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INTROOUCTION

There has been an interest in quantitative reliability-based structural design for many
years. An early example is the structural reliability development by Freudenthal. 1  Stress-
strength reliability computations are a principal consideration in structural reliability design.
Reliability methods have been considered for many structural applications including: civil engi-
neering, 2 nuclear reactors, 3 fixed wing aircraft, 4 rotorcraft,5 and space vehicle propulsion sys-
tems. 6  Very high structural reliability is expected to be achieved for most applications. A
reliability goal of 0.9(9) per flight hour was suggested in 1955 by Lundberg4  for fixed wing
civil aircraft. Recently, Lincoln,7' 8 using reasoning similar to that of Lundberg, cited a reliabil-
ity goal of 0.9(7) per flight for fixed wing military aircraft. The U.S. Army has instituted a
new structural fatigue integrity criterion for rotorcraft which has been interpreted5 as a
requirement for a lifetime reliability of 6.9(6).

The use of advanced materials whose structural properties are best characterized on a sta-
tistical basis appears to be a stimulant for increased interest in statistical-based structural
design for airborne structures.

A significant feature associated with predictions of structural reliability is that the conse-
quence of a failure event may be more than reduced system performance or the inconve-
nience of a system being out of service; structural failure can be catastrophic in terms of loss
of life and property. In this context it is imperative to evaluate the sensitivity of structural
reliability predictions to uncertainties. It appears that this issue has received little attention
except for a brief note by Harris and Soms and a recent presentation by Berens.1 °

There are many issues to be faced in obtaining quantitative structural reliability predic-
tions. Such issues include system complexity (many components, multiple failure modes in
each component, and interdependence of component behavior), sample or data set size
associated with structural loading spectrum conditions and with mechanical properties, and the
basis for characterizing structural qualification tests (the number of duplicate specimens and
methods for compensation for untested effects such as the effect of environment).

In addition, when predictions of structural behavior are required in the high reliability
range, since sufficiently large data set- are usually not available, it is necessary to use parame-
tric modeling methods. Assumed parametric functions permit extrapolation from available data
to determine the probability of failure. Since the probability of failure is extremely small,
this will always involve substantial extrapolation from what can be observed experimentally.
The estimated reliability will therefore depend strongly on the assumed parametric probability
density function (PDF). Slight deviation from the assumed model in tail regions can have
dramatic effect on high reliability estimates.

1. FREUDENTHAL, A. M. The Safety of Structures. Trans. ASCE, v. 112, 1947.
2. CORNELL, C. A A Probabiihy-Based Structural Code. J. Am. Conc. Inst., v. 66, 1969, p. 974-985.
3. U.S. Nuclear Regulatory Commission. Reactor Safety Study:. An Assessmen of Accident Risks in US. Nuclear Power Plants. NRC ReportWASH-1400, 1975.
4. LUNDBERG, B. Fatigue Life of Airplane Sructures J. of the Aeronautical Sciences, v. 22, no. 6, June 1955, p. 349.
5. ARDEN, R. W., and IMMEN, F. H. US. Army Requirementsfor Fatiue Integiy. Proceedings of American Helicopter Society National

Technical Specialists Meeting on Advanced Rotorcraft Structures, Williamsburg, VA, October 1988.
6. SHIAO, M. C., and CHAMIS, C. C. Probability of Failure and Risk Assessment of Propulsion Structural Components. NASA Technical

Memorandum 102323, 1989.
7. LINCOLN, J. W. Risk Assessment for an Aging Military Aircraft J. of Aircraft, v. 22, no. 8, August 1985, p. 687.
8. CORNOG D. 0., and LINCOLN, J. W. Risk Assessment of dke F-16 Wing Proceedings of the 1988 Structural Integrity Conference, San

Antonio, T, WRDC-TR-89-8071, Wright-Patterson AFB, Ohio, 1989.
9. HARRIS, B., and SOMS, A. P. A Note on the DiLfcuy Inherent in Estimating Reliability from Stress-Srengt Relationship& MRC-2123,

Mathematics Research Center, U. of Wisconsin, AD-A073637, October 1980.
10. BERENS A. Structural Risk Analysis inAgng Aircrat Flees. Proceedings of the 1988 Structural Integrity Conference, San Antonio, TX,

WRDC-TR-89-8071, Wright-Patterson AF , Ohio, 1989.



