
.T1 FILE COpy-

NAVAL POSTGRADUATE SCHOOL
'Monterey, California

LO DSAE

DTIC
7Ne ELECTEfl

SFEB 2 1199"SA%3

< THESIS

INTEGRTION OF THE EXECUTION
SUPPORT SYSTEM FOR THE

COMPUTER-AIDED PROTOTYPING SYSTEM (CAPS)

by

Frank V. Palazzo

September 1990

Thesis Advisor: Luq±

Approved for public release; distribution is unlimited.

91 2 19 187

Unclassified
SECURITY CLASSIFICATION O TH:S PAGE

Form Approved
REPORT DOCUMENTATION PAGE OMBI o o0o,7o0a

la REPORT SECURiTY CLASSIF;CATION lb RESTRiCT.VE VARK NGS
Unclassified

2a SECURITY CLASSiFICATON AUTiORTY 3 DISTRiBUT;ON AVA .AB!'.Y O- REPOPT

Approved for public release; distribution
2b DECLASSIFICATION/DOWNGRADING SCHEDULE is unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGAN;ZATON REPOR ,,.VBE (,

6a NAME OF PERPORMING ORGAN ZAT7ON 6b OFF:CE SYVBOL 7a NAME OF MONITORINC O0-CA';Za- ON
Computer Science Department (if applicable)
Naval Postgraduate School CS Naval Postgraduate School

6c, ADDRESS (City. State, and ZIP Code) 7b ADDRESS (City, State and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

8a NAME OF FUNDING, SPONSOR:,NG So OFFICE SYMBO,. 9 PROC,,RE%1'NT ,'STRuMENT DE' ,CAT C. NjMBED
ORGANIZATION (If applicable)

8c ADDRESS(City. Sta'e. and ZIP Code) 10 SOJRCE OF FUNDIjG NuV.FERS
PROGRAM PRO.ECT TASK WORK UNIT
ELEMENT NO JO NO ACCESSION NO

11 TITLE (Include Security Classification)

Integration of the Execution Support System for the Computer-Aided Prototyping System (C S)
12 PERSONAL AUTHOR(S)

Frank V. Palazzo
13a TYPE OF REPORT 13o T;ME COVERED 14 DATE OF REPOR- (Year, Month, Day) 15 PAGE COur.

Master's Thesis rROM TO__ September 1990 138

16 SUPPLEMENTARY NOTATION

The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the United States Government.
17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block numOer)

FIELD GROUP SUB-GROuP Hard Real-Time Systems, Prototype System Description
Language (PSDL), Execution Support System (ESS), Computer-
Aided Prototyping System (CAPS)

19 ABSTRACT (Continue on reverse if necessary and identify by bloc: number)
With the rapidly falling cost of computer hardware continuing to drive software expenses
up, attention has turned to ways to effect savings. One approach that shows particular
promise is rapid prototyping. Rapid prototyping is the use of executable models of a
software system to firm up the requirements before a significant amount of time and
effort has been invested in implementation. The computer-aided prototyping system (CAPS)
is a rapid prototyping system that automates many of the manual processes of prototyping,
thus allowing for cuicker prototype construction and even further cost savings.
Within CAPS there exists an execution support system. The purpose of the execution
support system is to take the description of a prototype written in :he prototyping
language PSDL and to convert this into an executable prototype which can then be shown to
the user. Previous research resulted in separate implementations for the components of
of the execution support system, but these components were never integrated into a
functioning system. It is the development of this tool which is the subject of this thes s.

20 A)S.AO A B7.-Y 0; AeS-';.c 21 AS TR;-C' SEC ' C (- 5

C .SS: D . .:E : -,.'E D D asC SE-2S Unclassified
22a NA,7. :,; RESPF.Y.S E .0 2,o 7'E.EPiO'.; (.r',uut.i .o~
Luci (408) 646-2735 CS,'L_

DD Form 1473, JUN 86 Pre,,us eaons are ooso'ele : -- -- - -

S/:, 0102-LF-01"-6603 Unclassified

i

Approved for public release; distribution is unlimited.

Integration of the Execution
Support System for the

Computer-Aided Prototyping System (CAPS)

by

Frank V. Palazzo
B.S., Fordham University, 1980

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 1990

Author: .
Frank V. Palazzo

Approved by:
Luqi, Thesis Advisor

Valdis BerziWs; Second Reader

Robert B. McGhee, Chairman
Department of Computer Science

ii

ABSTRACT

With the rapidly falling cost of computer hardware

continuing to drive software expenses up, attention has

turned to ways to effect savings. One -afpproch that shows

particular promise is rapid prototyping. Rapid prototyping

is the use of executable models of a software system to firm

up the requirements before a signifidant amount of time and

effort has been invested in implementation. The computer-

aided prototyping system (CAPS) is a rapid prototyping

system that automates many of the manual processes of

prototyping, thus allowing for quicker prototype

construction and even further cost savings.

Within CAPS there exists an execution support system.

The purpose of the execution support system is to take the

description of a prototype written in the prototyping

language PSDL and to convert this into an executable

prototype which can then be shown to the user. Previous

research resulted in separate implementations for the

components of the execution support system, but these

components were never integrated into a functioning system.

M11

It is the development of this tool which is the subject of

this thesis.

Accesion For

NTIS GRA&I
DTIC TAB 0
Unannounced 0
Just iticatio

By

DistributionI

00

iv

TABLE OF CONTENTS

I. INTRODUCTION ... 1

II. LANGUAGE AND METHOD 9

A. LANGUAGE ... 9

1. The PSDL Computational Model 9

a. Operators 10

b. Data Streams 11

c. Timing Constraints 14

d. Control Constraints 20

2. Abstractions 23

a. Operator Abstractions 23

b. Data Abstractions 24

c. Control 'stractions 26

B. THE PROTOTYPING METHOD 26

III. COMPUTER-AIDED PROTOTYPING SYSTEM 29

A. USER INTERFACE 29

B. REWRITE SYSTEM 31

C. DESIGN-MANAGEMENT SYSTEM 32

D. SOFTWARE BASE 32

E. DESIGN DATABASE 33

v

F. EXECUTION SUPPORT SYSTEM 34

IV. INTEGRATION OF THE EXECUTION SUPPORT SYSTEM 36

A. OVERVIEW 36

B. MODIFICATIONS TO THE TRANSLATOR 38

1. Data Stream Implementation 38

2. Integration of Reusable Components 40

3. Exception Handling 41

C. IMPLEMENTATION OF THE DYNAMIC SCHEDULER 47

D. MODIFICATIONS TO THE STATIC SCHEDULER 52

E. THE DEBUGGER 55

1. Background 55

2. Sample Session 58

F. ADDITIONAL RUNTIME SUPPORT 62

V. PROTOTYPE EXAMPLE 63

VI. CONCLUSIONS AND RECOMMENDATIONS 74

A. CONCLUSIONS 74

B. RECOMMENDATIONS 75

APPENDIX A. DATA STREAM IMPLEMENTATION 77

APPENDIX B. EXCEPTION HANDLING EXAMPLE 80

APPENDIX C. DYNAMIC SCHEDULER IMPLEMENTATION 87

APPENDIX D. DEBUGGER 88

vi

APPENDIX E. ADDITIONAL RUNTIME SUPPORT...................... 96

LIST OF REFERENCES.. 123

INITIAL DISTRIBUTION LIST.................................. 125

vii

LIST OF TABLES

TABLE 1. PSDL TYPE CONSTRUCTORS............................. 25

TABLE 2. SAMPLE REWRITE-SYSTEM RULE TABLE.................. 31

viii

LIST OF FIGURES

Fig. 1. Traditional Software Life Cycle......................... 4

Fig. 2. Rapid Prototyping Loop.............................. 6

Fig. 3. ASimple State Machine................................. 12

Fig. 4. Timing Constraints for a Periodic Operator 16

Fig. 5. Timing Constraints for a Sporadic Operator 18

Fig. 6. PSDL Triggering Conditions......................... 21

Fig. 7. The Prototyping Method............................. 28

Fig. 8. CAPS System Architecture........................... 30

Fig. 9. Execution Support System.......................... 37

Fig.10. Integration of Reusable Components42

Fig.11. Execution Support System, Previous49

Fig.12. Sample Dynamic Schedule............................ 51

Fig.13. Sample Static Schedule............................. 54

Fig.14. Sample Static Schedule............................. 59

Fig.15. Sample User Query.................................. 61

Fig.16. Contents of File Information....................... 61

Fig.17. Dataflow Diagram................................... 64

Fig.18. Prototype Description.............................. 65

Fig.19. Reusable Components................................ 67

ix

Fig.20. DRIVER Procedures.................................. 68

Fig.21. Dynamic Schedule................................... 70

Fig.22. Static Schedule 70

Fig. 23. Sample Track Data............................. 72

Fig.24. Corresponding Output............................... 73

x

I. INTRODUCTION

As the cost of computer hardware continues to decline,

total software costs continue to grow rapidly as i uncover

more and more problem domains that demand an automated

solution. In the early 1970s, total software costs for the

Department of Defense exceeded $3 billion; it is predicted

that in 1990 total software costs for embedded computer

systems alone will exceed $32 billion (Ref. l:p. 8].

According to one economic study, costs related to software

accounted for about 2% of the U.S. gross national product in

1980, or about $40 billion [Ref. 2]. According to a more

recent estimate, software related expenses had risen to

about 5% of the U.S. GNP in 1986, or about $228 billion

(Ref. 3].

As the rapidly falling cost of computer hardware

continues to drive software costs up, where can savings be

effected? One area where significant savings can probably

be realized is in the area of software maintenance.

Software maintenance is defined as the changes that are made

to an existing software system. Reports vary on the actual

figures, but its estimated that industry spends from 40% to

75% of its total hardware and software monies on software

maintenance [Ref. 4). But why are software systems changed?

Software systems are changed for the following reasons:

New situations

Changes in the environment of the system have introduced
new requirements. Examples of such changes are new
external systems, new policies, new technologies, and
new competitive pressures.

User education

Customer requirements have changed because experience
with the current version of the system has changed their
perception of how computers can be used to solve their
problems.

Phased delivery

A partial implementation has been delivered because the
customer cannot wait until a complete implementation is
available.

Requirements errors

The developers have incorrectly understood the
requirements and have produced a system that does not
meet user needs.

Implementation errors

A faulty design or implementation does not correspond to
the specification. (Ref. 3:p. 2-3]

One approach that can help reduce maintenance costs is

rapid prototyping. A prototype is an executable model or

2

pilot version of the intended software system. A prototype

is usually a partial representation of the intended system,

used as an aid in requirements analysis rather than as

production software. The rapid construction activity

leading to such a prototype is called rapid prototyping.

Prototypes can help customers visualize and test

consequences of their requirements, thus allowing the

requirements to be stabilized before a significant amount of

time and effort has been invested in implementation. [Ref.

6]

The traditional software life cycle consists of a series

of phases which yield runnable software only late in the

process. One view of the traditional life cycle is

illustrated in Fig. 1. A major problem with the traditional

approach is that there is no guarantee that the resulting

product will meet the customer's needs. Often users will be

able to indicate the true requirements only by observing the

operation of the system, and the traditional life cycle

yields executable programs late in the process, when too

much money has already been spent. [Ref. 5:p. 5-6]

3

Requirements
Analysis

Functional

SpecI ficat ons

Architectural
Design

Module

Design

Implementation

Testing

FEvaluationand
Repair

Fig. 1 Traditional Software Life Cycle

This problem is even more exacerbated in the case of hard

real-time or embedded systems, where the potential for

inconsistencies is greater. One of the major differences

between a real-time computer system and a conventional

system is the required precision and accuracy of the

application software. The response time of each individual

4

operation may be a significant aspect of the associated

requirements, especially for operations whose purpose is to

maintain the state of some external system within a

specified region, as is common in these types of systems.

These response times, or deadlines, must be met or the

system will fail to function, possibly with catastrophic

consequences. These requirements, which will often exceed

the intellectual capacity of a single software engineer, can

be very difficult to determine. [Ref. 5:p. 6-7)

Current research suggests a revised software development

life cycle based on rapid prototyping. This prototyping

life cycle is an alternative to the traditional life cycle

which has been proposed to alleviate problems stemming from

incorrect requirements, especially when designing hard real-

time or embedded systems. As a software development

methodology, rapid prototyping provides the user and

designer with a fast, efficient and easy-to-use stepwise

process. When utilized during the early stages of the

development life cycle, rapid prototyping allows validation

of the requirements, specifications and initial design

before valuable time and effort are expended on

5

implementation software. Fig. 2 graphically depicts this

DETERMINE REQUIREMENTS CONSTRUCT
REQUIREMENTS PROTOTYPE

REQUIRED EXECUTABLEIMOOSFICA- RTYP
TIONSPRTYE

N I

USRPERFORMANCE FDEMONSTRATE
VALIDATEPROTOTYPE

SVAUDATED
REQUIREMENTS

SYSTEM
IMPLEMENTATION

Fig. 2 Rapid Prototyping Loop

methodology as a feedback loop. Rapid prototyping is an

iterative process that starts out with the user defining the

requirements for the critical aspects of the envisioned

system. Based on these requirements, the designer then

6

constructs a model or prototype of the system in a high-

level, prot6type description language and examines the

execution of this prototype together with the user. If the

prototype fails to execute properly, the user then redefines

the requirements and the prototype is modified accordingly.

This process continues until the user determines that the

prototype successfully meets the critical aspects of the

envisioned system. Following this validation, the designer

uses the validated requirements as a basis for the design of

the production software. [Ref. 5:p. 7-9]

While rapid prototyping has been found to be an effective

technique for clarifying requirements and eliminating a

large amount of wasted effort currently spent on developing

software to meet incorrect or inappropriate requirements,

the addition of computer aid would make rapid prototyping

even more beneficial. The computer-aided prototyping system

(CAPS) is a prototyping system which provides this

capability. Designed to operate on the prototyping language

PSDL (Prototype System Description Language), CAPS provides

the designer with an integrated set of tools to support

prototyping of complex software systems which may include

7

hard real-time constraints [Ref. 5:p. 9]. These tools

include an execution support system, a rewrite system, a

syntax-directed editor with graphics capabilities, a

software base, a design database, and a design-management

system [Ref. 7:p. 66]. It is the integration of the

execution support system which is the focus of this thesis.

The prototyping language PSDL, along with the prototyping

method are examined in Chapter II. An overview of CAPS is

given in Chapter III. Integration of the execution support

system is discussed in Chapter IV. A complete prototype

example is provided in Chapter V. Conclusions are presented

in Chapter VI.

8

II. LANGUAGE AND METHOD

A. LANGUAGE

A good language for expressing design thoughts in terms

of a precise model is important for rapid prototyping. It

is impossible to do a good design without a language

designed especially for this purpose. A powerful, easy-to-

use, and portable prototype-description language is a

critical part of a computer-aided prototyping system. Such

a language is needed before the tools in the system can be

built. [Ref. 7:p. 68]

PSDL was designed together with the protctyping method to

ensure the most efficient use of the language. It serves as

an executable prototyping language at a specification or

design level and has special features for real-time system

design. (Ref. 7:p. 68]

1. The PSDL Computational Model

The PSDL language is based on a computational model

which treats software systems as networks of operators

communicating via data streams. The computational model is

an augmented directed graph

9

G=(V,E,T(v) ,C(v))

where V is the set of vertices, E is the set of edges, T(v)

is the set of timing constraints for each vertex v, and C(v)

is the set of control constraints for each vertex v. Each

vertex is an operator and each edge is a data path. Each of

the four components of the graph are described in more

detail below. The semantics of a PSDL system description is

determined by the associated augmented graph and the

semantics of the operators appearing in the diagram. [Ref.

8:p. 2)

a. Operators

All PSDL operators are either FUNCTIONS or STATE

MACHINES. When an operator fires, it reads one data value

from each of its input streams, and writes at most one data

value on each of its output streams. The output objects

produced when a function fires depend only on the current

input values. The output values produced when a state

machine fires depend only on the current input values and

the current values of a finite number of internal STATE

VARIABLES. [Ref. 6:p. 1411-1412)

Each operator is either ATOMIC or COMPOSITE. Atomic

10

operators are operators which cannot be decomposed any

further. Composite operators are operators which have

realizations as data and control flow networks of lower

level operators. A composite operator whose network

contains cycles is a state machine. In such a case, one of

the data streams in each cycle is designated as the state

variable controlling the feedback loop, and an initial value

is specified for it. The state variables serve to break the

circular precedence relationships among the operators which

would otherwise be implied. In the example shown below,

there is a cycle consisting of the streams S and Y. The

stream X is the only input to the network, and Z is the only

output. [Ref. 6:p. 1412]

In PSDL, S would be designated as the state variable

of this cycle by including the following

states S initially S-0

in the specification part of the composite operator. S-0

gives the initial value for S. [Ref. 6:p. 1412]

b. Data Streams

PSDL operators communicate by means of data streams.

A data stream is a communciation link connecting exactly one

11

S --------- M- -- -- S

op-i ...---- .- op-2

x , m- Z

Fig. 3. A simple state machine.

producer operator to exactly one consumer operator. In Fig.

3, Y is a data stream from producer op-i to consumer op-2.

Each stream carries a sequence of data values of an abstract

data type. Streams have the pipeline property: if a and b

are two data values in data stream Y and the data value a is

generated by op-i before value b is generated then it is

12

impossible for a to be delivered to op-2 after b is

delivered. [Ref. 6:p. 1412]

There are two types of data streams in PSDL-DATA

FLOW STREAMS and SAMPLED STREAMS. Dataflow streams are used

in applications where the values in the stream must not be

lost or replicated, while sampled streams are used in

applications where a value must be available at all times

and values can be replicated without affecting their

meaning. A dataflow stream can be thought of as a fifo

queue of length one, while a sampled stream can be thought

of as a cell capable of containing just one value, which is

updated whenever the producer generates a new value. [Ref.

6:p. 1412]

Dataflow streams guarantee that each of the data

values written into the stream is read exactly once.

Computation sequences that would require a value to be

written into a full queue or to be read from an empty queue

result in an error message. While computation sequences

that would require a value to be written to a non-empty

sampled stream are valid, attempts to read from an

unitialized sampled stream are not, and will result in an

13

error message. Thus, this type of error can be avoided by

declaring initial values for sampled streams. [Ref. 8:p. 3-

4]

c. Timing Constraints

Any PSDL operator can have timing constraints

associated with it. An operator is time-critical if it has

at least one timing constraint associated with it, and is

non time-critical otherwise. The timing constraints

together with the control constraints determine when the

operator can be fired, and when it must be fired. There are

several different kinds of timing constraints. [Ref. 8:p. 4]

The most basic are given in the specification part of a PSDL

module, and consist of the MAXIMUM EXECUTION TIME, the

MAXIMUM RESPONSE TIME, and the MINIMUM CALLING PERIOD [Ref.

