
Unclassified
SECURITY CLASSiFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE M No.m 0704-0188

lb RESTRICTIVE MARKINGS

3. DISTRIBUTION IAVAILABILITY OF REPORT
Approved for public rilease; Distribution

AD-A22 004unlimited

4 PERFORMINUj SJ~M''~ ~. . - ) S MONITOING ORGANIZATION REPORT NUMBERMS

PL-TR-91-2030

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MODNC
Phillips Lab, Geophysics 1 (if applicable)

-Directorate OPS
bc. ADDRESS (City, State, and ZIP Code)7bA R 01amlto
Hanscom AFBN MR1 91
Massachusetts 01731-5000

8d. NAME OF FUNDING/ SPONSORING T8t) OFFICE SYMBOL 9 PROCURP INSTRUM 0%IDENTIFI NUMBSER
ORGANIZATION j (if applicable)U

8c.. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUM~BERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO NO ACCESSION NO
63220C S321 13 01

11. TITLE (include Security Classification)
Impulse Formalism for Atom-diatom Collisions

12 PERSONAL AUTHOR(S)

Ramesh D. Sharma. Prai i .Bkh* oe 3-w t

16 SUPPLEMENTARY NOTATION *Physics Department, Boston College, Chestnut Hill MA 02167
**Yap Analytics Inc., 594 Marrett Road, Lexington, MA 02173 - Reprinted from Physical
Review A, Volume 43, Number 1, 1 January 1991

1.COSA fI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROU ~ Aom;414olecule; Impulse; Cross-sections; Collisions

19. ABSTRACT JContinue on reverse if necessary and identify by block number)

%JAn exact formulation or the impulse approach (IA), or quantum-mechanical spectator model, is
applied to alom-diatomn collisions. Results are compared with previous work on the IA, which has
always in~volved tile peaking approximation (PA). Trhe PIA is seen to overestimate (un~derestimate)
differential cross sections for processes involvinig projectile atom energy toss (gain). Thle internal
conlsistency of tile IA is explored by subjecting it towSelidetailed balancing. For small scattering an-
gles the IA is seen to be an inadequate theory, probably due to thle neglect of double- and higher-
collision terms in [he nltultiple-collision expansion of tile Illree-boJy TmIatrix. I-or large scattering
angles, whlere t[le IA does appear to describe tile scattering process accurately, the exact calculation
is shlownl to give tile samne results as when on~ly the ellergy-conlservilng on-the-energy-shell two-body
processes are considered. Ani accurate approximationl nicttod is also developed for rapid computa-
tionl of inelastic ditrereittial cross %ectiormil.Ftlally, tile calculated results are conmpared with the ex-
perimenital measuremenlts, and the need plore two-body potenltials mlore complicated thanl the
hard-core potential is pointed out.

20 DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
0 UNCLASSIFIED/UNLIMITED 1 SAME AS RPT. 0 DTIC USERS Uncasfe

221 NAME OF RESPONSIBLE INDIVIDUAL 22b, TELEPHONE (include Area Code) 22c. OFFICE SYMBOL

Ramesh D. Sharmna 1(1)1749 pq
DO Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

Unclassified



PL-TR-91-2030

PHYSICAL REVIEW A VOLUME 43, NUMBER I I JANUARY 1991

Impulse formalism for atom-diatom collisions
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An exact ,ormulation of the impulse approach (IA), or quantum-mechanical spectator model, is
applied to atom-diatom collisions. Results are compared with previous work on the IA, which has
always involved the peaking approximation (PA). The PA is seen to overestimate (underestimate)
differential cross sections for processes involving projectile atom energy loss (gain). The internal
consistency of the IA is explored by subjecting it to semidetailed balancing. For small scattering an-
gles the IA is seen to be an inadequate theory, probably due to the neglect of double- and higher-
collision terms in the multiple-collision expansion of the three-body T matrix. For large scattering
angles, where the IA does appear to describe the scattering process accurately, the exact calculation
is shown to give the same results as when only the energy-conserving on-the-energy-shell two-body
processes are considered. An accurate approximation method is also developed for rapid computa-
tion of inelastic differential cross sections. Finally, the calculated results are compared with the ex-
perimental measurements, and the need to explore two-body potentials more complicated than the
hard-core potential is pointed out.

I. INTRODUCTION (IA) has been applied to a number of situations in scatter-
ing theory. Coleman7 has developed the IA with applica-

The basic idea of the impulse approach to analyzing tions to electron-atom collisions and Korsch et al.' have
collisions was proposed by Chew' in his study of inelastic developed the IA with applications to electron-molecule
scattering of high-energy neutrons by deuterons. When collisions. It has also been applied extensively in nuclear
the time duration of the collision is much shorter than physics.5

the period of characteristic motion of the bound particle, The IA was first applied to atom-diatom collisions by
the components of the bound particle may be considered Bogan9 and by Eckelt, Korsch, and Philipp (EKP).' ° The
to act independently of each other, with position or latter authors in a series of papersI - " have applied the
momentum amplitudes given by the bound-state wave IA to a number of situations involving atom-diatom col-
function. The binding potential only serves to create a lisions. The IA has also been applied to atom-diatom col-
relative momentum distribution of target particles. The lisions by Beard and Micha. 14 In the IA, the T matrix is b

three-body scattering amplitude thus reduces to an ap- expanded in a multiple-collision series") and only the
propriately weighted sum of two-body scattering ampli- terms -representing single collisions are retained-two
tudes. The constituent not taking part in the scattering terms for an atom-diatom collision and so on. In addi-
process is called tl.e spectator. The impulse approach tion, while not a part of the basic IA formalism, the
has therefore also become known as the quantum- atom-diatom calculations cited above use another ap-
mechanical spectator model. The scattered state is ob- proximation as well, namely the peaking approximation
tained by combining the effects of the two two-body col- (PA), to obtain results for comparison with experiments.
lisions with proper phase factors. The probability ampli- In the PA, (i) the t matrix representing the two-body pro-
tude of a given final state is obtained by projecting the cess is evaluated at a particular value of the spectator
scattered state onto it. It should be emphasized that the atom momentum, and (ii) the slow variation of the t-
perturbation of the initial state is not assumed small; the matrix elements over a region of appreciable overlap of
only assumption is that the two scattering centers act the initial and the final states is used to justify the separa-
suddenly, and therefore independently. Formal develop- tion of the three-body T-matrix elements into two
ment of Chew's work has been provided by Chew and parts-one containing information about dynamics (the
Wick, 2 Ashkin and Wick,3 and Chew and Goldberger. 4  two-body t matrix, and the other containing information
The impulse approach has been discussed in texts by Gol- about the target (the form factor). T will be used to
berger and Watson5 and Rodberg and Thaler,' the latter denote the three-body transition matrix while the two-
giving a very readable account. The impulse approach body transition matrix will be denoted by t'". The PA

43 189 1991 The American Physical Society

91 2 26 091



190 SHARMA, BAKSHI, AND SINDONI 43

gives a very nice physical picture of the impulse scatter- In a coordinate system with the origin coincident with
ing process. Howzver, it was recently shown by the the c.m. of the three particles, only two momenta are in-
present authors 15 that, except for elastic scattering, the dependent, and any p or q may be expressed in terms of
PA results are substantially different from the exact IA two other p's and/or q's. The vibrational-rotational en-
calculation. We note here in passing that the PA was ergy of the molecule 12 will be expressed through q3,
also found to be inadequate for the excitation of atomic which will later be written in terms of q, (q2) and Pt (p2 )
hydrogen by 1-500-keV protons.16  when atom 1 (2) is the spectator atom. The spectator-