In fact, one might argue, as does Freudenthal, 1 that because of the extrapolation
involved, statistically-based high reliability calculations for complex systems must always be
suspect:

"When dealing with probabilities a clear distinction should be made between conditions
arising in design of inexpensive mass products in which the probability figures are derived by
statistical interpretation of actual observations or measurements (since a sufficiently large num-
ber of observations are actually obtainable), and conditions arising in design of structures or
complex systems. In the latter, probability figures are used simply as a scale or measure of
reliability that permits the comparison of alternative designs. The figures can never be
checked by observations or measurement since they are obtained by extrapolations so far
beyond any possible range of observation that such extrapolation can no longer be based on
statistical arguments but could only be justified by relevant physical reasoning. Under these
conditiong the absolute probability figures have no real significance

Nonparametric stress-strength procedures do not require specific parametric assumptions,
and so it might be hoped that such procedures could circumvent this difficulty.- However,
Johnson12 has noted that "The nonparametric approach has one serious drawback. In return
for its distribution free property, it is not possible to establish high reliability even with mode-
rate sample sizes." With respect to the use of parametric models, Box 13 has observed "all
models are wrong, but some are useful," meaning that no parametric statistical model should
be accepted uncritically. Whenever a model is used, it is the obligation of the analyst to
investigate the consequences of departures from an assumed model which, though small, are
consistent with available data. Harris and Soms has illustrated a "serious problem in the use
of stress-strength relationships in estimating reliability." In particular, "stress-strength models
in reliability theory are highly sensitive to small perturbations in extreme tails." The perturba-
tions considered may arise from an alternative mode of failure such as the presence of a flaw
in a structure. Further, they note that the problem cannot be eliminated unless "astronomi-
cally large sample sizes are employed."

In the following, the examination of the sensitivity of structural reliability estimates
focuses attention on one of the previously cited issues: the selection of a parametric PDF.
The examination of the sensitivity of stress-strength reliability estimates is extended to addi-
tion perturbation effects. The sensitivity of reliability estimates to the selection of parametric
models is considered with emphasis on graphical representations. The results are evaluated
with regard to the usefulness of parametric stress-strength models for application to the high
reliability regime of 0.9(6) to 0.9(7) when the consequence of failure may be catastrophic. An
alternative reliability computation procedure is examined involving determination of a lower
bound on reliability which can be obtained independently of the assumed PDFs.

STRESS-STRENGTH MODEL

The statistical reliability as referred to in this report is determined in the following man-
ner. Shown in Figure 1 is the stress-strength model where f2(s) and f1(S) represent the
PDFs for the applied stress s and material strength S.

11. FREUDENTIAL, A M. Fatigue Sensitiiy and Reliabiliiy of Mechanical Sywem; Espeially Aircraft Snuctu.m WADD Technical Report
61-53, Wright-Patterson AFB, Ohio, 1961.

12. JOHNSON, R. A. Strez-Strength Modek for Reliability. Handbook for Statistics, Elsevier Science Publishers, New York, v. 7, 1999, p. 27.
13. BOX, G. E. P. Robusmess in the Straeg of Scienific Model Building. Robustness in Statistics, R. L Launer, and G. N. Wilkinson, eds.,

Academic Press, Inc., New York, 1979.



Normal stress-strength model

f(s) and f(S) are PDF Representation for Stress and Strength Values Respectively

o s-Calculated Stress

S-Mateals Strength

co

f2(s)

co fl(S)

S $S

20 30 40 50 60 70

Figure 1. Normal-normal stress-strength model.

Since the joint probability dR for the strength being greater than s, can be written as,

d R = (2 (sl) d s .fl fl (S)d S()

then the reliability for all s values is

R=f__0 f 2 (S)[/rf, (S) d S ]ds (2)

PROBABIUTY DENSITY FUNCTIONS

A wide variety of PDFs may be applied in obtaining R values. Some examples of PDFs
are as follows:

The PDF most often used in stress-strength models is the normal diatribuation (see Figure 1),

_.2

fN(S) =N(S a)= I exp { S -(3
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where - cc < S < oc, p > 0, and a > 0. The mean of the population is u, and the stan-
dard deviation a for this model.