6:p. 1416].

Every time-critical operator must have a maximum

execution time (MET) to allow the construction of a static

schedule. The MET of an operator is an upper bound on the

length of time between the instant when a module begins

execution and the instant when it completes, called the

execution interval (EI). All of the actions that may be

14

required to fire an operator once must fit into the

execution interval. These actions are listed below.

(1) Reading values from input data streams.

(2) Evaluating triggering conditions.

(3) Calculating output values.

(4) Evaluating output guards.

(5) Writing values into output streams. [Ref. 8:p. 4-5]

Operators triggered by temporal events are periodic

in PSDL. Every periodic operator must have a period

(PERIOD) and may have a deadline (FINISHWITHIN). These two

timing constraints partially determine the set of scheduling

intervals (SI) for the operator. Each periodic operator

must be fired exactly once in each scheduling interval, and

must complete execution before the end of the scheduling

interval. The period is the length of time between the

start of any scheduling interval and the start of the next

scheduling interval. The deadline is the length of each

scheduling interval. The starting time of the first

scheduling interval for each operator is determined by the

static scheduler. [Ref. 8:p. 5]

The relation between the timing constraints,

scheduling intervals, and execution intervals for a periodic

15

operator is illustrated in Fig. 4. The execution intervals

and scheduling intervals in the diagram are indexed by

integers in the order of their occurrence. Thus SI[n]

denotes the n-th scheduling interval for the operator and

EI(n] denotes the n-th execution interval for the operator.

SI[n] Si in +1]

El[n] El[n+1]

MET

FINISHWITHIN

PERIOD

Sl[n] = n-th scheduling Interval
El[n] = n-th execution Interval

Fig. 4 Timing Constraints for a Periodic Operator

16

The static scheduler takes the length of each execution

interval to be equal to the maximum execution time to allow

for worst case conditions. If a time-critical operator

completes before the end of the execution interval reserved

for it by the static scheduler, the remaining time in the

execution interval is used by the dynamic scheduler for the

execution of a non time-critical operator. [Ref. 8:p. 5]

Operators triggered by the arrival of new data

values are sporadic. Timing constraints for sporadic

operators are optional. Sporadic operators with timing

constraints must have both a maximum response time (MRT) and

a minimum calling period (MCP) in addition to a MET. The

MRT is an upper bound on the time between the arrival of a

new data value and the time when the last value is put into

the output streams of the operator in response to the

arrival of the new data value. The MCP is a constraint on

the environment of a sporadic operator, consisting of a

lower bound on the delay between the arrival of one set of

inputs and the arrival of the next set. The relation between

these quantities is illustrated in Fig. 5. SI[n] denotes

the n-th scheduling interval for the consumer operator,

17

which is sporadic and time-critical. CEI[n] denotes the n-

th execution interval for the consumer operator, and PEI[n]

denotes the n-th execution interval for the producer

operator, which is assumed here to be time-critical also.

The response time associated with a consumer operator is

measured from the end of the execution interval for the

SI[n]

PEI[n] CEI[n] PEI[n-+ 1]

MRT

calling period

PEI[n] = n-th producer execution Interval
CEI[n] = n-th consumer execution interval
SIl[n] = n-th scheduling Interval

Fig. 5 Timing Constraints for a Sporadic Operator

18

producer operator of the triggering data value to the end of

the executioh interval for the consumer operator of the

triggering data value. [Ref. 8:p. 6]

Unlike the MET, the MRT includes a scheduling delay.

The MRT gives the length of the scheduling interval. The

static scheduler may not be able to use the entire

scheduling interval if the producer is non time-critical,

because the ending time of the producer's execution interval

is not known to the static scheduler in that case. [Ref.

8:p. 6]

The calling period of an operator is the length of

time between the end of the execution interval for the

producer of the triggering data value and the end of the

execution interval for the producer of the next triggering

data value. The calling period must not be less than the

MCP. The MCP of an operator constrains the behavior of the

producers of the triggering data values rather than

constraining the behavior of the operator itself. An MCP

constraint is needed to allow the realization of a maximum

response time constraint with a fixed amount of

computational resources, via a limit on the frequency with

19

which new data can arrive. Violation of an MCP constraint

should result in a warning message. [Ref. 8:p. 6-7)

d. Control Constraints

The control aspect of a PSDL operator is specified

implicitly, via control constraints. Control constraints

are used for the following purposes:

(1) Controlling operator execution.

(2) Controlling output.

(3) Controlling exceptions.

(4) Controlling timers. [Ref. 8:p. 7]

Exceptions are discussed in Chapter IV. Readers interested

in a discussion of timers can refer to [Ref. 11:pp. 18-20).

Control constraints controlling operator execution

are called triggering conditions. The forms of PSDL

triggering conditions are shown in Fig. 6. A triggering

condition has two parts, the trigger and the guard, both of

which are optional. The trigger defines the conditions

under which an operator can be fired. The keywords

"TRIGGERED BY ALL" indicate the operator is ready to fire

whenever new data values have arrived on all of the input

data streams named in the id list. The id list can contain

any non-empty subset of the input data streams for the

20

operator. [Ref. 8:p. 7] This kind of trigger can be used to

ensure that the output of the operator is always based on

fresh data for all of the inputs in the list, and can be

used to synchronize the processing of corresponding input

values from a number of input streams [Ref. 6:p. 1414]. The

natural dataflow firing rule corresponds to a "TRIGGERED BY

ALL" triggering condition that lists all of the input data

streams of the operator. [Ref. 8:p. 7-8]

triggeringcondition =
"OPERATOR" id "TRIGGERED" ["BY" trigger] ["IF" guard]

trigger = "ALL" id-list I "SOME" idlist

Fig. 6 PSDL Triggering Conditions

The keywords "TRIGGERED BY SOME" indicate the

operator can be fired if there is a new data value on at

least one of the data streams named in the id_list [Ref.

8:p. 8]. This kind of trigger can be used to keep software

estimates of sensor data up to date [Ref. 6:p. 1414]. A

null trigger means that the operator can fire at any time,

whether or not any new data values have arrived. Null

triggers are most useful for periodic operators.

The triggering conditions of the operators

implicitly determine the types of the data streams. A

21

stream is a dataflow stream if it appears in a "TRIGGERED BY

ALL" constraint of the consumer operator and is a sampled

stream otherwise. [Ref. 8:p. 8]

The second part of the triggering condition is the

guard, a boolean expression which can depend only on the

input values to the operator and locally available state

information. A null guard is always true. When an operator

fires, it reads one data value from each of its input

streams. If the predicate is satisfied, then the output

values of the operator are calculated, otherwise the firing

of the operator terminates immediately without producing any

output. [Ref. 8:p. 8]

Constraints for controlling output are based on

output guards. An output guard is a boolean expression that

can depend on the input data of the operator, locally

available state information, and the calculated output

values. A null output guard is always true. [Ref. 8:p. 8]

An example of a control constraint specifying a conditional

output is shown below.

OPERATOR t OUTPUT z IF 1 < z AND z < max

22

The example shows an operator with an output guard, which

depends on the input value MAX and the output value z (Ref.

6:p. 1415]. An output value is written to the output stream

provided that the output guard evaluates to true. If the

output guard evaluates to false, then nothing is written

into the stream. [Ref. 8:p. 8]

2. Abstractions

Abstractions are an important means for controlling

complexity, which is especially important in rapid

prototyping because a system must appear to be simple to be

built or analyzed quickly. PSDL supports three kinds of

abstractions: data abstractions, operator abstractions, and

control abstractions. [Ref. 6:p. 1413]

a. Operator Abstractions

There are two types of operator abstractions:

functional abstractions and state machine abstractions.

PSDL supports both types. A PSDL operator consists of two

parts: a SPECIFICATION part and an IMPLEMENTATION part.

The specification part contains attributes describing the

form of the interface, the timing characteristics, and

descriptions of the observable behavior of the operator.

23

The attributes both specifiy the operator and form the basis

for retrievals from a software base. The set of attributes

consists of GENERIC PARAMETERS, INPUT, OUTPUT, STATES,

EXCEPTIONS, and TIMING INFORMATION. (Ref. 6:p. 1413]

A PSDL operator corresponds to a state machine

abstraction if its specification part contains a STATES

declaration, otherwise it corresponds to a functional

abstraction. The STATES declaration gives the types of the

state variables and also their initial values. (Ref. 6:p.

1413]

The implementation part of the operator signifies

whether it is atomic or composite. Atomic operators have a

keyword specifiying the underlying programming language,

followed by the name of the module implementing the

operator. This name is filled in as the result of a

successful retrieval from the software base, or is supplied

by the designer in cases where the module cannot be

constructed from reusable components and must be coded

manually. (Ref. 6:p. 1413]

b. Data Abstractions

All of the PSDL data types are immutable. For

24

immutable types the set of instances and the properties of

each instanci are fixed. All PSDL variables are local.

Both mutable datt types and global variables can lead to

coupling problems in large prototype systems and thus have

been excluded from PSDL. [Ref. 6:p. 1413]

The PSDL data types include the immutable subset of

the built-in types of Ada, user defined abstract types, the

special types TIME and EXCEPTION, and the types that can be

built using the immutable type constructors of PSDL. The

PSDL type constructors (see Table 1) were chosen to provide

powerful data modeling facilities. [Ref. 6:p. 1414]

TABLE 1. PSDL TYPE CONSTRUCTORS

set[item: type]
sequence[item: type)
map[from: type, to: type]
tuple[tagl: TI,..., tagn: Tn]
one of[tag_1: T_1,..., tagn: T_n]
relation[tag l: T_1,..., tagn: T_n)

Finite sets, sequences, and mappings correspond to

the usual mathematical concepts. Tuples are finite

Cartesian products, with operations for constructing tuples

and for extracting components. One_ofs are tagged disjoint

unions of a finite number of other types, with operations

for constructing oneof values with a given tag

2t)

(injections), for testing whether a oneof value has a given

tag (domain predicates), and for extracting the data

component of a oneof (projections). Relations are n-ary

mathematical relations, with operations that are commonly

used in relational databases (select, project, join, union,

set difference, etc.). [Ref. 6:p. 1414]

c. Control Abstractions

Enhanced data flow diagrams, augmented by control

constraints represent the control abstractions of PSDL.

Periodic execution is supported explicitly, as well as

concurrent execution in certain cases. Order of execution

is determined from the data flow relations given in the

enhanced data flow diagrams, based on the rule that an

operator consuming a data value must not start until after

the operator producing the data value has completed. This

applies to periodic operators only at synchronization

points, which occur at intervals equal to the least common

multiple of the periods of the two operators.

B. THE PROTOTYPING METHOD

The PSDL prototyping method is a decomposition strategy

which results in a hierarchically structured prototype. The

26

prototyping method provides a strategy for filling in more

details at any level of the prototype design and helps the

designer focus on the critical subsystems that must be

refined to resolve the problems that motivated the rapid

prototyping effort. [Ref. 9:p. 26]

Fig. 7 illustrates the major steps in the prototyping

method. The designer begins by entering the specifications

of the intended software component. A rewrite subsystem

maps the specification into an internal abstract form that

is used by the design-management system to search for a

reusable component to implement the specification. If a

reusable component is found, the design-management system

retrieves it; if it finds several reusable components that

meet the specification, the designer must choose one.

Otherwise, the specification cannot be met by an existing

component and the designer should decompose the

specification into simpler specifications or create a hand-

coded implementation if the component is so simple that

decomposition does not make sense. (Ref. 7:p. 67)

When a specification is decomposed into a network of

simpler components, the required interconnections are

27

recorded in the design database with a dataf low diagram.

This helps serve as design documentation. After the

designer decomposes the specification into simpler

Specifications

Rewrite
specifications

Fornat

query

Search
components

yes scorn- None How One
osable many?

INo Many

IHand-code Resolve!
choose

Specify
components

Retrieve

Prototyping component
system

Interconnections components

Implementation

Fig. 7 The Prototyping Method

specifications, the entire prototyping method is then

applied to those specifications. (Ref. 7:p. 67]

28

III. COMPUTER-AIDED PROTOTYPING SYSTEM

The computer-aided prototyping system (CAPS) is a set of

software tools which reduces the designer's efforts by

automating time-consuming tasks in conventional prototyping,

such as turning specifications into prototypes, modifying

prototypes, and searching for available reusable components

[Ref. 7:p. 67-68]. Designed to operate on the prototyping

language PSDL, CAPS consists of a syntax-directed editor

with graphics capabilities, a rewrite system, a design-

management system, a software base, a design database, and

an execution support system [Ref. 7:p. 66]. Fig. 8 shows

the architecture of the computer-aided prototyping system.

Following is a short description of the functions of each of

the components of CAPS.

A. USER INTERFACE

The user interface consists of a syntax-directed editor

for PSDL and a graphics tool to construct and display

dataflow diagrams. The syntax-directed editor expedites the

designer's data entry at a terminal by eliminating syntax

errors, automatically supplying keywords, and prompting

29

User InterfaceWAN

Prototype System
Description Language (PSOL)

I~ F
Rewrite

Subsystem

Design-Management Execution Support
System System

Design Database

Software Base

Fig. 8 CAPS System Architecture

with a choice of legal syntactic alternatives at each point.

[Ref. 9:p. 29]

The graphics tool provides a graphical view of the

enhanced data flow diagram in the PSDL implementation of a

composite module. It helps you visualize the relationships

between the components of a decomposition through a two-

30

dimensional dataflow diagram and provides a convenient way

to enter and update the decomposition information in the

dataflow diagram. [Ref. 9:p. 29]

B. REWRITE SYSTEM

The rewrite system translates semantically equivalent

specifications into a common (normalized) form that is used

by the design-management system to search for components.

Normalized components are easier to retrieve because there

are fewer keys to search for in the software base. This is

a more practical approach than trying to generate all

variations of a description and searching the software base

for each variation. Table 2 shows an example of an informal

rewriting system. [Ref. 7:p. 69]

TABLE 2.
SAMPLE REWRITE-SYSTEM RULE TABLE.

Term Aliases

update change, modify, refresh,
replace, substitute

read fetch, obtain, input, get,
retrieve

The rewrite system would replace all occurrences of the

aliases by the associated basic terms. The sentence "Fetch

the order from the transaction file and modify the

31

inventory" would be rewritten to "Read the order from the

transaction file and update the inventory." [Ref. 7:p. 69]

C. DESIGN-MANAGEMENT SYSTEM

The design-management system is responsible for

organizing, retrieving, and instantiating reusable

components from the software base and for managing the

versions, refinements, and alternatives of the prototypes in

the design database. The design-management system is

essentially a database-management system that can

efficiently manage long transactions, data describing

complex objects (such as software components), the iterative

and tentative nature of the design process that leads to

versions, refinements, and alternatives of the design

objects, and concurrent design operations in a distributed

computing environment. It also provides special-purpose

operations to compose components, and a browsing capability

similar to the one provided by the Smalltalk environment.

[Ref. 7:p. 69]

D. SOFTWARE BASE

The software base consists of PSDL descriptions and code

32

for all available reusable software components. Each

component in the software base must have a PSDL

specification. This PSDL specification is organized as a

set of distinct but related attributes. The design-

management system provides component retrieval based on

partial matches of these attributes. The software base

contains a relatively complete set of general-purpose

components to perform the functions common to many systems,

such as managing displays, sorting and searching, parsing

input strings, and managing look-up tables. [Ref. 9:p. 29]

E. DESIGN DATABASE

The design database in the prototyping environment

contains the PSDL prototype descriptions for each software

development project using CAPS. This design history

consists of the relationship between each version of the

requirements and the corresponding versions of parts of the

prototype. This information is useful in cases where parts

of the requirements are returned to previous configurations,

because it enables the system to help restore the

corresponding parts of the prototype to their previous

configurations. The design database will support retrievals

33

of the form

- given a requirement, find all the PSDL
components that implement it, or

- given a PSDL component, find all the
requirements it implements. [Ref. 9:p. 29]

F. EXECUTION SUPPORT SYSTEM

Within the CAPS architecture there exists an execution

support system which allows the designer to execute the

prototype. This support system consists of three major

components: a translator, a static scheduler, and a dynamic

scheduler. The translator generates code binding together

the reusable components extracted from the software base.

Its main functions are to implement data streams and control

constraints. The static scheduler allocates time slots for

operators with real-time constraints before execution

begins. If the allocation succeeds, all operators are

guaranteed to meet their deadlines even with worst-case

execution times. The dynamic scheduler invokes operators

without real-time constraints in the time slots not used by

the operators with real-time constraints as execution

proceeds. [Ref. 5:p. 16) [Ref. 10:p. 15-16]

34

The execution support system is covered extensively in

the remaining chapters.

35

IV. INTEGRATION OF THE EXECUTION SUPPORT SYSTEM

A. OVERVIEW

The execution support system as conceptualized by this

author is shown in Fig. 9. It consists of three processes:

the translator, the static scheduler and the dynamic

scheduler. The translator takes as input the PSDL source

code generated by the designer and produces DRIVER

procedures, contained in package TL, which call the reusable

components in package SB. The static scheduler takes as

input the PSDL source code and produces two outputs: the

static schedule for the time-critical operators and a file

called noncrits containing the names of the non-time-

critical operators. The dynamic scheduler takes as input

the file noncrits and uses this to produce an Ada task

containing procedure calls for the non-time-critical

operators.

The user interface is responsible for invoking the

translator, static scheduler and dynamic scheduler. The

translator and the static scheduler can operate in parallel,

however the dynamic scheduler must wait for completion of

36

the static scheduler before it can run. once the

translator, sitatic scheduler and dynamic scheduler have

completed, the user interface takes their outputs as well as

the packages: PSDLSYSTEM, PSDLEXCEPTIONS, SB, Global_

Declarations, DSDebug_ PKG, TIMERS, VSTRINGS, List-Single_

UpeelCritical

ADDITIONAL
RU NTIMEK
SUPPORT

the~ttlc@ DesaraIone

SYSTEM ECCEPTiONS Icedl OS-e&

ADA Compler/uinkor

Prototype

Protoype

Fig. 9 Execution Support System

37

UnboundedUnmanaged and PRIORITYDEFINITIONS and compiles

and links them, thus forming the executable prototype.

Note, the latter four packages are the ADDITIONAL RUNTIME

SUPPORT.

Previous research resulted in separate implementations

for the translator [Ref. 11], static scheduler [Ref. 12]

[Ref. 13] [Ref. 14) [Ref. 15], and dynamic scheduler (Ref.

