§ . :
N A A o . a - . T j
, - LGN ’_,.

1
;‘

CENTER FOR SOFTWARE ENGINEERING
ADVANCED SOFTWAFR.= TECHNOLOGY

Subject: Final Report - Evaluation of the ACEC
Benchmark Suite for Real-Time Applications

CIN: C02 092LY 0003 00

23 July 1990 TIC
ELECTE
S MAR121991D

DISTRIBUTION STATEMENT A '

Approved for public release;
T‘1 n‘*unon Unlimited

91 211 003

REPORT DOCUMENTATION PAGE P AL, G7os0188

Pl burden for this colecton of Inlormasion s ssimued 1 1uuu--u-;nm-nn- l-nn-'h-ulnn Searching euetrg deta -u-.-u.-
the daa mum e colechion of 'ﬂ' Surden estivue of ary ether ﬂ-lﬂ\
:mum mwa:m mum aore s mmuummm Mlﬂm %&

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVEREL

23 Jul 90 Final Report
4. TITLE AND SUBTITLE]) 8. FUNDING NUMBERS
Evaluation of the ACEC Benchmark Suite for Real~Time
Applications -
8. AUTHOR(S)

DAABO7-87-D-B008

Arvind Goel D.0. 2078
.) 8. PERFORMING ORGANIZATION
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) REPORT NUMBER

Unixpios Inc.
16 Birch Lane
Colts Neck, NJ 07722

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY
U.S. Army HQ CECOM REPORT NUMBER

Center for Software Engineering
Fort Monmouth, NJ 07703-5000

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVARLABILITY STATEMENT 12b. DISTRIBUTION CODE

STATEMENT A Unlimited

13. ABSTRACT (Maximum 200 words)

The Ada Compiler Evaluation Capability (ACEC) Version 1.0 benchmark suite wa$analyzed
with respect to its measuring of Ada real-time features such as tasking, memory
management, input/output, scheduling and delay statement, Chapter 13 features, pragmas,
interrupt handling, subprogram overhead, numeric computations etc. For most of the
features thatgere analyzed, additional benchmarks were proposed. The ACEC benchmarks
were run on two Ada compilers (the HP Ada compiler self-hosted on HP 9000/350 and the
Verdix Ada cross compiler hosted on the Sun 3/60 targeted to-a Motorola 68020)

and the results are listed.

14, SUBJECT TERMS 5. NUMBER OF PAGES
79
Ada, ACEC, real-time, benchmarks = PFICE GOOE
sy eosseeaToR ¢, SECURITY GLASSIFICATION 5. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
T 1]
UNCTACRTFIED OF TR RS s1F1ED Uﬁ’f:ﬁﬁssgﬁ‘mn UL

NSN 7540-01-280-5500 9 1 ql 1 VAV b} ;9;:,;:,,&";32%‘. 2

GENFRAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) Is used in announcing and cataloging reports. It is important
that tnis information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form foliow. It ic important to stay within the lines to meet

optical scanning requirements. .

Block 1. Agency Uise Only (L eave blank).

Block 2. Bepant Date. Full publication date
includ’mg da'. month, and year, i available (e.g.
1 Jan 88). Must cite at least the year.

Block 3.
State whether report is interim, final, etc. it

licable, enter inclusive report dates (e.g. 10
Jun 87 - 30 Jun 88).

Block 4. Title and Subtitle. A title is taken from
the part of the report that provides the most
meaningtful and complete information. When a
report is prepared in more than one volume,
repeat the primary title, add volume number,
and include subtitie tor the specific volume. On
classified documents enter the titie
classification in parentheses.

Block 5. i To include contract
and grant numbers; may include program
element number(s), project number(s), task
number(s), and work unit number(s). Use the
following labels:

C - Contract PR - Project

G - Grant TA - Task

PE - Program WU- Work Unit
Element Accession No.

Block 6. Author(s). Name(s) of person(s)
responsible for writing the repont, performing
the research, or credited with the content of the
report. If editor or compiler, this should foliow
the name(s).

Block 7. Bedarming Organizati
Address(es). Self-explanatory.

Block 8. Performing Organization Bepon
Number Enter the unique alphanumeric report
number(s) assigned by the organization
performing the report.

Block 9. Sponsoring/Monitoring Agency
Name(s) and Address(es) Seif-explanatory.

Block 10. i
Report Number. (if known)

Block 1. s Enter
information not incluced elsewhere such as:
Prepared in cooperation with...; Trans. of...; To
be published in.... When 2 report is revised,
include a statement whether the new report
supersedes or supplements the older report.

Block 12a. Distdhution/Availability Statement.
Denotes public availability or limitations. Cite
any availability to the public. Enter additiona.
limitations or special markings in all capitals
(e.g. NOFORN, REL, ITAR).

DOD - See DoDD 5230.24, "Distribution
Statements on Technical
Documents.”

DOE - See authorities.

NASA - See Handbook NHB 2200.2.
NTIS - Leave blank.

Block 12b. Distribution Code,

DOD - DOD - Leave blank.

DOE - DOE - Enter DOE distribution categories
from the Standard Distribution for
Unclassified Scientific and Technical
Reports.

NASA - NASA - Leave blank.

NTIS - NTIS - Leave blank.

Biock 13. Abstract. Include a brief (Maximum
200 words) factual summary of the most
significant information contained in the report.

Block 14. Subject Terms, Keywords or phrases
identifying major subjects in the report.

Block 15. Number of Pages, Enter the total

number of pages.

Block 16. Price Code, Enter appropricte price
code (NTIS only).

Blocks 17. - 19. Security Classifications,
Self-explanatory. Enter U.S. Security

Classification in accordance with U.S. Security
Regulations (i.e., UNCLASSIFIED). If form
contains classified information, stamp
classification on the top and bottom of the page.

Block 20. Limitation of Abstract. This block
must be completed to assign a limitation to the
abstract. Enter either UL (unlimited) or SAF.
(same as report). An entry in this block is
necessary if the abstract is to be limited. If
blank, the abstract is assumed to be unlimited.

Standard Form 298 Back (Rev. 2-£9)

| W)

Evaluation of the ACEC

Benchmark Suite for Real-Time Applications

Prepared For:

U.S. Army CECOM
Advanced Software Technology
Center for Software Engineering
Fort Monmouth, NJ 07703-5000

Accession For

NTIS GRAXI b
DTIC TAB 0
Prepared By: Unannounced 0
Justificatio
Unixpros Inc. By
. 16 Birch Lane Distribution/
Colts Neck, NJ 07722 Availability Codes

Avail and/or
Dist Special

A-l

July 10, 1990.

Evaluation of the ACEC

Benchmark Suite for Real-time Applications

Abstract: This technical report has been developed by the Center for Software
Engineering, US Army CECOM to evaluate the Ada Compiler Evaluation Capability
(ACEC) Version 1.0 benchmark suite for measuring the performance of Ada
compilers meant for programming real-time systems. The ACEC benchmarks have
been analyzed extensively with respect to their measuring of Ada real-time features
such as tasking, memory management, input/output, scheduling and delay statement,
Chapter 13 features, pragmas, interrupt handling, subprogram overhead, numeric
computations etc. For each of the features that have been analyzed, additional
benchmarks have been proposed. Finally, the ACEC benchmarks that measure Ada
features important for programming real-time systems have been run on two Ada
compilers, namely the HP Ada compiler self-hosted on HP 900/350 and the Verdix
Ada compiler hosted on the Sun 3/60 and targeted to a Motorola 68020 bare machine
and their results listed.

L Introduction . . . ¢« ¢ « &« ¢ ¢ ¢ o o o o o
1.1 Objective . . . « « ¢« o« « o o o o o
12 Reportlayout . . . « . ¢ ¢ ¢ o ¢ o &

2.1.1
212
2.1.3
2.14
2.1.5
2.1.6

Ada Compiler Evaluation Capability (ACEC) Suite .
2.1 Execution Time Efficiency

ACEC Ada Runtime System Benchmarks . .
ACEC Individual Language Feature Benchmarks
Performance Underload
Tradeoﬂ's...........
Optimizations e e
Application Profile Tests

22 Code Size Efficiency
23 Compile Time Efficiency . e e e e e e e
24 ACECSummary « « « ¢ « o .« .

Real-time Systems and Ada Benchmarking
3.1 Requirements Of Real-time Systems

3.2 Ada and Real-time Requirements
3.3 AdaBenchmarking .

. Analysis of the ACEC Benchmarks

4.1 Tasking

4.2
43

44

4.5
4.6

4.1.1
412

4.1.3
4.1.4
4.1.5
4.1.6
4.1.7

Task Actlvatlon/ Termmatlon

Task Synchronizatic>

4.1.2.1 Time For a Simple Rendezvous . . .
4,122 Select Statement With Else Alternative .

4.1.2.3 Rendezvous Calls with Conditional Selects .

4.1.2.4 Selective Wait

Exceptions During a Rendezvous

Abort Statement

Task Priorities . . . « e e
Miscellaneous Tasking Benchmarks . e e
Task Optimization

Memory Management . .

42,1 Memory Allocation 'I“lmmg Benchmarks . o
422 Memory Allocatlon/ Deallocation Benchmarks .
Exceptions e e e e e e

Input/Output

44.1
442
443
4.4.4

TEXTIO « ¢« .« « .
DIRECTIO
SEQUENTIALIO
AsynchronousI/O

Clock Function .
Scheduling, Preemption and Delay Statement

COWOVoowoITaAOW» WNN

47 Chapter 13Benchmarks
471 PragmaPack
472 Length Clause: SIZE Speclflcatlon Benchmarks
4.7.3 Record Representation Clause Benchmarks
474 Attribute Tests
4.71.5 Unchecked Conversion .
4.8 Interrupt Handling
49 Pragmas

49.1 Pragma SUPPRESS .
492 Pragma OPTIMIZE . .
493 Pragma SHARED Benchmarks
4.10 Subprogram Overhead
4.11 Numeric Computation
4.11.1 Mathematical Computatlon Benchmarks
4.11.2 Benchmarks For Arithmetic On Type TIME and
DURATION« . e
4.12 Real-Time Paradigms
4.13 Composite Benchmarks
4.14 Portability Of the ACEC Benchmarks e e
4.14.1 Modification To the Command Files . . .
4.14.2 Modification To the Base ACECFiles . . .
4143 Input/Cutput+

.Conclusions « v 4 4 e e e e e e
REFERENCES
Appendix A: ACEC Real-tlme Benchmarks and Executlon
Results
Appendix B: ACEC Benchmarks From a Real-tlme Perspectlve

.
*
L]
* L] L] L
.
*
.

L]
*
*
L4

-ii-

. . - . . .

29
29

31
32
32
32
33
33

35
36
37
38
38
38

41
42

43
78

TABLE 1.
TABLE 2.
TABLE 3.
TABLE 4.

TABLE 5.

TABLE 6.

TABLE 7.

TABLE 8.

TABLE 9.
TABLE 10.
TABLE 11.
TABLE 12.
TABLE 13.
TABLE 14.
TABLE 15.
TABLE 16.
TABLE 17.
TABLE 18.
TABLE 19.
TABLE 20.
TABLE 21.
TABLE 22.
TABLE 23.
TABLE 24.
TABLE 25.
TABLE 26.
TABLE 27.

LIST OF TABLES

Ada and Real-time Requirements
Task Activation/Termination . . .

Measure Time For Simple Rendezvous
Rendezvous Performance With Varying Number of
Select Statement with Else Alternative . . .
Rendezvous Calls with Conditional Selects . . .

Selective Wait «
Exceptions Raised During Rendezvous

Abort Statement
Miscellaneous Tasking Benchmarks

Habermann-Nassi Tasking Optimizations .
Other Tasking Optimizations
Memory Allocation Timing Benchmarks

Memory Allocation/Deallocation Benchmarks
ExceptionHandling
TEXT 10 Benchmarks . . .
DIRECT 10 Benchmarks

SEQUENTIAL IO Benchmarks
CLOCKFunction « « « « « &
Scheduling, Preemption, and Delay Statement . .
PragmaPACK
Pragma PACK (Continued)
Pragma PACK (Continued)

SIZE Representation Clause Benchmarks . . .

SIZE Representation Clause Benchmarks (Continued)

Record Representation Clause Benchmarks . .
Attributes

12
45

47

49
50
51
52
53
54
55
56
57
58
59

61

62

63

65

67

69
70

TABLE 28.
TABLE 29.
TABLE 30.
TABLE 31.
TABLE 32.
TABLE 33.
TABLE 34.

Unchecked_Conversion .
Interrupt Handling . .

Pragmas

Subprogram Overhead Tests

Subprogram Overhead Tests (Continued)

Real-time Paradigms .
Composite Benchmarks .

*

-iv -

*

71

73
74
75
76

-
'

1. Introduction

This technical report has been developed by the Center for Software Engineering, US
Army CECOM to evaluate the Ada Compiler Evaluation Capability (ACEC)
benchmark suite (developed by Boeing Aerospace under contract to the US Air Force
{1}, [2]) for measuring the performance of Ada compilers meant for programming
real-time systems. In this report, the ACEC benchmarks have been analyzed for their
coverage and suitability in measuring ihe runtime performance of Ada features that
are important for real-time applications. The emphasis of the ACEC benchmarks is
on measuring the runtime performance of Ada compilers, although compilation issues
have also been addressed.

The principal goal of Ada is to provide a language supporting modern software
engineering principles in the design and development of real-time systems. To design
and implement real-time systems, it is essential that the performance as well as
implementation characteristics of an Ada compiler system meet the requirements of a
real-time application. Many current Ada implementations do not allow the
development of reliable embedded systems software without sacrificing productivity
and quality. One of the reasons for the above is that real-time programmers have no
control on the design and implementation of the Ada Runtime System (RTS) except
that the RTS satisfy the requirements listed in the Ada Language Reference Manual
(LRM). Due to the effect on program efficiency and reliability of the various runtime
implementation options, simply adopting a compiler that implements the language as
defined in the LRM is insufficient for real-time systems. Benchmarks are needed to
determine the performance as well as implementation strategies of various Ada
language and runtime features in order to assess a compiler’s suitability for
programming real-time systems.

1.1 Objective

The CECOM Center for Software Engineering, US Army, Fort Monmouth has been
involved with developing benchmarks for Ada language and runtime system features
considered important for programming real-time applications. The first step in this
effort involved the identification of Ada features of interest for real-time systems. The
real-time systems analyzed were the COMINT/ELINT (Communication/Electronic
Intelligence) class of IEW (Intelligence/Electronic Warfare) systems supported by the
US Army. A side result of this effort was the description of a composite benchmark
for COMINT/ELINT class of IEW systems [3].

The next step involved the development of real-time benchmarks that measure the
Ada features identified in the previous effort. Benchmarks were developed that a)
measure the performance of Ada individual features, b) determine Ada runtime
system implementation dependencies, and c¢) test algorithms used in programming
real-time systems [4].

As part of this ongoing effort, existing benchmark suites were ' also analyzed to
determine their suitability for evaluating Ada compiler systems for real-time
applications. The benchmark suites that were analyzed included

o PIWG Benchmarks: developed by the ACM Performance Issues Working Group
{51

o University of Michigan Benchmarks: developed at the University of Michigan [6].

o Ada Compiler Evaluation Capability: developed by Boeing Aerospace for the US
Air Force [1], [2].

This report presents the results of the analysis of ACEC benchmarks for measuring
the runtime performance of Ada features important for programming real-time
applications. The benchmarks have been analyzed with respect to:

« support for Ada features important for programming real-time applications

« interpretation of the results produced by running the benchmarks

« and portability of the ACEC benchmarks.
The results of running a few selected ACEC benchmarks (that measure real-time Ada
featurss) on two Ada compilers, namely the HP Ada Ada compiler which is self-
hosted on a HP 9000/350 computer running HP-UX and a Verdix cross-compiler

hosted on a Sun 3/60 and targeted to a Motorola 68020 bare machine are also
presented.

1.2 Report Layout

This report is divided in the following sections:

Section 2 presents a brief description of the ACEC benchmarks.

Section 3 describes the typical requirements of real-time systems and correlates them
with Ada features that address those requirements. It also discusses the criteria for
analysis of the ACEC benchmarks.

In Section 4, the ACEC benchmarks are analyzed with respect to the Ada features
identified in Section 3. Section 4 also comments on the portability of the benchmarks.

Finally, Section 5 concludes with some thoughts about the ACEC benchmarks.
Appendix A consists of a list of tables that describe the ACEC real-time benchmarks.
It also lists the results of running the ACEC real-time benchmarks on the HP and
Verdix Ada compiler systems.

Appendix B comments on the usefulness of the ACEC benchmarks in evaluating Ada

compilers from a real-time perspective.

-5.

2. Ada Compiler Evaluatioﬁ Capability (ACEC) Suite

The ACEC benchmarks were developed by Boeing Aerospace Company under
contract to the US Air Force. The ACEC is organized as a set of essentially
independent test problems and analysis tools. The major emphasis of the ACEC is on
execution performance. To a lesser degree, the ACEC will also test for compilation
speed, existence of language features, and capacity. The tests are designed to:

 Produce quantitative results, rather than subjective evaluations
» Be as portable as possible
» Require minimal operator interaction

« Be comparable between systems, so that a problem run on one system can be
directly compared with that problem run on another target.

The ACEC does not address issues such as: cost, diagnostics and error handling,
adaptability to a special environment, presence of support tools, and target processors
such as vector processors, VLIW machine architectures, RISC processors,
multicomputers.

The ACEC contains a large number of test problems (= 1000). Most individual
problems are fairly small. Many address one language feature or present an example
which is particularly well suited to the application of a specific optimization technique.

The primary focus of the ACEC is on comparing performance data between different
compilation systems rather than on studying the results of one particular system. The
analysis tool MEDIAN computes overall relative performance factors between
systems and isolates test problems where any individual system is much slower (or
faster) than expected, relative to the average performance of all systems on that
problem and the average performance of the problems on all systems. ACEC users
can review the MEDIAN report to isolate the strong and weak points of an
implementation by looking for common threads among test problems which report
exceptional performance data. The ACEC comparative analysis programs compare
performance data between systems and identify the test problems which show
statistically unusual results. The results of some test problems are of independent
interest - such as rendezvous times, exception propagation time, and procedure call
time.

