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Evaluation of the ACEC

Benchmark Suite for Real-time Applications

Abstract: This technical report has been developed by the Center for Software
Engineering, US Army CECOM to evaluate the Ada Compiler Evaluation Capability
(ACEC) Version 1.0 benchmark suite for measuring the performance of Ada
compilers meant for programming real-time systems. The ACEC benchmarks have
been analyzed extensively with respect to their measuring of Ada real-time features
such as tasking, memory management, input/output, scheduling and delay statement,
Chapter 13 features, pragmas, interrupt handling, subprogram overhead, numeric
computations etc. For each of the features that have been analyzed, additional
benchmarks have been proposed. Finally, the ACEC benchmarks that measure Ada
features important for programming real-time systems have been run on two Ada
compilers, namely the HP Ada compiler self-hosted on HP 900/350 and the Verdix
Ada compiler hosted on the Sun 3/60 and targeted to a Motorola 68020 bare machine
and their results listed.
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1. Introduction

This technical report has been developed by the Center for Software Engineering, US
Army CECOM to evaluate the Ada Compiler Evaluation Capability (ACEC)
benchmark suite (developed by Boeing Aerospace under contract to the US Air Force
{1}, [2]) for measuring the performance of Ada compilers meant for programming
real-time systems. In this report, the ACEC benchmarks have been analyzed for their
coverage and suitability in measuring ihe runtime performance of Ada features that
are important for real-time applications. The emphasis of the ACEC benchmarks is
on measuring the runtime performance of Ada compilers, although compilation issues
have also been addressed.

The principal goal of Ada is to provide a language supporting modern software
engineering principles in the design and development of real-time systems. To design
and implement real-time systems, it is essential that the performance as well as
implementation characteristics of an Ada compiler system meet the requirements of a
real-time application. Many current Ada implementations do not allow the
development of reliable embedded systems software without sacrificing productivity
and quality. One of the reasons for the above is that real-time programmers have no
control on the design and implementation of the Ada Runtime System (RTS) except
that the RTS satisfy the requirements listed in the Ada Language Reference Manual
(LRM). Due to the effect on program efficiency and reliability of the various runtime
implementation options, simply adopting a compiler that implements the language as
defined in the LRM is insufficient for real-time systems. Benchmarks are needed to
determine the performance as well as implementation strategies of various Ada
language and runtime features in order to assess a compiler’s suitability for
programming real-time systems.

1.1 Objective

The CECOM Center for Software Engineering, US Army, Fort Monmouth has been
involved with developing benchmarks for Ada language and runtime system features
considered important for programming real-time applications. The first step in this
effort involved the identification of Ada features of interest for real-time systems. The
real-time systems analyzed were the COMINT/ELINT (Communication/Electronic
Intelligence) class of IEW (Intelligence/Electronic Warfare) systems supported by the
US Army. A side result of this effort was the description of a composite benchmark
for COMINT/ELINT class of IEW systems [3].

The next step involved the development of real-time benchmarks that measure the
Ada features identified in the previous effort. Benchmarks were developed that a)
measure the performance of Ada individual features, b) determine Ada runtime
system implementation dependencies, and c¢) test algorithms used in programming
real-time systems [4].




As part of this ongoing effort, existing benchmark suites were ' also analyzed to
determine their suitability for evaluating Ada compiler systems for real-time
applications. The benchmark suites that were analyzed included

o PIWG Benchmarks: developed by the ACM Performance Issues Working Group
{51

o University of Michigan Benchmarks: developed at the University of Michigan [6].

o Ada Compiler Evaluation Capability: developed by Boeing Aerospace for the US
Air Force [1], [2].

This report presents the results of the analysis of ACEC benchmarks for measuring
the runtime performance of Ada features important for programming real-time
applications. The benchmarks have been analyzed with respect to:

« support for Ada features important for programming real-time applications

« interpretation of the results produced by running the benchmarks

« and portability of the ACEC benchmarks.
The results of running a few selected ACEC benchmarks (that measure real-time Ada
featurss) on two Ada compilers, namely the HP Ada Ada compiler which is self-
hosted on a HP 9000/350 computer running HP-UX and a Verdix cross-compiler

hosted on a Sun 3/60 and targeted to a Motorola 68020 bare machine are also
presented.

1.2 Report Layout

This report is divided in the following sections:

Section 2 presents a brief description of the ACEC benchmarks.

Section 3 describes the typical requirements of real-time systems and correlates them
with Ada features that address those requirements. It also discusses the criteria for
analysis of the ACEC benchmarks.

In Section 4, the ACEC benchmarks are analyzed with respect to the Ada features
identified in Section 3. Section 4 also comments on the portability of the benchmarks.

Finally, Section 5 concludes with some thoughts about the ACEC benchmarks.
Appendix A consists of a list of tables that describe the ACEC real-time benchmarks.
It also lists the results of running the ACEC real-time benchmarks on the HP and
Verdix Ada compiler systems.

Appendix B comments on the usefulness of the ACEC benchmarks in evaluating Ada




compilers from a real-time perspective.
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2. Ada Compiler Evaluatioﬁ Capability (ACEC) Suite

The ACEC benchmarks were developed by Boeing Aerospace Company under
contract to the US Air Force. The ACEC is organized as a set of essentially
independent test problems and analysis tools. The major emphasis of the ACEC is on
execution performance. To a lesser degree, the ACEC will also test for compilation
speed, existence of language features, and capacity. The tests are designed to:

 Produce quantitative results, rather than subjective evaluations
» Be as portable as possible
» Require minimal operator interaction

« Be comparable between systems, so that a problem run on one system can be
directly compared with that problem run on another target.

The ACEC does not address issues such as: cost, diagnostics and error handling,
adaptability to a special environment, presence of support tools, and target processors
such as vector processors, VLIW machine architectures, RISC processors,
multicomputers.

The ACEC contains a large number of test problems (= 1000). Most individual
problems are fairly small. Many address one language feature or present an example
which is particularly well suited to the application of a specific optimization technique.

The primary focus of the ACEC is on comparing performance data between different
compilation systems rather than on studying the results of one particular system. The
analysis tool MEDIAN computes overall relative performance factors between
systems and isolates test problems where any individual system is much slower (or
faster) than expected, relative to the average performance of all systems on that
problem and the average performance of the problems on all systems. ACEC users
can review the MEDIAN report to isolate the strong and weak points of an
implementation by looking for common threads among test problems which report
exceptional performance data. The ACEC comparative analysis programs compare
performance data between systems and identify the test problems which show
statistically unusual results. The results of some test problems are of independent
interest - such as rendezvous times, exception propagation time, and procedure call
time.

The ACEC addresses the following:
1. Execution Time Efficiency
2. Code Size Efficiency

3. Compile Time Efficiency (to a much lesser degree).

-




2.1 Execution Time Efficiency

These benchmarks address the execution speed of various Ada features as well as
those aspects of an Ada Runtime System which traditionally have been the province of
operating systems. These benchmarks have been subdivided into the following major

categories:
1.

SANEN S o

Benchmarks that deal with Ada Runtime System features
Benchmarks that measure individual Ada language features

Benchmarks that deal with performance under load
Benchmarks that deal with tradeoffs between performance of different features
Benchmarks that deal with optimization issues.
Application Profile benchmarks that are further subdivided as follows:
o Classical Benchmark Programs (e.g. Whetstone, Dhrystone)
» Ada in Practice

2.1.1 ACEC Ada Runtime System Benchmarks

These benchmarks address Ada Runtime System Issues that traditionally have been
the domain of operating systems as well as determining runtime implementation
dependencies. The benchmarks address Ada RTS issues such as:

Tasking: Tasking benchmarks can be further subdivided as follows:

1.

a.
b.

c
d.
e

f.

Task Activation/ Termination

Task Synchronization

Exceptions Raised During Rendezvous

Abort Statement

Tasking Runtime Implementation Dependencies
Tasking Optimizations

2. Memory Management: Memory management benchmarks have been subdivided
into two areas:

a. Memory Allocation Timing Benchmarks: These benchmarks are mainly

tests that determine timing information about memory
allocation/deallocation.