16). These individual components were not previously

integrated though into a functioning execution support

system which enables the execution of prototypes written in

PSDL. It is the development of this tool that is the focus

of this thesis.

B. MODIFICATIONS TO THE TRANSLATOR

1. Data Stream Implementation

Data streams are the means by which PSDL operators

communicate. A data stream is a communication link

connecting exactly one producer operator to exactly one

consumer operator. Altizer [Ref. 11:p. 40] describes an

implementation for data streams in which data streams are

implemented as an Ada generic package containing an embedded

task. Inside the task are the various operations necessary

38

to support data triggers and data stream reads and writes.

Four separate packages are provided to implement the

variations of data streams. All of these packages are then

grouped into a package called PSDL_SYSTEM.

While Altizer's handling of data streams was found to

be essentially adequate, several modifications were made to

the original design. Appendix A contains the new version of

PSDLSYSTEM.

One change made was to replace the literal value in the

pragma PRIORITY with the constant BUFFERPRIORITY. The

value of BUFFERPRIORITY is declared in the package

PRIORITYDEFINITIONS along with the values of the constants

STATICSCHEDULEPRIORITY and DYNAMICSCHEDULEPRIORITY. The

purpose of doing this is to consolidate all the PRIORITY

pragma values for the prototype into one package, so that

future design changes and enhancements will be easier to

make.

Another change made to the original design was to

eliminate the record type DATASTREAMTOKEN. DATA_

STREAMTOKEN was determined to be unnecessary and was

replaced instead with two local variables: BUFFER and FRESH.

39

The names of several identifiers in PSDLSYSTEM were

changed. For instance, SAMPLEDSTREAM was changed to

SAMPLEDBUFFER. DATASTREAM was changed to BUFFER. GET was

changed to READ. PUT was changed to WRITE, etc. This was

done in the interest of improving clarity.

Finally, probably the most significant change made was

to consolidate the generic packages SAMPLEDSTATEVAR and

DATAFLOWSTATEVAR into one package STATEVARIABLE. Having

both SAMPLEDSTATEVAR and DATAFLOWSTATEVAR was found to

be redundant.

2. Integration of Reusable Components

In Chapter II. of this thesis, a short description is

given of the prototyping method, which is the process by

which a PSDL atomic operator specification is used to

extract a reusable Ada component from the software base.

These components, which represent the implementations of the

atomic operators, are critical to the functioning of the

prototype. Yet, up until Altizer [Ref. ll:p. 38], no

provision was made for their insertion into the prototype.

Altizer proposed that when a reusable module is

extracted from the software base, that it be inserted into

40

the PSDL source code at the IMPLEMENTATION statement. Then,

when the PSDL source code is processed by the translator

this component would be extracted and placed in the TL

package, which is the output of the translator.

This approach, though it seems viable, was never

actually implemented by Altizer. An alternative approach

that actually was implemented during the course of this

thesis, makes use of the Ada with and use clauses. In this

approach all components extracted from the software base are

assembled into a package called SB which is placed into a

file called sb.a. The output of the translator, package TL,

consists then of DRIVER procedures which call these

components. Visibility to package SB is provided via the

Ada with and use clauses. This is illustrated in Fig. 10.

3. Exception Handling

PSDL exceptions are described by Luqi in [Ref. 17] as

special data types that may be written to any data stream

regardless of the stream's normal data type. When a PSDL

exception is raised in an operator it is immediately output

onto all of the operator's output data streams. All

operators immediately downstream from this operator receive

41

the exception on one or more of their input streams and are

then responsible for its handling.

with TEXTJO; use TEXT 10;
with PSDL EXCEPTIONS; use PSDLEXCEPTIONS;
package SB is

end SB;

package body SB is

reusabte Ada components

end SB;

package TL is

end TL;

with PSDL SYSTEM; use PSDLSYSTEM;
with PSDL EXCEPTIONS; use PSDL EXCEPTIONS;
with SB; use SB;

package body TL is

instantiations of data streams

DRIVER procedures

end TL;

Fig. 10 Integration of Reusable Componerts

Altizer in [Ref. 11] describes an alternative method

for handling PSDL exceptions. In his approach, a

distinction is made between streams which carry normal data

42

values and streams which carry PSDL exceptions. Streams

which carry PSDL exceptions are of type PSDLEXCEPTION and

must be declared explicity by an operator. An operator

allowed to raise a PSDL exception can only communicate that

exception to operators which are directly connected to it

via an exception data stream. An operator receiving the

PSDL exception on its input data stream is then by

definition an exception handler.

While Altizer's method was determined to be easier to

implement than the method originally proposed by Luqi, it

was also determined to be inadequate. The approach to

exception handling eventually decided upon in this thesis

draws on this approach but differs somewhat. The following

paragraphs will describe an example of a PSDL to Ada

translation involving PSDL exceptions. At that time the

method adopted in this thesis should become clear.

Deviations from previous research in both method and

implementation will be noted.

Appendix B contains a sample prototype which performs

no particular function. The example consists of an enhanced

data flow diagram, a prototype description, parts of its Ada

43

implementation and a supporting Ada package. Operator C1 is

a composite operator. OPI, OP2 and OP3 are atomic

operators. OPI, OP2 and OP3 are subcomponents of C1.

Operator EXCEPTIONHANDLER is an atomic operator. Its

purpose is to handle any exceptions raised by OPl. The data

streams visible in this diagram are A, B and EXCP. A and B

are data streams of normal data types. EXCP is an exception

data strear It is of type PSDLEXCEPTION.

Referring to Section B of Appendix B, it can be seen

that data streams A and B are declared to be of type

INTEGER. Data stream EXCP is declared to be of type

PSDLEXCEPTION. The statement

EXCEI TION OUTOF RANGE IF A > 100

is a PSDL EXCEPTION statement. It is interpreted as "If the

value which is to be output to A is greater than 100, then

output the PSDL exception OUTOFRANGE onto all of the

operator's output data streams declared to be of the

PSDLEXCEPTION data type. Do not output the calculated

value onto A." This represents a departure from previous

research. Prior to this thesis, the syntax of the EXCEPTION

statement required that a target data stream be specified.

44

In the interest of efficiency, it was decided that the

default be all data streams of type PSDLEXCEPTION and that

if the designer wished to suppress outputting the exception

to any particular stream he could do so via an Output

Condition [Ref. 6:p. 1415-1416].

The statement

TRIGGERED BY ALL EXCP IF EXCP = OUTOFRANGE

represents another departure from previous research. It is

a PSDL triggering condition which is interpreted here as "If

there is a new data value on input data stream EXCP, then

consume the data value. If the value consumed equals the

PSDL exception OUTOFRANGE, then allow the operator

EXCEPTIONHANDLER to execute. If the expression EXCP =

OUTOFRANGE is not satisfied, then EXCEPTIONHANDLER is not

allowed to execute any farther and is terminated." Altizer

introduced a special operation in his thesis to perform the

above function, which is to determine if a particular

exception has been raised. This was determined to be

unnecessary. A special note here. In the above statement,

the condition EXCP = OUTOFRANGE is optional. If this

condition is null, then the presence of any PSDL exception

45

on EXCP will cause EXCEPTIONHANDLER to executA.

One last item of interest in Section B of hppendix B is

the statement

EXCEPTIONS NEGATIVENUMBER

This statement is interpreted as "During the execution of

operator OPl, its possible for an A& exception

NEGATIVENUMBER to be raised. If this haens convert

NEGATIVENUMBER into a PSDL exception and output it onto all

data streams of type PSDLEXCEPTION, which in this case is

only one stream, EXCP." This provides a mechanism for

interfacing between Ada exceptions and pSDL exception

handlers. Ada exceptions that are not declared in the PSDL

specifications are treated as errors and cause abnormal

termination of the prototype.

Section C of Appendix B is a partial Ada hiplementation

of the prototype described in Section B. It coDsists of two

packages: TL and SB. Package SB is as described earlier in

this thesis. It is a package containing the reusable

components extracted from the software base. Package TL is

the output of the translator. It consists of DRIVER

procedures which call the components in SB.

46

In both package TL and package SB visibility is

established to a package PSDLEXCEPTIONS via the Ada with

and use clauses,

with PSDLEXCEPTIONS; use PSDLEXCEPTIONS;

Package PSDLEXCEPTIONS is an Abstract Data Type (ADT). Its

purpose is to define the type PSDLEXCEPTION and various

operations applicable to objects of the type. When the

reusable components were placed into a separate package SB,

it was found necessary to abstract out the type

PSDLEXCEPTION and to create the ADT. PSDLEXCEPTIONS is

listed in Section D of Appendix B.

C. IMPLEMENTATION OF THE DYNAMIC SCHEDULER

As stated at the beginning of this chapter, the execution

support system consists of three major components: a

translator, a static scheduler and a dynamic scheduler.

Previous research resulted in implementations for these

components, but they were never integrated into a

functioning execution support system which enables the

execution of prototypes written in PSDL. Providing this

tool is the purpose of this thesis.

47

In the case of the translator, Altizer (Ref. 11] provided

an implementation which when modified as described earlier,

was assimilated into the execution support environment. In

the case of the static scheduler, Kilic [Ref. 15] provided

an implementation which when modified was assimilated into

the execution support environment. Not so with the dynamic

scheduler though.

The dynamic scheduler as implemented by Wood [Ref. 16]

presented a problem. The problem is that Wood's dynamic

scheduler is based on a conceptualization of the execution

support system which differs from the one adopted in this

thesis. As envisioned by Wood, Fig. 11, the translator is a

separate process which can execute in parallel with the

static scheduler. The static s.neduler is part of a system

containing the static scheduler, its debugging system, and

the process by which the non-time critical operators are

transformed into executable code. The dynamic scheduler

coordinates the execution of the critical and non-critical

operators. It and its debugging system form another

distinct part of the execution support system.

48

User
Interface

Static Execution

Scheduler Support

Fig. 11 Execution Suppor System, Previous

According to Wood, the translator and the static

scheduler produce three outputs: the executable code for

the operators, the static schedule for the time-critical

operators, and the listing of procedure calls for the non-

time-critical operators. These outputs must be compiled and

linked together before the dynamic scheduler can be invoked.

49

The user interface in CAPS is responsible for invoking the

static scheduler, the translator, and the dynamic scheduler.

The user interface also ensures that the outputs above are

compiled and linked before invoking the dynamic scheduler.

Owing to the incompatibility between Wood's

conceptualization and the one in this thesis, it was

necessary then to come up with a new implementation for the

dynamic scheduler. This is presented in Appendix C. As can

be seen, the dynamic scheduler was implemented as a

procedure. It has one input and one output. Input consists

of the names of the non-time-critical operators. Output

consists of a task containing procedure calls to the non-

time-critical operator DRIVERS in package TL. Visibility to

TL, as well as to the package PRIORITYDEFINITIONS, is

provided via the Ada with and use clauses. The output of

the dynamic scheduler is referred to as a dynamic schedule

in this thesis. Fig. 12 is an example schedule.

One item to take note of in the sample schedule is the

statement

pragma priority (DYNAMICSCHEDULEPRIORITY);

50

with TL; use TL;
with PRIORITY-DEFINITIONS; use PRIORITY-DEFINITIONS

package DSPACKAGE is

task DYNAMIC SCHEDULE is
pragma priority (DYNAMICSCHEDULEPRIORITY);

end DYNAMIC-SCHEDULE;

end DSPACKAGE;

package body DSPACKAGE is
task body DYNAMIC-SCHEDULE is
begin

Loop
non criticalopl-DRIVER;

noncriticaL_op2_DRIVER;

nuLL;
end toop;

end DYNAMIC-SCHEDULE;
end DSPACKAGE;

Fig. 12 Sample Dynamic Schedule

A pragma is a directive to the Ada compiler. The priority

pragma specifies the priority of a task or main program. It

takes as a single argument either an integer or an

expression which evaluates to an integer. A task with a

higher priority will execute before a task with a lower

priority.

The static schedule is a task which contains procedure

calls to the time-critical operator DRIVERS in TL. It too

has a priority pragma statement. The pragma statements in

the dynamic and static schedules are set so that the static

schedule always has the higher priority. This is to ensure

that when the static schedule needs the processor it will

get it. The use of Ada's tasking facilities to control

51

operator execution is a feature which originally appeared in

Wood's implementation. Though as mentioned above, the

dynamic scheduler implementations are different, this was a

feature that was found to be especially useful and thus was

incorporated here.

D. MODIFICATIONS TO THE STATIC SCHEDULER

Integration into the execution support system of the

static scheduler Kilic [Ref. 15] presented few problems for

this author. Test cases run through the scheduler during

integration identified only a single minor error in the

actual functioning of the scheduler; this was quickly

corrected. Subsequent modifications during integration

consisted entirely of changes of an interface nature. These

are described below.

Fig. 13 is a sample static schedule. When Kilic was

implementing the static scheduler, the work of integrating

the debugger into the execution support system was still in

its infancy. Static schedules created by the static

scheduler consequently contained no reference to the

debugger. This was changed. Added to static schedules now

are the statements

52

with GLOBAL DECLARATIONS; use GLOBALDECLARATIONS;

with DSDEBUGPKG; use DSDEBUGPKG;

which establish visibility to the debugger and the statement

DSDEBUG.RUNTIMEMETFAILURE (
VARSTRING. VSTR ("CRITICALOP3"),
CURRENTTIME, CRITICALOP3_STOPTIME3,
PERIOD);

which executes an entry call to RuntimeMETFailure. The

actual functioning of the debugger is described in the next

section and will not be covered here.

One item that does need to be covered here though is the

use of the Ada delay statement in the static schedule. It

was mentioned in the previous section that priority pragma

statements are utilized in the dynamic and static schedules

to ensure that when the static schedule needs the processor

it gets it. The question now is "How does the dynamic

schedule get the processor then?" The answer is via the Ada

delay statement.

The delay statement is used in Ada to suspend execution

of a task or main body. When a time-critical operator

completes execution a check is made to deter,_-ne if the

operator's scheduled stop time is greater than the current

time. If it is, then the static schedule delays for the

53

time remaining till its stop time. Once it does this, it

effectively gives up the processor to the dynamic schedule.

When the length of the delay is over, the static schedule is

given the processor back.

with GLOBAL-DECLARATIONS; use GLOBAL-DECLARATIONS;
with DS.DEBUG.PKG; use DSDEBUG.PKG;
with TL; use TL;
with DSPACKAGE; use DS PACKAGE;
with PRIORITY-DEFINITIONS; use PRIORITY-DEFINITIONS;

with CALENDAR; use CALENDAR;
with TEXT_10; use TEXT_10;
procedure STATIC SCHEDULE is

CRITICAL 0 P3 TIMING-ERROR : exception;

CRITICAL OP2 TIMING ERROR : exception;
CRITICAL OP1 TIMING-ERROR : exception;
task SCHEDULE is
pragma priority (STATICSCHEDULEPRIORITY);

end SCHEDULE;

task body SCHEDULE is

begin
loop

begin
CRITICAL OPI DRIVER;
SLACK TIME:= START OFPERIOD + CRITICAL OPI STOPTIME1 - CLOCK;
if SLACK TIME >= 0.0 then

delay (SLACKTIME);

else
raise CRITICALOPITIMINGERROR;

end if;
delay (STARTOFPERIOD + CRITICAL OP1 STOPTIMEI - CLOCK);

CRITICAL OP2 DRIVER;

delay (STARTOFPERIOD + CRITICAL OP2 STOPTIME2 - CLOCK);

CRITICALOP3_DRIVER;

START OF PERIOD := START OF PERIOD + PERIOD;
delay (STARTOFPERIOD - clock);

Fig. 13 Sample Static Schedule

54

exception
when CRITICALOP3_TIMINGERROR =>

PUTLINE("timing error from operator CRITICALP3");
CURRENT TIME:= crock - START OFPERIOD;

DS DEBUG.RUNTIME MET FAILURE (
VARSTRING.VSTR("CRITICALOP3"),

CURRENT-TIME, CRITICAL OP3 STOP TIME3, PERIOD);
START OF PERIOD := cLock;
when CRITICALOP2 TIMING ERROR =>

when CRITICALOPITIMING ERROR =>

end;
end Loop

end SCHEDULE;

begin
nutt;

end STATIC-SCHEDULE;

Fig. 13 Continued

E. THE DEBUGGER

1. Background

There are three kinds of exceptions defined in this

thesis: Ada exceptions not declared in the prototype

description, PSDL exceptions defined by the prototype

designer to include Ada exceptions declared in the prototype

description and Ada exceptions declared by the PSDL runtime

system. Ada exceptions not declared in the prototype

description include the predefined exceptions declired in

package STANDARD. The raising of this type of exception

during prototype execution results in abnormal termination.

55

PSDL exceptions defined by the prototype designer were

discussed in section B of this chapter. Handling of these

exceptions is by the exception handler which the designer

must provide in package SB. Ada exceptions declared by the

PSDL runtime system, of which there are three, are CAPS

specific exceptions which can occur during the execution of

any prototype. They are: BUFFERUNDERFLOW, BUFFEROVERFLOW

and OPERATORTIMINGERROR, where OPERATOR is the name that

was given to the operator in the prototype description.

Exception BUFFERUNDERFLOW is raised when an operator

attempts to read from an empty data stream. Exception

BUFFEROVERFLOW is raised when an operator attempts to write

to a dataflow stream which currently contains a value.

Exception OPERATORTIMINGERROR is raised when an operator

exceeds its MET. Ada exceptions declared by the PSDL

runtime system are handled by the debugger which is

described below.

As part of the earlier research effort on CAPS, in

addition to developing the translator, the static scheduler

and the dynamic scheduler, work was i-sx expended on the

development of a runtime debugger for the execution support

56

system. This work was done primarily by Wood and is

described in her thesis [Ref. 16]. Wood calls her debugger

the Dynamic Scheduler debugging system and implements it as

a task consisting of six entries. They are:

RuntimeMETFailure, BufferUnderflow, BufferOverflow,

Exception-Error, NonTimeCriticalOperatorsDone and

StaticScheduleDone. The first four entries were provided

to serve as handlers for the Ada exceptions declared by the

PSDL runtime system. The latter two entries were provided

to allow for graceful termination of the prototype.

During the course of integrating Wood's debugging

system into the execution support system, entry

ExceptionError was determined to be unnecessary and was

eliminated. Entries NonTimeCritical_OperatorsDone and

StaticScheduleDone were determined to be predicated on the

false assumption that all the operators execute only once

and likewise were eliminated. Thus the modified version of

the Dynamic Scheduler debugging system called simply the

debugger in this thesis, consists of only three entry

statements. The code is included as Appendix D.