The ACEC addresses the following:
1. Execution Time Efficiency
2. Code Size Efficiency

3. Compile Time Efficiency (to a much lesser degree).

-

2.1 Execution Time Efficiency

These benchmarks address the execution speed of various Ada features as well as
those aspects of an Ada Runtime System which traditionally have been the province of
operating systems. These benchmarks have been subdivided into the following major

categories:
1.

SANEN S o

Benchmarks that deal with Ada Runtime System features
Benchmarks that measure individual Ada language features

Benchmarks that deal with performance under load
Benchmarks that deal with tradeoffs between performance of different features
Benchmarks that deal with optimization issues.
Application Profile benchmarks that are further subdivided as follows:
o Classical Benchmark Programs (e.g. Whetstone, Dhrystone)
» Ada in Practice

2.1.1 ACEC Ada Runtime System Benchmarks

These benchmarks address Ada Runtime System Issues that traditionally have been
the domain of operating systems as well as determining runtime implementation
dependencies. The benchmarks address Ada RTS issues such as:

Tasking: Tasking benchmarks can be further subdivided as follows:

1.

a.
b.

c
d.
e

f.

Task Activation/ Termination

Task Synchronization

Exceptions Raised During Rendezvous

Abort Statement

Tasking Runtime Implementation Dependencies
Tasking Optimizations

2. Memory Management: Memory management benchmarks have been subdivided
into two areas:

a. Memory Allocation Timing Benchmarks: These benchmarks are mainly

tests that determine timing information about memory
allocation/deallocation.

Memory Allocation/Deallocation Benchmarks: These benchmarks
determine the way storage allocation/deallocatiou is implemented for a
particular Ada compiler system.

Exception Handling: These benchmarks measure the time to raise, propagate
and handle exceptions.

Input /Output: These benchmarks measure time for input/output operations for
TEXT 10, SEQUENTIAL IO, and DIRECT IO. Although many embedded
targets do not support file systems, embedded applications may make intensive
use of file systems and the performance of I/O operations is critical to their
application performance.

CLOCK Function: These benchmarks determine the overhead due to the
CLOCK and SECONDS function.

Chapter 13 benchmarks: These benchmarks measure the performance of various
Chapter 13 features such as Pragma PACK, SIZE Representation Clause,
Record representation clause, and Unchecked Conversion.

Scheduling and Delay Statement: These benchmarks determine the scheduling
algorithms and the impact of the delay statement.

Pragmas: There are certain predefined pragmas which are expected to have an
impact on the execution time and space of a program. These include: Pragmas
CONTROLLED, INLINE, OPTIMIZE, PACK, PRIORITY, SHARED, and
SUPPRESS. There are test problems which explore the performance effects of

specifying the above pragmas.

2.1.2 ACEC Individual Language Feature Benchmarks

There are test problems for all major Ada language features. The test suite contains
sets of test problems which present constructions in different contexts. The results will
demonstrate the range of performance associated with a language feature.
Benchmarks that measure individual language features are divided into the following
categories:

L

W % N O A N

by
S

Record object manipulation

Array object manipulation

Integer Computations

Floating point computations

Fixed point computations

Loop operations

Constraint checking

Type conversions from one type to another
Mathematical functions

Subprogram Overhead (including Generics)

2.1.3 Performance Under Load

There are some language constructions which display nonuniform performance. The
more of them in a program, the slower the average performance. These are tests that
determine the performance of such language constructions under different loading
scenarios. Examples include task loading, levels of nesting, parameter variation, and
declarations.

2.1.4 Tradeoffs

In many areas of the language, it is possible to speed up the performance of one
feature at the cost of slowing another down. Areas that have been covered include
design issues, and context variation.

2.1.5 Optimizations

Specific optimization test problems include examples where it is easy and where it is
more difficult to determine that the optimization is applicable. There are some test
problems which perform the same basic operations, but have a modification which
either performs the intended optimization in the source text, or precludes the
application of the optimization. Optimizations that have been addressed include:

1. Common Subexpression Elimination

2. Folding

3. Loop Invariant Motion

4. Strength Reduction

5. Dead Code Elimination

6. Register Allocation

7. Loop Interchange

8. Loop fusion

9. Test Merging
10. Boolean Expression Optimization
11. Algebraic Simplification
12. Order of Expression Evaluation
13. Jump tracing
14. Unreachable Code Elimination

15. Use of Machine Idioms
2.1.6 Application Profile Tests

The ACEC also includes examples from actual application code. This code contains
test problems representative of how Ada is being used in practice. These are example
test problems drawn from Ada programs extracted from projects. Examples include
Avionics Applications, Electronic Warfare Application feasibility study code, and
Radar Application code.

Application profile tests have been subdivided as follows:

1. Classical Tests: The ACEC test suite contains classical benchmark programs
coded in Ada. Classical tests include: Ackermann’s function, Kalman filter,
Autocorrelation program, Quicksort and variation of quicksorts, Mergesort,
Dhrystone and Whetstone benchmarks, and Gamm measure benchmark.

2. Ada in Practice: These are example test problems drawn from Ada programs
extracted from projects. They represent typical usage of Ada.

2.2 Code Size Efficiency

The memory size of programs is an important attribute in many mission critical
applications. On embedded systems, memory is often a limited resource. On some
target processors such as the MIL-STD-1750A, while physical memory may be
available, maintaining addressability is critical and a small code expansion rate can
help system design by reducing the need to switch memory states. There are two size
measurements of most interest to Ada projects: the amount of space generated inline
to translate each statement (Code Expansion Size), and the amount of space occupied
by the RTS (Runtime System Size).

Code Expansion Size: The code expansion size is measured in the timing loop. It is the
space in bits, between the beginning and end of each test problem. In this report, the
code expansion size of problems have been considered in light of their ability to help
interpret results.

Runtime System Size: The size of the Runtime System is an important parameter to

many projects. Space taken by the RTS is not available for use by application code, so
a small RTS will permit larger applications to be developed.

2.3 Compile Time Efficiency

The times to compile the compilation units are collected and analyzed. The
benchmarks were developed to measure execution time performance aspects, and do

-10-

not necessarily represent a set of compilation units which will expose all the relevant
compilation time variables. However, they do represent a set of programs which will
exercise a compiler and observing the compile time of these programs can give insight
to the overall compilation rates.

2.4 ACEC Summary

The philosophy of the ACEC is that end users will not have to examine in detail each
individual test problem. Rather, they should run the test suite and let the analysis tools
isolate problems where a system does unusually well or unusually poorly. These
problems can then be examined in more detail to try to determine what characteristics
of the problem are responsible for the unusual behavior.

More information about the ACEC benchmarks can be obtained from references [1]
and [2] as well as from:

Raymond Szymanski
WRDC/AAAF-3
Wright-Patterson AFB
Ohio 45433-6543

(513) 255-3947

-11-

3. Real-time Systems and Ada Benchmarking

Before jumping into the ana.sis of ACEC benchmarks, it is important to understand
the typical software requirements of real-time applications, how Ada addresses those
requirements and the issues involved in benchmarking Ada features that address these
requirements.

3.1 Requirements Of Real-time Systems

For a programming language to be used effectively to program real-time embedded
systems, it should be able to support the following characteristics (for more details see
reference [4]):

o Real-time Preemptive Scheduling

o Concurrency, Inter-task and Intra-task communication
o Time Abstraction

o Interaction with Real World

o Input/Output

e Resource Utilization

o Numeric Computations

o Fault Tolerance

o« Event-driven Reconfiguration

 Reliability

3.2 Ada and Real-time Requirements

Programmers generally have no control on the design and implementation of the Ada
runtime system except that it satisfy the requirements listed in the LRM. Table 1 lists
the Ada features that support real-time requirements.

ammes) oyywads e Aq passasppe Apioydxa JoN SIIMPINYITY PAINQUISIQ

JUIWI)E)S 1I0qe elA PassaIppe Ajfenied [051800) Ul 98ueq) SNOUOIPIUASY

wsaeyosy Jutpuey uondaoxg 20URIS[O] Jney

semBel1q ‘sornjes) juomofeuey L1owop quomazers Aejoq UONEZIII() 92IMOSIY

sainjes) €1 soydey)) ‘Aresqy qiep suonendwo)) susmnN

 somesj €7 1adeq) ‘O LOHYIA ‘OI TVLINANOES ‘O LXHL ndino/ndug
ydnuxajut ue 03 £13u9 Jurpuiq osne SSAPPY PlI0M [e31 MM ROTORINU]

S[[eD 2INpadoi1] ‘SNoAZOpuay ‘wistueydour Junyse) epy

uonedUNUIO)) YSe)-eIu] pue yse)-12)u] ‘Aousumduc)

NOLLVINA Pue FWLL dAL Uoiduny D010 wawaiels Lepq

Suruny 1940 [05U0D)

‘WSRO AJuoL ‘wISAS owmuny epy

Sumpogog sandwasig ‘oum-feay

aIjesd epy

sjuaumannbay oum-feay

Bpy pue syudurainbay sumi-[eay ‘I AIGV.L

|N,H|

-13-

From Table 1, it is clear that a real-time benchmarking suite should address the
following real-time Ada features:

1. Tasking

Memory management
Exceptions
Input/Output

Clock Function
Scheduling and Delay Statement
Chapter 13 Benchmarks
Interrupt Handling
Pragmas

Subprogram Overhead
Numeric Computations

W P N & R W

~
NS

3.3 Ada Benchmarking

Ada benchmarking can be approached in 4 ways:

1. Benchmarks that measure execution speed of individual features of the
language.
2. Benchmarks that determine implementation dependent attributes.

Benchmarks that measure the performance of commonly used real-time Ada
paradigms (that may be programmed using macro constructs [4]).

4. Composite benchmarks which include representative code from real-time
applications.

A detailed description of benchmarking approaches is presented in the report titled
"Real-time Performance Benchmarks For Ada" [4].

.14 -

4. Analysis of the ACEC Benchmarks

The ACEC benchmarks have been analyzed with respect to the following
characteristics:

1.

2.

3.

Features measured by the Benchmarks

The ACEC suite has been analyzed with respect to its ability to measure the
performance and to determine the implementation characteristics of Ada
features that are important for programming real-time systems. The ACEC
tests are examined with respect to each of the following real-time features [4]:

« Tasking
e Memory management
» Exceptions
e Input/Output
e Clock Function
e Scheduling and Delay Statement
o Chapter 13 Benchmarks
e Interrupt Handling
o Pragmas
e Subprogram Overhead
o Numeric Computations
In addition to their measurement of individual Ada features, the ACEC suite

has also been evaluated with respect to its implementation of real-time
paradigms and composite benchmarks.

Information provided for interpretation of the results

Running the ACEC benchmarks produces a set of numbers which bave to be
interpreted. It is important that the benchmarking suite provide sufficient
information about interpreting the results.

Portability

The benchmarks should be portable and executable on any Ada compiler system
with minimum modifications. There are come benchmarks (like interrupt
handling) that may not be portable and depend on the hardware being tested.
The ACEC suite has been analyzed with respect to its ease of portability to
various Ada compiler systems.

-15 -

The ACEC evaluation format is as follows:

« For each feature, the ACEC benchmarks which address that feature have been
identified and their description presented in tables listed in Appendix A. Also
listed are the results of running the ACEC It also presents the results of running
the ACEC real-time benchmarks on the following Ada compilers: HP-Ada
Compiler (Releases 3.25 and 4.35) running on HP 9000/350 machine under HP-
UX Release 6.2; and Verdix Ada Compiler (Release 5.41) hosted on a Sun 3/60
and targeted to a Motorola 68020 bare machine.

o Then, comments are presented on those set of benchmarks. The comments
address two major areas, namely any deficiencies in a) the benchmarks themselves
and b) additional information that is not provided by the ACEC in interpretation
of the results produced by running those benchmarks.

o Finally, additional benchmarks not covered in the ACEC are listed when
appropriate for the feature analyzed.

4.1 Tasking

For the purposes of this discussion, the ACEC benchmarks have been analyzed with
respect to their measurement of the following aspects of tasking:

 Task Activation/Termination

» Task Synchronization

o Exceptions Raised During Rendezvous
o Abort Statement

 Tasking Priorities

» Miscellaneous Tasking Benchmarks

e Tasking Optimizations

4.1.1 Task Activation/Termination

Task Activation/Termination is an important benchmark for real-time systems. Task
elaboration, activation and termination are almost always suspect operations in real-
time programming and programmers often allocate tasks statically to avoid runtime
execution time.

Table 2 lists the ACEC benchmarks for measuring task activation/termination timings
along with the results of running these benchmarks on the HP and Verdix Ada
compilers. The task to be activated can either be an object of a task type or can be
activated using the new allocator. The difference in the times provided by these tests
give some insight into the relative efficiency of the two types of task activation.

- 16 -

Comments: Observations about the ACEC task activation/termination benchmarks

are:
1.

The tasks whose activation/termination times are being measured are very
simple tasks which have a null statement inside the task body. This is not a very
realistic scenario as it is quite possible that many compilers realizing that this
task does nothing may optimize it away and the measurements obtained may not
be correct. The task body should do something meaningful such as call a
subprogram that performs some meaningful calculations.

The time to elaborate, activate and terminate a task is measured as one value.
The individual components of the measurements are too quick to measure with
the available CLOCK resolution.

An important criteria for tasking benchmarks is the STORAGE _SIZE used by
the tasks that are elaborated. Some implementations may implicitly deallocate
the task storage space on return from a procedure or on exit from a block
statement (when the task object is declared in that procedure or block
statement). If task space is implicitly deallocated, the number of iterations can
be increased to get greater accuracy for task activation/termination
measurement. So if task space is not deallocated on return from a procedure or
block statement, TASK TYPE'STORAGE _SIZE can be changed such that the
number of iterations can be increased (thus increasing the accuracy of the
measurement).

Additional Task Activation/Termination Benchmarks:

L.

More task activation/termination benchmarks are needed to determine if a
real-time programmer can declare tasks for time-critical modules in a) a block
statement or b) within other tasks.

Benchmark: Measure task activation and termination time (without the new
operator) where

o Task type is declared in the main program and task object is declared in a
block statement in the main program.

o Task type and task object are declared in another task which is declared in the
main program.

Task activation/termination times may degrade as the number of active tasks in
the system increases. This is a more realistic scenario for a real-time system as
generally there are existing tasks when new tasks are activated. As more and
more tasks are created, task activation time may increase due to the possible
increase in storage allocation time.

Benchmark: Measure the affect on task activation/termination times as the
number of existing active tasks keeps on increasing.
Number of existing active tasks in the system could vary from 1 to 20.

-17 -

3. During the execution of an Ada program, a low priority task spawns a task.
While the activation of this spawned task is occurring, if a high priority task
becomes ready to execute, it may remain suspended until the completion of the
low priority task activation.

Benchmark: Determine if a low prionty task activation could result in a very long
suspension of a high priority task.

4.1.2 Task Synchronization

In Ada, tasks communicate with each other via the rendezvous mechanism.
Rendezvous are effectively similar to procedure calls, yet they are much more complex
to implement, and therefore create a tremendous amount of overhead for the runtime
system. Because of the timing constraints in a real-time system, it is essential that the
rendezvous mechanism be as efficient as possible.

The ACEC suite has a comprehensive set of task synchronization benchmarks. These
benchmarks are divided in the following logical areas.

4.1.2.1 Time For a Simple Rendezvous

These benchmarks measure the time for a simple rendezvous and no parameters are
passed during the rendezvous. Time is measured to complete a rendezvous between a
task and a procedure with no additional load present. This method, then gives a lower
bound on rendezvous time, because no extraneous units of execution are competing
for the CPU. Table 3 lists the simple rendezvous benchmarks and Table 4 lists the
benchmarks that determine rendezvous performance with varying number of tasks.
The results of running these benchmarks on the HP and Verdix Ada compilers are
also listed.

Comments: Comments about ACEC simple rendezvous benchmarks are:

1. The ACEC benchmarks measure simple rendezvous timings for rendezvous
between equal priority tasks, as well as rendezvous between tasks of different
priorities. Two context switches are required for rendezvous between tasks of
different priorities as opposed to a single context switch for rendezvous between
tasks of same priority. So any deviation from the expected results points to a
bad compiler implementation.

2. Rendezvous times with tasks in subunits as well as tasks in separate packages
should be the same as if those tasks were in the main program. A task being in a
subunit or a separate package should affect compilation times and not execution
times.

-18 -

4.1.2.2 Select Statement With Else Alternative

These benchmarks measure the time it takes to execute 1 select statement with an else
alternative under various scenarios. The ELSE alternative is always executed. Table
S lists these benchmarks along with the results of running these benchmarks on the
HP and Verdix Ada compilers.

Comments: Observations about these benchmarks are:

1. All of these benchmarks have a select statement with an else alternative (which
is always executed). Hence, execution of these benchmarks will enable real-
time programmers to determine if a compiler optimizes away the entry call or
accept statement and directly executes the else alternative.

4.1.2.3 Rendezvous Calls with Conditional Selects

These benchmarks have conditional select statements with various scenarios. The
tests are listed in Table 6 along with the results of running these benchmarks on the
HP and Verdix Ada compilers.

Comments: Observations about these benchmarks are:

1. Benchmarks (task16) that contain delay statements with a negative argument do
not serve any useful purpose for real-time programmers, as negative delay
statements are never used in real-time systems.

2. There is no information provided on interpretation of the results produced by
executing benchmarks task1S5, task16, task17, task21, and task22. Upon further
analysis, it is determined that these benchmarks do not provide any useful
information in evaluating an Ada compiler.

4.1.2.4 Selective Wait

These benchmarks test various scenarios with the selective wait statement. Table 7
lists the selective wait benchmarks along with the results of running these benchmarks
on the HP and Verdix Ada compilers.

Comments: Observations about these benchmarks are:

1. Benchmark (task34) measures the time to check the entry queue for a accept
statement. Depending on the compiler implementation, time to check the entry
queue could force missed deadlines in real-time systems.

2. Benchmarks (task35) that contain delay statements with a 0.0 argument do not
serve any useful purpose for real-time programmers, as delay statements with
0.0 argument are never used in real-time systems.