In this paper we give, in detail, an exact formulation of atom momentum remains constant during the collision.
the impulse calculation without invoking the PA. Also, At the end of the collision q; is resynthesized from q, and
as in past studies, the target molecule has been taken to the spectator momentum p, = p,, s = 1,2. The probabili-
be in a low state of internal excitation, and a large ty amplitude of the final state is the projection of the state
translational energy of relative motion is assumed to jus- (q'3 on the final state.
tify the use of he IA and the PA. It was pointed out by It has been pointed out that the validity of the impulse
Sharma 17 that the IA can also be used in situations in- approach requires that the time duration of the collision
volving large internal excitation and small or moderate be much shorter than the period of characteristic motion
relative translational energies. Since our formalism does of the target. Previous work on inelastic atom-diatom
not invoke any special properties of the T matrix or the scattering using the IA has assumed a hard-sphere or
wave functions, the resulting equations are applicable for hard-core potential between the incident atom and either
arbitrary internal molecular and relative kinetic energies. of the two atoms constituting the target. This potential
Section II formulates the problem, where we follow the satisfies the IA criterion for any internal or relative
methodology of Eckelt et al. 1 Section III derives the translational energy of motion. Another reason for using
peaking approximation to relate the present work to the this model potential is that the required half-on-shell, as
previous work and to set the stage for the exact calcula- well as off-the-shell, two-body 1-matrix elements are given
tion, which is derived in Sec. IV. Section V compares the in literature in a closed form. In this work, we will also
exact results with the PA results. Section VI checks t ie use this potential. This will facilitate the comparison of
internal consistency of the results obtained from the IA, our results with those of earlier workers. In addition,
using semidetailed balancing. Section VII gives an ap- since our calculation is exact, we will be able to learn
proximation for the scattering amplitude, which is easily about the impulse approach itself. We are, however,
computed, yet accurate. Section VIII compares the cal- aware that an infinitely steep potential overestimates
culated results with the experimental measurements. highly nonresonant transitions. In subsequent work, we
Concluding remarks are given in Sec. IX. plan to explore this point by using less steep two-body

potentials.
I. FORMULATION The potential energy of the three-body system V can be

written as
The differential cross section, in the center-of-mass sys-

tem, for a rotational-vibrational transition is given by 10  V = V3W(x,y,a )+ V3(y) , (2)

do, . where V.,. is the interaction between incident atom 3d f ( v jp 3 - -- v j P . ; O ) 3 1
and the diatom M. x is the distance of the incident atom

3 from the c.m. of the molecule, y is the internuclear dis-
- . tance of the diatom, and a is the angle between x and y.

(2j+ l)p3 V3 is the potential energy of the diatom 12. To give a

[2 12 2 description of the three-body scattering process in terms
X I YU3((bT(E +i0)10 ) , (1) of two-body scattering and a spectator atom requires that

mm' the interaction potential be written as

where 0.)-iv,j,m,p 3 ) denotes the initial state, the V3.V= V(y, )+ V(Y2), (3)
final-state variables are denoted by primes, and P3 and p.
are the momenta of the incident particle before and after where Va - V, and y2 (y,) is the distance between atom
the collision. P3 is also the momentum of the incident 1 (2) and atom 3,
particle 3 with respect to the center of mass (c.m.) of the x C
molecule 12. pa denotes the momentum of particle a Y1 (Y 2 )=Ix+[ (c,)y]24 2xyc, (c2)cOsal'I 2  (4)

with respect to the c.m. of bc, and qa is the relative with c I (c, )_m, (in, )/(m I+m,): the minus sign ap-
momentum of b and c. This set of momenta is called the plies to subscript I and the plus sign applies to subscript
Jacobi momenta. Ila denotes the reduced mass of the sys- 2. The form for the atom-molecule potential used in Eq.
tem (a,bc). 0 is the scattering angle, i.e., the angle be- (3) does not give a good fit to the more common form of
tween p3 and p3. The summation over m and in' has re- this potential in terms of Legendre polynomials. The two
moved the dependence of the differential cross section on potentials are applicable to different models of atom-
the azimuthal angle. T(E +iO) is the three-body matrix diatom collisions. It is desirable to establish a connection
element with total initial (or final) energy E. p,,, is the re- between the two models, and this will he attempted in a
duced mass of the two particles a and h, and future work.
M - in, + in, in;. Following EKP,") we write the three-body T matrix in



43 IMPULSE FORMALISM FOR ATOM-DIATOM COLLISIONS 191

the multiple-collision series (.IT'l)=! 0

T=T''"+ Tt)+ T11)G3 T 2 + TT' 2 G3T")+ (5)

where the three-body transition matrix T"', s = 1,2, (10)

denotes the collision of atoms 3 and t, t = 2, 1, s being the where the summation is over the initial and final free-
spectator atom and G 3 =(z -H 0 - V 3) 1- being the prop- particle states o and $, and 63, as pointed out earlier,
agator or the Green's function (Ho being the total denotes Ip.)=Ip 3 )®1Vjm), etc. The above expression
kinetic-energy operator). Equation (3) has a simple phys- can be simplified by noting that Io) = Iq3)® 9P3) pro-
ical interpretation. The first two terms denote the col- vides a complete set for the free-particle momentum
lision of atoms 32 and 31, respectively. The next two states,
terms denote double collision ij, where 3 collides first
with j and then with i, and so on. It should be stressed 4 o(6043 = f lq3P3)(q3P d
that this is not an expansion in the Born series, and each 60
of the terms on the right-hand side of Eq. (5) represents a = f 1q3p3), d , (11)
three-body T matrix. The IA keeps only the first two
terms. with the molecular wave function in the momentum rep-

To reduce the three-body matrix T' into the two-body resentation given by
matrix t "', one writes

T ( 1 ) = V , i t 1 , ( 6 )

where the M6ler operator f'' is defined by =(21)--3/2 f dr exp(iq3r)( rlvjm )

1=(217r)l/12ij,.j (q3 )Yj,( 3 ) - (12)

Y+,V are the spherical harmonics and I,, is defined by

V V23, the potential between atoms 2 and 3. The J(q) =  dr r2 y, (r)j (qr) (13)
M6ller operator in Eq. (7) is still a three-body operator. - '
We now invoke the spirit of the IA, i.e., the time duration Y,(r) being the radial part of the vibration-rotation wave
of the collisions is much shorter than periods of charac- function and j, representing the spherical Bessel function
teristic motion. This allows one to assume that the inter- of order j. Similarly,
nuclear distance of the diatom stays constant during the
collision and to replace the operator V 3, the potential en- ' o f*qdq(q~p , (14)
ergy between bound particles I and 2, by a number.
Writing z-V 3 =ZIA, we get the two-particle Mifller
operator fl, describing the collision between particles 3 where ib'(q,) is the final molecular state. Using Eqs. f11)

and 2, and (14) we can write Eq. (10) as

(b V 16) = f 'q)(qjp'iz iq3p3)
fi1= l + (z IA - H o - Vj)-1VI (8) Xbq)qd,(5

In Eq. (7), z =EVR +EreI +i0, where EVR is the To calculate the matrix elements of the two-body tran-

vibrational-rotational energy of the diatomic molecule, sition operator t"), it is pertinent to recall that the spec-

and E,I =p2/(2/"3) is the relative atom-diatom transla- tator Jacobi momentum p, stays constant during the col-

tional energy. Writing EVR - V3 =q /(22p), where q 3  lision, and momenta p3 and q3 must be expressed in terms

and P12 are the relative momentum and reduced mass of of p, and q5, s = 1,2. q, is changed to q, during the col-

atoms I and 2, respectively, we get lision and, after the collision, inverse transformation to p,
and qA is carried out. These transformations are effected

