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NOMENCLATURE

d nozzle diameter
m plate oscillation frequency
n grid oscillation frequency
p pressure perturbation
u rms turbulent velocity
Cp pressure coefficient, p/pn2 R2

D cylinder diameter
R cylinder radius
Re Reynolds number, nR2/v
Ro Rossby number based on axial velocity, U/nR
Rob Rossby number based on surface burning velocity, Ub/flR
Ro. grid Rossby number, n/2n
Rot local Rossby number, u/nt
U axial velocity
Ub surface burning velocity
f integral length scale of turbulence
w0 precession frequency
a half cone angle
P kinematic viscosity
p density
at cylinder spin rate

Subscripts:

b burning surface
g grid
I local
p pressure

iv



Nutational Flows Inside Spinning Cylinders

Jin Tsot

University of Dayton Research Institute
Edw rds AFB, CA 93523

ABSTRACT

A review was conducted for the coning anomaly of the PAM vehicles. The focus was

on the nutational flows inside spinning cylinders, fully or partially filled, with or without exit

holes. The surveyed results suggested a new hypothesis for the PAM coning. In this

hypothesis, a rather abrupt transition from a forced vortex motion to a free vortex motion

occurs inside the spinning solid rocket motor at Ro = 0.6-0.8. The vortex after transition

supports helical waves. As the helical waves travel along the vortex, they precess in the

retrograde direction at a frequency close to the PAM coning frequency. This leads to a

resonant interaction with the PAM vehicle and the subsequent coning growth.

1. Introduction

For decades, spin has been employed to solid rocket motors to provide dynamic

stability or to reduce the effect of thrust misalignment.1 Depending upon the spin rate,

propellant formulation, and motor configuration, the dynamic performance of a solid rocket

motor can exhibit gross deviations from its static performance. Many anomalies have been

tPermanent Address: Aeronautical Engineering Department, California Polytechnic State

University, San Luis Obispo, CA 93407.
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experienced, especially after the use of aluminum and other additives to achieve higher

burning temperatures. Among them is a rapid coning growth near the end of motor burn

of the PAM-D and PAM-DII spacecraft.-10 This coning phenomenon is illustrated in Figure

1. It is a nutation, or precession, of the spin axis of the spacecraft around the flight

direction; it is like a wobbling football. The coning growth rate has a sharp rise near the

end of the motor burn, as in resonance, as seen in the sample time history in Figure 2. The

final half cone angle can be as high as 20" in some missions, and could have endangered

the missions. Such a problem was not noticeable in earlier systems utilizing smaller but

otherwise similar solid rocket motors; it is a problem of large-size motors. However,

because of the increasing payloads, the large motors will continuously be used in future

missions, thereby demanding a solution to the coning anomaly.

So far, most flight data regarding the coning anomaly were obtained by the rate

gyroscope or the accelerometer fixed on the spacecraft. They consistently indicated the

correlation between the coning growth and some flow instability inside the motor. The flow

instability could be the sloshing of the liquid aluminum oxide which accumulates during the

motor burn.11" The slag sloshing generates an offset in the mass center of the spacecraft

and results in a thrust-induced lateral torque, as shown in Figure 3(a). The instability could

also be a wave motion of the internal gas flow. In Flandro's jet gain mode 1,4 7-9 a vorticity

wave nutating in the combustion chamber, especially in the vicinity of the submerged nozzle

entrance, is responsible for the disturbing torque; see Figure 3(b). Or" 1 7 on the other hand

suggested that the disturbing torque comes from a jet deflection presumably related to flow

separation, as shown in Figure 3(c). These models, some having been studied for years, still
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lack of conclusive experimental verification. A re-examination of these models and, more

fundamentally, the flows inside spinning cylinders is thus necessary.

The review will start with the flows inside spinning cylinders with no exit hole,

either fully or partially filled, which have been the focus of most theoretical analyses. It

then examines the flows inside spinning cylinders with an exit hole, to which the spinning

rocket motors bear more resemblance. The discussions will be confined to the right circular

cylinders, unless specified otherwise. Whenever suitable, the cylinder flows will be

compared with the flows inside the laboratory models of solid rocket motors or the real

solid rocket motors.

