrm;
complex sigma, nrmc, tcmpc, cnst, t;
complex-matrix Rmat, Umat, Hmat, Himat, H2mat, Tempmat;
FILE *data, *fopen 0;

A-6

TR 8807

usize = sizeof(Umat); /* GET SIZE FOR MESSAGE PASSING */

/* ---- GET THE VIRTUAL NODE ID FOR THE COMPUTATIONS ----- *
Jam = v16_node_number[getnodeido];

/* ---- TRANSFER THE COVARIANCE MATRIX FOR ROUTINE ----- *
cmat-equate (Rmat, Cmat, n);
/* ---- SEND OUT THE ENTIRE MATRIX TO ALL PROCESSORS ----- *
Broadcast (Rmat, usize, 0);
/* ---- START THE MAIN COMPUTATIONS FOR HOUSEHOLDERS -- *-
for 0; 1 < n-1; ++1){

k = 1 % p; /* WHAT PROCESSOR HOLDS THE NEEDED COLUMN? */

/* --- GET HYPERCUBE NODE ID FOR BROADCAST ROUTINE --- *
ihave = v16_tojhypercube number[k];

if (iam = k)
S/* WHAT PROCESSOR NEEDS TO CALCULATE U COLUMN? */

Enrm = znrm2 (n-1, Rmat, 1, n); /* NORM OF COLUMN L */
if (Enrm!=0){

if (Rmat[l][1].re != 0.)(
/* ---- GET SIGN FOR U VECTOR CALCULATION -----

temp = cabs (Rmat[1][l]);
sigma.re = Rmat[l][l].re/temp;
sigma.im = Rmat[l][l.im/temp;}

else
sigma = cassign (1., 0.);

nrmc = cassign (sigma.re*Enrm, sigma.im*Enrm);
tempc = cassign (1., 0.);
cnst = cdiv (tempc, nrmc);
/* CONSTRUCT U VECTOR --------------- *
zscal (n-1, cnst, Rmat, 1, n, Umat);
Umat[l][1].re = Umat[l][1].re + 1.;
Rmat[l][1] = cassign (-nrmc.re, -nrmc.im);for (i -- 1+1; -. < n; ++i)

Rmat[i][1] = cassign (0., 0.);
for (i = 0; i < 1; ++i)

Umat[i][1] = cassign (0., 0.);

/* ---------- SEND OUT U MATRIX TO ALL PROCESSORS -------- */
Broadcast (Umat, usize, ihave);

if (iam = k)
(/* PROCESSOR THAT CALCULATED U VECTOR */

if (Enm != 0)
(/* FINISH CALCULATING OTHER COLS OF R MATRIX */

for (j = l+p; j < n; j += p)

A-7

TR 8807

t = zdot (n-i, Umat, 1, Rmat, j, n);
t = cdiv (t, Umat[l] [I]);
tempc.re = -1;
tempc.im = 0.;
t = cmult (tempc, 0;
zaxpy (n-i, t, Umat, 1, kmat, j, n);

])

else /* PROCESSOR IS NOT EQUAL TO K */(
loopstart = iam;
xcount = 1;
while (loopstart < 1){

loopstan = (xcount * p) + ian
++xcount;]

for (j = loopstart; j < n; j += p)(
t = zdot (n-1, Umat, 1, Rmat, j, n);
t = cdiv (t, Umat[1] []);
tempc.re = -1.; /* CREATE NEGATIVE # */
tempc.m = 0.;
t = cmult (tempc, t); /* NEGATE t */
zaxpy (n-i, t, Umat, 1, Rmat, j, n);

/* ------------------ END OF THE IF ELSE LOOP ----------------- *
/* END OF THE I LOOP ------------------------- *

/* - IF PROCESSOR ZERO, EQUATE MATRIX Tempmat TO IDENTITY - */
if (iam = 0)

f
for (i = 0; i < n; ++i)for (j = 0; j < n; 4-+j)
{

Tempmat[i]U].im = 0.;
if(i =--j)