A model which is more easily justified on physical grounds is the Weibull PDF,

fW (S) A~ (S) ' exp[~..P (4)

where S > 0, a > 0, and j9 > 0. Despite the relevance of the Weibull distribution 14 to the
strength of brittle materials, it is not often used, possibly because it is more difficult com-
putationally to obtain reliability values than with the normal model.

If S follows the Weibull PDF, then In(S) will have an extreme value distribution with PDF

fmin (S) = 1 exp [Sul - exp (S -u) (5)

The distribution of - In(s) is

I
fmax (S) =F-exp [- (s b u) -exp (- (s b2u2)) (6)

Both of the above formulas are referred to as extreme value distributions. The use of
extreme value distributions in a stress-strength model is illustrated in Figure 2. The extreme
value distribution parameters are related to the Weibull parameters as follows:

1
b- andu =-ioga

In order to obtain the population Weibull shape and scale paran.eters fP and a from the
known population mean pu and standard deviaion a, the following approximations are
suggested:

P = 1.27 l/a - 0.56 (7)

and

aP T( + 1)

The functions defined in Equations 3, 4, 5, and 6 clearly have different shapes and they
exhibit dramatically different tail behavior. Since reliability estimates depend strongly on the
extreme upper tail of the stress PDF and the extreme lower tail of the strength PDF, the
choice of model will typically have a substantial effect on the reliability estimate. For exam-
ple, R is usually higher when calculated from the normal distribution than when the extreme
value model is assumed.

Applying PDFs that are capable of obtaining accurate high reliability estimates (e.g., 0.9(6))
requires prior knowlegeI of the functional form of the population PDF in addition to the

14. BURY, K. V. Staistcal Models in Applied Science. John Wiley and Sons, Inc. (Ncw York, London, Sydney, Tomnto), 1975.
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availability of large data sets (e.g., 1,000 replicate specimens). For lower reliability values
(e.g.. 0.9), a goodness-of-fit test for PDF identification with a moderate amount of data is gen-
erally adequate. The consequence of incorrect PDF selection and limited sample sizes are dis-
cussed later in this report.

Stress-strength: extreme value

Stress 
g

Man=51
Mean=24 MS.D-5.1
S.D.=2.4

3.0 3.5 4.0

Figure 2. Stress-strength extreme value functions.

METHODS FOR COMPUTING REUABIUTY R

In determining R from Equation 2 it should be noted that the integration process does
not determine an area. The area A described by the intersecting functions in Figure 3 does
not represent a 1 - R failure probability. The area A is the probability (P) that either S < T
or s > T, that is,

A = P(S < T) + P(s > T), (8)

where T is the point of intersection of the two functions. The area A is obviously not the
same as the 1 - R from Equation 2 which determines P(S > s) jointly with P(s).

5



Stress-strength reliability model: normal-normal

Intersecting Area Does Nnt Equal 1-R

o Stress

Strength

0

0.

o T

10 20 30 40 50

Stress or Strength
5-25-90

Figure 3. Stress-strength incorrect unreliability region.

Numerical Integration

Numerical integration procedures are usually suggested if a closed form solution of
Equation 2 is not available. The numerical integration process involves repeated application
of a method such as Simpson's Rule. The inner integral in Equation 2 is evaluated numeri-
cally for each ordered si value i = 1, ..., n resulting in an II(i) array of values. Each of
11(i) is then multiplied by the corresponding f2(si) forming another array 12(i) = f2(si)II(i). R
is obtained from 12 array by reapplying the numerical integration method. This process will
usually provide accurate results for 51 -< n -< 101, where n is the number of mesh points in
the integration process. Simulation results showed that the limits of integration can be
obtained from ± six standard deviations from the mean.

Closed form solutions are available when the assumed stress and strength PDFs are both
normal or both Weibull.

R Computation from Closed Form Solution

If both stress and strength data can be represented by normal PDFs N(,us, Cs 2) and N(,us,
Us2, respectively, then,

6



R = P(S > s) - ( Ps -,Us (9qo + os '(9)

where (0) is the standard N(0, 1) normal cumulative distribution function, ,us and Ps are
means, and as2 and as2 are variances of the stress and strength, respectivey.