3.

-19-

In benchmark taskS9, all delay alternatives are negative in the selective wait. As
pointed out before, negative delay alternatives do not provide any useful
information in Ada compiler evaluation for real-time programming.

Additional Task Synchronization Benchmarks:
1

For some compilers, the more the number of entries in a select statement, the
more time it takes to rendezvous with any entry in the select statement. For
some implementations, time for a rendezvous may also be affected by the
position of the accept alternative in the select statement.

Benchmark: Measure the effect on rendezvous time as the number of accept
alternatives in a select statement increases.

Main program calls first (middle, last) entrv i~ .. select statement in another
task as the number of accept statements increases from 2 to 10 to 20.

Rendezvous time may depend on the number of open guard statements. For
some implementations, rendezvous titne may uepend on the number of guards
in the select statement and the position of the accept in the select statement.

Benchmark: Measure the effect of guards on rendezvous time, where the main
program calls an entry in another task as the number of accept alternatives in the
select statement increases.

Rendezvous time may depend on the size and type of the passed parameters
which may involve both the task stacks or the allocation of a separate area for
passing large structures. Increasing rendezvous times for array parameters as
the size of the array increases implies that the implementation uses pass by copy
" ~tead of pass by reference.

Benchmark: Measure the time required for a complex rendezvous, where a
procedure in the main program calls an entry in another task with different type,
number and mode of the parameters.

The types of the parameters include a) integer arrays (size 1 to 1000 to 10000),
and b) 1 to 100 integers. The mode of the parameters passed is either out or in
out.

Fairness of select-alternative is a particular aspect of scheduling fairness. If a
task reaches a selective wait and there is an entry call waiting at more than one
open alternative, or if a task is waiting at a selective wait and more than one
open accept or delay alternative becomes eligible for selection at the same time,
an alternative is selected according to criteria that are not specified in the LRM.

-20 -

Benchmark: Determine algorithm used when choosing among branches of a
selective wait statement.

5. The order in which an Ada compiler system chooses to evaluate the guard
conditions in a select statement is implementation dependent. Real-time
programmers may need to know the order in which the guard conditions are
evaluated.

Benchmark: Determine the order of evaluation for guard conditions in a selective
wait.

4.1.3 Exceptions During a Rendezvous

If an exception is raised within a rendezvous, it is propagated to the task containing
the accept as well as to the calling task. This is the most complex form of exception
handling since the exception is handled in both the task containing the accept and the
calling task. For real-time systems, it is important to measure the time it takes to
handle exceptions raised during a rendezvous. Table 8 lists the ACEC benchmarks for
exceptions raised during a rendezvous along with the results of running these
benchmarks on the HP and Verdix Ada compilers.

Comments:

1. ACEC benchmarks for handling exceptions within a rendezvous are adequate
and do not require any additional benchmarks.

4.1.4 Abort Statement

Quick restarts of tasks are required in a number of real-time embedded systems. Ada
model of concurrency does not provide an abstraction where a task may be
asynchronously notified that it must change its current execution state. One way to
implement asynchronous change in control is to abort the task and then replace it with
a new one. Table 9 lists the tests for abort statement along with the results of running
these benchmarks on the HP and Verdix Ada compilers. These tests measure timings
to abort tasks under various scenarios.

Comments: None.
Additional Abort Statement Benchmarks:

More task abortion benchmarks are needed as follows:

1. In real-time systems, tasks may have to be aborted in a certain sequence. The
semantics of the abort statement do not guarantee immediate completion of the
named task. Completion must happen no later than when the task reaches a

-21-

synchronization point.

Benchmark: Determine order of evaluation of tasks named in an abort statement.

2. When a task has been aborted, it may become completed at any point from the
time the abort statement is executed until its next synchronization point.
Depending on when an implementation actually causes the task to complete the
results of an aborted task may be different. Suppose a task is updating a
variable that is visible to other tasks, prior to a synchronization point. If the task
is aborted just prior to the update, it may leave the variable unchanged if it
becomes completed immediately, or it may update the variable and then
becomes completed at the synchronization point. This could affect the results of
the whole program.

Benchmark: Determine the results if a task is aborted while updating a variable ?
4.1.5 Task Priorities

The ACEC suite has several tests that use Pragma PRIORITY to determine
rendezvous timings under different scenarios. These tests have already been discussed
in Section 4.3.2 under Task Synchronization. However, additional benchmarks are
needed for tasking priorities.

Additional Tasking Priority Benchmarks:

1. Programmers may need to know the default priority of the main program and
other tasks in order to design usable embedded systems.

Benchmark: Determine priority of tasks (and of the main program) that have no
defined priority.

2. If two tasks without explicit priorities conduct a rendezvous, and if the priority
given to the rendezvous is higher than a task with an explicit priority, the Ada
program may perform in an unpredictable manner.

Benchmark: Determine priority of a rendezvous between two tasks without explicit
priorities.

4.1.6 Miscellaneous Tasking Benchmarks

There are some tasking benchmarks that do not fall under any of the above defined
categories.

Table 10 lists the miscellaneous tasking benchmarks along with the results of running

these benchmarks on the HP and Verdix Ada compilers.

Comments: Observations about these benchmarks are:

L

Benchmark (task48) is not very useful as the timing of interest is the time taken
to invoke the interrupt handler when an actual hardware interrupt is received as
opposed to calling an entry tied to an interrupt directly.

Additional Miscellaneous Benchmarks:

L

A group of tasks (children of the same parent) can terminate by using the
terminate option of the select statement. If the overhead due to the terminate
option is high, then this option should not be used (especially if the selective wait
is inside a loop).

Benchmark: Measure the cost of using the terminate option in a select statement.

In many real-time embedded systems where space is at a premium it may be
desirable that task space be deallocated when that task terminates.

Benchmark: Determine if task space is deallocated on return from a procedure
when a task that has been allocated via the new operator in that procedure
terminates.

It might be impossible for a runtime system to deallocate the task storage space
after termination. This is because the access value might have been copied and
an object might still be referencing the terminated task’s task control block.

Benchmark: Determine if tasks that are allocated dynamically by the execution of
an new allocator do not have their space reclaimed upon termination when access
type is declared in a library unit or outermost scope.

When several tasks are activated in parallel, the order of their elaboration may
affect program execution.

Benchmark: Determine the order of elaboration when several tasks that are
declared in the same declarative region are activated in parallel.

The activation of tasks proceeds in parallel. Correct execution of a program may
depend on a task continuing execution after its activation is completed but
before all other tasks activated in parallel have completed their respective
activations.

Benchmark: Determine if a task, following its activation but prior to the completion
of activation of tasks declared in the same declarative part, continue execution.

6. The LRM does not define when STORAGE ERROR must be raised should a
task object exceed the storage allocation of its creator or master. The exception
must be no later than task activation; however an implementation may choose to
raise it earlier.

Benchmark: Determine when exception is raised if the allocation of a task object
raises STORAGE ERROR.

7. For some real-time embedded applications, it is desirable that tasks declared in
a library package do not terminate when the main program terminates. System
designers may need to know this information.

Benchmark: Determine if tasks declared in a library package terminate when the
main program terminates.

4.1.7 Task Optimization

These benchmarks are designed to determine if certain tasking optimizations have
been implemented by Ada compilers.

Table 11 lists the ACEC Habermann-Nassi tasking optimization benchmarks Table 12
lists the other tasking optimization benchmarks. The results of running these
benchmarks on the HP and Verdix Ada compilers are also listed.

Comments:

1. As far as tasking optimizations are concerned, the ACEC suite is quite
comprehensive.

4.2 Memory Management

Memory management benchmarks have been divided into two separate areas:

1. Memory Allocation Timing Benchmarks: These benchmarks are mainly tests that
determine timing information about memory allocation/deallocation.

2. Memory Allocation/Deallocation Benchmarks: These benchmarks determine the
way storage allocation/deallocation is implemented for a particular Ada
compiler system.

4.2.1 Memory Allocation Timing Benchmarks

Since time and space are at a premium in real-time embedded systems, it is essential
that the dynamic memory allocation and deallocation be as efficient as possible.

.24 -

Real-time programmers need to know the maximum time to allocate and deallocate
storage for a particular Ada compiler in order to ensure that performance
requirements will be met for their application.

Table 13 lists the ACEC memory allocation timing benchmarks along with the results
of running these benchmarks on the HP and Verdix Ada compilers.

Comments: Observations about these benchmarks are:

1.

In benchmarks (ss22, ss23, and ss24), time to to allocate small one, two, and
three dimensional arrays of float is measured. The sizes of the arrays are
different thus limiting the usefulness of the results obtained by running these
benchmarks. What is of interest is the time for allocating same size array as the
number of dimensions increase.

Benchmark (ss25), which measures time to allocate a small dynamically
bounded one array of float, does not provide any useful information as the
timing has to be compared to allocation timings for same size and multiple
dimension arrays.

Additional Memory Allocation Timing Benchmarks:

1.

Tests for more Ada types are needed to determine their allocation overhead
time. Times to allocate various numbers of types INTEGER and
ENUMERATION have to be measured as well as the times to allocate various
sizes of arrays, records, and STRINGs. The objective is to determine the
allocation overhead involved and if there is any difference in the overhead based
on the type of object allocated.

Benchmark: Measure time for allocating storage known at compile time. Times to
allocate various numbers of types INTEGER and ENUMERATION are
measured as well as the times to allocate various sizes of arrays, records, and
STRINGs.

More tests are needed to determine if allocation time is dependent on size (in
the composite-type object case). Also, based on these timing measurements
real-time programmers can decide whether to use the new allocator for object
elaboration or to declare the object as in the fixed length case.

Benchmark: Memory Allocation via the New Allocator. Allocation time of objects
of type INTEGER, and ENUMERATION as well as composite type objects of
various sizes are measured.

In these tests, the objects that have been allocated via the new allocator have
also been freed via Unchecked_Deallocation before exiting the scope in which
the object was allocated.

3. If memory is allocated in a loop via the new allocator and the memory that is
allocated is not freed via Unchecked Deallocation, then the time required for
dynamic memory allocation can be affected as more space is allocated.

Benchmark: Determine the effect on time required for dynamic memory allocation
when memory is continuously allocated without being freed via
Unchecked_Deallocation in the scope where the memory was allocated.

4.2.2 Memory Allocation/Deallocation Benchmarks

It is important for real-time programmers to know if a particular compiler
implementation

e deallocates nothing
« supports only UNCHECKED DEALLOCATION

» deallocates all the storage for an access type when the scope of the access type is
left

« detects inaccessible storage and automatically deallocates it (garbage collection).

Table 14 lists the ACEC memory allocation/deallocation benchmarks along with the
results of running these benchmarks on the HP and Verdix Ada compilers.

Comments:

1. ACEC suite is very comprehensive in memory allocation/deallocation
benchmarks.

4.3 Exceptions

Table 15 lists the ACEC exception handling timing benchmarks along with the results
of running these benchmarks on the HP and Verdix Ada compilers.

Comments: None.

Additional Exception Handling Benchmarks:

1. Exception handling times may degrade due to additional tasks present in the
system. Benchmarks are needed that measure exception handling timings when
multiple tasks are present in the system.

Benchmark: Measure the effect of additional tasks in the system on exception
handling times for all the exception handling benchmarks in the ACEC suite.

-26 -

2. In many real-time systems, it is quite possible that intermediate operations
during the calculation of a larger expression may exceed the system defined
limits, although the final result may still be within bounds. Some
implementations may raise an exception if the intermediate expression exceeds
system defined limits.

Benchmark: Determine if an implementation raises NUMERIC ERROR on an
intermediate operation wher the larger expression can be correctly computed.

4.4 Input/Output

Input/Output benchmarks can be divided into the following categories:
« TEXT IO benchmarks
o DIRECT IO benchmarks
o SEQUENTIAL IO benchmarks
« Asynchronous I/O benchmarks

44.1 TEXT IO

Table 16 lists the ACEC TEXT 1O benchmarks along with the results of running
these benchmarks on the HP and Verdix Ada compilers.

Comments:
1. Additional benchmarks for TEXT IO are not needed.

442 DIRECT IO

Table 17 lists the ACEC DIRECT IO benchmarks along with the results of running
these benchmarks on the HP and Verdix Ada compilers.

Comments:
1. Additional benchmarks for DIRECT IO are not needed.

443 SEQUENTIAL IO

Table 18 lists the ACEC SEQUENTIAL _IO benchmarks along with the results of
running these benchmarks on the HP and Verdix Ada compilers.

Comments:

-27-

1. Additional benchmarks for SEQUENTIAL IO are not needed.
4.4.4 Asynchronous I/O

One of the benefits of Ada’s tasking techniques is the ability to implement true
asynchronous I/O. By using Ada tasks to drive I/O controllers, only the task that
requested the I/O must wait for completion before resuming execution, while other
tasks within the application program can continue execution while I/O is being
processed.

I/O blocking may not be tolerated in many systems. It effectively causes the entire
Ada program to stop while an I/O is serviced. The effect is clearly most evident for
interactive input but, for mission critical systems even physical disk 1/O will cause
unacceptable delays in the overall processing.

Comments:
1. The ACEC suite does not have benchmarks that address asynchronous 1/0.

Additional Asynchronous 1/0O Benchmarks

1. I/O blocking to devices other than where clear delays are possible (such as a
terminal or mailbox) can be very difficult to determine. In principle it is only
necessary for non-blocking I/0O to occur for physical I/O but when this actually
happens is difficult to predict in many systems where complex device caching
and buffering is automatically performed. The tests need to be performed for
the following device types: interactive terminal and disk. For each facility and
each of SEQUENTIAL IO, DIRECT IO, and TEXT IO the presence of
system-wide blocking during prolonged processing should be recorded.

Benchmark: Blocking on READ, GET, WRITE, PUI, CREATE, OPEN,
RESET, CLOSE, and DELETE.

4.5 Clock Function

For programming real-time systems, the CLOCK function in the package
CALENDAR is used extensively. Table 19 lists the ACEC CLOCK function tests
along with the results of running these benchmarks on the HP and Verdix Ada
compilers.

Comments:
1. These tests are sufficient to test the CLOCK function overhead.

-28 -

4.6 Scheduling, Preemption and Delay Statement

To allow execution to switch among tasks, the scheduler provided by the runtime
system is entered at certain synchronization points in a program, and the scheduler
decides at this point which task has to be executed. According to the LRM, an
implementation is free to choose among tasks of equal priority or among tasks whose
priority has not been defined. The minimum synchronization (a implementation may
choose to have more) points at which the scheduler is invoked are the beginning and
end of task activations and rendezvous. The pragma priority enables real-time
embedded systems programmers to specify a higher priority for more important tasks.
The priority is fixed at compile time (assuming that pragma priority is implemented).
Hence, whenever a scheduling decision has to be made, the highest priority task
receives control (task priorities are discussed in Section 4.1.5).

Table 20 lists the ACEC benchmarks along with the results of running these
benchmarks on the HP and Verdix Ada compilers.

Comments: Observations about these benchmarks are:

1. As mentioned in previous sections, benchmarks that measure timing for delay
statement with negative (ss459) or 0.0 (delayl, delay8) argument do not serve
any useful purpose for real-time systems.

Additional Scheduling, Preemption and Delay Statement Benchmarks:

Task preemption feature is very important for real-time systems. Preemption occurs
for a variety of reasons each of which must be established. Linked with preemption is
the scheduling algorithm used to determine which, of any number of candidates, can
be processed. The test should determine, as far as possible, the conditions under
which tasks are scheduled and, in particular, the order chosen where valid alternatives
exist.

1. Expiration of delay statement may cause scheduling to take place and preempt

the running task.

Benchmark: Test whether delay expiration causes task preemption.

2. Some implementations may cause scheduling decisions to take place upon 1/O
completion. It should be ascertained if RTS system calls (such as opening of
files, task creation, and rendezvous handling) are themselves preemptable. This
is of great importance when dealing with multi-priority systems and especially
where interrupts are possible.

Benchmark: Establish whether 1/O completion causes task preemption.

-29.

3. An external interrupt may also cause preemption.

Benchmark: Establish whether external interrupts preempt running tasks.
4.7 Chapter 13 Benchmarks

Chapter 13 benchmarks are divided into the following categories:

1. Pragma PACK: This is considered here (as opposed to the section that deals
with Pragmas) as the extent of packing performed by a compiler can be
compared to other benchmarks that use the SIZE specification clause.

SIZE specification benchmarks
Record repres .:t .ion clause benchmarks
Attribute be chmarks

Unchecked_Conversion benchmarks

LA

4.7.1 Pragma Pack

These set of benchmarks test the packing capabilities of a Ada compiler system by
specifying Pragma Pack for various objects. These tests measure both time and space
utilization. Some packing methods allocate a component so that it will span a storage
unit boundary while some pack as densely as possible. The time to access a
component which spans a storage unit is usually greater than when the component
does not span a boundary. In addition to measuring the time in accessing packed
objects, these test problems use the representation attribute X’SIZE to determine the
actual bit size of the objects and compare this with the predetermined minimum
possible bit size for the object. This shows the degree of packing performed by the
system under test.

Tables 21, 22, and 23 list the ACEC Pragma PACK benchmarks along with the results
of running these benchmarks on the HP and Verdix Ada compilers.

Comments:
1. Additional benchmarks are not needed for Pragma PACK.

4.7.2 Length Clause: SIZE Specification Benchmarks

Tables 24 and 25 list the ACEC Length Clause SIZE specification benchmarks along
with the results of running these benchmarks on the HP and Verdix Ada compilers.
In these test cases, an integer type is declared and then the TYPE'SIZE
representation clause is used to determine the size in bits an object of that type can

-130-

occupy. An array is declared of that integer type. Tests are then performed on
components of that array.
Comments:

1. Additional benchmarks are not needed for this feature.

4.7.3 Record Representation Clause Benchmarks

In these tests, the record representation clause is used to specify the layout of a record
whose components are boolean variables (that have the SIZE representation clause
specified) as well as a packed boolean array.