2. Flows in spinning cylinders with no exit hole

Coning has been a pr-blem not only for the PAM vehicle but also for spinning shells

and projectiles with liquid payloads. This has led to a significant number of coning analyses

and experiments on the closed, spinning cylinder, many performed by the group at the Army

Ballistic Research Laboratory. Depending upon whether the spinning container is fully or

partially filled, coning could result from sloshing or nutational inertial waves inside the

spinning cylinder.

2.1 Fully-filled cylinders

Figure 4 shows the flow during spin up inside a closed, fully-filled cylinder." As seen

in the figure, boundary layers form on the horizontal surfaces inside the cylinder, and the

nonrotating fluid in the core region flows toward the boundary layers and returns to the

interior via the vertical side wall, with spinning. The process continues until all of the fluid

inside the spinning cylinder is in solid body rotation.
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The solid-body rotation in a fully filled cylinder supports inertial waves.'" 5 One

classical example is the wave motion generated by a horizontal disk oscillating at a

frequency m in the direction parallel to the rotation ais, 3 as shown in Figure 5. As seen

in the Figure, under excitation, the internal waves appear in the form of axisymmetric cones

when m < 2A, and disappear when m > 2n (n, the cylinder rotation speed). Clearly, the

wave amplification depends on the cylinder rotation. So does the coning instability except

that the waves involved are the nutational inertial waves, which, as will be seen, can be

responsible for the coning growth during the spin up and the solid body rotation.

2.1.1 Nutational waves in solid body rotation

It is well known that the solid body rotation inside a spinning cylinder supports

nutational inertial wave motions forced either by tilting the cylinder or by slanting part of

its boundary. 6 23 These wave motions have been studied for liquid payloads inside spinning

shells or projectiles. The analyses fall into two categories. One assumes the importance of

viscous force everywhere in the flow. The other assumes that the viscous force is important

only in boundary layers and shear layers. Most analyses belong to the second category, the

backbone of which is the balance between the pressure gradient force and the Coriolis force.

Both the eigenvalue computations and the time-dependent numerical analyses have

consistently indicated that the coning growth of the liquid-filled, rotating cylinder is caused

mainly by the resonance between the natural modes of nutational waves of the solid body

rotation and the external coning excitations. S2 W 105 The resonance was verified

experimentally by measuring the pressure coefficient Cp (a p/opn 2R2; p, the pressure

perturbation amplitude; 0, the half cone angle; p, the density; nl, the cylinder rotation speed;
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and R, the cylinder radius) inside a gyroscope 10 4 (Figure 6). Figure 7 shows one typical result

obtained in the experiment. As seen in the figure, Cp reaches the maximum when the coning

frequency wm of the gyroscope is equal to the eigenfrequency of the spinning liquid predicted

by the theory. The resonance depends upon the Reynolds number Re (. nR2/v; R, the

cylinder radius; and v, the kinematic viscosity).' When Re > 1000, the wave motion can

be well predicted by the resonance theory. However, when Re < 1000, the growth rate of

coning angle was found to increase monotonically with the coning frequency.

The eigenvalues and the roll and side moments of the nutational disturbances have

been calculated with increasingly sophisticated means. Stewartson started the computation

for an inviscid payload. Then, WedemeyerM4 made the viscous corrections, and Murphy""

included all pressure and wall shear contributions. The Stewartson-Wedemeyer eigenvalue

calculation was later improved by replacing the cylindrical wall boundary approximation with

a linearized Navier-Stokes approach," followed by time-dependent numerical analysesIL 120

and three-dimensional Navier-Stokes simulation."

For the highly viscous liquid, instead of the resonance mechanism, Herbert' 12

proposed an average internal circulation as the cause of the coning growth and despin

moment. Without considering the instabilities, the calculated despin moment appears to

agree well with data obtained by experiments'2"' and numerical analyses' over a wide

range of Reynolds number.