Memory Allocation/Deallocation Benchmarks: These benchmarks
determine the way storage allocation/deallocatiou is implemented for a
particular Ada compiler system.




Exception Handling: These benchmarks measure the time to raise, propagate
and handle exceptions.

Input /Output: These benchmarks measure time for input/output operations for
TEXT 10, SEQUENTIAL IO, and DIRECT IO. Although many embedded
targets do not support file systems, embedded applications may make intensive
use of file systems and the performance of I/O operations is critical to their
application performance.

CLOCK Function: These benchmarks determine the overhead due to the
CLOCK and SECONDS function.

Chapter 13 benchmarks: These benchmarks measure the performance of various
Chapter 13 features such as Pragma PACK, SIZE Representation Clause,
Record representation clause, and Unchecked Conversion.

Scheduling and Delay Statement: These benchmarks determine the scheduling
algorithms and the impact of the delay statement.

Pragmas: There are certain predefined pragmas which are expected to have an
impact on the execution time and space of a program. These include: Pragmas
CONTROLLED, INLINE, OPTIMIZE, PACK, PRIORITY, SHARED, and
SUPPRESS. There are test problems which explore the performance effects of

specifying the above pragmas.

2.1.2 ACEC Individual Language Feature Benchmarks

There are test problems for all major Ada language features. The test suite contains
sets of test problems which present constructions in different contexts. The results will
demonstrate the range of performance associated with a language feature.
Benchmarks that measure individual language features are divided into the following
categories:

L

W % N O A N
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Record object manipulation

Array object manipulation

Integer Computations

Floating point computations

Fixed point computations

Loop operations

Constraint checking

Type conversions from one type to another
Mathematical functions

Subprogram Overhead (including Generics)




2.1.3 Performance Under Load

There are some language constructions which display nonuniform performance. The
more of them in a program, the slower the average performance. These are tests that
determine the performance of such language constructions under different loading
scenarios. Examples include task loading, levels of nesting, parameter variation, and
declarations.

2.1.4 Tradeoffs

In many areas of the language, it is possible to speed up the performance of one
feature at the cost of slowing another down. Areas that have been covered include
design issues, and context variation.

2.1.5 Optimizations

Specific optimization test problems include examples where it is easy and where it is
more difficult to determine that the optimization is applicable. There are some test
problems which perform the same basic operations, but have a modification which
either performs the intended optimization in the source text, or precludes the
application of the optimization. Optimizations that have been addressed include:

1. Common Subexpression Elimination

2. Folding

3. Loop Invariant Motion

4. Strength Reduction

5. Dead Code Elimination

6. Register Allocation

7. Loop Interchange

8. Loop fusion

9. Test Merging
10. Boolean Expression Optimization
11. Algebraic Simplification
12. Order of Expression Evaluation
13.  Jump tracing
14. Unreachable Code Elimination




15.  Use of Machine Idioms
2.1.6 Application Profile Tests

The ACEC also includes examples from actual application code. This code contains
test problems representative of how Ada is being used in practice. These are example
test problems drawn from Ada programs extracted from projects. Examples include
Avionics Applications, Electronic Warfare Application feasibility study code, and
Radar Application code.

Application profile tests have been subdivided as follows:

1. Classical Tests: The ACEC test suite contains classical benchmark programs
coded in Ada. Classical tests include: Ackermann’s function, Kalman filter,
Autocorrelation program, Quicksort and variation of quicksorts, Mergesort,
Dhrystone and Whetstone benchmarks, and Gamm measure benchmark.

2. Ada in Practice: These are example test problems drawn from Ada programs
extracted from projects. They represent typical usage of Ada.

2.2 Code Size Efficiency

The memory size of programs is an important attribute in many mission critical
applications. On embedded systems, memory is often a limited resource. On some
target processors such as the MIL-STD-1750A, while physical memory may be
available, maintaining addressability is critical and a small code expansion rate can
help system design by reducing the need to switch memory states. There are two size
measurements of most interest to Ada projects: the amount of space generated inline
to translate each statement (Code Expansion Size), and the amount of space occupied
by the RTS (Runtime System Size).

Code Expansion Size: The code expansion size is measured in the timing loop. It is the
space in bits, between the beginning and end of each test problem. In this report, the
code expansion size of problems have been considered in light of their ability to help
interpret results.

Runtime System Size: The size of the Runtime System is an important parameter to

many projects. Space taken by the RTS is not available for use by application code, so
a small RTS will permit larger applications to be developed.

2.3 Compile Time Efficiency

The times to compile the compilation units are collected and analyzed. The
benchmarks were developed to measure execution time performance aspects, and do
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not necessarily represent a set of compilation units which will expose all the relevant
compilation time variables. However, they do represent a set of programs which will
exercise a compiler and observing the compile time of these programs can give insight
to the overall compilation rates.

2.4 ACEC Summary

The philosophy of the ACEC is that end users will not have to examine in detail each
individual test problem. Rather, they should run the test suite and let the analysis tools
isolate problems where a system does unusually well or unusually poorly. These
problems can then be examined in more detail to try to determine what characteristics
of the problem are responsible for the unusual behavior.

More information about the ACEC benchmarks can be obtained from references [1]
and [2] as well as from:

Raymond Szymanski
WRDC/AAAF-3
Wright-Patterson AFB
Ohio 45433-6543

(513) 255-3947
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3. Real-time Systems and Ada Benchmarking

Before jumping into the ana.sis of ACEC benchmarks, it is important to understand
the typical software requirements of real-time applications, how Ada addresses those
requirements and the issues involved in benchmarking Ada features that address these
requirements.

3.1 Requirements Of Real-time Systems

For a programming language to be used effectively to program real-time embedded
systems, it should be able to support the following characteristics (for more details see
reference [4]):

o Real-time Preemptive Scheduling

o Concurrency, Inter-task and Intra-task communication
o Time Abstraction

o Interaction with Real World

o Input/Output

e Resource Utilization

o Numeric Computations

o Fault Tolerance

o« Event-driven Reconfiguration

 Reliability

3.2 Ada and Real-time Requirements

Programmers generally have no control on the design and implementation of the Ada
runtime system except that it satisfy the requirements listed in the LRM. Table 1 lists
the Ada features that support real-time requirements.
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From Table 1, it is clear that a real-time benchmarking suite should address the
following real-time Ada features:

1. Tasking

Memory management
Exceptions
Input/Output

Clock Function
Scheduling and Delay Statement
Chapter 13 Benchmarks
Interrupt Handling
Pragmas

Subprogram Overhead
Numeric Computations

W P N & R W

~
NS

3.3 Ada Benchmarking

Ada benchmarking can be approached in 4 ways:

1. Benchmarks that measure execution speed of individual features of the
language.
2. Benchmarks that determine implementation dependent attributes.

Benchmarks that measure the performance of commonly used real-time Ada
paradigms (that may be programmed using macro constructs [4]).

4. Composite benchmarks which include representative code from real-time
applications.

A detailed description of benchmarking approaches is presented in the report titled
"Real-time Performance Benchmarks For Ada" [4].
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4. Analysis of the ACEC Benchmarks

The ACEC benchmarks have been analyzed with respect to the following
characteristics:

1.

2.

3.

Features measured by the Benchmarks

The ACEC suite has been analyzed with respect to its ability to measure the
performance and to determine the implementation characteristics of Ada
features that are important for programming real-time systems. The ACEC
tests are examined with respect to each of the following real-time features [4]:

« Tasking
e Memory management
» Exceptions
e Input/Output
e Clock Function
e Scheduling and Delay Statement
o Chapter 13 Benchmarks
e Interrupt Handling
o Pragmas
e Subprogram Overhead
o Numeric Computations
In addition to their measurement of individual Ada features, the ACEC suite

has also been evaluated with respect to its implementation of real-time
paradigms and composite benchmarks.

Information provided for interpretation of the results

Running the ACEC benchmarks produces a set of numbers which bave to be
interpreted. It is important that the benchmarking suite provide sufficient
information about interpreting the results.