Z A 2, =p)/+2g q)2/(2y12) + i0 .by 
the relationsZ IA = P 3 /(2 3 q (2 t + i (9 )

q.=-P +[mj/(m +m2)]P31 ,(16)

ZIA is then the kinetic energy of the three particles in the q 3=1P2+[m2/(M+m2)]P31 , (17)
center-of-mass system. ZIA are the eigenvalues of H.,
eigenfunctions being the free-particle states Ibo) de- q,=[m 3 /(m2+m3)]P,+P 3 , (18)

scribed in the next paragraph. We have now translated and,
into quantitative language the assertion of the IA that the
role of the diatom potential is to generate a relative q2= - [ m/(M i + m 3 )]P2 + P( . (19)
momentum distribution of its two constituent atoms. We
should point out that there are other choices for ZIA that Equations (16) and (18) are used when atom I is the spec-
have been used in literature.' 14. tator, while Eqs. (17) and (19) are used when atom 2 is the

The transition matrix elements between eigenstates 63 spectator. Expressions for q4 are obtained from Eqs.
ofH o + V 3 can be written as (16)-(19) by replacing p4 by p4. In a three-atom system,
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with the origin at the center of mass, we have rewrite Eq. (15) as

PI +P2+ P3O0, and only two momenta are independent. (' 3 j T" '3 )=f dq3(p' P,)dq3A (q3)
This choice of momenta greatly simplifies the solution.

Noting that the state IP3q3) is also the state Ipq, X (q' ,It'lq, ) O(q3 ) . (21)
s = 1,2 [Eqs. (16)-(19)], we are in a position to write

Changing the integration variable from q' to p, analo-
q3Pt )I(q-'ts3){ - N gous to the transformation carried out in Eqs. (18) and

(20) (19), we get

(0,31TI 3 )= fdq30 *(q'1)(qI,t'q, >(q 3 ) . (22)
where the basic assumption of the IA (namely that the
spectator momentum remains constant during the col- Going back to Eq. (1), the expression for the
lision) is reflected by the Dirac 8 function. We can now differential scattering cross section can be written as

dor p P2 1 ) ' (23)
dil p32 + I tn .2

At this point we note a particular feature of the IA. It IPA =[(q,'It'"Iqs 2' , (24)
has been pointed out that q. changes to qs during the col-
lision between atoms 3 and t. This change of the magni- where q3 and p3 are related by Eq. (16) or (17).
tude of the relative momentum di'ring scattering from a The spectator momentum at which the I matrix is eval-
central field does not conserve energy during the two- uated is arrived at in the literature by the following argu-
body collisions. After the collision, only those combina- ment: Since the momentum distributions at which initial-
tions of p3 and internal molecular energy (v'j') that con- and final-state wave functions, 6 3(q,') and 45(q3), are
serve energy are permitted. This nonconservation of en- nonzero only in the vicinity of
ergy during the two-body collision should pose no prob-
lem, since the uncertainty in energy, AE, and time dura- P (25)
tion of the collision, At, are connected by the uncertainty (m + im2 )
relation AE = h/At. In an impulse collision with a hard- and
core potential, At -- 0. Therefore there is a large uncer-
tainty in energy. This was the reason, as we pointed out m,
earlier, that the hard-core potential probably overesti- q3=O-p,- (m - m.)p, (26)
mates highly nonresonant transitions. Energy associated
with q, is physical in the sense that ZIA the product of the wave functions is substantially
=q,/(22, )+p2/(2, ), the kinetic energy of the three- different from zero only in the vicinity of their midpoint,
body system in the c.m. frame, whereas the correspond- m,
ing energy associated with q,=#q, is not physical. For i - (P3 +P ,) • (27)
this reason, the two-body t-matrix elements 2(M i + i) )

t"(q,,q';ZIA) are called half-on-the-energy-shell matrix This argument holds strictly for the v =0 and the j =0
elements. The use of momentum q,, which does not con- state of the molecule. If there is a large amount of energy
serve energy, has, as we have shown elsewhere, 8 interest- in the vibration and/or rotation of the molecule, the
ing consequences for time-reversal (TR) symmetry. It wave function is no longer substantially different from
should be pointed out that half-on-shell and off-shell ma- zero only in the neighborhood of q3 =0 (or q =0), and
trix elements have also been interpreted as incomplete the PA may have to be evaluated at some other value of
collisions. 19 The two-body I matrix discussed here does the spectator momentum.
not describe the complete scattering process; it is there- Proceeding further, we can now rewrite Eq. (22) as
fore consistent with this interpretation. ($< T'b 3 = t'; f dq 3 &( q )d(q3 ) • (28)

III. THE PEAKING APPROXIMATION
The integral in Eq. (28) is an overlap integral, describing

The peaking approximation (PA) is based on the idea the amplitude for the instantaneous transition from the
that the product of the initial and final state in Eq. (22) is initial to the final state, due to impulsive momentum in-
nonzero in a finite region of the spectator momentum and crement,
the t matrix is slowly varying in this region. Thus we can
evaluate the I" matrix element at some particular value q.--q.=q.+( - 1)' - q , (29)
of the momenta, (M + m 2)
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q being the momentum transferred during the collision, Taking initial- and final-state wave functions as
q=P 3-P 3. This integral is cast in familiar form and, at
the same time, its evaluation is simplified by a transfor- '(r)=vi(r)Yi, U?) (32)
mation to coordinate space, leading to and

(d 6'IT I 3) ' t13 f dr 'l*(r)exp(-ia,q-r)i(r) , (30)
whre'(r) =Yt(,j( r )Yj'm "(U) , (3 3)where

as - 1 ) (31) respectively, and using the expansion of the plane wave in
(M I + m 2 ) spherical harmonics, we get

1/2

(4 t 4irr ~±iA C (jv; 00)C (]jv; m,)fJ , 1.."j; (q) Y (4 ) (34)

where sm'- m, the C's are the Clebsch-Gordan coefficients, 20 '7=(2j + ), etc., ± means that the plus sign is taken
for s = 1 and the minus sign for s = 2, and

f l I ), fj ) oi d r r 2 ,,'j (r,. , j :-)j ( [ a s  r q ) ( j ( , ( 3 5 )

The differential cross section is obtained by averaging over the initial azimuthal quantum numbers and summing over
the final ones, giving

I27 !I4 
?'"1 .+j,)do," 2

r -
1 2) -. (Idol (VjP3 2 VTP 3 0)jP3 + - )uJf f., A: 2'PA , (36)

an expression available in the literature.10 The cross sec- where we have written q3=q 3+a~q, and as has been
tion is factored into two parts, the t-matrix part deter- defined earlier [Eq. (31)]. We now define a function
mining the momentum transfer and the form-factor part z 1)(r) by the relation
determining the probability amplitude for the given t( ) -3/(2ir_3 /2 fdqexp(_iq 3 r)(q, ts,'Iq,)db(q
momentum transferred. For homonuclear diatomic mol- -f(

ecules, the contributions from the two target atoms are (39)
equal in magnitude, and the phase factors are such that
only Aj=even transitions are allowed. The total cross to obtain
section is obtained from the differential cross section by ('4
the relation ( ?]T = fdr *'(r)exp(-iaq-rtb(')(r) (40)