Table 26 lists the ACEC Record Representation Clause benchmarks along with the
results of running these benchmarks on the HP and Verdix Ada compilers.
Comments:

1. Additional benchmarks are not needed for this feature.

4.7.4 Attribute Tests

These tests determine if certain attributes have been implemented. Table 27 lists the
ACEC Attribute tests along with the results of running these benchmarks on the HP
and Verdix Ada compilers. The attributes tested include:

1. Test ADDRESS attribute of a subroutine, local object, and dynamic object.
2. Test SIZE attribute of a local object, and dynamic object.

Test POSITION, FIRST BIT, and LAST BIT attribute for a record
component.

4. Test STORAGE TYPE attribute for an access type and task type.

Comments:
1. Additional benchmarks are not needed for this feature.

4.7.5 Unchecked_Conversion

In real-time systems, it is very frequently required to do a unchecked_conversion from
one type to another. These set of benchmarks test the time required to do a
unchecked conversion from one type to another. Table 28 lists the
unchecked | conversion benchmarks along with the results of running these
benchmarks on the HP and Verdix Ada compilers.

-31-

Comments: None.

Additional Unchecked_Conversion Benchmarks:

1.

In many real-time systems a string object may be converted to an integer via
unchecked_conversion as well as an array of floats may be converted to a record
of floats.

Benchmark: Measure the time for UNCHECKED CONVERSION to move a
STRING object to another INTEGER object.

Benchmark: Measure the time to do an unchecked conversion of an array of 10
floating components into a record of 10 floating components.

4.8 Interrupt Handling

In real-time embedded systems, efficient handling of interrupts is very important.
Interrupts are critical to the ability of the system to respond to real-time events and
perform its required functions and it is essential that the system responds to the
interrupt in some fixed amount of time.

Table 29 lists the ACEC Interrupt handling benchmarks.

Comments: None.

Additional Interrupt Handling Benchmarks:

1.

In many real-time systems, it is important that interrupts are not lost when an
interrupt is being handled and another interrupt is received from the same
device.

Benchmark: Determine if an interrupt is lost when an interrupt is being handled
and another interrupt is received from the same device.

An implementation may cause scheduling decisions on receipt of an interrupt.
This may not be desirable in some real-time systems.

Benchmark: Determine if an interrupt entry call invokes any scheduling decisions.

The handler deals with high priority interrupts, and is therefore allocated a high
task priority. However, it can be interrupted outside the rendezvous by a low
priority interrupt and cannot guarantee to return to the accept statement in time
to catch the next high priority interrupt.

Benchmark: Determine if accept statement executes at the priority of the hardware

-32-

interrupt, and if priority is reduced once a synchronization point is reached
following the completion of accept statement.

4.9 Pragmas

There are certain predefined pragmas which are expected to have an impact on the
execution time and space of a program. These include: SUPPRESS, OPTIMIZE,
SHARED, INLINE, PACK, CONTROLLED, and PRIORITY. Benchmarks for
Pragma INLINE are covered under Subprogram Overhead in Section 4.10. Pragma
PACK is covered under Chapter 13 benchmarks (Section 4.7), Pragma
CONTROLLED is covered under Memory Management benchmarks (Section 4.2),
and Pragma PRIORITY is covered under Tasking (Section 4.1).

4.9.1 Pragma SUPPRESS

The benchmarks for pragma SUPPRESS determine the improvement in execution
time when pragma SUPPRESS is used. Pragma SUPPRESS causes the compiler to
omit the corresponding exception checking (RANGE_CHECK, STORAGE _CHECK
etc.) that occurs at runtime.

Table 30 lists the ACEC Pragma SUPPRESS benchmarks along with the results of
running these benchmarks on the HP and Verdix Ada compilers.

Comments: None.

Additional Pragma SUPPRESS Benchmarks:

1. Timing has also to be measured for other kinds of checks using Pragma
SUPPRESS.

Benchmark: Pragma SUPPRESS is used for these checks: Access Check,
Index_Check, Length_Check, Storage_Check, and Elaboration_Check.

4.9.2 Pragma OPTIMIZE

The benchmarks for pragma OPTIMIZE determine the improvement in execution
time when the pragma is used.

Comments:
1. ACEC has no pragma OPTIMIZE benchmarks,

Additional Pragma OPTIMIZE Benchmarks:

-33.

1. Timing has to be measured for improvement in execution time pragma
OPTIMIZE is used with options TIME and SPACE.

Benchmark: Determine improvements in execution time when pragma OPTIMIZE
is used with options TIME and SPACE.

4.9.3 Pragma SHARED Benchmarks

With multiple tasks executing, there may be an instance where the same nonlocal
variable must be accessed. Pragma SHARED is the mechanism that designates that a
variable is shared by two or more tasks. Pragma SHARED directs the RTE to
perform updates of the shared variable copies each time they are updated, but the
overhead may be significant.

Comments:
1. 'There are no ACEC Pragma SHARED benchmarks.

Additional Pragma SHARED Benchmarks:

1. The overhead involved in updating a shared integer variable is compared to the
overhead involved in updating an integer variable that is not shared.

Benchmark: Determine the overhead due to Pragma SHARED when two tasks
access a shared integer variable.

The main program updates a shared integer variable. This integer variable is
also updated by another task.

2. The overhead involved in updating a shared integer variable during a rendezvous
is compared to the overhead involved in updating an integer variable (that is not
shared) during a r« ndezvous.

Benchmark: Determine the overhead in rendezvous time when a shared variable is
updated during the rendezvous.

4,10 Subprogram Overhead

In Ada, subprograms rank high among program units from a system structure point of
view. If the subprogram overhead is high, then the compiler can generate INLINE
expansion at the cost of increasing the size of the object code. However, if calls to
that subprogram are made from a lot of places, then the pragma INLINE defeats the
purpose due to increase in size of object code.

Tables 31 and 32 list the ACEC Subprogram overhead tests along with the results of

-34-

running these benchmarks on the HP and Verdix Ada compilers.
Comments: None.

Additional Subprogram Overhead Tests:

1. Subprogram overhead timings have to be measured when various parameters
are passed during a procedure call.

Benchmark: Various numbers of parameters of types INTEGER and
ENTUMERATION are passed to determine the subprogram overhead associated
with simple parameter passing. Then composite objects (arrays and records) are
passed to determine if they are passed by copy or reference. Finally, the
subprogram is called with formal parameters of an unconstrained composite type.

All of the tests include passing the parameters with modes in, out, and in out.
All of the tests involve two different types of subprogram calls, one to a
subprogram that is a part of the same package as the caller, and the other to a
subprogram in a package other than the one in which the caller resides.

2. Benchmarks for subprogram overhead that involve the use of package
instantiations of generic code are also needed.

Benchmark: All of the above tests for both inter-package and intra-package
procedure calls are repeated with the subprograms being part of a generic unit.

4,11 Numeric Computation

An embedded system must be able to represent real-world entities and quantities to
perform related manipulations and computations. There should be support for
numerical computation, units of measure (including time), and calculations and
formula from physics, chemistry etc. Numeric computation benchmarks are discussed
under two separate logical headings: a) Mathematical Computation Benchmarks and
b) Benchmarks for Arithmetic on Type TIME and DURATION. The ACEC suite
has over 300 numeric computation benchmarks which belong to different categories.
Hence, these benchmarks have not been presented in the form of tables.

4.11.1 Mathematical Computation Benchmarks

These benchmarks raage from simple integer additions to calculation of complex
mathematical equations. ACEC has the following categories of mathematical
computation benchmarks:

1. Floating point addition, multiplication, division

-35-

Integer addition, division, multiplication
Natural Integer addition, division, multiplication, mod, rem
Fixed point addition, multiplication, division

A Sl

Type conversions from integer to real, floating point literal to integer, integer to
float, convert one fixed point to another, convert double to real, convert real to
double

Integer addition, division
exp, In, sin, cos, abs, sqrt, atan, sgn
mod, and rem operators

© e N o

polynomial evaluation

10. Long integer assignment, addition, subtraction, multiplication, division, rem,
conversion from integer to long integer

11. extended precision floating point assignment, addition, division, abs, sin, cos,
exp, In, sqrt, atan, extended precision floating point array assignment
Comments: .,

1. As far as mathematical computation benchmarks are concerned, the ACEC set
is comprehensive and complete.

4.11.2 Benchmarks For Arithmetic On Type TIME and DURATION

For real-time embedded systems, it is necessary to dynamically compute values of type
TIME and DURATION. An example of such a computation is the difference
between a call to the CLOCK function and a calculated TIME value. This value may
be used as a parameter in the delay statement. If the overhead involved in this
computation is significant, the actual delay experienced will be longer than anticipated
which could be critical for real-time systems.

ACEC benchmarks for arithmetic on type TIME and DURATION are divided in the
following categories:

1. Addition of variables of type CALENDAR.TIME.

2. Comparison of variables of type CALENDAR.TIME.

3. Comparison of type DURATION with SECONDS(TIME).

4. Call on CALENDAR.TIME_OF function.

Comments: None.

Additional Benchmarks For Arithmetic On Type TIME and DURATION:

1.

=36 -

Many real-time systems may have the need to compute values using the "+" and
"-" functions provided in the package calendar.

Benchmark: Measure the overhead associated with a call to and return from the
"+"and "-" functions provided in the package CALENDAR.

Times are measured for computations involving just variables and both
constants and variables of Type TIME and DURATION. The variables have
predefined values. Although both "+" functions are essentially the same (only
the order of parameters reversed) both are tested. This is done because a
discrepancy in the time needed to complete the computation will occur if one of
the functions is implemented as a call to the other.

4.12 Real-Time Paradigms

Users, system programmers, and academicians have found a number of useful
paradigms for building concurrency. These real-time paradigms can be coded in Ada
and benchmarked.

Table 33 lists the ACEC real-time paradigms along with the results of running these
benchmarks on the HP and Verdix Ada compilers.

Comments: None.

Additional Real-time Paradigms:

1.

Many real-time implementations require buffered and unsynchronized
communication betwcen tasks. Due to the rendezvous being a synchronous and
unbuffered message passing operation, intermediary tasks are needed to
uncouple the task interaction to allow tasks more independence and increase the
amount of concurrency. Various combinations of intermediary tasks are used in
different task paradigms to create varying degrees of asynchronism between a
producer and consumer. The benchmarks defined here evaluate the cost of
introducing intermediary tasks for various real-time tasking paradigms. The
goal of these benchmarks is to give real-time programmers a feel for the cost of
using such paradigms in a real-time embedded application and to avoid using
such paradigms if the cost is unacceptable for a real-time system.

Benchmark: Measure the cost of rendezvous between a producer and consumer.
The task that is the source of the information is called the producer and the task
that is the recipient of the information is called the consumer.

Benchmark: Measure the cost of rendezvous using buffer tasks. A buffer is pure
server task that provides for one entry for storing of items in a buffer and another
entry for providing items from the buffer. Both the consumer and the producer call
the buffer task to obtain a piece of information.

-37-

Benchmark: Measure the cost of rendezvous using a buffer and and transporter.
This scheme uses two intermediary tasks between the producer and the consumer.

Benchmark: Measure the cost of rendezvous using a buffer and and two
transporters. If both the producer and consumer wish to communicate via a buffer
and both need to be called tasks, it is necessary to use a transporter on each side of
the buffer. This results in the producer-transporter-buffer-transporter-consumer

paradigm.

2. A monitor is commonly used for controlling a system’s resources. For example,
read and write operations to a disk are usually controlled by a monitor that
ensures the integrity of data on the disk. This is also known as mutual exclusion.
Monitors can be implemented to have controlled access to a shared data pool.
Monitors can be implemented via semaphores, event signaling, and rendezvous
mechanism. The implementation via semaphores and event signaling is
essentially the same.

Benchmark: Measure time to access data in a pool using a monitor.

Any number of processes are allowed to read the pool simultaneously, but no
reads are permitted during a write operation. The monitor developed is used to
control the reading and writing of data to the pool. Two implementations of the
monitor can be considered: the first using semaphores, and the second using the
Ada rendezvous mechanism.

4.13 Composite Benchmarks

A composite benchmark is defined as a program, within the context of the application
domain, that looks at the interaction between Ada features rather than the
performance of individual features themselves. The purpose of running a composite
benchmark is to aid in the selection of a suitable compiler and runtime for a particular
application.

The ACEC also includes examples from actual application code. This code contains
test problems representative of how Ada is being used in practice. These are example
test problems drawn from Ada programs extracted from projects. Table 34 lists those
benchmarks along with the results of running these benchmarks on the HP and Verdix
Ada compilers.

Comments: Observations about the ACEC composite benchmarks are:

1. The code contained in the composite benchmarks is not very useful and does not
provide any relevant information for compiler evaluation for real-time systems.

Additional Composite Benchmarks:

-38-

1. Composite benchmarks can be developed for a number of individual
applications such as Intelligence/Electronic Warfare (IEW) systems, avionics
systems, etc. More information about the process of development of composite
benchmarks is contained in a report titled "Ada Composite Benchmark for
Intelligence/Electronic Warfare Systems" [11].

Benchmark: Develop composite benchmarks for IEW systems [11].
4.14 Portability Of the ACEC Benchmarks

The ACEC tests essentially consist of two sets of tests:

a. Tests that do not depend on the MATH packages supplied with the ACEC (e.g.
the tasking tests)

b. Tests that depend on the MATH packages.

The tests that do not depend upon the MATH packages can easily be ported from one
Ada compiler to another. More effort is required to port tests that depend upon the
MATH packages. This section describes the steps that have to be performed to port
the ACEC to any Ada compiler configuration. The ACEC is intended to run on bare
targets as well as targets with operating systems.

4.14.1 Modification To the Command Files

The first step is to modify the command files that run the ACEC benchmarks. The
command files cmp.unx, cmp tstunx and cmp baseunx that run the ACEC
benchmarks have to be modified to reflect the compilation and linking commands of
the Ada compiler system.

Porting Effort: Easily portable.
4.14.2 Modification To the Base ACEC Files

The second step involves modification to the a set of files known as the base ACEC
files. These are global.ada, math_dep.ada, math_test.ada, and dbl_mathtest.ada.

1. global.ada:

An ACEC user can choose to run the timing loop using CPU time rather than
elapsed time. Using CPU time permits the collection of measurements on
multiprogramming target systems without having to shut the system down to
eliminate contending jobs. The ACEC benchmarks utilize the function
CPU_TIME_CLOCK which is defined in the package GLOBAL in the file
globalada. This function is implementation dependent and has to be written for

-39-

each Ada compiler system.

If the system does not support an integer type with at least 32 bits of precision,
the declaration of the type "BIGINT" and "BIGNAT" will not compile and must
be removed.

If the system does not support a floating point type with 9 digits of precision, the
declaration of the type "DOUBLE" will not compile and must be removed.

The function "ADDRESS TO INT" converts a value of type
SYSTEM.ADDRESS to an integer type. This function is used to compute the
code expansion sizes by subtracting the address values of two labe’ ADDRESS
attributes (or of two type ADDRESS variables obtained by a GETADR
function). On different systems, SYSTEM.ADDRESS'SIZE will differ forcing a
modification to the return type of this function.

Porting Effort: Easily implementable.

math_dep.ada:

The package MATH _DEPENDENT in math_dep.ada has to be adapted to
reflect both the characteristics of the target machine floating point hardware
and the facilities which the Ada compilation system provides to manipulate bit
fields in floating point variables. The size and location of the sign, exponent, and
mantissa of a floating point number are critical, as are other representation
details such as the encoding of the exponent field.

Porting Effort: Non-trivial.

math_test.ada and dbl_mathtest.ada:

The file mathtest.ada has the program MATHTEST which tests the math
routines. MATHTEST requires a package MACHINE which contains some
hardware dependent constants which are modified for the ACEC benchmarks.
These values are obtained from the compiler documentation.

The file dbl_mathtest.ada has the program DBL. MATHTEST which tests the
double precision math routines. DBL MATHTEST requires a package
DBL MACHINE which contains some hardware dependent constants which
are modified for the ACEC benchmarks. This information can be obtained from
the documentation for the HP Ada compiler system.

Porting Effort: Non-trivial.

- 40 -

4.14.3 Input/Output

The third step is to make sure that TEXT IO and FLOAT IO are supported on the
target on which the ACEC suite has to be run. The ACEC outputs strings containing
numeric results of performance tests. If TEXT IO and FLOAT IO are not
supported, the results of the tests cannot be displayed without modification to the
timing code loop. If FLOAT IO is not directly supported, users will have to develop
work arounds.

If the Ada system supports a complete version of the TEXT IO package, this
requirement causes no problems. However, some Ada compilers targeted to real-time
systems (where the hardware is limited) may limit their I/O facilities. The standard
timing output is in microseconds to the nearest tenth. What is needed is the capability
to output real numbers. If thirty-two bit integers are available, one viable option is to
multiply timing results by 10 and then output INTEGR'IMAGE. A user may have to
write a floating point to a text-string conversion routine.

For bare machine implementations of Ada, the effort required to get TEXT IO to
work well enough to output results of the timing and sizing measurement on a console
can be large. Portions of the Ada runtime library may need to be modified, I/O device
drivers may need to be written and tested.

Porting Effort: Non-trivial.

-41-

5. Conclusions

Benchmarking Ada implementations to determine their suitability for real-time
systems is an extremely complex task. This job is made even more difficult due to
differing requirements of various real-time applications. The ACEC benchmarks
provide a good start for benchmarking Ada compilers meant for real-time
applications. However, the ACEC benchmarks need to be augmented with more
benchmarks in certain areas as outlined in this report. It is hoped that the results of
this study will enable appropriate extensions to the ACEC benchmark suite so that
they are more useful in benchmarking Ada compilers meant for real-time systems.

[1]

[2]

(3]

[4]

(5]

[6]

7]

(8]

9]

[10]

[11]

-42.
REFERENCES

Ada Compiler Evaluation Capability (ACEC) Technical Operating Report
(TOR) User’s Guide, Report D500-11790-2, Boeing Military Aerospaces, P.O.
Box 7730, Wichita, Kansas, 1988.

Ada Compiler Evaluation Capability (ACEC) Version Description Document,
Report D500-11790-3, Boeing Military Airplane, P.O. Box 7730, Wichita,
Kansas, 1988.