57

2. Sample Session

The purpose of any debugger is usually a twofold one-to

identify errors and if possible, to correct them. The

purpose of this debugger is no different. In the case of

BufferUnderflow and Buffer_Overflow, the function performed

is one of identification-a message is printed to a file, the

prototype terminates. In the case of RuntimeMETFailure

though, the function performed is not only one of

identification, but also one of correction.

Reference is made to Fig. 14 which is repeated from the

previous section. When a critical operator exceeds its MET

during prototype execution, a TIMINGERROR exception is

raised. At this point, control passes to the exception

handler, an error message is printed to the screen and an

entry call is made to RuntimeMETFailure. Prototype

execution has in effect been suspended. Reference is now

made to Appendix D. Upon accepting the entry, the first

action the debugger takes is to determine if the operator

which exceeded its MET is in the Operators_Overrun list.

The OperatorsOverrun list is a list of records where each

record contains the name of an operator that has exceeded

its MET and a count of the number of times it has done so.

58

with GLOBAL-DECLARATIONS; use GLOBAL DECLARATIONS;
with DSO.DEBUGPKG; use DSDEBUGPKG;
with TL; use TL;
with DS PACKAGE; use DS.PACKAGE;
with PRIORITY-DEFINITIONS; use PRIORITY-DEFINITIONS;
with CALENDAR; use CALENDAR;
with TEXT_10; use TEXT_10;

procedure STATIC-SCHEDULE is
CRITICAL OP3 TIMINGERROR : exception;
CRITICAL OP2 TIMINGERROR : exception;

CRITICALOPI TIMING ERROR : exception;
task SCHEDULE is
pragma priority (STATICSCHEDULEPRIORITY);

end SCHEDULE;

task body SCHEDULE is

begin
Loop
begin

CRITICAL OP1 DRIVER;
SLACK TIME:= STARTOFPERIOD + CRITICALOPISTOPTIME1 - CLOCK;
if SLACK-TIME = 0.0 then

delay (SLACK TIME);
else

raise CRITICALOPlTIMINGERROR;
end if;
delay (STARTOFPERIOD + CRITICALOPISTOP TIME1 - CLOCK);

CRITICALOP2 DRIVER;

delay (STARTOFPERIOD + CRITICALOP2_STOPTIME2 - CLOCK);

CRITICALOP3_DRIVER;

STARTOFPERIOD := STARTOFPERIOD + PERIOD;

delay (STARTOFPERIOD - clock);

exception
when CRITICALOP3 TIMINGERROR =>
PUTLINE("timing error from operator CRITICALOP3");

CURRENTTIME:= clock - STARTOFPERIOD;

DSDEBUG.RUNTIME MET FAILURE (
VARSTRING.VSTR("CRITICALOP3"),
CURRENTTIME, CRITICAL OP3 STOPTIME3, PERIOD);

STARTOFPERIOD := clock;

when CRITICALOP2 TIMINGERROR =>

Fig. 14 Sample Static Schedule

59

when CRITICAL OPITIMINGERROR =>

end;
end toop

end SCHEDULE;

begin
nutt;

end STATICSCHEDULE;

Fig. 14 Continued

If the operator appears in the list, a check is then made to

determine if the operator has exceeded its authorized number

of executions. If it has, an error message is printed and

execution of the prototype terminates abnormally. If it

hasn't exceeded its authorized number of executions, the

Executed-count field in the record is then incremented by

one, adjustments are made to the operator's MET, a record of

the adjustments is printed to a file called Information and

execution of the prototype is resumed.

Assume for the moment that this is the first time this

operator has exceeded its MET. Consequently, it will not be

found in the Operators_Overrun list. At this point the user

is queried as to which of two possible courses of action he

would like to take. This is illustrated in Fig. 15. If the

user opts for A, prototype execution terminates. If the

user opts for B, a record for the operator is then inserted

60

in the OperatorsOverrun list, an error message is printed

to file Information, adjustments are made to the operator's

MET and a record of this is printed to Information. Fig. 16

timing error from operator CRITICAL.OP2

Execution of the prototype has been suspended because an
operator exceeded its maximum execution time. The
operator causing the error is:

CRITICALOP2

Do you want to
A. Terminate execution of the prototype?
B. Adjust the execution time of the operator and continue

execution of the prototype?

Type the Letter preceding the option you want.

Fig. 15 Sample User Query

EXECUTION HAS BEEN SUSPENDED OR HAS TERMINATED ABNORMALLY

The following operator did not complete execution
before its maximum execution time was expired. The operator
which caused the error is:

CRITICALOP2

The maximum execution time for operator CRITICALOP2
was increased by 3.0200000E+00.
The new ending time for operator CRITICALOP2
from the start of the period within the static schedule

is 1.5020000E+01.

EXECUTION HAS BEEN SUSPENDED OR HAS TERMINATED ABNORMALLY

The following operator did not compLete execution
before its maximum execution time was expired. The operator
which caused the error is:

CRITICALOP3

The maximum execution time for operator CRITICALOP3
was increased by 1.7400000E+00.
The new ending time for operator CRITICALOP3
from the start of the period within the static schedule
is 1.5740000E+01.

Fig. 16 Contents of File Information

61

is an illustration of the possible contents of file

Information. Note, the printing of the adjustment times to

file Information represents a modification to the earlier

implementation.

F. ADDITIONAL RUNTIME SUPPORT

In the description of what constitutes a prototype at the

beginning of this chapter, reference was made to a group of

packages called simply, ADDITIONAL RUNTIME SUPPORT. With

the exception of PRIORITYDEFINITIONS, which was discussed

already, these packages provide various types and operations

which are essential to the prototype's execution. In the

interest of clarity and completeness, the code for these

packages is provided as Appendix E.

62

CHAPTER V. PROTOTYPE EXAMPLE

This chapter contains a prototype description and the

corresponding prototype actually generated by the execution

support system of CAPS. The example is based on the command

and control system for a HAWK Air Defense Guided Missile

System Battery. The mission of the HAWK system is to detect

and destroy low to medium altitude, hostile, airborne

targets. The HAWK missile system detects, identifies,

tracks, engages, and destroys airborne targets. The system

performs these functions against extremely low-altitiude and

medium-altitude targets while retaining a high degree of

mobility for rapid deployment with the Army in the field.

Fig. 17 is a very small section of the overall dataflow

diagram for the command and control system. This particular

diagram is modeling the part of the system that provides to

the Tactical Control Officer (TCO) a continuously updated

tactical summary. Track data are read, sorted by category

and then written to a tactical display located by the TCO.

C1 is a composite operator. READTRACKS, SORTTRACKS and

WRITETRACKS are atomic operators which represent the

63

realization of Cl.

Fig. 17 Dataf low Diagram

Fig. 18 is the prototype description corresponding to the

dataflow diagram in Fig. 17. As can be seen, operators

READTRACKS, SORTTRACKS and WRITETRACKS are time-critical.

More specifically though, they're periodic. Every 20

64

seconds they will execute. A and B are data streams. By

virtue of the fact A does not appear in a "TRIGGERED BY ALL"

constraint of SORTTRACKS, it is a sampled stream and will

be implemented as such. Likewise for B. By virtue of the

fact it does not appear in a "TRIGGERED BY ALL" constraint

of WRITETRACKS, it too is a sampled stream. STRLIST is a

user defined type.

OPERATOR C1

SPECIFICATION

MAXIMUM EXECUTION TIME 14 sec

END

IMPLEMENTATION GRAPH

A.READTRACKS->SORT TRACKS

B.SORTTRACKS->WRITETRACKS

DAIA STREAM A STRLIST,
B STR LIST

CONTROL CONSTRAINTS

OPERATOR READTRACKS

PERIOD 20 sec

OPERATOR SORT-TRACKS

PERIOD 20 sec

OPERATOR WRITETRACKS

PERIOD 20 sec

DESCRIPTION (text)

END

OPERATOR READTRACKS

Fig. 18 Prototype Description

65

SPECIFICATION

OUTPUT A : STRLIST
MAXIMUM EXECUTION TIME 10 sec

END

IMPLEMENTATION ADA READ-TRACKS

END

OPERATOR SORT-TRACKS

SPECIFICATION

INPUT A STR LIST
OUTPUT B STR LIST
MAXIMUM EXECUTION TIME 2 sec

END

IMPLEMENTATION ADA SORT-TRACKS

END

OPERATOR WRITE-TRACKS

SPECIFICATION

INPUT B : STR LIST
MAXIMUM EXECUTION TIME 2 sec

END

IMPLEMENTATION ADA WRITETRACKS

END

Fig. 18 Continued

Fig. 19 is package SB which contains the reusable

components extracted from the software base. Procedure

READTRACKS basically just keeps reading track data from

file INPUTFILE until it encounters the ENDOFFILE

condition. SORTTRACKS makes use of the reusable component

QUICKSORT to sort the tracks by category. And finally,

WRITETRACKS writes the data to the screen.

66

Fig. 20 is the output of the translator after it reads

and processes the prototype description given in Fig. 18.

The statement

package DSA is new SAMPLEDBUFFER(STRLIST);

is the instantiation for data stream A. The statement

package DSB is new SAMPLEDBUFFER(STRLIST);

with TEXTJO; use TEXTID;
with ORDERING;

with PSDLEXCEPTIONS; use PSDLEXCEPTIONS;
package SB is

type STRINGREC is record
NAME : STRING (1..80);

end record;

type STRLIST is array (INTEGER range 1..10) of STRINGREC;
procedure READTRACKS (DATA : in out STRLIST);
procedure SORT-TRACKS (L in STRLIST; M : in out STR_LIST);
procedure WRITETRACKS (L in STRLIST);

end SB;

package body SB is
function "<" (X : in STRING REC;

Y : in STRING REC) return BooLean is

begin

return IX.NAME (1) < Y.NAME (1));
end 111;
package INTINC is new

ORDERING.OUICKSORT (STRINGREC, INTEGER, 1<");

use INTINC;

procedure READ-TRACKS (DATA : in out STRLIST) is

INPUT-FILE : FILE-TYPE;
I, LAST : INTEGER;
TEMP STRING : STRING (1..80);

begin
OPEN (INPUTFILE, INFILE, "INPUTFILE");

for J in 1..10 loop

for K in 1..80 loop

DATA (J).NAME (K) '

end loop;
end loop;
I := 1;

while (not (END OF FILE (INPUT FILE))) loop

GET-LINE (INPUT-FILE, TEMPSTRING, LAST);
DATA (I).NAME (1..LAST) := TEMPSTRING (1..LAST);

Fig. 19 Reusable Components

67

I := I + 1;

end toop;
CLOSE (INPUT FILE);

end READTRACKS;

procedure SORT-TRACKS (L : in STRLIST; M : in out STRLIST) is

begin

M := L;
QUICKSORT (INT_INC.List (M)); -- Sort in increasing sequence

end SORTTRACKS;

procedure WRITE-TRACKS (L : in STRLIST) is

begin
NEW LINE;
for I in 1..10 toop
PUT LINE (L (1).NAME (1..80));
NEW LINE;

end toop;

end WRITETRACKS;
end SB;

Fig. 19 Continued

package TL is
procedure READ TRACKSDRIVER;
procedure SORTTRACKSDRIVER;
procedure WRITETRACKSDRIVER;

end TL;

with SB; use SB;
with PSDLSYSTEM; use PSDLSYSTEM;

package body TL is

package ClSPEC is

package DSA is new SAMPLEDBUFFER(STRLIST);
package DSB is new SAMPLED_BUFFER(STR_LIST);

end ClSPEC;

procedure READTRACKSDRIVER is
A: STRLIST;

begin
READTRACKS(A);
C1_SPEC.DSA.BUFFER.WRITE(A);

end READTRACKSDRIVER;

procedure SORTTRACKSDRIVER is

A: STRLIST;

B: STR LIST;
begin

C1_SPEC.DSA.BUFFER.READ(A);
SORTTRACKS(A, B);

Fig. 20 DRIVER Procedures

68

C1_SPEC.DSB.BUFFER.WRITE(B);
end SORTTRACKSDRIVER;

procedure WRITE TRACKS DRIVER is
B: STRLIST;

begin
Cl SPEC.DS B.BUFFER.READ(B);
WRITETRACKS(B);

end WRITETRACKS DRIVER;

end TL;

Fig. 20 Continued

is the instantiation for data stream B. The procedures

READTRACKSDRIVER, etc. are the drivers for the resuable

components given in Fig. 19.

Fig. 21 is the output of the dynamic scheduler. It

consists of a package DS_PACKAGE containing a task

DYNAMICSCHEDULE. DYNAMICSCHEDULE contains procedure calls

to the non-time-critical operator DRIVERS in package TL. In

the example in this chapter, there are no non-time-critical

operators, consequently, DYNAMICSCHEDULE contains no

procedure calls. Another important item to take note of is

the statement

pragma priority (DYNAMICSCHEDULEPRIORITY);

This statement is needed to ensure that if the static

schedule and the dynamic schedule are both vying for the

processor, the static schedule will get it. The value of

this priority must be less than the value of the priority in

69

the static schedule.

with TL; use TL;
with PRIORITY DEFINITIONS; use PRIORITY DEFINITIONS;

package DS PACKAGE is
task DYNAMIC-SCHEDULE is
pragma priority (DYNAMICSCHEDULEPRIORITY);

end DYNAMIC SCHEDULE;
end DSPACKAGE;

package body DSPACKAGE is
task body DYNAMIC-SCHEDULE is
begin

loop
null;

end loop;
end DYNAMIC-SCHEDULE;

end DSPACKAGE;

Fig. 21 Dynamic Schedule

Fig. 22 is the output of the static scheduler. It

consists of procedure calls to the time-critical operator

DRIVERS in package TL. Note that the value of the priority

here has to be greater than the value of the priority in the

dynamic schedule.

with GLOBAL-DECLARATIONS; use GLOBAL-DECLARATIONS;

with DS DEBUGPKG; use DSDEBUG PKG;
with TL; use TL;

with DSPACKAGE; use DSPACKAGE;
with PRIORITYDEFINITIONS; use PRIORITY DEFINITIONS;

with CALENDAR; use CALENDAR;
with TEXT_10; use TEXT_10;
procedure STATIC-SCHEDULE is

WRITE TRACKS TIMINGERROR exception;
SORTTRACKSTIMINGERROR exception;

READ TRACKS_ TIMING-ERROR exception;
task SCHEDULE is
pragma priority (STATICSCHEDULEPRIORITY);

end SCHEDULE;

task body SCHEDULE is
PERIOD : duration := duration(20);

Fig. 22 Static Schedule

70

READTRACKSSTOPTIME1 : duration duration(lO);

SORTTRACKSSTOPTIME2 : duration duration(12);

WRITETRACKSSTOPTIME3 duration duration(14);

SLACK TIME : duration;

STARTOF PERIOD : time clock;

CURRENT TIME : duration;

begin

Loop

begin

READ TRACKSDRIVER;

SLACK-TIME := STARTOFPERIOD + READTRACKSSTOP TIME1 - CLOCK;

if SLACK TIME - 0.3 then

delay (SLACKTIME);

else

raise READTRACKSTIMINGERROR;

end if;

delay (STARTOFPERIOD + READTRACKSSTOPTIMEI - CLOCK);

SORTTRACKS DRIVER;

SLACK-TIME := STARTOF PERIOD + SORTTRACKSSTOPTIME2 - CLOCK;

if SLACK-TIME > 0.0 then

delay (SLACK_TIME);

else

raise SORTTRACKSTIMINGERROR;

end if;

delay (STARTOFPERIOD + SORTTRACKS STOPTIME2 - CLOCK);

WRITETRACKSDRIVER;

SLACK-TIME := STARTOFPERIOD + WRITETRACKSSTOPTIME3 - CLOCK

if SLACK TIME >= 0.0

delay (SLACKTIME);

else

raise WRITETRACKSTIMINGERROR;

end if;

START_3FPERIOD := STARTOFPERIOD + PERIOD;

delay (START_OF_PERIOD - clock);

exception

when WRITE TRACKS TIMING ERROR =>

PUTLINE("timing error from operator WRITETRACKS");

CURRENT TIME:= clock - STARTOFPERIOD;

DS DEBUG.RUNTIME MET FAILURE (

VARSTRING.VSTR("WRITETRACKS"),

CURRENT TIME, WRITETRACKS_STOP_TIME3, PERIOD);

STARTOFPERIOD := clock;

when SORT TRACKSTIMING-ERROR =>

PUTLINE("timing error from operator SORTTRACKS");

CURRENT TIME:= clock - STARTOFPERIOD;

DSDEBUG.RUNTIMEMETFAILURE (

VARSTRING.VSTR("SORTTRACKS"),

CURRENT-TIME, SORTTRACKS_STOP_TIME2, PERIOD);

STARTOFPERIOD := clock;

when READTRACKSTIMING ERROR =>

PUTLINE("timing error from operator READ_TRACKS");

CURRENTTIME:= clock - STARTOFPERIOD;

DSDEBUG.RUNTIME METFAILURE (

Fig. 22 Continued

71

VARSTRNG.VSTR ("READTRACKS"),

CURRENTTIME, READTRACKSSTOPTIME1, PERIOD);

STARTOFPERIOD := clock;

end;

end loop;

end SCHEDULE;

begin

null;

end STATICSCHEDULE;

Fig. 22 Continued

Once the translator, static scheduler and dynamic

scheduler have completed, the user interface takes their

outputs as well as the packages: PSDLSYSTEM,

PSDLEXCEPTIONS, SB, GlobalDeclarations, DSDebugPKG,

TIMERS, VSTRINGS, ListSingleUnbounded_Unmanaged and

PRIORITYDEFINITIONS and compiles and links them, thus

forming the executable prototype. This prototype is then

run. Fig. 23 is a sample input for the prototype. Fig. 24

Identified Azimuth Range (km) Heading Speed (mph)

hostile 320 425 140 1500

unknown 40 250 240 750

friendly 80 75 360 1000

friendly 100 20 270 1000

friendLy 250 130 90 500

hostile 330 450 150 15CO

hostile 300 475 120 1500

unknown 45 750 180 1000

unknown 30 650 210 1000

Fig. 23 Sample Track Data

is the corresponding output.

72

Identified Azimuth Range (kin) Heading Speed (mph)

friendly 100 20 270 1000

friendly 80 75 360 1000

friendly 250 130 90 500

hostile 300 475 120 1500

hostile 320 425 140 1500

hostile 330 450 150 1500

unknown 30 650 210 1000

unknown 45 750 180 1000

unknown 40 250 240 750

Fig. 24 Corresponding output

73

VI. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

Integration is sort of a nebulous term. Integration as

used throughout this thesis has meant: 1. make

modifications to the component to make it work if it doesn't

already and 2. then make modifications to the component to

make it function as part of the execution support system.

