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MOTIVATION

This research was done in preparation for a panel at the Human Factors Society (HFS)
Meeting in Orlando, Oct. 5-12, 1990, organized by Wayne Gray and Mike Atwood of the
Intelligent Interfaces Group at the NYNEX Science and Technology Center. The purpose
of the panel was to demonstrate GOMS analyses to the human factors (HF) community in
an exciting manner so that HF practitioners would be motivated to learn more about GOMS
and use it in their work.

Three applied psychology researchers (Judy Olson of the University of Michigan, Jay
Elkerton, of Philips Laboratories, and Bonnie John of Carnegie Mellon University) agreed
to analyze a task selected by Wayne Gray. Gray selected a human-computer interaction
domain, made a videotape of an expert interacting in that domain, and gave the videotape
and an associated transcription to each researcher (Appendix I). In the interest of enticing
HFS conference participants to the panel, and stretching the GOMS methodology to include
real-time, interactive domains, Gray selected a domain hitherto unanalyzed with GOMS:
video game play (in particular, Nintendo's Super Mario Bros. 3! adventure game). The
four panelists (the three previously named researchers and Wayne Gray, himself) each did ;
a GOMS analysis of the interaction independently, and presented the results to each other, {
and to the HFS audience, for the first time during the panel session. Because of limited !
presentation time, the panelists restricted their analyses to the first 27 seconds of the
expert's interaction (a natural break in the play, where the expert flies the game's. main
character, Mario, off the screen and to a different part of the game's world). The panel
continued with a discussion of the similarities, differences. and uses of the analyses.
Informal comments to the panelists indicate that the attendees were indeed excited by the
E)hre_scntat:'lgns and were motivated to learn more about GOMS, with the hope of using it in
eir wo:

Our own research interests iie in the creation of engineering models of computer users that
allow quantitative prediction of hard measures (performance time, learning time, the
commission, detection , and repair of errors, etc.) in the specification stage of system

design (see Newell & Card, 1985, 1986; John, 1988 for detailed discussions of this

position). We are currently extending GOMS to highly interactive task domains. By highly
interactive tasks, we mean tasks in which a user perceives a display, comprehends and
responds to that display on the order of once every second, for several seconds at a time.

We call this rapid interaction the immediate interaction cycle. Tasks displaying the

immediate interaction cycle are common in human-computer interaction (HCI): searching

for information with computer browsers, constructing a new diagram with an interactive
graphics package, playing "what-if" with a spreadsheet, creating a schedule with PERT

charts, exploring mathematical relationships with graphical statistics programs, creating
real-time, multi-media presentations. The list seems endless. Video games are extreme
examples of such tasks. The interaction in many video games seems almost manically

driven by the game rather than by the player. Goals seem to be interrupted, suspended and : For
{cmmed to. Yet, similar to other domains successfully modelled by GOMS, an expert's  ,;
behavior 10oks {0 be highly knowledge iniensive and cveniually scetns (v DECUIIE TOULLIE,

We welcomed the opportunity to stretch our analysis techniques to the challenge of Super .4
Mario Bros. 3. ton

oo

ton/

1 Super Mario Bros. 3, Nintendo, and the games and characters discussed in this paper are trademarks of, and ity Codes
under copyright to, Nintendo of America, Inc. % and/or
special
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This technical report provides documentation of the analyses presented by Bonnie John at
that HES panel. The content of the analyses remains essentially the same. At the time of
the presentation, many assumptions and decisions made were made from intuitions born of
intimate knowledge of "JOMS analyses. Here, we present the logic underlying those initial
intuitions. We hope this report will further encourage the panel's attendees, and others in
the fields of applied psychology and cognitive modeling, tv learn more about the GOMS
methodology, and the extensions to it made with the Soar unified theory of cognition
described herein.

GOMS MODELS

GOMS is a formalism for representing routine cognitive skill. The original concept
appeared in The Psychology of Human-Computer Interaction, by Card, Moran, and
Newell (1983, and also in an earlier article, Card, Moran, & Newell, 1980) as a model of
the performance of computer users. GC'MS stands for Goals, Operators, Methods, and
Selection rules. A goal is a symbolic st: ucture that defines a state to be achieved, and
determines a set of methods by which it may be accomplished. Operators are elementary .
perceptual, cognitive, or motor acts, whose execution is necessary to change any aspect of
the user's mental state or to affect the task enviconruent, An operator is defined by a
specific effect (output) and by a specific duraticr. .An operator may take inputs, and its
outputs and duration may be a function of its input:. The selection of operators for any
specific GOMS model defines its grain of analysis.2 Methods are procedures for
accomplishing a goal. A method is a sequence of goals and operators, with conditional
tests on the contents of the user's immediate memory and on the state of the task
environment. In routine cognitive tasks, methods are assured of success (up to the
possibility of having been mis-selecte, errors in implementation, and the reliability of the
equipment). By contrast, in problem-solving tasks, methods may or may not lead to
success depending on the user's lack of knowledge or understanding of the task
environment. Also, GOMS methods are procedures that the user already has at
performance time, as opposed to plans created during task performance. If more than one
method can be used to accomplish a goal, a selection must be made. The essence of skilled
behavior is that these selections are not problematic, that they proceed quickly and
smoothly. Although the original description of GOMS acknowledges that extended (but
still unproblematic) decision processes may be necessary in some situations, selection
rules, which are if-then rules that recognize the method appropriate for the specific task
situation, are a signature of routine cognitive skill and GOMS.

This original specification of GOMS had many limitations. Among them, GOMS predicted
only error-free behavior with no mechanisms for predicting the occurrence of errors,
neither frequeticy, type, nor when they might occur. There was no mechanism for
learning. The goal-stack control structure was inadequate for handling interruptions.
Operators in the original GOMS model were on the order of one half second, at their
smallest grain of analysis, and many contained mixtures of perceptual, cognitive and motor
acts. This confounding of processes dictated that operators be sequential, whereas many
skilled tasks exhibit concurrent perceptual, cognitive, and motor acts.

Although not limited by the amhﬂephm‘ of GOMS, the examnple ta. tacke in the 1983 volume

1mp11c1tly defined boundaries of GOMS analyses. These early tasks had a static visual

2 Card et. al. (1983, Chapter 5) demonstrate GOMS models of text-editing at four levels of analysis, from
the unit task level where each editing modification (e.g., delete a paragraph) is accomplished in a single
EDIT-UNIT-TASK operator, down to the keystroke level where the operators were keystrokes and mouse-
movements,




display for the inputting information to the user (e.g., marked-up manuscript for text
editing, sketch of a circuit for VLSI layout). They allowed the user to work at her or his
own pace; the user did not have to wait for critical information to appear, and critical
information did not disappear. Subtasks were not thrust upon the user by a changing
environment. Thus, these early studies did not demonstrate the appropriateness of the
GOMS models for interactive tasks.

Since its introduction, GOMS analyses have been used to model many tasks in a diversity
of domains and several extensions have been made to the original formulation (Olson &
Olson, 1990). GOMS models have been demonstrated within a production system
architecture to model performance and leaming (Kieras & Polson, 1985; Polson & Kieras,
1985; Kieras & Bovair, 1986; Singley & Anderson, 1989). The operators have been
hrought down to the level of elementary perceptual, cognitive, and motor operations
(Rosenbloom, 1983; John, Rosenbloom, & Newell, 1985). This allows perceptual,
cognitive, and motor processes to be expressed as occurring in parallel when the task
environment allows look-ahead or anticipation of operations (John & Newell, 1989).

Errors attributed to working-memory limitations have been predicted (Lerch, Mantei, &
Olson, 1989). Verbal input and output and tasks driven by the environment have extended
the characteristics of GOMS tasks (John, 1990). Task domains modelled in GOMS now
include graphic editors (Ziegler, Hoppe, & Fahnrich, 1986), spreadsheets (Olson & Nilsen,
1988), computer command abbreviations (John, et al., 1985; John & Newell, 1987)
oscilloscopes (Lee, Polson, & Bailey, 1989), touch typing (John, 1988; John & Newell,
1989), and telephone operator call handling (John, 1990; Gray, John, Stuart, Lawrence, &
Atwood, 1990).

GOMS, THE MODEL HUMAN PROCESSOR, AND SOAR

Since GOMS provides a formalism within which to describe and predict a range of use-
behaviors, it could be considered a closed model, sufficient in itself. In actuality, GOMNS
presupposes an underlying general theory of human cognition, for which it is the
specialization and instantiation of that theory to specific task environments and types of
humans. GOMS was initially presented exactly this way (Card, et. al., 1983). The
underlying cognitive theory was the Model Human Processor (MHP). It comprised an
architectural structure, composed of memories (long-term memory, working memory and
sensory buffers) and processors (perceptual, cognitive and motor). The operation of this
structure was not given in full detail (as in a computer architecture). Instead a series of
operating principles were given, such as decreasing speed of the cognitive processor with
uncertainty, and the use of problem spaces as an overall way of organizing performance.
The MHP was meant to summarize, circa the early 1980's, what had been learned in
cognitive science about the operation of basic information processing. The version of
GOMS originally presented was entirely consistent with the MHP. In turn, the MHP was
meant to do more than simply justify GOMS. It was to provide a basis for reasoning more
generally about users interacting with computers. (Indeed, it made no pretense to be a
general model of all human cognition, but was 1tself a specialization to the situations of
interest to HCI.)

The MIIP was far from a compieie cognitive theory, even in the HCI domain to which it
was specialized. The state of the art of cognitive science was simply not sufficient to
provide such a theory. Nevertheless, the MHP has proved sufficient to conceptually
support all of the extensions that have been made to GOMS. The MHP was cast in terms
of productions and recognition-act cycles; this provided an alternative formalism to the
procedural-language formalism of the original GOMS, permitting the extension to skill
learning. The MHP defined enough internal memory structure for the cognitive processor
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to support the refinement of GOMS operators from the half second level down to the 50
msec level. This memory structure was also sufficient to support the extension of GOMS
to account for some working memory errors. And, finally, the three-processor structure of
the MHP (perceptual, cognitive and motor) was sufficient to extend GOM., to continuous
interaction tasks, such as typing and talking-while-keying tasks, where the human operates
in a pipelined, overlapped mode.

Although it is imupressive that the MHP has been conceptually rich enough to support all
these extensions, the MHP remains a highly sketchy theory. The memories are
characterized only by a few descriptive parameters (such as half-life) and the principles of
operation are not computationally described (for example, it is simply stated that the power
law of practice is obeyed). It is not literally possible to derive GOMS (in any of its
variants) from the MHP. Additional detail is always required, for example, the particular
procedural language structure of the original GOMS. What remains true is that detailed
GOMS systems are further specifications of the structure and principles of the MHP.
Finally, unlike GOMS itself, which has been continuously tested and extended since it was
initially introduced, no such activity of updating, exercising or refinement has occurred for
the MHP. Thus, good reasons exist to adopt a better base for GOMS analyses than the
MHP, if a suitable one can be found. There are some minimal conditions for any basic
psychological theory to support GOMS, namely, that it support the particular control
structure of goals, operators, methods and selections rules. Many cognitive architectures
can do this, but certainly not all, e.g., Act* (Anderson, 1983) can, but in general
connectionist architectures cannot (Rumelhart, et. al., 1986). Furthermore, the real
leverage in a new base should be the ability to support further extensions of GOMS and its
integration with the many other cognitive and perceptual processes that are relevant to
interacting with computers.