Tempmat[i][i].re = 1.;
else

Tempmat[i][j].re = 0.;I

/* --- COLLECT H MATRICES & GENERATE Q MATRIX IN NODE 0 --- */
for (I = n-p+iam; 1 >= iam; 1 -= p)(
/* CALCULATE YOUR H MATRIX ---------------------

CalculateH (Umat, 1, Hmat, n);
if (receive (R, usize, HImat, iam, 0) != -1)(
/* - CREATE TEMPORARY MATRIX MULTIPLICATION HOLDER --

A-

A-8

TR 8807

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

H2mat[i]U].im = 0.;
if(i =--=j)

H2mat[i][i].re = 1.;
else

H2mat[i]j].re = 0.;}
/* MULTIPLY THE H's TOGETHER *
cmat_mult (1, n, Hmat, Hlmat, H2mat);
/* ---- SWAP THE MATRICES FOR THE NEXT MULTIPLY -- *-
cmat equate (Hmat, H2mat, n);

/* SEND OUT THE MULTIPLICATION RESULT TO LEFT - */
send (L, usize, Hmat, Jam, 0);

if ((Jam % 4) = 0)
S~/* IF YOU'RE IN COLUMN ZERO THEN PASS DATA UP */

if (receive (D, usize, Hlmat, iamn, 0) != -1){
cmaLmult (1, n, Hmat, Hlmat, H2mat);
cmaLequate (Hmat, H2mat, n);)

send (U, usize, Hmat, iam, 0);
if (am =0)
I

cmaLmult (I, n, Hmat, Tempmat, H2mat);
cmaLequate (Tempmat, H2mat, n);)

}
}
/* CLEAR THE UNIMPORTANT COLUMNS ------------- */
for (I = 0; 1 < n; ++I)(

if (I < p){
if 0!= iam){

for (i = 0; i < n; ++i)
Rmat[i][l] = cassign (0.,0.);}

}
else{

if (0 % (1/p)*p)!= iam){
for (i = 0; i < n; ++i)

Rmat[il[] = cassign (0.,0.);
)

}
}

A-9

TR 8807

/* ----- GET THE ENTIRE R MATRIX INTO EVERY PROCESSOR ----- 1
Exchange (Rmat, usize, n);

/* -- BROADCAST THE ENTIRE Q MATRIX TO EVERY PROCESSOR -*

Broadcast (Hinat, usize, 0);

/*-------------....CLEAR THE EIGENVALUE MATRIX -------------- *
for (i = 0; i < n; ++i)

for = 0-,j <n; ++j)
Cmat[i]U] = cassign (0., 0.);

/*------------....PERFORM THE RQ MULTIPLICATION-------------*
ParallelMatrixMult (Rmat, Hmat, Cmat, n, prcs);

/*--------- PUT EIGENVALUES INTO EVERY PROCESSOR---------*
Exchange (Cmat, usize, n);

/*---------------.....CLEAR TEMPORARY MATRIX------------------*
for (i = 0; i < n; ++i)

for 0 =0;j <n; ++j)
Tempmatf" j = cassign (0., 0.);

/* ACCUMULATE TRANSFORMATION MATRICES (EIGENVECTORS) *
ParallelMatrixMult (Tmat, Hmat, Tempmat, n, prcs);

/*-------- PUT EIGENVECTORS INTO EVERY PROCESSOR--------...
Exchange (Tempmat, usize, n);
cmat-equate (Tmnat, Tempmat, n);

Update-data (eigvals, trans, inputs, alpha, size)
complex-matrix eigvals, trans;
complex-vector inputs; 1* Input vector ~
float alpha; /* Forgetting factor for the covariance update *
int size; /* Number of rows or columns in trans */* m..

THIS ROUTINE WILL UPDATE A COVARIANCE MATRIX AND THE
COMPLEX INPUTS THAT HAVE PREVIOUSLY BEEN GENERATED.

INPUT:
eigvals : type complex matrix

Originally the covariance matrix that is complex
Hermitian. Later it is the current eigenvalue estimation
matrix (eigenvalues on diagonal).

trans : type complex matrix
Eigenvectors of the covariance matrix to be used to update
the new inputs.

inputs : type complex vector
New inputs thait the hydrophones have received.