2,r fP3 fPI do 1 Now we expand the two-body t matrix in a spherical har-
(vjp3 --. v'j'P 3 )= ' ' d q monies expansion in the angle 4 as

(qs t"'q, ) = Y LM q.,P3,q) YLW(3) , (41)

IV. BEYOND THE PEAKING APPROAMMATION L.3f

with t (" given by
It is useful to recall that the two-body I matrix depends LM

upon the momenta q, and qs and the angle between these tLM(q 3 ,p3,q) fd43 YL 4(( 3 )(q' l:"'Iq,) . (42)
momenta.10 ,14 .21 In terms of other momenta, this means
that the matrix element depends upon incident momen- Substituting this expansion into Eq. (39), and introducing

tum p3, internal m'lecular momentum q 3, and momen- the plane-wave expansion,

tum transferred during the collision, q. Of these, only P3 exp( -iq3.r)=4ir i'- y.,,(?)Y ,(q 3)j(qir) , (43)
and q are observables. To proceed beyond the peaking
approximation, the variation of the two-body t matrix
must be properly taken into account over the range of in- we get
tegration in q3 in Eq. (22). This is nontrivial, but can be 1/2

accomplished as follows. We first note that the final-state tb''(r)= i - )Y, ( )I-L 1- /2

wave function in the momentum representation is ob- L4MA, r 4

tained from the final-state wave function in the coordi- XC(jLX;00)C(jLX;mM) , (44)
nate representation by the Fourier transform,

where
,*'(q,)=(2r) 3/2 fdrexp(-iqgr)

Mep r r 1rJ j) (q r) (q 3 , p3,q).j(q3  (45)X exp( -ia,q-r)tb*'(r) , (38) 7L r)_2 qq)(~~L q p,~,jq) (5
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and Jl,(q 3 ) is defined by Eq. (13). and Eqs. (44) and (45) lead to Eq. (46). The important
Equation (40) has the form of an overlap integral, if tW"~' point about the modification brought about by the varia-

is viewed as the effective initial state that incorporates the tion of the matrix element of t" over q 3 is that various
modification to the original wave function produced by a terms now comprising the modified wave function inter-
nonconstant t matrix. In the peaking approximation, the fere to produce the final scattering amplitude. So, even if
q 3 variation of (q (It(" Iq, ) is ignored, and Eq. (39) is ap- the variation of t"' over q3 is not significant and the non-
proximated by evaluating this matrix element at some isotropic modifying terms are small, their influence on
specific, fixed value of q 3, leading immediately to the the final result can be substantial. Ignoring this is the
simplified form major problem with the PA.

To evaluate the integral in Eq. (40), we substitute
tfs)(r)=t (s'O(r) , (46) another plane-wave expansion,

and Eq. (40) then reduces to Eq. (28) of the preceding sec- "q r
tion. In terms of the spherical harmonics expansion for exp(-ia' •qr
t' s', Eq. (41), it is as if t" is isotropic, i.e., only the L =0, =4r.(± i )UY,(? )Y(jij;aqr) (48)
M =0 term is nonzero, and also independent of the mag- f.).
nitude of q3. Then, with the plus sign for s = I and the minus sign for s =2.

(qI'ssqs.Yoot~s(q3 ).YO~t =, Pt , (47) Then,

where C(jLX;m,M)C(X/3lj';m +M,0)

NL' ,(,3=fd j~a r)" J),.j-r (50) =~W(jLj/3;AJ)(U5'i2

J
To simplify Eq. (49) for computational purposes, it is XC(jJj';m,M)C(L[3J;M,O) 52)
con enient to choose the z axis of the coordinate system
along q, the direction of momentum transfer vector.Then, we get a relation between the total angular-momentum

1/2 change during the collision, J, and the initial and final ro-

/483_5 tational quantum numbers j and j'. We also note the to-

41 7 J 0" (51) tal angular-momentum change J is composed of two
parts: L, coming from the two-body t matrix, and fl, the

Using the properties of Clebsch-Gordan coefficients, we usual component, derived from the momentum
note that, in Eq. (49), only the =m' term is nonzero and transferred during the collision. Substituting Eq. (52)
M (m ' - m). Noting the identity 20  into Eq. (49), we get

0'I 's) 103j 1/2 IVT ) (s) ( i)i -k - 00/2

0,3. .J 41i]

XC(/3j';OO)C(jJj';mM)C(L#fJ;MO)W(jLj'3;A.J) . (53)

The expression for the differential cross section is now obtained by summing the absolute square of the collision am-
plitude over m and m'. Since M =m'-m, one can instead sum over m and then over M. Summation over m, for fixed
M, leads to

,C(jij';mM)C(jij ';mM) =  , (54)

where the second factor on the left-hand side comes from the complex conjugate of Eq. (53). Carrying out the m and
the J sums, we finally obtain

4

doI ,  Ip' , 4 2 2 p 3 J (+ ',P-j 3 PIf Fjw (55)d f l P 3 j J ' j , A
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where

Fj~w= I (iJ-+4+f) l C(jLX.;00)C(.flj';OO)C(LflJ;MO)W(jLj'fl;J)[Njl',) +( -,I rNAL,;] . (56)

This is the central result of this paper, invoking no ap- Thus L =M =0 is the only nonzero term in Eqs. (41) and
proximations in evaluating the differential cross section (42), and
in the impulse approach, Eq. (23). The integrations and
summations become possible by separating angular parts 00 - r , (57)
of all relevant expressions and repeated use of angular- all other tL." =0, and we can set L =0 and M =0 in Eq.
momentum identities. It should be noted that no as- (56). Then,
sumptions were necessary regarding the structure or the
properties of the I matrix. We have only invoked the C(0J;00)=8N , (58)
completeness of the spherical harmonics expansion, Eq. , (59)
(41), in arriving at this result. Equation (55) then consti-
tutes the full calculation of the differential crosb section W(j-j,j;jj)=(;J-)- 12 (60)
in the impulse approach for any two-body potential.

To see how Eqs. (55) and (56) reduce to the PA, we and
note that, in the PA, t" is assigned some fixed value in- f-- i(. • (61)
dependent of q3, i.e., NooJ '.tj

:J 
PA

all other NL.WjJ =0.
t(q3,P.,q)-t'(P3,q)PA •When Eqs. (57)-(61) are substituted in Eq. (55), we get

do 1_ 4 j' + J

V jp1 - Oj'pO) P3)w r,:/flp A +(-, - JI )'if. j:jiPA "A (62)dfl r? P3 13= '- j

Noting that P has the same parity as Aj, we recover the For homonuclear diatoms, the two amplitudes corre-
PA formula, Eq. (36). We have written = instead of = sponding to s = 1,2 are equal in magnitude. The relative
in Eq. (61) to emphasize that N" is based on the aver- phase of these amplitudes can be established by noting
aged isotropic component of t", whereas the PA evalu- (q'11( l~q )(q3) = (q'Jt(2)lq )(-q) (65)
ates t") at a given fixed value of the spectator momen-
tum, and thus ignores the dependence on the molecular giving
momentum q3. One can take advantage of the
simplification afforded by the angular-momentum algebra QM - L (66)
without completely sacrificing the q3 dependence of t1' a
by taking just the isotropic component of the t matrix,
leading to NLM=-' I ) X )LN(2. " (67)