In the case of the translator, we saw the need for both

types of modifications. In the case of the static scheduler

and of the debugger, just the latter type of modification

was required. Finally, in the case of the dynamic scheduler

we had a situation where modifications would have been so

extensive, that a new implementation was deemed more

efficient.

The purpose of this thesis was to provide a tool that

enables the execution of prototypes written in PSDL. That

has been accomplished. With the addition of the debugger

the designer also has the capability of changing an

operator's MET dynamically and of recording all operator

time adjustments.

74

B. RECOMMENDATIONS

There are significant opportunities for future research

in the area of the execution support system. One

possibility is the expansion of the debugger. As it is

currently implemented, entries BufferUnderflow and

BufferOverflow provide only an identification type

function. If a call is made to either of them, the only

action taken is to print an error message to file

Information and then terminate the prototype's execution.

Perhaps the capability of correcting these error

dynamically, as it is for RuntimeMETFailure, can be built

in to the debugger.

Another possibility for future research is in the way

that the user interface interacts with the execution support

system. The way that CAPS is implemented now, when the

designer finishes construction of the prototype description

and wishes to invoke the execution support system, he or she

does so by selecting an Execute option off of a menu. What

happens then is the user interface submits the prototype

description to the translator for creation of package TL.

Once the translator finishes, the user interface next

submits the prototype description to the static scheduler

75

for processing. After the static scheduler finishes, the

user interface then invokes the dynamic scheduler. After

the dynamic scheduler finishes the user interface next

compiles and links the necessary files, creating the

executable prototype which is immediately run. At no point

in this process though does the user interface query the

designer as to whether or not they would like to continue,

even if something should go awry along the way like the

static scheduler not being able to derive a schedule. The

user interface needs to be changed so that the Execute

option is broken down into perhaps three options like:

Translate, Compile and Run.

76

APPENDIX A. DATA STREAM IMPLEMENTATION

with PRIORITYDEFINITIONS; use PRIORITYDEFINITIONS;
with vstrings, TIMERS;

package PSDLSYSTEM is

package PSDLSTRINGS is new vstrings(50);
type PSDLTIMER is new TIMERS.TIMER;

BUFFERUNDERFLOW, BUFFEROVERFLOW: exception;

generic
type ELEMENTTYPE is private;

package SAMPLEDBUFFER is
task BUFFER is
pragma PRIORITY(BUFFERPRIORITY);
entry CHECK(NEWDATA: out BOOLEAN);
entry WRITE(VALUE: in ELEMENTTYPE);
entry READ(VALUE: out ELEMENTTYPE);

end BUFFER;
function NEW DATA return BOOLEAN;

end SAMPLEDBUFFER;

generic
type ELEMENTTYPE is private;

package FIFO BUFFER is
task BUFFER is
pragma PRIORITY(BUFFERPRIORITY);
entry CHECK(NEWDATA: out BOOLEAN);
entry WRITE(VALUE: in ELEMENTTYPE);
entry READ(VALUE: out ELEMENTTYPE);

end BUFFER;
function NEW DATA return BOOLEAN;

end FIFOBUFFER;

generic
type ELEMENT TYPE is private;
INITIALVALUE: ELEMENTTYPE;

package STATEVARIABLE is
task BUFFER is
pragma PRIORITY(BUFFERPRIORITY);
entry CHECK(NEWDATA: out BOOLEAN);
entry READ(VALUE: out ELEMENTTYPE);
entry WRITE(VALUE: in ELEMENTTYPE);

.end BUFFER;
function NEWDATA return BOOLEAN;

77

end STATE VARIABLE;
end PSDLSYSTEM;

package body PSDLSYSTEM is

package body SAMPLEDBUFFER is
task body BUFFER is

BUFFER: ELEMENTTYPE;
FRESH: BOOLEAN := false;

begin
loop

select
accept CHECK(NEWDATA: out BOOLEAN) do
NEWDATA := FRESH;

end CHECK;
or
accept READ(VALUE: out ELEMENT TYPE) do
VALUE := BUFFER; FRESH := false;

end READ;
or
accept WRITE(VALUE: in ELEMENTTYPE) do

BUFFER := VALUE; FRESH := true;
end WRITE;

end select;
end loop;

end BUFFER;

function NEWDATA return BOOLEAN is
RESULT: BOOLEAN;

begin
BUFFER. CHECK (RESULT);
return (RESULT);

end NEW DATA;
end SAMPLEDBUFFER;

package body FIFO_BUFFER is
task body BUFFER is

BUFFER: ELEMENTTYPE;
FRESH: BOOLEAN := false;

begin
loop

select
accept CHECK(NEWDATA: out BOOLEAN) do
NEWDATA := FRESH;

end CHECK;
or
accept READ(VALUE: out ELEMENTTYPE) do

if FRESH then
VALUE := BUFFER; FRESH := false;

else raise BUFFERUNDERFLOW; end if;

78

end READ;
or
accept WRITE(VALUE: in ELEMENTTYPE) do

if not FRESH then
BUFFER := VALUE; FRESH := true;

else raise BUFFEROVERFLOW; end if;
end WRITE;

end select;
end loop;

end BUFFER;

function NEW DATA return BOOLEAN is
RESULT: BOOLEAN;

begin
BUFFER.CHECK(RESULT);
return(RESULT);

end NEWDATA;
end FIFOBUFFER;

package body STATE VARIABLE is
task body BUFFER is

BUFFER: ELEMENTTYPE := INITIALVALUE;
FRESH: BOOLEAN := true;

begin
loop

select
accept CHECK(NEWDATA: out BOOLEAN) do
NEWDATA := FRESH;

end CHECK;
or

accept READ(VALUE: out ELEMENTTYPE) do
VALUE := BUFFER; FRESH := false;

end READ;
or

accept WRITE(VALUE: in ELEMENTTYPE) do
BUFFER := VALUE; FRESH := true;

end WRITE;
end select;

end loop:
end BUFFER;

function NEW DATA return BOOLEAN is
RESULT: BOOLEAN;

begir
BUFFER.CHECK(RESULT);
return RESULT;

end NL'W DATA;
end STATEVARIABLE;

end PSDLSYSTEM;

79

APPENDIX B. EXCEPTION HANDLING EXAMPLE

This appendix contains a sample prototype which performs

no particular functin.. The purpose of this example is to

illustrate the approach to exception handling adopted in

this thesis.

A. DATA FLOW DIAGRAM

CD

80

B. PROTOTYPE DESCRIPTION

OPERATOR Cl

SPECIFICATION

MAXIMUM EXECUTION TIME 14 sec

END

IMPLEMENTATION GRAPH

A. OP1->OP2
EXCP. OP1->EXCEPTIONHANDLER
B. OP2->OP3

DATA STREAM A : INTEGER,
EXCP : PSDLEXCEPTION,
B : INTEGER

CONTROL CONSTRAINTS

OPERATOR OPI
PERIOD 20 sec
EXCEPTION OUTOFRANGE IF A > 100

OPERATOR OP2
PERIOD 20 sec

OPERATOR OP3
PERIOD 20 sec

OPERATOR EXCEPTIONHANDLER
TRIGGERED BY ALL EXCP IF EXCP = OUT OFRANGE
PERIOD 20 sec

END

OPERATOR OPI

SPECIFICATION

OUTPUT A INTEGER
OUTPUT EXCP : PSDLEXCEPTION
MAXIMUM EXECUTION TIME 10 sec
EXCEPTIONS NEGATIVE NUMBER

END

IMPLEMENTATION ADA OPi

81

END

OPERATOR OP2

SPECIFICATION

INPUT A : INTEGER
OUTPUT B INTEGER
MAXIMUM EXECUTION TIME 2 sec

END

IMPLEMENTATION ADA OP2
END

OPERATOR OP3

SPECIFICATION

INPUT B : INTEGER
MAXIMUM EXECUTION TIME 2 sec

END

IMPLEMENTATION ADA OP3
END

OPERATOR EXCEPTIONHANDLER

SPECIFICATION

INPUT EXCP : PSDLEXCEPTION
MAXIMUM EXECUTION TIME 2 sec

END

IMPLEMENTATION ADA EXCEPTIONHANDLER
END

C. PARTIAL ADA IMPLEMENTATION OF PROTOTYPE DESCRIPTION

package TL is
procedure OPIDRIVER;
procedure OP2_DRIVER;
procedure OP3_DRIVER;
procedure EXCEPTIONHANDLERDRIVER;

end TL;

with PSDLSYSTEM; use PSDLSYSTEM;

82

with PSDLEXCEPTIONS; use PSDLEXCEPTIONS;
with SB; use SB;
package body TL is

package Cl_SPEC is

package DSA is new SAMPLEDBUFFER(INTEGER);
package DSB is new SAMPLEDBUFFER(INTEGER);
package DSEXCP is new FIFOBUFFER(PSDLEXCEPTION);

end ClSPEC;

procedure OPIDRIVER is
A : INTEGER;

begin
OPl(A);
if A > 100 then
ClSPEC.DSEXCP.BUFFER.WRITE(INDEX(CHARACTERSTRING.
VSTR("OUTOFRANGE")));

else
ClSPEC.DSA.BUFFER.WRITE(A);

end if;

exception
when NEGATIVENUMBER =>

ClSPEC.DSEXCP.BUFFER.WRITE(INDEX(CHARACTER_
STRING.VSTR("NEGATIVENUMBER")));

end OPIDRIVER;

procedure OP2_DRIVER is
A : INTEGER;
B : INTEGER;

begin
ClSPEC.DSA.BUFFER.READ(A);
OP2(A, B);
C1_SPEC.DSB.BUFFER.WRITE(B);

end OP2_DRIVER;

procedure OP3_DRIVER is
B : INTEGER;

begin
ClSPEC.DSB.BUFFER.READ(B);
OP3(B);

end OP3_DRIVER;

procedure EXCEPTIONHANDLERDRIVER is
EXCP : PSDL EXCEPTION;

83

begin
if Cl SPEC.DS EXCP.NEW DATA then
Cl_ PEC.DS_ EXCP.BUFFER.READ(EXCP);
if EXCP = (INDEX(CHARACTERSTRING.VSTR("OUTOF_
RANGE"))) then
EXCEPTIONHANDLER(EXCP);

end if;
end if;

end EXCEPTIONHANDLERDRIVER;

begin
DECLAREEXCEPTION(CHARACTERSTRING.VSTR("OUT OF RANGE"));
DECLAREEXCEPTION (CHARACTER_-STRING. VSTR ("NEGATIVENUMBER")

end TL;

with TEXT_10; use TEXT_10;
with PSDLEXCEPTIONS; use PSDLEXCEPTIONS;
package SB is
NEGATIVENUMBER : exception;
procedure OPi (DATA : in out INTEGER);
procedure OP2 (L : in INTEGER; M : in out INTEGER);
procedure OP3 (L : in INTEGER);
procedure EXCEPTIONHANDLER (L : in PSDLEXCEPTION);

end SB;

package body SB is

procedure OPI (DATA : in out INTEGER) is
begin

if (DATA < 0) then
raise NEGATIVENUMBER;

end if;

end OPI;

procedure OP2 (L in INTEGER; M in out INTEGER) is
begin

end OP2;

procedure OP3 (L : in INTEGER) is
begin

84

end OP3;

procedure EXCEPTIONHANDLER (L : in PSDLEXCEPTION) is
begin
newline;
if (CHARACTERSTRING.STR (NAME (L))) = "OUTOFRANGE"
then
putline("Out of Range");

elsif (CHARACTERSTRING.STR (NAME (L))) = "NEGATIVE_
NUMBER" then
putline("Negative Number");

end if;
new-line;

end EXCEPTIONHANDLER;

end SB;

D. SUPPORTING ADA PACKAGE

with VSTRINGS;
with ListSingleUnboundedUnmanaged;
package PSDL EXCEPTIONS is
-- Definition of Abstract Data Type

type PSDL EXCEPTION is private;
package CHARACTERSTRING is new VSTRINGS (80);
procedure DECLAREEXCEPTION (E : in CHARACTERSTRING.
VSTRING);
function NAME (E in PSDLEXCEPTION) return CHARACTER_
STRING.VSTRING;
function INDEX (E in CHARACTERSTRING.VSTRING) return
PSDLEXCEPTION;

private
type PSDL EXCEPTION is range 1..1000;

end PSDLEXCEPTIONS;

package body PSDLEXCEPTIONS is

package EXCEPTION LIST is new
ListSingle UnboundedUnmanaged (Item => CHARACTER_
STRING.VSTRING);

DECLAREDEXCEPTIONS : EXCEPTIONLIST.List;

function ISEQUAL (LEFT : in CHARACTExSTRING.VSTRING;
RIGHT : in CHARACTERSTRING.VSTRING)

return BOOLEAN is

85

begin
return (CHARACTERSTRING."=" (LEFT, RIGHT));

end IS_EQUAL;

procedure DECLAREEXCEPTION (E : in CHARACTERSTRING
.VSTRING) is
begin
EXCEPTIONLIST.Construct (E, DECLAREDEXCEPTIONS);

end DECLAREEXCEPTION;

function NAME (E : in PSDLEXCEPTT ON) return CHARACTER_
STRING.VSTRING is
TEMPORARYLIST : EXCEPTIONLIST.List := DECLARED_
EXCEPTIONS;

begin
for INDEX in l..(E-l) loop
TEMPORARY LIST := EXCEPTIONLIST.TailOf (TEMPORARY_
LIST);

end loop;
return (EXCEPTIONLIST.Head_Of (TEMPORARYLIST));

end NAME;

function INDEX (E : in CHARACTERSTRING.VSTRING) return
PSDLEXCEPTION is

TEMPORARY LIST : EXCEPTIONLIST.List := DECLARED_
EXCEPTIONS;
I : PSDLEXCEPTION 1;

begin
while not EXCEPTION LIST.Is Null (TEMPORARYLIST) loop

if IS_EQUAL (E, EXCEPTIONLIST.Head_Of (TEMPORARY-
LIST)) then
return I;

else
TEMPORARYLIST := EXCEPTIONLIST.TailOf (TEMPORARY_
LIST);
I := I + 1;

end if;
end loop;

end INDEX;

end PSDLEXCEPTIONS;

86

APPENDIX C. DYNAMIC SCHEDULER IMPLEMENTATION

with TEXTIO; use TEXT 10;
procedure DYNAMICSCHEDULER is
NONCRITS : FILETYPE;
DSV3 : FILETYPE;
IN STRING : STRING(l..72);
LAST : NATURAL;

begin
OPEN(NON_CRITS, IN_FILE,

"/n/suns2/work/caps/prototypes/noncrits");
CREATE(DSV3, OUT_FILE,

"/n/suns2/work/caps/prototypes/ds. a");
PUTLINE(DSV3, "with TL; use TL;");
PUTLINE(DSV3, "with PRIORITYDEFINITIONS; use

PRIORITYDEFINITIONS;");
PUTLINE(DSV3, "package DS PACKAGE is");
PUT LINE(DSV3, " task DYNAMICSCHEDULE is");
-- system defined priority for dynamic schedule
PUTLINE(DSV3, " pragma priority

(DYNAMIC_SCHEDULEPRIORITY) ; ");
PUTLINE (DSV3, " end DYNAMIC SCHEDULE;");
PUTLINE (DSV3, "end DSPACKAGE;");
NEWLINE(DSV3);
PUTLINE(DSV3, "package body DS PACKAGE is");
PUTLINE(DSV3, " task body DYNAMICSCHEDULE is");
PUTLINE(DSV3, " begin");
PUTLINE(DSV3, " delay (1.0);");
PUT LINE(DSV3, " loop");
while not ENDOFFILE(NONCRITS) loop

begin
GET LINE(NONCRITS, INSTRING, LAST);
PUT(DSV3, "

for INDEX in l..LAST loop
PUT(DSV3, IN_STRING(INDEX));

end loop;
PUT LINE(DSV3,

end;
end loop;
PUTLINE(DSV3, " null;");
PUTLINE(DSV3, " end loop;");
PUT LINE(DSV3, " end DYNAMIC SCHEDULE;");
PUTLINE(DSV3, "end DSPACKAGE;");

end DYNAMICSCHEDULER;

87

APPENDIX D. DEBUGGER

-- This package contains information that must be declared globally --

-- for the Dynamic ScheduLer procedure.

-- The Library unit VSTRINGS is a generic string package. It --

-- contains the data type VSTRING and procedures to manipulate these --

-- strings. Since VSTRINGS is generic, it must be instantiated. The name

-- of the instantiation must then be made visible.