A-10

TR 8807

alpha : type float
Forgetting factor for the covariance update equation.

size : type integer
Number of rows in the input vector.

OUTPUT:
eigvals: type complex matrix

New updated -covariance matrix eigenvalue estimation,
includes new data information.

inputs: type complex vector
New data that has been updated to conform to the last
elgenvectors calculated.

THIS ROUTINE USES THE FOLLOWING EXTERNAL ROUTINES:

cmat add, cmat trans, cmatvect mult, cms mult, and cvect equate.

int i, j;
complex ffiold,
complex-matrix transh, result, ansi, ans2;
complex~vector updata;

/* - GET HERMITIAN TRANSPOSE OF TRANSFORMATION MATRIX - *
cmat~trans (trans, transh, size);

------------......... UPDATE INPUT VECTOR -------------------- *
cmatvect-mult (transh, inputs, updata, size);
cvectLequate (updata, inputs, size);

/* ---- UPDATE COVARIANCE MATRIX USING ABOVE RESULT-----..
for (i = 0; i < size; +-Ii)

for (j = 0; j < size; +i+j)

thold = conj (updataU]);
result[iJU] = cmult (updata~i], thold);

cms-mult (result, alpha, ansi, size);
cms-mult (eigvals, 1.-alpha, ans2, size);
cmat~add (ansi, ans2, eigvals, size);

Normal (numberi, mean, sd, outreals)
float mean, sd;
float outrealsfl;
int numberi;
/*

THIS ROUTINE WILL GENERATE AN ARRAY OF RANDOM NUMBERS
WITH A GAUSSIAN DISTRIBUTION.

INPUT

A-i1

TR 8807

numberi : type integer
Number of values to be in the resulting array.

mean : type float
Average of the values to be generated.

sd : type float
Standard deviation of the data to be generated.

OUTPUT
outreals : type float (vector)

Will contain values with Gaussian distribution.

#define to3l 2147483648.0
#define ix 71365
#define FRAND (float)((float)randomo/(float)MAXLONG)

long int iu;
double sqrt 0), log (), erand48 0
float root, unif 1, unif2, temp, gaussi, gauss2;
int
iu = FRAND;
for (i = 0; i < numberi; i+=2)

do

iu =ix *iu +1; 1* FILL UP ARRAY WITH RANDOM NOISE/
unifi = iu/to3l1;
unif2 =2.*FRAND 1.L;
temp = unifi. * unifi + unif2 * unif2;

)while (temp > 1.);
root = sqrt (-2.*log (temp) / temp);
gauss 1 = unifi * root;
gauss2 = unif2 * root;
outreals~i] = mean + sd * gaussi;
outreals[i+1] = mean + sd * gauss2;

SteerGen (arraysize, MRA, steer)
int arraysize;
float MRA;
complex -vector steer,
1* ..

THIS 'R'OUTINE"GE"NE'RA"TES THE S'TEE"RI'NG. VECTO "R "FO R THE .LOOK
DIRECTION SPECIFIED.

INPUT:
arraysize : type integer

Number of hydrophones in the array.

A-12

TR 8807

MRA: type float
Bearing of the look direction (degrees).

OUTPUT:
steer: type complex vector

Will contain the vector for the look direction.

THIS ROUTINE USES THE FOLLOWING EXTERNAL ROUTINES:

cassign.

{
int i;
float ang, angle;
double coso, sino;

ang = sin (M.RA*M_P1/180.);
for (i = 0; i < arraysize; ++i)(

angle = i * ang * MPI;
steer[i] = cassign (cos(angle), -sin(angle));)

/* ** ,/

ProcessInputs (number-of-sensors, how-many-sources, signa-dbvalues, signal_bearings,
timeinterval, sensor-values)

int timeinterval, how...many-sources, number_of_sensors;
float signaldb.yalues[], signal-bearings[];
complexvector sensor_values;
/* m...

THIS ROUTINE WILL PROVIDE SENSOR OUTPUTS BY USING THE
SENSOR INPUTS THAT HAVE BEEN PREVIOUSLY GENERATED.