N"ozp':0, (63) Since L +fl must have the same parity as Aj for the
Clebsch-Gordan coefficients in Eq. (56) to be nonzero, the

all other NJ1 0. Wegain recover the PA formalism, last factor in that equation simplifies to
with NooJ replacing V4irf 't in Eq. (62). We might
call this the isotropic approximation. Although the alge- [6 ) _ ,
bra involved becomes the same, the numerical results -I 1  (

may be quite different. Thus, Aj =odd transitions vanish, and the calculations

for the Aj = even processes are simplified.
The two-body interaction is represented by a hard-core

V. COMPARISON OF THE EXACT AND PA RESULTS potential, for which the t matrix is available in a closed

In this section, we compare the results obtained by our form.2
1 Since this is the only potential used in the previ-

exact calculation [Eq. (55)] with those obtained by using ous studies, a direct comparison of our results with thosethe PA [Eq. (36)]. We use both formulations to compute of previous studies is possible. The two-body t-matrix

the differential and total cross sections for the much- element is

studied process 14,15 (q' t'' )1q, ) _t"'q,,q,,_,) , (69)

Li *+N 2(v,j)--Li * +N(v',j') . (64) where c, =q,/2,,, is the relative translational energy of
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the two colliding atoms, t and u, and is related to the -

three-body kinetic energy E o by the relation 0 0 -a, I
- 0 \"=0 pe'akting \'=l xa

Eo -p /213 +q /2912 . v'=i king

S10-14=P•/2/1, +q /2y,. (70)
SF S

The matrix elements in Eq. (69) are called half-on-energy -0 oo,0) . .

shells since the energy of the final state (q' I is not equal 0-) = :i

to that of the initial state I qs ), which has the physical en-
ergy. This choice of the t matrix is called the "post"
form.)0 The other choice of the t matrix tlS)(qs,qs,F ) is 0.0 0.1 0.2 0.3 0.4

called the "prior" form. Since E' =q 2 /2,u, .  , the two -\ 1,V)

sets of matrix elements can differ substantially under FIG. 1. Differential cross section (cm2 ) for the exact and PA
some circumstances. This difference has been termed theSosomerior c ircs anc." d rcalculations vs energy loss (eV) for the c.m. scattering angle of
"post-prior discrepancy." 30' and for the collision process Li +N,(v=O,j =0)

The needed vibration-rotation wave functions for N 2  -- Li ' + N,(v',j'), at an initial relative translational energy of I
were obtained by numerical integration of the eV. The peaking calculation (0 for v'=0 and A for v'= I)
Schr6dinger equation. The intramolecular potential gives a larger cross section than the exact calculation (solid
function used for N 2 was constructed from spectroscopic symbols).
constants22 using the Rydberg-Klein-Rees method.23

The computations are carried out as follows. The ma-
trix element t"((q,q,E) is evaluated using Eqs. (33) and 2The for v'=O and 1 in Fig. 1 and '=2 and 3 in Fig. 2.
(39) of Eckelt et al., t° and the partial waves tj are The same differential cross section, at a c.m. scattering
summed until the desired convergence is attained. We angle of 150, is plotted as a function of energy loss forfosred tveaglene qs ained W v'=0 and 2 in Fig. 3, and for v'= 1 and 3 in Fig. 4. Theuse the exact expression fhard-core radius for the Li+-N two-body collision is tak-
q' = q, +q. The range of interest for q, is given by en to be 1.62 Ak for this energy. 10 For deexcitation pro-

q l-[r1 l /(m, +mz)1[m 3/(m 2 +m 3 )]1P3 cesses (AE <0), we find, in Fig. 5, that the PA, except for
small angles (where the IA is of dubious validity'I), un-

-[m 3 /(m 2 +m3)]q3 , (71) derestimates the exact IA results. Thus, we conclude

obtained by eliminating p, from Eqs. (16) and (18). It is that the PA overestimates (underestimates) the exact IA
cross section for the excitation (deexcitation) process. It

convenient to choose the coordinate axis s ta qt is interesting to note that both the PA and exact calcula-
momentum transferred, is along the z axis; p is taken tions lead to the same general pattern for the differential
the z--x plane. p._ P3 + q, then, is also in the z-x plane at

cross section. The oscillatory structure of the state-to-
the center-of-mass scattering angle 0. The range of q3 is cross section. Tsrcurlo the sate-to-state differential cross sections, especially the sharp final
determined by the wave function of the initial state in the peak calculated 'or each v' termed "rotational rainbow
momentum space, 4(q3). The coefficients tLm(q 3,P3,q) structure," 8 is exhibited both by the PA and the exact
are determined by integrating the product of calculation. This similarity of patterns is a reflection of
t'(q,,q,l) and YLV(4 3 ) over the direction of q3, Eq.
(42). Subsequent integration over the magnitude q3 leads
to "LW),, the radial component of the wave function of ,,__

the effective initial state 0 ' , i.e., the initial-state wave to-"
function modified by the t matrix, Eqs. (44) and (45). In- 0o ,. 2 ,,.k, g ..

tegration of KL'.Ax over r, weighted by the amplitude of 0 4 . n

the momentum transferred, q, and the final-state wave .0 io
function, Eq. (50), gives NL" 4, the dynamical component E,,,= 44

of the transition matrix between initial and final states, 0 (0.0) . J) 4

Eq. (53). 10-2 0, (0o

The typical number of points required to obtain a 0
significant sixth figure is as follows: 64 points for the in- .
tegration over the direction of 4 3 (eight points for the po- -0-1 ...........

lar angle and eight points for the azimuthal angle), 120 0.5 0.6 0.7 0.8 o.g i.0

points for the magnitude of q3 , and 70 points for the in- A\ jx)I

tegration over r. FIG. 2. Differential cross section (cm2) for the exact and PA
Now we study the excitation of N 2 from the ground calculations vs energy loss (eV) for the c.m. scattering angle of

state (v =0 and j =0) during collision with Lie. The ex- 30* and for the collision process Li ' + N2k' =0,j =0)
act and PA results for this process, Eq. (64), at a relative -,Li' +N 2(v',j'), at an initial relative translational energy of I
translational energy of I eV, are shown by plotting the eV. The peaking calculation (0 for v'=2 and A for v'=3)
differential cross section, at a c.m. scattering angle of 30, gives a larger cross section than the exact calculation (solid
as a function of energy loss Ac=Ee-E , (pj _p,2 )/ symbols).
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Z Li - N4 0 v,=0 exact -Lxact
10

- 1 7 
E_.l= leV 0 v'=O peaking 1 o

-
36 Peaking

(0.0) - (v'.j') V ,=2 exact

0.= 150' a v'=' peaking z

Z -t 10-8
-0

10

-21 (6 3 1 f_ J.') 1 e

, 102

tto-t

0 .-. . 0 4 00t (6 6 ) (3 2 )

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0 20 40 80 80 100 120 140 160 1;o
_N- (e\) -M. 01 g)

FIG. 3. Differential cross section (cm) for the exact and PA FIG. 5. Differential cross section (cm2) for the exact and PA
calculations vs energy loss (eV) for the c.m. scattering angle of calculations as a function of the center-of-mass scattering angle