Soar is a recent attempt to provide an architecture for human cognition (Laird, Newell &
Rosenbloom, 1987; Newell,1990). It is generally consonant with the MHP, and hence
supports the basic control mechanisms of GOMS. But, unlike the MHP, Soar is a
completely specified architecture. That is, rather than being given as an abstract
memory/process structure plus an set of abstract principles of operation, Soar is given in
the fashion of a programmed computer, with data structures, memory accessing
organization, and full details of the operation of the processors. Thus, one can specify the
contents of Soar memory structures for particular users in particular task situations. These
coxtlltlents, in effect, program Soar so that it produces simulations of the behavior of the user
in the task.

As succinctly described in (Lewis, et al., 1990) and in more detail elsewhere (Laird, et. al.,
1987; Newell,1990), the Soar architecture formulates all tasks in problem spaces, in which
operators are selectively applied to the current state to attain desired states. Problem
solving proceeds in a sequence of decision cycles that select problem spaces, states and
operators, resulting in the application of the operator to move to a new state in the space.
Each decision cycle accumulates knowledge from a long-term recognition memory (realized
as a production system). This memory continually matches against working memory,
elaborating the current state and retrieving preferences that encode knowledge about the
nexi step 1o take. Access of recognition memory is invoiuntary, paraiiei, and rapid (on the
order of 10 msec). The decision cycle accesses recognition memory repeatedly until
quiescence, when no more knowledge can be brought to bear; then the decision is made
about which step to take next. Each decision cycle takes on the crder of 100 msec.

If, at quiescence, the accumulated coded knowledge in working memory is insufficient (or
conflicting), so that Soar's next step cannot be determined, then an impasse occurs. Soar
responds to an impasse by creating a subgoal in which a new problem space can be used to




acquire the needed knowledge (or resolve the conflict). If, similarly, lack of knowledge
prevents progress in this new space, another impasse occurs wnd another subgoal is created
-- and so on, leading to an entire goal-subgoal hierarchy. Once an impasse is resolved by
problem solving, the chunking mechanism adds new productions to the recognition
memory that encode the resuits of the problem solving. Thus, the impasse is avoided in the
future, because these productions provide the appropriate knowledge immediately.

Soar interacts with the external environment through perceptual and motor processes,
which operate through the working memory. Incoming perceptions are added to the
current state in the top problem space and motor commands are made part of this current
state. The interactions occur asynchronously with the operation of the cognitive decision
cycle.

Soar basically subsumes the MHP and provides a much better basis on which to construct
GOMS models. However, the situation is not perfect. It remains an open issue to show
that some of the MHP operating principles expressing global psychological laws (such as
Fitts' law and Hick's law) follow from the Soar architecture. (Some global laws, such as
the power law of practice, have already been shown to be characteristic of the architecture.)
Some of the ways in which Soar does not yet adequately subsume the MHP relate t the
perceptual and motor processors, which remain underspecified aspects of the Soar
architecture. These difficulties do not substantially affect taking GOMS models as
specializations of the Soar architecture for appropriate users doing appropriate tasks. In
fact, the basic GOMS model refined for 50 msec operators has been derived from Soar
(Newell, 1990, Chapter 5). This extends easily to longer duration GOMS operators, tc the
learning effects (in terms of Soar chunking), and to the three-processor GOMS models of
continuous behavior, although all the details have not yet been fully worked out.

Soar is a better basis than the MHP on which to construct GOMS models for reasons that
go beyond just reproducing the current GOMS, even if that can be done more elegantly.
The most important is that Soar is complete enough and cognitively adequate enough so it
is being used to model and explain many diverse cognitive phenomena (Lewis, et. al. 1990;
Newell, 1990). Examples include natural language comprehension, problem solving,
immediate reasoning, perceptual search, strategy discovery and change, and the taking of
instructions. These tasks encompass the major dependent variables of interest in HCI -
time, errors, and learning rates. Thus GOMS automatically is subsumed within a theory
which is being extended to many other areas of cognition relevant to HCI. These
extensions, even when good psychology, do not always automatically extend GOMS in
ways that preserve its property of permitting engineering calculations and making
parameter-free predictions. But they provide excellent starting points for such extensions.
The second reason is the universal availability of simulations using Soar, so that even when
analytic calculations cannot be made, it is possible to put all the various parts of a user
model together and simulate what should happen (John, Newell & Card, 1990, is an
example in the domain of user's behavior with a browsing system).

Thus, from now on in this paper we will work within the Soar architecture, taking it as the
architectural foundation upon which to build GOMS models.

THE TASK

Nintendo's Super Mario Bros. 3 was chosen for the HFS panel by Wayne Gray because it
is a highly interactive task domain, its popularity as a video game was likely to draw a large
audience to the panel, and an expert, KP, was readily available and willing to participate.



Super Mario Bros. 3 is a typical adventure game with treasure to collect, enemies to avoid
or kill, and super powers to acquire and use. The user manipulates the hero, Mario,
through the world by pressing buttons on a hand-held controller (Figure 1). The game has
elght different worlds to traverse, and each world has several levels, with the difficulty of
play increasing with the world and level number.

EON TROLLER OPERATION

For the 1 player game use controller 1
For the 2 player game use controllers 1 and 2

Controller 1 / Controller 2

Control Pad
——Up
IT:._.J 8 A * Mario can enter a door.
(o) \ — * If you press the A Button at the
CXC) same time, Mario can jump up,out
\ of water.
* if you press the A Button at the
A Button same time, Mario can enter some
— B Button upside-down pipes.
START Button ?%:va?io at ( t for Frog Mario.)
| can squat (except for Frog Mario.
SELECT Button * Mario can enter some pipes.
* When the ground slopes, Mario can slide down
<> Control Pad it (except for Frog Mario.)

Left and Right
* Mario can walk to the left and right. if you hold the B
Button as you go left or right, Mario will run.

Figure 1. The hand-held controller for Super Mario Bros. 3. (from p. 6, Super
Mario Bros. 3. instruction booklet, reprinted by permission of Nintendo of
America, Inc.)

Several enemies populate these worlds, among them are Goumbas, who can kill Mario by
running into him but can be killed by Mario, ParaGoombas (flying Goombas with wings),
Venus Fire Traps, invincible plants who live in pipes and throw deadly fireballs, and
Koopa Troopers (Koopas), turtle-like creatures who retreat into their shells, which can then
be kicked or thrown by Mario to defeat other enemies or break open treasure blocks.

Treasures in these worlds include coins that allow Mario to buy additional lives, and
mushrooms and leaves that give Mario super powers when he runs into them. Treasures
can appear dlrectly on the screen, or they can be hidden in blocks and only appear when the

Llnnlen nan bhanlen + AA DaAsle 1311 oevy
blocks are broken by Mario. Both killing enemies and collecting treasures give Maric

points.

The display that appears to the user at the beginning of each game is shown in Figure 2.
This display shows Mario, four question blocks, a type of block guaranteed to contain a
treasure (QB.1 through QB.4), a Goomba (G. 1), the level ground that Mario walks on
(Gr:fufx;dl.l), and a scaffold he can climb on o reach treasures or avoid enemies
(Scaff2.1).
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Figure 2. Start-up display for Super Mario Bms. 3 World 1 Level 1.

For simplicity sake (for both the Nintendo-naive panelists and the ease of generating data)
Gray chose the task to be the lowest level of difficulty, World 1 Level 1. He asked the nine-
year-old KP to traverse World 1 Level 1, collecting as many points as possible, thinking
aloud as he played. Gray videotaped KP performing this task to provide observed behavior
against which to measure the predictions of the GOMS analyses. The panelists were asked
to analyze the first 27 seconds of play, in which time KP collected nine treasures, killed five
enemies, avoided three dangers, added two super powers, and flew off the screen to
another part of World 1 Level 1. The completion of World 1 Level 1 took KP and
additional 43 seconds. Appendix I contains the transcription of KP's behavior for the
analyzed segment.

JWO GOMS ANALYSES

GOMS suggests that the goals, operators, and methods can be defined from an objective
analysis of the task. Optimal selection rules can often also be specified from a task
analysis, but experience with human behavior indicates that selection rules in actual use are
specific to an individual user and must be inferred from his or her behavior. We conducted
the GOMS analyses with as little reference to the expert's behavior as possible, opting
instead, for takmg the knowledge explicit in the instruction booklet and reasoning ; about the
task itself. We found that the goals, operators, and methods sufficient to play the game
could be inferred from the instruction booklet and task analysis. Selection rules were
determined through reference to the expert's behavior.

The analyses were carried out at two levels: the function-leve: where operators are at the
level of gathering an item that gives points or killing an enemy, and the keystroke-level,



where operators are at the level of individual finger movements on the game's control panel.
Each level is considered a separate GOMS analysis, as in Chapter 5 of The Psychology of
Human-Computer Interaction (Card, et. al. 1983) where nine models at four different ievels
were compared, We will present these analyses in parallel, first describing the goals,
operators, methods and selection rules for each, then describing the process of applying this
information to the task of playing Super Mario Bros. 3.

Goals, operators, methods, and selection rules of the task domain

The instruction booklet is the primary source of knowledge for this GOMS analysis. It
provides the overall goals of the game: clear the level (in order to go on to the next level),
increase your standing by accumulating points, coins, cards, and extra lives (these are the
things measured in the score box at the bottom of the screen), and avoid death due to being
touched by an enemy, falling into a hole or fire, or running out of time.

These goals can be accomplished by performing function-level operators (FLOs), also
inferred from the instruction booklet. Figure 3 lists the goals of the game, the FLOs that act
to fulfiil those goals in the segment of behavior analyzed, and the passages in the instruction
booklet from which the FLOs were inferred. In service of clearing the level, the FLOs are
move-towards-end (in effect, moving to the right) and touch-goal, where the goal is a white
box in the middle of a black screen at the end of the level (Mario must jump up to touch it).
To increase standing, the FLOs are gather-item, search-in-block, and attack-enemy.
Gather-item collects iters on the screen that give points or money. Search-in-block hits
blocks to see if something valuable comes out, which could then be gathered. Points can
also be gotten with the attack-enemy FLO, although there is some risk involved; an attack
could fail and the enemy could kill Mario, violating the goal to avoid death. To fulfill the
goal to avoid death, the FLO is avoid-danger, where a danger can be an enemy, a hole in
the ground (if Mario falls in, he dies), or fire. There is no FLO that prevents Mario from
running out of time. However, a consideration of time is inherent in the selection among
the other FLOs.

FLOs are realized through keystroke-level operators (KLOs).3 The KLOs are the hand
movements necessary to manipulate Mario, and involve hitting the six buttons on the
controller (Figure 1). The four buttons in a cross configuration move Mario to the right,
left, up, and down* and we call the KLOs press-right, press-left, press-up, and press-
down, respectively. The A-button makes Mario jump, and when he has a tail, pressing the
A-button repeatedly makes Mario fly. Holding the B-button down allows Mario to pick up
things that lie next to him, and to accelerate when used in conjunction with the right- or left-
buttons. Releasing the B-button causes Mario to drop whatever he is carrying.

These two levels of operators have a relationship described by Card, et al. (1983, Chapter
5) as being formed by splitting operators. That is, the FLOs are split into the hand

3 L use the terms goals, function-level operators and keystroke-level operators o distinguish between three
different levels in the typical GOMS goal hierarchy. :Ihis distinction is drawn to make the different levels

casy o write about; it docs not reflect a theoretical distinction between goals and operators. As Kieras
(1988) observes for GOMS analyses in general, "this distinction is intuitively-based, and it is also relative;
it depends on the level of analysis."