The investigation of coning growth was extended to the spin up stage of the rotating

cylinder with liquid payload.""' D'Amicoll found in his pressure measurement that the

cone-up time of the liquid in a spinning cylinder is comparable to its spin-up time, thus
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suggesting a resonance between the nutational waves and the external coning excitations.

This is consistent with the outcome of theoretical and numerical analyses.lS3" Note that

during the early spin up stage, the critical layer forms in the rotating flow. The

eigenfrequency and moments of the spinning liquid have thus been computed separately for

the early spin up stage when there is a critical layer L" and the later stage when the critical

layer no longer exists.16'

2. 2. 2 Notational waves on vortices

The nutational waves discussed so far are supported by the solid body rotation or

the spin-up of the fluid; that is, by the primary motion inside the spinning cylinder. A special

class of nutational waves however are supported by vortices formed via the secondary flow

in the rotating cylinder. 12'-1

For an axisymmetric rotating flow, Scorer 1" had speculated that the small-scale

turbulence has the effect to redistribute the vorticity to form vorticity concentrations at the

center and boundaries. This effect was studied experimentally.16 -' 9 It was McEwan' 69 who

first showed local vorticity concentrations in the spinning cylinder, the intensity of which was

2-3 times the background vorticity 2n. Much stronger vorticity concentrations were later

observed by Hopfinger, Browand and Gagne"a (referred as HBG hereafter). In their

experiment, the turbulence was produced with an oscillating grid at the bottom of a deep,

rotating water tank. Near the grid, the Rossby number Ro. (m n/2n; n, the grid oscillation

frequency) was kept large such that the turbulence was locally unaffected by rotation. Away

from the grid, the turbulence intensity decreased and the rotation became important. As the

local Rossby number Rot (a u/ne, where u is the rms turbulent velocity and f the integral
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scale of turbulence) decreased to about 0.4, a rather abrupt transition occurred. The flow

after transition consisted of concentrated vortices, having axes approximately parallel to the

rotation axis and extending through the fluid above the turbulent Ekman layer. Figure 8

shows the cross-sectional views of the flows with and without the tank rotation. As seen in

the Figure, the vortices form only in the rotating flow. The observed vo ' city concentrations

were about 50 times the tank vorticity 2n. As speculated, those vorticity concentrations are

formed by the local vorticity convention induced either by the propagation of the finger-like

turbulence front,173 shown schematically in Figure 9, or by the grid suction effect.1 74

The observed vorticity concentrations support nutational waves. Figure 10 shows a

spiral wave travelling along a vortex. Such spiral waves actually nutate as they travel along

the vortices. This is shown schematically in Figure 11, which also includes other spiral

configurations observed in the same experiment. Since in this experiment waves of opposite

spiral configurations and nutation directions occur simultaneously over the cross-section of

the rotating tank, no net coning effect is expected. However, this is not the case for a

similar phenomenon in the spinning cylinder having an exit hole, as will be seen in Section

3.

2.2 Partially-filled cylinders

Besides the fully filled cylinder, the partially filled, spinning cylinder also experiences

coning growth. The liquid sloshing has long been suspected as the cause, and substantial

amount of literature on sloshing is available.176 21 7
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Comprehensive reviews on liquid sloshing have been reported before.7 . 193 Low-

frequency sloshing modes were observed in containers with asymmetric boundaries,192 194 or

by coning the cylinders. Figure 12 shows a sloshing motion visualized in a circular cylinder.

As nutational waves in the fully filled cylinder, the liquid sloshing can be much amplified

by the resonance between the natural sloshing frequency of the spinning liquid and the

external coning frequency." -212,215 The resonance causes a significant offset of the mass

center of the liquid inside the spinning cylinder and the nutation of the spinning cylinder.

This mechanism is believed to be responsible for the conings of the partially filled spinning

shells and satellites. Similar sloshing of the aluminum slag in the solid rocket motor may

also cause the PAM coning, although its consistency with the flight test data is still in doubt.