150* and for the collision process Li- +N,(v =0,j=0) (deg) for the deexcitation process Li* +N,(6,6) -Li"
- Li +N 2( ,',j'), at an initial relative translational energy of I +N,(3, 12) at a relative translational energy of I eV.
eV. The peaking calculation (C for v'=0 and A for v"=2)
gives a larger cross section than the exact calculation (solid I-eV relative translational energy and final vibrational
symbols). Notice the larger rotational excitation than that for levels N2(v'=2 and 3), this fall occurs when the available
30* scattering. energy is almost totally depleted. This result is consistent

with the measurements of Loesch and Herschbach 24 who,
the fact that small L #0,M =0 terms in Eq. (56) interfere in their work on crossed bepms of Ar and CsI at collision
with the dominant isotropic term. It has been pointed energies of 0.35-1.1 eV, found peaks that "correspond to
out earlier 5 that keeping only the isotropic (L =0) term an extremely inelastic 'ballistic' process in which most of
has the same mathematical structure as the PA but with the initial relative translational energy goes into vibra-
a different t matrix. This interference between different L tional or rotational excitation." King, Loesch, and Her-
terms modifies the numerical value of the differential schbach reported2 5 similar observations from a crossed-
cross section, keeping the general pattern intact. This beam study of Ar and CsF at a relative kinetic energy of
point is further discussed in Sec. VII. 0.66 eV. For NW(u'=01, the excitation cross section

Finally, we display the total cross section drops off dramatically when about half of the available
cr(OO 'Vj) for the Li +N 2 collisions at relative translational energy goes into rotational energy. This is
translational energies of I eV (Fig. 6) and 10 eV (Fig. 7). because when momentum q is transferred to the mole-
It should be noticed that for vibrationally inelastic col- cule, its rotational quantum number may be altered by up
lisions the cross section increases rapidly at the thresh- to la, Ibq, where b is the internuclear distance of the dia-
old, stays constant as higher rotational levels are popu- tom, to conserve total angular momentum. Further, if
lated with greater energy loss, and then falls rapidly. For the molecule is initially moving slowly or is at rest in the

10- 0 10-I
i

0 *- I xa, I. -

.0 O A ,l a ;i ll - 11 - (C,

0 1 ea0ki

to -"= p ........

AA -10--0,, "ix

N , 1 1 0
-
18

t o Il) - .1( - * o"=() -=

) 10-21l iOl - 10"281

0.2 0.3 0.4 0.5 0.6 0.7 0.5 0.9 1.0 0.0 0.1 0.2 0.3 0.4 o.b 0.6 0.7 0.8 0.9 1.0
tl.\( (A)( (v,\

FIG. 4. Differential cross section (cm2) for the exact and PA FIG. 6. Total cross section according to the exact calculation
calculations vs energy loss (eV) for the c.m. scattering angle of as a function of energy loss for the collision of N, with Li", at a
150" and for the collision process Li* +N,(v =0,j =0) relative translational energy of I eV. The molecule is initially in
- Li ' + N,(t',j'), at an initial relative translational energy of I the v =0 and j =0 states. Final vibrational states are denoted as
eV. The peaking calculation ( -) for v'= I and A for C= 3) gives follows: . t'= 0; ., t,' = I; El, v'= 2; and 0. r'= 3. Final rota-
a larger cross section than the exact calculation (solid symbols). tional states, j', increase sequentially from left to right, starting
Again, notice the larger rotational excitation than that for 30 with j'=0 in steps of 2. Notice that almost all the translatio-=l
scattering. energy may be converted into internal degrees of freedom.
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10-46 post model of the two-body energy parameter and the re-
=t' - N., verse process using the prior model of the two-body ener-

0 V- ,= We. gy parameter are the same (Appendix A), apart from an
(0.0) 0 V,. ,.overall sign factor and change in the sign of the magnetic

10• "- quantum numbers (m---m and m'---m'). We have,
. = I therefore, the general result that the differential cross sec-

,0 ,' tions for the forward and the reverse process are related
0 ,by the density-of-states factors. Thus, the failure of the

= 10'= post model to satisfy SDB also implies the corresponding
failure of the prior model. That these two models are not

10-0 .adequate for describing the collision process for all angles
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 is shown by the fact that the total scattering cross section

AC t,'\) using these models for two-body energy is much less than
the geometric shadow. The 'full" model 14 of the two-

FIG. 7. Same as Fig. 5, but with E,, = 10 eV. Several final body energy parameter ZIA obeys SDB for all angles, but,
vibrational states are shown, with symbols as defined in the as has been noted earlier, 8 suffers from other difficulties,
figure. A precipitous drop in the excitation cross sections is to one being that the total calculated cross section is far in
be noticed. excess of the geometric shadow.

For large scattering angles, the differential cross sec-
tion was shown 18 to be rather insensitive to the model

energy to conserve the total linear momentum. The used for the two-body energy parameter ZA. This can be

physical picture that emerges is that if the momentum tude from a hard-core potential for large scattering an-

transferred is comparable to the momentum of the center gles, provided q r c  , is constant, independent of col-

of mass of the molecule, we observe the "ballistic"

phenomenon. On the other hand, when the momentum lision energy, as long as the ratio of the incident to the

transferred is much larger than the c.m. momentum and final momentum stays the same (Fig. 8) (the two-body

the molecule is excited to very high rotational or vibra- scattering angle is denoted by d while the three-body

tional levels, not all the initial relative translational ener- scattering angle is represented by 0). On the energy shell
gy can be converted into internal energy. This feature i.e., q,=q, this value28 is r,./2. The equivalent classical

was evident in the experiment of Hershberger et al.,26 process would be the energy-conserving on-the-energy-
shell process, one with ratio q,/lq;= 1. Using the relation

who observed that during the collisions of CO, gas at s p
room temperature with energetic H, D, and Cl atoms, the q, -( - I )'q+q,, and recalling that the z axis in this

molecules excited to higher rotational levels are also the calculation is taken along the momentum transfer vector

ones moving at greater speeds. q, the on-the-energy-shell requirement becomes
-(- 1 )'2q,,q +q 2=0, qz being the z component of q,.
The root q =0 corresponds to forward scattering with no

VI. INTERNAL CONSISTENCY change of momentum, and in the classical picture it cor-
OF THE CALCULATED CROSS SECTIONS responds to no collision. The root q,: = ( - I )q, leading

to q,- q,:, corresponds to the situation in which the z
The previous sections have shown how to do an exact component of the incident momentum changes sign, and

calculation of the inelastic atom-diatom cross sections us-
ing the IA formalism. In this section, we check the re-
sults for internal consistency by testing them for semide-
tailed balancing (SDB).

The Hamiltonian is independent of time and quadratic 10
in momenta, and is, therefore, invariant under time rever-
sal (TR). This symmetry, together with space invariance, q =5
requires27 that the exact scattering amplitudes obey the "''Io
SDB relation between the differential cross sections for ,,..
the forward and reverse processes, i.e.,

p[da(i-f)/d12]/p(f)=p'[da(f -- i)/dl2]/p(i), H.