4 Note that pressing the up button does not make Mario jump up, rather it allows him to move up in
certain situations: to go up a pipe with its opening over his head (together with the A-button) or pop out of
water (together with the A button) or to go through a door. None of these maneuvers are necessary in
segment of behavior analyzed here. Likewise, the down button makes Mario squat, go down a pipe when
he is standing on its opening, or to slide down a hill. Again, none of these maneuvers are used in this
segment of behavior,




GOAL: PARAMETERS INSTRUCTION BOOKLET SOURCE PAGE
FUNCTION-LEVEL
OPERATOR
Clear-level: "...louci the goa. to...clear the level” 19
Move-towards-end "At the end of each action scene...” 19
Touch-goal "...touch the goal to...clexr the level” 19
increase-standing: no.of Marios remaining Score box at bottom of screen 16
score,number of coins,
cards taken
Searchdin-block  Question blocks, "Hit blocks...A useful item might pop out!"® 11
other blocks
Gather-tem Coin, Starman, Super Leaf, "Gain more power by gathering items" 18
1-Up Musiiroom, Super
Mushrcom, Fire Flower
Attack-enemy Points 2: 2 given for attacking enemies 14
Goomba Attacks pictured 12,14
Koopa "After you have jumped on a Koopa..."” 8
Para-Goomba "Once you jtmp on it..." 35
Avolid-death: enemy, hole, fire, time-out "BEWARE! THE FOLLOWING ARE 20
DEADLY"
Avoid-danger enemy, hole, fire mentioned in deadly category 20

Figure 3. Goals and FLOs of the anlayzed segment of Supe - Mario Bros. 3 World 1 Level 1

movements necessary to accomplish them, defining the KLOs. KLOs are at a lower grain-
size, and can be combined in different ways to accomplish many different FLOs. Asin
Card, et al., determining the sequence of opera. ors at either of these levels constitutes a
single GOMS analysis. Thus, determining both the sequence of FLOs and the sequence of
K1.Os is considered to be two GOMS analyses. However, since KLOs are simply split
FL.Os, the analysis process is to determine the appropriate FLO and then determine the
KLO:s that accomplish it; the analyses thus proceed in parallel.

The instruction booklet provides methods,3 or sequences of KLOs, for accomplishing some
FLOs (examples of methods from the instruction booklet are shown in Figure 4). Figure 5
lists the functional operators necessary to produce the observed behavior, the name of the

mat. e Pm\nﬂpd hv the ingtrmetion manmnal for ”"‘C""p] chma those BT (s ond the moves

ava

that make up the methods and the KLOs that produce those moves. Thc exact KLOs
making up a method depend on the relative position of Mario and the objects on the screen,
so the keystrokes given are illustrative (e.g., a block may be to the right or left of 14ario, so
the KL.O producing appropriate movement would be press-right-button or press-left-button,
respectively).

5 The instruction booklet uses the term techniques tn describe what GOMS calls methods.




10

NEW TECHNIQUES!

® ’Q—-w" P W e

Holding a shell Running with a shell Kicking the shell Breaking a block

o0 (208

(Holding the B Button) (Holding the B Button)  (Releasing the B Brtion)

When Mario has a tail @ \
&-&- ) - &,

Acceleratmg More acceleratlon Take off Mario can only fly for

a short time.
288 (108 563
Power Meter Meter full, (P) starting Press the A Button C:} ®®

to flash repeatedly

m going up

Figure 4. Methods suggested by the instruction booklet (from p. 11, Super Mario
Bros. 3. instruction booils«, reprinted by permission of Nintendo of As lerica, Inc.)

More than one method exists to accomplish each FLLO used in the segment of the game
studied (except for gather-item). We determined selection rules for these methods by
analyzing twe sources of information: the mechanics of the garoe itself (the necessary
conditions for the methods to be applied), and the expert behavior observed in the
videotape.

For the search-in-block FLO, the necessary conditions for the hit-from-bottom method are
that the block be above Mario and that there be a clear path for him to jump up and hit it.
For the hit-with-shell method, the necessary conditions are that there be a Koopa Trooper
available to supply a shell and that there be a vantage point from which the shell can be
thrown to hit the block. For the hit-with-tail method, Maric must possess a tail and the
bleck must be vulnerable to tail-attack. In this segment of the game, none of the biocks are
vulnerable tc tail-attack, so this method is never observed. Because the hit-trom-bottom-
method has fewer steps it takes less time than the hit-with-shell methods; because it does
not involve an enemy, it has less risk associated with it. Therefore, the selection rule we
inferred is that, if the necessary conditions for the hit-from-bottom method exist, then the
hit-from-bottom method will be selected. If not, then the hit-with-shell method will be
selected. In this segment of behavior it is the case that if the necessary conditions for the
hit-from-bottom method do not exist, the necessary conditions for the hit-with-shell method
do exist, so this selection rule works. Reference to the expert's behavior did not contradict
this inferred selection rule.




FLOs USED CONDITIONS OF ILLUSTRATIVE
IN OBSERVED POSSIBLE SELECTION MOVES IN KLOs TO
SEGMENT METHODS RULES METHOD ACCOMPLISH MOVES
search-in-block hit from bottom  block is above Mario move until under block  press-right-button
path below block is clear  jump press-A-bution
hit with shell Koopa Trooper available  move to Kooppa press-right-button
. vantage point available immobilize Koopa press-A-button
pick up shell hold-B-button
move to block press-right-button
- throw shell at block release-B-button
hit with tail Mario has a tail move to block press-right-button
block breakable viatail hit block with tail press-B-button
gather-item move into move to item press-right-button
attack-enemy stomp on always applicable move to enemy press-right-button -
always selected jump on enemy press-A-button
tail attack Mario has a tail move to enemy press-right-button
(not used by thisexpert)  hit with tail press-B-button
avoid-danger get out of way a clear escape route exists move away press-right-button
does not impede progress
toward end of level
jump over clear area above Mario's  jump over press-right-button
head press-A-button
clear spot to jump to
"get out of way" impedes
progress toward end
fly over Mario has a tail walk back press-left-buiton
clear runway turn around press-right-button
clear take-off airspace accelerate press-right-button
only when there hold-B-button
are r0 other options take-off and fly release-B-button
press-A-button (repeatedly)
- move-toward-end  walk always selected walk to the right press-right-button
un not used run to the right prass-right-button

Figure 5 - FLOs, methods, selection rules, and illustrative KLOs for the

analyzed segment of the experts behavior.,

hold-B-button
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For the attack-enemy FLO, the necessary condition for the tail-attack method is that Mario
have a tail. When Mario does not have a tail, then there is no selection rule because only the
stomp-on method is applicable, and this is the situation for the first enemy attacked. When
Mario has a tail, the selection rule may be determined by analyzing the rewards and
penalties associated with each method. For instance, the stomp-on method seems to require
more precise timing of action and has more risk of dying for a novice than the tail attack. It
is assumed that an expert can execute whichever maneuver he or she intends, so the risk
component probably does not enter into the determination of the expert's selection rule. In
the case of killing a ParaGoomba, a tail attack gets only 100 points whereas the two
successive jumps required to kill the enemy using the stomp-on method get 100 and 200

. points mspectively, giving 200 more points than the tail-attack methord. This must be
traded-off against the extra time it takes to kill a ParaGoomba with two jumps, about 800
msec. For World-1 Level-1, the average rate of point collection is 150 points per second,
so the extra 800 msec to kill the ParaGoomba by jumping is well worth the 200 extra points
that method produces. Therefore, the selection rule for attack-enemy, when the enemy is a
ParaGoomba is to use the stomp-on method exclusively. In the case of killing a Goomba,
the selection rule is not so clear; the tail-attack and stomp-on method seem to have the same
risk (small) and the same reward (100 points). However, the tail-attack method is described
in the instruction manual as being a new technique for Super Mario Bros. 3. Since our
expert was an expert in Super Mario Bros. 1 and 2 before this game, it is reasonable to
assume a bias towards familiar methods, again giving a selection rule that uses stomp-on
exclusively.5 These selection rules were not contradicted by the expert's behavior in this
segment.

For the avoid-danger FLO, the necessary condition for the get-out-of-the-way method is
that there be a direction of escape, right, left, up or down. The necessary condition for the
jump-over method is that there be clear space over Mario's hvad so he can jump. The
necessary conditions for the fly-over method are that Mario has a tail, there is a clear run-
way to get up to speed and nothing overhead to block the take-off. The fly-over method
takes so many more KLOs (to back up, accelerate and flap), that it should enly be selected
when there are no other options; this situation does not occur in the observed segment. The
jump-over method takes one more KLO than the get-out-of-way method. However, if the
get-out-of-way method is always taken when a danger is present, it may prevent forward
progress in the game. For example, a pipe with a plant in it throwing fireballs at Mario may
be to the right of Mario. The get-out-of-way method may send Mario running to the left
until he is out of range of the fireballs, However, Mario would never progress beyond the
fire-throwing plant with this selection rule in force, violating the clear-level goal and making
Mario run out of time, thereby violating its own avoid-death goal. Therefore, the selection
rule we infer is if the get-out-of-way method does not impede forward progress toward the
end of the level, then use it, otherwise use the jump-over method for avoiding danger. The
expert's behavior dees not contradict this selection rule.

For the move-towards-¢nd FLO, the methods are walk and run. The videotape did not to
show clearly when the B-button was held down and when it was not. Also, the movement
of Mario on the screen does not necessarily distinguish between these two methods without
deeper knowledge of the mechanics of Mario's world (i.e. momentum). Therefore, we will
not distinguish between these methods in our analyses, aud just assume that move-towards-
end is implemented by a press-right-button KLO.

6 In the case of immobilizing a Koopa Trooper, the tail-attack method knocks the Koopa of the screen, so
its shell is not available for use. Thus the attack of a Koopa Trooper embedded in the hit-with-shell method
of the searcn-in-block FLO never uses the tail-attack method. This is one of the reasons why the attack of
the Koopa Trooper embedded in the search-in-block FLO is not treated as a attack-enemy FLO.
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The GOMS analysis process

Given these goals, FLOs, KLOs, methods and selection rules, analyzing the game involves
perceiving the elements on the display and selecting the appropriate operators. First,a FLO
is selected, then it is implemented by a series of KLOs, as described in Sigure 6. The
particular sequence of KL.Os depend on the method used to implement the FLO and the
relative position of Mario and the elemenis on the screen. The selection rules used to
choose the appropriate method were described in the previoas section and also appear in
Figure 6. In the segment of behavior analyzed, these selection rules always result in a
unique method, so there is no conflict resolution necessary for method selection.

Therefore, at this stage in the analysis, we can uniquely determine the sequence of KLOs
necessary to accomplish each FLO. This process of selecting FLOs constitutes the
function-level GOMS analysis; that of selecting KI.Os constitutes the keystroke-level
GOMS analysis.

search-in-block(x)

L1 is acceptable when block(x) is on the screen;

L2 has preference over any other operator (best);

L3 if there is no selected search-in-block(x) operator whose application is incompiete,
L4 and block(x) is closer to Mario than block(y),

Ls then search-in-block(x) is better than search-in-block(y).

gather-item(x):

is acceptable when item(x) is on the screen;

has preference over any other operator (best); '

if there is no selected gather-item(x) operator whose application is incomplete,
and item(x) is closer to Mario than item(y),
then gather-item(x) is better than gather-item(y);

if item(x) is moving and item(y) is not moving,
then gather-item(x) is better than gather-item(y);

if item(x) is moving and block(x) is on the screen,
then gather-item(x) is better than search-in-block(x).

attack-enemy(x)

is acceptable when enemy(x) is on the screen and enemy(x) is killable;
if enemy(x) is an immediate threat,

then attack-enemy(x) is better than search-in-block, gather-item, avoid-danger, or move-towards-end;

if enemy(x) is not an immediate threat,
then attack-enemy(x) is worse than move-towards-end.

avoid-danger(x):
is acceptable when danger(x) is on the screen and danger(x) is invincible;
if danger(x) is an immediate threat,

then avoid-danger(x) is better than search-in-block, gather-item, attack-enemy, or move-towards-end;

if danger(x) is not an immediate threat,
then avoid-danger(x) is worse than move-towards-end.

move-towards-end:
is always acceptable;
every other operator has preference over move-towards-end (worst).