INPUT:
numberofsensors : type integer

Contains number of hydrophones per beam.

how manysources : type integer
Specifies number of sources present to hydrophones.

signaldb values : type float (array)
Contains decibel values assigned to each source.

signalbearings : type float (array)
Contains the bearing for each signal present.

time-interval : type integer
Contains time interval in question. Used for sigvar
and noise indices.

OUTPUT:

A-13

TR 8807

sensor-values : type complex vector
Will contain fiydrophone outputs that were generated.

THIS ROUTINE USES THE FOLLOWING EXTERNAL ROUTINES:

cadd, cassign, cmult, Normal, and SteerGen.

int i, j, k;
complex signal [20] [400], noisejj400], temp;
float nreal[400], nimag[400J, sreal[400], simag[400];
complex..vector steervect, temnp2;
float sigma;
double pow (), sqrt 0
static enum boolean first = TRUE;

for (i = 0; i < how-many-.sources && first == TRUE; ++i)

1* GENERATE SIGNAL POWERS ASSUMING NOISE VARIANCE 1 ~
sigma = pow (10., signaL-db _values[iV/2O.) / sqrt(2.);
Normal (400, 0., sigma, sreal);
Normal (400, 0., sigma, simag);
for (k = 0; k < 400; ++k)

signal[i][k] = cassign (sreal[kI, simag~kj);

first = FALSE;
1*-------....GENERATE THE NOISE FOR THE HYDROPHONES --------*
Normal (number -ofsensors, 0., llsqrt(2.), nreal);
Normal (number-of-sensors, 0., llsqrt(2.), nimag);
for (k = 0; k < number-of-sensors; -H-k)

noise~k] = cassign (nreal[k], nimag[k]);
1* --------- USE VALUES TO GENERATE INPUT VECTOR ---------- *
for (k = 0; k < number -ofsensors; ++k)

temp2[k] = cassign (0., 0.);
for (j = 0; j < how-many.sources; ++j)

/* - GENERATE STEERING VECTOR FOR EACH SOURCE BEARING -*

SteerGen (number -ofsensors, signal-bearingsU], steervect);
for (k = 0; k < number -o..sensors; ++k)

temp = cmult (s; -nalI[kI [time jntervalI, steervect[kI);
temp2[k] = cadd (temp2[kI, temp);

I. ------- COMPLETE THE GENERATION OF INPUT VECTOR------..
for 0i = 0; i < number-of~sensors; ++-ii)

sensorvaluesfi] = cadd (noise[i], temp2tlii);

Inputvalues (file, howmany, SINR, bearings)
float SINR[I, bearingsllj
FILE Mfie;

A-14

TR 8807

int howmany;
*..

THIS ROUTINE WILL READ IN DECIBEL VALUES AND BEARINGS OF
ANY SIGNALS THAT ARE PRESENT IN THE SYSTEM.

THE FILE SHOULD HAVE THE FOLLOWING FORMAT:

dB-value space angle-value

WHERE THE angle-value IS BETWEEN -90 DEGREES AND 90 DEGREES.

INPUT:
file: type FILE

Pointer to the input file. Must be opened before this
routine is called.

howmany : type integer
Number of signals that are present to the system.

OUTPUT:
SINR: type float (vector)

Decibel values for all signals present.

bearings: type float (vector)
Angle locations for all the present signals.

{
int i

for (i = 0; i < howmany; ++i)
fscanf (file, "%f %f, &SINR[i], &bearings[i]);

EMV (dominant_values, efactor, arraysize, eigvects, eigvals, steer, weights)
int dominant_values, arraysize;
float efactor;
complex.vector steer, weights;
complex-matrix eigvects, eigvals;
/* w ..

THIS ROUTINE WILL GENERATE THE WEIGHTS TO MINIMIZE THE
OUTPUT RESPONSE OF A BEAMFORMER BY USING THE
EIGENVECTORS AND EIGENVALUES OF THE COVARIANCE MATRIX.
THE FORMULA IS TAKEN FROM NUSC TR 8305, N. OWSLEY,
NOVEMBER 1988.