In analyzing the sloshing motion, usually, a simple pendulum model consisting of

springs and dashpots is appropriate. 3 However, this representation may nrct appeal in

complicated situations, for instance, in a spin-stabilized satellite comprising off-axis tanks.'

It may need corrections for the dependence of the resonance modes on the contact line

position 214 216 or the dependence of the frequencies on the container flexibility!" s

Forces and moments due to liquid sloshing have been computed using sophisticated

means89'90. and formulas have been compiled. The computations have been extended

to the spin-up cases,213 and to complex cases like the unsteady incompressible flow217 and

the axisymmetric three-dimensional transient flow,214 using numerical simulation.

3. Flows In spinning cylinders with an exit hole

For the spinning rocket motor, the spinning cylinder with an exit hole is a more

realistic model for analysis than its closed counterpart. Most analyses have been done on
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the internal gas flows. Noticeable among them are Flandro's jet gain model4', 7 and Ors jet

deflection model.1 17 They are examined below, followed by a collection of experimental

results to form a new hypothesis for the PAM coning.

3.1 Gas dynamics analyses

The central idea in Flandro's jet gain model is that the pressure distribution inside a

spinning rocket motor, especially in the vicinity of the submerged nozzle entrance, is

modified by the Coriolis force acting on the gas traversing through the wobbling chamber

and hence results in destabilizing moments on the spacecraft.9 The analysis started with the

classical jet damping mechanism. As concluded in the analysis, if the gas flow is steady and

uniform with respect to the wobbling chamber, the Coriolis acceleration due to wobbling is

balanced by a wave-like pressure disturbance (see Figure 13). The integrated effect of the

pressure distribution results in a torque on the chamber which is opposite to the chamber

lateral angular velocity and hence stabilizes the nutation, as shown in Figure 14. That is, the

jet damping is simply the reaction torque to resist the wobbling.

As the chamber size increases beyond a critical size, the internal gas flow becomes

increasingly sensitive to the vehicle motion, and is unsteady and three-dimensional. The

Coriolis acceleration due to wobbling is thus balanced by both the pressure and velocity

perturbations as the momentum equations require. The wobbling in this case induces

unsymmetrical vorticity waves, which precess in the retrograde direction about the chamber

axis, as shown in Figure 15. The associated pressure waves result in a torque driving the
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nutation and destabilizing the chamber when the waves are in resonant coincidence with the

vehicle precession frequency.

In the analysis, the modes of wave motions are determined by the governing equations

for the natural modes inside a spinning cylinder with no exit hole. The approach is basically

the same as the analyses for liquids in spinning shells or projectiles reported in Section 2.1.

This leads to the Poincar6 wave equation, the solutions of which have frequencies in the

same range as the spacecraft nutation frequency. The mean flow is then included as the

forcing term in the wave equation. Three mean flows are considered. They are the solid

body rotation, the free vortex, and the free vortex with radially inward motion. From the

analysis, two resonant interactions are predicted for the PAM-D vehicle and one of them

is close to the flight data, as shown in Figure 16.

Exact solutions to the Poincare wave equation can be found only in simple geometries.

A full-scale three-dimensional Navier-Stokes numerical algorithm has thus been developed.

In addition, both the cold-flow and hot-flow experiments were conducted to test the

analytical model.

Besides the jet gain model, Or " 7 has developed a different gas dynamics model which

suggests a jet deflection inside the motor, presumably related to the flow separation, as the

mechanism for the coning growth. This model, shown schematically in Figure 4(c) before,

is simple in analysis but provides no leads to the wavy behavior of the jet deflection and the

characteristic frequency as in Flandro's model, which nevertheless are necessary for

comparison with the the flight test data.
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The two gas dynamics models examined thus far need experimental verifications.

Meanwhile, the flight data of the PAM vehicles appear to be consistent with a collection of

laboratory results.