Figure 6. Preferences for the proposal and selection of FLOs.
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These analyses use a hand-simulation of what would happen if the GOMS models could
interface directly with the game. That is, the analyst looks at the display, notes the elements
visible, and uses the information in the preceding section to select an FLO and appropriate
KLOs. Then the analyst presses the button corresponding to the next KLO to be
performed. The button is only pressed until it has accomplished its function or until a
display change occurs that creates the opportunity for a new FLO to be selected. For
example, the hit-from-bottom method for the search-in-block FLO requires the analyst to
move Mario horizontally until he is under the block to be searched. If the block is to the
right of Mario, the analyst presses the A button until either Mario is under the block or
another element appears on the display. This would be counted as one press-right-button
KLO in the analysis. If no additional elements appear on the display before Mario reaches
the block, the analyst releases the right-button (stopping Mario) then presses the A-button
momentarily to make him jump straight up to break the block and land back below the
block. The new display (now without the block just searched) is then analyzed to determine
the next FLO and KL.O, and the analysis cycle repeats.

In a Soar/GOMS model each FLO is proposed when certain elements are visible on the
display. Each FLO has a set of preferences associated with it; proposing an operator is
equivalent to making the preference for that operator acceptable. Other preferences may
serve to resolve conflicts between competing FLOs. The condi..ons for proposal and the
associated preferences are an integral part of the GOMS analyses, and, in this analysis,
have been determined through a series of common-sense judgments about the task,
described below.

Rules for proposing FLOs and preferences between competing operators are shown in
Figure 6; a detailed explanation of the meaning of the preferences for the search-in-block
FLO follows to help interpret that figure.

The search-in-block FLO is proposed (has an acceptable preference) any time there is an
unexplored block on the display. In general, a search-in-block FLO is the best thing to do
because it will often result in finding valuable items which give super powers, points, or
money; this is stated in the instruction booklet, "Hit blocks...A useful item might pop out!".
Thus, search-in-block is always given a best preference.” More than one unexplored block
may be on the display at one time, so several search-in-block FL.Os may be proposed, each
evoked by one of the unexplored blocks, and each with a best preference. To resolve the
conflict that arises from the existence of several best operators, other preferences are added
to the operatoss, again based on task analysis, as follows.

The overall goal of attaining the most points possible dictates that the player be efficient in
his or her act10ns, not only because running out of time kills Mario, but because any
remaining time is converted into points at the end of the level. Thus, the block closest to
Mario should be searched first. This is produced by making the search-in-block FLO for
the closest block better than any of the other proposed search-in-block FLOs (14 & L5 in

Figure 6).

Occasionally, in the course of implementing a search-in-block FLO, Mario must move
closer to an unexplored block (call it B) other than the current target (A). As they stand in
the preceding paragraph, the preferences for search-in-block FL.Os would change so that

7 A best preference means that this operator is best if there are no other preferences that supersede best.
However, other preferences can be in place that would make another operator better than the operator that is
best, or reject the best operator, or create a tie with other best operators. For more details on the semantics
of Soar preferences, see Soar 5 Manual,
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search-in-block(B) would be better than search-in-block(A) as soon as Mario moves closer
to block-B. This might be a reasonable strategy in many cases, exploring the closest block
and going back to missed blocks later. However, it is easy to imagine arrangements of
blocks that would cause the player to skip blocks and never get back to them because the
presence of other biocks would continue to direct the preferences away from the skipped
blocks. Thus, to get as many points as possible, the preferences must be adapted to
prevent such target-switching when searching blocks. So the closer block can be better
only when there is no existing search-in-block FLO that has not yet been accomplished (L3
in Figure 6). Reasoning similar to that presented here for the search-in-block FLO is used
to construct the complete list of preferences shown in Figure 6.

To illustrate the course of an analysis, refer to Figure 2, the first display of the game, and
Figure 7, a chart describing the performance of the model. (Complete charts for the
analyzed segment appear in Appendix II.) In the display, Mario is on the extreme left, on
the ground. There are four unexplored question blocks visible (QB.1 through QB.4) and
an enemy (called a Goomba and labeled G.1). QB.1 and QB.2 are within reach of a jum;
whereas QB.3 and QB.4 are too high and Mario must jump onto the scaffold below QB .4
to be able to reach them. This information is appears in Figure 7, in the boxes labelled
OBJECTS SEEN and POSITION.

A~ ]
-

Each QB and the Goomba cause an FLO to be proposed, according to the preferences in
Figure 6, and recorded in Figure 7's box PROPOSED FLO. The position of the QBs and
Goomba cause preferences to be installed, shown in Figure 7's PREFERENCES box. In
this case, search-in-block(QB.1) has a best preference and is better than search-in-
block(QB.2), search-in-block(QB.3), and search-in-block(QB.4) because it is closest to
Mario. Since the Goomba is on the far right of the screen, it is not an immediate threat to
Mario and the preferences make attack-enemy(G.1) worse than the default FLO, move-
towards-end (aiways acceptable, but worst). Given the semantics of Soar preferences,
search-for-block(QB.1) is selected as the FLO to implement; this appears in the FLO
SELECTED box.

The selected FLO is then implemented with a method comprised of several KI.Os. The
appropriate method is determined with the selection rules of Figure 5 and appears in the
METHOD box in Figure 7. The moves that Mario has to make to accomplish that method
are listed in the NECESSARY MOVES box. These moves are achieved by specific KL.Os
listed in the KL.O box. As previously described, these K1.Os are performed by hand by the
analyst to determine their effects on the game's display.

Since this game is highly interactive, the situation may change before all the KL Os
necessary to implement a specific FLO can be performed. This happens at the very
beginning of the game; as the player presses the right-button to move Mario under QB.1,
the Goomba runs to the left and becomes an immediate threat before Mario reaches QB.1.
When the Goomba becomes an immediate threat, the preferences for FLOs change and must
be reassessed. Thus, the press-right-button KLO is performed, but the press-A-button
KLO (which would make Mario jump into the QB) is not performed before the situation
changes sufficiently to interrupt the implementation of search-in-block(\B.1). Figure 7
records this informaton in the Ki.O PERFORMED box and indicates which KLO wiggers
the next display that causes a change in preferences to occur.

Appendix II contains charts like the one in Figure 7 that follow from the FLOs, methods,
selection rules, preferences, and KLOs described above. To create those charts, we started
with the initial display of the game, and moved Mario one KLO at a time until the elements
on the screen changed sufficiently to require reassessment of preferences. That is, at the
initial display, we pressed the right-button until either Mario was under QB.1 (where the
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method for implementing search-in-block(QB.1) would require a press-A-button KLO) or
something else happened to change the preferences. In this case, the Goomba became an
immediate threat before Mario was under QB.1, so another chart was created (Display.1 in
Appendix II).

To see the sequence of FLOs predicted by the model, read the entry in each chart's FLO
SELECTED box. To see the sequence of KLLOs predicted by the model, read the entries in
each chart's KLLO box that are marked peiformed in the KLO PERFORMED box.

R F MS_ANALYSI

We compared the model's predictions to the observed performance of the expert, KP, using
the charts in Appendix II and the transcription of KP's performance in Appendix I. KP's
verbal protocol lagged his performance and in some cases later in the game he had to stop
speaking altogether to continue to play the game. We believe this indicates that the verbal
report of his goals was treated as a secondary task, dropping out when the primary task of
playing the game was too difficult, and may not be complete. Therefore, our comparison
uses only what KP makes Mario do rather than what KP says he is making Mario do.

Appendix III contains charts that record the comparison; an example for the first screen
display appears in Figure 8. At the top of the chart, Display.x corresponds to the Display.x
in the model charts (Appendix II).8

In the comparison charts, the top row of boxes, OBJECTS SEEN and POSITION, contains
the information about what is on the screen at this point in the videotaped game and
correspoad closely to the same boxes in model charts. The correspondence between expert
and model is not exact, because the model and the expert may not be in exactly the same
position at every display change. The second row of boxes list the OBSERVED
BEHAVIOR, the INFERED FUNCTION of that behavior, and INFERED FINGER
ACTION. The inferred function is ambiguous if more than one function could be served by
that behavior (e.g. moving to the right could move Mario towards the end of the level, or it
could bring him under a block so he can search it), and listed as a particular function if only
one funcion is obviously served (e.g. jumping into a QB unambiguously serves to search
that QB). The finger action was inferred from the behavior because it was not directly
observable from the videotape, but most movements of Mario can only be produced by
specific button presses, so the inference is uncontroversial. The third row of boxes lists
the FLOs that would be consistent with the observed behavior, the specific FLO predicted
by the model, and the KLO that is predicted by the model. The FLO predicted by the model
can be compared directly to the inferred function of the observed behavior in the box above
it. The KLOs can be compared directly to the inferred finger actions in the box above it.

Figures 9 and 10 graphically present the comparisons between the observed expert behavior
and the model's predictions. Figurc 9 shows the comparison at the function-level and
Figure 10 shows the comparison at the keystroke-level. In both figures, the operator names
are listed along the vertical axis. The horizontal axis is labelled with the display number

8 There are more charts for the model predictions than for the expert comparisons because the expert moves
in a fluid, continuous motion while the model simulates Mario walking one step at a time, stopping before
and after jumps. Some of the display chasges occur only when Marie i: moved beyond a specific place in
the world. The model's incremental movemsnt produces some displays where the next elements has not yet
appeared and the only applicable FLO is move-tcward-end. In contrast, the expert's fluid movement moves
Mario beyond the triggering point in service of the previous function, so the displays where nothing new
presents itself never occur,



Display. 0 (Start-up screen)

State of
Mario:

On
Screen

Expert's
Behavior

Comparison
to Model
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Mario starts at far left.

Geomba is at far right moving left.
Mario is trying to get the first question block.

Small Mario

OBJECTS SEEN POSITION

Mario far left, facing right

Groundl.1 all

QB.1 center, within reach

QB.2 just right of QB.1, within reach

QB.3 right of QB.2 too high

QB4 just right of QB.3, too high

G.1 far right (moving left)

Scaf2.1 under QB4
OBSERVED INFERRED INFERRED
BEHAVIOR FUNCTION FINGER ACTION

Mario moves right ambiguous press-right-button

F.L.O. CONSISTENT
WITH
OBSERVED BEHAVIOR

search-in-block(QB.1)
search-in-block(QB.2)
search-in-block(QB.3)
search-in-block(QB.4)
attack-enemy(G.1)
move-to-end

F.L.O. PREDICTED
BY MODEL

search-in-block(QB.1)

K.L.O. PREDICTED
BY MODEL

press-right-button

Figure 8. Example of the charts in Appendix I comparing the expert's observed
behavior with the predictions of the models.

corresponding to the Display.x label on each of the model charts in Appendix II. This
designation corresponds roughly to time, where each display represents about a second's

cmsmmmtle AL Adiortdve
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In Figure 9, for each display, a black dot marks the inferred function of the observed
behavior (from the INFERED FUNCTION box of Figure 8). If no unique function can be
inferred from the observed behavior, no black dot appears in that display column. A gray
dot marks the FLO predicted by the model (from Figures 7 & 8). Thin black circles indicate
the FLOs consistent with the observed behavior (from Figure 8). To highlight the predicted
sequence of FLOs, the pradicted FLOs (gray dots) are joined by gray lines; to highlight the
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the redundant FLOs making it look like one elongated circle of an FLO (Displays.8 & .9,
and Displays.23 to .27). When a function cannot be inferred from the observed behavior
and no black dot appears in ti:+ Yisplay column, the black line is passed through the gray
dot if the observed behavior is consistent with the predicted FLO; if they are inconsistent,
the black line does not pass through the gray dot in that display column, but goes straight to
the next inferred function.