INPUT:
dominant-values : type integer

Number of dominant signals present.

efactor : type float
Enhancement factor for EMV usually >= 1.

A-15

TR 8807

arraysize : type integer
Number of hydrophones in the array.

eigvects : type complex matrix
Eigenvectors of the covariance matrix.

eigvals: type complex matrix
Eigenvalues of the covariance matrix.

steer: type complex vector
Steering vector for iook direction.

OUTPUT:
weights :type complex vector

Will contain weights to minimize beam response.

THIS ROUTINE USES THE FOLLOWING EXTERNAL ROUTINES:

cabs, cadd, cassign, cmat Iadd, cmatvect mult, cms-mult,
cmult, and conj.

int i, j,k;
float temp, part5, denom, scalar,
complex tc, part3, part4;
complex-matrix part, part2, old, numer,

cmat-init (old, arraysize);
denom = 0.;

for (i = 0; i < dominant-values; ++-ii)

/*----------...GET SCALAR MULTIPLIER eu/(1+eu) ----------- *
temnp = efactor * (eigvals[i] [i].re - 1.);
scalar = temp /(1. + temp);
/*-------------... aSOLVE NUMERATOR PARTIAL---------------*
for j =0; j <arraysize; ++j)

for (k = 0; k < arraysize; +e+k)

tc = conj (eigvects[k][i]);
partU][k] = cmult (eigvectsU][iI, tc);

cmns_mult (part, -scalar, part2, arraysize);
cmat~add (part2, old, old, arraysize);
/*-------------- SOLVE DENOMINATOR PARTIAL--------------*
part4 = cassign (0., 0.);
for (j = 0; j < arraysize; +i-j)

tc = conj (eigvectsU][i]);
part3 = cmult (tc, steeriji);
part4 = cadd (part4, part3);

part5 = cabs (part4) * cabs (part4);
part5 *= scalar,

A-16

TR 8807

denom += part5;}
denom= arraysize - denom;

/* ---------- COMPLETE NUMERATOR COMPUTATIONS *
for (i = 0- i < arraysize; ++i)

for (j = 0; j < arraysize; ++j)(
if(i==j)

numer[i][i] = cassign (1.+old[i][i].re, old[i][i].re);
else

numer[i]U] = cassign (old[i][UIxe, old[i]U].im);

cmatvect-mult (numer, steer, weights, arraysize);
/* COMPLETE WEIGHT COMPUTATIONS --------------- *
for (i = 0; i < arraysize; ++i)

/
weights[i].rc /= denom;
weights [i].im/1= denomn;

I

/** FOLLOWING ROUTINES FOR OUTPUTTING GRAPH TO HP SCREEN **/

Beamform (weights, arraysize, pattern)
int arraysize;
complex-vector weights;
float patternl[I;
(

double cos 0, sin 0, sqrt 0;
int i, angle;
float theta, number, angle2;
complex sum;

/* ANGLE SPANS -pi/2 TO pi/2 --------------------- *
for (angle = -180; angle <= 180;, ++angle)(

sum = cassign (0.,0.);
for (i = 0; i < arraysize; ++i)(

theta =2. * MPI * i * spacing * sin ((angle/2.) degrad);
theta = wavelength;
/* FOR ALL HYDROPHONES: WEIGHTS ADDED TOGETHER */
sum.re += weights[i].re*cos(theta) - weights[i].im*sin(theta);
sum.im += weights[i].re*sin(theta) + weights[i].im*cos(theta);

/* .---- MAGNITUDE OF SUM (OF WEIGHTS) IS CALCULATED ..- */
pattern[angle+180] = sqrt ((sum.re * sum.re) + (sum.ir * sum.im));

A1
* I

A-17

TR 8807

Normalize (weights, array-size, pattern, normalized-pattern)
int array-size;
complex_vector weights;
float pattemn;
float normalizedtpatternl;(

double sqrt 0, logl0 0;
int i, angle;
float constant = 0., mag;

for (i = 0, i < array_size; ++i)
I

mag = cabs (weights[i]);
constant += mag;I

for (angle = 0; angle <= 360; ++angle)
normalized-pattern[angle] = 20. * log 10 (pattern[anglel/constant);