The instantiation is declared in a package so -hat type -

-- compatibility will be ensured among variables that the --

-- DynamicScheduler wiLL share among tasks. --

...

with VSTRINGS;

package GlobatDeclarations is

package VARSTRING is new VSTRINGS (160);

use VARSTRING;

end GlobalDectarations;

with GlobatDectarations;

use GtobaL.Dectarations;

with TEXT 10, CALENDAR;

use TEXT10, CALENDAR;

package DSDebugPKG is
--* The specification for task DS Debug contains three entry statements.*--
--*These statements identify errors that may be encountered when the opera-*--

--*tors execute.*--

task DS Debug is

pragma priority (10);

entry Runtime METFailure (Exception Operator : VARSTRING.VSTRING;

Current-Time : in duration;

OperatorEndingTime : in out duration;

Period : in out duration);

--* The in value for Current-Time is the time the operator completed*--

--*execution. The out value for Current Time is the adjusted time*--

--*backgrounds. NextStart has as its value the time the next oper-*--

--*ator must start execution.*--

entry Buffer Underflow; --input queue empty

entry Buffer-Overflow; --output queue full

88

end DS.Debug;

end DS DebugPKG;

package body DSDebug_PKG is

task body DS.Debug is

type NODE;

type LINK is access NODE;

type NODE is

record

Operator : VARSTRING.VSTRING; --name of operator exceeding MET

Executed-count : NATURAL; --number of times operator has executed

Next : LINK;

end record;

package FLOATIO is new TEXTIO.FLOAT 10 (FLOAT);

ExceptionOperator : VARSTRING.VSTRING; --operator causing error

Information FILETYPE; --fiLe containing error information

Error-Exists BOOLEAN := FALSE;

Found BOOLEAN := FALSE; --indicates if operator aLready in List

Choice CHARACTER := 'A'; --operator's decision as to continue/terminate

Operators-Overrun : LINK := nutt; -- ist of operators that have exceeded

-- their MET
Current : LINK; --pointer to operator in List

Difference : DUKATION; --time over MET

MaxExecutions : CONSTANT NATURAL := 5; --maximum number of times an

--operator whose MET is exceeded

--can operate

--* The Find procedure identifies whether the operator is in the List.*--

--*Name contains the name of the operator with the runtime error. if the*--
--*operator is in the List, Current wiLL point to it. if the operator is*--

--*not in the List, Current witt point to the Last node in the List. The*--

--*vaLue of Found wiLL identify if the operator is aLready in the list.*--

procedure Find (Head : in LINK; Name : in VARSTRING.VSTRING;

Current : in out LINK; Found : out BOOLEAN) is

begin

Current := Head;

if Current = nutL then --if no nodes in List

Found := FALSE;

etsif Current.Next = nuLL then --if onLy one node in List
if VARSTRING.equat (Current.Operator, Name) then

Found TRUE;

eLse

Found FALSE;

end if;

eLse --traverse List

white Current.Next /= nuLt

89

loop
if VARSTRING.equat (Current.Operator, Nane) then

Found TRUE;

end if;

Current Current.Next;

end loop;

-- when traversing list, the last node will not be examined.

following "if" ensures Last node examined

if Current.Next z null then

if VARSTRING.equat (Current.Operator, Name) then
Found TRUE;

else

Found FALSE;

end if;

end if;

end if;

end Find;

--* The Insert procedure wilt place a node at the end of the List. The*--
--*node wilt contain the name of the operator with the error and the number*--

--*of times the operator has executed. The number is initialized to one.*--

procedure Insert (Head : in out LINK; Name : VARSTRING.VSTRING) is

Temp_Pt LINK;

New Node LINK;

begin

New-Node := new NODE, (Name, 1, nulL);

if Head =nutt then

Head := New-Node;

else

Temp Pt := Head;

while TempPt.Next /= nuLL

loop

Temp_Pt Temp_Pt.Next;

end loop;

TempPt.Next New-Node;

end if;

end Insert;

-- ' The next five procedures print an error message to the file Informa-*--

--*tion. The name of each procedure indicates the name of the error it is*--
--*processing. The Last procedure is called when an operator has executed*--

--*more frequentLy than the permitted number of executions (for an operator*--

--*exceeding its MET).*--

procedure Print BufferUnderftow Message (Information : FILE TYPE) is

begin

PUT (Information, "EXECUTION TERMINATED ABNORMALLY.");

90

NEW-LINE (Information);

PUT (Information, "There vas an attempt to read a data buffer ");

PUT (Information, "that");

NEW LINE (Information);

PUT (Information, "contained no data.");

NEW-LINE (Information);

end Print.Buffer Underftow.Message;

procedure Print BufferOverfLow.Message (Information : FILE TYPE) is

begin

PUT (Information, "EXECUTION TERMINATED ABNORMALLY.");

NEW-LINE (Information);

PUT (Information, "There was an attempt to store data into a ");

PUT (Information, "data buffer");

NEW-LINE (Information);

PUT (Information, "that was aLready fut.");

NEW-LINE (Information);

end PrintBufferOverflow-Message;

procedure PrintRuntime MET FaiLureMessage (Information : FILE TYPE;

Exception-Operator : VARSTRING.VSTRING) is

begin

PUT (Information, "EXECUTION HAS BEEN SUSPENDED OR HAS ");

PUT-LINE (Information, "TERMINATED ABNORMALLY").

NEW-LINE (Information);

PUT (Information, "The foLLowing operator did not compLete ");

PUT (Information, "execution ");

NEW-LINE (Information);

PUT (Information, "before its maximum execution time was ");

PUT-LINE (Information, "expired. The operator");

PUT (Information, "which caused the error is:");

NEW-LINE (Information);

PUT (information, " 19;

VARSTRING.PUT (Information, Exception Operator);

NEW-LINE (Information);

NEW-LINE (Information);

end Print Runtime MET FaiLureMessage;

procedure PrintAdjustmentsMadeMessage (Information : FILE-TYPE;

Exception-Operator : VARSTRING.VSTRING; Difference : in duration;

OperatorEndingTime : in duration; Period : in duration) is

begin

PUT (Information, "The maximum execution time for operator ");

VARSTRING.PUT_LINE (Information, ExceptionOperator);

PUT (Information, "was increased by ");

FLOATIO.PUT (Information, FLOAT(Difference), 3, 7);
PUT LINE (Information, ".");

PUT (Information, "The new ending time for operator ");

VARSTRING.PUTLINE (Information, ExceptionOperator);

PUT (Information, "from the start of the period within the ");

PUT LINE (Information, "static schedule ");

91

PUT (Information, "is ");

FLOATIO.PUT (Information, FLOAT(OperatorEndingTime), 3, 7);

PUT-LINE (Information, ".");

NEW-LINE (Information);

end Print Adjustments Made Nessage;

procedure PrintTooManyExecutions.Message (Information : FILETYPE;

ExceptionOperator : VARSTRING.VSTRING) is

begin

PUT (Information, "EXECUTION TERMINATED ABNORMALLY.");

PUT (Information, "The following operator, which executes ");

PUT-LIKE (Information, "frequently, has a mxivum");

PUT (Information, "execution time that is not tong enough. ");

PUT-LINE (Information, "Execution has been");

PUT (Information, "terminated because processing time is being 0);

PUT-LINE (Information, "wasted by having");

PUT (Information, "to handle the error each time the operator ");

PUT-LINE (Information, "executes. The operator is:");

PUT (Information, " 1);

VARSTRING.PUTLINE (Information, Exception Operator);

end Print TooManyExecutions Message;

--* The following procedure is called when an operator first exceeds its*--

--*MET. The procedure queries the user as to whether to terminate or not.*--

--*The user is given three attempts to input valid data - either A or 8.*--
--*If he has not provided valid data, the procedure will return a value*--

--*of A to terminate execution. Also, the procedure wilt print a message*--

--*stating that execution has been terminated due to invalid input.*--

procedure Obtain UserChoice (Exception Operator : VARSTRING.VSTRING;

Choice : in out CHARACTER) is

Count : INTEGER;

procedure PrintTooMany_Tries.Nessage is

begin

NEW-LINE;

PUT ("You exceeded the number of attempts authorized to ");

PUT ("enter data.");

NEW-LINE;

PUT ("Therefore, execution of the prototype has been ");

PUT ("terminated.");

NEW-LINE;

end PrintTooMany_T ies Message;

begin

Count := 1;

NEW-LINE;

NEW-LINE;

PUT ("Execution of the prototype has been suspended because an");

NEWLINE;

PUT ("operator exceeded its maximum execution time. The");

92

NEW-LINE;

PUTLINE ("operator causing the error is. ");

PUT (" ");

VARSTRING.PUT (ExceptionOperator);

NEWL.LINE;

NEW-LINE;

PUT LINE ("Do you want to ");

PUT LINE ("A. Terminate execution of the prototype?");

PUT ("B. Adjust the execution time of the operator and continue");

NEW-LINE;

PUT (" execution of the prototype?");

NEW-LINE;

NEW-LINE;

PUTLINE ("Type the letter preceding the option you want.");

Loop

GET (Choice);

NEW-LINE;

NEW LINE;

if Choice = 'a' then

Choice 'A';
end if;

if Choice = 'b' then

Choice : 'B';

end if;

exit when Choice = 'A' or Choice = 'B' or Count 3;

PUT ("You typed: ");

PUT (Choice);

NEW-LINE;

PUT LINE ("You must type either A or B.");

Count Count + 1;

end Loop;

if Choice /= 'A' and Choice /= 'B' then

Choice : 'A';

PrintTooManyTries.Message;

end if;

end Obtain-User-Choice;

begin -- main body of task DSDebug

create (FILE => Information,

MODE => OUT-FILE,

NAME => "Information");

93

loop

select
accept Buffer Underftow do

Error Exists := true;
PrintBufferUnderftowMessage (Information);

end BufferUnderftow;

or

accept Buffer.OverfLow do
Error-Exists := true;
PrintBufferOverflow-Message (Information);

end Buffer OverfLow;

or

accept Runtime MET Faiture

(ExceptionOperator : VARSTRING.VSTRING;
Current-Time : in duration;

OperatorEndingTime : in out duration;

Period : in out duration) do

Find (Operators-Overrun, Exception Operator, Current, Found);
--is operator in OperatorsOverrun list?

if Found then --check number of executions
--if operator executed less than that authorized, update
if Current.Executed count = ax-Executions then

Current.Executed count Current.Executed count + 1;
else --terminate and print error message

Error-Exists := true;
PUTLINE ("EXECUTION TERMINATED ABNORMALLY.");

Print Too ManyExecutionsMessage (Information,

Exception Operator);
end if;

else --query user as to terminate/continue
ObtainUserChoice (ExceptionOperator, Choice);

case Choice is

when 'A' => Error Exists := true; --terminate
when 'B' => Insert (Operators-Overrun,

ExceptionOperator);
--insert operator into Operators-Overrun List

when others => null;

end case;

PrintRuntime MET Faiture.Nessage (Information,

ExceptionOperator);
--print error message first time operator exceeds MET

end if;

Difference := CurrentTime - Operator EndingTime;

--calculate time over MET
OperatorEndingTime := Operator EndingTime + Difference;

--reset time to the new operator ending time

94

Period :=Period + Difference;
Print Adjustments-KMdeMessage (information,

Exception _Operator, Difference,

Operator EndingTime, Period);
end Runtime MET Fai Lure;

end select;

if Error-Exists then

close (information);

exit;

end if;

end loop;
end DS-Debug;

end Ds-DebugPKG;

95

APPENDIX E. ADDITIONAL RUNTINE SUPPORT

A. TIMERS

with CALENDAR;

package TIMERS is

subtype MICROSEC is NATURAL;

type TIMER is private;

procedure RESET (NAME : in out TIMER);

procedure START (NAME : in out TIMER);

procedure STOP (NAME : in out TIMER);

function READ (NAME : in TIMER) return MICROSEC;

function LT (PT : TIMER; T MICROSEC) return BOOLEAN;

function LT (T : MICROSEC; PT : TIMER) return BOOLEAN;

function GT (PT : TIMER; T : MICROSEC) return BOOLEAN;

function GT (T : MICROSEC; PT : TIMER) return BOOLEAN;

function LTE (PT : TIMER; T : MICROSEC) return BOOLEAN;

function LTE (T : MICROSEC; PT : TIMER) return BOOLEAN;

function GTE (PT : TIMER; T : MICROSEC) return BOOLEAN;

function GTE (T : MICROSEC; PT : TIMER) return BOOLEAN;

function EQU (PT : TIMER; T : MICROSEC) return BOOLEAN;

function EQU (T : MICROSEC; PT : TIMER) return BOOLEAN;

private

type STATE is (INITIAL, RUNNING, STOPPED);

type TIMER is

record

STARTTIME,

STOP-TIME : CALENDAR.TIME;

ELAPSED-TIME : DURATION;

PRESENT-STATE : STATE;

end record;

end TIMERS;

with CALENDAR;

use CALENDAR;

package body TIMERS is

CONVERSION-FACTOR : constant DURATION 1000000.0; -- converts etapsed

-- time to microsec's

96

function READ (NAME : in TIMER) return MICROSEC is

begin

case NAME.PRESENTSTATE is

when RUNNING => return MICROSEC(CLOCK

- NAME.STARTTIME

+ NAME.ELAPSEDTIME);

when others => return MICROSEC(NAME.ELAPSEDTIME);

end case;

end READ;

procedure RESET (NAME : in out TIMER) is

begin

case NAME.PRESENT STATE is

when STOPPED => NAME.ELAPSED TIME := 0.0;

NAME.PRESENTSTATE := INITIAL;

when others => nult;

end case;

end RESET;

procedure START (NAME : in out TIMER) is

begin

case NAME.PRESENT STATE is

when RUNNING => null;

when others = NAME.STARTTIME := CALENDAR.CLOCK;

NAME.PRESENT STATE := RUNNING;

end case;

end START;

procedure STOP (NAME : in out TIMER) is

begin

case NAME.PRESENTSTATE is

when RUNNING => NAME.ELAPSEDTIME := CALENDAR.CLOCK

- NAME.START TIME

97

+ NAJ4E.ELAPSED TIME;

NAME.PRESENT STATE :=STOPPED;

when others => null;

end case;
end STOP;

function LI (PT :TIMER; T : AICROSEC) return BOOLEAN4 is

begin

return FLOAT (PT.ELAPSED-TIME * CONVERSION-FACTOR) < FLOAI(T);

end LT;

function LT (TI MICROSEC; PT :TIMER) return BOOLEAN is

beg in

return LT (T,PT) = GTE (PT,T);

end LI;

function GT (PT :TIMER; T :MICROSEC) return BOOLEAN is

begin

return FLOAT (PT.ELAPSED TIME * CONVERSION-FACTOR) > FLOAT(T);

end GI;

function CT (TI MICROSEC; PT :TIMER) return BOOLEAN is

begin

return CT (T,PI) = LIE (P1,1);

end GI;

function ECU (PT :TIMER; I MICROSEC) return BOOLEAN is

begin

return not LT(PT,T) and not CT (PT,T);

end ECU;

function ECU (TI MICROSEC; PT :TIMER) return BOOLEAN is

begin

return not LI (PT,T) and not GI (PT,T);

end ECU;

function LTE (PT :TIMER; I MICROSEC) return BOOLEAN is

9 8

begin
return not GT (PT,T);

end LTE;

function ITE (T :MICROSEC; PT :TIMER) return BOOLEAN is

begin

return not OT (PT,T);

end LTE;

function GTE (PT :TIMER; T :MICROSEC) return BOOLEAN is

begin
return not LT (PT,T);

end GTE;

function GTE (T :MICROSEC; PT TIMER) return BOOLEAN is
begin

return not LT (PT,T);

end GTE;

end TIMERS;

99

B. VSTRINGS

"" UNIT: generic package spec of VSTRINGS

-- FILES: vstringspec.a in pubtictib

-- related file is vstringbody.a in pubtictib

-- PURPOSE: An implementation of the abstract data type "variable-Length

- - string."

-- DESCRIPTION: This package provides a private type VSTRING. VSTRING objects

- - are "strings" that have a Length between zero and LAST, where

-- LAST is the generic parameter supplied in the package

instantiation.

In addition to the type VSTRING, a subtype and two constants

-- are declared. The subtype STRINDEX is an index to a VSTRING,

-- The STRINDEX constant FIRST is an index to the first character

-- of the string, and the VSTRING constant NUL is a VSTRING of

length zero. NUL is the default initial value of a VSTRING.

-- The foLlowing sets of functions, procedures, and operators

- - are provided as operations on the type VSTRING:

-- ATTRIBUTE FUNCTIONS: LEN, MAX, STR, CHAR

-- The attribute functions return the characteristics of

-- a VSTRING.

- - COMPARISON OPERATORS: "=", = "<", ">, "<=", >
-- The comparison operators are the same as for the predefined

-- type STRING.

-- INPUT/OUTPUT PROCEDURES: GET, GETLINE, PUT, PUT-LINE

-- The input/output proceduies are similar to those for the

-- predefined type STRING, with the following exceptions:

-- - GET has an optional parameter LENGTH, which indicates

-- the number of characters to get (defauLt is LAST).

-- - GET-LINE does not have a parameter to return the length

of the string (the LEN function should be used instead).

EXTRACTION FUNCTIONS: SLICE, SUBSTR, DELETE

The SLICE function returns the slice of a VSTRING between

two indices (equivalent to STR(X)(A .. B)).

-- SUBSTR returns a substring of a VSTRING taken from a given

-- index and extending a given length.

100

The DELETE function returns the VSTRING which results from

-- removing the slice between two indices.

-- EDITING FUNCTIONS: INSERT, APPEND, REPLACE

-- The editing functions return the VSTRING which results from

-- inserting, appending, or replacing at a given index with a

-- VSTRING, STRING, or CHARACTER. The index must be in the

-- current range of the VSTRING; i.e., zero cannot be used.

" CONCATENATION OPERATOR: "&"

The concatenation operator is the same as for the type

-- STRING. It should be used instead of APPEND when the

APPEND would always be after the last character.

POSITION FUNCTIONS: INDEX, RINDEX

The position functions return an index to the Nth occurrence

of a VSTRING, STRING, or CHARACTER from the front or back

of a VSTRING. Zero is returned if the search is not

successful.

"- CONVERSION FUNCTIONS AND OPERATOR: VSTR, CONVERT, "+"
VSTR converts a STRING or a CHARACTER to a VSTRING.

CONVERT is a generic function which can be instantiated to

convert from any given variable-length string to another,

provided the FROM type has a function equivelent to STR

defined for it, and that the TO type has a function equiv-

etent to VSTR defined lor it. This provides a means for
convrting between VSTRINGs declared in separate instant-

- iations of VSTRINGS. When instantiating CONVERT for

VSTRINGs, the STR and VSTR functions are implicitly defined,

provided that they have been made visible (by a use clause).

Note: CONVERT is NOT implicitly associated with the type

VSTRING declared in this package (since it would not be a

derivable function (see RM 3.4(11))).

Caution: CONVERT cannot be instantiated directly with the

- - names VSTR and STR, since the name of the subprogram being

declared would hide the generic parameters with the same
names (see RM 8.3(16)). CONVERT can be instantiated with

the operator "+", and any instantiation of CONVERT can

subsequently be renamed VSTR or STR.

ExampLe: Given two VSTRINGS instantiations X and Y:

function "+" is new X.CONVERT(X.VSTRING, Y.VSTRING);

function "+" is new X.CONVERT(Y.VSTRING, X.VSTRING);

-- (Y.CONVERT could have been used in place of X.CONVERT)

function VSTR(A : X.VSTRING) return Y.VSTRING renames "+";

101

-- function VSTR(A : Y.VSTRING) return X.VSTRING renames "+";

"+" is equivetent to VSTR. It is supplied as a short-hand

notation for the function. The "+" operator cannot innmed-

-- iatety follow the "&" operator; use ... & (...) instead.

-- DISCUSSION:

This package implements the type "variabLe-length string" (vstring)

-- using generics. The alternative approaches are to use a discriminant

-- record in which the discriminant controls the length of a STRING inside

- - the record, or a record containing an access type which points to a

string, which can be deaLtocated and reaLlocated when necessary.

-- Advantages of this package:

* The other approaches force the vstring to be a Limited private

-- type. Thus, their vstrings cannot appear on the left side of

-- the assignment operator; ie., their vstrings cannot be given

-- initial values or values by direct assignment. This package

-- uses a private type; therefore, these things can be done.

-- *The other approach stores the vstring in a string whose length

-- is determined dynamically. This package uses a fixed length

-- string. This difference might be reflected in faster and more

-- consistent execution times (this has NOT been verified).

-- Disadvantages of this package:

-- * Different instantiations must be used to declare vstrings with

-- different maximum lengths (this may be desirable, since

-- CONSTRAINT-ERROR will be raised if the maximum is exceeded).

* A second declaration is required to give the type declared by

-- the instantiation a name other than "VSTRING."