CECOM Center for Software Engineering, "Establish and Evaluate Ada
Runtime Features of Interest for Real-time Systems", C020921.A0003, Final
Report delivered by IITRI, 15 Feb 1989.

CECOM Center For Software Engineering, "Real-time Performance
Benchmarks For Ada", C02-0921.Y-0001-11, Final Report delivered by Arvind
Goel (TAMSCO), 24 March, 1989.

R.M. Clapp et al., "Towards Real-time Performance Benchmarks for Ada",
CACM, Vol. 29, No. 8, August 1986.

N. Altman, "Factors Causing Unexpected Van’ation's in Ada Benchmarks",
Software Engineering Institute Technical Report, CMU/SEI-87-TR-22,
October 1987.

N. Altman et al,, "Timing Variation in Dual Loop Benchmarks" , Software
Engineering Institute Technical Report, CMU/SEI-87-TR-21, October 1987.

CECOM Center for Software Engineering, "Catalogue of Ada Runtime
Implementation Dependencies”, C02 092JB 0001, Final Report delivered by
LabTek, (revised ARTEWG Document), 15 Feb 1989.

"Catalogue of Interface Features and Options for the Ada Run Time
Environment", ARTEWG Report, 1989.

CECOM Center For Software Engineering, "Performance Measurements of
the CHS Ada Compiler", Final report delivered by Unixpros Inc., 15
December, 1989.

CECOM Center For Software Engineering, "Ada Composite Benchmark for
Intelligence/Electronic Warfare Systems", Draft Final Report delivered by
Unixpros Inc., July 10, 1990.

-43 -

Appendix A: ACEC Real-time Benchmarks and Execution Results

Appendix A lists the ACEC real-time benchmarks. It also presents the results of
running the ACEC real-time benchmarks on the following Ada compilers:

o HP-Ada Compiler (Releases 3.25 and 4.35) running on HP 9000/350 machine
under HP-UX Release 6.2.

o Verdix Ada Compiler (Release 5.41) hosted on a Sun 3/60 and targeted to a
Motorola 68020 bare machine.

The hardware and software configurations for the two compilers is as follows:
HP Testbed Hardware and Software

The hardware used for benchmarking was Hewlett-Packard 9000/350 CPU running
HP-UX V 6.2. The set "~ can be summarized as follows:

Host: HP 9000/350 running HP-UX V 6.2.

Compiler: Self-hosted HP (basically the Alsys Ada Compiler)
Ada Development System Version 3.25 and 4.35.

Target: Same as the host.

Verdix Testbed Hardware and Software

The hardware used for benchmarking was Sun 3/60 CPU running Sun Unix 4.2
Release 3.5, linked to a single 12.5 Mhz Motorola 68020 single board computer
enclosed in a multibus chasis. The setup can be summarized as follows:

Host: Sun 3/60, running Sun Unix 4.2 Release 3.5

Compiler: Verdix Ada Development System targeted to Motorola MC68020
targets, release 5.41

Target: GPC68020 (based on Motorola MC68020 microprocessor)
multibus-compatible computer board having 12.5 Mhz
MC68020 microprocessor, a MC68881 floating point
co-processor, and 2 megabyte of RAM.

The interrupt handling benchmarks were not executed due to lack of the required
hardware to produce external interrupts. A comprehensive performance evaluation of
the HP Ada compilers obtained by running the ACEC and Real-time benchmarks is

presented in reference [10]. For the Verdix compiler, comparing the ACEC real-time

benchmark results to the Real-time benchmarks (listed in [4]) shows that the two sets
of results are in sync for the common features measured by those benchmarks.

0°00S¥

TT8ITT

LT

*yse) e 10§ sSuymm

UONEd0[[e3p /UOnRI0[[e Y10q SIPN[OUT SuTurL], "I0JeI0[e MU Y] BIA
PajeaId udy) I gorysm pi0d31 € JO jred se parepdap st

193(qo yse) € 21oyMm FulmI) UONRUINLID)/UOIIRATIOR SB) JINSLIPN

1o35e)

0°008¥

yLTS0L

80°8060T

wex801d urews 3y} woJy pajyed st jeyy
amps001d € ul parepsp are 3dA) ofBurs e Jo spafqo
jse) 0T 23oym Suluwir) uoneUTULId)/UONEAIOE YSE) 2INSLIP

ore

0°008v

Z6L00T

S18Th1

10je10do Mau 37 JNOYIM UONEUIRLIO} PUE UOIEIL) YSe],

XIpISA

S€vydH

STedH

uondunsag

s

smeN

SPUO3SOIIN Ul Jul],

uoneuruLIS | /UCHIBATIOY Yse], ‘T ATAV.L

lmvl

1T°9Zd 6'1vZE 6'erbe 1S} SNOAZOPUSI J& JALLIR [IM [[ed A1jud Sunjem
521 Jeq) gons are sonuoud yse; ‘wesSoidqns e 03 sojomrered e se passed st jey yse) I SNOAZIPUAI Yse L LSysel

Loy 9'70C¢ 1'66£€ "PopN{oxa SI UONBWIUIIY]/UOHILID YSE) JO W], ‘JSITJ SNOAZOPUDI JE SIALLIR ey
Anjuo Supyew yse) jeq) yons due sanpoud yse) ‘10JeI0fe MU 3Y) BIA POJESID YSE] © YIiM SNOAZOPUAI YSBL | ZCySE)

SEr | L6Tve | 6V9IE ISI1) SNOAZIpUSI j
S3ALLIE [[ed Anjud Supjew yse) jeq} gons sanuond yse) ‘Aurej £1ud e Jo ouo 03 [ed Anuo yse, 6tsel
9psE TSILL T'S9LY jun uorjepdwiod sures ug syse) §1oq ‘syse; Kjuond fenbo udamyaq snoazopuas yse], 137 12}
9$SE | L9ELT VLT adexoed sjesedas e ur ydoooe Bururiogiad yse) ‘sysey Kjuond fenbo uaamyaq snoazapuar ysel, | zpysed

LLSE | 80LZE | TUSLYE o8eyoed ajeredos e u st 3doooe
9y} Surmiogaad yse) ‘s1j snoazopual o) 18 saarLre 1dasoe Swop ysey jey gous are sanuoud yse, Tpyse)

66ly | SLTTE | 9VSHE 93exyoed ojeredss e ur st ydedoe
Buyuioysad se) 1511y SNOAZOPUDI 9Y) Je SIALLIE [[Bd A1)uod oY) Surjew yse) Jer) gons are sanuond ysel, | gzysel

Loty | Te8lE | ThLye yungns ®© 1 st
1doooe Suyuitogsad Yse) ‘Jsa1j snoazopusi oY) Je SIALLIE [[ed A1jud Sunfewr yse) Jeq) gons ore sonuoud yse voIse)
LLSE | TO0LTE | ¥'I8vE 1S11] SROAZOPUAI 3y} Je s3ALLre 3daode Suiop yse) Jey) gons ose sonuond ysel | gzyse)
| L0Zv | EEIZE | SH8KE 1511 SNOAZIPUSJ 1) I8 SOALLIE [[BD A1jud Suiyew yse) jey) yons oxe sopuoud ysel | £ysel
XIPISA | S€vdH | STEdH uwonduosaq | owen

SPUOIISOIIIA Ul dum],

snoAzopuay s(dung 104 suny, omseoN ‘€ TIGVL

TOoIy | 08IZE | O01T8pE passacoad Smaq a1059q _
dn pononb are sj[es Anjua g “yse) Juorofip 1 ‘syse], Suikiep yim sduewmiojrad snoazopusy 1 wnu Zyse)
TSI | 601E | 9L6bE . passasoad Buraq a1032q o
dn panonb ase s[[eo A1jus 9 ‘syse) JuaoPIp ¢ ‘syse], Suhrep qum couewmiojrad snoazapusy ¢ wnu gyse}
€o6Iy | SLETE | STIYSE passoooxd Buraq 010J2q o
dn ponanb are sjres Anus 11 ‘sysel 1aa1ayip O ‘syse], Suikrep yim soueunioyiod snoazapuay | o wnu zyses
S8IY | 8VICE | LTISE passa001d uraq 21059q o
dn pananb ore sreo Anuo 97 ‘sysel JuIraPIp T ‘syse], Fmlrep qim comeansojrad snoazopuay | g1 wmu Zysed
€9y | SLyeE | 0TSHE passasoid Suraq 910J2q L
dn panonb are sfreo Aua 1z ‘syse) JuaropIp o7 ‘syse] Suikrep qum souemojrad snoazapuay | (7 wnu gysel
T6ly | €982 | O'L8¥E passa001d Suraq 21053q o
dn pananb are spjes A1jud gg ‘syse) Jua1agIp G ‘syse], Sukrep qimm souewmiojrad snoazopuoy | ¢z wnu zyse;
Ty | €7928 | Th0SE passacoid Suraq a1052q 1daooe ouo uo
dn pononb ore syres Anus 1¢ ‘syse) Jua1oIp g ‘syse], Suidrep P souwewmiojiad snoazopusy | o wnu gysel
T'LSE 8PICE 8SIE SNSe) JUSIaIP T S[red Anus g ‘syse], Swidrep qim souewnojiad snoazopuay 1 wnu yse}
Tore | tTeovz | OTI9T SYS€) JUIaPIp G S|[ed Anuo o1 ‘wyse], Suidres gim souemioyrad snoazopuay ¢ wnu yse)
769€ | LvhT | 0829C SY[SE) JU2IaPIP OT S[[e? Anuo (g, ‘syse], Suikrep qua souemsojrad snoazopuay | @ wnu ysel
19 | vz | €192 syse) JuaIaPIp ST S[ed Anua og ‘syse], Suikrep yim souewojrod snoazopuay | G wnu jse)
TvLE 10 4 74 9092 $YS€) JUAITIP 0T STie> Anud Op ‘sysel Sudrep qiwm soueuiopsod snoazopuay 0Z wna yse}
0'L9E S 74 0°S19C ~S€) JUAIIGIP ST S[e Anjud (g ‘syse], Suikrep yim soueuriojrod snoazopusy GZ wnu jyse}
T'SLE LSV 0'€09Z SYSE) JUISYIP O S[[ed Anud 9 ‘syse], SuikreA qim sduewioj12d snoazopusy 0€ wnu yse}
XIpIOA | S€'vdH | STEdH wondudsaqg owreN

SPUOJISOIIN UT QuILy,

syse], Jo requnp Sukrep Yip SOUBWIONIS SNOAZIPUY ‘p TIAV.L

lel

0'6€ oSt 9'L99 | PAaINIax3 skemie aneutalfe ST ‘pa[[ed 194U St Jey) Judwaje;s 1do00e ue sey JuowWajels W3S | geyser

0'6¢ p'oep 8199 | PaIndaxo skeme saneuta)fe ST ‘pIITed 194U ST Jey) Juswaje)s jdoooe ue sey JuoIma)e)s 199138 | zeyse

0'6E S€L $00T P3IN23X3 sAeampe aAnRWIA)[E HSTH ‘SPIddONs JoA2U Jey) [Ted ANud Ue soyeus JUowaels PI3S | oysel

XIPIBA | SE'vdH | STEdH i vondunsag | sueN

SPUOIISOIDA Y duIL],

SATIRWISNY 9S|H I JUSWAle]S 109138 *S TIAV.L

€PyS | T880Y | 0'S9sP ISI1J SNI0AZOPUAI Je SOALLIR yse) Sumdoooe ‘parysnes ST yomm Jo 9uo A[uo
‘spren8 qim 105[9s [euoNIpuUOd suteluod yse) Sundasoe ‘sqred Anus jo sdusnbas e soyew yse) Juusy | oY

6SSS | T86E | S'SL6E ISI1J SNOAZOPUAL Je SIALLIR jSe) Sureous ‘parysnes st YoM Jo ouo A[uo
‘spren3 i 109[9S [eEONIPUOD Sute)uod yse) Sundaooe ‘syres Anuo Jo aouanbas e soyew yse) Souojug | 17yse:

L'61Te | TLLS6Y | v'I6T0T SOLIUD [[e U0 Syse) Junrem
‘OAIJRUIO)[E PIIJSIIES QUO YIIM JUSIII]R)S J09[3S [BUONIPUOD & surejuod yse} Sundaooy | eryser

L'08t §°eTs Y99 ST ST 9ANEWId[e PIJIo[as
‘syse) Sunrem ‘saAneuIdife pasop [fe YIm JUIWa)e)s 199[9S [EUONIPUOD B surejuod yse) 3undony | grysey

pe8 §ceR | TOVOL FSTH ST 9AIBUIII[E PAI2[s
‘syjse) Sunrem ou ‘oanjensd)fe uado e Iwm JuWale)s J09[3S [RUONIPUOd € surejuod yse) Sundocoy | L1yse)

(A% (4 968 1'8¥8 1= AVTA(S! 3AIEUID)[R PIJOIas
‘syjse) Sumrem ou ‘aAnjeusa)fe uado ou YIm JuSUS)IE)S 109]3S [BUONIPUOD B suTejuod yse) Sundaooy | 9ryse;

(9] 8'SHS L'S9L 1S31J SROAZIPUAI
Je saaLre yse) Sundoooe ‘soaneusslre usdo ou gim 10938 [BUONIPUOD E Surejuood yse) Sundooy | crysel
XIpI9A | S€vdH | STEdH gonduoseq | owepn

SPUOI3SOIDI Ul QU]

S109]9§ [EUORIPUOD YA S[JED) SNOAZIPUSY 9 ATAVL

IQ.Vl

S0ETT osy8 | L1€o1 P3JNI3X3 ST GIYA JO 3UO SIATJRUIS)[E T- Ae[ap sidnmum “ysey Fundaooe w yem sampapes | goyses
T691 (1134 995 0°0 fejop 05 oumy, | geyser
9'68C 1854 7969 opew Suraq e Anjuo

mogm saa1dxa Yorym sanewIae ' A V1A 43 Saye) skeme “yse) Sundaooe m weM 2A109JRS | seysed
el JoLyg Joug SPu029s 100'0 AV1dQ 0§ duny, | teysel

CHET 1011y oLy apew Suraq

ITed £1u3 Jnom saardxs qomm sanjenIaNe T00°0 AV T 9Y) SOXB) skempe “yse) Sundaooe ut jrem 2an29[as | pEyse)

T20TC | L8LIL | S669L SNOAZOPUA1 9B 0] P3[I0ULI UdY) Uk UdYe) JAneuIdEe X v 1dd “sel 3undasoe ut yrem oamdopes | 1eyser

S6L6Y | 0568y | 6°0LYS Ua)e) 99 Jou s aAnewIa)e X v pue 1doode uo Sunrem yse; “yser Sundaooe ur yem aanpdles | geyser

XIP1A | SEvdH | STEAH uondinssq | owen

SPUOD3SOIDNA UI QWL],

A 9A1D3I3S °L ATAVL

lcha

*aoeds L10mow 4o yno Suruuns sny; pue sysewgUsq DIV Y1 £q pannbar
(susey 10§ 2oeds Kxomaw d1ow Surmbas sng)y) suonessy jo raquinu 93se] o) 03 Snp SI S|qe) SIY) UI SHICWYOUI(Q SWOS W PISTEl JOLID G, JON

loug Jong oug JusWale)s INU B [P
pojpueq st aondooxo Sunnsas ‘uoissordxa ormrenkp e gim ozis o5e10)s sjenbopent we soywads yser, | coyses

loug long louy JUSWI)E)S [[NU € YIm
pajpuey st uondooxa Sunj[nsar ‘woissaxdxa onels e yum azis 29e1o)s ajenbapeur ue soywads yser, | poysen

oug | 880eS | 01¢€E8 Juowaje)s }o0[q g3 apisur uondaoxs oy Furpuey pue YOUYH ONDISV.L 9STes 03 sum ‘Jusmajess
3}90[q 93 SpIsut pI[puey UaY) pue pastes st YOUUH ONDISV.L ‘PIHOge sem jeq) yse) & 0] opew [[e2 Anuyg | geyse)

ouqg | 96018 | L'12TIE SNOAZIpUAL € UWIYIM woly uondsoxo ue

oeSedoid pue aste1 0) v/E3{se) UT SUIT) [BJUSWIOUT 9Y) ST G/ EYSE) PUR B/EYSL) UIIMISq 20Ut | qLeyser

toug | zeeyoy | 89199 | sysel oy Suneururia) uoy) pue syse) ofs Yioq ut suordadxa pauyyop-19sn 9Y) I[PUBY PUE ISTEL ‘SNOAZOPUII B ALY
‘SYSe) OM) 9JE9ID 0} S} Y} SI PAINSEIW W] ‘SNO0AZIPUI © SPISUI pastes ST uondaoxa paunyap-19s) | e/eyse)

XIPIOA | SEvdH | STEdH wondusaq JweN

SPUO3SOIIN UT duI],

SnoAzopuay Suum(pasrey suondooxy g AIAVL

|HW|

*soeds Ls0wow JO Jno Suuuna sny pue syrewyRUaq DAIV Y Aq pasmbas
(syse1 10§ 9oeds Lromow s10w Furmbar snyy) suonesd Jo 19qunu d3re 973 0) NP SI J[qe) SIY) UI SYIBWGIUIG SWOS UY PISIEI JOLID SY 0N

Joug | $'0ST0Z | 0°086SZ | uore1a) yoes uo Palessd yse) paioqe Ysel JYloue suoqe yseysu) | esysel
soud | 9pSIST | €zLLTe JIOSH SHIOQE YoIyM YSe) € S3jean weidosd | opise)
918 | Lvor | LOST palioqe Apeape st jey) yse) e spoqe wesdord ey | 6eyse
xip1oA | sevdH | STedH uondudsaq | omeN