(72) -- -8
0 20 40 0 0 too 120 140 160 180

where p(i) and p(f) are the densities of state in the initial S,, .tt.rig A,, ,, ,i .
and final states; p and p' represent the incident flux densi-
ties for the direct and reverse processes. It was shown FIG. 8. Absolute value of the two-body scattering amplitude
earlier i that the differential cross sections for the divided by the range of the hard-core potential, as a function of
rotational-vibrational excitation of N 2 upon collision with the two-body scattering angle 6. for an incident momentum of
Li ' do not satisfy SDB for small scattering angles. The 10' cm '. An asymptote of 0.5 is reached for the on-the-
scattering amplitudes for the forward process using the energy-shell process.
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the x and y components remain unaffected. This is very exactly the same as from the calculation in which q.1 and
much the description of a collision between two hard q3, are not restricted, if the c.m. scattering angle is > 15*.
spheres using classical mechanics.29 We still compute the This simplification leads to an expression for the
two-body t matrix quantum mechanically, so we call the differential cross section identical to that given by the
on-the-energy-shell (q =q,2 ) two-body t matrix the semi- PA, except that the two-body t matrix is evaluated for
classical t matrix. Using the relation p3: = -u3(AE/q) q3: given by Eq. (73), instead of q3: = -a,q/2. It is seen
+(q/2), where AE is the energy gained by the internal that in the region of validity of the IA, the two-body t
degrees of freedom of the molecule, and Eqs. (16)-(19), matrix may be computed by the on-the-energy-shell semi-
we can write classical procedure. Further, the results obtained, at

so_ ( least for the hard-core repulsive potential, are indepen-
q3 -dent of the model chosen (post or prior) for the two-body

Recalling that q3 is the relative momentum of the two energy parameter, ZIA.

atoms in the diatom, we note that Eq. (73) restricts the
value of the component of q3 along the momentum

transfer vector q, in order for the molecule to gain energy VII. ANALYTICAL APPROXIMATIONS

AE by the energy-momentum conservation relations for We now develop some analytical approximations
scattering between two hard spheres. which lead to a relatively simple expression for the

Relation (73) also results from quantum mechanics if differential cross section, even for small scattering angles.
q ',, is defined as the weighted average This gives us further insight into the IA, and allows us to

Ch*'q-.6dq, understand the similarities of the exact and the PA cross

sc "(74) sections displayed in an earlier section. In addition, itq.1 = f 6*,dql, also provides an effective procedure, valid over a wide

range of parameters, for obtaining the IA cross sections
Relation 74) is proved in Appendix B. Because the with much less computational effort. The analytical ap-
derivation of Eq. (74) does not use the properties of proximation developed in this section has an advantage

scattering from a hard sphere, Eq. (73) is a more general over the semiclassical approach of the last section, be-
relation. We can then conclude that large-angle scatter- cause it is valid over a larger range of scattering angles.
ing can be described by on-the-energy-shell matrix ele- This approximation will make it possible to calculate the
ments using the two-body matrix for any" potential. To higher terms of the multiple-collision expansion of the
demonstrate the accuracy of these conclusions, we plot in three-body T matrix, Eq. (5), of which the 1A constitutes
Fig. 9 the differential cross section versus the angle for the single-collision terms.
the exact calculation and the semiclassical calculation us- Our starting point is the observation (Fig. 10) that the
ing the on-the-energy-shell two-body t matrix evaluated two-body t matrix for the post and prior models is a-- SC

at fixed q3 -q 3 ., given by Eq. (73). The transverse mo- linear function of q3:. The corresponding results for the
menta q1, and q3, still range over the entire x-y plane. full model, however, cannot be expressed in so simple a
The two calculations agree well at large angles, showing form. Recalling that the value of q) perpendicular to q
that for these angles the two-body scattering is has no effect on the value of the t matrix, the z axis is tak-
effectively, indeed, an on-the-energy-shell process. A en along q. and q, and q3,. are set equal to zero. The ex-
semiclassical calculation restricting q3, =q,, =-0 in the pression for the two-body t matrix, in the post and prior
two-body t matrix is also shown in Fig. 9. The results are forms, becomes

.... ''(q,)_ (q t' q, ) =[t( )+q,:(at/dq.,, )( . (75)

- ii In mathematical language, the neglect of q,, and q,, is

justified by noting that (at /dq3 , ), and (ati dq3, )0 are

.1 negligible compared to their z counterpart. Physically,
-"/ /this means that the results for a hard-core potential are

S/ / insensitive to the angle between the plane containing pi,
p,, and q, and that containing q,, q,. and q, so the two

planes can be taken to be coincident. We can now

rewrite Eq. (22) as

0 10 20 30 40 60

H , f *'t ( q, dq3 I- t (0) f 6*'(bdq,

FIG. 9. Exact and two semiclassical differential cross sec- + i t/aq,: I(, f 6*'q,:6dq3 . (76)
tions as a function of the center-of-mass scattering angle, for
Li' -N.(O,1 -Li" + N,(1.6). The two semiclassical calcula-
tions become identical for angles larger than about 16°. They The first integral in Eq. (76) is just the form factor of the

also equal the exact calculation after about 35*. molecule for the momentum transfer q,
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F(q) = f"*'!dq 
-0. -"

=f dr,*'(r)exp( -ia,qr.Mr) 1.'I Id

= (fie i'"i ) (77)

where f and i denote the molecular final and initial states.
This integral was evaluated earlier in Eqs. (28)-(35). ,0-1
The integral in the second term of Eq. (76) is shown in
Appendix B to be qS$ of Eq. (73) times form factor F(q). -

The two-body t matrix now becomes 0 -
- 20 40 60 80 100 120 140 160 10

f d"q dq t(O)+qS - .1 F(q) . (78) (-) ,

FIG. I I. Exact and analytical [based on Eq. (78)] differential
This is analogous to the peaking result, Eqs. (28) or (30), cross sections, as a function of the c.m. scattering angle, for the
with tpA replaced by the expression in the large square collision of N, with Li" at a relative translational energy of I
brackets. The remaining algebra for obtaining the eV, for the transition 10,0 - 1,6).
differential cross section proceeds as in Eqs. (34)-(36).
This explains why the shapes of the PA and exact be represented by the two-term expansion of Eq. (75).
differential cross sections are so similar. For the deexcitation processes, the analytical approxima-

A detailed comparison of the exact and analytical [Eq. tion also shows good agreement with the exact calcula-
(78)] calculations (using the post model) is presented inFig. 11 for the collision of N, with Li '. The analytical tion, if the prior, rather than the post, model of the two-
method of approximating the differential cross section body t matrix is used. The post-prior discrepancy is like-
mh heofoundptoxagwt the diffeactialclasetion v ly to disappear for smaller angles as well upon the in-has een found to agree with the exact calculation over a clusion of he multiple-collision terms.

wide range of parameters when the two-body I matrix can

VIII. COMPARISON OF THE COMPUTED

AND EXPERIMENTAL RESULTS
0.25

(a) We compare the results of our computations with the
.. ,measurements of B6ttner, Ross, and Toennies,30 who

crossed a Li ' ion beam with a N, ur CO beam. Figures
12 and 13 compare the total differential cross section as a
function of the CM scattering angle at a relative transla-

0-10
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i 0.05', 1.!1 \ u X
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-100 -60 -60 -40 -20 0 20 40 6 60 0 Oo 7 M
(13, ?

0.20 ¢ ^

- " 0 .0 0 +0 ( I n

0.20 +. + U

04 0 1; (1 I) 0 11(1 1 0 ()1 1 1 1

. ,v . o .) ,~.

