

SITE INVESTIGATION REPORT

for 166TH TACTICAL AIRLIFT GROUP DELAWARE AIR NATIONAL GUARD GREATER WILMINGTON AIRPORT NEW CASTLE, DELAWARE

HAZWRAP SUPPORT CONTRACTOR OFFICE

Oak Ridge, Tennessee 37831
Operated by MARTIN MARIETTA ENERGY SYSTEMS, INC.
For the U.S. DEPARTMENT OF ENERGY under contract DE-AC05-840R21400

91 2 11 102

REPORT DOCUMENTATION PAGE	MB No Union88
Public indication durden for this collection of information is ost mated to 3 Jerade 1 or 1 docressoonse loculding toolt moving gathering and maintaining the data needed, and completing and reviewing the collection of information. Using comments regarding to information, including suggestions for reducing this durden to Washington meadquarters Nervices. Director are roll 2335 or things, but a 1004 Armaton, via 2202-4302, and to the 19thcalor Management and dudget Progression and the progression of the	rding this purgen estimate or the ther aspect of this notification depends one and endought of the son
1. AGENCY USE ONLY (Leave DIANK) 2. REPORT DATE 3. REPORT TYPE AND MAY 1990 Final Site I	O DATES COVERED nvestigation Report
4. TITLE AND SUBTITLE Site Investigation Report 166th Tactical Airlift Group, Delaware Air National Guard Greater Wilmington Airport, New Castle, Delaware	5. FUNDING NUMBERS
6. AUTHOR(S) N/A	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) E.C. Jordan CO. Portland, Maine	8. PERFORMING ORGANIZATION REPORT NUMBER
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Hazardous Waste Remedial Actions Program Oak Ridge, TN	10. SPONSORING / MONITORING AGENCY REPORT NUMBER
Air National Guard Bureau Andrews Air Force Base, Maryland 20331 11. SUPPLEMENTARY NOTES	
Approved for public release; distribution is unlimited	12b. DISTRIBUTION CODE
13. ABSTRACT (Maximum 200 words)	
Site Investigation of sites determined to possibly contain in quantities that might endanger public health. The study used in the investigation and the results obtained. The data there is a risk to public health and the appropriate means was conducted under the Air National Guard's Installation Research	outlines the procedure a is used to determine if of cleanup. The study
14. SUBJECT TERMS Installation Restoration Program	15. NUMBER OF PAGES

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified 19. SECURITY CLASSIFICATION OF ABSTRACT

20. LIMITATION OF ABSTRACT

Site Investigation Report

Delaware Air National Guard

16. PRICE CODE

FOR
166TH TACTICLL AIRLIFT GROUP
DELAWARE AIR NATIONAL GUARD
GREATER WILMINGTON AIRPORT
NEW CASTLE, DELAWARE

Submitted to:

NATIONAL GUARD BUREAU
AIR NATIONAL GUARD SUPPORT CENTER
ANDREWS AIR FORCE BASE, MARYLAND,
THROUGH
HAZWRAP SUPPORT CONTRACTOR OFFICE
OAK RIDGE, TENNESSEE 37831

Operated by:

MARTIN MARIETTA ENERGY SYSTEMS, INC. FOR THE U.S. DEPARTMENT OF ENERGY

Submitted by:

E.C. JORDAN CO. PORTLAND, MAINE Job No. 5411-03

MAY 1990

TABLE OF CONTENTS

Section	Title	Page No.
	EXECUTIVE SUMMARY	ES-1
1.0	INTRODUCTION	1-1
	1.1 PURPOSE AND APPROACH	1-5
	1.2 SCOPE	1-5
	1.3 HISTORY AND PREVIOUS ENVIRONMENTAL INVESTIGATIONS	1-6
	1.4 PHYSICAL AND CULTURAL SETTING NEAR THE BASE	1-6
	1.5 GEOLOGIC CHARACTERIZATION	1-7
	1.5.1 Regional Geology	1-7
	1.5.2 Base Geology	
	1.6 HYDROGEOLOGIC CHARACTERIZATION	1-13
	1.6.1 Regional Hydrogeology	
	1.6.2 Base Hydrogeology	1-14
	1.0.2 Base hydrogeology	1-14
2.0	FIELD EXPLORATION PROGRAM	2-1
	2.1 SOIL ORGANIC VAPOR SURVEYS	2-1
	2.2 SOIL BORINGS	2-2
	2.3 SUBSURFACE SOIL SAMPLING	2-2
	2.4 SURFACE SOIL SAMPLING	2-2
	2.5 MONITORING WELL AND PIEZOMETER INSTALLATION	2-2
	2.6 AQUIFER TESTING	2-3
	2.7 GROUNDWATER SAMPLING	2-4
	2.8 DISPOSAL OF WASTES	2-4
	2.9 ANALYTICAL PROGRAM	2-4
	2.10 SI PROGRAM CHANGES AND FIELD PROBLEMS	2-5
	2.10 DI INOCKEI CIENCODO END I IEED I ROPEDIO	2 3
3.0	FIELD AND ANALYTICAL RESULTS	3-1
	3.1 SOIL ORGANIC VAPOR SURVEY DATA	3-1
	3.1.1 Site 1	3-1
	3.1.2 Site 2	3-1
	3.1.3 Site 5	3-1
	3.2 SOIL ANALYTICAL DATA	3-7
	3.2.1 Site 1	3-7
	3.2.2 Site 2	3-7
	3.2.3 Site 4B	3-10
	3.2.4 Site 5	3-10
	3.3 GROUNDWATER ANALYTICAL DATA	3-10
	3.3.1 Site 1	3-13
	3.3.2 Site 2	3-13
	3.3.3 Sites 4A and 4B	3-13
	3.3.4 Site 5	3-13
	2.2.7 DIG 2	J-11

TABLE OF CONTENTS (continued)

Section		Title	Page No.
4.0	FIN	DINGS	4-1
	4.1	SOURCE CHARACTERIZATION	4-1
		4.1.1 Site 1	4-1
		4.1.2 Site 2	4-2
		4.1.3 Site 4A	4-2
		4.1.4 Site 4B	4-2
		4.1.5 Site 5	4-3
5.0	CON	CLUSIONS	5-1
	5.1	SITE 1	5-1
	5.2	SITE 2	5 - 1
	5.3		5-1
	5.4		5-1
	5.5	SITE 5	5-1
6.0	REC	OMMENDATIONS	6-1
GLOSSARY	OF A	CRONYMS AND ABBREVIATIONS	
REFERENCE	<u>ES</u>		
APPENDIC	<u>ES</u>		
APPENDIX	A - (GROUND SURVEY DATA AND WATER LEVELS	
APPENDIX	B - 9	SOIL BORING LOGS AND MONITORING WELL INSTALLATION DETAIL	LS
		LABORATORY SOIL TEST DATA	
		HYDRAULIC CONDUCTIVITY RESULTS AND SAMPLE CALCULATIONS	
APPENDIX		SOIL ORGANIC VAPOR SURVEY DATA (INCLUDING REPORT BY	
		TRACER RESEARCH CORPORATION)	
APPENDIX		LABORATORY ANALYTICAL SOIL DATA, QUALITY ASSURANCE, AND	DATA
		QUALIFIERS	
		APPENDIX F-1 - APPENDIX DATA	
		APPENDIX F-2 - VALIDATED DATA	
APPENDIX		LABORATORY ANALYTICAL WATER DATA	
		APPENDIX G-1 - APPENDIX DATA	
		APPENDIX G-2 - VALIDATED DATA	

LIST OF FIGURES

Figure	Title	Page No.
1-1	SITE MAP	1-2
1-2	LOCATION OF SITES	1-3
1-3	ISOPACH MAP OF COLUMBIA FORMATION	1-8
1-4	CROSS SECTION LOCATIONS	1-9
1-5	INTERPRETIVE GEOLOGIC PROFILE A-A'	1-10
1-6	INTERPRETIVE GEOLOGIC PROFILE B-B'	1-11
1-7	INTERPRETIVE GEOLOGIC PROFILE C-C'	1-12
1-8	GROUNDWATER CONTOUR MAP	1-15
3-1	LOCATIONS OF SOV SAMPLING POINTS: SITE 1	3-4
3-2	LOCATIONS OF SOV SAMPLING POINTS: SITE 2	3-5
3-3	LOCATIONS OF SOV SAMPLING POINTS: SITE 5	3-6
3-4	SOIL ANALYTICAL DATA MAP: SITE 1	3-8
3 - 5	SOIL ANALYTICAL DATA MAP: SITE 2	3-9
3-6	SOIL ANALYTICAL DATA MAP: SITE 4B	3-11
3-7	SOIL ANALYTICAL DATA MAP: SITE 5	3-12
3-8	GROUNDWATER ANALYTICAL DATA MAP - SITE 1	3-14
3-9	GROUNDWATER ANALYTICAL DATA MAP - SITE 2	3-15
3-10	GROUNDWATER ANALYTICAL DATA MAP - SITES 4A AND 4B	3-16
3-11	GROUNDWATER ANALYTICAL DATA MAP - SITE 5	3-18
5-1	AREAS OF OBSERVED CONTAMINATION AND SUSPECTED CONTAMINATION SITE 1	N: 5 - 2
5-2	AREAS OF OBSERVED CONTAMINATION AND SUSPECTED CONTAMINATION	N: 5-3

LIST OF FIGURES (continued)

Figure	Title	Page	No.
5-3	AREAS OF OBSERVED CONTAMINATION AND SUSPECTED CONTAMINATION	•	
	SITE 5	5-5	5

LIST OF TABLES

Table	Title	Page No		
1-1	COMPARISON OF IRP SITE NUMBERS	1-4		
3-1	RESULTS OF SOV SURVEY	3-2		

Acces	sion For	
NTIS	GRA&I	
DTIC	TAR	ñ
Unani	punced	ñ
Justa	Sication	`
B7		
Distr	ibution/	
Avni	lobility (ិតវិទន
	Avel. and	/or
Dist	Special	1
	1 1	ſ
0,,		1
['	i i	i
	L	/

EXECUTIVE SUMMARY

This report describes the results of field investigations at the Delaware Air National Guard 166th Tactical Airlift Group (TAG) Facility (the Base), New Castle, Delaware. The property has operated under the U.S. Air National Guard since 1957, having previously been under the jurisdiction of the U.S. Air Force.

A previous study identified three sites for future study (HMTC, 1987). E.C. Jordan Co. (Jordan) completed a series of field and analytical investigations to evaluate the presence or absence of contamination at three identified sites and to gain an understanding of the geology and hydrogeology of the Base. These sites include the Refueling Parking Area (Site 1); the Petroleum, Oil, and Lubricant pumphouse area (Site 2); and Southeast Drainage Ditch (Site 5). During the field program, the presence of contamination was indicated at two basewide locations in the vicinity of the Aircraft Parking Area, a site evaluated in the HMTC study (1987). These two locations are identified as Sites 4A and 4B.

Jordan's field activities consisted of a soil organic vapor (SOV) survey, collection of six surface soil samples, completion of 16 soil borings with soil sampling at selected depth intervals, and installation of 14 monitoring wells and two piezometers. Soil was sampled for laboratory analysis for Target Compound List volatile and semivolatile organic compounds (VOCs and SVOCs), as well as lead and total petroleum hydrocarbons (PHCs). Groundwater samples were taken from all monitoring wells, and analyzed for the same series of compounds as the soil samples.

Site 1 - Refueler Parking Area. The investigations at Site 1 included an SOV survey, drilling of two soil borings with monitoring wells, collection of three surface and five subsurface soil samples, and a groundwater sample from each of the two monitoring wells. The results from the SOV survey indicated nondetect values for total PHCs and low values for total halocarbons (i.e., the sum of tetrachloroethene [PCE], trichloroethene [TCE], and 1,1,1-trichloroethane [TCA]). Surface soils at Site 1 detected elevated levels of SVOCs, PHCs, and lead, while subsurface soils only detected low levels of lead. Groundwater contamination was observed at Site 1 at one of two monitoring wells (MW-101), with elevated levels of VOC contamination (i.e., benzene, 1,1-dichloroethane, and ethylbenzene).

Site 2 - Petroleum, Oil, and Lubricant Pumphouse Area. Investigations at Site 2 included an SOV survey, drilling of three soil borings with monitoring well installation, and collection of three surface and seven subsurface soil samples. The SOV survey results indicated low values for total halocarbons, and very high values for total PHCs (i.e., 1,800 to 58,000 $\mu g/l$). Surface and subsurface soils at Site 2 detected elevated levels of VOCs, SVOCs, PHCs, and lead. Groundwater from MW-103, MW-104, and MW-105 has elevated levels of VOCs, SVOCs, total PHCs, and lead.

Sites 4A and 4B - Aircraft Parking Area. Soil and groundwater contamination was also confirmed at two basewide locations in the vicinity of the Aircraft

Parking Area. Investigations at Site 4 included two monitoring wells, one subsurface soil sample, and two groundwater samples. VOC, SVOC, and total PHC contamination was detected in one subsurface soil sample from MW-111 (Site 4B). Elevated levels of VOCs, SVOCs, total PHC, and lead were also detected in groundwater from MW-111. Groundwater from MW-112 (Site 4A) was contaminated with low levels of halogenated VOCs (PCE and TCE).

Site 5 - Southeast Drainage Ditch. Field studies at Site 5 included an SOV survey, drilling five soil borings, installing five monitoring wells, and collecting seven subsurface soil samples. The SOV survey results indicated two areas of SOV contamination. An area located in the southern portion of Site 5 had total PHC values of 760 to 8,000 µg/l, and lower total halocarbons values. A second area near a fenced storage racility detected elevated SOV total halocarbons and low total PHCs. VOC, SVOC, total PHC, and lead subsurface soil contamination was detected in the one soil boring (MW-108) located in the area associated with the elevated SOV contamination of PHC (southern portion of site). Groundwater contamination was also confirmed at Site 5. MW-108 detected fuel-related VOCs, SVOCs, total PHCs, and lead. Monitoring wells located near the halocarbon SOV contamination (MW-106, MW-107, MW-109, and MW-110) detected PCE and lead (fenced storage area).

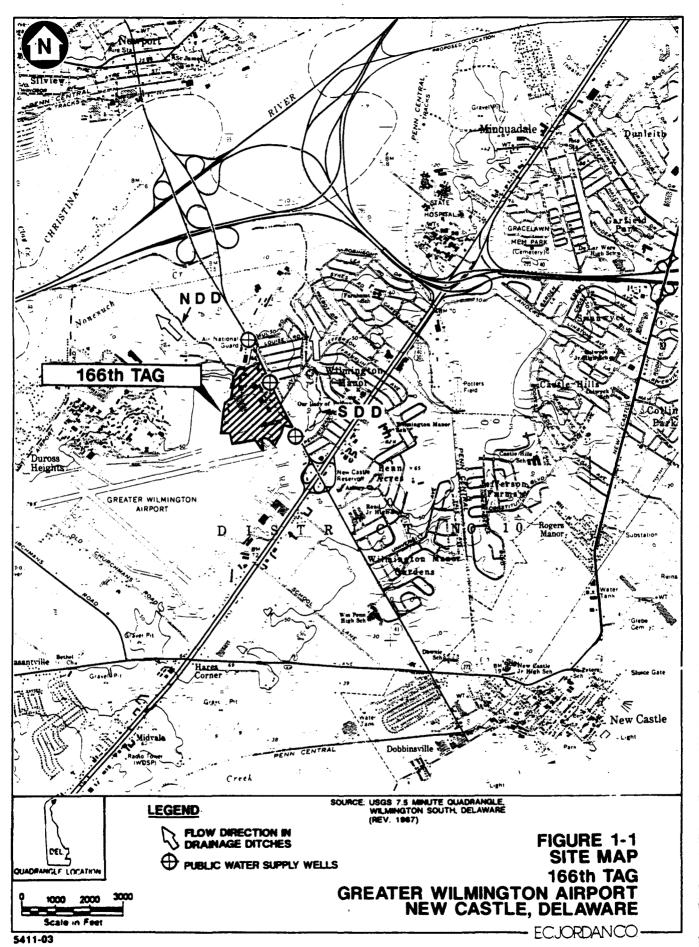
Contamination at Sites 1, 2, and 5 is apparently related to past disposal practices and accidental spills. The source for contamination at Sites 4A and 4B is unknown and requires further study. Basewide characterization of the hydrogeology demonstrates that groundwater flow in the water table aquifer at the Base is south to southwest. When this hydrogeological information is combined with the analytical groundwater data, it demonstrates that potential exists for contaminated groundwater plumes to migrate off-base in a south to southwesterly direction at Sites 1, 2, 4A, and 4B.

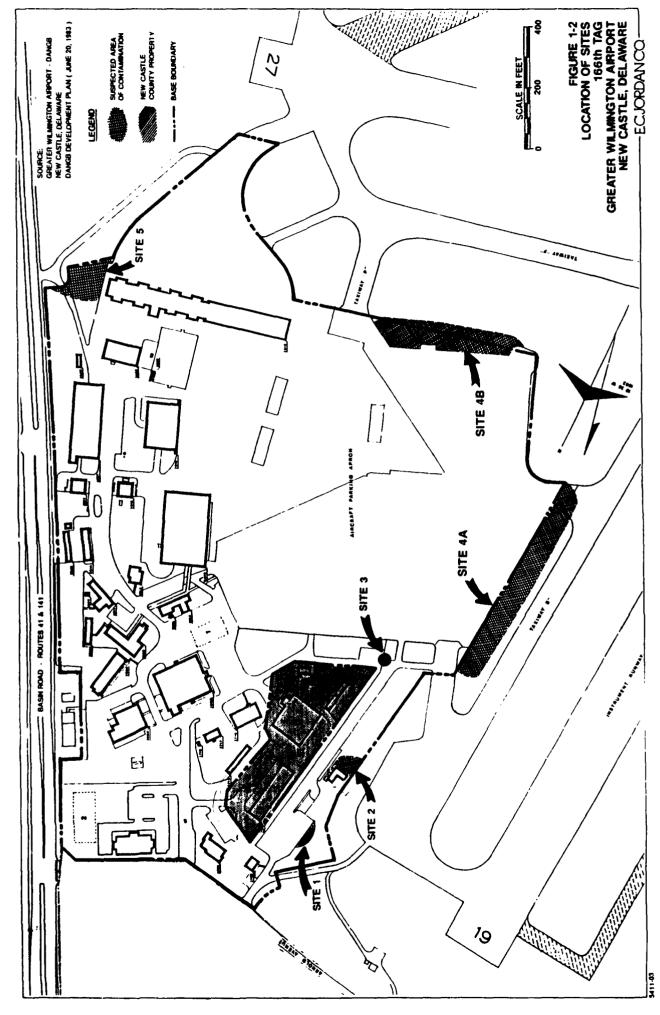
Data relating to contamination distribution and the use of the water table aquifer are not sufficient to conduct a complete assessment of the risk to public health or the environment. Further study on public health and environmental receptors will be conducted in the Remedial Investigation (RI) as part of a risk assessment.