The sense of this graphic display is that when the black and gray lines track each other, the
model is making good predictions of observed behavior. Where the black and gray lines do
not track, the model is not predicting the observed behavior. Where there is a haze of thin
black circles above and below the black dots, the behavior is consistent with many possible
functions and it is likely that any model prediction will track behavior; where black circles
are few, the observed behavior is consistent with only a few functions and the medel must
be accurate to track behavior.

Figure 10 uses the same graphic conventions as Figure 9, but for the keystroke-level
behavior and predictions. Each horizontal unit, delineated by dotted lines, corresponds to
the FLO implemented by the KL.Os shown in that unit and also to the display that caused the
selection of that FLO. Therefore, eaci: horizontal unit is labelled at the top with its
corresponding Display.x and at the bottom with its associated FLO.

l N MS ANA

Some ca\}eats

Before discussing the implications of this analysis, three strong cautions must be presented.
First, this analysis explores a short segment of behavior. Although a qualitative look at an
additional segment twice as long as the current analysis, representing traversal of the rest of
World 1 Level 1, indicates that much of that behavior is also predictable, the detaied
analyses and comparisons must be done before any conclusions can be drawn with
confidence.

Second, World 1 Level 1 is the simplest level in the game. Although it is not evident in the
expert videotape, if Mario stops moving, nothing will happen most of the time at this level
of play. Thus, the interaction is primarily user-driven, not system-driven. This feature is
not common in many other types of video games aund it does not even persist in Super
1\l\zar@o Bros. 3, as the higher worlds have many more enemies actively seeking to kill

ario.

Last, in this part of World 1 Level 1 the objective of the next cycle is almost always visible
in the display. Although a FLO that searches through the world for blocks to break or items
to gather can be deduced from the instruction booklet, it was not invoked in this segment of
behavior because the next block to break, item to gather, or enemy to attack, was visible in
26 of the 31 displays. Other games, and other levels even within this game, are not as
eptually driven. Without constant triggering of operators by the elements in the
display, the behavior would take on a more searching aspect (in the case of no knowledge),

P -

or a more pianful aspec {in ihie case of additional knowiedge of hidden iiems).
The nature of expertise in these analyses
Before examining the specifics results of these analyses, it is useful to locate the use of

expertise in both the models and the expert's behavior. The GOMS models have no
knowledge of Mario's world; they do not know anything except what is on the screen.




sl SIS S S § i

Atack Searchin-block Search-in-block -in- Gatber
FLOS sconmplished by te KLOs Ge S oo ety (Quesnon Box.2) (Queraxcn Eox.3) (Questcn Boz4) (Musbrooen.1)

...............................

]
S Press-Left
Press-Right =K
BRRER N
3 Repeat-A
& Hold-B

Release-B

Avad- Search-in-block Seaxch-1n-block Move-nwards-sod Sesrch-in-block . Cathe-10em
FLOs accoropinbed by the KLOt  danger {Queszoa Box.5) {Question Bor.5) {(Question BAx.6) (leal.t)

Duplsy.13
Dusplay.17
Duplay.19
Display.20

Duplay. 18
Display.16

Search-in-block Attack-ensmy Maove- Auxck-sosssy Move- Attack-coemy Auxck-sneny
FLOs scconplished by the XLOs  (Quostion Box.7) munt- {Goomba3) m:dds- (Ccombad) m:rddn- (ParsGoombe.1) (Goomba.5)

W g 18313 % 5 38 3
g3
s ST £ 31515181 & | § I51E15!
.............................. | 1 | | L
Press-Up | '
EPress-Down | (I | Lo
i% p!ess-!_ef! JI/)_‘ ‘ N 1 1 [) . i -l. _ N ) 1 i
Pl'CSS-nght DRI ,3@{: ,:zf/m" 9 ": L ‘Tm-k s, ,% ‘”/'3, i "‘”’
. Press-A A v A % /é I
# Repeat-A | ‘ ' ® | N 9
I H . . et Wm&««/mx«
Release-B | Pl | Ll
.......................... _— —— e o
FLOs scoomphsbed by e KLOw o : (Cain2) i Qe it
{Can.l) (CdaJ()é:&()CchJ)

Figure 10. Comparison of keystroke-level predictions to observed behavior
(description same as that of Figure 9.)
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Therefore, they cannot anticipate either functions or keystrokes. This is not true of the
expert. A post-trial interview with KP, as well as observation of several trials of play,
clearly showed that he knows every detail of World 1 Level 1. He knows where the
treasures are hidden and what super powers they bestow. He knows when and where
enemies will appear and whether each enemy should be killed or whether it can be ignored,
His actions in two situations indicate that he anticipates functions to perform with elements
not yet on the display. These situations are when he jumps to catch the mushroom before it
emerges from QB.4 and when he starts his take-off to fly along a path of coins leading into
the sky; before that path appears on the display. It is not surprising that an expert has such
knowiedge, only that this world requires him to use it so infrequently. The models make
predictions without reference to it at all.

One the other hand, the GOMS models are expert in their execution of operators. KLOs are
always assumed to accomplish their intended movement. For example, if a press-A-button
KLO is used to jump on the back of an approaching enemy, it succeeds, never missing and
allowing the enemy to kill Mario. This is clearly not the case with a human novice who has
never used the Nintendo hand-held controller before. Informal observation of novice
players shows many errors in execution: jumps are not timed correctly or are not initiated in
the correct place so Mario doesn't kill an enemy or misses a block, buttons are not released
in time so Mario runs off the cliff, etc. In addition, the selection rules in these models
embody expert knowledge: the models always select the same method for accomplishing an
FLO the expert selects. Since KLOs are always successful, and the method always reflect
an expert selection, a sequence of KLOs in service of an FLO is always successful if it
completed before another FLO is selected.

Thus, these GOMS models represent the behavior of a player with expert motor
movements, expert knowledge of methods for collecting treasures and killing enemies, but
no knowledge of what they will encounter in this world. This description coincidentally fits
a human player who has played Super Mario Bros. and Super Mario Bros. 2., but never
Super Mario Bros. 3. Such a person would have be expert in most methods and all
keystrokes, but would not know the world at all. Further test of these models would
benefit from observation and analysis of such a player.

Highlights of these analyses
"The results of this analysis indicate that GOMS can capture the knowledge necessary to

‘predict the course of this behavior. The FLOs in this segment of behavior are virtually

dictated by some simple heuristics derived from the overriding goals of the game, the
operators-and methods described in the instruction booklet, and the elements visible on the
display. Of the 31 FL.Os predicted, 21 can be unambiguous inferred from the observed
behavior, 9 are consistent with observed behavior, only 1 is inconsistent with observed
behavior, and 110 behavior indicates any functions not predicted by the model. At the
keystroke-level, of the 62 KIOs predicted, 46 are observed, 2 are consistent with observed
behavior, 12 are inconsistent with observed behavior, and 35 keystrokes are observed but
not predicted.

Figure 9, the comparison of thc observed behavior to the predicted FLOs show some
interesting features of the analysis. Most striking is the excellent agreement between the
predicted FL.Os and the observed behavior. Only once in 31 opportunities is an FLO
selected that is inconsistent with observed behavior (Display.21). This instance is at a point
in the game where the cxpert seerns to anticipate gathering some coins that are not yet
visible on the screen and for which he must attain flying speed. He moves leftto geta
running start for take-off, The model does not have the prior knowledge that coins will
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eventually appear to the right, and moves towards the end of the level (to the right) until it
sees the coins, and then gathers them. Thus, the expert moves to the left in anticipation of
flying, while the model moves to the right until it sees something to gather. As soon as the
model sees the coins, the model and the expert have the same knowledge and they come
back into synch.

A second interesting feature is that in 4 of the 11 displays in which the expert behavior does
not match the predicted behavior (Displays.10, 16, 18, and 21), the predicted FLO is
move-towards-end. This is the default FLO used when there are no elements on the display
to trigger the proposal of other FLOs. In effect, the model is explcring the world when it
selects this FLO. The expert, unlike the model, knows this part of the world quite well and
anticipates the upcoming elements. The expert does not display this exploring behavior, but
anticipates the next function and starts to perform it immediately. Thus, if the expert's
cognitive processes were more clear from the verbal protocol, we expect more goal-directed
behavior to emerge than is predicted by the model. However, if a novice were to play the
game, with no knowledge of what comes next (like the model), the model predicts that this
exploring behavior would be evident.

A third interesting feature is that only § of the 31 displays had observed behaviors
consistent with several FLOs simultaneously (Displays 0, 7, 8, 10, 23, 24, 25, and 26).
This means that wie predicted FLOs must. be exactly in line with the expert's goals to make a
correct predictiorn. The behavior can be interpreted only as belonging to a single function
most of the time, so picking an FLO with incorrect preferences, or at random, would rarely
result in a match to observed behavior. This indicates that the function-level model is quite
good at predicting the sequence of functions an expert will perform in this phase of the
game.

The comparison of keystrokes inferred from the observed behavicr and the KLLOs predicted
by the keystroke-level model, Figure 10, also has several interesting features. The most
striking is the dramatic difference in predictive power between the function-level and KL.O
levels; the function-level predictions are almost perfect while the keystroke-level model
predicts cnly about half of the observed behavior (46 of the 96 observed keystrokes). This
is the same pattern of results obtained in Card, Moran, and Newell's analyses of text editing
(%)%83)6()%? FLOs predicting close to 100% of text-editing behavior and KL Os predicting
about .

Such a large drop in predictive power indicates that the keystroke-level medels, both for the
text-editing task and the game-playing task, may be missing important features that
correspond to the unexplained behavior. For the text-editing task, Card, Moran, and
Newell state that much of the unexplained behavior involved hand movements outside the
model, e.g. the user licked her fingers before turning each page, an act not included in their
model. In this analysis, there seems to be a similar type of unexplained behavior, twisting
while jumping.

Twenty-four of the 37 observed keystrokes not predicted involve turning Mario left or right
while jumping or floating. This twisting motion may be in service of a goal not represented
in this model, ¢.g. displaying flashy behiavior io impress oihier players. This hypoihiesis
directs research attention to the social aspects of video game play to discover goals not
evident from the instruction booklet, Alternatively this behavior may serves to slow
Mario's horizontal motion while in the air. The second hypothesis, which we have recently
been assured by other experts is the correct explanation, indicates that the motor model used
in this analysis is too simple to capture the interaction of forces (e.g. the equivalents of

gravity, friction, and air resistance) -in Mario's world. A more detailed perceptual-motor
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model should include duration of button presses, perceptual monitoring, and the playe:
prediction of effects.

Questions of learning

Production-system formulations of GOMS have been used successfully to predict learning
of several domains (e.g., Kieras & Bovair, 1986; Ziegler, et al, 1986; Lee, et al., 1989;
Singley & Anderson, 1989), and may be useful for understanding learning in this domain
as well. The leamning predicted in the previous studies invelved reading instruct ~ns and
internalizing performance rules based on those iustructions, plus practice with error
feedback. That process describes the learning necessary to perform the actions and
methods described in the instruction booklet. However, several other types of learning are
evident in this interaction.