SPUOJ3SOIN Ul SuIL],

juswalel§ Moqy 6 ATIVL

lNWl

T 9TE 96€ | QALVNINYAL 10 FTGVTIVO SAINGUYE Yse) SMwIolop 0) soye) pouny, | 9yses
sox ON ON I3PI0 [eaX3] W ouop are s)dacoe j omwiaeg | p9ysel
sax ON ON J9PI0 [e1X9] U1 2UOp 2k §)do0de i SWULIANI(| |_8gYsel |
X1p1oA | SevdH | STEdH uonduosoq | owreN
SPUOI9SOIIIJ Ul JmiL],
L)

syrewryouag Sunise], snosue[aosyy 01 TIGVL

Omml

's1opdwo) x1p19A pue JH 241 10§ pajusmojdun jou st suoneziwmdo 1SseN-UTRULIAQRE] 30N

s

€860V

TILSY

Lymoygip 210w Apy3ys gam pandde oq wed
uonezramdo 1sseN-uUuRWIoqRH ‘1S3 SNOAZOPUDI I SALLIE [[LA JSe) SuLISuy "poiysnes st YoM Jo 9uo A[uo

‘sosnep NHHM JIM joowsjels [DHTAS © surejuod yse) Sundoooy sqres £nua jo souonbas soyew syse) Souojuy

ozxsel

pAASY

£000¥

96t

Kymorgp 210w Apydgs yim pordde oq wes uonezimmdo 1sSeN-UTRWISQRH PAIJSTIES ST YIIGA JO U0
Auo s)doooe o) wo asne NFHM Sey OSTe] "ISIJ SNOAZOPUDI 3Y) 18 SIALLIR)i PUE 1O9[3S € W SJuIWIe]s
1daooe 9y} sey spres Anjus o3 Sundocoe yse) oy, “Ioyloue o) I9)Je JUO YSB) IGIOUE UI SILIUI S[[Ed Ye) SuQ

piysed

96LE

1R 7433

9eIsE

[013u03 Jo peasy) Juopuadopm

Ue UTejuTeUI 0) YSB) JOAISS 9} $3010] Jey} (SZI-ISSeN-Uuenaqel 03) Juswear) xojdwods azouw e saxmbai st
PUR SNOAZIPUII Y] JO SPISINC IPOD IWOS ST IISYJ, *ISIJ SNOAZOPUI O] 8 SIALLIE 1 PUR 109]9S © Ul SJUSWI)RIS
1daooe oy} sey sred Anjua o) Sundasoe yse) oy, “I9YIoue J2)Je SUO JSe) JAYIOUR U SOLIUI S[[ed YSe) JUQ

£1ysel

L'eoy

£66T

gLy

sjuawaje)s 1doooe 31) IPISINO PAINISX3 2q O] SJUIWIIL)S OU Ik I19Y) Se
pandde aq wes uoneziumdo ISseN-UUBWISQRH *ISIT] SNOAZOPUAI Y] JE SIALLIE JI PUR JII[3S € U] SJUSWIIe]S
ydaooe oy sey sfreo Anuo o) Sundsooe yse) oy], “IAYIOUL IIYJE SUO YSE) IOIOUR UT SILNED S|[Ld YSe) JuQ

(48 Ul

9't9¢

6'TIEE

90vLE

sjuowalels 1doooe 9} IPISINO PAINIAXA 3q O] SIUIWI)R]S
ou are 919y) se parjdde aq ™. uoneziumdo 1SSEN-TURWLISqRH °ISI1J SNOAZOPUDI Y] I8 JALLIE [[IM JSE)
Sundadoe oy ey gons st Kyuoud sysey, ‘194IoUE)R JUO Ysk) JIGIOUE UI SILLWA S[Jed Jse1 380

\pIA

SevdH

STEdH

wongduosaqg

Ty |

sureN

SPUOJISOIII UT WL,

suonezimmd(Sunyse] isseN-guemIdqey “T1 AI9VL

819

£LESE

€85y

oum 9prdwod je pajenfead
3q wed gorym sesnep NHFHM Sururejuoo ared NI/ LOTTAS & P8 LIFODV (oD Sjoxpeig ISy SNOAZOpUDI Je
Swawre [red Anus ue Sunyew yse) oY) YIm SnoAzapuay sidung - suonpuo)) asney) NIHM Jo Supjog

6aisel

1oLy

6918t

6'¢9LE

payydus pue papjoj aq we)
*ourp) 9[1dwod Je pajen[ead 3q Wed YIIyM sasne> NTFHM Sururejuos ared GNE /LOFTIS © P LAFOOV
[oe9 SOOI “ISIIJ SNOAZIPUIL 9Y) Je SulALLre [reo X Y LNF ue Suryew ¥se) 94} iim snoazapuay djdung

sarsel

L8

£'EC8e

LTILE

1doooe ojdums e se pajean aq ued 1deooe [PUOHIPUOIUN SUO YHM]IS

uoneulw[3 9pod Juepunpay “ired ANA/LOFTHS © P LIADOV Yous S1oxdelg “ISILJ SNOAZOPUSI Je
SmaLLre Jred Anjud ue Suryew yse)) Y Sn0Azopuy djdung - vonew

SEvydH

STEdH

K=

SPUC3SOIIJA UT dun L,

suopeziumdQ Sunjse, 1910 I FIAVL

IWWl

TSE LpT L&Al Juouodwoo o3 uBisse pue ‘Jeoyy Jo (g 9z1s) AeLIe [RUOISTIWND SUO PIpUNOq ATedtwreuip € Jed0[fe 03 duI], GTSS
6'LE Y4174 9'¢1 | jusuodwod 03 uBisse pue ‘Jeoy) Jo (S X § X §) AelIe [euoIsTaWIp 931Y) papunoq AfJedre)s e 9)edo[fe 03 dwn], pTSs
+'81 S01 '8 jusnodwoo 0] uBisse pue “yeoy jo (0T X OT) Aeire [euoISusunp OM] papunoq AJ[eress e 93ed0[e 03 dwt], €TSS
6Tt 9 S'S Jusuodwod 03 uBisse pue ‘Jeoyj jo (0Qs 9zs) Aesse [eUOISUSIp SO papunog Aqreoness e 31e0][e 0} Jun], ZT5S
XIPIRA | SEVdH | STEdH uonduosaq | oureN

SPUOJSOII UT SWIi],

Syrenryoug Suru], nonedoy A10WIW €1 FIAVL

AOYUT ADVIOLS

skemry

sfem[y

POsSNaI A193eIPaUNm SIWTIIWOS JO “IAU ‘semfe
st ooeds Jogioym SUTILISNI("UORIS[[OI € Ul PIJRIO[[EIP USY} pue
pajedore st 2df) 3{qo paurensuod e 03 2dK) SSFHDV Ue uoym Soeds powTe|d21 JO ISNAL JOJ FOOG)

urepo:

YOWYH AOVIOLS

sfemry

skem[y

PIsNa A[IBIPIWAIN SIWTIIWOS JO “IAIU ‘semfe
st 9oeds 19IogM SUIWII(] "UOLIIYI0I B U PIJRIO[[Edp usy) pue
paeoofre st 2d£y 199[qo paurensuoo e 03 2dK) SSFOOV Uk uagm 2deds pomrIR[oaI JO ISNAI 10§ JI3Y)

wrepor

skem[y

skem[y

skemrv

Pasnaz A[2)erpowm SOWTAWOS IO ‘IIAJT ‘skem[e
st 9oeds soqioqm ommiale(‘desy feqor3 ur pajedoffesp uoy) pue
patedopre st 3d4) 199[qo paurensuosun e 03 9d£) SSFDDV Ue uogm 3deds pawre[oas Jo ISN3I 0§ YPIYD)

wrepal

skemry

skem[y

skem[y

Ppasnal £[9)erpowitl SOWIIWOS JO ‘ISASU ‘SAem[e
st ooeds sogjogm swmra)a(q “deay [eqoy3 ur payesoqeap uay) pue
pajedofre st 2d£) 129[qo paurensuos e 0) 3dL) SSTOIOV Ue uaym soeds pamwre[as JO 95N J0J JI3Y)

wWrepal

JOUYH AOVIOLS

T'20te

1°0L9S

(@TTTOULNOD)ewSed saywadg *pajxa st O[] Uaym pasyy
Suraq wono9od 9joym uo SuIL[o1 ‘9)RI0[EIP JOU SO ‘UONIJ0 Ul S}93[Q0 PIYU 00T 1LY

LTSS

JOUId AOVIOLS

9TE9E

6'0929

$323[qo QT 93e00[[ESP O] ST ST GYTSS PUR GYTSS UIIMIIQ DUIIIIP W],
"PAIXI ST }O0]q uIgM P31y Fu1aq uond[od
ajoym uo Buik[a1 ‘9)ed0[[eIP JOU S0P ‘SYUI MOJJO] PUe UONII[0D UT $)93[qO payur (0T 2Ied0[V

991ss

AOW¥H AOVIOLS

TovTy

T'89SL

uonda[o2 ut pamojre Jurpped 2,001
woy} 91e20[[eap Apordxa 0) ureyd MOJ{0] pue uoNI2[j0d W §193{qo Jui| 00T IOV

S91ss

JOWAT AOVIOLS

11668

8'SS6L

uonoay[od ur pamofre Surpped %001 ‘wayl
93e00[Teap A[9RIpoWwUNl PUE WOIJ[[0d Ul §199[q0 Yuy 00T 2220V

9158

0°¢SOL

T8ELL

LLL8ET

uonesoeap ywo ued 19pdwod
Burziwmdo ue ‘ojesojeap Ajojerpowuur ‘deay woly SOLIIUS payuI| 00T ILIO[V

€918

L616L
XIpIoA

6'1£56
SEydH

9'02081

3JE20[[E3p U9y} ureyd Mofjoj ‘deay woy saLus payul Q0T 3¥EdO[Te O3 SwLL

STEdH

uonduosaqq

Z91Ss

SPUOISOIDNA U Jur],

syIeunjouag uonesoeaq/uonedoy AJomaW 3 TIGVL

IN\nl

0'SZ89 9°20€€ 0'coLY ‘s10)ourered [enioe pue [[ed UONOUNJ A PIIRIOSSE Yor)S 3Y) o aFeqred
aaea| Aewr voneluawsjdun 100d v "ffed uonouny pajsau e Fuunp pasrer sy
uondaoxa we uagm yor)s o) dn SuTuesp Y PajeIdOsse JwT) 9Y) S2INSeow 0) ST 593 Jo asodmg | doxaouny
0l oy Ly pastes jou st aondaoxs ay) Jey) 3daoxo ‘gzSss se sureg LTSSS
89 | 6PEST | STLET J1a[puey ySnoxy) o8 pue uondaoxa pautjop-19sn astes A[reuonpuoy) 8ZSSS
8'T1 79 9°¢ uondaoxs ojeSedoid ju sa0p Yomm smpadod wo &) $RESS
6¥Z 701 S0t ‘nondooxa o1 astes J0u $90p woqoad ST Y, [2A9] J9y31y 1Xou 9g) 03 pasres uondaoxs
9jeBedoad Ajduns [pue 15ppuey uondadxo ue ARy JOU S0P [9A3] ISAMO] Y.L, S[Ted 21npaooid om) oYe €8ESS
T 0TI 801 "paster LON $t vondaoxs aq) waiqoad siy1 uy
"uondaoxa 513 3stes J0u s20p wojqoid sty], [oas] 1948y Ixou ay) 03 i ojededoad pue
uondooxa ue astes (1) weo Yorgm 1ojpuey uondaoxo we sey [9AI] JSaMO] YL ‘S[[ed ampaooid om) oxey Z8€SS
0829 | vLocz | S18EE uondooxs oy soste1 Ajdums nq I5[puey € SAeY 10U S0P WO S[red It 21npdoid o
‘aorydaoxa oY) sastes yorgm 2mpaooad e uo syred yomm sopuey uondsoxa gum Joolg 18¢ss
0's0e8 | L'TIEE | STIIS 274 ut pojpuey
uay) pue zy 03 pajededoxd uay) pue 78 03 pajededoad st nodooxs
‘uor)daoxa PauTjap-19sn sastes 1ey) j 9:npad01d IOYIOUE S[red YoM 73 2inpadoad 19gIoue S[ed 7Y SINpI0Ig 08:Ss
O'S89TT | S'6¥ZS | TOLSL Ty Ut pajpueq pue pajededoad st gorgm
18 ur ureSe paster oty pue 13 0) pajededoad st wondadxs
‘uor1d30xa pourjop-19sn sastes Jey) J 2mnpad01d 19yjoue s[red YImm 3 ampaood 194joue S[ed [y 91apId0Ig 6LESS
0C 80 T Ppastel 10U parepap 1oyiau uondaoxs paurjop-19sn} €IESS
61 80 01 PAsTel Jou St Ji Judwaje]s Jo0[q € ur parepoap ysnl st uondaoxs pauryop-19sn) ZIESS
0996 | ST6ET | 88IIT JUSUIAIE)S YO0[q B Ul JI S[pueY usy} pue Ji 3steI ‘uoridadxd paulyop-19sn SILPIP 0) SWi], TIESS
0'6S9S | 8'68VT | 6LLOT _ JuamaIe)s
¥00[q ® ut nondsoxa 3y Suypuey pue (015z 4q apialp) Appydun JOYWT DIYHNNN 3STe! 0} ouny, 6958
0'9L8S | O6'SSLT | 8'€0SC JusmaIe)s }90[q © ur uondsoxa oy Suypuey pue ApLIduN YOUUA LNIVRLSNOD 95Tel 0] oun, 20958
oeros | zeewt | T JuawoE]s Y00[q € ur uondsoxa oy Jupuey pue ApLNdW YOAYT LNIVLISNOD 95Tel 0} dm |, £61ss |
XIp1oA | SEvdH | STEdH vonduosag sweN

SPUOIISOINA UT Sw [,

Buypuey vondaoxy ‘ST ATAVL

|le

68 cp 991 wopouny uodo” st Joj Swny, | Qfok
0°'T'9€0TLY 619 y'99 uonouny 39531 9y 10y U], 60!
$'86 (444 L uonouny Sy JO-pua 5y) $5300€ 0) JWL], 80!
0'9L60ET8 | 0'996SSHT | 0'CSESHSTL 901 U1 UINLIM SP1031 334q-Z1S 001 43 peal 03 ouy 333 asn ‘ofyy uado 0} suny, Lot
0°9L60£T98 6'6959¢S T'T0S96¢ SYueIq JO $31q 90f PUe ‘P[3LJ JUNOD 3)4q-9 T UTEIUOI SPI0AI AL,
S[1J 94} 9502 ‘SP10931 $IUQ-ZTS 00T 9m 03 Jnd asn ‘opy uado 03 sumy 901
0v20I86¥8C | ObL096T | OTHTYTLY 3[1J 950> PuE SPI021 19}0e1eY-(8 00QT 3L 01 auy] Ind osn ‘opyy uado o) o sot
0'800¥66L9 | 0'STHYIOGE | 0'ZSLI9SSE | ML 9SO pue ‘ZOI Ul US)UM SPI0IAI 1apeIeYd-)8 000T OF) Pes 0) our 193 asn ‘opyy uado o) sun, ¥o!
0'9L6EYTI89 | 0'TELYTOLY | 0'00T6ITSY 3]J 3SOP pUe ‘ZOI UL USJJLIM SIUT] I9J0RIeYd-08 0001 193 ‘opty uado 0y oum £o!
0'800L¥0S8C | TEOPITIT | STI8LINT 9[1j 3S0p pue ‘sauy] 1apereyd-08 00T Ind ‘opy uado 0) sum, o
SLE6SYS | €8BIETC | SZ0E86L o[y a1 & 3sop/uado oy oumy, | o
£1L L0V 6555 S[j pawres uo 10D 195 0p 03 omn] 0ot
XIpISA Sevdd STedH uondussaq | suren

SPUOJ9SOIIJA Ul Sun],

syrewyduag O LXAL ‘9T ATAV.L

|Qnt

9'LTE00T 0°S0€ LLLE uonouny HZIS 393 uO [red 10j Junj, 9101
Ll 85T 89T uonouny XHJANI) J0j Swi], stot
T'91865S | 8'L9THTT | S'8T8I0T HSOTI/NAdO 33 O LOTAId piot
£°50080¢ PS8 6'L0L | aum goes ¥00[q Sures oY) 0] AJLIM M STYL, “FLIYM B £q Pamojoj Uonounj X3puy 10§ ¢rot
0°62006Z SEP9 9LY9 paxmbaz are suoygesado O]
reo1sAqd ou os ¥00[q swes woyy peay "V & Aq PAMO[I0] uonduny Xapuy 19 1ot
v OIEPL Zs1 [74 uoIpuUN xopu1 jos Jojowny | 1ol
xpoA | sevdH | szedH wondosaq | suren

SPUOIISOIIA Ul Jur],

syrewryoudg Of LOTAIA LT T1IVL

X4 SIT 0'sT uonpuny jndur J9s soj swny | gzos
0v3678€S8 | 6ELESTE | TIMVETE 9[j 350> U ‘SpI0031 914q O 0T Pea: ‘apy uado oy sumy, | zzor
0'0v0928s8 | +'E€C608y | 6'880SSE 9[1J 9S0J> pue ‘spI0231 334q TS 00T 931 ‘opyj wado oy sumy, [yzor

€LY9S61 0'SIy #'9LE UOIDUNY 9Ny JO pus 10§ Suny, | (Zo!
0'89656967S | TBGIG0CT | O'LIBI60T | GIOI UI UO)JLIM O[1j SPRA1 SIY) ‘a[1] 9SO pue Sp10031 9)4q 8 OOOT Peas ‘ofij uado o3 osumy | gyot
0'9.6068€8C | 0°€866621 | 0'SESTSET 9[1J 950> pue SPI03I 934q (8 00T I ‘opij uado o3 awmy, | gyo
00zer9S | 009261 | SYELIST oy paweu uo FSOTO/NHJQ Op 01 awny, | Lfo1
XIPIOA SEvdH STEdH uonduossg | smeN

SPUOJISOIDIA UT SuIL],

syrewyouag Of TVLINANOFS 81 AT1aVL

l.ﬂcl

188V §'Sell V6LTT | uonduny SANODHS 10§ duim) JINSBIJN | €CHSS
9LT6 | ¢0cTl | vIEll gonouny YHYID 10§ SWm) JINSeIW | ZCHSS
XIPIdA | S€bdH | STEAH uondiwsaq | sweN