Jordan recommends that further studies be conducted at Sites 1, 2, 4A, 4B, and 5 to complete the groundwater and source area characterization, and to support a risk assessment and a feasibility study.

1.0 INTRODUCTION

As part of the Air National Guard (ANG) Installation Restoration Program (IRP), E.C. Jordan Co. (Jordan) conducted site investigations (SIs) at the Delaware Air National Guard 166th TAG Facility (the Base) in New Castle, Delaware. Jordan's work was performed under Task Order Y-04 from the Hazardous Waste Remedial Action Program (HAZWRAP) of Martin Marietta Energy Systems, Inc. HAZWRAP is assisting the ANG in implementing the IRP. This report describes the findings of field investigations at the Base.


The Base lies between the Delaware and Christina Rivers, and is located in the northeastern corner of the Greater Wilmington Airport (GWA) in New Castle, Delaware, approximately 3 miles southeast of Wilmington, Delaware (Figure 1-1). The property has operated under the ANG since 1957, having previously been under the jurisdiction of the U.S. Army and U.S. Air Force (USAF). Subsection 1.3 describes the Base history in greater detail.


The Preliminary Assessment (Phase I Records Search) described five potential hazardous waste sites at the Base; three of which were recommended for further investigation (Hazardous Materials Technical Center [HMTC], 1987). The sites are Site 1: Refueler Parking Area; Site 2: Petroleum, Oil, and Lubricant pumphouse area; and Site 5: Southeast Drainage Ditch (SDD) (Figure 1-2). Site 1 is an area where refueler tank trucks parked and periodically purged their fuel tanks. The purged material was thought to potentially drain into the grassy area adjacent to Site 1. Approximately 20 years ago, Site 2 was the site of an approximately 10,000-gallon aviation gasoline (AVGAS) spill. Site 5 was an open ditch where wastes were disposed. The two sites (Sites 3 and 4) not recommended for further study are the Ruptured Fuel Line Aircraft Parking area (Site 3) and the Aircraft Parking Area (Site 4).

The site numbering throughout the IRP at the Base has not been consistent. The SI work plan (Jordan, 1988) for the Base was designed to study three sites; and these were numbered Sites 1, 2, and 3. Site numbers 1 and 2 in the SI work plan corresponded to Sites 1 and 2 as defined in the records search (HMTC, 1987). Site 3 in the SI work plan corresponds to Site 5 in the Phase I Records Search (HMTC, 1987). Site numbers in the SI report will be consistent with those defined in the Phase I Records Search. Table 1-1 outlines the site identification used in the various phases of the IRP.

Site 3 was associated with an inactive underground fuel line ruptured during excavation activities that resulted in a fuel loss of approximately 50 gallons. No environmental receptors were near the spill; therefore, it was decided that further IRP consideration was unnecessary (HMTC, 1987).

Site 4, located along the southern and western edges of the aircraft parking apron, was originally used by the Air Force. From 1960 to 1974 Capital Airways leased the area from the city of New Castle, and in 1976 the Base expanded the property they leased from the city to include the Site 4 area. Air Force and Base activities in the Site 4 area included airplane washing and general

TABLE 1-1 COMPARISON OF IRP SITE NUMBERS

166th TAG SITE INVESTIGATION NEW CASTLE, DELAWARE

		SITE NUMBER		
SITE NAME	RECORDS SEARCH	SI WORK PLAN	SI REPORT	
Refueler Packing Area	1	1	1	
Petroleum, Oil, and Lubricant Pumphouse Are	2 ea	2	2	
Ruptured Fuel Line Parking Area	3	N/A	3	
Aircraft Parking Area	4	N/A	4A/4B	
Southeast Drainage Dito	ch 5	3	5	

aircraft maintenance. An abandoned fuel line and fuel hydrants are located near the southern portion of Site 4.

During SI field activities, basewide explorations were sited in the general vicinity of Site 4, and field screening results from subsurface soils and groundwater indicated the presence of contamination. Based on this information, laboratory analytical samples were taken from these locations in the Site 4 vicinity and are reported in this Site Investigation report. The western edge of the Aircraft Parking Area is designated as Site 4A and the southern edge is identified as Site 4B (Figure 1-2).

This report presents findings from SI activities performed at the Base at Sites 1, 2, 4A, 4B, and 5 (see Figure 1-2). The scope of the SI and a discussion of Base history are outlined in Section 1.0. Field methodology and practices are described in Section 2.0. Section 3.0 summarizes data generated during the field program. Findings and conclusions are in Sections 4.0 and 5.0, respectively, and Section 6.0 discusses recommendations for future study at the Base.

1.1 PURPOSE AND APPROACH

The purpose of the Base SI study was to determine the presence or absence of contamination at Sites 1, 2, and 5.

1.2 SCOPE

The scope of the SI study includes the field investigations described in the Project Work Plan for SI, Remedial Investigation (RI), Feasibility Study (FS), and Remedial Design (RD) (E.C. Jordan Co., 1988). The SI field investigations included the following:

- a soil organic vapor (SOV) survey to detect volatile organic compounds (VOCs)
- o completion of 14 monitoring wells and two piezometers
- o collection of six surface soil samples
- o collection of 23 subsurface soil samples
- o groundwater sampling and permeability testing at new monitoring well and piezometer locations
- o laboratory analysis of 29 soil and 14 groundwater samples
- o a survey of locations and elevations of new monitoring wells and piezometers

Prior to the field investigations, Jordan also reviewed existing data, including previous geologic and hydrogeologic reports.

1.3 HISTORY AND PREVIOUS ENVIRONMENTAL INVESTIGATIONS

The GWA was operated as a U.S. Army airport in the early 1940s, and later as a USAF base. The Base has maintained operations at the airport since 1957. Various military aircraft types have been based and serviced at the Base; the present mission is a tactical airlift group (i.e., the 166th TAG). Both past and present operations involved the use of hazardous materials and disposal of hazardous wastes.

1.4 PHYSICAL AND CULTURAL SETTING NEAR THE BASE

Subsection 1.4 summarizes the physical and cultural environment at the Base. The Base is situated on the crest of a broad ridge approximately 70 feet above sea level, between the Delaware and Christina rivers in New Castle, Delaware. The ridge is an erosional and apparent structural feature of the Coastal Plain Province, resulting from Cretaceous and Pleistocene age geologic processes. Wilmington, Delaware's largest city, lies immediately north of the Christina River, approximately 3 miles from the Base. Residential complexes are situated 250 feet east, 1,000 feet west, and 4,500 feet south of the Base. An industrial park is situated 1,000 feet north of the Base. Hills of the Appalachian Piedmont Province, with surface elevations reaching more than 400 feet above sea level, are approximately 4 miles northwest of Wilmington.

The physiography of the 57-acre Base is characterized by smooth terrain, which slopes gently away from a northwest to southeast-trending broad ridge on the eastern perimeter of the Base. Two drainage ditches are located on the Base, ultimately draining into the Christina River north of the Base. The northwest drainage ditch (NDD) begins off-base, adjacent to Sites 1 and 2, and runs into Nonesuch Creek. The SDD begins in an underground surface drainage culvert near Site 5, and runs directly into the Christina River (see Figure 1-1). Nonesuch Creek has associated wetland areas. Much of the Base is paved and has been graded to provide efficient runoff to the ditches.

The climate of this area is tempered greatly by proximity to the Atlantic Ocean. National Weather Service records for the nearby GWA show that average annual precipitation was 41.25 inches from 1956 to 1985, and the net precipitation value was 9.56 inches per year. Average monthly precipitation is distributed relatively evenly throughout the year. The maximum recorded monthly precipitation is generally 7 to 8 inches, and record monthly minimums are between 0.5 to 1 inch. The record 24-hour rainfall is 6.24 inches; heavy rains occasionally occur in late summer and early fall. Most precipitation percolates into the soil and moves into subsurface aquifers.

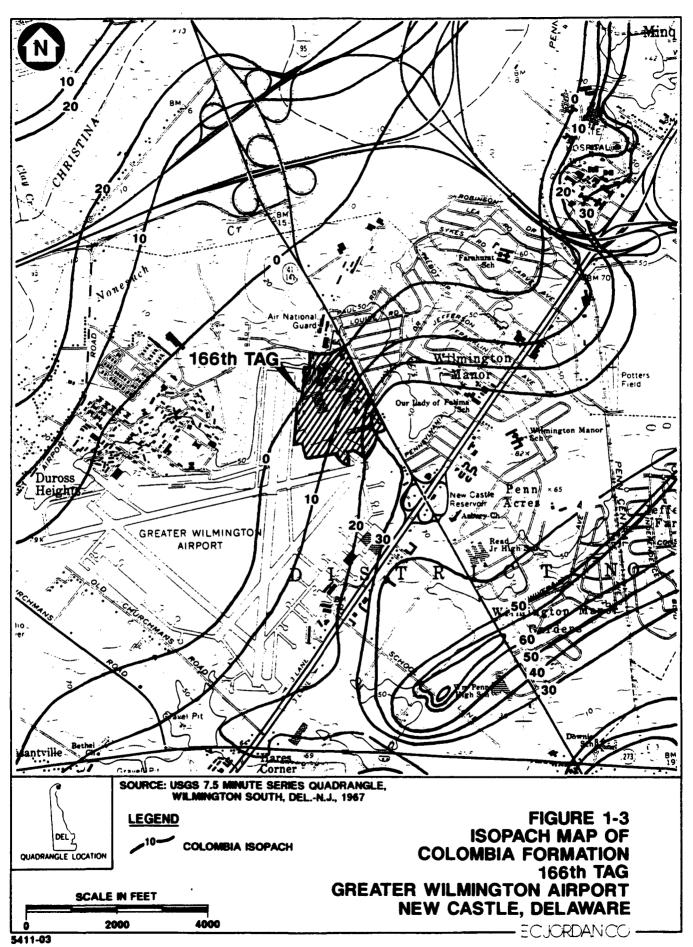
Average annual air temperature is 54°F. January is the coldest month and July the hottest (temperatures average 32 and 76°F, respectively). The inflow of southerly winds across large water areas causes relative humidity to vary between 55 and 78 percent in a typical day.

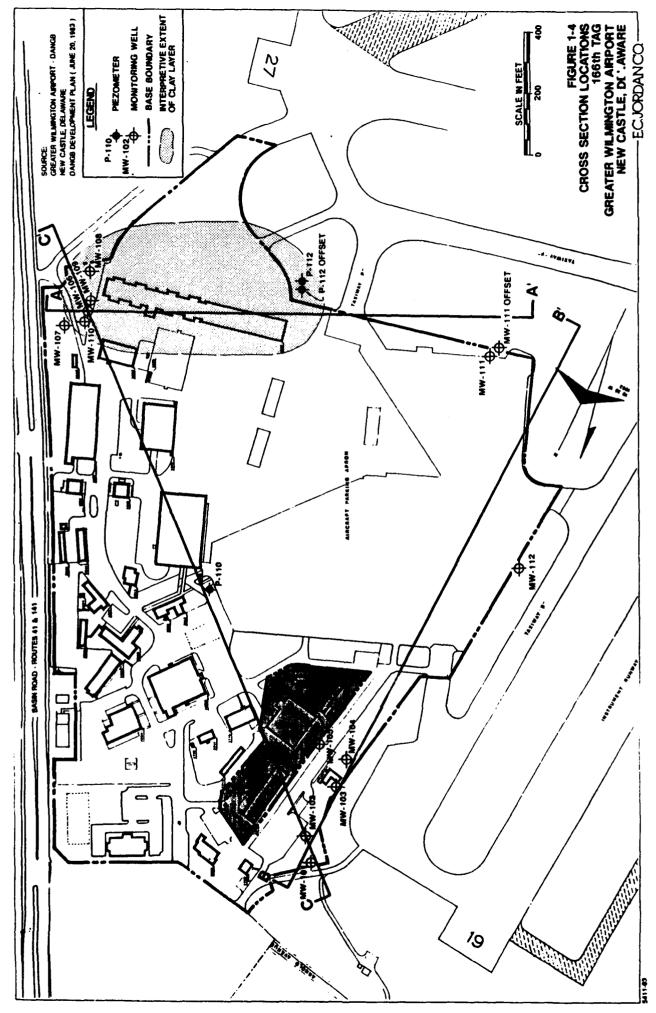
1.5 GEOLOGIC CHARACTERIZATION

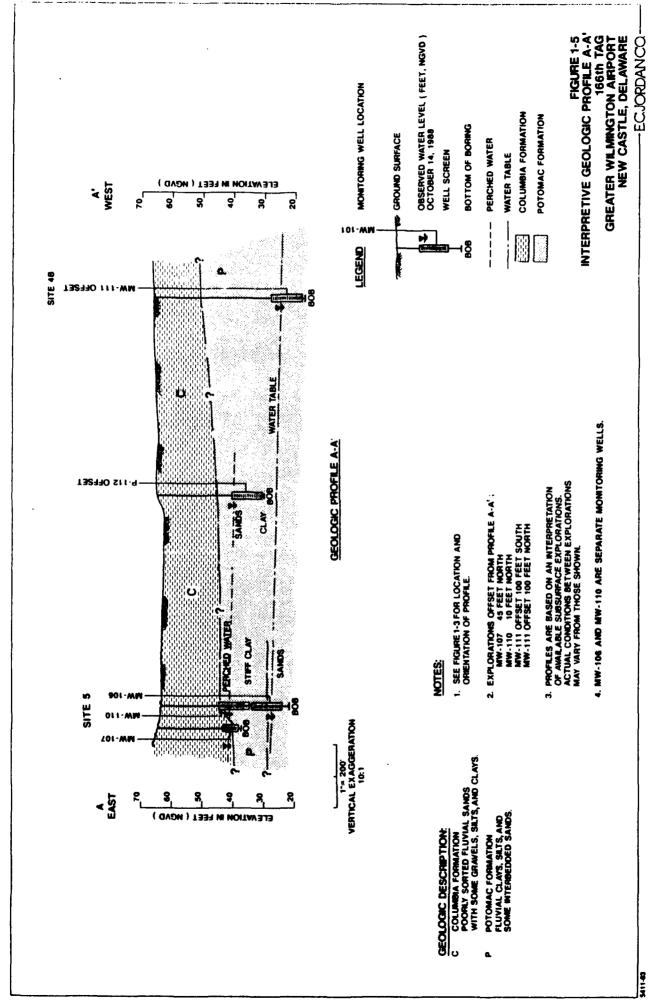
Subsection 1.5 is divided into two parts: a review of the regional geologic information, and a summary of site-specific conditions encountered during the investigation. The regional discussion is based on material presented in previous reports, published geologic literature, and visual observations made in the field. The site-specific information is based on observations and interpretation of the explorations described in Section 3.0.

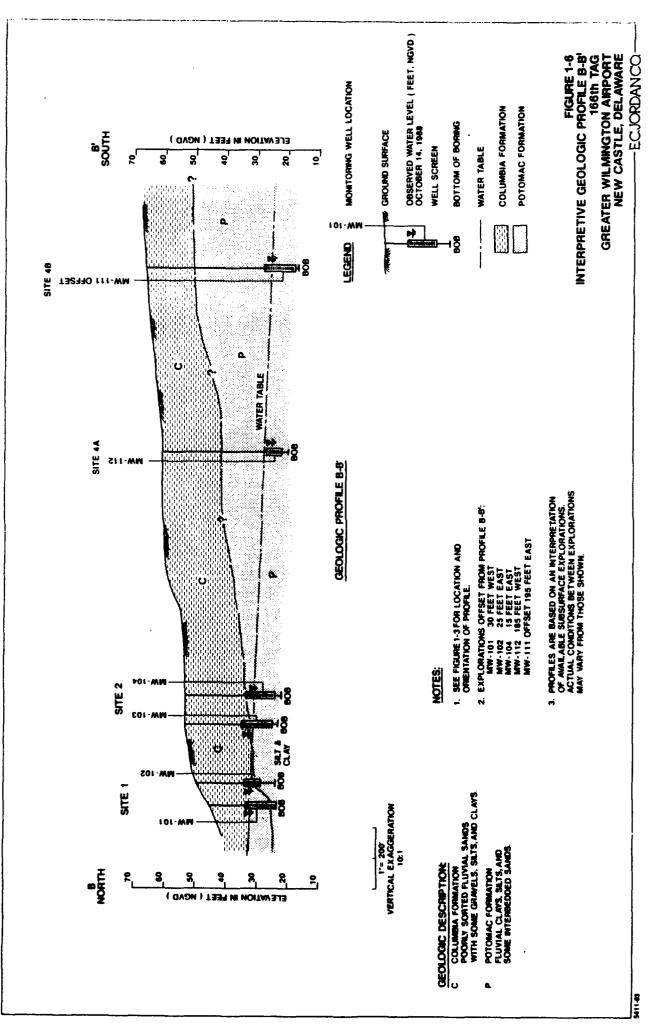
1.5.1 Regional Geology

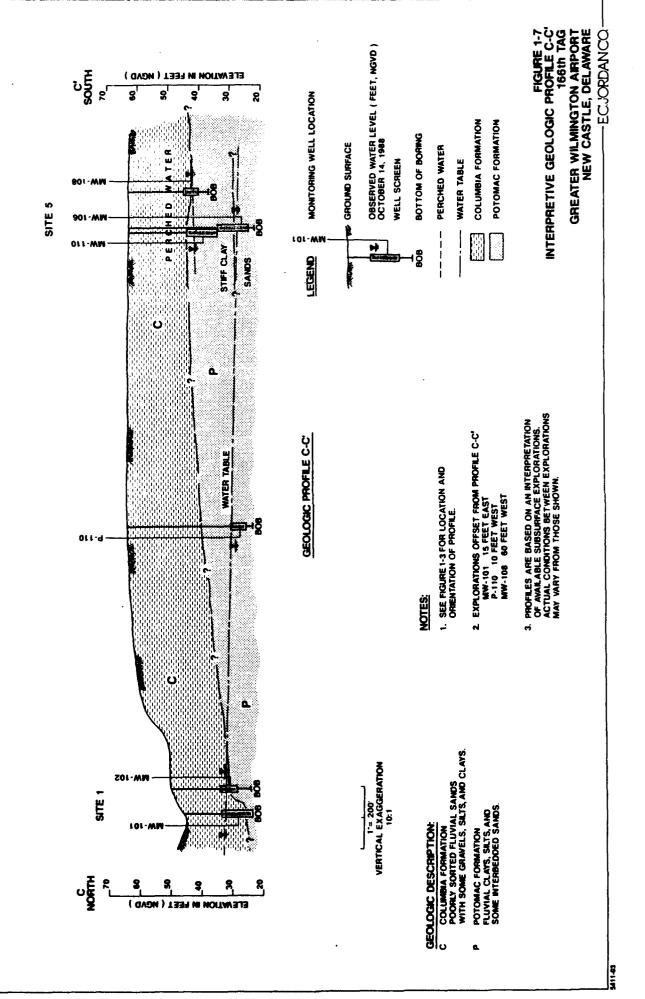
The Coastal Plain Province in the Wilmington area is characterized by unconsolidated sediments of Early and Late Cretaceous ages, uncomfortably overlain in most places by sediments of Pleistocene and/or Holocene ages (Woodruff, 1981).