Portability

The benchmarks should be portable and executable on any Ada compiler system
with minimum modifications. There are come benchmarks (like interrupt
handling) that may not be portable and depend on the hardware being tested.
The ACEC suite has been analyzed with respect to its ease of portability to
various Ada compiler systems.
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The ACEC evaluation format is as follows:

« For each feature, the ACEC benchmarks which address that feature have been
identified and their description presented in tables listed in Appendix A. Also
listed are the results of running the ACEC It also presents the results of running
the ACEC real-time benchmarks on the following Ada compilers: HP-Ada
Compiler (Releases 3.25 and 4.35) running on HP 9000/350 machine under HP-
UX Release 6.2; and Verdix Ada Compiler (Release 5.41) hosted on a Sun 3/60
and targeted to a Motorola 68020 bare machine.

o Then, comments are presented on those set of benchmarks. The comments
address two major areas, namely any deficiencies in a) the benchmarks themselves
and b) additional information that is not provided by the ACEC in interpretation
of the results produced by running those benchmarks.

o Finally, additional benchmarks not covered in the ACEC are listed when
appropriate for the feature analyzed.

4.1 Tasking

For the purposes of this discussion, the ACEC benchmarks have been analyzed with
respect to their measurement of the following aspects of tasking:

 Task Activation/Termination

» Task Synchronization

o Exceptions Raised During Rendezvous
o Abort Statement

 Tasking Priorities

» Miscellaneous Tasking Benchmarks

e Tasking Optimizations

4.1.1 Task Activation/Termination

Task Activation/Termination is an important benchmark for real-time systems. Task
elaboration, activation and termination are almost always suspect operations in real-
time programming and programmers often allocate tasks statically to avoid runtime
execution time.

Table 2 lists the ACEC benchmarks for measuring task activation/termination timings
along with the results of running these benchmarks on the HP and Verdix Ada
compilers. The task to be activated can either be an object of a task type or can be
activated using the new allocator. The difference in the times provided by these tests
give some insight into the relative efficiency of the two types of task activation.
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Comments: Observations about the ACEC task activation/termination benchmarks

are:
1.

The tasks whose activation/termination times are being measured are very
simple tasks which have a null statement inside the task body. This is not a very
realistic scenario as it is quite possible that many compilers realizing that this
task does nothing may optimize it away and the measurements obtained may not
be correct. The task body should do something meaningful such as call a
subprogram that performs some meaningful calculations.

The time to elaborate, activate and terminate a task is measured as one value.
The individual components of the measurements are too quick to measure with
the available CLOCK resolution.

An important criteria for tasking benchmarks is the STORAGE _SIZE used by
the tasks that are elaborated. Some implementations may implicitly deallocate
the task storage space on return from a procedure or on exit from a block
statement (when the task object is declared in that procedure or block
statement). If task space is implicitly deallocated, the number of iterations can
be increased to get greater accuracy for task activation/termination
measurement. So if task space is not deallocated on return from a procedure or
block statement, TASK TYPE'STORAGE _SIZE can be changed such that the
number of iterations can be increased (thus increasing the accuracy of the
measurement).

Additional Task Activation/Termination Benchmarks:

L.

More task activation/termination benchmarks are needed to determine if a
real-time programmer can declare tasks for time-critical modules in a) a block
statement or b) within other tasks.

Benchmark: Measure task activation and termination time (without the new
operator) where

o Task type is declared in the main program and task object is declared in a
block statement in the main program.

o Task type and task object are declared in another task which is declared in the
main program.

Task activation/termination times may degrade as the number of active tasks in
the system increases. This is a more realistic scenario for a real-time system as
generally there are existing tasks when new tasks are activated. As more and
more tasks are created, task activation time may increase due to the possible
increase in storage allocation time.

Benchmark: Measure the affect on task activation/termination times as the
number of existing active tasks keeps on increasing.
Number of existing active tasks in the system could vary from 1 to 20.
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3. During the execution of an Ada program, a low priority task spawns a task.
While the activation of this spawned task is occurring, if a high priority task
becomes ready to execute, it may remain suspended until the completion of the
low priority task activation.

Benchmark: Determine if a low prionty task activation could result in a very long
suspension of a high priority task.

4.1.2 Task Synchronization

In Ada, tasks communicate with each other via the rendezvous mechanism.
Rendezvous are effectively similar to procedure calls, yet they are much more complex
to implement, and therefore create a tremendous amount of overhead for the runtime
system. Because of the timing constraints in a real-time system, it is essential that the
rendezvous mechanism be as efficient as possible.

The ACEC suite has a comprehensive set of task synchronization benchmarks. These
benchmarks are divided in the following logical areas.

4.1.2.1 Time For a Simple Rendezvous

These benchmarks measure the time for a simple rendezvous and no parameters are
passed during the rendezvous. Time is measured to complete a rendezvous between a
task and a procedure with no additional load present. This method, then gives a lower
bound on rendezvous time, because no extraneous units of execution are competing
for the CPU. Table 3 lists the simple rendezvous benchmarks and Table 4 lists the
benchmarks that determine rendezvous performance with varying number of tasks.
The results of running these benchmarks on the HP and Verdix Ada compilers are
also listed.

Comments: Comments about ACEC simple rendezvous benchmarks are:

1. The ACEC benchmarks measure simple rendezvous timings for rendezvous
between equal priority tasks, as well as rendezvous between tasks of different
priorities. Two context switches are required for rendezvous between tasks of
different priorities as opposed to a single context switch for rendezvous between
tasks of same priority. So any deviation from the expected results points to a
bad compiler implementation.

2. Rendezvous times with tasks in subunits as well as tasks in separate packages
should be the same as if those tasks were in the main program. A task being in a
subunit or a separate package should affect compilation times and not execution
times.
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4.1.2.2 Select Statement With Else Alternative

These benchmarks measure the time it takes to execute 1 select statement with an else
alternative under various scenarios. The ELSE alternative is always executed. Table
S lists these benchmarks along with the results of running these benchmarks on the
HP and Verdix Ada compilers.

Comments: Observations about these benchmarks are:

1. All of these benchmarks have a select statement with an else alternative (which
is always executed). Hence, execution of these benchmarks will enable real-
time programmers to determine if a compiler optimizes away the entry call or
accept statement and directly executes the else alternative.

4.1.2.3 Rendezvous Calls with Conditional Selects

These benchmarks have conditional select statements with various scenarios. The
tests are listed in Table 6 along with the results of running these benchmarks on the
HP and Verdix Ada compilers.

Comments: Observations about these benchmarks are:

1. Benchmarks (task16) that contain delay statements with a negative argument do
not serve any useful purpose for real-time programmers, as negative delay
statements are never used in real-time systems.

2. There is no information provided on interpretation of the results produced by
executing benchmarks task1S5, task16, task17, task21, and task22. Upon further
analysis, it is determined that these benchmarks do not provide any useful
information in evaluating an Ada compiler.

4.1.2.4 Selective Wait

These benchmarks test various scenarios with the selective wait statement. Table 7
lists the selective wait benchmarks along with the results of running these benchmarks
on the HP and Verdix Ada compilers.

Comments: Observations about these benchmarks are:

1. Benchmark (task34) measures the time to check the entry queue for a accept
statement. Depending on the compiler implementation, time to check the entry
queue could force missed deadlines in real-time systems.

2. Benchmarks (task35) that contain delay statements with a 0.0 argument do not
serve any useful purpose for real-time programmers, as delay statements with
0.0 argument are never used in real-time systems.
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In benchmark taskS9, all delay alternatives are negative in the selective wait. As
pointed out before, negative delay alternatives do not provide any useful
information in Ada compiler evaluation for real-time programming.

Additional Task Synchronization Benchmarks:
1

For some compilers, the more the number of entries in a select statement, the
more time it takes to rendezvous with any entry in the select statement. For
some implementations, time for a rendezvous may also be affected by the
position of the accept alternative in the select statement.

Benchmark: Measure the effect on rendezvous time as the number of accept
alternatives in a select statement increases.

Main program calls first (middle, last) entrv i~ .. select statement in another
task as the number of accept statements increases from 2 to 10 to 20.

Rendezvous time may depend on the number of open guard statements. For
some implementations, rendezvous titne may uepend on the number of guards
in the select statement and the position of the accept in the select statement.

Benchmark: Measure the effect of guards on rendezvous time, where the main
program calls an entry in another task as the number of accept alternatives in the
select statement increases.