-0.60 -0'

-. 80 .Prim FIG. 12. Measured (solid circles) and calculated (open cir-
hill cles) total differential cross sections for the collision of N,(0,21

-o0.................. with Li , at a relative translational energy of 3.64 eV, as a func-
-100 -60 -60 -40 -20 0 20 40 0o 80 oo tion of the center-of-mass scattering angle. The experimental

'1:, results, since they are not given in absolute units, are normal-

ized to agree with the calculated ones at a scattering angle of
FIG, 10. (a) Real and (b) imaginary parts of the two-body 100'. We note that a substantial amount of energy goes into

scattering amplitude as a function of q,:, the component of the higher 'ibrational levels. Cross sections for the final vibrational
internal momentum along the momentum transfer vector q for levels, summed over the final rotational levels, are I'= 0(A ),
post, prior, and full models of the two-body energy parameter v' = 

I(U), C-v'2(0), '= 3(V , '=41 * ), r'=5 X), and
ZIA' t'=6( + ).
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10' . IX. CONCLUSIONS

A rather complete description of the exact formulation
of the IA and its validity is given. On the formal side, the

0' •inclusion of the double and higher collision terms in the
calculation, to be considered next, may render the formu-

0lation self-consistent for smaller scattering angles. It is
- . . pertinent to point out here that the IA is not an approxi-

-* ,.mation to fully quantum coupled states or classical trajec-
- o v .... v

,,.. 8.......... tory calculations. When the time duration of the col-
8,0 + + lision is much smaller than the period of the characteris-

. . tic motion of the diatom, the IA appears to be a more ap-

, 'propriate theory. In fact, classical trajectory calculations
"so far have not been able to explain the observed distri-
butions in rotational transition probabilities, consistentlyFIG. 13. Same as Fig. 12, except that the molecule is CO and yielding distributions that are too narrow and peaked at

the experimental points are now given in absolute units, the nor- ymale r u ion0 than ore n the perient

malization being provided by the N, result of Fig. 12. The (j v 30)". 10 tha o b s rved t xp er sh-

agreement of the calculation with the measurements is excel- (]z 30)". " This conclusion was also arrived at by Hersh-

lent. berger ei al." More realistic two-body potentials are
currently being investigated in an attempt to use the IA
to understand experiments involving large vibrational-
rotational inelasticities.

tional energy of 3.64 eV for N, and CO, respectively. The approach to vibration-rotation energy-transfer
Measured cross sections are scaled to coincide with the processes discussed here was first outlined by Landau and
calculated ones for N, at a scattering angle of 100'. As Teller,3 2 who performed a one-dimensional calculation to
can be readily seen from the figures, the calculated and obtain the vibration to translation rate coefficients. Sub-
measured cross sections are in very good agreement for sequent authors, most notably Schwartz, Slawsky, and
large angles. We give the contribution of various final vi- Herzfeld,"3 have expanded on the Landau-Teller work,
brational levels to the total differential cross section. Fi- however still keeping it a one-dimensional calculation.
nally, we plot (Fig. 14) differential cross sections for 49.2* We have examined the basic ideas of these authors in the
at a relative translational energy of 4.23 eV as a function IA framework, elucidating the physics involved and for-
of the final rotational level (j') for the v'=0 and 7'= 1 mulating it in three dimensions to demonstrate the im-
levels of N 2. The calculated results have a very narrow portant role that the rotational degrees of freedom play
distribution and are peaked at much higher rotational in these processes. Our formulation treats the internal
levels than the experimental data. Similar results were momentum of the diatom due to vibrational and rotation-
obtained for Li' and CO collisions. These results are al motion, q3 , on an equal footing with the relative
largely a reflection of the hard-core two-body potential, translational momentum, P3. This makes it possible for
which gives large and narrow momentum transfer us to apply our calculation to collisions involving the in-
( - I )'(q/2)= q, = - q,'. A more realistic potential may tramolecular transfer of vibrational energy into rotational
give more reasonable results. energy, 34 and the transfer of rotational energy into vibra-

tional energy, as would be the case in a shock-tube experi-
ment. 3 By doing an exact calculation on a simple poten-
tial, we have also been able to define the range of applica-

1>1". bility of our calculation and the steps needed to extend
- "I .~- this range.

APPENDIX A

* .The post model of the two-body I matrix upon time re-
* .versal (TR) changes to the prior model and vice versa.

This is seen by noting that incoming (outgoing) momenta

-,.,become outgoing (incoming) momenta with a minus sign.
: . :--: -: ...:-; : -7 :": :'-... '"Then,

I 10 .20 :i( I0 -)1) 61 "1)

" -- , ,q,2
TRto,,(q,-q,)-: TOt q,- q,;c =E, = _

FIG. 14. Measured and calculated differential cross sections 2qq,8 ,
for the collision of N,(0,2) with Li , with a relative translation- ,
al energy of 7.07 eV, at a center-of-mass scattering angle of 49.2* =t q, - - q,q ,
for final vibrational levels 0 and I. The peak of the vibrationally
elastic (v'=0) measured cross section is normalized to agree
with the corresponding calculated cross section. prior ( -q -- -q, ) . (Al)
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Similarly, Combining Eqs. (A4) and (A5), we get

TRtprior(qs -q - po-q - -q, ), (A2) A po), (VJ' -m ,p --- VJ -m,p)

The wave functions are transformed under time rever- = ( - -)' A prior (vjm,p-v m , p ) .
sal in the usual way. 27 Note, however, that the momen- (A6)
tum transfer vector is invariant under TR,

q- p-3 - p p3 - ( - P). Invoking the property of the Taking the absolute square of both sides of Eq. (A6) and
wave functions in momentum space, summing over m and m' leads to the desired relation be-

'*. - t?? ( -q3)=( - 1)"... 3 ,, (q 3 ) , (A3) tween the forward and reverse processes.

it is straightforward to see, by a simple change of vari-
ables in Eq. (22), that the scattering amplitude for the for- APPENDIX B
ward process using the prior model of the two-body ener- We prove the relationship
gy parameter is related to that of the reverse process us-
ing the post model, q f b'q 3 z.,dq (B )

Aprior(vjm ,p-v'j'm,,p') q3z fd:',',dqB

- I )m '"A pO1 '(v'j'-m', -p'--vj-m,-p) in this appendix. We start by rewriting the numerator in

(A4) Eq. (BI) as

Using the space inversion invariance (which changes f6 'q3.&dq 3 = f drt,*'( r)exp( - ia, qr )43z ib(r)

the sign of linear momenta), we have = (fie 'iaq: Ii ) . (B2)

Aps(V'" j'M,-- Vj--m,--p) This is proved by using the defining relation for 6,(q 3 ),

I V Aj)J j  . '... .,..' mn the molecular wave function in the momentum space in
terms of d,(r), and the molecular wave function in the

(A5) coordinate space,

q3z(6i(q 3)=(2r) "/2 f q3 -exp[i(q3xx +q.,y +q 3zz)]bi(r)dr

=(2f) 32-fdx dy exp[i(q3,x +q 3 y)]fdz i -iexp(iq 3 ,Z) i/,(r) .(B3)

I I
Integrating by parts, we get H= 1q3 +q~,+q3 i± V(r1 2 ) , (B6)

f dz -i-exp(iq.z)lt,,(r) where Ui is the reduced mass and r 12 is the internuclear

distance of the diatom, we can rewrite Eq. (B5) as

I )a,q
Writing the defining relation for 6f(q3), recalling that [exp( -ia1qz),H]-exp( -iaqz) 2 Ia~q + 2 :)
q_=q 3 +a,q, and then integrating over q3 we get Eq.
(B2), with (B7)

3. =iz a. giving

Then, the exponential acts as a translation operator, exp( -ia,qz)q 3. -- 'u-[exp -iaqz),H]
a~q

exp( -ia,qz)f( 3 i)exp(iaqz)=f(43 -aq) (B5) aq
-exp(-ia~qz) 2 (B8)

because the momentum operator ., is conjugate to the

coordinate operator z. Recalling that the Hamiltonian The matrix elements of the right-hand side of Eq. (B8) be-
operator for the diatom is (setting A= I ) tween the initial and final states give Eq. (B I).
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