The Cretaceous deposits, called the Potomac Formation, consist predominantly of fluvial clays and silts with some interbedded sands. Available information indicates that these sands are commonly thin and irregular in the subsurface. The distribution and thickness of sand beds are not mapped in the Wilmington area, including the Base; however, thickness has been depicted along several lines of section off-Base (Woodruff, 1981). These sections suggest that the shallowest Potomac Sand may be only 30 to 40 feet below the land surface in the the Base vicinity. The top of the Potomac Formation in the Base vicinity appears to be within approximately 10 feet of the surface (Woodruff, 1984). Apparently, the formation dips gently toward the southeast.


The overlying Pleistocene sediments (i.e., the Columbia Formation) consist of poorly sorted fluvial sands with some interbedded gravels, silts, and clays (Woodruff, 1981). An isopach map of the Columbia Formation in the general Base area shows that the formation may be thin to absent in the northern part of the Base (Woodruff and Thompson, 1975) (Figure 1-3). This map also indicates that the thickness of the Columbia Formation reaches approximately 30 feet at the southeastern tip of the Base. Continuity of clayey layers above the water table is not known.


1.5.2 Base Geology


A total of 16 soil borings were drilled at the Base during the SI field program (see Subsection 2.2). All the soil test borings are interpreted to exceed the depth of the Columbia Formation, penetrating the underlying Potomac Formation. These relationships are shown in basewide geologic cross sections (Figures 1-4 through 1-7).


The Columbia and Potomac Formations are similar; in the absence of a clay layer that commonly occurs between the two formations, distinguishing the boundary is difficult. Subtle sedimentological and color differences are the criteria used to differentiate between the two formations when a clay layer is not present. Gravel lenses commonly occur in the Columbia Formation, and are typically absent in the Potomac Formation. The Columbia Formation is typically brown or orange in color; the Potomac Formation commonly has lenses of red, purple, and white clay, and blue-gray sand. Therefore, the absence of gravel lenses and

the presence of the distinguishing colors was used to differentiate between the two units at the Base.

The Columbia Formation was found to generally consist of well-graded brown, orange, and olive-colored stratified sands and silt, with some gravel. Individual lenses within the formation are sometimes poorly graded, with occasional clay and silt lenses. Thickness of the Columbia Formation was found to be consistent throughout the study area, as shown in Figures 1-5 through 1-7, with a maximum observed thickness of 24 feet (MW-107 and P-110). The observed thickness in the southern portion of the Base is consistent with estimated values (Woodruff and Thompson, 1975). In the northern portion of the Base the Columbia Formation is approximately 15 to 20 feet thick, and is not thin to absent as predicted by Woodruff and Thompson (1975).

The Potomac Formation also showed variability in texture and color. At Site 5, the upper portion of the Potomac Formation is a thick variegated red, gray, purple, and white silt and clay, with a trace of fine sand. The unit is stiff, dry to damp, and may act as an effective barrier to downward percolation of groundwater. The clay layer was also observed at P-112. The stiff clay at the top of the Potomac Formation is not observed at Sites 1, 2, and 4. The Potomac Formation at these sites the unit is a bluish-gray very fine silty sand, which may represent the upper sandy zone (Woodruff, 1981).

Since the clay layer observed between the two units at Site 5 and at P-112 is not present at Sites 1, 2, 4A, 4B, or at the other basewide locations, the contact between the two formations at these locations is not easily observed. The boundary is interpreted by considering the lack of gravel and the previously discussed color change criteria.

1.6 HYDROGEOLOGIC CHARACTERIZATION

This section is divided into two parts: a review of the regional hydrogeologic information and a summary of site-specific hydrogeologic conditions encountered during the investigation. The regional discussion is based on material from previous reports, published geologic literature, and field observations. The site-specific information is based on data collected from explorations described in Section 3.0.

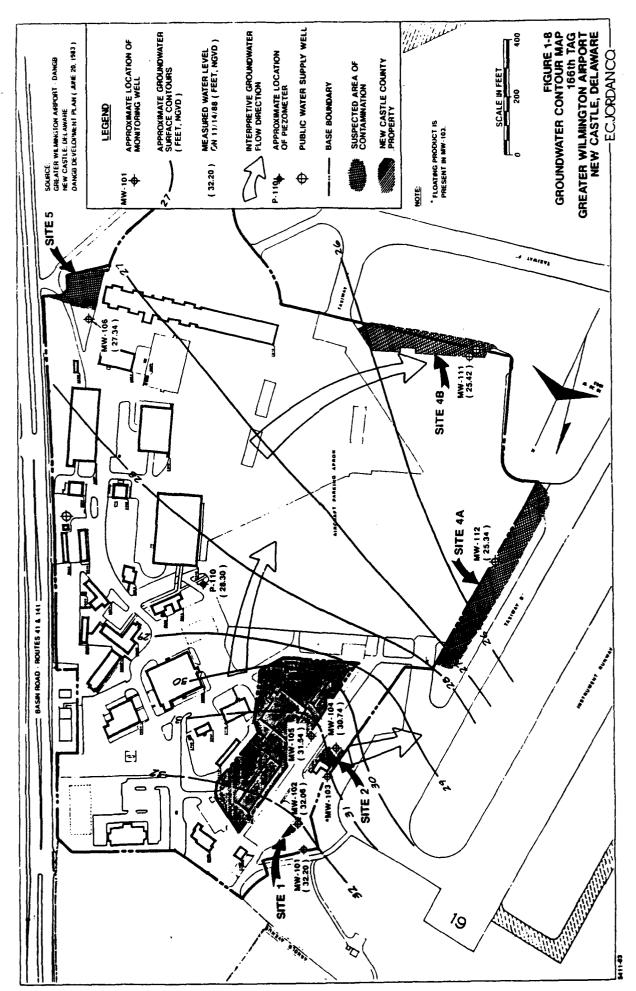
1.6.1 Regional Hydrogeology

Sandy zones within both the Columbia and Potomac formations serve as sources (i.e., aquifers) of public drinking water (Woodruff, 1981). Several wellfields tapping the Potomac Formation in the area surrounding GWA to the south and east have been used for many years.

A shallow water table lies within the Columbia Formation and is believed to nearly parallel the general topographic surface. Because the Columbia Formation is variable in thickness (i.e., from 10 to 40 feet), the water table aquifer may also occur in the upper portions of the Potomac Formation (Woodruff, 1981). The effects of supply pumping on the elevation of the water table are not known, but are probably insignificant. Therefore, shallow

unconfined groundwater is assumed to move in topographically downslope directions.

The saturated zone of the Columbia Formation (i.e., the water table aquifer) serves as an important regional source of recharge to the underlying Potomac aquifer via vertical leakage. In addition, the proximity of the Potomac Formation to the land surface in the Base area and the local elevation place the Base in the direct recharge area for the upper sands of the Potomac Formation (Woodruff, 1984).


Approximately 8.5 million gallons per day of groundwater is pumped from nine wellfields tapping the Coastal Plain formations at Wilmington (Woodruff, 1984). In the GWA area, pumping is largely from upper Potomac sands. Approximately half of the areal pumpage is derived from local recharge areas; the remainder comes from expanding cones of depression (Woodruff, 1984). The regional groundwater flow in the Potomac Formation is eastward; however, the effects of pumping may locally perturb this relationship. Details appear to be lacking; however, potentiometric drawdown within these depressions has reached below sea level, which can cause important changes in the areal groundwater flow pattern. Woodruff implies that water levels in wells tapping the Potomac Formation normally fluctuate substantially in response to varying rates of wellfield pumping (Woodruff, 1984).

Adjacent to the Base along Route 141, two wells, approximately 200 feet deep and owned by the Artesian Water Company, are seasonally pumped to supplement public supply from other wellfields. A third deep well (i.e., Airport No. 1), also along Route 141, is located on the Base near Building 2823 (see Figure 1-8). Due to reported drawdown interference, this well has not been used in recent years. No other water supply or monitoring wells (except those installed by Jordan) exist on the Base property.

1.6.2 Base Hydrogeology

Interpretation of the Base hydrogeology is based on water level measurements taken during the SI field program. Results of the interpretation of these measurements for the water table aquifer are presented in a basewide water level contour map (Figure 1-8). Water levels obtained November 14, 1988, were used to generate the contour map. Water level data are tabulated in Appendix A.

Data shown in Figures 1-5, 1-6, and 1-7 demonstrate the occurrence of at least two distinct aquifer systems at the Base. At Site 5, MW-106 was drilled through the Columbia into the Potomac Formation. At the top of the Potomac Formation, a thick silt and clay zone acts as a local aquitard, and produces a locally perched water table. The perched water table is illustrated by the water levels in monitoring wells MW-107, MW-108, MW-109, and MW-110. The lower elevation of the water level in the deeper monitoring well (MW-106) is established below the aquitard, and defines the water table aquifer. The perched water table is also observed at P-112; however, it is not observed in the remaining exploration sites.

The groundwater flow direction in the perched water table in the Site 5 vicinity is not clear. Water levels in the perched water table vary, making prediction of flow direction difficult. More definitive information on groundwater flow in the perched water table will be developed in the RI. Hydraulic conductivities of the screened intervals for the monitoring wells at Site 5 have values in the range of 4×10^{-3} to 4×10^{-4} inches per second (in/sec) (10^{-2} to 10^{-3} centimeters per second [cm/sec]). The existing data are inadequate to definitively indicate the areal extent of the perched system, but the estimated extent of the clay layer is shown in Figure 1-4.

Locally, perched water resides above the water table aquifer, and potentially serves to recharge the deeper water table aquifer. The integrity of the aquitard in the Site 5 vicinity is unknown. The deep monitoring well at Site 5 (MW-106) and all other monitoring wells and piezometers are interpreted to be screened in the more extensive water table aquifer (see Figures 1-5, 1-6, and 1-7). This deeper, broader aquifer shows a southwestward direction of movement, with gradients ranging from 0.001 to 0.003 ft/ft (see Figure 1-7). Using an assumed porosity of 0.3, the 4×10^{-3} to 4×10^{-4} in/sec (10^{-2} to 10^{-3} cm/sec) range of hydraulic conductivity gives flow velocities ranging from 0.009 to 0.28 ft/day (3 to 102 ft/yr).

At Sites 1 and 2, five soil borings and monitoring wells were installed. Clay layers that gave rise to perched water above the water table aquifer at Site 5 are absent at Sites 1 and 2. On this northern end of the Base there is no distinct contact between the two formations; the Potomac Formation has an upper sand zone directly overlain by sands and silty sands of the Columbia Formation. The water table aquifer occurs in these Potomac sands at Sites 1 and 2.

The inferred flow direction at Sites 1 and 2 is southwest (see Figure 1-8). This direction is roughly the same as groundwater movement predicted from the deeper wells within the Potomac Formation (P-110, MW-111, and MW-112) (see Figures 1-5, 1-6, and 1-8). Hydraulic conductivities at Sites 1 and 2 are in the 4×10^{-3} in/sec (10^{-2} cm/sec) range, with local gradients of 0.01 ft/ft. Using an assumed porosity of 0.3 for the sediments, the groundwater flow velocity in the Sites 1 and 2 area was calculated at 0.95 ft/day (i.e., 345 ft/yr).

The potentiometric heads for wells at Sites 1 and 2 are much higher than the basewide pressure head within the Potomac Formation, suggesting that Sites 1 and 2 are in a recharge area. The higher piezometric heads may also be related to either the large paved area above the piezometers, which act to minimize local vertical recharge, or the focusing of surface drainage recharge in the NDD at Sites 1 and 2, which could artificially mound the groundwater.

2.0 FIELD EXPLORATION PROGRAM

To confirm or refute the existence of suspected environmental contamination at the Base, Jordan conducted field investigations. The field program ran from September 27 to November 8, 1988. These investigations focused mainly on source characterization; however, a limited study of groundwater movement was included. Section 2.0 describes field methods used during the SI at the Base, program changes, and problems encountered during the field program.

2.1 SOIL ORGANIC VAPOR SURVEY

The SOV survey, conducted at three of the Base sites (Sites 1, 2, and 5), located previous source areas and optimized soil boring and monitoring well locations. The SOV survey was conducted by Tracer Research Corporation (TRC) of Tucson, Arizona, using methodology described in this subsection.

At each SOV sampling point, a 1-inch outside digmeter (OD), hollow steel probe was driven into unsaturated soil to depths between 3 and 7 feet. A vacuum pump, attached to the end of the steel probe, was used to withdraw gas from the soil pore space. The gas was collected in a syringe and analyzed on-site using a gas chromatograph (GC) equipped with an electron capture detector for chlorinated VOCs, and a flame ionization detector for nonchlorinated VOCs. GC calibration standards for tetrachloroethene (PCE), trichloroethene (TCE), trichloroethane (TCA), and benzene, toluene, and xylene (BTX) were run to enable identification of these compounds during the survey. A Jordan geologist was present during the entire SOV survey program. The results of the SOV survey are shown in Subsection 3.1.

The SOV survey at Site 1 focused on a grassy area adjacent to the parking area for the fuel tank trucks and in the drainage area of the NDD. A total of 18 sampling points, located on a 30-foot grid, was sampled at Site 1 (see Figure 3-1).

At Site 2, the SOV survey was concentrated in the area adjacent to the five 50,000-gallon underground storage tanks (USTs) associated with the POL building, and in the area impacted by the past AVGAS spill (see Figure 3-2). A total of 14 sampling points, spaced at 20-foot intervals, was sampled in the southern, western, and northern sides of the POL pumphouse facility.

The SOV survey at Site 5 totaled 20 sampling points along the region where the SDD was originally exposed (see Figure 3-3). Sixteen points were located on a 50-foot grid, extending from the southeastern corner of the base to the southern end of Building No. 2821. Four additional SOV points (SG-10, SG-11, SG-12, and SG-20) were located around SG-8, where high levels of total petroleum hydrocarbons (PHCs) were detected.

2.2 SOIL BORINGS

A total of 16 soil borings was completed during the SI field program. Thirteen borings are site-related and three provide basewide geologic control locations. Monitoring wells were installed in the site-related soil borings and piezometers were installed in the other basewide control locations. The soil borings and monitoring wells were installed by John Mathes and Associates, Inc. (Mathes), and all borings were advanced with a 4.25-inch inside diameter (ID), hollow-stem auger.

A total of two soil borings were installed at Site 1, with boring depths of 22 feet (MW-101) and 26 feet (MW-102). At Site 2, three soil borings (MW-103, MW-104, and MW-105) were drilled, and the boring depths were all approximately 30 feet. One soil boring was installed at Site 4A (MW-112) and two were drilled at Site 4B (MW-111 and MW-111 offset). The boring depths at Sites 4A and 4B ranged from 41 to 49 feet deep. Five soil borings were installed at Site 5 (MW-106, MW-107, MW-108, MW-109, and MW-110), and the boring depths ranged from 22 to 41 feet. Soil boring locations for Sites 1, 2, 4A, 4B, and 5 are shown in Figures 3-4 through 3-7.

Three soil borings were also installed at two basewide locations (P-110 and P-112/P-112 offset) ranging from 34 to 41 feet deep (see Figure 1-4).

2.3 SUBSURFACE SOIL SAMPLING

Subsurface soil samples from the borings were collected using 2-foot-long, split-spoon samplers at 5-foot and continuous intervals; analytical soil samples were taken from nine of the borings. Soil samples were screened for VOCs with a photoionization (PI) meter immediately after the split-spoon sampler was opened. Samples were also screened using a field GC. The PI meter and GC field-screening results were used to select samples for laboratory analysis. A Jordan geologist was present during the soil boring program; boring logs are in Appendix B. Drill cuttings from soil borings associated with high GC or PI meter readings were contained in 55-gallon drums. Cuttings were contained from MW-103, MW-104, MW-108, MW-111 Offset, and MW-111.

2.4 SURFACE SOIL SAMPLING

Surface soil samples were collected from six locations at Sites 1 and 2, and were distinct from the soil boring locations (see Figures 3-4 and 3-5). Samples were screened for VOCs with a PI meter immediately after the ground surface was broken, and VOC samples were taken. Using a spade, two or three samples from a 3-foot circular area were composited laterally and SVOC, total PHC, and lead samples were taken.

2.5 MONITORING WELL AND PIEZOMETER INSTALLATION

Monitoring wells and piezometers were constructed identically consisting of 2-inch ID, flush-jointed Schedule 40 polyvinyl chloride (PVC), with 0.01-inch

slot PVC screens. Each monitoring well or piezometer consists of a 5- or 10-foot screened interval at the bottom of the boring. Well screens were placed with approximately 2 feet of the screen in the vadose zone. A sufficient amount of 2-inch ID flush-jointed riser was added above the screen to reach approximately 2 feet above ground surface. A vented, plastic cap was installed on each monitoring well and piezometer (see Appendix B). The monitoring wells and piezometers are constructed identically; however, the two installations are distinct in their planned uses. Monitoring wells are planned to be sampled; piezometers are designed to provide hydrogeologic information only, without sampling.

Before installation, each borehole was advanced and/or backfilled to the desired installation depth. Monitoring wells and piezometers were installed through 4.25-inch ID, hollow-stem augers. Clean silica sand was used as backfill around the screened portion of the well. The sandpack was extended a minimum of 2 feet above the top of the screen, and a 3-foot bentonite pellet seal was placed above the sandpack. During installation operations, the augers were withdrawn in small increments to avoid disturbing the sandpack and exposing the borehole sides above the backfill. Above the bentonite seal, the borehole was backfilled with cement-bentonite grout to the ground surface. Metal protective casings were cemented in place, and the wells and piezometers were locked with brass, keyed-alike locks.

After the installations were completed, monitoring wells and piezometers were developed. Well development was accomplished by continuously pumping the well for 2 to 3 hours, or until the discharge was visually clean. Development water from monitoring wells and piezometers with high PI meter readings was contained in 55-gallon drums. Monitoring wells and piezometers in which development water was contained include MW-101, MW-103, MW-104, MW-105, MW-106, MW-107, MW-138, MW-109, MW-110, MW-111, MW-111 offset, MW-112, P-112, and P-112 offset.