Rendezvous time may depend on the size and type of the passed parameters
which may involve both the task stacks or the allocation of a separate area for
passing large structures. Increasing rendezvous times for array parameters as
the size of the array increases implies that the implementation uses pass by copy
" ~tead of pass by reference.

Benchmark: Measure the time required for a complex rendezvous, where a
procedure in the main program calls an entry in another task with different type,
number and mode of the parameters.

The types of the parameters include a) integer arrays (size 1 to 1000 to 10000),
and b) 1 to 100 integers. The mode of the parameters passed is either out or in
out.

Fairness of select-alternative is a particular aspect of scheduling fairness. If a
task reaches a selective wait and there is an entry call waiting at more than one
open alternative, or if a task is waiting at a selective wait and more than one
open accept or delay alternative becomes eligible for selection at the same time,
an alternative is selected according to criteria that are not specified in the LRM.
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Benchmark: Determine algorithm used when choosing among branches of a
selective wait statement.

5. The order in which an Ada compiler system chooses to evaluate the guard
conditions in a select statement is implementation dependent. Real-time
programmers may need to know the order in which the guard conditions are
evaluated.

Benchmark: Determine the order of evaluation for guard conditions in a selective
wait.

4.1.3 Exceptions During a Rendezvous

If an exception is raised within a rendezvous, it is propagated to the task containing
the accept as well as to the calling task. This is the most complex form of exception
handling since the exception is handled in both the task containing the accept and the
calling task. For real-time systems, it is important to measure the time it takes to
handle exceptions raised during a rendezvous. Table 8 lists the ACEC benchmarks for
exceptions raised during a rendezvous along with the results of running these
benchmarks on the HP and Verdix Ada compilers.

Comments:

1. ACEC benchmarks for handling exceptions within a rendezvous are adequate
and do not require any additional benchmarks.

4.1.4 Abort Statement

Quick restarts of tasks are required in a number of real-time embedded systems. Ada
model of concurrency does not provide an abstraction where a task may be
asynchronously notified that it must change its current execution state. One way to
implement asynchronous change in control is to abort the task and then replace it with
a new one. Table 9 lists the tests for abort statement along with the results of running
these benchmarks on the HP and Verdix Ada compilers. These tests measure timings
to abort tasks under various scenarios.

Comments: None.
Additional Abort Statement Benchmarks:

More task abortion benchmarks are needed as follows:

1. In real-time systems, tasks may have to be aborted in a certain sequence. The
semantics of the abort statement do not guarantee immediate completion of the
named task. Completion must happen no later than when the task reaches a
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synchronization point.

Benchmark: Determine order of evaluation of tasks named in an abort statement.

2. When a task has been aborted, it may become completed at any point from the
time the abort statement is executed until its next synchronization point.
Depending on when an implementation actually causes the task to complete the
results of an aborted task may be different. Suppose a task is updating a
variable that is visible to other tasks, prior to a synchronization point. If the task
is aborted just prior to the update, it may leave the variable unchanged if it
becomes completed immediately, or it may update the variable and then
becomes completed at the synchronization point. This could affect the results of
the whole program.

Benchmark: Determine the results if a task is aborted while updating a variable ?
4.1.5 Task Priorities

The ACEC suite has several tests that use Pragma PRIORITY to determine
rendezvous timings under different scenarios. These tests have already been discussed
in Section 4.3.2 under Task Synchronization. However, additional benchmarks are
needed for tasking priorities.

Additional Tasking Priority Benchmarks:

1. Programmers may need to know the default priority of the main program and
other tasks in order to design usable embedded systems.

Benchmark: Determine priority of tasks (and of the main program) that have no
defined priority.

2. If two tasks without explicit priorities conduct a rendezvous, and if the priority
given to the rendezvous is higher than a task with an explicit priority, the Ada
program may perform in an unpredictable manner.

Benchmark: Determine priority of a rendezvous between two tasks without explicit
priorities.

4.1.6 Miscellaneous Tasking Benchmarks

There are some tasking benchmarks that do not fall under any of the above defined
categories.

Table 10 lists the miscellaneous tasking benchmarks along with the results of running




these benchmarks on the HP and Verdix Ada compilers.

Comments: Observations about these benchmarks are:

L

Benchmark (task48) is not very useful as the timing of interest is the time taken
to invoke the interrupt handler when an actual hardware interrupt is received as
opposed to calling an entry tied to an interrupt directly.

Additional Miscellaneous Benchmarks:

L

A group of tasks (children of the same parent) can terminate by using the
terminate option of the select statement. If the overhead due to the terminate
option is high, then this option should not be used (especially if the selective wait
is inside a loop).

Benchmark: Measure the cost of using the terminate option in a select statement.

In many real-time embedded systems where space is at a premium it may be
desirable that task space be deallocated when that task terminates.

Benchmark: Determine if task space is deallocated on return from a procedure
when a task that has been allocated via the new operator in that procedure
terminates.

It might be impossible for a runtime system to deallocate the task storage space
after termination. This is because the access value might have been copied and
an object might still be referencing the terminated task’s task control block.

Benchmark: Determine if tasks that are allocated dynamically by the execution of
an new allocator do not have their space reclaimed upon termination when access
type is declared in a library unit or outermost scope.

When several tasks are activated in parallel, the order of their elaboration may
affect program execution.

Benchmark: Determine the order of elaboration when several tasks that are
declared in the same declarative region are activated in parallel.

The activation of tasks proceeds in parallel. Correct execution of a program may
depend on a task continuing execution after its activation is completed but
before all other tasks activated in parallel have completed their respective
activations.

Benchmark: Determine if a task, following its activation but prior to the completion
of activation of tasks declared in the same declarative part, continue execution.




6. The LRM does not define when STORAGE ERROR must be raised should a
task object exceed the storage allocation of its creator or master. The exception
must be no later than task activation; however an implementation may choose to
raise it earlier.

Benchmark: Determine when exception is raised if the allocation of a task object
raises STORAGE ERROR.

7. For some real-time embedded applications, it is desirable that tasks declared in
a library package do not terminate when the main program terminates. System
designers may need to know this information.

Benchmark: Determine if tasks declared in a library package terminate when the
main program terminates.

4.1.7 Task Optimization

These benchmarks are designed to determine if certain tasking optimizations have
been implemented by Ada compilers.

Table 11 lists the ACEC Habermann-Nassi tasking optimization benchmarks Table 12
lists the other tasking optimization benchmarks. The results of running these
benchmarks on the HP and Verdix Ada compilers are also listed.

Comments:

1. As far as tasking optimizations are concerned, the ACEC suite is quite
comprehensive.

4.2 Memory Management

Memory management benchmarks have been divided into two separate areas:

1. Memory Allocation Timing Benchmarks: These benchmarks are mainly tests that
determine timing information about memory allocation/deallocation.

2. Memory Allocation/Deallocation Benchmarks: These benchmarks determine the
way storage allocation/deallocation is implemented for a particular Ada
compiler system.

4.2.1 Memory Allocation Timing Benchmarks

Since time and space are at a premium in real-time embedded systems, it is essential
that the dynamic memory allocation and deallocation be as efficient as possible.
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Real-time programmers need to know the maximum time to allocate and deallocate
storage for a particular Ada compiler in order to ensure that performance
requirements will be met for their application.

Table 13 lists the ACEC memory allocation timing benchmarks along with the results
of running these benchmarks on the HP and Verdix Ada compilers.

Comments: Observations about these benchmarks are:

1.

In benchmarks (ss22, ss23, and ss24), time to to allocate small one, two, and
three dimensional arrays of float is measured. The sizes of the arrays are
different thus limiting the usefulness of the results obtained by running these
benchmarks. What is of interest is the time for allocating same size array as the
number of dimensions increase.

Benchmark (ss25), which measures time to allocate a small dynamically
bounded one array of float, does not provide any useful information as the
timing has to be compared to allocation timings for same size and multiple
dimension arrays.

Additional Memory Allocation Timing Benchmarks:

1.

Tests for more Ada types are needed to determine their allocation overhead
time. Times to allocate various numbers of types INTEGER and
ENUMERATION have to be measured as well as the times to allocate various
sizes of arrays, records, and STRINGs. The objective is to determine the
allocation overhead involved and if there is any difference in the overhead based
on the type of object allocated.