If both f, and f2 in Equation 2 are Weibull with different scale parameters a1 and a 2,
but with a common shape parameter fi, then the integration indicated in Equation 2 gives the
following closed form expiession 12

1

R - (10)

. 2

The common shape parameter means that both the stress and strength are skewed in the
same way, which is a serious limitation. It is much more reasonable to have a stress distribu-
tion with a heavy upper tail and a strength distribution with a heavy lower tail, but this is
not possible unless the shape parameters can be varied separately.

Nonparametric Method

This method does not assume a PDF for either stress or strength data. It determines reli-
ability from the ordered array of m stress (s) and n strength (S) values, where each of the S
values are compared with all s values. R is the proportion of times S > s for the total num-
ber of comparisons, that is

m a , e = S i >sj

R= 2 Z jwherea1  0_ -: ~ Si (m j=i i=1

This method is not useful for obtaining high reliability even for relatively large data sets.
It is obvious from Equation 11 that for high reliability calculations, mn must be very large;
for example, 106 would be required in order to obtain R of 0.9(6).

The Weibull, normal, or other parametric PDFs can provide estimates of high R values
because of their ability to extrapolate beyond the available empirical data. Unfortunately, the
amount of extrapolation dependency determines the magnitude of relative error in R.

CONTAMINATED PROBABILITY DENSITY FUNCTIONS

In order to illustrate the sensitivity of high reliability calculations to small deviations from
assumed models, we will take the following approach. Consider the situation where with a
high probability of 1 - e, specimens are obtained from a primary PDF, while with probability E,
specimens come from a secondary PDF. This probability model is referred to as a contaminated
model. The secondary component is called the contamination, and the probability e is the
amount of contamination.

An example may help clarify this idea. Consider the situation where 97% of the time a
specimen is obtained from a population of "good" specimens while the remaining 3% of the
time consistently lower strength measurements are obtained, either due to manufacturing

7



defects or to faulty testing. The primary PDF would correspond to the *good" specimens, the
contamination would represent the distribution of flawed specimens, and the amount of con-
tamination is E = 0.03.

The following procedure is introduced in order to examine the effects of computing high
reliability values when uncertainties exist in selecting the functions for the stress-strength
model. Initially, high reliability values are obtained from the normal stress-strength model
(see Equation 9) using known PDFs with different mean values but equal coefficients of varia-
tion. The difference in mean values were determined from the required level of high reliabil-
ity. Another R value is then obtained by applying this known distribution with a small
amount of contamination kr) in order to show an almost undetectable differe'nce graphically
between the true and contaminated PDFs. The effects of this difference in the reliability
computation is discussed in the following sections in order to examine the sensitivity of the
stress-strength model to the assumed PDFs. This procedure provides an effective way of
demonstrating the effects of assuming a specific PDF in determining high reliability.

The normal PDF with variance contamination for the strength data is,

Ns, (us, av 2) =(I -E) N (us, +KI as 2) , (12)

where us and as2 are the mean and variance for the uncontaminated normal strength distribu-
tion, K, is a scaling factor, and 100 E is the percent contamination.

The strength distribution with location contamination is

NSL(UL, as 2) = (1 -E)N(,us, aS2) +EN(,us ±K2 as, as*2) , (13)

where K2 is a scaling factor for the mean us, and the sign determines which tail of the distri-
bution is to be contaminated and aS, 2 is the variance on ,us ± K2as. The location contami-
nated PDF (see Equation 13) can provide reliability estimates to represent the potential of a
secondary failure mode. Contamination of the stress distribution would be similar to that in
Equations 12 and 13. It was not necessary to include contaminated distributions for both
stress and strength in order to show substantial reduction in the high reliability estimates.
The strength PDF contamination was sufficient.