SPUOIISOINJA] Ul il],

wonpung D0 ‘61 ATAVL

INOI

8YR90ZT 0'6L9LTT syse} Surpuajuod oN “ysey Ayurond 1oySny uy Juawmaess O1°0 Aejeq | ideop
SY890ZT | 9'6L9LIT syse) Suipuajuod ‘yse) Aoud 1098w ux Juamaers oy g Aee | LAepop
¥'€810C T0v0T syse) Surpuajuod oN “Ysel Kyuond 1oq8ry ut Juswmalels 0100 Aejod | siherop
YE8I0T 7 I0V0T syse} Surpuajuod “yse) Lyuond 19yBig ur Juawaless 0OT00 Le[dx ofejap
0I0T S'¥800T syse) Suipuajuod ON ‘yse) Ajuorrd oq3ry ur Juamatess 0100'0 Aejoqd | zikejap
0'rPI0C S¥800C syse} Suzpusyuoo “yse) Kjroud Joydny wr Juowajels 001000 Aejod | gherep
S0910T £ 10007 SYse) Surpuojucd oN “fse) Kuowd s3yBmy w1 yJuowayess 01000°0 Aejod | T1Ae[op
S0910C €T10p0C syse) Surpusjuod “yse) Ayroud 12q3ny wy Juswarels 0010000 Aejed | pAerop
X84 8IS syse) Sutpuajuoa oN “Ysel Kjuourd 19y3y Ut Juamaless O10000'0 £ej2q | OrAe[op
6'1S 8IS syse) Surpusjuod “yse3 Kjzoud 1oy ut yuowarers 100000 Aefed | herop
S'Sh 81 syse) Surpusjuoo ON Ysel Auoud 1943 U1 Juswalels 100000°0 Aefod | 6Aelop
€Sy IS syse} Sumpuoyuod “ysel Huoud 1943 w Jusmale)s 1000000 Aefed | ZAeiop
S'Sp 178 syse) Smpuajuod ON “yse) L1zoud 1943 ur Juomageys o' Aejo | ghejop
6'Sy 18 syse) Surpuouod ‘ysey Ayourd 1o43ny wi Jusmagels g Aefoq | 1herop
L'SET TLIT Juowa)e)s Aejap aanedau 9)ndaxs 03 S, 65Pss
s|qenerun) | sjqererun 100°0 Ae[op S1n9x2 03 swn], 8GHSS
96 9L 00 AB[op 33123X3 0] duI], SGyss

SL810T T'€020T Buruunu st yse) Auoud
JIMO] € 9[IgM uni 0) 9[qI3Ifo sow003q Yorym ysel Ajurond 1oydny e £q yred Anuo ue Jo Surmny, | cpyse

78101 8'S8101 Buisnoazapuaa are syse) Auond
10MO] OM]) 3[TgM UnI 0] J[qIBHS SoW09q Y ysel Ajuoud 1948y e Aq e Anjud we jo Suruny, | ppysed
XIPIOA dH uvondimsoq SureN

SPUOIISOIIIA] Ul QWIL],

Juswalel§ Ae[a pue Sumpays 07 A1AVL

lﬁ@!

9 Lt 61 Ae1re uesj00q poyoed [ews WO JUOWAPS §O39) 0 Sy, | LpESs
Lz YA L1 Leire wesj00q poxdedun [fews WO JEOWI[D Y339J 03 dwn], | 9EESS
S'881 9Ip 6€ Aeire yes[00q [rews payded 0) payoedun woxy M2AWOd 0 swn | opess
L'ShT A 4 8T Aeire wesjooq [rews paydedun 0) payded woxy 12Au0d 0 own], | ceess
€6 611 S Aeire poyoed frews uo uonesado juowuBisse s | cpess
60z o'p 6 Ae1re poyoedun [ews uo uwonerado Juowudisse NS | pEess
901 It (44 Aeure poyded jews uo wonesado Juamole Aeise ojul 2103S pue WO Y9 | eSS
6 T YATA Aeire payoedun [fews uo uoye12do JuIwIo AeLIR OJUT 210)S pUB WOX Yo3o] | E€EESS
092 (4 8T1 Aeire uesjooq payded [ews uo wonesedo YO uuoyiad o) sump | epess
88 8'El 0Tt eire uesjooq psydedun jrews uo uonerado Yo mwuoprad o) omny, | zeess
oV y'e 10 asnep s3ues P sjesdar3Fe e sosn 1s9) ‘Aetre uesjooq payoed ffews uo uoneiado YO uuoyrad oy swny | ZpESs
VILT 181, 2 Yas 4 osnep oduer yymm 9)ed2183e e sosn 159) ‘Aesre uesjooq payoedun frews uo uoneiado O wopsd o) suny, | Teess
09 L L1l Ae.re uesjooq payoed [fews uo wonerado YO uuoyiod o) swny, | Tpess
788 €€ 6'€I Ae1re uesjooq poyoedun jrews uo uonerodo Yo wuoprad 0y smnny, | OgEss
09z €7 v Aeire wesjooq payoed [rews uo wonessdo NV wuoprad o ouny, | opess
I8 €€l €€l Aeire wesjooq paydedun [rews uo suonerado QN muoyrad oy suny, | 6zess
81 be TU Aeire wedjo0q payoed [rews uo suonerado NV pue ‘=/ wuoyrad o) owny | 6eess
1'L6 L€l TH1 Aeire uesjooq payoedun [rews uo suonerado NV pue ‘=/ mioyied o) uny, | gzEss
891 L€ 011 Leire wesjooq poyoed Jrews uo suonessdo NV pue ‘= unojad 0} swny, | QEESS
oLL fiyAl STt Aeire uesjooq paydedun [rews uo suonerodo NV pue ‘= mioprad 01 swny, | £zess
80T 9P 0¥l Aesre uesjooq payoed fjews no suonesado JON pue NV ‘= uuojiad 0y suny | £€65S
SEET ST ¥'ST Ae1re wesjooq payoedun [rews wo suonerado LON pue NV ‘= miopad o) swny, | ozgss
61) 9'g JjqeLrea p10da1 payoed e 0} p103s jey) SuruSisse usy) pue p10oas poyded e jo syuouodwod o) udisse oy suny, | 19SS
SLI 0L TL | dlqewrea p10dds paxpeduan e 0] p10das jeq) SurBisse uay) pue 0231 paydedun € jo sjuauodurod o) uBdisse oy sumy | Q9SS
el LL €01 9[qerreA p10331 payoedun e 03 p10931 jey) SuruSisse uay) pue p1033s payded € Jo sjusuodwod o) udisse 0y Sy, | ECISS
€91 98 78 9[qeLIeA p10931 payded e 0) p10das Jey) SuruBisse uay) pue p109a1 payoedun e Jo sjusuodwod 03 udisse 0) swny | gSISS
L Ly € P10231 payded o) Juowudisse pjotg | LSTSS
7€l L'y P p10231 poyoedun 03 JusmuBisse pjoLy | 9GTSs
xpidA | sevdH | STedH uwondudsag | owren

SPUOIISOIIIA U SW],

MOVd ewdesd ‘17 A1AVL

louyg 6'92C 911 | € 9z1s 1q yuonoduroos Aeire payoed e 0} Jusuodwoo Aere payoedun e Sunesofre 10 omn | Sc9ss
L9 | LLgg 1'80S 91 9z1s 1q ‘sassaooe Juiuuedsuou pue Suruueds yioq Joj sunL | 6L9sS
L9 | " seos | 0108 ST 921s 11q ‘59552008 Supuuedsuou pue Suruueds §1oq 10§ SWIL | HL9SS
L'L19 £60S SLIS 1T 9218 J1q ‘52559008 Sumuuedsuou pue Sutuweds gioq Joj ownl, | 699ss
Jouyg 8TIS s L 9IS 11q ‘sassa0oe Suruuedsuou pue Juruueds yioq Joy oumy, | $99ss
Jouyg 0°s0S I8y § 9218)1q ‘sassadoe Surnuedsuou pue Juruueds yioq oy ownny, | 669sS
L188 | - se0s | Lesy € 9215 11q ‘sassaooe uuuedsuou pue Juyrueds yjoq 10§ smwrL | $59ss
61 L8 6€T | 9T 9215 N1q ‘Arepunoq jrun a3e103s e Suruueds jou Jusuodmod payoed e Surssaooe 10§ ouny, | /9SS
641 el LT | ST 9z1s nq ‘Arepunoq jrun 98e103s e Sutuneds jou jusuodmod payoed e Suissaooe J0) oumy, | €/9ss
6¥l 8€l S€T | 11 9z1s nq ‘Arepunoq jrun 25es0)s e Suruueds jou Jjusuodumod payoed e Smssadoe 10§ ownl | 899ss
oug SET S€T L 9215 11q ‘Arepunoq jrun 23eio3s ¢ Suraueds jou jusuodwod payoed e Jurssoooe 10§ ounl | £99ss
JOLID 6€T (1341 § oz1s 31q ‘Arepunoq jrun 93e103s e Sutumeds jou Jjuouodwod payoed e Surssadde soy swny | ggoss
| 4 '€l S'€T € 9z1s 31q ‘Arepunoq jum 93e10)s e Suruueds jou Jusnodwod payoed e Jurssoooe J0j oumy, | €69ss
€T g8 S'El 91 9z1s 31q ‘Arepunoq jiun 28e10)s € Smuweds jusuodmod payoed e Suissacoe J0j owm], | £/95S
$'ST L'€T 6'€t ST 9z1s 31q ‘Arepunoq jiun 98e103s & Suruueds jusunodwmoo poyoed e Fmissoooe Joj ouml | 7LOSS
ST €L %4 11 9218 31q ‘Arepunoq jrun a5e10)s © Suroueds jaouodwos poyoed e Suissadoe 10§ sumy, | ,99ss
lonug S€l S'€l L 371s 31q ‘Axepunoq jun 23e10)s € Sunuueds jusuodwod poyoed e Juissoooe Joj oumy, | zgoss
10119 6'€l V€T ¢ 9z1s 31q ‘Arepunoq jrun 25e103s e Sutuueds juouodwmod payoed e Smssacoe Joj own], | LGOS
1% €I b1 € 9z1s 31q ‘Arepunoq jrun 98e103s € Suruueds Jusuodwod paxyoed e Smssaooe J0j ouny | zg9ss
€0t €T 81 Keire ueajooq 28re payoed o) poyoedun wosj JudswnSsse Juomofg | €SESS
69 1¢ 0z Keare ueajooq a81e[payoedun o) payoed woiy Jpowudissy Juowa[g | (SESS
0%0€ | STI9T | L9 Aeire ueojooq poyoed 23] uo suonerado NV pue YO “VOX ‘LON wuoyrad o ouny, | zgess
6'9€ET 0995 0'89S | Aeire mesjooq payoedun 93ref uo suonerado GNV pue YO “YOX ‘LON miopod 0y sum] | 6pgss
8'88 90L 9161 Ke11e ueojooq payoed a8ie] uo suonerado JON pue NV ‘= uojsad o) ouny, | [SESS
€129 1161 G161 Keire ueojooq poyoedun odrey uo suonesado LON pue NV ‘= uopad o) own], | gpess
Xp1oA | SEvdH | STedH — uondudsaq | owen

SPUOOISOIIIN Ul SWil],

(panmmuo)) YOV ewdeiq ‘7z A'1GVL

lh@l

€9t |24 80T Jojezado YO pue suq Jo
Aeire Sumisn ‘onx) 0) fesre uesjooq payoded Jo Juswapd Afresturensp 19§ “Buxopur Smsn wonemndmuew 31q 10) ouny, | goLsS

08 1 %4 1AL 1duosqns resagy
£q paiaspas ‘ony 0) Aesre wesjooq payoed Jo JuowI|e Affesiwreusip 39§ “Juxopur Sursn uonemdioew 3q Joy owny, | £9/ss
Lz Lt +'0 | 1duosqus reiay £q paroagas ‘aun 03 Lesre wesjooq payoed Jo UMY 39§ ‘Suxopm Sursn wonemdrwew 31q Joj sy, | 99/5S

(14 ¥ T ajqeLres € jsurede O ue
Susn £q FN YL 03 Aeare weajooq payoed Jo Jusuodwod e)08 *9jedasS3e Aerre Smsn vonemdruew J1q Joy ouny, | 9SS
9GE9S | S'9TT | TUST Buxopul Aesre Juisn uonemdruew 31q Aeare payped Joj suny, | x989ss
6ITIL | votz | SsLoe s107esado [ea13or apwm Aere Fuisn uonemdmew Jiq eire paxoed Joj ownty, | A9ggss
vy S0 01 an[ea)t JO LON 3Y) 01 p10331 ueajooq paxoed e jo pjayy paynsnf 3y3u 03 xou oy) uBisse 0) swy, | GRYSS
6t S0 60 JnJeA S)1 JO LON Y3 0} 10331 ueajooq payoed e jo pjayy paymsnf 1q3u 0) ou oy) uBisse 0} amny, | $g9ss
L4 4 01 60 anyea sji J0 .LON 343 0} p10931 wesjooq payoed e jo pay payusni 153] 03 3xou oy uBjsse 0 ouny, | €8YSS
1% $0 01 InfeA S}t JO LON 94} 0} Pi0d31 uesjooq payded e jo piaiy payyusni 3jof o) uBisse 0) ouny, | Z8YSS
801 vL ca 91 azis)iq ‘yusuodwmod feire payoed e o) JuswuBisse ojduns 10§ owny | 189S
Lot 001 raAxt ST 9z1s 11q yusuodwos Leise payoed e 0) JusuruFisse ojduns 10§ owny, | 9L9ss
801 701 U 1T 9zis Nq Jusnodwmoo Leire payoed e 03 JuowuGisse ojdwnrs 10§ owny | 1955
ouyg 001 YAl L 2215 31q “‘Juouodwmoo Leire payoed e 0) Jusurudrsse ojduns 10j owny | 999ss
ouyg 001 XAl § 9z1s 31q yuouodwmoo Leire payoed e o} Juowmudisse ojdums 103 suny | 199ss
oug 001 za € 2z1s 31q uauodwoo feire payoed e 0) JuswuBisse ojdwns 10j oumy | 969ss
6'10€ 00z L'8I1 91 3zis 31q yusuoduiod Kerre payoed e 0] Jusuodwod feire payoedun e Juneooyye Joy suny | (8YSS
6'10€ S61T L'SIT ST 9z1s 11q “yuouodwod Aeire poyoed e 0} Juauodmod Aeire poyoedun e Sunesoqe Joj smwny, | 6.9ss
$'10€ LT 611 1T 9z1s 31q quauodwmoo feire payoed e 0) Jusuodwoo feire payoedun e Suneoofe J0j owny | (L9sS
ong 8L L9 L 9z1s 31q ‘Jusnodwod Leire payded e 0) Jusuodwos Aerre payoedun e Suneoofe J0j owm] | §99ss
loug | €122 811 ¢ 3z1s 11q ‘yusuodwod Lesre poyoed e 03 Jusnodwod Aere payoedun e Junedoe J0j ouny | (99ss
xip1A | SEpdH | STEH uondudsaq | owreN

SPUOJISOIDTJ UI JuIL],

(panunuo)) JOVJ ewderd ‘€7 FIGVL

louyg 0'81Z Joug | ¢ 9zs 1iq yusuoduwod Leire payoed e 0) jusuodwod Aesre paysedun e Suneooqe 105 ouny | ¢6oss
ong | gL loug | ¢ 9zis 31q Gusuodwmod Aerre payoed e 03 jusuodwod Lerre payoedun e Sunesopre oy ownl, | (069SS
Jouyg LEPE Iouyg 91 9z1s J1q ‘sassadoe Suruuedsuou pue Sutuueds qioq Joj ouny | LSS
oug 9IS Jouyg ST 9z18 11q ‘sassaooe Smuuedsuoun pue Suruueds gioq Jof owny, | 60LSS
oug V€IS oug 1T 921S)1q ‘5955209 Suruuedsuou pue Surmueds qloq Joj owny | LSS
Jonrg Las Joug L 9218 11q ‘sassadoe Suruuedsuou pue wﬂmqa% q0q 10§ SWL, | 66958
0L 9'IIS Jonug G 9IS J1q ‘sassaooe Suruuedsuou pue Suruueds yioq 10 sumy | pegss
Jouy L'0IS Jonuyg € 9zIs)iq ‘sassaooe Suruuedsuou pue Suruueds yoq sof oy | 6895s
ougy 06 1013 | 91 9218)1q ‘Arepunoq jrn 33e10)s € Suruueds jou Jusuodmoo payoed e urssoooe 10j SWNY, | CILSS
oug ra gt loug | S19zs nq ‘Arepunoq jun 98e10)s e Suruweds jou Juouodwods payded e Surssoooe Joj owny | goLSS
Joug L'ET Jouy | 11 9z1s 1q ‘Arepunoq jrun 98e10)s e Sutaueds jou Jusuodwmoo paxoed e Jurssadoe 10§ sumy | €0LSS
oug R4 loug | L 9zms 3q ‘Arepunoq jran 98e10)s e Suruueds jou Jusuodwod payded e Juissaooe 1oy oumy, | 869sS
onyg 182 loug | ¢ 9zis nq ‘Arepunoq jun 98e103s e Suruneds jou Jusuodwoo payoed e Suissoooe 10y omny, | ge9ss
oug €T Joug | ¢ 9zs 3q ‘Arepunoq jun 93e103s e Suruueds jou Jusuodwod payoed e Surssacoe Joj owmy | 89S
Joug 06 loug 91 9z1s 31q ‘Arepunoq jrun 98e103s e Sumueds Juouodwmoos payoed e Juissaooe 10) suny | ZILSS
1051g €L oug ST 3z1s 11q ‘Arepunoq jrum 93e103s ¢ Sutuueds Juonodwos payoed e Juissaooe 10) suny, | L0LSS
ionug L€t long 11 9zis 1q ‘Arepunoq jrun 23e103s € Suruueds Jusuodwod payoed e Suissoooe Joj ouny, | ZOLSS
oug g€l Joug L ?z1s 11q ‘Arepunoq yrun o5e103s e Suruueds jusuodmod poyoed e Suissadoe o5 ouny, | L695s
oug €l oug § 9z1s 31q ‘Arepunoq Jiun 33e103s e Sutuueds jusuodwod paxyoed e Surssaooe 05 oumy, | 79SS
Jouyg €l 1oug € 9z1s J1q ‘Arepunoq yun 38e103s € Juruweds jusuodwoo payoed e Burssoooe J03 ouny | (ggss
xXp1oA | SEvAH | STEAH uonduosag | swren