Benchmark: Measure time for allocating storage known at compile time. Times to
allocate various numbers of types INTEGER and ENUMERATION are
measured as well as the times to allocate various sizes of arrays, records, and
STRINGs.

More tests are needed to determine if allocation time is dependent on size (in
the composite-type object case). Also, based on these timing measurements
real-time programmers can decide whether to use the new allocator for object
elaboration or to declare the object as in the fixed length case.

Benchmark: Memory Allocation via the New Allocator. Allocation time of objects
of type INTEGER, and ENUMERATION as well as composite type objects of
various sizes are measured.

In these tests, the objects that have been allocated via the new allocator have
also been freed via Unchecked_Deallocation before exiting the scope in which
the object was allocated.




3. If memory is allocated in a loop via the new allocator and the memory that is
allocated is not freed via Unchecked Deallocation, then the time required for
dynamic memory allocation can be affected as more space is allocated.

Benchmark: Determine the effect on time required for dynamic memory allocation
when memory is continuously allocated without being freed via
Unchecked_Deallocation in the scope where the memory was allocated.

4.2.2 Memory Allocation/Deallocation Benchmarks

It is important for real-time programmers to know if a particular compiler
implementation

e deallocates nothing
« supports only UNCHECKED DEALLOCATION

» deallocates all the storage for an access type when the scope of the access type is
left

« detects inaccessible storage and automatically deallocates it (garbage collection).

Table 14 lists the ACEC memory allocation/deallocation benchmarks along with the
results of running these benchmarks on the HP and Verdix Ada compilers.

Comments:

1. ACEC suite is very comprehensive in memory allocation/deallocation
benchmarks.

4.3 Exceptions

Table 15 lists the ACEC exception handling timing benchmarks along with the results
of running these benchmarks on the HP and Verdix Ada compilers.

Comments: None.

Additional Exception Handling Benchmarks:

1. Exception handling times may degrade due to additional tasks present in the
system. Benchmarks are needed that measure exception handling timings when
multiple tasks are present in the system.

Benchmark: Measure the effect of additional tasks in the system on exception
handling times for all the exception handling benchmarks in the ACEC suite.
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2. In many real-time systems, it is quite possible that intermediate operations
during the calculation of a larger expression may exceed the system defined
limits, although the final result may still be within bounds. Some
implementations may raise an exception if the intermediate expression exceeds
system defined limits.

Benchmark: Determine if an implementation raises NUMERIC ERROR on an
intermediate operation wher the larger expression can be correctly computed.

4.4 Input/Output

Input/Output benchmarks can be divided into the following categories:
« TEXT IO benchmarks
o DIRECT IO benchmarks
o SEQUENTIAL IO benchmarks
« Asynchronous I/O benchmarks

44.1 TEXT IO

Table 16 lists the ACEC TEXT 1O benchmarks along with the results of running
these benchmarks on the HP and Verdix Ada compilers.

Comments:
1. Additional benchmarks for TEXT IO are not needed.

442 DIRECT IO

Table 17 lists the ACEC DIRECT IO benchmarks along with the results of running
these benchmarks on the HP and Verdix Ada compilers.

Comments:
1. Additional benchmarks for DIRECT IO are not needed.

443 SEQUENTIAL IO

Table 18 lists the ACEC SEQUENTIAL _IO benchmarks along with the results of
running these benchmarks on the HP and Verdix Ada compilers.

Comments:
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1. Additional benchmarks for SEQUENTIAL IO are not needed.
4.4.4 Asynchronous I/O

One of the benefits of Ada’s tasking techniques is the ability to implement true
asynchronous I/O. By using Ada tasks to drive I/O controllers, only the task that
requested the I/O must wait for completion before resuming execution, while other
tasks within the application program can continue execution while I/O is being
processed.

I/O blocking may not be tolerated in many systems. It effectively causes the entire
Ada program to stop while an I/O is serviced. The effect is clearly most evident for
interactive input but, for mission critical systems even physical disk 1/O will cause
unacceptable delays in the overall processing.

Comments:
1. The ACEC suite does not have benchmarks that address asynchronous 1/0.

Additional Asynchronous 1/0O Benchmarks

1. I/O blocking to devices other than where clear delays are possible (such as a
terminal or mailbox) can be very difficult to determine. In principle it is only
necessary for non-blocking I/0O to occur for physical I/O but when this actually
happens is difficult to predict in many systems where complex device caching
and buffering is automatically performed. The tests need to be performed for
the following device types: interactive terminal and disk. For each facility and
each of SEQUENTIAL IO, DIRECT IO, and TEXT IO the presence of
system-wide blocking during prolonged processing should be recorded.

Benchmark: Blocking on READ, GET, WRITE, PUI, CREATE, OPEN,
RESET, CLOSE, and DELETE.

4.5 Clock Function

For programming real-time systems, the CLOCK function in the package
CALENDAR is used extensively. Table 19 lists the ACEC CLOCK function tests
along with the results of running these benchmarks on the HP and Verdix Ada
compilers.

Comments:
1. These tests are sufficient to test the CLOCK function overhead.
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4.6 Scheduling, Preemption and Delay Statement

To allow execution to switch among tasks, the scheduler provided by the runtime
system is entered at certain synchronization points in a program, and the scheduler
decides at this point which task has to be executed. According to the LRM, an
implementation is free to choose among tasks of equal priority or among tasks whose
priority has not been defined. The minimum synchronization (a implementation may
choose to have more) points at which the scheduler is invoked are the beginning and
end of task activations and rendezvous. The pragma priority enables real-time
embedded systems programmers to specify a higher priority for more important tasks.
The priority is fixed at compile time (assuming that pragma priority is implemented).
Hence, whenever a scheduling decision has to be made, the highest priority task
receives control (task priorities are discussed in Section 4.1.5).

Table 20 lists the  ACEC benchmarks along with the results of running these
benchmarks on the HP and Verdix Ada compilers.

Comments: Observations about these benchmarks are:

1. As mentioned in previous sections, benchmarks that measure timing for delay
statement with negative (ss459) or 0.0 (delayl, delay8) argument do not serve
any useful purpose for real-time systems.

Additional Scheduling, Preemption and Delay Statement Benchmarks:

Task preemption feature is very important for real-time systems. Preemption occurs
for a variety of reasons each of which must be established. Linked with preemption is
the scheduling algorithm used to determine which, of any number of candidates, can
be processed. The test should determine, as far as possible, the conditions under
which tasks are scheduled and, in particular, the order chosen where valid alternatives
exist.

1. Expiration of delay statement may cause scheduling to take place and preempt

the running task.

Benchmark: Test whether delay expiration causes task preemption.

2. Some implementations may cause scheduling decisions to take place upon 1/O
completion. It should be ascertained if RTS system calls (such as opening of
files, task creation, and rendezvous handling) are themselves preemptable. This
is of great importance when dealing with multi-priority systems and especially
where interrupts are possible.

Benchmark: Establish whether 1/O completion causes task preemption.
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3. An external interrupt may also cause preemption.

Benchmark: Establish whether external interrupts preempt running tasks.
4.7 Chapter 13 Benchmarks

Chapter 13 benchmarks are divided into the following categories:

1. Pragma PACK: This is considered here (as opposed to the section that deals
with Pragmas) as the extent of packing performed by a compiler can be
compared to other benchmarks that use the SIZE specification clause.

SIZE specification benchmarks
Record repres .:t .ion clause benchmarks
Attribute be chmarks

Unchecked_Conversion benchmarks

LA

4.7.1 Pragma Pack

These set of benchmarks test the packing capabilities of a Ada compiler system by
specifying Pragma Pack for various objects. These tests measure both time and space
utilization. Some packing methods allocate a component so that it will span a storage
unit boundary while some pack as densely as possible. The time to access a
component which spans a storage unit is usually greater than when the component
does not span a boundary. In addition to measuring the time in accessing packed
objects, these test problems use the representation attribute X’SIZE to determine the
actual bit size of the objects and compare this with the predetermined minimum
possible bit size for the object. This shows the degree of packing performed by the
system under test.