A linear relationship to obtain R for the reliability models when a combination of both
contaminated and uncontaminated stress and strength normal PDFs can be written as,

R = (1-E) (1-E 2) Roo + E1 (1-E 2) RIO + E2 (1-el) RoI + El E2 Rll (14)

where 100 El and 100 E2 are percent contamination for the stress and strength distribution,
and the Rij values are obtained for the case of variance contamination only; that is,

Rij = ( PS (15)

and for location contamination, RKL would be

8



RL S L -,USK) (16)RKL = (D o2 s

Equation 14 can be extended to include all combinations of variance and location contamina-
tion simultaneously, but it was not necessary for this sensitivity analysis. In Equation 16, if i,
j = 0, then there is no contamination; for i, j = 1, then both stress and strength are contami-
nated. For example, if there is contamination of variance of strength only, then

R = (1 -E 2) Roo + E2 R 0 1  (17)

where

Ro ( Aso - SO)2a00= • - + 0%2

and

Ro 0 P ,So - /
a~s, 2 + C0. 2

LOWER RELIABIUTY BOUND

A conservative lower bound on the reliability is introduced in order to protect against
incorrectly identifying statistical functions in determining high R. The bound is obtained from
a method proposed by Bolotin, 15 and modified to employ the extreme value PDFs (see Equa-
tions 5 and 6). The method provides more conservative bounds than would be obtained from
standard methods which are dependent on the assumed PDFs. The selection of the extreme
value functions provides additional conservatism because of their heavier tails. The method is
simple to use and is not restricted to any specified PDF. The reliability bounds are (see
Figure 4),

1 - W I W2 > R > (1- WI)(i-W 2) (18)

where (1 - Wt)(1 - W2 ) represents the probability s < st and S > S1, which can be a some-
what conservative estimate.

The lower bound is then,

RL > (1 - W) (1 - W 2) (19)

where

W2 =f* f2 (s)ds and W, = f(S)dS
SI 0

for any choice of sj = SI

15. IIOLOTIN, V. V. Statstcal Method in Structural Mechanics. I (oldcn-Day, Inc., San Francisco, CA. J. J. Brandstaffcr, ed., 1969.
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Stress-strength extreme value model: Bolotin R-bound

,-

f(max) f(min)

0.

Si =sl

S S
Wi W2

Ss

3.0 3.5 4.0 4.5

Figure 4. Bolotin reliability bounds using extreme value functions.

GOODNESS-OF-FIT TEST

The capability of determining desired PDFs from empirical data was investigated. The
choice of PDF will be shown in the following sections to have a substantial effect on high
reliability computations, so it is important to examine model selection procedures. A statisti-
cal test 16 of goodness-of-fit was introduced in addition to graphical displays in order to select
the desired PDFs. Empirical data used in the investigation was obtained by randomly select-
ing a relatively large number of values from a known normal PDF. A comparison of known
contaminated PDFs and the uncontaminated PDF is made with respect to the empirical values.

RESULTS AND DISCUSSIONS

Variance Contamination

Shown in Figure 5a are reliability computation results and graphical display of a normal/normal
strcss-strength reliability model, where a 1% (E = 0.01) variance contamination was introduced
and scaled by KI = 4. The graphical display was obtained from application of Equations 12

16. ANDERSON, T. W., and DARLING, D. A. A Test of Goodness-of.JlL J. Am. Statis. Assoc., v. 49, 1954, p. 765-769.
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and 13, where N(,us, aS2 ) is defined in Equation 3. The graph shows an almost undetectable
difference between the contaminated and uncontaminated PDFs. This indicates that the
choice of E and K are reasonable with respect to the potential differences between assumed
and actual PDFs. However, the reliability values differ substantially (0.9(6) versus 0.998989).
This implies that either one failure in a million or 1011 failures in a million is predicted
depending on the selection of PDFs which can differ in probability values by less than 0.0005
in the extreme tail regions (see Figure 5b). Using "good" representative PDFs in the stress-
strength model in predicting only a single failure will occur in one million operations (e.g.,
number of flight hours) for R = 0.9(6) can result in a severe anticonservative estimate since
for almost identical PDFs, 1011 failures per million could also be predicted.

The accuracy of the high R estimates depends on the level of precision in defining the
extreme tail of PDFs. This requires selecting a PDF from a data set that accurately repre-
sents the known population function in the extreme tail regions with a probability difference
of much less than 0.0005. Unfortunately, this would require an unrealistically large data set.
In current practice, if a very large data set is not available, then PDFs are selected from
smaller sets with reliance on the functional representation in regions less than first ordered or
greater than the largest value.