Output (file, normalizedtpattern)
char *file;
float normalizedtpattern[];I

int angle;
static hat firsttime = 0;
float angle2;
FILE *datafile, *fopen 0;

datafile = fopen (file, "w");
for (angle = -180; angle <= 180; ++angle)I

if (normalizedpattern[angle+180 < -50.) /* CHECK IF OFF GRAPH */
normalized-pattern[angle+180] = -50.;
/* OUTPUT BOTH ANGLE & DECIBEL VALUE AT THAT ANGLE */
angle2 = angle / 2.;
fprintf (datafile, "%f %f\n", angle2, normalizedtpattern[angle+180]);I

fclose (datafile);

/ *************************** MAIN ROUTINE *****************************/

main 0

FILE *fopen 0, *data;
int i, j, arraysize, sources, dominant, iarn;
float pattern[400], npattern[400];
char *fiename;
vector sigvals, bears;
complex.matrix eigvects, eigvalues;
complex-vector inputvector, steering, weights;

A-18

TR 8807

kinit(100); /* ATTACH TO THE TOPOLOGIX KERNEL */

* - GET VIRTUAL NODE ID FOR COMPUTATIONS --------- *
Jamn = v 16_node_number[getnodeidO];

/* -------- DEFINE NUMBER OF HYDROPHONES IN ARRAY -------- */
arraysize = 32;
if (iam = 0)
(

printf ("\nfHow many sources are present?n");
scanf ("%d", &sources);
data = fopen ("DATAXX", "r");
for (i = 0; i < arraysize; ++i)

for (j = 0; j < arraysize; ++j)
fscanf (data,"%f %f",&eigvalues[i]U].re,&eigvalues[i][j].im);

fclose (data);

/* ---- INITIALIZE EIGENVECTORS TO I AND WEIGHTS TO ONE
for (i = 0, i < arraysize; ++i)
{

weights[i] = cassign (1., 0.);
for 0 " 0; j < arraysize; ++j)I

if (i = j)
eigvects[i][i] = cassign (1., 0.);

else
eigvects[i]U] = cassign (0., 0.);

/* ------ READ IN VALUES NEEDED FOR PROGRAM TO RUN ------ *
data = fopen ("values", "r");
Inputvalues (data, sigvals, bears, sources);
fclose (data);
for (i = 0; i < 10; ++i)I

/* GENERATE NEW DATA VECTOR ---------------- *
ProcessInputs (arraysize, sources, sigvals, bears, i, inputvector);
/* ----- UPDATE THE EIGENVECTORS WITH NEW DATA ------ *
Update-data (eigvalues, eigvects, inputvector, .8188, arraysize);
/* - PERFORM QR DECOMPOSITION AND RQ MULTIPLICATION -*/

QRIteration (eigvalues, eigvects, arraysize);)
/* GENERATE THE STEERING VECTOR ---------------- /
SteerGen (arraysize, 0., steering);
/* -- PERFORMEMVDR ALGORITHM WITH CALCULATED VALUES .*/
dominant = 5;
EMV (dominant, 1., arraysize, eigvects, eigvalues, steering, weights);

kexit(10); /* REMOVE FROM TOPOLOGIX KERNEL */
/* END OF THE MAIN PROGRAM *

A-19/A-20
Reverse Blank

TR 8807

APPENDIX B

SOURCE CODE FOR BROADCAST AND EXCHANGE ROUTINES

B-1/B-2
Reverse Blank

TR 8807

THE TWO ROUTINES IN THIS FILE ARE THE COMMUNICATION
ROUTINES THAT ARE NEEDED BY PROGRAMS THAT PASS DATA
ON THE TOPOLOGIX SYSTEM.

static int WhichPort[4] = (DLCBO, DL..CB I, DLCB2, DL...CB3 I;
Broadcast (data, size, whohasthedata)
int *data, size, whohasthedata;

/* .. m.............................
THIS ROUTINE WILL BROADCAST DATA THROUGH THE
HYPERCUBE. THE DATA IS ORIGINALLY HELD BY ONE PROCESSOR.
THIS ROUTINE CAN PERFORM THE BROADCAST IN 0(d)
OPERATIONS.