There is a strong component of motor learning; a novice continuously overshoots or
undershcots runs and jumps, while an expert manipulates Mario more precisely. GOMS is
not currently capable of predicting motor leaming.

The other obvious learning behavior is "learning-by-dying", that is, Mario dies because of
strategic mistakes and the player leams to avoid those mistakes in the future. For instance,
the method of kicking a Koopa shell into a block on the ground to break it open is described
in the instruction manual. When a novice performs this action on QB.6, the Koopa shell
bounces off the block, right into Mario. This event happens too quickly for the immediate
interaction cycle to produce adaptive behavior, and Mario dies. The novice then learns to
modify the method to include jumping out of the way as soon as Mario kicks the shell. If
the conditions surrounding ¢ach death are added to the condition of a production rule, and
are combined with the approp-iate avoidarce tactic as the action of that production rule, new
rules could be added to the knowledge in the GOMS analysis. Previous work with Soar,
modeling strategy change in a developmental task (Newell, 1990) and modeling recovery
from errors (Laird, 1988) indicates that the architectural mechanisms are sufficient to learn
such knowledge when the learner can set the pace of learning. This situation raises the
question as to whether those same mechanisms will be able to learn when the feedback
occurs within the immediate interaction cycle. Another question is whether a regularity
similar o the 30 seconds per operation? found in previous studies of learning and transfer
would emerge from this interactive style of learning.

Other forms of learning produce behavior in the service of elements not yet visible on the
display (discussed in the comparison between observed functions and predicted FLOs). At
least two types of learning might occur to produce this behavior. The expert seems to
anticipate elements before they are visible, so he might have learned cues that are visible
prior to the elerents of interest. Alternatively, KP says "get the ... mushrooms so you can
turn into Super Mario", an indication of a goal above the FLO gather-item(mushroom); such
higher level goals might serve to combine FLOs into methods themselves. These
conjectures raise many questions. What knowledge structure is necessary to store and
access goals in advance of directly relevant elements on the display? What role mighta
hierarchy of goals above the FLOs play in anticipatory behavior. How can the rapid
interaction observed here. with a new FLO occurring every second and behavior being so
time-critical and difficult that a verbal protocol cannot keep up, allow processing of the
behavior to create these higher level goals, or store cues for ant’ sipation of goals? Does
such processing happen in the course of the game, or is there only learning-by-dying

9 Soar operators are equivalent to the productions used in othex" research, Soar productions are at a lower
grain-size and would not be expected to correspond to the learning times found previously.




25

(where the user reflects on what happened only when the immediate interaction cycle is
broken by Mario's dezth), or perhaps learning occurs only even further outside the confines
of the game in discussion with other players or while reading "Nintendo Power"10 (a
magazine containing game hints)? How can Soar's chunking mechanisin produce this
anticipatory behavior?

An interesting predliction about what is and is not learred arises from the environmentally
driven characteristic of this portion of the game. Since expert knowledge about upcoming
elements in the world is not v'sed in the selection of FLOs,, different experts would follow
the same FL.O sequence, and even novices would produce the same function-level behavior.
The motor operations would differ, especially for novices who are not able to manipulate
Mario reliably, but the functions they try to accomplish (e.g. search-in-block(QB.1) then
search-in-block(QB.2)) would not be a learned sequence, rather they would arise ar all
levels of skill from the elements on the display. Although verification of this prediction
remains an open issue, informal observation of an additional expert and several novices do
not contradict this prediction.

Speculation about motivation

Perhaps the most striking feature of video games is that people play them for hours on end.
Empirical studies of computer games have produced speculation about the factors
contributing to motivation (Malone, 1980), but as yet GOMS has not been used to explore
this aspect of user-computer interaction. Based on ti-¢ form and process of this GOMS
analysis, we present some purely speculative words about why this game is so absorbing.
First, the perceptually-based production system form of this model allows for the notion of
capture. That is, since cues in the environment trigger operator proposal and selection,
whenever those cues are present, those operators will be selected and executed. Thus, the
environment captures the player and sends him or her looping through the immediate
interaction cycle. Second, the rate of goal satisfaction (i.e., FLO accomplishment) may be
related to this game's ability to absorb its players. If the rate is too high, the game is too
easy and boring (e.g., KP yearned to go on to a higher level); if the rate is too low, the
game becomes frustrating; if it is just right, the game captures players for hours on end.
Thus, other open research questions are whether these concepts of capture and rate of goal
satisfaction have any relation to what we know as fascination, or motivation, and, if so,
whether the parameters of these concepts can be discovered and eventually manipulated to
predict the fascination level of new games, educational programs, and other application
interfaces.

Directions for future research

The stated purpose of the original panel, and this report, is to demonstrate GOMS analyses
in the area of highly interactive tasks and encourage researchers and practitioners to use
GOMS in their work. We see three directions in which future work may spring from our
analyses.

The first direction is the extension of this s particular analysis. The panel presentations
represented a first pass GOMS analysm for each of the participanis. This paper represenis a
"pass and a half" for our analyses, i.., cleaned up but not substantially changed from the
first pass. A second pass would tackle issues raised by the panel participants: perceptual
monitoring of the effects of motor operations, a more detailed model of motor operators and
their interactions with the forces designed into Mario's world, examination of the operator

10 Nintendo Power is a trademark of, and is under copyright to, Nintendo of America.
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durations and comparison to the human time course of behavior. A second pass would also
include consideration of other research in the domain, notably the Al programs that play the
video games Pengo and Amazon (Pengi in Agre & Chapman, 1987, and Sonja in
Chapman, 1990, respectively). Although these prosrams were never intended to be
cognitive models of human behavior, and were neve * formally compared to human
behavior, they provide insight into a simple architecture that uses relatively little game
knowledge but is sufficient for performing the immediate interaction necessary to play the
game.

A second direction is for HF practitioners to use GOMS to make predictions of human
behavior with the systems they help to design. At first, these analyses may be done in
parallel with other HF methods, e.g. user trials, to validate the analytic predictions (see
Gray, et. al. 1990 for an examp!z). In time, we expect that confidence in GOMS analyses
will grow and allow design decisions to be made in advance of the working prototypes (or
Wizard-of-Oz mock-ups) and extensive user testing.

The third direction is to tackle the limitations of GOMS and extend the analysis technique
itself. As presented above, GOMS is an evolving analytic technique. Its original
formulation presented by Card, Moran and Newell (1980, 1983) has undergone several
changes to extend the original scope, most recently this includes a change in the underlying
architecture to the Soar unified theory of cognition. The change to Soar has allowed GOMS
to encompass the interruption of tasks and responsiveness to the environment (as begun in
this analysis and in John, et. al., 1990). We expect this change will lead to increased
understanding and prediction of learning, errors, knowledge representations, and other
issues of interest to the HF and HCI community, as well as to the cognitive science and
cognitive psychology communities.

CONCLUSIONS

This analysis demonstrates GOMS's power to predict behavior in a highly interactive
domain. It shows that GOMS is especially useful for making predictions of human
behavior at the function level. It demonstrates how even an initial GOM:s analysis can help
direct research effort by focusing on areas of the model that do not predict human
performance well. Further, it can make predictions about the general character of a task,
e.g., that novices and experts alike will have the same function-level goal structure in this
environmentally driven interaction.

This preliminary investigation also poses many questions. In pursuit of answers to those
questions, this domain seems rich in behavioral phenomena, affording opportunities to
explore the immediate interaction cycle with its rapid perception, cognition and motor
actions, several aspects of learning, and perhaps even the elusive concept of fascination. In
addition, research into the validation of GOMS analysis in real-world settings and the
extension of the GOMS analytic technique would be valuable contributions to HF and HCI
methodologies.
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Appendix III - Comparison between Observed Expert Behavior
and Predictions of the GOMS Models

Display. 0 (Start-up screen)

State of Mario:

On
Screen

Expert's
Behavior

Comparison
to Model

Mario starts at far left.
Goomba is at far right moving left.
Mario is trying to get the first question block.

Small Mario
OBJECTS SEEN POSITION
Mario far left, facing right
Groundl.1 all
QB.1 center, within reach
QB.2 just right of QB.1, within reach
QB.3 right of QB.2 too high
QB4 just right of QB.3, too high
G.1 far right (rnoving left)
Scaf2.1 under QB.4
OBSERVED INFERRED INFERRED
BEHAVIOR FUNCTION FINGER ACTION
Mario moves right ambiguous press-right-button
F.L.O. CONSISTENT WITH F.L.O. PREDICTED K.L.O. PREDICTED
OBSERVED BEHAVIOR BY MODEL BY MODEL
search-in-block(QB.1) search-in-block(QB.1) press-right-button
search-in-block(QB.2)
search-in-block(QB.3)
search-in-block(QB.4)
attack-enemy(G.1)
move-to-end




bisplay. 1 Goomba gets threateningly close to Mario, so Mario attacks it.

State of Mario:  Small Mario

OBJECTS SEEN POSITION
On Mario center, facing right

Screen Groundl.1 all

G.1 moving left, close to Mario

QB.1 center, within reach

QB2 just right of QB.1, within reach

QB.3 right of QB.2, too high

QB4 just right of QB.3, too high

Scaf2.1

OBSERVED INFERRED INFERRED

Expert's BEHAVIOR FUNCTION FINGER ACTION
Behavior :

Mario jumps to the right press-right-button

press-A-button
turns left at apogee press-left-button
lands on G.1 attack-enemy(G.1)
F.L.O. CONSISTENT WITH F.L.O. PREDICTED K.L.O. PREDICTED

Comparison OBSERVED BEHAVIOR BY MODEL BY MODEL
to Model

attack-enemy(G.1) anaf:k-cnemy(G.l) press-A-button




Display. 2

State of Mario:

On
Screen

Expert's
Behavior

Comparison
to Model

Mario goes on to get the closest question block (QB.1).

Small Mario
OBJECTS SEEN POSITION
Mario center, facing left
Groundl.1 all
QB.1 center, within reach
QB.2 just right of QB.1, within reach
QB.3 right of QB.2 too high
QB4 just right of QB.3, too high
Scaf2.1 under QB4
Scaf3.2 just to the right of Scaf2.1
OBSERVED INFERRED INFERRED
BEHAVIOR FUNCTION FINGER ACTION
Mario jumps off G.1 press-A-button
turns to the right at apogee press-right-button
jumps again press-A-button
tumns to left and hits QB.1 search-in-block(QB.1) press-left-button
F.L.O. CONSISTENT WITH F.L.O. PREDICTED K.L.O. PREDICTED
OBSERVED BEHAVIOR BY MODEL BY MODEL
secarch-in-block(QB.1) press-right-button

search-in-block(QB.1)

press-A-button




Display. 3

State of Mario:

On
Screen

Expert's

Behavior

Comparison
to Model

-4

Mario goes on to get the next question block (QB.2)

Small Mario

OBJECTS SEEN POSITION

Mario center, facing left

Ground1.1 all

QB.2 just right of QB.1, within reach

QB3 right of QB.2 too high

QB4 just right of QB.3, too high

Scaf2.1 under QB.4

Scaf3.2 just to the right of Scaf2.1
OBSERVED INFERRED INFERRED
BEHAVIOR FUNCTION FINGER ACTION

Mario turns to right on ground press-right-buiton

jumps press-A-button

tumns to left and hits QB.2 scarch-in-block(QB.2) press-left-button

F.L.O. CONSISTENT WITH F.L.O. PREDICTED K.L.O. PREDICTED
OBSERVED BEHAVIOR BY MODEL BY MODEL
search-in-block(QB.2) search-in-block(QB.2) press-right-button

press-A-button




Display. 4

State of Mario:

On
Screen

Expert's
Behavior

Comparison
to Model

-5

Mario goes on to get QB.3 but it is too high so he jumps onto a scafold to reach it.