Tables 21, 22, and 23 list the ACEC Pragma PACK benchmarks along with the results
of running these benchmarks on the HP and Verdix Ada compilers.

Comments:
1. Additional benchmarks are not needed for Pragma PACK.

4.7.2 Length Clause: SIZE Specification Benchmarks

Tables 24 and 25 list the ACEC Length Clause SIZE specification benchmarks along
with the results of running these benchmarks on the HP and Verdix Ada compilers.
In these test cases, an integer type is declared and then the TYPE'SIZE
representation clause is used to determine the size in bits an object of that type can
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occupy. An array is declared of that integer type. Tests are then performed on
components of that array.
Comments:

1. Additional benchmarks are not needed for this feature.

4.7.3 Record Representation Clause Benchmarks

In these tests, the record representation clause is used to specify the layout of a record
whose components are boolean variables (that have the SIZE representation clause
specified) as well as a packed boolean array.

Table 26 lists the ACEC Record Representation Clause benchmarks along with the
results of running these benchmarks on the HP and Verdix Ada compilers.
Comments:

1. Additional benchmarks are not needed for this feature.

4.7.4 Attribute Tests

These tests determine if certain attributes have been implemented. Table 27 lists the
ACEC Attribute tests along with the results of running these benchmarks on the HP
and Verdix Ada compilers. The attributes tested include:

1. Test ADDRESS attribute of a subroutine, local object, and dynamic object.
2. Test SIZE attribute of a local object, and dynamic object.

Test POSITION, FIRST BIT, and LAST BIT attribute for a record
component.

4. Test STORAGE TYPE attribute for an access type and task type.

Comments:
1. Additional benchmarks are not needed for this feature.

4.7.5 Unchecked_Conversion

In real-time systems, it is very frequently required to do a unchecked_conversion from
one type to another. These set of benchmarks test the time required to do a
unchecked conversion from one type to another. Table 28 lists the
unchecked | conversion benchmarks along with the results of running these
benchmarks on the HP and Verdix Ada compilers.
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Comments: None.

Additional Unchecked_Conversion Benchmarks:

1.

In many real-time systems a string object may be converted to an integer via
unchecked_conversion as well as an array of floats may be converted to a record
of floats.

Benchmark: Measure the time for UNCHECKED CONVERSION to move a
STRING object to another INTEGER object.

Benchmark: Measure the time to do an unchecked conversion of an array of 10
floating components into a record of 10 floating components.

4.8 Interrupt Handling

In real-time embedded systems, efficient handling of interrupts is very important.
Interrupts are critical to the ability of the system to respond to real-time events and
perform its required functions and it is essential that the system responds to the
interrupt in some fixed amount of time.

Table 29 lists the ACEC Interrupt handling benchmarks.

Comments: None.

Additional Interrupt Handling Benchmarks:

1.

In many real-time systems, it is important that interrupts are not lost when an
interrupt is being handled and another interrupt is received from the same
device.

Benchmark: Determine if an interrupt is lost when an interrupt is being handled
and another interrupt is received from the same device.

An implementation may cause scheduling decisions on receipt of an interrupt.
This may not be desirable in some real-time systems.

Benchmark: Determine if an interrupt entry call invokes any scheduling decisions.

The handler deals with high priority interrupts, and is therefore allocated a high
task priority. However, it can be interrupted outside the rendezvous by a low
priority interrupt and cannot guarantee to return to the accept statement in time
to catch the next high priority interrupt.

Benchmark: Determine if accept statement executes at the priority of the hardware




-32-

interrupt, and if priority is reduced once a synchronization point is reached
following the completion of accept statement.

4.9 Pragmas

There are certain predefined pragmas which are expected to have an impact on the
execution time and space of a program. These include: SUPPRESS, OPTIMIZE,
SHARED, INLINE, PACK, CONTROLLED, and PRIORITY. Benchmarks for
Pragma INLINE are covered under Subprogram Overhead in Section 4.10. Pragma
PACK is covered under Chapter 13 benchmarks (Section 4.7), Pragma
CONTROLLED is covered under Memory Management benchmarks (Section 4.2),
and Pragma PRIORITY is covered under Tasking (Section 4.1).

4.9.1 Pragma SUPPRESS

The benchmarks for pragma SUPPRESS determine the improvement in execution
time when pragma SUPPRESS is used. Pragma SUPPRESS causes the compiler to
omit the corresponding exception checking (RANGE_CHECK, STORAGE _CHECK
etc.) that occurs at runtime.

Table 30 lists the ACEC Pragma SUPPRESS benchmarks along with the results of
running these benchmarks on the HP and Verdix Ada compilers.

Comments: None.

Additional Pragma SUPPRESS Benchmarks:

1. Timing has also to be measured for other kinds of checks using Pragma
SUPPRESS.

Benchmark: Pragma SUPPRESS is used for these checks: Access Check,
Index_Check, Length_Check, Storage_Check, and Elaboration_Check.

4.9.2 Pragma OPTIMIZE

The benchmarks for pragma OPTIMIZE determine the improvement in execution
time when the pragma is used.

Comments:
1. ACEC has no pragma OPTIMIZE benchmarks,

Additional Pragma OPTIMIZE Benchmarks:
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1. Timing has to be measured for improvement in execution time pragma
OPTIMIZE is used with options TIME and SPACE.

Benchmark: Determine improvements in execution time when pragma OPTIMIZE
is used with options TIME and SPACE.

4.9.3 Pragma SHARED Benchmarks

With multiple tasks executing, there may be an instance where the same nonlocal
variable must be accessed. Pragma SHARED is the mechanism that designates that a
variable is shared by two or more tasks. Pragma SHARED directs the RTE to
perform updates of the shared variable copies each time they are updated, but the
overhead may be significant.

Comments:
1. 'There are no ACEC Pragma SHARED benchmarks.

Additional Pragma SHARED Benchmarks:

1. The overhead involved in updating a shared integer variable is compared to the
overhead involved in updating an integer variable that is not shared.

Benchmark: Determine the overhead due to Pragma SHARED when two tasks
access a shared integer variable.

The main program updates a shared integer variable. This integer variable is
also updated by another task.

2. The overhead involved in updating a shared integer variable during a rendezvous
is compared to the overhead involved in updating an integer variable (that is not
shared) during a r« ndezvous.

Benchmark: Determine the overhead in rendezvous time when a shared variable is
updated during the rendezvous.

4,10 Subprogram Overhead

In Ada, subprograms rank high among program units from a system structure point of
view. If the subprogram overhead is high, then the compiler can generate INLINE
expansion at the cost of increasing the size of the object code. However, if calls to
that subprogram are made from a lot of places, then the pragma INLINE defeats the
purpose due to increase in size of object code.

Tables 31 and 32 list the ACEC Subprogram overhead tests along with the results of
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running these benchmarks on the HP and Verdix Ada compilers.
Comments: None.

Additional Subprogram Overhead Tests:

1. Subprogram overhead timings have to be measured when various parameters
are passed during a procedure call.

Benchmark: Various numbers of parameters of types INTEGER and
ENTUMERATION are passed to determine the subprogram overhead associated
with simple parameter passing. Then composite objects (arrays and records) are
passed to determine if they are passed by copy or reference. Finally, the
subprogram is called with formal parameters of an unconstrained composite type.

All of the tests include passing the parameters with modes in, out, and in out.
All of the tests involve two different types of subprogram calls, one to a
subprogram that is a part of the same package as the caller, and the other to a
subprogram in a package other than the one in which the caller resides.

2. Benchmarks for subprogram overhead that involve the use of package
instantiations of generic code are also needed.

Benchmark: All of the above tests for both inter-package and intra-package
procedure calls are repeated with the subprograms being part of a generic unit.

4,11 Numeric Computation

An embedded system must be able to represent real-world entities and quantities to
perform related manipulations and computations. There should be support for
numerical computation, units of measure (including time), and calculations and
formula from physics, chemistry etc. Numeric computation benchmarks are discussed
under two separate logical headings: a) Mathematical Computation Benchmarks and
b) Benchmarks for Arithmetic on Type TIME and DURATION. The ACEC suite
has over 300 numeric computation benchmarks which belong to different categories.
Hence, these benchmarks have not been presented in the form of tables.