INPUT:
data :type pointer

Points to data that will be broadcast.

size : type integer
Size of the data block.

whohasthedata : type integer
Hypercube processor id

int bit, whoiam--getnodeido, niask=OxFFFF, orbit=Ox 1, whofrom;
int iamwho = whoiarn;

/* ---------------- SET MESSAGE FLAGS NEEDED-----------------*
mesg.nh-type =0-
rnesg.nhjlength = size;
mesg.nh-flags = 0;
mesg.nh..node = 0;
mesg.nhmsg = data;

for (bit = 0; bit < 4; +i+bit) /* COVER ALL BITS IN ID *

whoiam &= rnask * MASK OFF UNNEEDED BITS FROM SOURCE ID *
whohasthedata &= mask/* MASK OFF UNNEEDED BITS */
mask <<= 1,/"' SHIFT' MASK BIT OVER BY ONE TO LEFF *
whofirom = whoiani A orbit;
orbit <=- !;/* SHIFT ORBT BTOVER BY ONE TO LEFT*/

mesg.nh-dllevent = Which-Port~bit];
mesg.nh-event = abs (Which-Port[bit]);

if (whoiain == whohasthedata)
dsend (&rnesg);

else if (whofroin whohasthedata)
drecv (&mesg);

)* END OF THE FOR LOOP ------------------- *
) END OF THE PROGRAM

B-3

TR 8807

Exchange (Xmtrix, size, matsize)
int size, matsize;
complex_mnatrix Xmnatrix;
I *

THIS ROUTINE EXCHANGES DATA HELD IN ALL PROCESSORS
WITH ALL THE PROCESSORS.

INPUT:
Xmatrix: type complex-matrix

All vectors but the ones to pass should be set to zero.

size :type integer
Specifies size of Xmatrix in bytes.

matsize : type integer
Specifies # of rows in Xmatrix.

OUTPUT:
Xmatrix : type complex matrix

Contains all data from all procs.

int bit, iani = getnodeido, orbit =1, i, j;
complexmatrix X2mnatrix;
static struct nmsg mnesg2;

niesg.nh-type = niesg2.nh-type =-0;
mesg.nh-length = niesg2.nh length = size;
mesg.nh-jlags = mesg2.nhjlags = 0;
mesg.nh-node = mesg2.nh-node = 0;
for (bit = 0; bit < 4; ++bit)

megn-vn b Ihc-otbf)
mesg.nh_ev-nt = abs (Which ort[bit]);
if (iarn & orbit) != 0)1/* PANRE ONE *

mesg.nh-msg = Xmnatrix;
mesg.nh_!dI_epvent = WhichLPortfbitj;
dsend (&mesg);
mesg2.nhjnsg =X2matrix;
drecv (&mnesg2);

else 1*---------------------PLANE TWO --------------

mesg2.nhjnsg = X2matrix;
drecv (&mesg2);
niesg.nhjiisg = Xmatrix;
mesg.nh..d1_event = WhichPlortibit];
dsend (&mnesg);

cwnatadd (Xmatrix, X2rnatrix, niatsize); /* PERFORM DATA EXCHANGE 5
orbit «=- 1;

B-4

INITIAL DISTRIBUTION LIST

Addressee No. of Copies

NAVSEA (PMS-412 (Capt. Tuma, LCDR Kasputis, B. Zarnich,
E Neuman, P. Mansfield, P. Imbert, Y. Dogrul)) 7

NOSC (Code 741 (0. Byram, S. 1. Chou)) 2

NRL (Code 5155 (R. Hillson)) 1

NADC (Code 5021 (L Hart), Code 5052 (J. Whalon),
Code 503 (P. Santi)) 3

NWSC (Code 6044(0G. Summerville)) 1

DARPA, NTO (Dr. C. Stuart Dr. 0. Mobnkern) 2

ONR (Code 1114 (RFN. Madan)) 1

DTIC 12