At the completion of field activities, a ground survey of monitoring wells and piezometers was conducted by J.M. Stewart, Inc. (Stewart), of Philadelphia, Pennsylvania. The vertical datum is NGVD 1929 and the horizontal datum is the Delaware Plane Coordinates 1983 adjustment. Both horizontal and vertical control originated from the NOAA monument, Hare 2. Well elevations, ground surface elevations, and horizontal locations were determined to the nearest 0.01, 0.01, and 0.1 foot, respectively. Ground survey data are presented in Appendix A.

2.6 AQUIFER TESTING

Rising-head permeability tests were performed on monitoring wells and piezometers to estimate hydraulic conductivity of the aquifer at each location. To perform this test, the water in the well was instantly depressed; recovery to static level was accurately monitored through measurements made logarithmically with time. The water table recovery was monitored by an In-situ Hermit Data Logger with a 20-pounds-per-square-inch pressure transducer.

The test apparatus operated as follows. First, the pressure transducer was emplaced and initialized. A 3-foot-long, 1-inch OD slug was then lowered to a

minimum of 6 inches above the transducer, and the well was allowed to equilibrate. The slug was removed, depressing the water level, and the water table recovery was monitored by the data logger. Two rising-head tests were performed on each monitoring well and piezometer. Data collected from the rising-head tests were analyzed by the Hvorslev method (Hvorslev, 1951). Plots of these data and a sample calculation to determine hydraulic conductivity are included in Appendix D. The tabulated hydraulic conductivity values represent an average of the two tests at each monitoring well or piezometer.

2.7 GROUNDWATER SAMPLING

A single round of groundwater samples was collected from all newly installed monitoring wells to characterize the extent and type of contaminants present in the groundwater in the water table aquifer (see Subsection 3.3 for site-by-site discussion of groundwater analytical data). Groundwater samples were labeled, preserved, and shipped to CompuChem Laboratories, Inc. (CompuChem), for VOC, SVOC, total PHC, and lead analysis. Chain-of-custody procedures and Quality Assurance Project Plan (QAPP) requirements were followed. Sampling purge water from monitoring wells and piezometers with high PI meter readings was contained in 55-gallon drums along with the development water.

2.8 DISPOSAL OF WASTES

Based on field PI meter measurements, various of waste materials were contained during the SI field program. Five soil borings had soil cuttings contained (see Subsection 2.2), and developing and purge water from 14 monitoring wells and piezometers was contained (see Subsections 2.5 and 2.7). The soil and water waste materials were analyzed for parameters indicated by the Delaware Department of Natural Resources and Environmental Control (DNREC), including Target Compound List (TCL) VOCs and SVOCs, Priority Pollutant inorganics, TCL pesticides and PCBs, and Resource Conservation and Recovery Act (RCRA) characteristics tests. Results from the laboratory analysis were submitted to the DNREC along with proposed methods of disposal. Following discussions with the DNREC and New Castle County Department of Public Works, soil cuttings from MW-103 was disposed at the State of Delaware Solid Waste Landfill and all other soils were disposed on-base. Wastewater was disposed into the New Castle County water treatment system, using sewer lines located on-base.

2.9 ANALYTICAL PROGRAM

Using Contract Laboratory Program (CLP) protocols with full data validation (except for PHCs), VOCs, SVOCs, total PHCs, and lead were analyzed on the six surface soil composites, the 23 selected subsurface soil samples, and the 14 groundwater samples by CompuChem. Methodology is described in Subsection 3.2. All chain-of-custody procedures and QAPP requirements were followed. Portions of all samples were placed in jars designated for VOC field-screening, and drillers' jars (test boring samples only) for reference purposes. Sieve analyses of selected test boring samples are in Appendix C.

2.10 SI PROGRAM CHANGES AND FIELD PROBLEMS

Eight monitoring wells at three sites (Sites 1, 2, and 5) and four basewide piezometers were initially planned for the SI program (E.C. Jordan Co., 1988). During the installation of basewide piezometers in the Site 4 vicinity, field screening results indicated the presence of contamination. Since Site 4 had been previously identified as a potential hazardous waste site, monitoring wells were installed and the two basewide locations in the Site 4 vicinity were designated Sites 4A and 4B (see Section 1.0). At Site 5, perched water was encountered above the water table aquifer. To monitor this perched water and also evaluate the deeper water table aquifer (MW-106), an additional monitoring well (MW-109) was installed and screened in the perched water.

Initially, only the monitoring wells at Sites 1, 2, and 5 were to be sampled. However, field-screening results of soils from two of four basewide locations (Site 4A [MW-112] and Site 4B [MW-111]) during the drilling effort indicated significant levels of contamination; therefore, groundwater was sampled at MW-111 and MW-112.

During well development, the drilling subcontractor (i.e., Mathes) potentially impacted two monitoring wells and one piezometer (MW-109, MW-111, and P-112). The monitoring wells and piezometers were developed using an air compressor for air-lifting water. Jordan geologists, upon periodic inspection of well development at MW-109, observed that the backup air filter on the air line was saturated with oil. A sheen of oil was also observed on top of contained well development water. Recognizing that other monitoring wells and piezometers may have been similarly impacted, Jordan personnel checked the contained developing water from monitoring wells and piezometers developed before MW-109. The sheen of oil on the contained developing water was observed on the P-112 and MW-111 water surface, the last two installations developed before MW-109. An oily sheen was not observed at MW-112, which was developed before P-112 and MW-111. The defective air compressor was replaced and the potentially contaminated wells were redeveloped to minimize contamination to groundwater.

In addition, the monitoring well and piezometers were replaced by Mathes. MW-110 replaced MW-109, and P-112 offset and MW-111 offset replaced P-112 and MW-111, respectively. MW-109 and MW-111 were sampled to evaluate the effects of oil on groundwater composition. These data are included in Appendix G. The resulting data between the two wells appears to be consistent and is included in this report for comparison purposes. In future work, only MW-111 offset will be used as the monitoring point. VOC and SVOC compounds in MW-109 and MW-110 also reflect no potential contamination from the development process. However, total PHCs were detected in MW-109 (8 parts per million [ppm]), which are probably related to oil from the air compressor. The monitoring well and piezometers (MW-109, P-112, and MW-111) contaminated during well development will be removed and the borings grouted according to DNREC regulations.

3.0 FIELD AND ANALYTICAL RESULTS

Section 3.0 includes a summary of investigations, field observations, and analytical sampling of soil and water samples. Subsection 3.1 presents the data compiled from the SOV surveys at Sites 1, 2, and 5. The data from soil samples obtained from test borings and surface sampling are presented in Subsection 3.2, and the groundwater analyses are summarized in Subsection 3.3.

3.1 SOIL ORGANIC VAPOR SURVEY DATA

The soil gas data are presented in Subsections 3.1.1 through 3.1.3. Total PHC and total halocarbons (i.e., the sum of PCE, TCE, and TCA) for each SOV sampling point are in Table 3-1. Elevated levels of total PHCs were found at Sites 2 and 5; Site 5 also had elevated levels of total halocarbons. Site 1 had only low values for total halocarbons and nondetect values for total PHC. Complete analytical results, methodology, equipment, analytical and quality assurance/quality control procedures, and the data report prepared by TRC are contained in Appendix E.

3.1.1 Site 1

A total of 18 sampling points was included in the SOV survey at Site 1 (Figure 3-1). Total PHC data show low levels across the whole site. Total halocarbon values were also low, with the highest values less than 1 microgram per liter ($\mu g/\ell$).

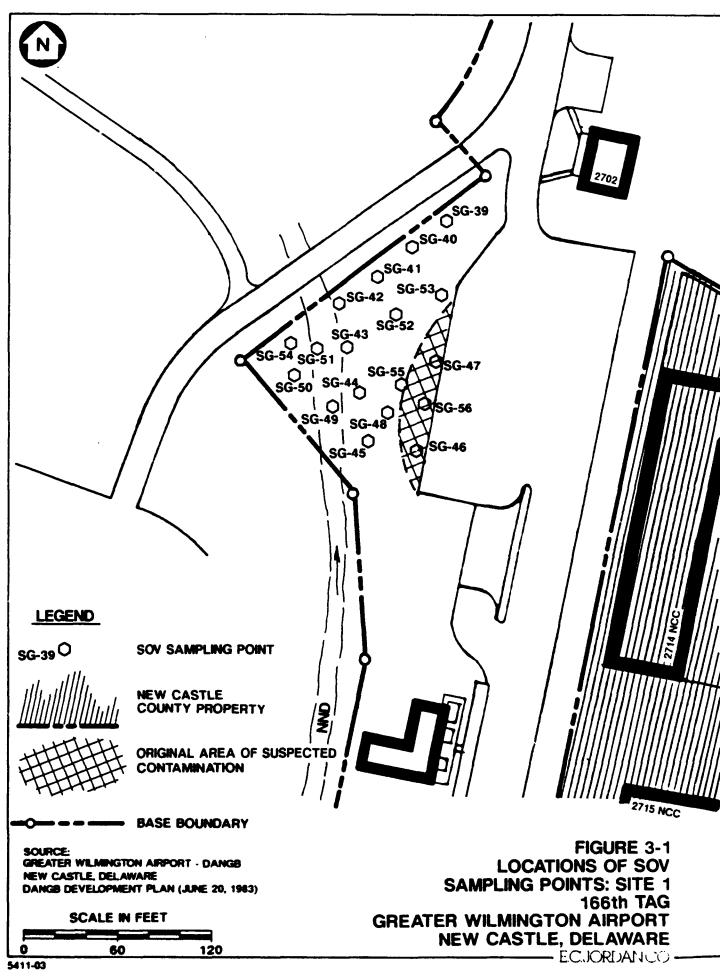
3.1.2 Site 2

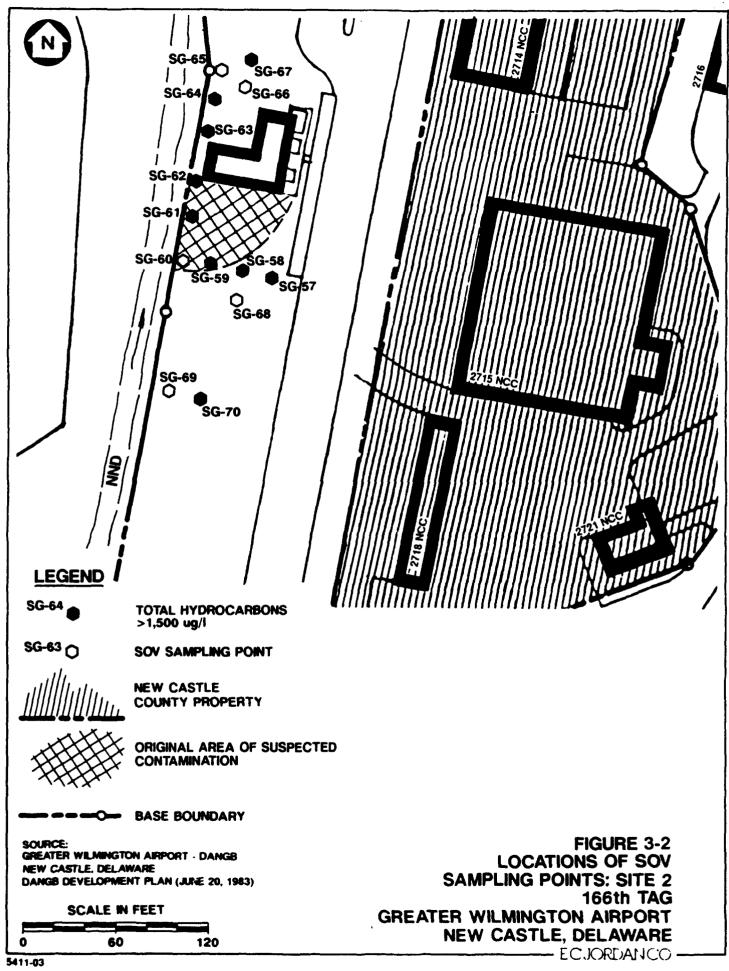
Fourteen SOV sampling points were located at Site 2 (Figure 3-2). Several points have high levels of total PHCs (1,800 to 58,000 $\mu g/\ell$) and BTX. The SOV sampling points with these high values are located on the southwest (SG-57, SG-58, and SG-59) and northwest (SG-61, SG-62, SG-63, SG-64, and SG-67) sides of Building 2701 (see Table 3-1 and Figure 3-2). These high total PHCs and BTX values are indicative of elevated levels of subsurface fuel-related contamination. Several sampling points (SG-60, SG-65, and SG-66) adjacent to those with high total PHCs record low values of total PHC and BTX. The reason for these anomalously low readings are not clear; however, it may be related to subsurface permeability variations or construction details that inhibit mobility of SOVs. The total halocarbons for all SOV sampling points at Site 2 have values less than 0.50 $\mu g/\ell$. Based on these results, soil borings and monitoring wells were located near the high values of total PHCs.

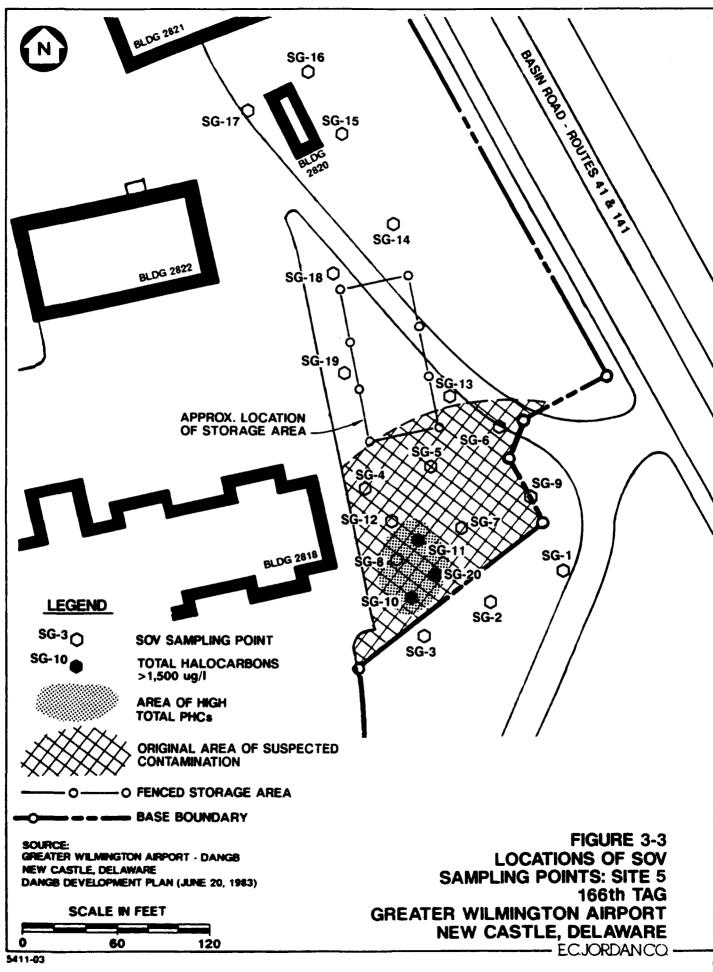
3.1.3 Site 5

The SOV survey at Site 5 totaled 20 sampling points, and the results indicate two areas of contamination (Figure 3-3). One area associated with SOV sampling points SG-8, SG-10, SG-11, SG-12, and SG-20, southeast of Building 2818, has total PHC values ranging from 760 to 8,000 $\mu g/\ell$, but low halocarbons. The other SOV sampling points at Site 5 have low values for total PHCs in the vicinity of the fenced storage area.

TABLE 3-1 RESULTS OF SOV SURVEY


166th TAG SITE INSPECTION NEW CASTLE, DELAWARE


	SAMPLE	TOTAL HALOCARBONS (µg/2)	TOTAL PETROLEUM HYDROCARBONS (µg/l)
			3.5
SITE 1	SG-39	0.12	<0.1
	SG-40	0.08	<0.1
	SG-41	0.014	<0.1
	SG-42	0.012	
	SG-43	0.055	<0.1
	SG-44	0.63	<0.1
	SG-45	0.12	<0.1
	SG-46	0.3	<0.1
	SG-47	0.24	<0.1
	SG-48	0.1	<0.1
	SG-49	0.024	<0.1
	SG-50	0.096	<0.1
	SG-51	0.609	<0.1
	SG-52	0.16	<0.1
	SG-53	0.07	<0.1
	SG-54	0.058	<0.1
	SG-55	0.05	<0.1
	SG-56	0.08	<0.1
Town 0	50 FT		
ITE 2	SG-57	0.2103	3,400
	SG-58	0.121	38,000
	SG-59	0.222	20,000
	SG-60	0.236	<0.1


TABLE 3-1 (continued) RESULTS OF SOV SURVEY

166th TAG SITE INSPECTION NEW CASTLE, DELAWARE

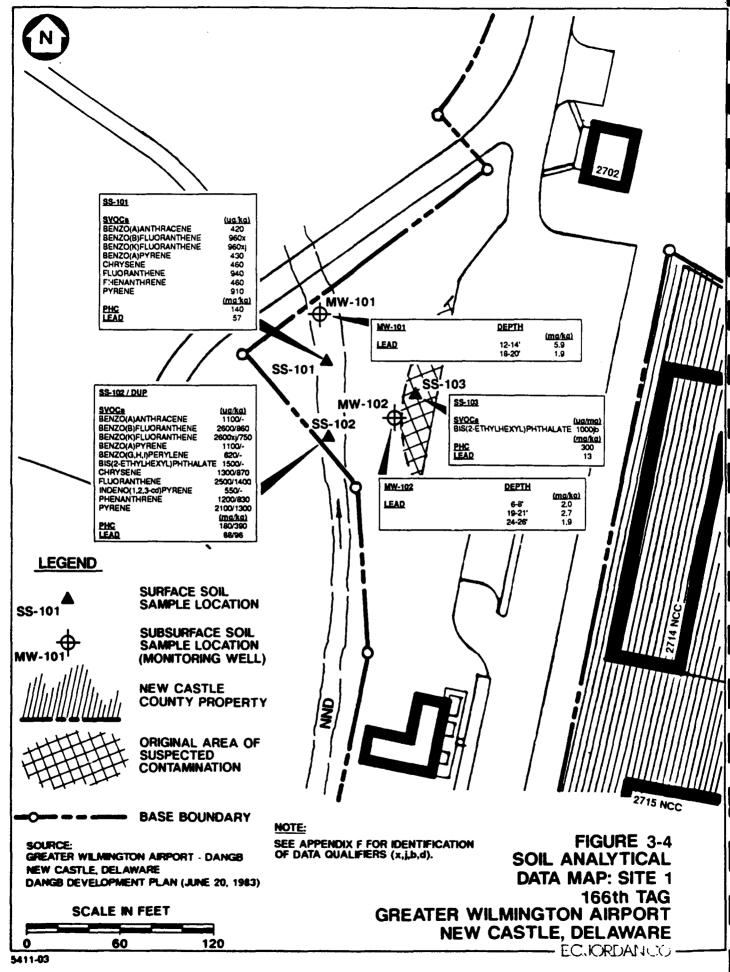
		TOTAL	TOTAL PETROLEUM
	SAMPLE	HALOCARBONS (µg/2)	HYDROCARBONS (µg/2)
	SG-61	0.092	44,000
	SG-62	0.084	
	SG-63	0.042	58,000
	20-03	0.042	30,000
	SG-64	0.072	26,000
	SG-65	0.074	<0.1
	SG-66	0.0052	<0.1
	SG-67	0.009	1,800
	SG-68	0.0067	0.9
	SG-69	0.0058	<0.1
	30-09	0.0038	(0.1
	SG-70	0.0051	2,400
SITE 5	SG-01	0.0244	<0.1
5112 5	SG-02	0.08	<0.1
	SG-03	0.042	<0.1
	30-03	0.042	(0.1
	SG-04	0.0033	<0.1
	SG-05	0.03	<0.1
	SG-06	0.18	<0.1
	SG-07	0.17	<0.1
	SG-08	0.324	760
	SG-09	0.33	<0.1
	50.10	0.21/	/ 200
	SG-10	0.214	4,300
	SG-11	0.233	1,500
	SG-12	0.086	180
	SG-13	2.08	2
	SG-14	2.089	0.2
	SG-15	0.72	<0.1
	SG-16	0.184	<0.1
	SG-17	0.409	<0.1
	SG-18	3.09	<0.1
	90.10	7 25	40.1
	SG-19	7.35	<0.1
	SG-20	0.1068	8,000