3.2 Transition from forced vortex to free vortex

In early 70's, Dunlap21 s investigated the swirling flow in the spinning end-burning solid

rocket motor. The experiment was conducted in a cylindrical cold-flow model with a porous

plate at one end to simulate the end burning. Both smoke visualization and pressure

measurements were conducted. Figure 17 shows the smoke patterns observed near the end

plate at increasing spinning rates. As seen in the figure, at low spin rates, the flow is in

solid body rotation in unison with the rotating model. As the model spin rate increases to

1,000 rpm, the smoke plume begins to bend radially inward and in the direction of the

rotation. And at 1,500 and 2,000 rpm, stagnant smoke is seen near the chamber walls,

indicating flow separation there. However, by moving the smoke plume closer to the center

at the spin rate of 2,000 rpm, again the lower part of the smoke near the plate is seen to

accelerate radially inward and spiral up the center, whereas the outer part moves mostly in

the spin direction, as shown in Figure 18. The spiral vortex flow was modelled by Dunlap,

as shown in Figure 19, in accordance with the smoke visualizations. Based on the pressure

measurements at the centerline he further concluded that the onset of transition to the

spiral vortex flow in the chamber occurred at a Rossby number Ro w 0.52 (Ro W U/raR; U,

the axial velocity; and R, the cylinder radius), and the transition was unaffected by the

nozzle geometry, chamber length, and a two-fold increase in Reynolds number.
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Complementary to this study were the measurements by Johnson and L'Ecuyer219 of

the axial and tangential velocities in a cold-flow solid rocket model similar to the one used

by Dunlap. The velocities were measured by a five-port impact tube at a station

downstream of the end porous plate for two nozzle contraction ratios, 5.25:1 and 22.1:1.

The results are shown in Figure 20. As seen in the figure, at the contraction ratio 5.25, the

tangential velocity increases linearly with the radius as in the forced vortex motion (solid

body rotation) for all three rotation speeds tested, and the axial velocity is nearly uniform

across the chamber. However, as the contraction ratio raises to 22.1:1 ratio, both the axial

and tangential velocities behave like a free vortex motion at higher rotation speeds. This

rather abrupt transition from a forced vortex motion to a free vortex motion occurs at Ro

= 0.6-0.8, consistent with Dunlap's data, and with HBG's data if the integral scale is viewed

as the cylinder diameter. Similar vortices were seen in vortex tubes. "

It is important to note that right in the range of the transitional Rossby number, the

PAM vehicles show rapid coning growth rate, as shown in Figure 21.

3.3 Nutational helical waves on vortices

The vortex after transition supports nutating, helical waves. While Dunlap has

observed the spiral feature, the nutation of the helical waves on a vortex was reported by

HBG, and later in greater detail by Maxworthy, Hopfinger, and Redekopp (referred as

MHR hereafter). By disturbing the vortex induced by a suction tube in a spinning water tank

MHR have observed the helical waves travelling along the vortex, as shown in Figure 22.

As pointed out in the figure, as the helical wave travels along the vortex, it precesses in the
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retrograde direction with the nondimensional precession frequency close to that of the

PAM-D vehicle.

3A A Hypothesis for the PAM coning

Together, the above experimental results suggest a new hypothesis for the PAM

coning, shown schematically in Figure 23. In this hypothesis, a rather abrupt transition from

a forced vortex motion to a free vortex motion occurs inside the spinning solid rocket motor

at a transitional Rossby number around 0.6-0.8. The vortex after transition supports helical

waves, which, while traveling along the vortex, precess in the retrograde direction at a

frequency close to that of the external coning excitation. This leads to a resonance between

the nutational helical waves and the vehicle coning excitations and the subsequent rapid

coning growth.

Unlike the jet gain model, the nutational helical disturbances in this hypothesis are not

the perturbations of the solid body rotation. Consequently, no resonance is expected before

the vortex transition. This is consistent with the flight data shown in Figure 3. However,

despite the difference, the jet gain model by Flandro has stimulated the present work.