4.11.1 Mathematical Computation Benchmarks

These benchmarks raage from simple integer additions to calculation of complex
mathematical equations. ACEC has the following categories of mathematical
computation benchmarks:

1. Floating point addition, multiplication, division
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Integer addition, division, multiplication
Natural Integer addition, division, multiplication, mod, rem
Fixed point addition, multiplication, division

A Sl

Type conversions from integer to real, floating point literal to integer, integer to
float, convert one fixed point to another, convert double to real, convert real to
double

Integer addition, division
exp, In, sin, cos, abs, sqrt, atan, sgn
mod, and rem operators

© e N o

polynomial evaluation

10. Long integer assignment, addition, subtraction, multiplication, division, rem,
conversion from integer to long integer

11. extended precision floating point assignment, addition, division, abs, sin, cos,
exp, In, sqrt, atan, extended precision floating point array assignment
Comments: .,

1. As far as mathematical computation benchmarks are concerned, the ACEC set
is comprehensive and complete.

4.11.2 Benchmarks For Arithmetic On Type TIME and DURATION

For real-time embedded systems, it is necessary to dynamically compute values of type
TIME and DURATION. An example of such a computation is the difference
between a call to the CLOCK function and a calculated TIME value. This value may
be used as a parameter in the delay statement. If the overhead involved in this
computation is significant, the actual delay experienced will be longer than anticipated
which could be critical for real-time systems.

ACEC benchmarks for arithmetic on type TIME and DURATION are divided in the
following categories:

1. Addition of variables of type CALENDAR.TIME.

2. Comparison of variables of type CALENDAR.TIME.

3. Comparison of type DURATION with SECONDS(TIME).

4. Call on CALENDAR.TIME_OF function.

Comments: None.

Additional Benchmarks For Arithmetic On Type TIME and DURATION:
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Many real-time systems may have the need to compute values using the "+" and
"-" functions provided in the package calendar.

Benchmark: Measure the overhead associated with a call to and return from the
"+"and "-" functions provided in the package CALENDAR.

Times are measured for computations involving just variables and both
constants and variables of Type TIME and DURATION. The variables have
predefined values. Although both "+" functions are essentially the same (only
the order of parameters reversed) both are tested. This is done because a
discrepancy in the time needed to complete the computation will occur if one of
the functions is implemented as a call to the other.

4.12 Real-Time Paradigms

Users, system programmers, and academicians have found a number of useful
paradigms for building concurrency. These real-time paradigms can be coded in Ada
and benchmarked.

Table 33 lists the ACEC real-time paradigms along with the results of running these
benchmarks on the HP and Verdix Ada compilers.

Comments: None.

Additional Real-time Paradigms:

1.

Many real-time implementations require buffered and unsynchronized
communication betwcen tasks. Due to the rendezvous being a synchronous and
unbuffered message passing operation, intermediary tasks are needed to
uncouple the task interaction to allow tasks more independence and increase the
amount of concurrency. Various combinations of intermediary tasks are used in
different task paradigms to create varying degrees of asynchronism between a
producer and consumer. The benchmarks defined here evaluate the cost of
introducing intermediary tasks for various real-time tasking paradigms. The
goal of these benchmarks is to give real-time programmers a feel for the cost of
using such paradigms in a real-time embedded application and to avoid using
such paradigms if the cost is unacceptable for a real-time system.

Benchmark: Measure the cost of rendezvous between a producer and consumer.
The task that is the source of the information is called the producer and the task
that is the recipient of the information is called the consumer.

Benchmark: Measure the cost of rendezvous using buffer tasks. A buffer is pure
server task that provides for one entry for storing of items in a buffer and another
entry for providing items from the buffer. Both the consumer and the producer call
the buffer task to obtain a piece of information.




-37-

Benchmark: Measure the cost of rendezvous using a buffer and and transporter.
This scheme uses two intermediary tasks between the producer and the consumer.

Benchmark: Measure the cost of rendezvous using a buffer and and two
transporters. If both the producer and consumer wish to communicate via a buffer
and both need to be called tasks, it is necessary to use a transporter on each side of
the buffer. This results in the producer-transporter-buffer-transporter-consumer

paradigm.

2. A monitor is commonly used for controlling a system’s resources. For example,
read and write operations to a disk are usually controlled by a monitor that
ensures the integrity of data on the disk. This is also known as mutual exclusion.
Monitors can be implemented to have controlled access to a shared data pool.
Monitors can be implemented via semaphores, event signaling, and rendezvous
mechanism. The implementation via semaphores and event signaling is
essentially the same.

Benchmark: Measure time to access data in a pool using a monitor.

Any number of processes are allowed to read the pool simultaneously, but no
reads are permitted during a write operation. The monitor developed is used to
control the reading and writing of data to the pool. Two implementations of the
monitor can be considered: the first using semaphores, and the second using the
Ada rendezvous mechanism.

4.13 Composite Benchmarks

A composite benchmark is defined as a program, within the context of the application
domain, that looks at the interaction between Ada features rather than the
performance of individual features themselves. The purpose of running a composite
benchmark is to aid in the selection of a suitable compiler and runtime for a particular
application.

The ACEC also includes examples from actual application code. This code contains
test problems representative of how Ada is being used in practice. These are example
test problems drawn from Ada programs extracted from projects. Table 34 lists those
benchmarks along with the results of running these benchmarks on the HP and Verdix
Ada compilers.

Comments: Observations about the ACEC composite benchmarks are:

1. The code contained in the composite benchmarks is not very useful and does not
provide any relevant information for compiler evaluation for real-time systems.

Additional Composite Benchmarks:
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1. Composite benchmarks can be developed for a number of individual
applications such as Intelligence/Electronic Warfare (IEW) systems, avionics
systems, etc. More information about the process of development of composite
benchmarks is contained in a report titled "Ada Composite Benchmark for
Intelligence/Electronic Warfare Systems" [11].

Benchmark: Develop composite benchmarks for IEW systems [11].
4.14 Portability Of the ACEC Benchmarks

The ACEC tests essentially consist of two sets of tests:

a. Tests that do not depend on the MATH packages supplied with the ACEC (e.g.
the tasking tests)

b. Tests that depend on the MATH packages.

The tests that do not depend upon the MATH packages can easily be ported from one
Ada compiler to another. More effort is required to port tests that depend upon the
MATH packages. This section describes the steps that have to be performed to port
the ACEC to any Ada compiler configuration. The ACEC is intended to run on bare
targets as well as targets with operating systems.

4.14.1 Modification To the Command Files

The first step is to modify the command files that run the ACEC benchmarks. The
command files cmp.unx, cmp tstunx and cmp baseunx that run the ACEC
benchmarks have to be modified to reflect the compilation and linking commands of
the Ada compiler system.

Porting Effort: Easily portable.
4.14.2 Modification To the Base ACEC Files

The second step involves modification to the a set of files known as the base ACEC
files. These are global.ada, math_dep.ada, math_test.ada, and dbl_mathtest.ada.

1. global.ada:

An ACEC user can choose to run the timing loop using CPU time rather than
elapsed time. Using CPU time permits the collection of measurements on
multiprogramming target systems without having to shut the system down to
eliminate contending jobs. The ACEC benchmarks utilize the function
CPU_TIME_CLOCK which is defined in the package GLOBAL in the file
globalada. This function is implementation dependent and has to be written for
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each Ada compiler system.

If the system does not support an integer type with at least 32 bits of precision,
the declaration of the type "BIGINT" and "BIGNAT" will not compile and must
be removed.

If the system does not support a floating point type with 9 digits of precision, the
declaration of the type "DOUBLE" will not compile and must be removed.

The function "ADDRESS TO INT" converts a value of type
SYSTEM.ADDRESS to an integer type. This function is used to compute the
code expansion sizes by subtracting the address values of two labe’ ADDRESS
attributes (or of two type ADDRESS variables obtained by a GETADR
function). On different systems, SYSTEM.ADDRESS'SIZE will differ forcing a
modification to the return type of this function.