The stress-strength procedure is quite effective for the range of R values between 0.5
and 0.95 since usually in the extrapolation process, a small difference in the extreme tail prob-
abilities values will not effect the required accuracy in R. Reliability results from uncontami-
nated and variance contaminated (E = 0.05 and Kl = 5) PDFs showed no differences for a
known R = 0.95. Unfortunately, in order to obtain high reliability, extrapolation into the
extreme tail of the PDFs is required, thereby increasing the required level of precision neces-
sary to distinguish between, for example, 0.998 and 0.9(6).

In order to demonstrate the uncertainties in selecting specific PDFs from empirical data
when computing high reliability values, the following displays are shown in Figure 6. In
Figure 6a, a plot is shown of the empirical normal cumulative density function (CDF) and the
corresponding contaminated and uncontaminated normal distribution functions where the mean
is 50 and standard deviation (SD) is 5, with sample size u = 100. Reliability values are also
tabulated from the stress-strength model results using all six candidate functions. For exam-
ple, R(3, 5) is the reliability obtained from variance contamination of 3% and a scale of 5
for variance. A statistical goodness-of-fit test 16 that measures the relative differences in the
tail region of the distributions was applied in addition to visual inspection in order to estab-
lish if each function could represent the CDF of the ranked data. Results showed this to be
true; see Figure 6b for the tabulated observed significance level (OSL) which show in all
cases OSL > 0.05, a requirement for the assumed function to be considered from the same
population as the empirical data.

The results show that although each distribution fits the data quite well (see Figure 6b),
there is a large relative differencc in R values: 0.9(6) for R(U.C) and 0.9957 for R(3, 5).
In Figure 7, the results are similar to those in Figure 5. The variance contamination was 1%
with a scale factor of 6 for both os and as. Again, although the functions are similar, the rela-
tive reliabiliies differ substantially (0.9(6) versus 0.9977197). As was the case in Figure 5,
severe consequences could exist if R = 0.9(6) is assumed and the actual reliability was
0.9977197. Since this could result in a number of premature failures, 2280 in one million,
occurring compared to the assumed one failure in a million. The results showed a low level
of sensitivity to the selection of the factor K1.

11



Normal stress-strength models

Relability. 999992 (Uncontaniinated Model Solid Line)

ReaWty..9989893 (Contanfinated Model. Dotted Line)

Contanmnallon: I% for Both PWFs With Variance Scaled! By K(1)-4

Stress

Mean.24
S.0.-2.4

Mean-SI
S.o.-5.1

10 20 30 40 so 60 70

Stress Or Strnth

Figure 5a. Stress-strength normal functions with and without variance contamination.

Normal stress-strength models with contamination

I Stress Strngt J

8-

0J

0Y

30 32 34 36 38 40

Figure 5b. Detailed region of intersecting functions (see Figure 5a).
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II R(U C) -9999995
R(I.3) -. 9996235

R(i.5) -. 998567

R(3,3) -9968714

R(3.5) -. 9957670

LL R(5.3) . 9981194

0
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5% Coiitaminabon k(l).3
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Fi;;ure 6a Goodness-of-fit: empirical versus functional normal CDFs.

Goodness-of-Fit Test 7I

CO Observed Significance Level For PDF's/

OSL(U.C) - .586

OSL(1.3) -6A19 //T
to O1(1.5) -. 626/ /

o 031OS(3.3) - .672 /1

LL 051(3.5) - .684 /
031(5.3) - .704.//
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Figure 6b. Lower tail of empirical/normal distributions (see Figure 6a).
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Normal stress-strength models

Reliabillty..9999992 (Uncontaminated Model: Solid Une)

ReliabiUty=.9977197 (Contaminated Model: Dotted Une)
0

Contamination: 1% for Both PDFrs With Variance Scaled By K(1).6

Stress

Mean,,24
S.D.=2.40

Strength

Mean=51
on S.D.=5.1
0

I I I I I I

10 20 30 40 50 60 70

Stress or Strength

Figure 7. Reliability/normal functions with and without variance contamination.