-- The storage required for a vstring is determined by the generic

parameter LAST and not the nctual length of its contents. Thus,

each object is allocated the maximum amount of storage, regardless

-- of its actual size.

-- MISCELLANEOUS:

-- Constraint checking is done explicitly in the code; thus, it cannot

-- be suppressed. On the other hand, constraint checking is not Lost

-- if pragma suppress is supplied to the compilation (-S option)

-- (The robustness of the explicit constraint checking has NOT been

-- determined).

Compiling with the optimizer (-0 option) may significantly reduce

-- the size (and possibly execution time) of the resulting executable.

Compiling an instantiation of VSTRINGS is roughly equivelent to
recompiting VSTRINGS. Since this takes a significant amount of time,

-- and the instantiation does not depend on any other library units,

102

-- it is STRONGLY recommwended that the instantiation be cofipi ted

-~separateLy, and thus done onLy ONCE.

-- USAGE: with VSTRINGS;

-. package package name is new VSRNSmxmmLength);

with TEXT 10; use TEXT_10;

generic

LAST : NATURAL;

package VSTRINGS is

sub~type STRINDEX is NATURAL;

FIRST : constant STRINDEX := STRINDEX'FIRST + 1;

type VSTRING is private;

NUL : constant VSTRING;

-Attributes of a VSTRING

function LEN(ROM :VSTRING) return STRINOEX;

function MAX(FRO4 : VSTRING) return STRINDEX;

function STR(FROM : VSTRING) return CTRING;

function CHAR(FROM: VSTRING; POSITION : STRINDEX :FIRST)

return CHARACTER;

-Comparisons

function "c" (LEFT: VSTRING; RIGHT: VSTRING) return BOOLEAN;

function 11>1 (LEFT: VSTRING; RIGHT: VSTRING) return BOOLEAN;

function "'(LEFT: VSTRING; RIGHT: VSTRING) return BOOLEAN;

function " (LEFT: VSTRING; RIGHT: VSTRING) return BOOLEAN;

*function equaL (LEFT: VSTRING; RIGHT: VSTRING) return BOOLEAN;

funL, ion notequat (LEFT: VSTRING; RIGHT: VSTRING) return BOOLEAN;

-- Input/Output

procedure PUT(FILE :in FILETYPE; ITEM : in VSTRING);

procedure PUT(ITEM :in VSTRING);

procedure PUTLINE(FILE :in FILE-TYPE; ITEM :in VSTRING);

procedure PUTLINE(ITEM :in VSTRING);

procedure GET(FILE : in FILETYPE; ITEM : out VSTRING;

LENGTH : in STRINDEX := LAST):

procedure GET(ITEM : out VSTRING; LENGTH : in STRINDEX := LAST);

procedure GETLINE(FILE : in FILE-TYPE; ITEM :in out VSTRING);

procedure GET LINECITEM : in out VSTRING);

-Extraction

103

function SLICE(FROM: VSTRING; FRONT, BACK :STRINDEX) return VSTRING;

function SUBSTR(FRO4: VSTRING; START, LENGTH: STRINDEX) return VSTRING;

function DELETE(FROM: VSTRING; FRONT, BACK ;STRINDEX) return VSTRING;

-- Editing

function INSERT(TARGET: VSTRING; ITEM: VSTRING;

POSITION: STRINOEX :=FIRST) *return VSTRING;

function INSERT(TARGET: VSTRING; ITEM: STRING;

POSITION: STRINDEX := FIRST) return VSTRING;

function INSERT(TARGET: VSTRING; ITEM: CHARACTER;

POSITION: STRINOEX := FIRST) return VSTRING;

function APPENOCTARGET: VSTRING; ITEM: VSTRING; POSITION: STRINDEX)

return VSTRING;

function APPEND(TARGET: VSTRING; ITEM: STRING; POSITION: STRINDEX)

return VSTRING;

function APPENO(TARGET: VSTRING; ITEM: CHARACTER; POSITION: STRINDEX)

return VSTRING;

function APPEND(TARGET: VSTRING; ITEM: VSTRING) return VSTRING;

function APPEND(TARGET: VSTRING; ITEM: STRING) return VSTRING;

function APPEND(TARGET: VSTRING; ITEM: CHARACTER) return VSTRING;

function REPLACE(TARGET: VSTRING; ITEM: VSTRING;

POSITION: STRINDEX := FIRST) return VSTRING;

function REPLACE(TARGET: VSTRING; ITEM: STRING;

POSITION: STRINDEX := FIRST) return VSTRING;

function REPLACECTARGET: VSTRING; ITEM: CHARACTER;

POSITION: STRINDEX := FIRST) return VSTRING;

-Concatenation

function I,&" (LEFT: VSTRING; RIGHT : VSTRING) return VSTRING;

function I'&" (LEFT: VSTRING; RIGHT : STRING) return VSTRING;

function I'&" (LEFT: VSTRING; RIGHT : CHARACTER) return VSTRING;

function I'&" (LEFT: STRING; RIGHT : VSTRING) return VSTRING;

function '&'1 (LEFT: CHARACTER; RIGHT : VSTRING) return VSTRING;

Determine the position of a substring

function INOEX(WHOLE: VSTRING; PART: VSTRING; OCCURRENCE :NATURAL :1)

return STRINOEX;

function INOEXCUHOLE : VSTRING; PART :STRING; OCCURRENCE :NATURAL :=1)

return STRINDEX;

function INDEX(WHOLE : VSTRING; PART :CHARACTER; OCCURRENCE : NATURAL :1

return STRINOEX;

function RINOEX(WHOLE: VSTRING; PART: VSTRING; OCCURRENCE : NATURAL := 1)

return STRINDEX;

104

function RINDEX(WHOLE : VSTRING; PART : STRING; OCCURRENCE : NATURAL := 1)

return 3TRINDEX;

function RINDEX(WHOLE : VSTRING; PART : CHARACTER; OCCURRENCE NATURAL := 1)

return STRINDEX;

Conversion from other associated types

function VSTR(FRON : STRING) return VSTRING;

function VSTR(FROM : CHARACTER) return VSTRING;

function "+" (FROM : STRING) return VSTRING;

function "+" (FROM : CHARACTER) return VSTRING;

generic

type FROM is private;

type TO is private;

with function STR(X FROM) return STRING is <>;

with function VSTR(Y : STRING) return TO is <>;

function CONVERT(X : FROM) return TO;

private

type VSTRING is

record

LEN : STRINDEX := STRINDEX'FIRST;

VALUE : STRING(FIRST .. LAST) := (others => ASCII.NUL);

end record;

NUL : constant VSTRING := (STRINDEXIFIRST, (others => ASCII.NUL));

end VSTRINGS;

oooo°.o.................. . ,,........°° .. oo. . °. oo....

DISTRIBUTION AND COPYRIGHT:

-- This software is released to the Public Domain (note:

software released to the Public Domain is not subject

to copyright protection).

Restrictions on use or distribution: NONE

-- DISCLAIMER:

This software and its documentation are provided "AS IS" and

without any expressed or implied warranties whatsoever.

-- No warranties as to performance, merchantability, or fitness

-- for a particular purpose exist.

Because of the diversity of conditions and hardware under

which this software may be used, no warranty of fitness for

-- a particular purpose is offered. The user is advised to

test the software thoroughly before relying on it. The user

-- must assume the entire risk and Liability of using this

-- software.

105

-- Inno event shaLl any person or organization of people be

-- held responsible for any direct, indirect, consequentiaL

-- or inconsequential damages or Lost profits.

UNIT: generic package body of VSTRINGS

-- FILES: vstring_body.a in pubLictib

related file is vstringspec.a in publicLib

-- PURPOSE: An implementation of the abstract data type "variabLe-tength

string."

-- DESCRIPTION: This package provides a private type VSTRING. VSTRING objects

are "strings" that have a length between zero and LAST, where

-- LAST is the generic parameter supplied in the package

-- instantiation.

-- In addition to the type VSTRING, a subtype and two constants

- - are declared. The subtype STRINDEX is an index to a VSTRING,

The STRINDEX constant FIRST is an index to the first character

-- of the string, and the VSTRING constant NUL is a VSTRING of

-- Length zero. NUL is the default initial value of a VSTRING.

-- The following sets of functions, procedures, and operators

are provided as operations on the type VSTRING:

-- ATTRIBUTE FUNCTIONS: LEN, MAX, STR, CHAR

- - The attribute functions return the characteristics of

-- a VSTRING.

- - COMPARISON OPERATORS: ,:, "/:", "<", ">", "<:", ">:"

The comparison operators are the same as for the predefined

-- type STRING.

-- INPUT/OUTPUT PROCEDURES: GET, GETLINE, PUT, PUT-LINE

-- The input/output procedures are similar to those for the

predefined type STRING, with the following exceptions:

-- - GET has an optional parameter LENGTH, which indicates

-- the number of characters to get (default is LAST).

-- - GET LINE does not have a parameter to return the Length

of the string (the LEN function should be used instead).

EXTRACTION FUNCTIONS: SLICE, SUBSTR, DELETE

"" The SLICE function returns the slice of a VSTRING between

two indices (equivalent to STR(X)(A .. B)).

106

- - SUBSTR returns a substring of a VSTRING taken from a given

-- index and extending a given length.

The DELETE function returns the VSTRING which results from

removing the slice between two indices.

EDITING FUNCTIONS: INSERT, APPEND, REPLACE

-- The editing functions return the VSTRING which results from

-- inserting, appending, or replacing at a given index with a

- - VSTRING, STRING, or CHARACTER. The index must be in the

-- current range of the VSTRING; i.e., zero cannot be used.

-" CONCATENATION OPERATOR: "&"

The concatenation operator is the same as for the type

-- STRING. It should be used instead of APPEND when the

- - APPEND would always be after the Last character.

-- POSITION FUNCTIONS: INDEX, RINDEX

-- The position functions return an index to the Nth occurrence

of a VSTRING, STRING, or CHARACTER from the front or back

of a VSTRING. Zero is returned if the search is not

successful.

-- CONVERSION FUNCTIONS AND OPERATOR: VSTR, CONVERT, "+"

-- VSTR converts a STRING or a CHARACTER to a VSTRING.

-- CONVERT is a generic function which can be instantiated to

convert from any given variable-length string to another,

- - provided the FROM type has a function equivelent to STR

-- defined for it, and that the TO type has a function equiv-

-- elent to VSTR defined for it. This provides a means for

-- converting between VSTRINGs declared in separate instant-
-- iations of VSTRINGS. When instantiating CONVERT for

VSTRINGs, the STR and VSTR functions are implicitly defined,

provided that they have been made visible (by a use clause).

Note: CONVERT is NOT implicitly associated with the type

VSTRING declared in this package (since it would not be a

derivable function (see RM 3.4(11))).

Caution: CONVERT cannc", be instantiated directly with the

- - names VSTR and STR, since the name of the subprogram being

-- declared would hide the generic parameters with the same

- ~iames (see RM 8.3(16)). CONVERT can be instantiated with

-- the operator "+", and any instantiation of CONVERT can

subsequently be renamed VSTR or STR.

-- Example: Given two VSTRINGS instantiations X and Y:

-- function "+" is new X.CONVERT(X.VSTRING, Y.VSTRING);

function "+" is new X.CONVERT(Y.VSTRING, X.VSTRING);

107

-- (Y.CONVERT could have been used in place of X.CONVERT)

-- function VSTR(A : X.VSTRING) return Y.VSTRING renames "+";

-- function VSTR(A : Y.VSTRING) return X.VSTRING renames "+";

-" "+" is equiveLent to VSTR. It is suppltied as a short-hand

-- notation for the function. The ,,+" operator cannot immed-
-- iatety follow the "&" operator; use ... & (+ ...) instead.

-- DISCUSSION:

-- This package implements the type "variable-Length string" (vstring)
-- using generics. The alternative approaches are to use a discriminant

-- record in which the discriminant controls the Length of a STRING inside

-- the record, or a record containing an access type which points to a

-- string, which can be dealLocated and reallocated when necessary.

-- Advantages of this package:
-- * The other approaches force the vstring to be a Limited private

-- type. Thus, their vstrings cannot appear on the Left side of

-- the assignment operator; ie., their vstrings cannot be given

-- initial values or values by direct assignment. This package

-- uses a private type; therefore, these things can be done.

- - * The other approach stores the vstring in a string whose Length

-- is determined dynamically. This package uses a fixed Length

-- string. This difference might be reflected in faster and more

-- consistent execution times (this has NOT been verified).

-- Disadvantages of this package:

-- * Different instantiations must be used to declare vstrings with

-- different maximum lengths (this may be desirable, since

-- CONSTRAINT-ERROR will be raised if the maximum is exceeded).

-- * A second declaration is required to give the type declared by

-- the instantiation a name other than "VSTRING."

-- The storage required for a vstring is determined by the generic
-- parameter LAST and not the actual length of its contents. Thus,

-- each object is allocated the maximum amount of storage, regardless

-- of its actual size.

-- MISCELLANEOUS:
-- Constraint checking is done explicitly in the code; thus, it cannot

- - be suppressed. On the other hand, constraint checking is not Lost
-- if pragma suppress is supplied to the compilation (-S option)

-- (The robustness of the explicit constraint checking has NOT been

-- determined).

-- Compiling with the optimizer (-0 option) may significantly reduce

-- the size (and possibly execution time) of the resulting executable.

108

CompiLing an instantiation of VSTRINGS is roughly equivelent to

recompiting VSTRINGS. Since this takes a significant amount of time,

and the instantiation does not depend on any other library units,

it is STRONGLY.recommended that the instantiation be compiLed

separately, and thus done only ONCE.

USAGE: with VSTRINGS;

-- package packagename is new VSTRINGS(maximumnLength);

.°a...

package body VSTRINGS is

-- Local declarations

FILL CHAR : constant CHARACTER := ASCII.NUL;

procedure FORMAT(THESTRING : in out VSTRING; OLDLEN : in STRINDEX : LAST) is

-- fill the string with FILL-CHAR to null out old values

begin -- FORMAT (Local Procedure)

THESTRING.VALUE(THESTRING.LEN + 1 .. OLDLEN)

(others => FILL CHAR);

end FORMAT;

-- bodies of visible operations

function LEN(FROM : VSTRING) return STRINDEX is

begin -- LEN

return(FROM.LEN);

end LEN;

function MAX(FROM : VSTRING) return STRINDEX is

begin -- MAX

return(LAST);

end MAX;

function STR(FROM : VSTRING) return STRING is

begin -- STR

return(FROM.VALUE(FIRST .. FROM.LEN));

end STR;

function CHAR(FROM : VSTRING; POSITION : STRINDEX FIRST)

return CHARACTER is

begin -- CHAR

if POSITION not in FIRST .. FROM.LEN

then raise CONSTRAINTERROR;

109

end if;

return(FROM. VALUE (POSIT ION));

end CHAR;

function -1<1 (LEFT: VSTRING; RIGHT: VSTRING) return BOOLEAN is

begin -- 10<16

return(LEFT.VALUE < RIGHT.VALUE);

end "<";

function ">"1 (LEFT: VSTRING; RIGHT: VSTRING) return BOOLEAN is

begin -- >

return(LEFT.VALUE > RIGHT.VALUE);

end ->,,;

function *=" (LEFT: VSTRING; RIGHT: VSTRING) return BOOLEAN is

begin - <=&

return(LEFT.VALUE <= RIGHT.VALUE);

end 16<=I;

function "=" (LEFT: VSTRING; RIGHT: VSTRING) return BOOLEAN is

begin - >= "

return(LEFT.VALUE >= RIGHT.VALUE);

end 18>=1;

function equal (LEFT: VSTRING; RIGHT: VSTRING) return BOOLEAN is

begin -- equal

return(LEFT.VALUE = RIGHT.VALUE);

end equal;

function notequaL (LEFT: VSTRING; RIGHT: VSTRING) return BOOLEAN is

begin -- notequal

return(LEFT.VALUE /= RIGHT.VALUE);

end notequal;

procedure PUT(FILE : in FILETYPE; ITEM : in VSTRING) is

begin -- PUT

PUT(FILE, ITEM.VALUE(FIRST .. ITEM.LEN));

end PUT;

procedure Put(ITEM : in VSTRING) is

begin -- PUT

PUT(ITEM.VALUE(FIRST .. ITEM.LEN));

end PUT;

procedure PUTLINE(FILE : in FILE TYPE; ITEM : in VSTRING) is

110

begin -- PUT -LINE

PUT LINE(FILE, ITEM.VALUE(FIRST .. ITEM.LEN));

end PUT LINE;

procedure PUT LINE(ITEM :in VSTRING) is

begin -- PUTLINE
PUT LINE(ITEM.VALUE(FIRST .. ITEM.LEN));

end PUT LINE;

procedure GET(FILE :in FILETYPE; ITEM :out VSTRING;

LENGTH :in STRINDEX :=LAST) is

begin -- GET

if LENGTH not in FIRST .. LAST

then raise CONSTRAINTERROR;

end if;

ITEM :=NUL;

for INDEX in FIRST .. LENGTH loop

GET(FILE, ITEM.VALUE(INDEX));

ITEM.LEN :=INDEX;

end loop;

end GET;

procedure GET(ITEM :out VSTRING; LENGTH in STRINDEX LAST) is

begin -- GET

if LENGTH not in FIRST .. LAST

then raise CONSTRAINTERROR;

end if;

ITEM :=NUL;

for INDEX in FIRST .. LENGTH loop

GET(ITEM.VALUE(INDEX));

ITEM.LEN :=INDEX;

end loop;

end GET;

procedure GET LINE(FILE :in FILE-TYPE; ITEM in out VSTRING) is

OLDLEN constant STRINDEX :=ITEM.LEN;

begin -- GET -LINE

GET LINE(FILE, ITEM.VALUE, ITEM.LEN);

FORMAT(ITEM, OLOLEN);

end GETJLINE;

procedure GET LINE(ITEM :in out VSTRING) is

OLDLEN :constant STRINDEX :=ITEM.LEN;

begin -- GET-LINE

GETLINE(ITEM.VALUE, ITEM.LEN);

FORMAT(ITEM, OLOLEN);

end GETLINE;

function SLICE(FROM :VSTRING; FRONT, BACK :STRINDEX) return VSTRING is

begin -- SLICE

if ((FRONT not in FIRST .. FROM.LEN) or else

(BACK not in FIRST .. FROM.LEN)) and then FRONT <= BACK

then raise CONSTRAINTERROR;

end if;

return(Vstr(FROM.VALUE(FRONT .. BACK)));

end SLICE;

function SUBSTR(FROM :VSTRING; START, LENGTH :STRINDEX) returT, VSiRLNG is

begin - - SUBSTR

if (START not in FIRST .. FROM.LEN) or else

((START + LENGTH - 1 not in FIRST .. FROM.LEN)

and then (LENGTH >0))

then raise CONSTRAINT-ERROR;

end if;

return(Vstr(FROM.VALUE(START .. START + LENGTH -1)));

end SUBSTR;

function DELETE(FROM : VSTRING; FRONT, BACK :STRINDEX) return VSTRING is

TEMP :VSTRING :=FROM;

begin -- DELETE
if ((r--"T not in FIRST .. FRO#4.LEN) or else

(BA iot in FIRST .. FROM.LEN)) and then FRONT <= BACK

then raise CONSTRAINTERROR;

end if;

if FRONT > BACK then return(FROM); end if;