SPUOJISOIIIN Ut JumLy,

syreuwrgouag asne]) uonejuasaiday FZIS v A19V.L

IN-OI

louyg 9L ouyg 91 9215 11q ‘Yusuodwod Aeire payded e 03 Juowudisse ojduns Joj ouny, | 9y/ss
ouyg o1 Jouyg ST 3z1s 11q yuonodwmoo Kerre payoed e o) JuouruBisse ojduns J0j ouny, | TILSS
ouyg L01 oug 11 9218 31q ‘yuouodwoo Aeire payoed e 0) JusuruBisse ojduns Joy owny, | 9QLSS
Jouyg 01 oug L 9z1s 31q suodwoo feire poyoed e 03 JuommBisse oiduwns 10j owny | 1oLSS
Iouyg Lot ouyg ¢ 9718 11q Juauodwmod Aesre poyoed e o) juowudisse ojduns 10y ouny, | 969ss
oug [9i) 1 Iouyg € 9z18 11q ‘Jusuodwoo Aesre payoed e 0) Juowudisse ojdwns Joj oumy | 169sS
louy ot Jouq | 91 9218 11q yuonodwmod Lerre payoed e 0) Juonodwod feire payoedun e Sunesofe 10j owny, | SELSS
Jouyg 0'€T Joug | 61 9z1s }q yuouodwod Lere payoed e o) Jusuodmoo Leire poyoedun e Suneosoe J0j ouny, | QLSS
o7 o loug | 11 9218 31q quonodwmod Aesre payoed e 0) usuodwoo ferre payoedun e Sunesofe 10y suny, | SoLss
loug 0'61T loug | L7519 “uouodwmoo Leire pagoed e 0} Jusuodwoos fesre poyoedun e wquuooﬁ ojouny | QOLSS
XIpIA | SEvdH | STEdH uondinsaq | sureN

SPUOIISOIIN UT SWI],

(ponutjuoD) syrewrgouag ssnef) woneiussaiday FZIS ‘ST AIAVL

¥4 91 soug | Arepunoq jrun 23e10)s U0 LON SP[eY 10} Y29 pue asnep uonejuasaida pi0das Smsn piodas 801w fjads | czzss
87 A ! Jonug Arepunoq jrun”98e10)s uo Sp[a1J 10j Yooy pue asnep uoneIwasaidos p10oa1 Jursn piosai 1e8o1m Aads | pzLss
L9 91 ouyg anfea s)t Jo LON 943 0) p10231 wedjooq payoed e Jo piatj payusni 3g8u 03 1xou oy uBrsse oy aumy, | QzLsS
89 ST Joug onfea s3t JO LON 993 01 p10931 weajooq paxded e jo pjayy paynsnl 143u 03 3xou o) udrsse o) awny, | 6ILSS
9 91 Jouy anfeA sj Jo LON 343 03 pa0331 ueajooq payoed e jo pjaty payusnl yaj 01 1xau o) ulisse o) owny, | gILSS
b 91 J0H anfea st Jo LON 391 0} p1003s weajooq payed e jo pyoty payusnf 139) oy uisse oy duny | £y/ss
XIp1oA | SEvdH | STedH — uondwsoq | owen

SPUODISOIDIP Ul Jum],

syrewyousg Isne[) uoneussaiday pro2oy ‘97 wIAVL

lmwl

L)
, .

(3]

60 60 60 od4) yjse) € 10§ FIAL AOVIOLS 121 | OpLss
L0 80 60 2d4) ssa0oe © 10] FAL AOVIOLS 159L | 6ELSS
80 90 90 uno—._omaoo v.uooou e .no.u ouﬂn—mbau Eﬁlﬁmﬁ amo.m. 8ELSS
60 071 90 unoaomﬁoo piodare .-o.« nque .HHMI.HWE 1891, LELSS
81 81 81 auonomaou vuooo.— e uo.“ anquye NOLLISOd 1521, ot SS
6T 81 81 12[qo orureudp e jo anquue FZIS ISOL | SELSS
6T 1T 1T 109(qo a3eyoed e Jo s)nque FZIS 159L | vELSS
L1 S1 971 13(qo orweudp e jo sinquue sSAIPpY | zeLss
81 L1 LT 13[qo a3eyoed e Jo nqute sSAIPPY | TELSS
61 11 01 o-uﬁno.unzu 14 uo 2—.5.—.—3« wmo.mmm< QELSS
XIP19A | SEvdH | STEdH uondioseq | sureN

SPUOIISOIIN Ul S,

samquNy °LZ A14VL

|°N\|

o] Ld 601 10jexado Kesre uesjooq NV ‘Aeise ues[oog pue INJ U29M]aq UOISISAUOD POYoSydur) | 9ogss
881 L8 661 Joyesado uesjooq paxoed se INJ uo NV PUe JO

P3PeO[19A0 35N ‘ARLre Ues[00g pue | NI U9m]I3q UOISIATOD payoaqaur) | zosss

6 8 +'6 Ue3]00q Jo Aeire paxped pue Jul uIIMIOQ SUOISIIATOCD PIYIIYIUN J0] WL, | TOSSS

9’8 6€ 801 | sAewre uesjooq payoed uo i0jerado NV ‘Aesre uesjooq payoed woiy Jut 0] UOISISAUOD JOJ WL, | (QSSS
louyg 6S 2 93ue rexay £q woard

Spunoq [im 1eal jo AviJe 0) 9df3 wonerowmud e G USAIS SPUNOQ PIM [831 JO Aesre UR WIAUCY | 667SS

XIPIOA | SEvdH | STEdH uonduosaq | suwreN

SPUOJOSOII Ui dum |,

TOISIAUCD) PayIaydu() ‘g7 AIIVL

l.HN.I

“Io[puey 3Y) £q pazIu8ooa1 are sonuond JYIAYM SUTILIAAP [3593
sty I, “idnusim Sunnooaxa o) weq) Kyuoud 19y e seq yse) 1dnuiajut puodas 93 1d30x3 £ uf 03
Tepuns s18 Juf “1o[puey Jdnusojur ue Suunp sin300 jdnusiur e usgm swm asuodsas) 5159 6 0]

6w

“J9[puey 34} Aq pazrugoaar are sanuond JSYIIYM JUTHIIINAP [IM 1SN
s, “ydnuoym Sumnooxs oy weqy Kyuroud 10431 e seq yse) idnuiour puooss oy 3d30xa £ 1y 0)
Teqruns st g Juj “ajpuey)dnuojur we Suump smdd0 ydnirayur we woym ot Isuodsal oY) S)s9) § JU]

8 ju

19730 Yoes jdwoaid jou pue sures o) pajean) 3q o3 sydnuioju [re 10§ s[qisstarzad

st)] sanuoud saey jsnw syse} dnaogur Jer SmAgoods ur resp jJ0u ST WY 24, “Io[pueq

anbuﬁ: e SpLLISAO [T Jdnuiojut ue 19qIoYM YooY OS[e [[im 1S9] ST} .b:o:m oures oq) aAeq

syse) ydnusym o) Sy “39puey idnusim ue Suump sm0 dnurayur ue woym oury ssuodsax oY) s189) £ U]

Lm

*SNOAZIPUAL 9 opism suondaoxs Suistes jo edun souenniojrad
a1} 10§ $159) waqoad STy, “[red Anjus 1dnLIo)uI 243 JO SNOAZIPUII Y} UIYIM Pasted st uondaoxyg

$ m

"PAINOAXS 9q jou pmoys pue ‘dooj Buram ynu o) Suraiojaad
ysel o) jeq) Kjzorrd 19mof e oAy SYse) 9597], "SI [[e Je QIO SYSe) S[qEUUNI [EI2AS I8 IS],

b

"ananb jrem € uo syse) [erdaas Sumaey £q
paseoriduos st ydnuasyut oyduns e jo Surmny, “ydnwrajur ue Smssaooid 191y wONNIXD
Sumnrejsor [pojerosse speayIdsa0 Furnpayds 159) 0) ananb Aejop e w1 pooejd are syse) [B19A3S 4593 STY) U]

¢

"PaMmpayds 9q M ‘parmddo jdnuoyur o) uogm Suruuny
auo a1 j0u yse) Auoud Jaydiy of) ‘paowasss waeq seq jdnurayur oY) JOYY “PaiM0 Jdniidjur o woyM
Suruuns sem gorgm yse} oY) wey) Ajuronxd 1oyBiyg € i yse) sojqeus dnusjm vy Surgoyms ysel,

¢

"{Se) UTew oY) WOy pajenut st yse) dnusojur aq,

“1o[puey oY) 4q 19s st yorgm Seyy e 159) pue ydnuoym ssrey “ydnusym opdurs swny,

uonduosaq

1
sareN

Sunpuey 1dnu1ou] 67 ATAV.L

S8 Iy g'c | uonesado WY 19393ur UO YIIY> MO[JIA0 pue ¥34> uoisialp Suissoxddns Jo agg | Lppss
091 9y ¢p | uonerado QO 19891ut U0 YI3YD MO[JIA0 pue YOoyd uorsrp Surssasddns Jo agg | 9ppss
[y LS L€ UOISIAIP 1939)U1 UO YIIYD MO[JI3A0 pue }I3yd> uorstIp Surssaxddns Jo pagyg | cppss
TLl (X 74 0'€z uoisiIp juiod Suneo] uo }994I MO[}19A0 pue YI9yd_uoisiAIp Surssasddns jo 13pF | phbss
XipIoA | SebdH | STEdH uonduosag | owreN

SPUOJ3SOIINA Ul Su],

sewdeld ‘0€ AIAVL

68 87 184 I3)ourered p10931 POUTENISUOD GIA [[2d 2INPI20LJ | CT9SS
L6 £¢ 99 9d£) Ae1re pouresISUOdUN YA [[ed o1npad01d | HIgss
06 €€ 6'€ 13jouresed p10331 pauTEISTOIUN YIA [[Bd 9Mp3d0id | €[9S
Ly 1€ 0T Io)owered [ewio} ouousd € st gomgm ampasoxd e [e) | g/pss
68 P €S Aeire pozis AfjedrurenAp € Jo yuowa[d we si jey) I9jowered Je[eos © UM e 2INpad0lg | (Ogpss
8L 6'S rAY Aeire pozs Afjedsureusp e Jo Juowmo|o ue sy Jey} 19jomered JE[EIS © (M [JBd MPad0L] | GIpSS
L9 jd1! 81 s19)ourered [eax opow uy pue JNO SUO YA [[Bd IMPINOIJ | QYTSS
L9 08¢ 9 Jeqeds yuiod Bunjeopj wo ainpadoxd sususd suruy | Q¢TSS
68 01 1T€ s3uLns uo ampadoid ououad ompuy | gISS
911 8T Loz [led wondunj I9Yjoue SUrRIuod J9jouresed [enjoe I0UM fed wonduny (B0 | ¢SS
6L L'Le 98 s19jouresed [ea om) qUA uonoUTY INTINI [P0 | ZH1ss
L&} 1 44! LTl s19jourered [ea1 OM) (A [Ted monduUny (830 | IHISs
9L €8 VS | fmu st £poq ‘pum Areiqy ewiagxs ur pareppap ‘sioeurered yuiod Suneoyy 10O NI 9953 i aanpadoad ojduns | 6ess
68 89 €< [Inu st Apoq ‘Jrun Areiq [euIaixo uy paIepap ‘siojowrered Juiod Sueoy NG NI 0M) qim ompasosd ojdung 8ESS
LS L'E 9€ [st Apoq “yun Areiqj [euI9)xs uy paIe[osp ‘siajourered jutod Suneopy LNO NI 2UO i ampadoxd oidung LESS
6'L 1z A4 [Inu 51 4poq ‘axnpodoid adods Are1qn o) rea ‘s1sjowrered ou @ ampodosd siduns e Joj ouny | ofss
xipA | sevdH | STedH ~ vonduosaq | owrey |

SPUOISSOII UI S],

1591, peayraaQ wesSoxdqns 1€ WIGVL

IQN-|

L6 (43! | ¥4 93eyoed ojeredas ur wonouny Sulul 03 &) | £EYSS
8T 801 41 . uc{luny auful JON Ououad [820] 03 8D | 979ss
81 Ly L0t uonouny sujful ‘9uauad [e20[03 [B) | $Tgss

6L (44! Il uonduny Supul O1SuaF 0 [re) | HT9ss

08 '€t €T paurui £[feonjewolne 9q JySiw ‘uonouny surpui-uou OIEIZ 01D | €95S
LT 0'91 (4)! uony -1y Jurul OL2u33 0) 8D | 77yss

6'8 61 £91 uonouny SUIUI-UoU O1UAF 03 [le) | TZ9sS

96 St oy payroads uorssoaddns ‘a9jomrered piodar pauressuod gim [ed ampadold | grgss
001 89 L paywads uorssaxddns ‘odA) Aesre pourerisuooun gim [red ampadoid | L195S

6L 6€ €y | paywads uoissaiddns ‘13jourered pi02as pIUTRIISUOOUR I [[B0 3.Mp3dosd | 919ss

XIpIdA | SEvdH | STEdH uondudsaq | sweN

SPUOIISOIIIA] UT WL,

(panunuo)) sisa], peaqiaaQ wesdordqns ‘7€ TIGVL

IWN‘!

L'6668 0'6v¥S1 1°Z5SST 1owered refess yim 19pnq papunog | Lyysed
| 0'LO00ZIE | 00°LSEEEES | 00'6000vT9 | (0T q38ud) jo Surns) sopourered refeasuou yjim 19gnq papunog | czysel
XIpI9A S€vdH STe¢dH uonduosag | oureyN

SPUOYSOIOTA a1 SWIL],

swSipered own-fesy €€ TIAV.L

|©N\|

*

6'8L9 | 05156 8'T1L8 Apns uonesrdde wopenung | oyenuus
6068C | Ov6ZE | 8TOLY 1931y ueurpey ‘Apnis woneonddy uewpey
€196 1°069 lonyg | Apnis Aypqisesj uonesrjdde arejrem o1mono9|gy M9
8L9ST | 6L¥O1 | O€8LY 9jdurexa Apnys wogyeordde somony | nre
[xip1op | sevdH | SzedH ~ uopdwsau | owreN |

SPUOIISOIIIPA] U JWL],

syrewguag ansodwo) pE FTAVL

-78 -

Appendix B: ACEC Benchmarks From a Real-time Perspective

The ACEC benchmarking suite was primarily developed for evaluating the runtime
performance of Ada compilers. Since the suite is comparatively new, not many
organizations have run the ACEC with the intent of evaluating compilers. Being one
of the first organizations outside of the Air Force that evaluated and ran the ACEC on
different compiler implementations, a number of problems about the ACEC have
surfaced. These problems are discussed below.

1

INCLUDE Preprocessor: The ACEC timing code loop consists of four (4) code
files which are incorporated into the source by a preprocessor (INCLUDE)
which supports text inclusion. INCLUDE is written as an Ada program and has
to be modified on systems which do not support the concept of file suffixes as
well as Ada compilers which require Ada programs to have a suffix ".a" instead
of ".ada".

However, the biggest problem with INCLUDE is that for cross-compilers the
INCLUDE command runs on the target and for bare machine implementations
of Ada that may not support a file system, the INCLUDE preprocessor will not
work. However, if the target does support a file system, it takes a very long time
for a single ACEC test to run through the INCLUDE preprocessor (on the
Verdix cross compiler, it took nearly 30 minutes to run a file through the
INCLUDE preprocessor).

Large Number of Tests: The ACEC suite consists of over 1000 tests and many
(725%) of these tests do not provide any useful information about compiler
evaluation. Also, to compile and run the whole suite can take somewhere from 3
to 5 days. Once the tests have been run, it is extremely difficult for an
organization to select the relevant tests (from a real-time perspective) and then
interpret the results in order to do a thorough compiler evaluation. Substantial
effort may be required on the part of an organization to run the ACEC and
interpret the results to perform compiler evaluation. An organization may not
have the time and resources to run the ACEC and then interpret the resuits for
compiler evaluation.

MEDIAN Analysis Tool: The primary focus of the ACEC is on comparing
performance data between different compilation systems rather than on studying
the results of one particular system. The MEDIAN analysis tool isolates
problems where a system does unusually well or poorly. The problem with this
kind of analysis is that if for example two compilers are tested and both
compilers have nearly similar rendezvous timings, the timings may not meet the
real-time requirements. The MEDIAN analysis tool will not isolate this
problem, and an organization will have to analyze the individual test cases to
gain more information. If an organization just depends on the output of
MEDIAN, it is quite possible that problems with the runtime performance of

4.

-79.

real-time Ada features may not be detected. Also, the summary statistics attach
equal weight to all the problems and although one compiler may have a better
summary data, it does not imply that it is better than the other compiler in areas
that are of particular interest for an application. Also, it is a tremendous
amount of effort to analyze the statistical numbers produced for all the
problems (> 1000).

Ada Application Code: The ACEC contains code from some applications that
were developed in organizations using Ada. This code is not very useful and
does not provide any relevant information for compiler evaluation for real-time
systems. The code of these composite benchmarks is not designed using good
software engineering practices and it appears that Fortran code may have just
been converted to Ada. Also, there is no information to interpret the results
produced by these benchmarks and it is extremely difficult to go through the
code and figure out what the results of the benchmarks mean.

Interpretation of Results: In many instances, it is not clear as to why a certain test
has been provided and what is the purpose of running that test. Also, in many
cases, the benchmark code has to be read in order to interpret the results of the
output. More information needs to be provided in order to help interpret the
results produced by running the benchmarks.

Large Number of Iterations: The ACEC tests dynamically compute the number
of iterations necessary to obtain measurement within a specified accuracy. For
many tasking tests, it is quite possible that the number of iterations is rather
large, so that the benchmark could run out of memory while executing the
required number of iterations (due to memory being allocated as more tasks are
activated). This was experienced in the case of the Verdix Ada compiler
targeted to the Motorola 68020 bare machine with 2 megabytes of RAM.