Location Contamination

In Figure 8, reliability computation results and a graphical display of the stress-strength

models are shown. The contaminated functions were obtained from 1% (E = 0.01) location

contamination as defined in Equation 13 where K2 = 4 and the (-) value is used for strength

and (+) value for stress. The contamination in this case represents a secondary failure mode

not considered when assuming a specified function from the test results. For example, ignor-

ing the possibility that one in every 100 parts may have a lower strength level, say 4 standard

deviations from the mean, can result in the reliabilities tabulated in the figure. That is, for

the assumed correct model, R = 0.9(6), and the actual case where there was a lower strength

level having one chance in 100 of occurring resulted in R = 0.999459. Figure 9 provides

similar results to those in Figure 8 except there is a greater difference in reliability values

0.9(6) Versus 0.991012 due to a greater shift (K 2 = 6) in the mean value for the contami-

nated PDF. With a 1% contamination this result is predictable since one in a hundred times

a failure should occur because ps - K 2o is less than the mean of stress value. The above

figure shows the consequences of not being able to identify the correct function because of

the inability to always detect a flawed component. The result is the determination of an

overly optimistic reliability value when the true reliability could actually be orders of
magnitude less.
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Normal stress-strength models

Rettabilty..9999992 (Uncontaminated Model: Sold Un.)

Reably-9994590 (Contaminated Model: Dotted Una)
*Stress Contamination: I% for Both PDF's With Location Scaled By K(2)-4

Mean-24
S.0-2.4

0. Strength

Mean.51
S.D.5.1SOD:

10 20 30 40 50 60 70

Stress or Strength

Figure 8. Reliability/normal functions with and without locatior contamination.

Normal stress-strength models

Rellabillty=.9999g2 (Uncontaminated Model: Solid Un.)4 Rekabllty..9910122 (Contaminated Model: Dotted Une)
Contamination: I% for Both Pot's With Location Scaled By K(2).6

Stress

Mean-'24
S.D.2.4

Strength

Mean-51
&D0-5.1

10 20 30 40 50 60 70

Stress or Strength

Figure 9. Reliability/normal functions with and without location contamination.
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The results in Figure 10 are similar to those in Figure 5 except these were obtained from
E = 0.03 and K1 = 3. If the estimated R = 0.9987350 is obtained from the empirical data
and a higher R value is required (R = 0.9(6)), then a material with either greater strength or
less contamination would be required. In order to obtain the required 0.9(6) from the origi-
nal contaminated model, a mean strength of 87 is required (see Figure 11). The mean of 87
requirement may not be acceptable to the designer, but this situation can occur if there is a
substantial amount of dispersion in the strength data resulting in a long-tailed PDF. The
above situation shows when a potentially over-design situation could occur because of the
inability to identify the correct PDF in the stress-strength model due to inherent sensitivity
and lack of information in the tail regions. This could prevent a good design from being
accepted if it is required that the assessment of the design be based upon reliability only.

Normal stress-strength models

Reliability. 999992 (Uncontaminated Model: Solid Une)

o Reliability-.9987350 (Contaminated Model: Dotted Une)

Stress Contamination: 3% for Both PDF's With Variance Scaled By K(1 )=3

Mean=24
S.D.2.4

C. Strength

Mean-51
U, 

S.D.5.1

10 20 30 40 50 60 70

Stress or Strength

Figure 10. Reliability/stress-strength with and without contamination.
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Normal stress-strength models

1Reliability..9987350 (Solid Line)

o Reliability=.9999992 (Dotted Line)

Contamination:3% for All PDF's with Variance Scaled By K(1 )=3

0
0

Stress Strength Strength .
Mean=24 " "S.D.=2.4 Mean=51 Mean=87

S; S.D.=5.1 S.D.=5. 1

..... --- --- ---

I I I I
20 40 60 80 100

Stress or Strength

Figure 11. Increased strength requirements for high reliability.