Porting Effort: Easily implementable.

math_dep.ada:

The package MATH _DEPENDENT in math_dep.ada has to be adapted to
reflect both the characteristics of the target machine floating point hardware
and the facilities which the Ada compilation system provides to manipulate bit
fields in floating point variables. The size and location of the sign, exponent, and
mantissa of a floating point number are critical, as are other representation
details such as the encoding of the exponent field.

Porting Effort: Non-trivial.

math_test.ada and dbl_mathtest.ada:

The file mathtest.ada has the program MATHTEST which tests the math
routines. MATHTEST requires a package MACHINE which contains some
hardware dependent constants which are modified for the ACEC benchmarks.
These values are obtained from the compiler documentation.

The file dbl_mathtest.ada has the program DBL. MATHTEST which tests the
double precision math routines. DBL MATHTEST requires a package
DBL MACHINE which contains some hardware dependent constants which
are modified for the ACEC benchmarks. This information can be obtained from
the documentation for the HP Ada compiler system.

Porting Effort: Non-trivial.
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4.14.3 Input/Output

The third step is to make sure that TEXT IO and FLOAT IO are supported on the
target on which the ACEC suite has to be run. The ACEC outputs strings containing
numeric results of performance tests. If TEXT IO and FLOAT IO are not
supported, the results of the tests cannot be displayed without modification to the
timing code loop. If FLOAT IO is not directly supported, users will have to develop
work arounds.

If the Ada system supports a complete version of the TEXT IO package, this
requirement causes no problems. However, some Ada compilers targeted to real-time
systems (where the hardware is limited) may limit their I/O facilities. The standard
timing output is in microseconds to the nearest tenth. What is needed is the capability
to output real numbers. If thirty-two bit integers are available, one viable option is to
multiply timing results by 10 and then output INTEGR'IMAGE. A user may have to
write a floating point to a text-string conversion routine.

For bare machine implementations of Ada, the effort required to get TEXT IO to
work well enough to output results of the timing and sizing measurement on a console
can be large. Portions of the Ada runtime library may need to be modified, I/O device
drivers may need to be written and tested.

Porting Effort: Non-trivial.
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5. Conclusions

Benchmarking Ada implementations to determine their suitability for real-time
systems is an extremely complex task. This job is made even more difficult due to
differing requirements of various real-time applications. The ACEC benchmarks
provide a good start for benchmarking Ada compilers meant for real-time
applications. However, the ACEC benchmarks need to be augmented with more
benchmarks in certain areas as outlined in this report. It is hoped that the results of
this study will enable appropriate extensions to the ACEC benchmark suite so that
they are more useful in benchmarking Ada compilers meant for real-time systems.
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Appendix A: ACEC Real-time Benchmarks and Execution Results

Appendix A lists the ACEC real-time benchmarks. It also presents the results of
running the ACEC real-time benchmarks on the following Ada compilers:

o HP-Ada Compiler (Releases 3.25 and 4.35) running on HP 9000/350 machine
under HP-UX Release 6.2.

o Verdix Ada Compiler (Release 5.41) hosted on a Sun 3/60 and targeted to a
Motorola 68020 bare machine.

The hardware and software configurations for the two compilers is as follows:
HP Testbed Hardware and Software

The hardware used for benchmarking was Hewlett-Packard 9000/350 CPU running
HP-UX V 6.2. The set "~ can be summarized as follows:

Host: HP 9000/350 running HP-UX V 6.2.

Compiler:  Self-hosted HP (basically the Alsys Ada Compiler)
Ada Development System Version 3.25 and 4.35.

Target: Same as the host.

Verdix Testbed Hardware and Software

The hardware used for benchmarking was Sun 3/60 CPU running Sun Unix 4.2
Release 3.5, linked to a single 12.5 Mhz Motorola 68020 single board computer
enclosed in a multibus chasis. The setup can be summarized as follows:

Host: Sun 3/60, running Sun Unix 4.2 Release 3.5

Compiler:  Verdix Ada Development System targeted to Motorola MC68020
targets, release 5.41

Target: GPC68020 (based on Motorola MC68020 microprocessor)
multibus-compatible computer board having 12.5 Mhz
MC68020 microprocessor, a MC68881 floating point
co-processor, and 2 megabyte of RAM.

The interrupt handling benchmarks were not executed due to lack of the required
hardware to produce external interrupts. A comprehensive performance evaluation of
the HP Ada compilers obtained by running the ACEC and Real-time benchmarks is




presented in reference [10]. For the Verdix compiler, comparing the ACEC real-time

benchmark results to the Real-time benchmarks (listed in [4]) shows that the two sets
of results are in sync for the common features measured by those benchmarks.
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Appendix B: ACEC Benchmarks From a Real-time Perspective

The ACEC benchmarking suite was primarily developed for evaluating the runtime
performance of Ada compilers. Since the suite is comparatively new, not many
organizations have run the ACEC with the intent of evaluating compilers. Being one
of the first organizations outside of the Air Force that evaluated and ran the ACEC on
different compiler implementations, a number of problems about the ACEC have
surfaced. These problems are discussed below.

1

INCLUDE Preprocessor: The ACEC timing code loop consists of four (4) code
files which are incorporated into the source by a preprocessor (INCLUDE)
which supports text inclusion. INCLUDE is written as an Ada program and has
to be modified on systems which do not support the concept of file suffixes as
well as Ada compilers which require Ada programs to have a suffix ".a" instead
of ".ada".

However, the biggest problem with INCLUDE is that for cross-compilers the
INCLUDE command runs on the target and for bare machine implementations
of Ada that may not support a file system, the INCLUDE preprocessor will not
work. However, if the target does support a file system, it takes a very long time
for a single ACEC test to run through the INCLUDE preprocessor (on the
Verdix cross compiler, it took nearly 30 minutes to run a file through the
INCLUDE preprocessor).

Large Number of Tests: The ACEC suite consists of over 1000 tests and many
(725%) of these tests do not provide any useful information about compiler
evaluation. Also, to compile and run the whole suite can take somewhere from 3
to 5 days. Once the tests have been run, it is extremely difficult for an
organization to select the relevant tests (from a real-time perspective) and then
interpret the results in order to do a thorough compiler evaluation. Substantial
effort may be required on the part of an organization to run the ACEC and
interpret the results to perform compiler evaluation. An organization may not
have the time and resources to run the ACEC and then interpret the resuits for
compiler evaluation.

MEDIAN Analysis Tool: The primary focus of the ACEC is on comparing
performance data between different compilation systems rather than on studying
the results of one particular system. The MEDIAN analysis tool isolates
problems where a system does unusually well or poorly. The problem with this
kind of analysis is that if for example two compilers are tested and both
compilers have nearly similar rendezvous timings, the timings may not meet the
real-time requirements. The MEDIAN analysis tool will not isolate this
problem, and an organization will have to analyze the individual test cases to
gain more information. If an organization just depends on the output of
MEDIAN, it is quite possible that problems with the runtime performance of
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real-time Ada features may not be detected. Also, the summary statistics attach
equal weight to all the problems and although one compiler may have a better
summary data, it does not imply that it is better than the other compiler in areas
that are of particular interest for an application. Also, it is a tremendous
amount of effort to analyze the statistical numbers produced for all the
problems (> 1000).

Ada Application Code: The ACEC contains code from some applications that
were developed in organizations using Ada. This code is not very useful and
does not provide any relevant information for compiler evaluation for real-time
systems. The code of these composite benchmarks is not designed using good
software engineering practices and it appears that Fortran code may have just
been converted to Ada. Also, there is no information to interpret the results
produced by these benchmarks and it is extremely difficult to go through the
code and figure out what the results of the benchmarks mean.

Interpretation of Results: In many instances, it is not clear as to why a certain test
has been provided and what is the purpose of running that test. Also, in many
cases, the benchmark code has to be read in order to interpret the results of the
output. More information needs to be provided in order to help interpret the
results produced by running the benchmarks.

Large Number of Iterations: The ACEC tests dynamically compute the number
of iterations necessary to obtain measurement within a specified accuracy. For
many tasking tests, it is quite possible that the number of iterations is rather
large, so that the benchmark could run out of memory while executing the
required number of iterations (due to memory being allocated as more tasks are
activated). This was experienced in the case of the Verdix Ada compiler
targeted to the Motorola 68020 bare machine with 2 megabytes of RAM.