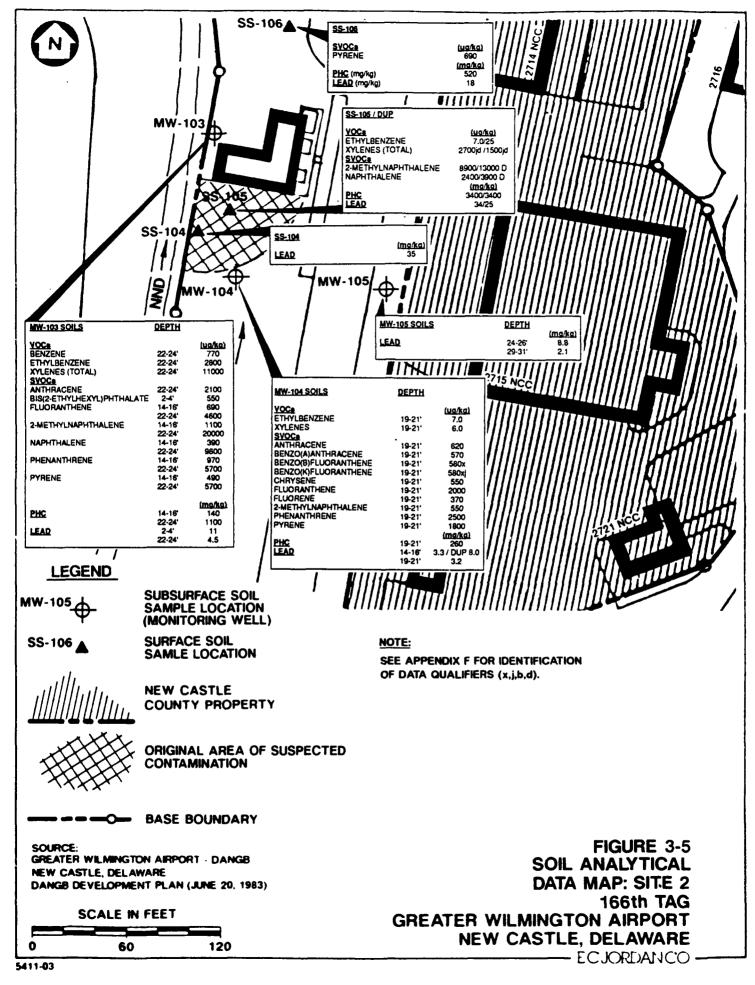
A second area of contamination illuminated by the SOV survey is located around a fenced storage compound south of Building 2825. SOV sampling points SG-13, SG-14, SG-18, and SG-19 have PCE levels ranging from 2 to 7 μ g/ ℓ . These values are greater than background values, indicating the potential for soil halocarbon contamination. Based on SOV survey results, monitoring wells were placed along the fenced storage area and adjacent to the anomalous total PHC SOV sampling points.

3.2 SOIL ANALYTICAL DATA

Soil data from soil borings and surface sampling points are summarized in Subsections 3.2.1 through 3.2.4. Twenty-nine soil samples were collected during the SI field program and analyzed for TCL VOC and SVOC compounds, lead, and total PHC. CLP methods were used for VOC, SVOC, and lead analysis, and U.S. Environmental Protection Agency (USEPA) Methods 3550/418.1 were used for PHC analysis. Duplicate analysis were performed on 10% of the samples and typically gave results in the acceptable range (see Appendix F). Background soil samples were not taken as part of the SI program. Contaminated soils were observed at Sites 1, 2, 4B, and 5.

3.2.1 Site 1


Eight soil samples and one duplicate were taken at Site 1 (i.e., three surface locations and five soil samples from two soil borings [MW-101 and MW-102]). Sampling locations and depths are shown in Figure 3-4. Surface soil sampling points SS-101 and SS-102 are located in the NDD, while SS-103 is situated adjacent to the fuel truck parking area (see Figure 3-4).


Analytical data (see Appendix F), demonstrate that TCL VOCs are absent from both surface and subsurface soil samples. SVOCs are also not observed in soil samples from soil borings; however, surface soil samples from the NDD (SS-101 and SS-102) contain abundant TCL SVOCs (see Figure 3-4). The SVOCs are a set of 11 polynuclear aromatic hydrocarbons (PAHs). A similar distribution was observed for total PHC and lead. Subsurface soils exhibit low values for lead (1 to 5 ppm) and no PHCs, while SS-101, SS-102, and SS-103 are associated with total PHCs of 150 to 400 ppm and lead values approximately 5 to 10 times that of background values. Bis(2-ethylhexyl)phthalate, detected in SS-103 (1,000 parts per billion [ppb]), is a common laboratory contaminant detected in the blank; therefore, it will not be considered further. The distribution of contamination and specific analytes present at Site 1 are shown in Figure 3-4.

3.2.2 Site 2

Ten soil samples and two duplicates were collected at Site 2. Three samples are from surface soil locations; the other seven are from soil borings (Figure 3-5).

Analytical data demonstrate the presence of contamination at several sampling locations (see Appendix F). The distribution of contamination, specific analytes present and sampling depths are represented in Figure 3-5. VOCs, observed in soils from MW-103, MW-104, and SS-105, include benzene,

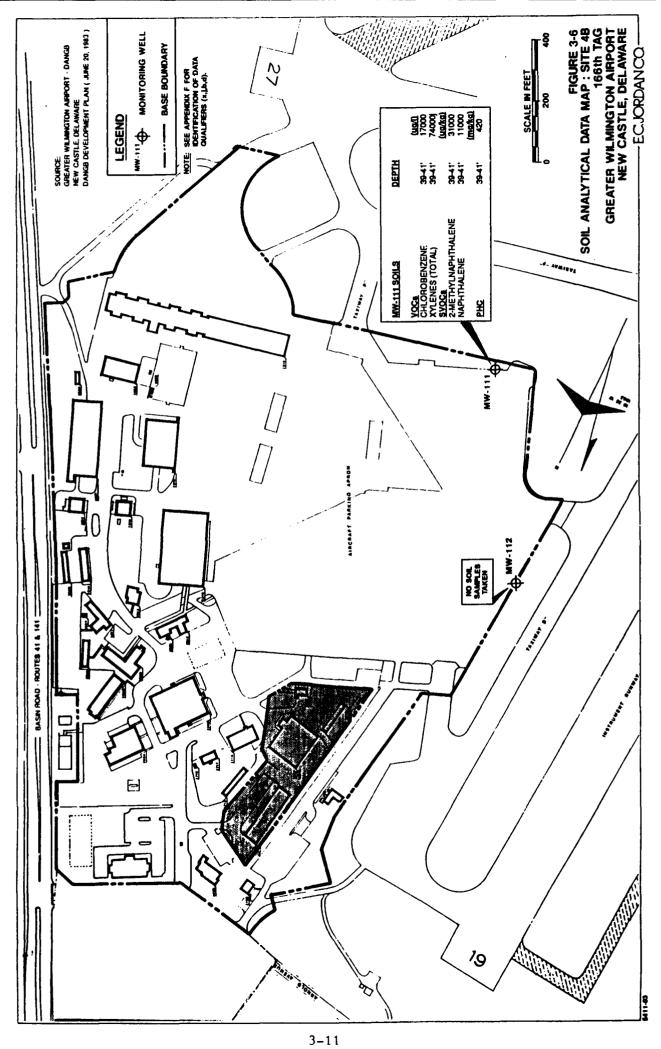
ethylbenzene, and total xylenes. VOC contamination in soils from MW-103 and MW-104 is observed only in the deepest sample in each soil boring (24 and 21 feet, respectively). The level of VOC contamination varies from slightly greater than background values in soil from MW-104, to extremely high values (i.e., from 2,000 to 10,000 ppb) in soils from MW-103 and SS-105.

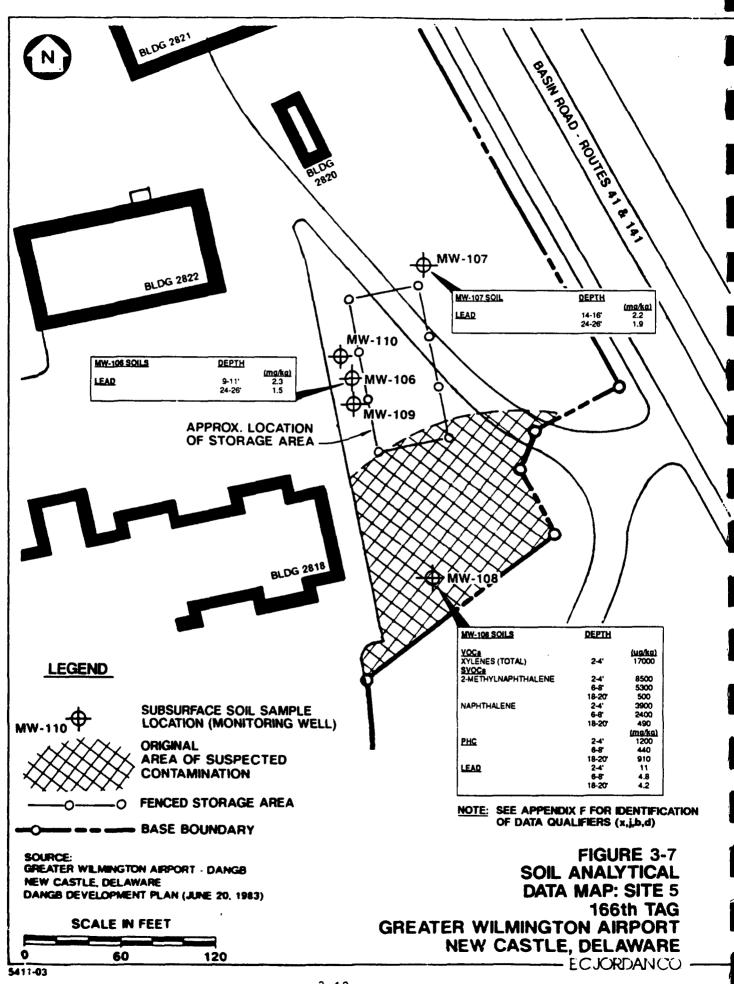
The distribution of SVOCs and PHCs in subsurface soils is similar to VOCs. Soils from MW-103 and MW-104 contain abundant SVOC (500 to 20,000 ppb) and PHC (140 to 1,100 ppm) contamination, with no detected SVOCs or PHCs in soils from MW-105. As with the VOCs, the levels of SVOC and PHC contamination increase with sample depth in the borings.

The surface soils (SS-105 and SS-106) also demonstrate the presence of significant SVOC (700 to 13,000 ppb) and PHC (500 to 3,400 ppm) contamination. SVOCs include PAHs, which are indicative of fuel-related contamination. Results from the lead analysis indicate background values in subsurface soil samples and values ranging from 18 to 35 ppm for surface soil samples.

3.2.3 Site 4B

Soil samples were collected from one other location for analysis. During the drilling program, field-screening results from MW-111 indicated the potential for significant hydrocarbon contamination from deep samples; as a result, one analytical sample was taken (Figure 3-6). Results are consistent with the field-screening results (see Appendix F). The contamination and sampling depth reported from MW-111 is summarized in Figure 3-6. VOCs detected include ethylbenzene and total xylenes (17,000 and 74,000 ppb, respectively). SVOCs (naphthalene at 11,000 ppb and 2-methylnaphthalene at 31,000 ppb) and total PHCs (420 ppm) were also detected at high levels. No lead was reported from the soil sample at MW-111.


3.2.4 Site 5


Soil sampling at Site 5 was restricted to soil borings only. Seven samples were collected from test borings at MW-106, MW-107, and MW-108. Figure 3-7 illustrates these exploration locations.

Analytical data for soil samples are in Appendix F. The distribution and concentration of contamination and sampling depth are summarized in Figure 3-7. VOC contamination was observed in only the shallowest sample (4 feet) of MW-108, where 17,000 ppb of total xylenes were reported. SVOC and total PHC contamination also was observed only in soils from MW-108. The three analytical samples from MW-108 detected naphthalene (500 to 4,000 ppb), 2-methylnaphthalene (500 to 8,500 ppb), and PHCs (440 to 1,200 ppm). SVOC and total PHC concentrations decreased with sample depth. Results of lead analyses indicate low values in all soil samples.

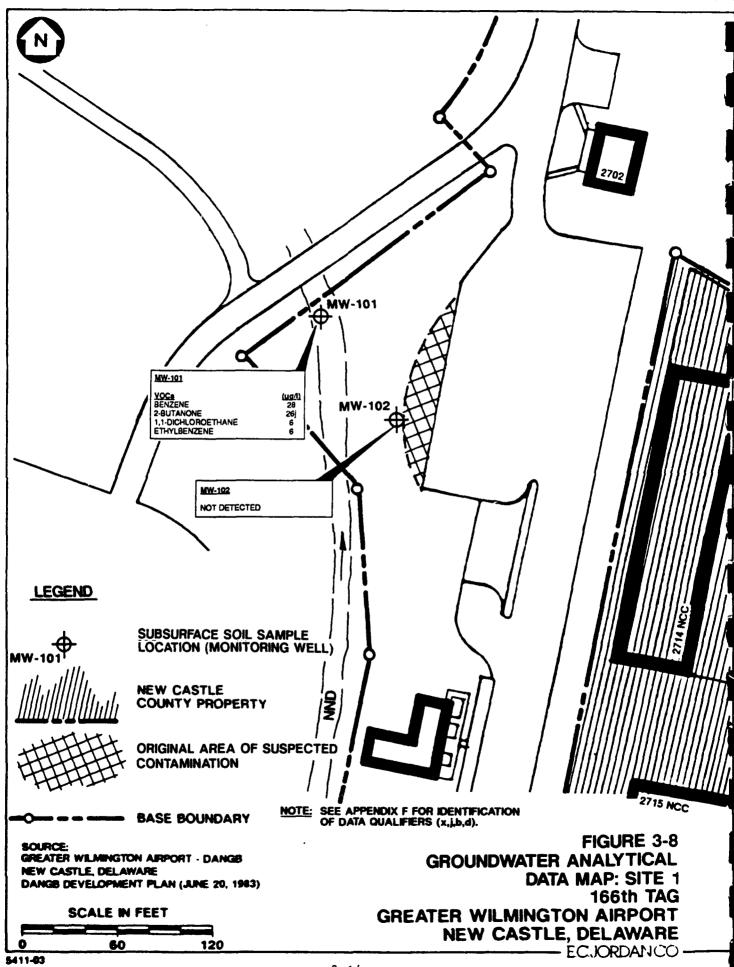
3.3 GROUNDWATER ANALYTICAL DATA

Groundwater data from monitoring wells and piezometers are summarized in Subsections 3.3.1 through 3.3.4. During the SI field program, 14 groundwater

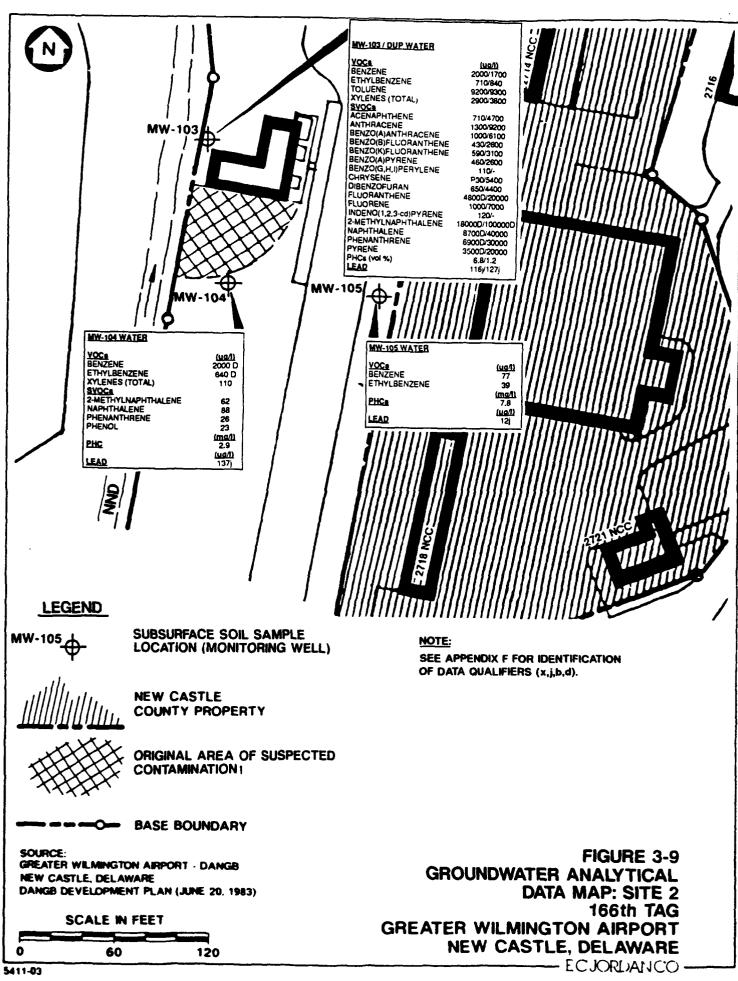
samples were collected and analyzed for TCL VOCs and SVOCs, lead, and total PHCs. CLP methods were used for VOC, SVOC, and lead analysis, and USEPA Methods 3550/418.1 were used for PHC analysis. Duplicate analysis was performed on 10% of the samples and typically gave results in the acceptable range (see Appendix F). Contaminated groundwater was observed at all sites. Most contamination was related to hydrocarbons; however, halocarbons were detected in groundwater at Sites 1, 4A, and 5.