The display in Figure 12 presents four possible reliability values for the case where the
means and standard deviation are: stress (24, 2.4) and strength (51, 5.1). The result from
the uncontaminated normal is 0.9(6). R = 0.995043 was obtained from the contaminated PDF
application. Since, as was shown previously, the stress-strength model will often provide
either relatively very high or low R values depending upon the chance selection of the PDFs.
In order to compensate for the uncertainty in selecting the PDFs for stress and strength data,
extreme value distributions are introduced (see Figure 2) in the reliability computation. This
resulted in R = 0.999045. Unfortunately, this did not provide a value lower than the contami-
nated model result of 0.9950428. In order to obtain additional conservatism in the R esti-
mate, a modification of a method by Bolotin is examined involving the determination of lower
bound on R (see Figure 4 and Equation 19) in conjunction with the extreme value PDFs.
The resultant lower bound estimate or 0.9796063 provides a significantly lower value than that
of the contaminated model. This was also true for all contaminated models in this study.

This lower bound estimate could provide some security in estimating R, although results
may be excessively conservative for some practical applications. In Table 1, the distribution
of R values as a function of the sample size is presented. R values were obtained from
repeated application of the uncontaminated stress-strength model of Figure 5 using randomly
selected, normally distributed samples. For a sample size of 10, R ranges from 0.9(6) to
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0.998417 indicating the instability associated with small samples. Higher order quantiles (e.g.,

60%) were not included since they were all greater than 0.9(6).

Table 1. DISTRIBUTION OF R VERSUS SAMPLE SIZE

Reliability R

Sample Size

Distribution
(%) 10 50 100 1000
0.1 0.998417 0.999932 0.999980 0.999998

(1583) (68) (20) (2)
1 0.999160 0.999968 0.999991 0.999998

(840) (32) (9) (2)
10 0.999943 0.999994 0.999998 0.999999

(57) (6) (2) (1)
25 0.999994 0.999998 0.999999 0.999999

(6) (2) (1) (1)
50 0.999999 0.999999 0.999999 0.999999

(1) (1) (1) (1)

() Corresponding Number of Failures Per Million

Extreme value stress-strength model

Reliability=.9990451
(Extreme Value Model)

Reliability=.9796063
Bolotin Lower Bound (Extreme Value)

Reliability=.9999992
Stress (Uncontaminated Normal Model) Strength

Mean=24 Reliability- .9950428 Mean.51
S.D.=2.4 (A Contaminated Normal Model) S.D.=5.1

CD

II I I I I

10 20 30 40 50 60 70

Stress or Strenoth

Figure 12. Reliability comparison: PDFs and lower bound.
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A sample size of 50 or 100 provides reasonable stability, and a sample of 1000 shows
essentially no variability. The results from Table I show that for a sample of 1000, an esti-
mate of R = 0.9(6) would be acceptable. This is not necessarily correct since results from
the table only address the sample size issue which is independent of the uncertainties in the
PDFs selection process, There are two requirements for obtaining accurate high reliability val-
ues from the strength model: large samples (n > 1000) and knowledge of the population
PDF. Reliability estimates of 0.95 are much less sensitive to the PDF assumption. If there
is a secondary failure mode due to occasional undetected poor manufacturing of the material
or an unusually large load occurs that is not accounted for in the design process, then
unknown lower reliability values (R < 0.95) can exist.

CONCLUSIONS

High reliability estimates from application of the statistical stress-strength model can vary
substantially even for almost undctectable differences in the assumed stress and strength
PDFs. Specifying high R values (e.g., 0.9(6)) for acceptable structural design can result in
higher failure rates than anticipated if the assumed PDFs contain shorter tails than actually
exist. Over-design situations can also occur when excessively long-tailed PDFs are applied to
the stress-strength model. An effective method for identifying this nonrobust behavior
involved application of contaminated and uncontaminated PDFs in the determination of
reliability values.

A suggested method for obtaining a lower bound on the reliability estimate provided
potentially overly conservative results but was effective in determing values that were lower
than any of the R values computed for the contaminated models.

The authors' position regarding the computation of h ,h reliability of 0.9(6) agrees with
Breiman1 7 who says "The probability of failure Pf = 1 x 10-6 has an Alice in Wonderland
flavor and should be banned from nonfiction literature." It is therefore recommended that if
high reliability calculations are absolutely essential, then the results should be subjected to a
sensitivity analysis using contaminated distributions. High reliability values are meaningful only
when these values are not substantially affected by an amount of contamination (E) consistent
with the sample sizes, and a severity of contamination which is identified by engineering
judgement.
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