3.5 Recirculation vortices

As the swirling flow inside the solid rocket motor flows through the nozzle contraction,

it generates a recirculating toroidal vortex. Such vortices can support helical oscillations,

as shown in Figure 24. The resultant asymmetric pressure distribution around the cylinder

wall is possible to drive the nutation of the spinning cylinder. More details on the

oscillation frequency and travelling direction of the waves, however, are needed to make

further evaluation of their relevance to the PAM coning. Since the three-dimensional
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secondary flows associated with the recirculating vortices are known to have interaction with

the central vortex, 3 2' ° it is reasonable to believe that the toroidal vortex may have some

effect on the coning.

4. Concluding remarks

A new hypothesis has been developed for the PAM coning anomaly. In this

hypothesis, a rather abrupt transition from a forced vortex motion to a free vortex motion

occurs in the spinning rocket motor as the Rossby number decreases below a critical value

around 0.6-0.8. The vortex after transition supports helical waves, which precess in the

retrograde direction at a frequency close to the coning frequency of the PAM vehicle. This

leads to a resonance between these two frequencies and the subsequent coning growth of

the PAM vehicle. This hypothesis, based mainly on the experimental results, is consistent

with the flight test data. This warrants further investigation of this hypothesis and its

relationship with other models.

Helical gas flows have also been observed in the nozzle convergent section of the

swirling supersonic jet, ", ' as shown in Figure 25. While no definite results are yet

available to evaluate their relevance to the coning, the observation does support the request

to extend current coning computations beyond the nozzle entrance of the solid rocket

motor.' 0

So far in this review, only single phase flows have been examined. Since in the solid

rocket motor the impingement of the oxidized metal particles on the chamber and nozzle

entrance could account for 2 to 3 percent of the thrust loss,' it may not be negligible in the

final coning calculation.
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Figure 4 Spin-up from rest: (a) flow visualization; and (b) schematics of flow regimes.
(Reference 18.)
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Figure 5 Axisyinmetric waves produced by oscillating disk at rn = 1.75. The half

cone angle is 59'. (Reference 30.)
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Figure 6 Schematics of a nutating, spinning cylinder. (Reference 104.)
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Figure 8 Streakline photographs of the turbulent flow in a cross-section 30 cm above
the grid midplane: (a) without tank rotation; and (b) with tank rotation. fl
2w rad s-1 and n = 13.3 r rad s-. (Reference 171.)
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Figure 9 Formation of concentrated vortices by finger-like turbulence front. (Reference
173.)
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Figure 11. Schematics of possible wave shapes. Arrows indicate the direction of
propagation/rotation of the wave patterns. (Reference -71.)
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Figure 12. Liquid sloshing in an upright circular cylindrical tank. (Reference 195.)
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Figure 13 Classical jet damping effect: (a) uniform gas stream as chamber begins to
rotate; (b) chamber in rotation; pressure forces are produced on wall to retain
uniform gas flow. (Reference 8.)
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Figure 14 Reaction torque predicted by the jet damping theory. (Reference 8.)
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Figure 15 Driving torque in a nutating cylinder. (Reference 8.)
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Figure 16 Two resonances predicted by the jet gain model. (Reference 8.)
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Figure 17 Photographs of smoke tracer in simulated spinning end-burner. Smoke port
is 1.45 in from the centerline. (Reference 218.)

56



0 :WI 2,UL)j Rpm,

7,j) RPM 3,00 RPM

Pik 
N 2FLOW

Figure 18 Photographs of smoke tracer in simulated spinning end-burner. Smoke port
is 1.15 in from the centerline. (Reference 21&)
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Figure 19 Spiral vortex flow at high motor spin rates. (Reference 218.)
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Figure 21 Time history of Rossby numbers of spinning solid rocket motors. (Reference
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the motor chamber.

Figure 23. Nutational helical vortex model for the PAM coning.
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Figure 24. Asymmetric waves on confined toroidal vortex. (Reference 301.)

63



Figure 25 Swirl pattern in nozzle convergent section. (Refererze 261.)
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