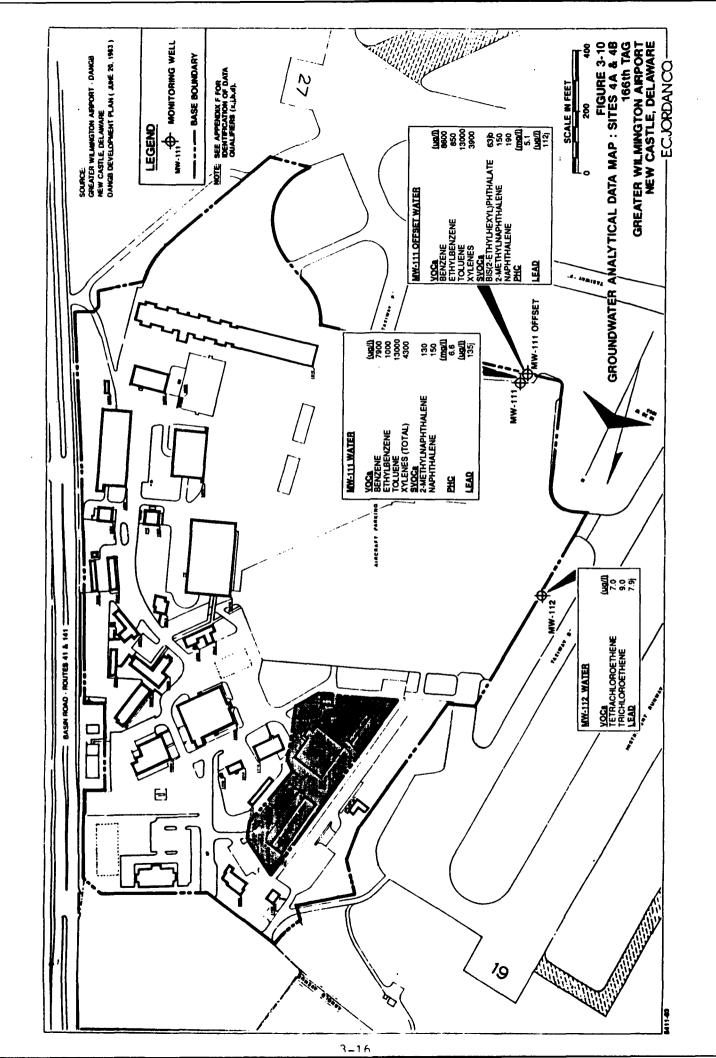
3.3.1 Site 1

Groundwater was sampled from MW-101 and MW-102 at Site 1 (see Figure 3-4); the results are in Appendix G. Analytical data from water samples at Site 1 are summarized in Figure 3-8. TCL organic analytes (i.e., VOCs or SVOCs), total PHCs, and lead were not detected in groundwater from MW-102. However, groundwater from MW-101 contained several VOCs (i.e., 1,1-dichloroethane [DCA], 2-butanone, benzene, and ethylbenzene); these concentrations ranged from 6 to 30 μ g/ ℓ . As in MW-102, no SVOCs, lead, or total PHCs were detected in water from MW-101.


3.3.2 Site 2

Three groundwater samples and one duplicate were collected at Site 2. Monitoring wells sampled included MW-103, MW-104, and MW-105, with a duplicate sample of MW-103; analytical data are in Appendix G. Analytical data for Site 2 are summarized in Figure 3-9. Significant levels of VOC contamination were reported in MW-103 and MW-104, with somewhat lower levels reported in MW-105. VOC contaminants include benzene (75 to 2,000 $\mu g/\ell$), toluene (0 to 9,300 $\mu g/\ell$), ethylbenzene (40 to 800 $\mu g/\ell$), and total xylenes (0 to 3,800 $\mu g/\ell$).

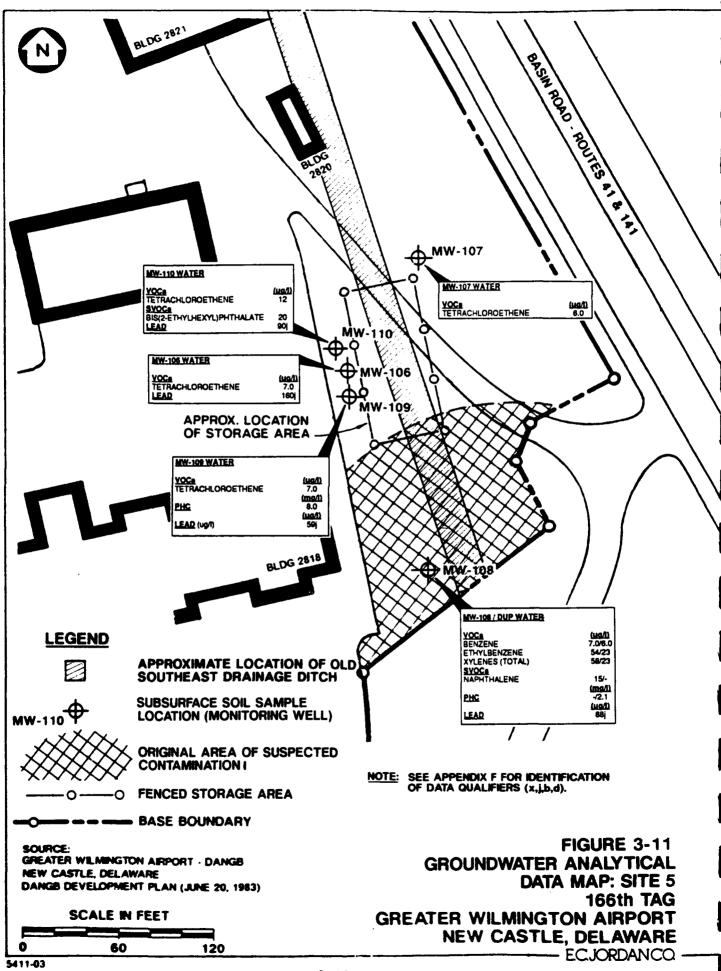

A wide range in SVOCs, total PHCs, and lead contamination was also observed in groundwater samples from Site 2. MW-103 exhibits a large variety of SVOCs, with concentrations ranging from 500 to 100,000 $\mu g/\ell$. A large concentration range was reported for SVOCs between MW-103 and the duplicate. This variability is probably due to the presence of free product in MW-103 (see Subsection 4.1.2), which is supported by the results for total PHCs, with 6.8 and 1.2 volume percent reported for the sample and duplicate. SVOCs were not detected in groundwater from MW-105. Several SVOCs were reported in groundwater from MW-104, at concentrations in the 50 to 100 $\mu g/\ell$ range. The total PHCs concentration ranges from approximately 5 $\mu g/\ell$ in MW-104 and MW-105, to the presence of free product in MW-103. Lead values range from 12 $\mu g/\ell$ in MW-105, to approximately 130 $\mu g/\ell$ in MW-103 and MW-104.


3.3.3 Sites 4A and 4B

Groundwater samples were collected from basewide monitoring wells MW-111 (Site 4B) and MW-112 (Site 4A). Results are presented in Appendix G and summarized in Figure 3-10. VOCs were detected in both monitoring wells; however, hydrocarbons were only observed in MW-111 and MW-111 offset and halogenated solvents were only reported in MW-112. Benzene (7,900 to 8,600 μ g/ ℓ), toluene (13,000 μ g/ ℓ), ethylbenzene (850 to 1,000 μ g/ ℓ), and total xylenes, (3900 to 4,300 μ g/ ℓ) were found in MW-111 and MW-111 offset; TCE (9 μ g/ ℓ) and PCE (7 μ g/ ℓ) were reported in MW-112.

3-14

SVOCs and total PHCs were not detected in MW-112; however, naphthalene (150 to 190 $\mu g/\ell$), 2-methylnaphthalene (130 to 150 $\mu g/\ell$), and total PHCs (35.1 to 6.6 mg/ ℓ) were reported in MW-111 and MW-111 offset. Lead was reported in both piezometers. Low values were found in MW-112 (8 $\mu g/\ell$), and elevated values were found in MW-111 and MW-111 offset (112 to 135 $\mu g/\ell$).


3.3.4 Site 5

Five analytical samples and one duplicate were collected at Site 5. The results demonstrate the presence of both hydrocarbon and halogenated solvent groundwater contamination (see Appendix G). The groundwater contamination observed at Site 5 is summarized in Figure 3-11.

VOC hydrocarbons were observed only in MW-108 and include benzene (7 $\mu g/l$), ethylbenzene (54 $\mu g/l$), and total xylenes (58 $\mu g/l$). PCE was the only VOC detected in groundwater from MW-106, MW-107, MW-109, and MW-110, ranging from 6 to 12 $\mu g/l$. SVOCs and total PHCs were not detected in the monitoring wells with PCE except for MW-109, where 8 $\mu g/l$ total PHCs were reported. This value is thought to be related to well development contamination (see Subsection 2.10).

SVOCs and total PHCs were detected in groundwater from MW-108; however, most SVOC data were rejected during data validation (the levels reported were all below detection limits. See Appendix G-2). Naphthalene, the only nonrejected compound, occurred at a low concentration (15 μ g/ ℓ). Total PHCs were detected in the duplicate analysis for MW-108 (2.1 μ g/ ℓ), but not in the original sample.

Lead was observed in several groundwater samples at Site 5. MW-106, MW-108, MW-109, and MW-110 detected lead ranging from 60 to 160 $\mu g/\ell$; however, lead was not reported for MW-107.

4.0 FINDINGS

The findings presented in this section are based on Jordan's field investigations and review of existing data and reports. The current understanding of the source contamination status is in Subsection 4.1.

4.1 SOURCE CHARACTERIZATION

Jordan evaluated three sites for the presence or absence of contamination and observed contamination at two other locations. Fuel-related contamination was observed at the three sites, and solvent contamination was observed at Sites 1 and 5. Unanticipated contamination was also observed at Sites 4A and 4B. The following subsections describe the nature of the observed contamination at the five sites.

4.1.1 Site 1

Various types of hydrocarbon contamination are found at Site 1. MW-102 and SS-103 were located in the area indicated to be impacted by the practice of refueler trucks periodically purging tanks (see Figure 1-2). The land surface slopes west, toward the NDD (approximately 100 feet away), leading away from Base property. Results of analytical soil and water data do not indicate the presence of TCL VOCs and SVOCs in this area, but PHCs were found in SS-103.

Hydrocarbon contamination was observed in groundwater from MW-101 (VOCs) and in surface soil samples (SVOCs and PHCs) in from the NDD (SS-101 and SS-102). The contamination does not appear related to tank purging because both the ditch and MW-101 are downslope from the truck purging area (see Figure 3-4), which does not exhibit SVOC and VOC contamination. MW-101 has TCL VOCs in the groundwater (i.e., DCA, benzene, and ethylbenzene). GC field-screening data from soil samples both above and below the water table indicates the presence of the VOCs benzene and toluene, and therefore, are consistent with results from the groundwater data.

Similarly, the SOV survey at Site 1 detected TCA; DCA is a transformation product of TCA. The VOCs in the analytical soil samples may have been volatilized prior to analysis. MCLs for benzene, DCA, and ethylbenzene are 5, 7, and 700 μ g/ ℓ , respectively. Groundwater in MW-101 exceeds the level for benzene and is just below the level for DCA.

The source for the observed contamination is not clear since MW-101 has the highest water level measured in the water table aquifer. Potential sources include as yet undetermined contamination upgradient from MW-101. A more likely source for the observed contamination is related to the basewide storm sewer and surface drainage system. The northern portion of the Base drainage system empties into the NDD south of Site 1. The NDD also receives surface runoff from an adjacent GWA runway. This drainage flows into a large catch basin adjacent to MW-101. This catch basin is also the locus of several other underground surface drainage outflows. Leakage from this drainage system could give rise to the observed contamination in MW-101.

4.1.2 Site 2

High levels of hydrocarbon contamination were observed in both soils and groundwater from Site 2. MW-104 and surface soil samples SS-104 and SS-105 were sited in the general area of the 10,000-gallon AVGAS spill (see Figure 3-5). The AVGAS was spilled while being transferred from the 50,000-gallon USTs on the southern side of the POL building. Analytical data from these locations do show VOC, SVOC, total PHC, and lead contamination; however, the highest contamination levels in soils from MW-104 are in the deepest sample. SS-104 and SS-105 have high lead values, probably from the AVGAS spill. The fuel currently stored in the USTs (JP-4) contains no lead and the lead values in the subsurface samples are low.

The highest contamination levels at Site 2 were found in MW-103. As in MW-104, the contamination level in soils from MW-103 increases with depth, and the lead values are low. Additionally, up to 1 foot of a floating, nonaqueous-phase liquid free product was found in MW-103. The floating, nonaqueous-phase liquid free product observed in MW-103 (Site 2) is degraded, and is not observed in the other two Site 2 monitoring wells (MW-104 and MW-105). This information is interpreted to indicate that a large, migrating floating product does not occur at Site 2. The thickness of the free product was estimated by comparing the elevation of free product measured at MW-103 to predicted water levels at MW-103 (see Figure 1-8). These data suggest that the hydrocarbon contamination source is leaks in the adjacent 50,000-gallon USTs associated with the POL building. MCLs for benzene are exceeded in MW-103, MW-104, and MW-105. MCLs for toluene (2,000 µg/l) and ethylbenzene are also exceeded in groundwater from MW-103, and groundwater from Site 2 is predicted to flow southwest (see Figure 1-8), which indicates that contaminated groundwater is moving directly off-base at Site 2.

4.1.3 Site 4A

PCE and TCE were detected at Site 4A in groundwater from MW-112 and exceed MCLs $(5~\mu g/\ell)$ for drinking water. No soil samples were collected from MW-112; however, GC field-screening data from split-spoon soil samples indicated the presence of both PCE and TCE. The concentration of these solvents also increased with sample depth, and the highest values were found in samples below the water table. These data indicate that a source for the observed groundwater contamination at Site 4A is upgradient of MW-112. The Phase I Records Search did not recommend Site 4 for future study, but discussed the history of activities in the Site 4 area. The Air Force initially used the area for airplane maintenance, as hangars were located in this area. From 1960 to 1974, Capital Airways used the area for similar activities. Since 1976 the ANG has washed airplanes in the area.

4.1.4 Site 4B

Hydrocarbon contamination (VOCs and SVOCs) was detected in both soils and groundwater of Site 4B. The levels of contamination in both media are high (see Figures 3-6 and 3-10), and the MCLs for drinking water for toluene, benzene, and ethylbenzene are exceeded. GC field-screening data support the

analytical data, demonstrating that the levels of VOC contamination increase in the deeper soil samples.

The contamination source at Site 4B is not clear. However, the increased levels of contamination with sample depth suggest that the exploration location is not directly in a source region. The lead values from groundwater at MW-111 are high, as stated for Site 4A, suggesting that a leaded fuel was involved at the contamination source. The Phase I Records Search did not recommend Site 4 for future study, but discussed the history of activities in the Site 4 area. An abandoned Air Force fuel line and fuel hydrants are located upgradient, northeast of Site 4B and could potentially contribute to the observed hydrocarbon contamination.

A second potential source for the contamination at Site 4B is the presence of an engine test stand. This facility, located in the southwestern corner of the Base, is approximately 100 feet downgradient from MW-111. Aircraft engines are mounted and tested at this facility; therefore, potential exists for spilling or leaking of fuels. The lead values from groundwater at MW-111 are high, suggesting that a leaded fuel was involved at the contamination source.

4.1.5 Site 5

Contamination at Site 5 was encountered in two areas. The SI study at Site 5 was initially formulated to investigate the SDD, historically an open trench, that was reported to have received various hydrocarbon and solvent wastes. The on-base portion of the SDD was reconstructed several years ago, and is currently a buried culvert, part of the basewide surface drainage system (see Figure 3-11). The SDD becomes exposed as an aboveground ditch southeast of the Base property line. During flooding conditions, the ditch may receive overflow from an oil/water separator that services shops on the Base.

The SOV survey identified two areas of contamination in the SDD vicinity; however, it is unclear whether the contamination is in fact related to the older reported releases. PCE was detected in the SOV survey near a fenced storage area (see Figures 3-3, 3-7, and 3-11). High Lead values (90-160 $\mu g/\ell$) are also reported in three of the four monitoring wells adjacent to the fenced storage area (MW-106, MW-109, and MW-110). These values exceed the MCL for lead (50 $\mu g/\ell$). The fenced storage area was initially put into service in November, 1977. Materials used for aircraft maintenance and the motor pool are typically stored in the facility. Materials stored there include 10W and 30W motor oil, hydraulic fluid, deicing fluid, and degreaser fluid. PCE values were highest in SOV sampling points adjacent to the fenced compound, decreasing with distance from the fenced storage area (see Table 3-1 and Figure 3-3). PCE was also detected (6 to 12 μ g/ ℓ) in monitoring wells adjacent to the fenced storage area (MW-106, MW-107, MW-109, and MW-110); however, soil samples did not contain halogenated solvents. GC field-screening of soil samples did detect PCE in MW-106 and MW-107, consistent with the SOV and groundwater data. The groundwater contamination levels are relatively low; however, the MCL for PCE is 5 $\mu g/\ell$ and is exceeded in all monitoring wells where it was detected.

A second area of contamination at Site 5, identified during the SOV survey, is located southeast of Building 2818 (see Figure 3-3). The contamination is restricted to fuel-related hydrocarbons and is found in a small area. MW-108 was sited in this area, and soils and groundwater both exhibit contamination. The level of contamination decreases with depth, suggesting a surface or near-surface source. The Base personnel indicated that this area had been used for fire-training exercises. The fire training activities in the Site 5 area have not occurred for approximately the past ten years, and in the past usage of the area for fire training activities was infrequent. Fuels were placed in large shallow pans, ignited, and then extinguished by the the Base fire department. The hydrocarbon contamination observed in this area is consistent with these practices.