Small Mario

OBJECTS SEEN POSITION

Mario center, facing left

Groundl.1 all

QB3 right of QB.2 too high

QB4 just right of QB.3, too high

Scaf2.1 under QB .4

Scaf3.2 just to the right of Scaf2.1

OBSERVED INFERRED INFERRED
BEHAVIOR FUNCTION FINGER ACTION

Mario turns to right on ground press-right-button

jumps press-A-button

turns left and lands on Scaf2.1 : press-left-button

jumps press-A-button

tumns to right and hits QB.3 _ |search-in-block(QB.3) press-right-button

F.L.O. CONSISTENT WITH F.L.O. PREDICTED K.L.O. PREDICTED
OBSERVED BEHAVIOR BY MODEL BY MODEL

search-in-block(QB.3) search-in-block(QB.3) press-right-button
press-A-button
press-left-button
press-A-batton




Display. 5

State of Mario:

Screen

Expert's
Behavior

Comparison
to Model

From the scafold he can also reach QB.4.

Small Mario
OBJECTS SEEN POSITION
Mario on ground under QB.3, facing right
Groundl.1 all
QB4 just right of QB.3, too high
Scaf2.1 under QB.4
Scaf3.2 just to the right of Scaf2.1
Plant.1 far right
OBSERVED INFERRED INFERRED
" BEHAVIOR FUNCTION FINGER ACTION
turns to left and lands on ground press-left-button
tumns to right press-right-button
jumps press-A-button
turns left in air press-left-button
tumns right in air press-right-button
turns left and lands on Scaf2.1 press-left-button
jumps press-A-button
turns to right and hits QB.4 search-in-block(QB .4) press-right-button

search-in-block(QB 4)

F.L.O. CONSISTENT WITH
OBSERVED BEHAVIOR

F.L.O. PREDICTED
BY MODEL

search-in-block(QB.4)

K.L.O. PREDICTED
BY MODEL

press-right-button
press-A-button (to Scaf2.1)

ss-A-button ¢hit QB.4)




Display. 6 Mario jumps up to get the mushroom which pops out from QB.6
before it even starts emerging from the question block.

State of Mario:  Small Mario

OBJECTS SEEN POSITION
On Mario on Scaf2.1, facing right
Screen Groundl.1 all
Mush.1 above QB.4
Scaf2.1 under QB .4
Scaf3.2 just to the right of Scaf2.1
Plant.1 far right
OBSERVED INFERRED INFERRED
Expert's BEHAVIOR FUNCTION FINGER ACTION
Behavior
turns left and lands on Scaf2.1 press-left-button
jumps to Mush.1 gather-item(Mush.1) - |press-A-button
F.L.O. CONSISTENT WITH F.L.O. PREDICTED K.L.O. PREDICTED
Comparison OBSERVED BEHAVIOR BY MODEL BY MODEL
to Model
gather-item(Mush.1) gather-item(Mush.1) press-right-button
(run into Mush.1)




Display. 7

State of Mario:

On
Screen

Expert's

Behavior

Comparison
to Model

Mario jumps from QB.4 onto Scaf3.2, avoiding the fireball,

Small Mario
OBJECTS SEEN POSITION
Mario on QB.4, facing left
Ground1.1 all
Scaf2.1 under QB .4
Scaf3.2 just to the right of Scaf2.1
Plant.1 right
Fireball coming toward Mario
Scaf2.3 to the right of Plant.1
OBSERVED INFERRED INFERRED
BEHAVIOR - FUNCTION FINGER ACTION
moves right landing on Scaf3.2 _ {avoid-danger(Fireball) press-right-button
F.L.O. CONSISTENT WITH F.L.O. PREDICTED K.L.O. PREDICTED
OBSERVED BEHAVIOR BY MODEL BY MODEL
avoid-danger(Fireball) avoid-danger(Fircball) press-right-button

move-toward-end




j .
t .
-

Mario goes after the next question block by jumping over the plant and onto Scaf2.3.

Display. 8
State of Mario:
On

Screen

Expert's
Rehavior
Comparison

to Model

Super Mario
CBJECTS SEEN POSITION
Mario on Scaf3.2, facing right
Groundl.1 all
Plant.1 right
Scaf2.3 right of Plant.1
QB.5 above Scaf2.3
OBSERVED INFERRED INFERRED
BEHAVIOR FUNCTION FINGER ACTION
Mario jumps over plant press-A-button
tumns left and lands on Scaf2.3 ambiguous -left-button
F.L.O. CONSISTENT WITH F.L.O. PREDICTED K.L.O. PREDICTED
OBSERVED BEHAVIOR BY MODEL BY MODEL
search-in-block(QB.5) search-in-block(QB.5) press-A-button
avoid-danger(Plant.1) press-right-button
move-toward-end press-A-button
press-right-button
ss-right-button




I-10

Display. 9 Goomba appears before Mario has reached QB.S.
It is not an immediate threat so Mario continues toward QB.5.

State of Mario:  Super Mario

OBJECTS SEEN POSITION
On Mario on Scaf2.3 under QB.S, facing left
Screen Groundl.1 all
Plant.1 far left
Scaf2.3 right of Plant.1
QBS above Scaf2.3
G.5 on Groundl.1 in front of Scaf2.3
OBSERVED INFERRED INFERRED
Expert's BEHAVIOR FUNCTION FINGER ACTION
Behavior
turns to the right press-right-button
jumps to QB.5 search-in-block(QB.5) press-A-button
F.L.O. CONSISTENT WITH F.L.O. PREDICTED K.L.O. PREDICTED
Comparison OBSERVED BEHAVIOR BY MODEL BY MODEL
to Model
search-in-block(QB.5) search-in-block(QB.5) press-right-button
press-A-button




Display. 10

State of Mario:

On
Screen

Expert's

Behavior

Comparison
to Model

-1

Neither Goomba nor Koopa are an immediate threat and Mario drops down onto Scaf1.6.

Super Mario

OBJECTS SEEN POSITI N

Mario on Scaf2.3, facing right

Groundl.1 all

Scal23 far left

Scaf34 center

Scaf4.5 right

Scafl.o below Scafd.5

G.S on Groundl.1 in front of scafolds

K.l on Scafl.6
OBSERVED INFERRED INFERRED
BEHAVIOR FUNCTION FINGER ACTION

jumps press-A-button

turns left press-left-button

tumns right and lands on Scafl.6 _ jambiguous press-right-button

F.L.O. CONSISTENT WITH
OBSERVED BEHAVIOR

attack-enemy(K.1)
move-toward-end

F.L.O. PREDICTED
BY MODEL

move-toward-end

K.L.O. PREDICTED
BY MODEL

press-right-button
press-A-button
press-right-button

press-A-button




Display. 11

State of Mario:

On
Screen

Expert's
Behavior

Comparison
to Model

ar-12

Mario sees QB.6 on the ground which can only be opened by thowing a shell at it,
So Mario stomps on the Koopa Trooper in order to get a shell to throw at the block.
Then Mario throws the shell at QB.6 and breaks it

Super Mario
OBJEL IS SEEN POSITION
Mario on Scafl.6, facing right
Groundl1.1 all
Scaf2.3 far left
Scaf3.4 center
Scaf4.5 right
Scafl.6 below Scaf4.5
G.5 on Groundl.1 in front of scafolds
K1 on Scafl.6
QB.6 far right on Ground2.2
OBSERVED INFERRED INFERRED
BEHAVIOR FUNCTION FINGER ACTION
jumps straight up press-A-button
moves right in air press-right-button
turns left and lands on K.1 press-left-button
jumps, landing left of the shell press-A-button
turns right press-right-button
picks up Koopa shell hold-B-button
kicks Shell at QB.6 release-B-button
jumps out of way of Koopa shell }search-in-block(QB.6) release-A-button

F.L.O. CONSISTENT WITH
OBSERVED BEHAVIOR

search-in-block(QB.6)

F.L.O. PREDICTED
BY MODEL

search-in-block(QB.6)

K.L.O. PREDICTED
BY MODEL

press-right-button
hold-B-button
press-left-button
press-right-button
release-B-button

press-A-button

Note: The last press-A-button is to jump out of the way of the richocheting Koopa shell,
This KLO is added to the hit-with-shell method based on prior experience with being killed

by the bouncing Koopa shell. See the text for more explanation of this learning process.




Display. 12

State of Mario:

On
Screen

Expert's

Behavior

Comparison
to Model

A leaf pops out of the QB.6.
Mario goes to get it so he can turn into Racoon Mario,
Super Mario
OBJECTS SEEN POSITION
Mario in air, facing right
Ground!.1 left
Scaf34 far left
Scafd.5 center
Scafl.6 below Scaf4.5
G.5 on Groundl.1 in front of scafolds
Ground2.2 right
QB.5 (empty) right, on Ground2.2
Yeall over QB.6
OBSERVED INFERRED INFERRED
BEHAYIOR FUNCTION FINGER ACTION
Mario moves te the right ather-item(Leaf.1) press-right-button
F.L.O. CONSISTENT WITH F.L.O. FREDICTED K.L.O. PREDICTED
OBSERVED BFHAVIOR BY MODEL BY MODEL
|gather-iiem(Leaf.1) gather-item(Leaf.1) press-right-button




Display. 13

State of Mario:

On
Screen

Expert's
Behavior

Comparison
to Model

II-14

Mario goes to get the next question block (QB.7)

Racoon Mario

OBJECTS SEEN POSITION

Mario between QB.6 and QB.7, facing right

Groundl.1 left

Scafl.6 far left

Ground2.2 right

QB.6 (empty) center, on Ground2.2

QB.7 ir: air to the right of QB.6
OBSERVED INFERRED INFERRED
BEHAVIOR FUNCTION FINGER ACTION

moves right to QB.7 press-right-button

jumps press-A-button

turns left and hits QB.7 search-in-block(QB.7) press-left-button

scarch-in-block(QB.7)

¥.L.O. CONSISTENT WITH
OBSERVED BEHAVIOR

F.L.O. PREDICTED
BY MODEL

search-in-block(QB.7)

K.L.O. PREDICTED
BY MODFL

press-right-button
press-A-button




Display. 14

State of Mario:

On
Screen

Expert's
Behavior

Comparison
to Model

HI-15

There are no items or enemies on the screen so Mario just moves toward the end of the level.

Racoon Mario

OBJECTS SEEN POSITION

Mario to the right of QB.7, facing left

Ground2.2 all

QB.6 (empty) far left

QB.7 (empty) left
OBSERVED INFERRED INFERRED
BEHAVICR FUNCTION FINGER ACTION

moves right move-toward-end press-right-button

F.L.O. CONSISTENT WITH
OBSERVED BEHAVIOR

move-toward-end

F.L.C. PREDICTED
BY MODEL

move-toward-end

| K.L.O.PREDICTED
BY MODEL

press-right-button




Display. 15

State of Mario:

On
Screen

Expert's

Behavior

Comparison
to Model

oI-16

A goomba (G.3) moves toward Mario from the right (becoming an immediate threat),
so Mario attacks him,

Racoon Mario

OBJECTS SEEN POSITION

Mario to the right of QB.7, facing right

Ground2.2 all

QB.7 (empty) far left

G.3 moving toward Mario from the right
OBSERVED INFERRED INFERRED
BEHAVIOR FUNCTION FINGER ACTION

turns left press-left-button

tums right press-right-button

jumps press-A-button

turns left and lands on G.3 attack-enemy(G.3) s-left-button

F.L.O. CONSISTENT WITH F.L.O. PREDICTED K.L.O. PREDICTED
OBSERVED BEHAVIOR BY MODEL BY MODEL
attack-enem!«G.3) attack-enemy(G.3) press-A-button




m-17

Display. 16 This is not a distinct display in the expert's protocol.
Since the expert has moved away from QB.7 instead of waiting for G.3 to approach
(as the model does), G.4 appears on the screen before the expert has stomped G.3.
Display. 17 Another goomba (G.4) moves toward Mario from the right (becoming an immediate threat),
so Mario attacks him,
State of Mario:  Racoon Mario
OBJECTS SEEN POSITION
On Mario to the right of QB.7, facing left
Screen Ground2.2 all
G4 moving toward Mario from the right
OBSERVED INFERRED INFERRED
Expert's BEHAVIOR FUNCTION FINGER ACTION
Behavior
tumns right press-right-button
jumps press-A-button
turns left at apogee press-left-button
turns right and lands on G.4 attack-enemy(G.4) press-right-button
F.L.O. CONSISTENT WITH F.L.O. PREDICTED K.L.O. PREDICTED
Comparison OBSERVED BEHAVIOR BY MODEL BY MODEL
to Model
attack-enemy(G.4) attack-enemy(G.4) press-A-button




m-18

Display. 18 This is not a distinct display in the expert's protocol.