TEMP.LEN :=FRO#4.LEN - (BACK - FRONT) - 1;

TEMP.VALUE(FRONT .. TEMP.LEN) :=FROM.VALUE(BACK + 1 FROM.LEN);

FORMAT(TEMP, FROM.LEN);

return(TEMP);

end DELETE;

function INSERT(TARGET: VSTRING; ITEM: VSTRING;

112

POSITION :STRINDEX := FIRU) return VSTRING is

TEMP :VSTRING;

begin -- INSERT

if POSITION not in FIRST .. TARGET.LEN

then ra~se CONSTRAINTERROR;

end if;

if TARGET.LEN + ITEM.LEN > LAST

then raise CONSTRAINTERROR;

else TEMP.LEN :=TARGET.LEN + ITEM.LEN;

end if;

TEMP.VALUE(FIRST POSITION -1) := TARGET.VALUE(FIRST POSITION-1)

TEMP.VALUE(POSITION (POSITION + ITEM.LEN-1)

ITEM.VALUE(FIRST ITEM.LEN);

TEMP.VALUE((POSITION + ITEM.LEN) .. TEMP.LEN)

TARGET.VALUE(POSITION .. TARGET.LEN);

return(TEMP);

end INSERT;

function INSERT(TARGET: VSTRING; ITEM: STRING;

POSITION : STRINDEX := FIRST) return VSTRING is

begin - - INSERT

return INSERT(TARGET, VSTR(ITEM), POSITION);

end INSERT;

function INSERT(TARGET: VSTRING; ITEM: CHARACTER;

POSITION : STRINDEX := FIRST) return VSTRING is

begin -- INSERT

return INSERT(TARGET, VSTR(ITEM), POSITION);

end INSERT;

function APPEND(TARGET: VSTRING; ITEM VSTRING; POSITION :STRINDEX)

return VSTRING is

TEMP : VSTRING;
POS : STRINDEX := POSITION;

begin -- APPEND

if POSITION not in FIRST .. TARGET.LEN

then raise CONSTRAINTERROR;

end if;

if TARGET.LEN + ITEM.LEN > LAST

then raise CONSTRAINTERROR;

else TEMP.LEN := TARGET.LEN + ITEM.LEN;

end if;

113

TEMP.VALUE(FIRST .. POS) :=TARGET.VALUE(FIRST .. POS);

TEMP.VALUE(POS + 1 .. (POS + ITEM.LEN)) :=ITEM.VALUE(FIRST .. ITEM.LEN);

TEMP.VALUE((POS + ITEM.LEN +1) .. TEMP.LEN)

TARGET.VALUE(POS +1 .. TARGET.LEN);

ret urn(TEMP);

end APPEND;

function APPEND(TARGET: VSTRING; ITEM: STRING; POSITION :STRINDEX)

return VSTRING is

begin -- APPEND

return APPENOCTARGET, VSTR(ITEM), POSITION);

end APPEND;

function APPEND(TARGET: VSTRING; ITEM: CHARACTER; POSITION : STRINDEX)

return VSTRING is

begin - - APPEND

return APPEND(TARGET, VSTR(ITEM), POSITION);

end APPEND;

function APPENO(TARGET: VSTRING; ITEM: VSTRING) return VSTRING is

begin -- APPEND

return(APPEND(TARGET, ITEM, TARGET.LEN));

end APPEND;

function APPEND(TARGET: VSTRING; ITEM: STRING) return VSTRING is

begin -- APPEND

return(APPEND(TARGET, VSTR(ITEM), TARGET.LEN));

end APPEND;

function APPEND(TARGET: VSTRING; ITEM: CHARACTER) return VSTRING is

begin - - APPEND

return(APPEND(TARGET, VSTR(ITEM), TARGET.LEN));

end APPEND;

function REPLACE(TARGET: VSTRING; ITEM: VSTRING;

POSITION : STRINDEX := FIRST) return VSTRING is

TEMP :VSTRING;

begin - - REPLACE

if POSITION not in FIRST .. TARGET.LEN

then raise CONSTRAINTERROR;

end if;

if POSITION + ITEM.LEN - 1 -= TARGET.LEN

then TEMP.LEN := rARGET.LEN;

eLsif POSITION + ITEM.LEN - 1 > LAST

114

then raise CONSTRAINT -ERROR;

else TENP.LEN POSITION + ITEM.LEN 1

end if;

TEMP.VALUE(FIRST POSITION -1) :=TARGET.VALUE(FIRST POSITION-1)

TEMP.VALUE(POSITION (POSITION + ITEN.LEN -1))

ITEM.VALUE(FIRST ITEM.LEN);

TEMP.VALUE((POSITION + ITEM.LEN) .. TENP.LEN)

TARGET.VALUIEC(POSITION + ITEM.LEN) .. TARGET.LEN);

ret urn(TEMP);

end REPLACE;

function REPLACE(TARGET: VSTRING; ITEM: STRING;

POSITION :STRINDEX :=FIRST) return VSTRING is

begin -- REPLACE

return REPLACE(TARGET, VSTR(ITEM), POSITION);

end REPLACE;

function REPLACE(TARGET: VSTRING; ITEM: CHARACTER;

POSITION :STRINDEX :=FIRST) return VSTRING is

begin - - REPLACE

return REPLACECTARGET, VSTR(ITEM), POSITION);

end REPLACE;

function II&"I(LEFT:VSTRING; RIGHT : VSTRING) return WJSRING is

TEMP :VSTRING;

begin -- al

if LEFT.LEN + RIGHT.LEN > LAST
then raise CONSTRAINTERROR;

else TEMP.LEN LEFT.LEN + RIGHT.LEN;

end if;

TEMP.VALUE(FIRST TEMP.LEN) :=LEFT.VALUE(FIRST LEFT.LEN) &

RIGHT.VALUE(FIRST .. RIGHT.LEN);

return(TEMP);

end 11p;

function 1"(LEFT:VSTRING; RIGHT :STRING) return VSTRING is

begin -- 1&1

return LEFT & VSTR(RIGHT);

end 11p ;

function II&"I(LEFT:VSTRING; RIGHT : CHARACTER) return VSTRING is

begin -- @I

return LEFT & VSTR(RIGHT);

end sop;

115

function "&"(LEFT : STRING; RIGHT : VSTRING) return VSTRING is

begin - - &"

return VSTR(LEFT) & RIGHT;

end "&";

function "&"(LEFT : CHARACTER; RIGHT : VSTRING) return VSTRING is

begin -- & "

return VSTR(LEFT) & RIGHT;

end ,,&,,;

Function INDEX(WHOLE : VSTRING; PART : VSTRING; OCCURRENCE : NATURAL 1)

return STRINDEX is

NOTFOUND : constant NATURAL := 0;

INDEX : NATURAL FIRST;

COUNT : NATURAL 0;

begin -- INDEX

if PART = NUL then return(NOTFOUND); -- by definition

end if;

while INDEX + PART.LEN - 1 = WHOLE.LEN and then COUNT < OCCURRENCE Loop

if WHOLE.VALUE(INDEX PART.LEN + INDEX 1) =

PART.VALUE(1 .. PART.LEN)

then COUNT := COUNT + 1;
end if;

INDEX := INDEX + 1;

end Loop;

if COUNT = OCCURRENCE

then return(INDEX - 1);

else return(NOTFOUND);

end if;

end INDEX;

Function INDEX(WHOLE : VSTRING; PART STRING; OCCURRENCE NATURAL 1)

return STRINDEX is

begin -- Index

return(index(WHOLE, VSTR(PART), OCCURRENCE));

end INDEX;

Function INDEX(UHOLE : VSTRING; PART : CHARACTER; OCCURRENCE NATURAL 1)

return STRINDEX is

begin -- Index

return(Index(WHOLE, VSTR(PART), OCCURRENCE));

end INDEX;

116

function RINDEX(WHOLE: VSTRING; PART:VSTRING; OCCURRENCE:NATURAL 1

return STRINDEX is

NOT FOUND :constant NATURAL 0;

INDEX :INTEGER WHOLE.LEN -(PART.LEN -1);

COUNT :NATURAL 0;

begin -- RINDEX

if PART = NUL then return(NOT FOUND); -- by definition

end if;

white INDEX - FIRST and then COUNT < OCCURRENCE Loop

if WHOLE.VALUE(INDEX .. PART.LEN + INDEX -1)

PART.VALUE(l . PART.LEN)

then COUNT :=COUNT + 1;

end if ;

INDEX :=INDEX -I

end Loop;

if COUNT = OCCURRENCE

then

if COUNT > 0

then return(INDEX + 1);

etse return(NOT FOUND);

end if;

else return(NOT FOUND);

end if;

end RINDEX;

Function RINDEX(WHOLE :VSTRING; PART STRING; OCCURRENCE NATURAL 1

return STRINDEX is

begin -- Rindex

return(RINDEX(WHOLE, VSTR(PART), OCCURRENCE));

end RINDEX;

Function RINDEXCUHOLE :VSTRING; PART :CHARACTER; OCCURRENCE NATURAL 1

return STRINDEX is

begin -- Rindex

return(RINDEX(WHOLE, VSTR(PART), OCCURRENCE));

end RINDEX;

function VSTR(FROM CHARACTER) return VSTRING is

TEMP :VSTRING;

begin -- VSTR

117

if LAST <1

then raise CONSTRAINT-ERROR;

else TEMP.LEN :=1;

end if;

TEMP.VALUE(FIRST) := FROM;

return(TEMP);

end VSTR;

function VSTR(FROM :STRING) return VSTRING is

TEMP : VSTRING;

begin -- VSTR

if FROMILENGTH > LAST

then raise CONSTRAINT -ERROR;

else TEMP.LEN FROMILENGTH;

TEMP.VALUE(FIRST .. FROMILENGTH) := FROM;

return(TEMP);

end VSTR;

Function 'g+11 (FROM :STRING) return VSTRING is

begin -- 1+1

return(VSTR(FROM));

end 11+11;

Function 11+11 (FROM : CHARACTER) return VSTRING is

begin

return(VSTR(FROM));

end 01+19;

function CONVERT(X :FROM) return TO is

begin -- CONVERT

return(VSTR(STR(X)));

end CONVERT;

end VSTRINGS;

-DISTRIBUTION AND COPYRIGHT:

-This software is released to the Public Domain (note:

software released to the Public Domain is not subject

to copyright protection).

-Restrictions on use or distribution: NONE

DISCLAIMER:

118

-- This software and its documentation are provided "AS IS" and

-- without any expressed or implied warranties whatsoever.

-- No warranties as to performance, merchantability, or fitness
-- for a particular purpose exist.

-- Because of the diversity of conditions and hardware under

-- which this software may be used, no warranty of fitness for

-- a particular purpose is offered. The user is advised to

-- test tte software thoroughly before relying on it. The user

-- must assume the entire risk and Liability of using this

-- software.

In no event shaLL any person or organization of people be
-- held responsible for any direct, indirect, consequential

or inconsequential damages or Lost profits.

119

C. ListSingteUnboundedUmanaged

generic

type Item is private;

package ListSingteUnboundedUnmanaged is

type List is private;

Nutt ist : constant List;

procedure Construct (The-Item : in Item;

And The List : in out List);

function IsNutL (The-List in List) return BooLean;

function Head Of (The-List in List) return Item;

function TaitOf (The-List in List) return List;

Overflow : exception;

List IsNutl : exception;

private

type Node;

type List is access Node;

NuttList : constant List := nurt;

end ListSingleUnboundedUnmanaged;

package body List SingleUnbounded Unmanaged is

type Node is

record

The-Item Item;

Next List;

end record;

procedure Construct (The-Item in Item;

AndTheList in out List) is

begin

And The List := new Nodel(TheItem => The-Item,

Next => And The List);

exception

when StorageError =>

raise Overflow;

end Construct;

function Is-Null (The-List : in List) return Boolean is

begin

return (The-List = null);

end Is_Nutt;

function Head Of (The-List : in List) return Item is

120

begin
return The List.The item;

except ion

when Constraint-Error =>

raise List IsNull;
end Head-Of;

* function TailOf (The-List :in List) return List is

begin
return The List.N ext;

except ion

when Constraint-Error =>
raise List IsNuLt;

end Tail-Of;

end List-Sing Ie-UnboundedUrinanaged;

121

D. PRIORITY-DEFINITIONS

with SYSTEM;

use SYSTEM;

package PRIORITY-DEFINITIONS is

BUFFER-PRIORITY :constant priority :=10;

STATIC SCHEDULE PRIORITY constant priority :=8;

DYNAMIC SCHEDULE PRIORITY constant priority :m 1;

end PRIORITY-DEFINITIONS;

122

LIST OF REFERENCES

1. Booch, G., Software Engineering with Ada, 2nd ed., The
Benjamin/Cummings Publishing Company, Inc., 1986.

2. Boehm, B., SOFTWARE ENGINEERING ECONOMICS, Prentice-Hall,
1981.

3. Hopcroft, Towards Better Computer Science, IEEE Spectrum,
December 1987.

4. Yourdon, E., Modern Structured Analysis, Prentice-Hall,
1989.

5. Luqi, Software Evolution Via Prototyping, Technical
Report NPS52-88-039, Naval Postgraduate School,
Monterey, California, September 1988.

6. Luqi, Berzins, V., and Yeh, R., A Prototyping Language
for Real-Time Software, IEEE Transactions on Software
Engineering, pp. 1409-1423, October 1988.

7. Luqi, and Ketabchi, M., "A Computer Aided Prototyping
System," IEEE Software, v. 5, pp. 66-72, March 1988.

8. Luqi, and Berzins, V., Semantics of a Real-Time Language,
Technical Report NPS52-88-033, Naval Postgraduate
School, Monterey, California, September 1988.

9. Luqi, and Berzins, V., "Rapidly Prototyping Real-Time
Systems," IEEE Software, pp. 25-36, September 1988.

10.Luqi, Handling Timing Constraints in Rapid Prototyping,
Technical Report NPS52-88-036, Naval Postgraduate
School, Monterey, California, September 1988.

ll.Altizer, C., Implementation of a Language Translator for
the Computer Aided Prototyping System, Master's Thesis,
Naval Postgraduate School, Monterey, California,
December 1988.

123

12.O'Hern, J., A Conceptualized Level Design for a Static
Scheduler for Hard Real-Time Systems, Master's Thesis,
Naval Postgraduate School, Monterey, California, March
1988.

13.Janson, D. M., A Static Scheduler for the Computer Aided
Prototyping System: An Implementation Guide, Master's

Thesis, Naval Postgraduate School, Monterey, California,
March 1988.

14.Marlowe, L., A Scheduler for Critical Time Constraints,
Master's Thesis, Naval Postgraduate School, Monterey,
California, December 1988.

15.Kilic, M., Static Schedulers for Embedded Real-Time
Systems, Master's Thesis, Naval Postgraduate School,
Monterey, California, December 1989.

16.Wood, M., Run-Time Support for Rapid Prototyping,
Master's Thesis, Naval Postgraduate School, Monterey,
California, December 1988.

17.Luqi, Rapid Prototyping for Large Software System Design,
Ph.D. Dissertation, University of Minnesota,
Minneapolis, Minnesota, May 1986.

18.Booch, G., SOFTWARE COMPONENTS WITH Ada, The
Benjamin/Cummings Publishing Company, Inc., 1987.

124

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2

Cameron Station
Alexandria, Virginia 22304-6145

2. Dudley Knox Library 2
Code 52
Naval Postgraduate School
Monterey, California 93943-5002

3. Director of Research Administration 1
Attn: Prof. Howard
Code 81
Naval Postgraduate School
Monterey, California 93943-5100

4. Prof. McGhee 1
Code CS/Mz
Naval Postgraduate School
Monterey, California 93943-5100

5. Chief of Naval Research 1
800 N. Quincy Street
Arlington, Virginia 22217-5000

6. Center for Naval Analysis 1
4401 Ford Avenue
Alexandria, Virginia 22302-0268

7. National Science Foundation 1
Division of Computer and Computation Research
Attn: Dr. K.C. Tai
Washington, D.C. 20550

8. Ada Joint Program Office 1
OUSDRE (R&AT)
Pentagon
Washington, D.C. 20301

125

9. Naval Sea Systems Command 1
Attn. CAPT A. Thompson
National Center #2, Suite 7N06
Washington, D. C. 22202

10. Navy Ocean System Center
Attn. Linwood Sutton, Code 423
San Diego, California 92152-5000

11. Office of Naval Research
Computer Science Division, Code 1133
Attn. Dr. R. Wachter
800 N. Quincy Street
Arlington, Virginia 22217-5000

12. Office of Naval Research
Applied Mathematics and Computer Science, Code 1211
Attn. Mr. J. Smith
800 N. Quincy Street
Arlington, Virginia 22217-5000

13. Defense Advanced Research Projects Agency (DARPA)
Director, Naval Technology Office
1400 Wilson Boulevard
Arlington, Virginia 22209-2308

14. Defense Advanced Research Projects Agency (DARPA)
Director, Prototype Projects Office
1400 Wilson Boulevard
Arlington, Virginia 22209-2308

15. Defense Advanced Research Projects Agency (DARPA)
Director, Tactical Technology Office
1400 Wilson Boulevard
Arlington, Virginia 22209-2308

16. Chief of Naval Operations
Attn: Dr. R. M. Carroll (OP-01B2)
Washington, D.C. 20350

17. Chief of Naval Operations
Attn: Dr. Earl Chavis (OP-162)
Washington, D.C. 20350

126

18. Naval Surface Warfare Center 1
Code K54
Attn: Dr. William McCoy
Dahlgren, Virginia 22448

19. Naval Surface Warfare Center 1
Code U33
Attn: Phil Hwang
Silver Spring, Maryland 20903-5000

20. Professor Luqi 10
Code CS/Lq
Naval Postgraduate School
Computer Science Department
Monterey, California 93943-5100

21. Frank V. Palazzo 2
Defense Manpower Data Center
99 Pacific Street
Monterey, California 93940

22. Defense Manpower Data Center 1
Attn. Mr. Robert Brandewie
99 Pacific Street
Monterey, California 93940

127