Groundwater samples at this site contain lead, several SVOCs, VOCs, and PAHs (see Figure 3-11). Because the SDD is the locus of the southern portion of the the Base surface drainage system, basewide waste may have washed into the open drainage ditch, contaminating surface water and sediments. The drainage in the ditch flows through a residential neighborhood upon exiting the Base property (see Figure 1-2). Sampling data are not available for media from the ditch; therefore, it cannot be established whether wastes are being transported from the Base.

5.0 CONCLUSIONS

Section 5.0 summarizes the conclusions from the SI program at the Base. The conclusions are based on the results from analytical data and the synthesis of geologic and hydrogeologic information.

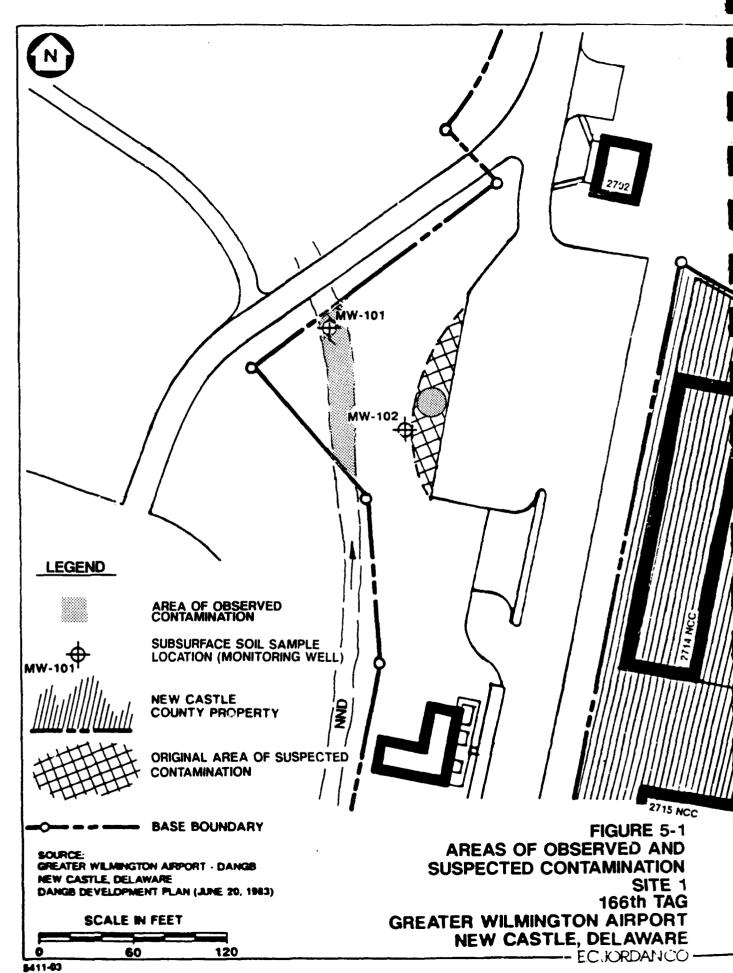
5.1 SITE 1

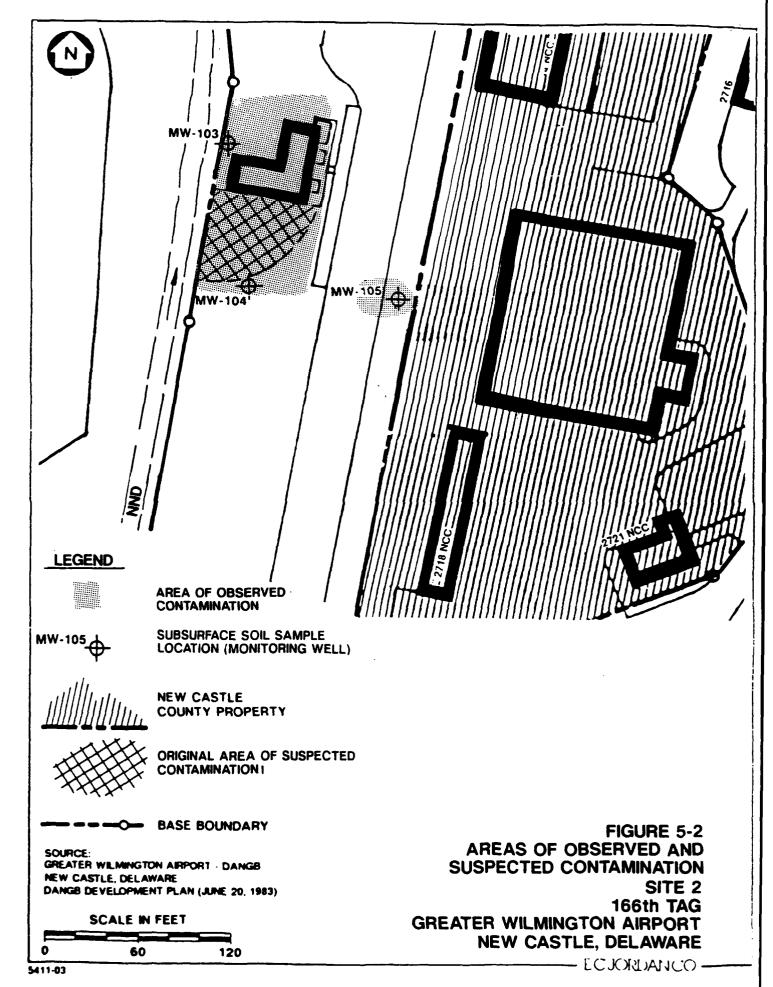
Results of analytical soil and groundwater data from Site 1 indicate that environmental contamination is present however more samples are necessary to evaluate contamination at the site. This is illustrated in Figure 5-1 where observed and suspected areas of contamination are indicated. Contamination at Site 1 was shown to be concentrated in sediment in the NDD and in groundwater from MW-101 (Figure 5-1). Groundwater contamination in MW-101 is also believed to be related to surface drainage concentrated in a catch basin adjacent to MW-101.

5.2 SITE 2

Soil and groundwater from Site 2 contain the highest contamination levels observed on the Base. Surface soils exhibit VOC, SVOC, total PHC, and lead contamination. Subsurface soil contamination was observed in MW-103 and MW-104 (Figure 5-2). Contamination includes VOCs, SVOCs, total PHCs, and lead, with the highest levels occurring in the deepest samples. Groundwater contamination at Site 2 was observed in all three monitoring wells (MW-103, MW-104, and MW-105) (Figure 5-2), and includes VOCs, SVOCs, total PHCs, and lead. The surface soil contamination is believed to be related to the historic AVGAS spill.

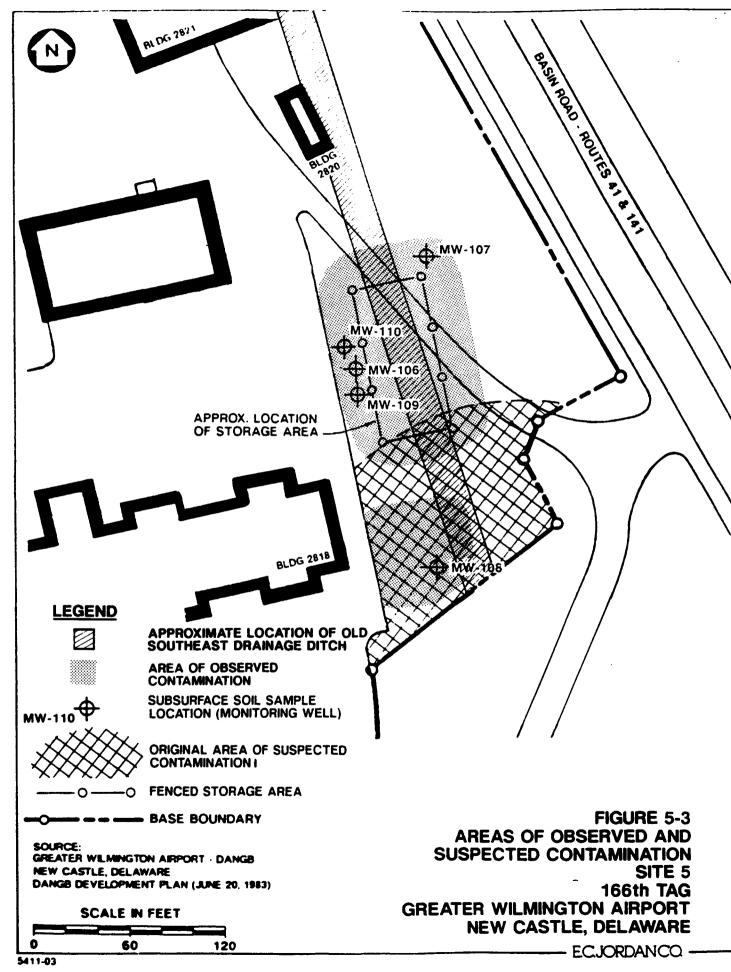
5.3 SITE 4A


Groundwater contamination was detected at Site 4A in MW-112. TCE and PCE occur at 9 and 7 μ g/ ℓ respectively, and exceed their MCLs. The groundwater contamination source is not identified; however, it probably occurs upgradient of MW-112.


5.4 SITE 4B

Subsurface soil and groundwater contamination were detected at Site 4B in MW-111. Contamination is fuel-related and includes VOCs, SVOCs, total PHCs, and lead. The contamination is unanticipated and a source has not been identified.

5.5 SITE 5


At Site 5, perched groundwater was encountered above the water table aquifer, and contamination is focused in two separate regions. The two areas of ob-

served contamination and the original area of suspected contamination for Site 5 are shown in Figure 5-3. PCE and lead were observed in groundwater from monitoring wells adjacent to a fenced storage facility, and were present in both the perched water and the water table aquifer. The PCE contamination source is believed to be related to degreasing solvents staged in the fenced storage area.

A second area of contamination at Site 5 is located southeast of Building 2818. Fuel-related hydrocarbon contamination was detected in soils and groundwater from MW-108. The fuel contamination in subsurface soils and perched groundwater at MW-108 included VOCs, SVOCs, total PHCs, and lead. Contamination levels in subsurface soils decreased with sampling depth. The source for this hydrocarbon contamination is related to past fire-training exercises carried out by the Base Fire Department. Groundwater flow at Site 5 in the water table aquifer is southwest.

6.0 RECOMMENDATIONS

Jordan's SI field studies at the Base were conducted to determine the presence or absence of contamination in the soils and groundwater at three sites and to characterize the basewide geology and hydrogeology. Results of studies at three sites and basewide explorations demonstrate the presence of various contamination levels in the three sites and at two unanticipated locations (Sites 4A and 4B).

The studies at Site 1 indicate the presence of environmental contamination. In addition to PHCs in surface soils in SS-103, contamination was also detected in areas adjacent to Site 1 (i.e., NDD and MW-101). Based on these findings, it is recommended that further studies be conducted at Site 1 to support risk and feasibility efforts.

Contamination at Site 2 occurs in surface soils, subsurface soils, and ground-water. Based on the presence of this contamination, further studies are recommended at Site 2 to support risk and feasibility efforts.

Site 4 is divided into two parts (4A and 4B). Contamination at Site 4A occurs in groundwater and is restricted to the solvents PCE and TCE. Contamination at Site 4B is observed in soils and groundwater, including fuel-related hydrocarbons and lead. The source for environmental contamination at Sites 4A and 4B is not clearly understood, and investigations to define source areas and support risk and feasibility studies are recommended.

The results of investigation at Site 5 have identified two areas of environmental contamination. PCE and lead occur in groundwater adjacent to the fenced storage area, and fuel-related hydrocarbons occur in soil and groundwater in the area impacted by historical fire-traking exercises. Lead contamination is found in groundwater from both areas. Based on these findings further investigations are recommended at both Site 5 areas to support risk and feasibility studies.

GLOSSARY OF ACRONYMS AND ABBREVIATIONS

ANG Air National Guard APA Airport Parking Area

ARAR Applicable or Relevant and Appropriate Requirements

AVGAS aviation gasoline

AWQC Ambient Water Quality Criteria

BTX benzene, toluene, and xylene

CLP Contract Laboratory Program cm/sec centimeters per second

DCA 1,1-dichloroethane

DNREC Delaware Department of Natural Resources and Environmental Control

FS Feasibility Study ft/ft feet per feet ft/yr feet per year

GC gas chromatograph

GWA Greater Wilmington Airport

HARM Hazardous Assessment Rating Methodology
HAZWRAP Hazardous Waste Remedial Actions Program
HMTC Hazardous Materials Technical Center

ID inside diameter in/sec inches per second

IRP Installation Restoration Program

MCL Maximum Contaminant Level

NDD Northwest Drainage Ditch

OD outside diameter

PAHs polynuclear aromatic hydrocarbons

PCBs polychlorinated biphenyls

PCE tetrachloroethene
PHC petroleum hydrocarbon

PI photoionization
ppb parts per billion
ppm parts per million
PVC polyvinyl chloride

QAPP Quality Assurance Project Plan

RCRA Resource Conservation and Recovery Act

RD Remedial Design

RI Remedial Investigation

SDD Southeast Drainage Ditch

SI Site Investigation SOV soil organic vapor

SVOC semivolatile organic compound

TAG Tactical Airlift Group

TCA trichloroethane
TCE trichloroethene
TCL Target Compound List

TRC Tracer Research Corporation

USAF U.S. Air Force

USEPA U.S. Environmental Protection Agency

UST underground storage tank

VOC volatile organic compound

 $\mu g/\ell$ micrograms per liter

REFERENCES

- Blummer, M., 1961. "Benzopyrenes in Soil"; <u>Science</u>; Vol. 134, No. 3477; pp. 474-475.
- Brown, K.W., and Associates, Inc., 1983. "Background Levels of Polynuclear Aromatic Hydrocarbons"; prepared for Melvin Simon and Associates, Inc.; Indianapolis, Indiana.
- E.C. Jordan Co., 1988. "Project Work Plan for Site Inspection, Remedial Investigation, Feasibility Study, and Remedial Design"; 166th Tactical Airlift Group, Delaware Air National Guard, Greater Wilmington Airport, New Castle, Delaware; September 1988.
- Hazardous Materials Technical Center (HMTC), 1987. <u>Installation Restoration</u>

 <u>Program Phase I Records Search</u>; 166th Tactical Airlift Group; Delaware Air

 National Guard, Greater Wilmington Airport; February 1987.
- Horslev, M.J., 1951. "Time-lag and Soil Permeabilities in Groundwater Observations"; U.S. Army Waterways Experiment Station; Vicksburg, Mississippi; Bulletin 36.
- International Agency for Research on Cancer (IARC), 1973. "Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Man: Certain Polycyclic Aromatic Hydrocarbons and Heterocyclic Compounds"; Vol. III; International Agency for Research on Cancer (World Health Organization); Lyon, France.
- Radian Corporation, 1983. "Ambient Concentrations of Polycyclic Organic Matter"; USEPA-450/5-83-010a.
- USEPA, 1982. "An Exposure and Risk Assessment for Polycyclic Aromatic Hydrocarbons"; Volumes I-IV; Office of Water Regulations and Standards; WH-553.
- USEPA, 1988. Superfund Public Health Evaluation Manual; Office of Emergency and Remedial Response, Office of Solid Waste and Emergency Response; OSWER Directive 9285.4-1; July 1988.
- Woodruff, K.D. and A.M. Thompson, 1975. "Geology of the Wilmington Area, Delaware"; Delaware Geological Survey; Geologic Map Series; No. 4.
- Woodruff, K.D., 1981. "Geohydrology of the Wilmington Area, Delaware"; Delaware Geological Survey; Hydrogeologic Map Series; No. 3, Sheet 1 Basic Geology.
- Woodruff, K.D., 1984. "Elevation of the Base of Sand in the Upper Part of the Potomac Formation"; Delaware Geologic Survey; Geohydrology of the Wilmington Area; Hydrogeologic Map Series; No. 3; Sheet 3 Structural Geology.

Woodruff, K.D., 1985. "Elevation of Top and Isopach Map of Upper Sandy Zone, Potomac Formation"; Delaware Geological Survey; Geohydrology of the Wilmington Area; Hydrogeologic Map Series; No. 3; Sheet 4 - Structural Geology.