Since the expert has continued to move right instead of waiting for eremies to approach

(as the model does), PG.1 appears on the screen before the expert has stomped G.4.
Display. 19 A para-goomba (PG.1) moves toward Mario from the right (becoming an immediate threat),

so Mario attacks him,
State of Mario:  Racoon Mario

OBJECTS SEEN POSITION

On Mario to the right of QB.7, facing right

Screen Ground2.2 all

PG.1 moving toward Mario from the right

OBSERVED INFERRED INFERRED

Expert’s BEHAVIOR FUNCTION FINGER ACTION
Behavior

turns left press-left-button

jumps (higher than flying PG.1) press-A-button (repeatedly)

turns right press-right-button

turns left and lands on PG.1 attack-enemy(PG.1) press-left-button

F.L.O. CONSISTENT WITH F.L.O. PREDICTED K.L.O. PREDICTED

Comparison OBSERVED BEHAVIOR BY MODEL BY MODEL
to Model

attack-enemy(PG.1) attack-cnemy(PG.1) press-A-button




Display. 20

State of Mario:

On
Screen

Expert's
Behavior

Comparison
to Model

m-19

The paragoomba turns into a goomba (G.5) after Mario stomps on it, so he attacks it again.

Racoon Mario
OBJECTS SEEN POSITION
Mario to the right of QB.7, facing left
Ground2.2 all
G.5 on Mario's left
OBSERVED INFERRED INFERRED
BEHAVIOR FUNCTION FINGER ACTION
jumps press-A-button
turns right at apogee press-right-button
turns left press-left-button
tums right and lands on G.5 attack-cnemy(G.5) press-right-button

F.L.O. CONSISTENT WITH

OBSERVED BEHAVIOR

attack-enemy(G.S)

F.L.O. PREDICTED
BY MODEL

attack-enemy(G.5)

K.L.O. PREDICTED
BY MODEL

press-A-button
-left-button




Display. 21

State of Mario:

On
Screen

Expert's
Behavior

Comparison
to Model

m-20

Mario runs back to QB.6(empty) and then runs to the right accelerating to fly.

Racoon Mario

OBJECTS SEEN POSITION

Mario in center on Ground2.2, facing right

Ground2.2 all
OBSERVED INFERRED INFERRED
BEHAVIOR FUNCTION FINGER ACTION

turns left press-left-button

jumps press-A-button

lands and runs to left press-left-button

turns right press-right-button

runs to right press-right-button

accelerating ambiguous hold-B-button

F.L.O. CONSISTENT WITH F.L.O. PREDICTED K.L.O. PREDICTED
OBSERVED BEHAVIOR BY MODEL BY MODEL
move-toward-end move-toward-end press-right-button

Note: The first three observed behaviors (where Mario turns left, jumps,
and then runs to the left) are not consistent with any proposed F L.0O.s.
The other three behaviors (where Mario turns right and then runs to
the right while accelerating) are consistent with move-toward-end.
The whole sequence of behavior is both ambiguous and consistent
with move-toward-end.




Display. 22
State of Mario:
On

Screen

Expert's
Behavior

Comparison
to Model

I-21:

The first coin comes into view as Mario is picking up speed to fly.

Racoon Mario
OBJECTS SEEN POSITION
Mario in center on Ground2.2, facing right
Ground2.2 alt
Coin.] next to Cliff.1
OBSERVED INFERRED INFERRED
BEHAVIOR FUNCTION FINGER ACTION
runs to right press-right-button
accelerating ambiguous hold-B-button
F.L.O. CONSISTENT WITH F.L.O. PREDICTED K.L.O. PREDICTED
OBSERVED BEHAVIOR BY MODEL BY MODEL
gather-item (Coin.1) gather-item (Coin.1) press-right-button
move-toward-end




Display. 23 A cliff apears at the far right as Mario moves toward the coin.

State of Mario:  Racoon Mario

OBJECTS SEEN POSITION
On Mario in center on Ground2.2, facing right
Screen Ground2.2 all
Coin.1 next to Cliff.1
Cliff.1 far right
OBSERVED INFERRED INFERRED
Expert's BEHAVIOR FUNCTION FINGER ACTION
Behavior
runs to right press-right-button
accelerating ambiguous hold-B-button
F.L.O. CONSISTENT WITH F.L.O. PREDICTED K.L.O. PREDICTED
Comparison OBSERVED BEHAVIOR BY MODEL BY MODEL
to Model
gather-item (Coin.1) gather-item (Coin.1) press-right-button
move-toward-end




Display. 24

State of Mario:

On
Screen

Expert's

Behavior

Comparison
to Model

A second coin con..s into view; this one is over the cliff and too high for Mario to jump.

Racoon Mario

OBJECTS SEEN POSITION

Mario in center on Ground2.2, facing right

Ground2.2 all

Coin.1 next to Cliff.1

Cliff.1 right

Coin.2 far right and above Coin.1
CBSITRVED INFERRED INFERRED
BEHA VIOR FUNCTION FINGER ACTION

runs to right press-right-button

accelerating ambiguous hold-B-button

F.L.O. CONSISTENT WITH
OBSERVED BEHAVIOR

gather-item (Coin.1)
gather-item (Coin.2)

move-toward-end

BY MODEL

gather-item (Coin.1)

F.L.O. PREDICTED

K.L.O. PREDICTED
BY MODEL

press-right-button




Display. 25

State of Mario:

On
Screen

Expert's
Behavior

Comparison
to Model

i-24

A third coin comes into view; this one is also over the cliff and too high for Mario to jump.

Racoon Mario

OBJECTS SEEN POSITION

Mario in center on Ground2.2, facing right

Ground2.2 all

Coin.1 next to Cliff.1

Cliff.1 right

Coin.2 right and above Coin.1

Coin.3 far right and above Coin.2
OBSERVED INFERRED INFERRED
BEHAVIOR FUNCTION FINGER ACTION

runs to right press-right-button

accelerating ambiguous hold-B-button

gather-item (Coin.1)
gather-item (Coin.2)
gather-item (Coin.3)

move-toward-end

F.L.O. CONSISTENT WITH
OBSERVED BEHAVIOR

BY MODEL

gather-item (Coin.1)

F.L.O. PREDICTED

K.L.O. PREDICTED
BY MODEL

press-right-button




Display. 26

State of Mario:

On
Screen

Expert's
Behavior

Comparison
to Model

I-25

Mario begins flying up to Coin.1.
Racoon Mario

OBJECTS SEEN POSITION

Mario in center on Ground?2.2, facing right

Ground2.2 all

Coin.1 next to Cliff.1

Cliff.1 right

Coin.2 over Cliff.1

Coin.3 to the right and above Coin.2
OBSERVED INFERRED INFERRED
BEHAVIOR FUNCTION FINGER ACTION

has enough speed to fly release-B-button

jumps and flies press-A-button (repeatedly)

tumns left and gets first coin

gather-item (Coin.1)

press-left-button

F.L.O. CONSISTENT WITH
OBSERVED BEHAVIOR

gather-item (Coin.1)

F.L.O. PREDICTED
BY MODEL

gather-item (Coin.1)

K.L.O. PREDICTED
BY MODEL

press-right-button
ss-A-button




Display. 27

State of Mario:

On
Screen

Expert's

Behavlior

Comparison
to Model

II-26

Mario continues flying to the second coin.

Racoon Mario
OBJECTS SEEN POSITION
Mario in center on Ground2.2, facing left
Ground2.2 all
Cliff.1 right
Coin.2 over CIiff.1
Coin.3 to the right and above Coin.2
OBSERVED INFERRED INFERRED
BEHAVIOR FUNCTION FINGER ACTION
turns right and flies to next coin press-right-button
gather-item (Coin.2) press-A-button (repeatedly)
F.L.O, CONSISTENT WITH F.L.O. PREDICTED K.L.0. PREDICTED
OBSERVED BEHAVIOR BY MODEL BY MODEL
gather-item (Coin.2) gather-item (Coin.2) press-left-button

press-right-button
press-right-button
hold-B-button
release-B-button

press-A-button (repeatedly)




Display. 28

State of Mario:

Screen

Expert's
Behavior

Comparison
to Model

m-27

After getting the second coin. Mariv continues flying to the third cri-,
Two more coins appear ak ¢ und to the right of the third one.

Racoon Mario
OBJECTS SEEN POSITION
Mario flying, facing right
Coin.3 in ue air
Coin4 to the right and above Coin.3
Coin.5 to the right and above Coin.4
OBSERVED INFERQRED INFERRED
BEHAVIOR TYINCTION FINGER ACTION
flies to next coin gather-item (Coin.3) press-right-button
press-A-button (repeatedly)
F.L.O. CONSISTENT WITH F.L.C. PREZICTED K.L.O. PREDICTED
OBSERVED BEHAVIOR BY MCDEL BY MOBDEL
g der-item (Coin.3) gather-item (Coin.3) press-right-button
press-A-button (repeatedly)




(.

Display. 29

State of Mario:

On
Screen

Expert's
Behavior

Comparison
to Model

II-28

After getting the third coin, Mario continues flying to the fourth coin.

Racoon Mario

OBJECTS SEEN POSITION

Mario flying, facing right

Coind in the air

Coin5 . Jto the right and above Coin.4
OBSERVED INFERRED INFERRED
BEHAVIOR FUNCTION FINGER ACTION

flies to next coin gather-item (Coin.4) press-right-button

press-A-button (repeatedly)

F.L.O. CONSISTENT WITH
OBSERVED BEHAVIOR

sather-item (Coin.4)

F.L.O. PREDICTED
BY MODEL

gather-item (Coin.4)

K.L.O. PREDICTED
BY MODEL

press-right-button

press-A-button (repeatedly)




Display. 30

State of Mario:

On
Screen

Expert's

Behavior

Comparison
to Model

II-29

After getting the fourth :0in, Mario continues flying to the fifth coin.

Racoon Mario
OBJECTS SEEN PGSITION
Mario flying, facing right
Coin.5 to the right and above Coin.4
OBSERVED INFERRED INFERRED
BEHAVIOR FUNCTION FINGER ACTION
flies to next coin gather-item (Coin.5) press-right-button
ss-A-button (repeatedly)
F.L.~ CONSISTENT WITH F.L.O.PREDICTED K.L.O. PREDICTED
OBSERVED BEHAVIOR BY MODEL bY MODEL
gather-item (Coin.5) gather-item (Coin.5) press-right-button
s-A-button (repeatedly)
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