APPENDIX A

GROUND SURVEY DATA AND WATER LEVELS

WATER LEVEL SUMMARY TABLE DANGB SITE INSPECTION

MONITORING	WATER LEVELS (NGVD)		
WELL OR PIEZOMETER	10/25/88	11/14/88	
	···		
MW-101	32.40	32.20	
MW-102	32.25	32.06	
MW-103*	32.52	32.20	
MW-104	30.94	30.74	
MW-105	31.77	31.54	
MW-106	27.43	27.34	
MW-107	41.65	41.59	
MW-108	42.53	42.41	
MW-109	42.67	42.52	
MW-110	42.33	41.35	
MW-112	25.51	25.34	
P-110	28.49	28.30	
MW - 111	25.58	25.42	
MW-111 Offset	25.55	25.40	
P-112	40.12(10/24)	39.98	
P-112 Offset	40.26	40.12	

^{*}Difficult to measure due to product in the well

PAGE# 1 of 1 JOB# 357 DATE NOV 26,1988

DELAWARE NATIONAL GUARD BASE NEWCASTLE, DELAWARE WELL & BORING LOCATIONS

	EI	LEVATIONS		COOR	DINATES
WELL #	GROUND	INNER	OUTER	NORTH	EAST
P-109	61.21	62.51	62.33	613,907.30	604,481.90
P-110	64.34	66.21	65.76	614,412.79	605,361.09
P-111	66.36	67.88	67.76	613,308.52	604,848.30
P-111*	66.26	67.60	67.34	613,302.22	604,844.72
P-112	64.35	66.21	65.98	613,379.66	605,517.49
P-112*	64.51	65.95	65.64	613,392.97	605,511.82
MW-101	45.57	47.37	47.57	615,049.49	604,676.77
MW-102	50.08	51.85	51.85	614,980.79	604,730.07
MW-103	53.12	54.91	54.41	614,791.72	604,703.60
MW-104	53.18	54.09	53.90	614,699.29	604,716.07
MW-105	54.71	56.47	56.66	614,688.45	604,813.88
MW-106	62.83	64.33	64.37	613,775.18	606,099.52
MW-107	63.99	65.33	65.48	613,849.90	606,145.31
MW-108	62.64	64.36	65.00	613,648.68	606,151.90
MW-109	63.13	64.90	64.57	613,763.15	606,100.80
MW-110	62.81	63.89	63.68	613,784.56	606,095.69
UST-1	52.74			614,672.70	604,696.52
UST-2	54.88			614,528.35	604,713.72
UST-3	55.03			614,476.80	604,676.95
PUBLIC S	UPPLY WEI	LLS			
PSW-A	41.0			616,209.44	604,997.18
PSW-B	69.5			614,865.69	605,679.70
PSW-C	61.9			613,069.17	606,567.65

* Offset well Horizontal Datum NAD 1983

Horizontal Datum NAD 1983 Vertical Datum NGVD 1929

NOTE:

P-111 is MW-111 P-111* is MW-111 offset P-109 is MW 112

APPENDIX B

SOIL BORING LOGS AND MONITORING WELL INSTALLATION DETAILS

DELAWARE AIR NA NEW CASTLE, DEL	•		Boring no: MW- 101
Client HAZWRAP			Project no: 5411-02
Contractor JOHN MATI	ies & assoc., inc.	Date started: 10/5/88	Completed 10/5/88
Method HSA	Casing size 4.25" ID	PHOTOVAC 10.2	Protect'n level
Ground el. 45.57	Soil drilled 22'	Rock drilled NA	Total depth 22
Logged by P. Bolmer	Chid by MP Pickenson	Date 1/12/89	☑ Below grnd
1111 11	Being G. Apter Ind A	READURED TO BROWN TO SHAPE BROWN TO BRANCE BROWN TO BRANCE BROWN TO BRANCE BROWN TO DITE GROWN MED. TO DITE GRAVEL MOIST TO HE THERED, FEW SILT LENSES OF GRADED TO WELL GRAVED. TO CLOSED ARE SUDDING TO LENS TO HE GRADED. TO SHAPE ARE SUDDING TO LENS TO SHAPE BROWN. TO SHAPE BROWN. TO SHAPE ARE SUDDING TO CONSIGE TO LENS OF MED. TO CONSIGE TO LENS OF MED. TO CONSIGE TO	Blows/6-in. or RQD % O 20 40 60 80 100 M

 $^{^{\}circ}U$ = Thin wall tube S = Split spoon R = Rock

DEL VADE VID AL	TTOWAL CHAPP		T
DELAWARE AIR NA NEW CASTLE, DEL	•		Boring no: MW-102
Client HAZWRAP	**************************************		Project no: 5411-02
Contractor JOHN MAT	HES & ASSOC., INC.	Date started:	Completed 10-6-88
Method HSA	Casing size 4.25° ID	PHOTOVAC 10.2	Protect'n level D
Ground el. 50.08	Soil drilled 26	Rock drilled NA	Total depth 24
Logged by P. BOLMER	Chieby MP Dickensin	Date 1/12/89	✓ Below grnd
Depth (ft) 1	Soil/I Soil/I Soil/I Soil/I BEN/REC LEANE LEA		Blows/6-in. or RQD % O 20 40 60 80 100 M 7 4 15 7 3 4 4 6 3 4 4 6 3 4 4 6 4 7 7 7 0 4 7 7 7 0

VEW CASTLE, DEL	TIONAL GUARD, AWARE		Boring no: MW-103
ient HAZWRAP			Project no: 5411-02
entractor JOHN MATE	ies & assoc., inc.	Date started: 10/14/88	Completed /0/14/88
ethod HSA	Casing size 4.25" ID	PHOTOVAC 10.2	Protect'n level
ound el. 53.12	Soil drilled 30'	Rock drilled NA	Total depth 30'
ged by P. Bolmer	CAN BY MP D WKENCON	Date 1/12/89	☑ Below grnd
111 11	TAND DEGANICE BROWN MEDIUM MEDIUM MEDIUM MEDIUM MANUE MANUE THEN THEN THEN THEN THEN THEN THEN TH	TO DARK OLIVE TO TAND TO DARK OLIVE TO TAND IN TO PINE STAND, TR. POURLY GANDED, LOOSE, 2" THEN MOIST TO 22" NOT. BLACK STAINS WHOLT PROFILE DUE TO LT. FSN SILT LENSES. BLUICH GRAY SILT /F. STAND, YOU PLASTIC MOIST """ """ """ """ """ """ """ """ "" ""	Blows/6-in. or RQD % O 20 40 60 80 100 Y Y D D

DELAWARE AIR NATIONAL GUARD, NEW CASTLE, DELAWARE	Boring no: MW-104
Client HAZWRAP	Project no: 5411-02
Contractor JOHN MATHES & ASSOC., INC. Delestated: 10/17/88	Completed 10/17/88
Method HSA Casing size 4.25" ID PHOTOVAC 10.2	Protect'n level
Ground el. 53.15 Soil drilled 31' Rock drilled N/4	Total depth 31'
Logged by P. Bolmer Ch'd by MP Dickenson Date 1/12/89	✓ Below grad
Soil/tock description Soil/tock description Grand Brown To Grand	Blows/6-in. or RQD % STAPPO A STAP

 $^{\circ}U$ = Thin wall tube S = Split spoon R = Rock

Bkg = Background

DELAWARE AIR NA NEW CASTLE, DEL			Boring no: MW-105
Client HAZWRAP			Project no: 5411-02
Contractor JOHN MAT	HES & ASSOC., INC.	Date started: /0/7/88	Completed 10/7/88
Method HSA	Casing size 4.25° ID	PHOTOVAC 10.2	Protect'n level D
Ground el. 54.71	Soil drilled 31	Rock drilled NA	Total depth 31'
Logged by P. Bolmer	CHILDY MP DUKENSON	Date 1/12/69	✓ Below grad
	2 SAND BREAM YAR! FING CRAY LOOK 14 14 16 2 16 2 17 BURISH	inics is topsoil over icolored, stantfied is to med. Shoos TR. IEL, SILTY Thin Lemes, we moist to 19' the lenes, very well cortal	Blows/6-in. or RQD % 7 // 9 8 7 7

 $^{\circ}$ U = Thin wall tube S = Split spoon <math>R = Rock

Bkg = Beekground

E.C. JORDAN

		RE AI STLE,			nal gu Re	ARD,				Box	ring no:	MW-	106	
	Client HAZWRAP Project no: 5411-02													
Cont	rector	JOHN	MAT	IE8 (≥ A980C.,	INC.	Datest	mated: 10/4/	88	Con	mpleted	10/4/2	58	
Meth	lod I	ASA			ing size		PHOT	OVAC 10.2		Pro	etect'n lev	rel O		
		62.13			l drilled			drilled			tal depth		· _	
Logg	ed by P.	Bolm	er_	Chi	a by in po	ukenson	Date	1/12/69		区	Below g	trnd .		
(W) theolin (A)	PID ambient els	Sample no. and type Sample	010 410	FIV TIP PEN/REC	(Maria	Soil/T Light bro Silty fair Brange	ock desc own to l op dry l		el y er el scuo,	GM To	Blows/6 or RQD 0 20 40 60 4 7 79	(₩ell data	
15 -	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			115 214		CHATTER	AT I	} ′		śW	4 7 7 8	1	\$ <u>A</u> 7	
25 -		S-5 X		मीट जेड जेड	Savoy Silt to Silty Sand	SILTS & CLAY, 51 MRATIFIC VARRATION S. CLAYS	TIGHT FOR NOTE OF SECTION OF SECT	PRAY TO WHI INF SANDS, ON-PHASTIC, LENSES HA C SILTS, SAN ISES ARE O WELL GAM	TR, MOIST. WING JOE,	Say Ma Four SP i SW	2 1 5 /	9 Z	√~ △	
35 -		S-8 X					_				3 8 9 1 3 13 14 1	21	11000000	▼_
45 -						B,O.G. 6	e 41.0'							

*U = Thin wall tube S = Split spoon R = Rock

Bkg = Beckground

	RE AIR NA TLE, DELA	TIONAL GUARD, WARE		Boring no: MW-107
Client HA	ZWRAP			Project no: 5411-02
Contractor	JOHN MATE	ES & ASSOC., INC.	Date started: 10/4/68	Completed 10/5/88
Method B	ISA .	Casing size 4.25° ID	PHOTOVAC 10.2	Protect'n level
Ground el.	63.99	Soil drilled 26'8"	Rock drilled NA	Total depth 26'8"
Logged by P.		Ch'd by MP Durenson	Date 1/12 (8°)	☑ Below grnd
	Coller		110 0	
Depth (A)	5-1	SAND Thum of Brown Simble 14	ock description signic layer over, light to orange meet to F. well sorteo, loose, maist if then wet, Tr good, ripiso. Some extrons	Blows/6-in. pg cor RQD % C
₫ ~		1.8 wen	GRAGO	SW ZA
15 - Wg 20 - Wg		2 19 Silly Cl	ey lous e 19.5'	FEW
25 - Ck9	5-6	2 34' Soundy Silt Church Scouly Si	orence and bluests gray v. C. it tracky nonphabic, conjectation	~L
35 49 45		<u>ც</u> .o.ც. 6	ح ملاه ع	

 $^{\circ}U$ = Thin wall tube S = Split spoon R = Rock

BKg = Background

Citient HAZWRAP Constructor JOHN MATTERS & ASSOC, INC. Distributed 10/3/58* Completed 10/3/58* Method HSA Casing size 4.25* ID PROTOVAC 10.2 Protects level 0 Ground el 12.44 Soil drilled 26* Rock drilled NA Total depth 36 Longed by Longia, Child by Mr Ollutus un Date 1/10 \$9 Below grad Blown/6-in. 3	DELAWARE AIR NATIONAL GUARD, NEW CASTLE, DELAWARE Boring no: MW - 108								
Settod BSA Casing size 4.25° ID PROTOVAC 10.2 Protect's level D Ground el. 62.64 Soil drilled 26' Rock drilled 104 Total depth 366 Logged by 1. Longle. Child by MPQ in Lin sin. Date 1/12 Sq. Selow grad Blows/6-in. or RQD by a day of a day of a day of description of RQD by a day of 60 80 100 By a day of description of RQD by a day of 60 80 100 By a day of description of RQD by a day of RQD by a day of description of RQD by a day	Client HAZWRAP Project no: 5411-02								
Settod BSA Casing size 4.25° ID PROTOVAC 10.2 Protect's level D Ground el. 62.64 Soil drilled 26' Rock drilled 114 Total depth 366 Logged by I. Longle. Child by MPQ LLL IN IN Date 1/12 Sq. Selow grad Blows/8-in. The grad of the gr	Contractor JOHN MA	THE8 & ASSOC., DIC.	Date started: 10/3/88	Completed 16/3/88					
Company Constant	Method HSA	Casing size 4.25° ID							
	Ground el. 62.44	Soil drilled 26'	Rock drilled NA	, , , , , , , , , , , , , , , , , , , ,					
100 1 100 1 100 10	Toront -								
2	Longia								
	1400 \$-1 500 5-3 600 5-3 600 5-3 600 5-3 70 5-6 800 5-6 800 5-7 800 5-7 800 5-8 800 5-1 800	SAND OLIVE ON TEL. TO LI MOIST I'M FINE TO TAN F MED GRAVEL TAEN IN IN LEN JAI JAI JAI JAI JAI JAI JAI JA	EDWN TO BLACK SWD & SILT, THE GROVEL, TE.CLAY, FIRM IN ETO MED. SAND, LITTLE IN EMES, MOIST TO 19" NET, LOSSE, WELL SORID 1866 IDNAL DARK PETROLEMA ED LENSES ENSE AT 17 ANTOY SILT, TR CLAY, THE LINESSES, SOME ESTITUMENT OFF	OF ROD % S 0 20 40 60 80 100 ≥ SW 7 1 12 12 12					

DELAWARE AIR NATIONAL GUARD, NEW CASTLE, DELAWARE	Boring no: MW - 109
Client HAZWRAP	Project no: 5411-02
Contractor JOHN MATHES & ASSOC., INC. Detectated: 10/19/88	Completed 10/19/88
Method HSA Casing size 4.25" ID PHOTOVAC 10.2	Protect'n level
Ground el. 63.13 Soil drilled 22'.5" Rock drilled WA	Total depth 22'5"
Logged by P. Bolmer Ch'd by MPDickeys Date 1/12/89	☑ Below grnd
Depth (A) Sample no. and April 1990 CLP GC HNU headspace (ppm) Soll/Lock description	To the part of the
SEE DESCRIPTION POR MW-106	
S = 10 CHATTER AT 16'	7 2
CHATTER AT 16'	
20	— <u></u>
POTOMAC	Ar SEE
25 = B.O.B. 22'5"	
35 1 1 1 1 1 1 1 1 1	
15 —	

^{*}U = Thin wall tube S = Split spoon R = Rock

DELAWARE AIR NEW CASTLE, 1		<u> </u>		Boring no: MW-110						
Client HAZWRAI										
Contractor JOHN MATHES & ASSOC., INC. Delectrical 10/21/88 Completed 10/21/88										
Method HSA	Casing	size 4.25"ID	PHOTOVAC 10.2	Protect'n level						
Ground el. 42.8	Soll de	illed 29'3"	Rock drilled NA	Total depth 29'3"						
111 111	ck Chill by	NP Orkinson Soil/r	Date Viv. 189	Below grad Blows/6-in. or RQD % O 20 40 60 80 100 A A A A A A A A A A A A A						
45										

	DELAWARE AIR NATIONAL GUARD, NEW CASTLE, DELAWARE Boxing no: MW-N/ Off set								
Contracto	r JOH	MAT:	ees & A	980C., INC.	Date stacked: 10	24/68	Completed 10/24/88		
Method	HSA			size 4.25° ID	PHOTOVAC 10.2		Protect'n level ①		
Ground el	66.2	6	Soil di	illed 49'	Rock drilled	NH	Total depth 49'		
Logged by	1.cm	lay	Ch'd by	MPO ickenson	Date 1/12/89		☐ Below grad		
Depth (ft)	Sample no. and type	Sample CLP GC	PEN/RBC HNU headspace (ppm)		ock description	· ·	Noticians or Solicians or Solic		
				Desc NO S	V-111 for 5010 RIPTION. AMPLING CONDA H13 BORING	1			
2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				Снапе	Z 14 ~1 8′				
30-11									
35									
45				9 .E.o.O	4 5 '				

 $^{\circ}U = Thin wall tube$ S = Split spoon R = Rock

Client HAZWRAP Contractor JOHN MATHES & ASSOC, INC. Debestered 10/12 by Completed 16/13 bs Method HSA Casing size 4.25" ID PHOTOVAC 10.2 Protect's level D Ground el. CC. 3C Soil drilled 4/6 Rock drilled N Total depth 4/6 Logged by Longley Ch'd by MPOLLULUL Dete 1/2 (7) Selow grad Soil/rock description Soil/r	DELAWARE AIR NATIONAL GUARD, NEW CASTLE, DELAWARE Boring no: //// ///								
Method HSA Casing size 4.25" ID PHOTOVAC 10.2" Protect'n level D Ground el. (4.34 Soll drilled 4/6" Rock drilled 1/1 Total depth 4/6" Logged by Dussley Chi by MPOut Linux Date 1/12 1/2 Below grad But a grad of 0 of all hills and of the second of the s	Client HAZWRAP Project no: 5411-02								
Ground el. 66.36 Soll drilled 4/6 Rock drilled 1/1 Total depth 4/6 Logged by Dongley Child by MPD is Cursin Date 1/12 67 Selow grad Blows /6-In. or RDD 4/6 Ga ga base of 0 all all and base of the selection of RDD 4/6 or RDD 4/6	Contractor JOHN MATE	ies & Assoc., inc.	Date started 10/12/68	Completed /5/13/88					
Logged by 1 Dackey Child by MPQ L Linum Date 12 67 Delow grad By Date 1 12 67 Delow grad By Date 1 12 67 Delow grad Blows/6-in. 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Method HSA	Casing size 4.25" ID	PHOTOVAC 10.2	Protect'n level					
Busy 5-1 X 13 14 50 17 18 10 18 18 18 18 18 18	Ground el. 44.34	Soil drilled 4/6	Rock drilled NA	Total depth 46					
But Description Descript	Logged by I longley	Ch'd by MPDickenson	Date 1/12 67	∑ Below grnd					
=		SAND BRIME BIS SAND BRIME GULL BRIME SAND LOOSE SATUA VERY HARED POSON VIV. D BROWN V. NOE FEW SLOW FINE SMELL FLOM FLOM	ICS & TOPSOIL OVER VEN. TO OTMER BEN. V.F. SILT, DEGICATED, STIPP, VER BEIGHT APPROXE BON, GRADED, PINE TO CAMESE TR. SILT, TR. GRAVEL, MOIST TO 39 THEN WITED. VARICOLOGED SCHOOL PROFILE. COBBLY at 13' DRILLING (3'-18' BLE POTAMAC CONTACT AT POLICING (3'-18' BLE POTAMAC CONTACT AT ONE DIENT REDDISH N SILTY KRIND SAND, LL SORTED, MAIST LOSS, COMENTED LENGES. J. SILT, TR. CLAY, TR. AND, PIRM TO STIPPE LLY SILTY SAND LENGES. DRILLING 29'-34' J. GRAY & TAN V. CLEAN SAND, V. WELL SORTED. LS PRODUCT & SOLVENTS	S S O 20 40 60 80 100 N					

 $^{\bullet}U$ = Thin wall tube S = Split spoon R = Rock

Bkg = Background

E.C. JORDAN

Thent HAZWRAP Destractor JOHN MATRIES & ASSOC., INC. Destractor JOHN MATRIES & Completed /0/12/58 Destractor JOHN MAT		DELAWARE AIR NATIONAL GUARD, NEW CASTLE, DELAWARE Boring no: MW-1/2							
Rethod HSA Casing size 4.20 ID PROTOVAC 10.2 Protect's level D Bround el 1.1.21 Soil drilled 4/ Rock drilled N/A Total depth 4/ Logged by T. Longley Child by MPO LKAMAN Date 1/12/99 Below grad By Soil and Date 1/12/99 Below grad Boy Soil and Date 1/12/99 Below grad Below g									
Brownd el. 1.71 Soil drilled 4/ Rock drilled NA Total depth 4/ Logged by T. Longly Child by M. Oukum Date 1/1/99 Delow grad Below grad Below grad Blows/6-in. or RQD % Blow	Contractor JOHN MATT	ies & Assoc., isc.	Detectaded: 10/12/88	Completed /0/12/88					
Below grad The second by Theology Child by MPOuklim Date VIV (9) Below grad To any of the second	Method HSA	Casing size 4.25" ID	PHOTOVAC 10.2	Protect'n level D					
BIOMS /6-in. BE BIOMS /6-in. B	Ground el 61.21	Soil drilled 4/	Rock drilled NA	Total depth 4/					
Blows/6-in. or RQD % Soll/rock description Soll/rock description Soll/roc	logged by T. LONGLEY	Chid by MPD KKEKIN	- 	✓ Below grad					
30—11 5-7 X 13 BITHIN COLUMBIA FORMATION UNIVERTIME LOSEING BLACE BANDING IN TAN TO BRIGHT ORANGE BROWN, F. + M. SANDS HT 34. 55 5-9 X 13. SANDS ARE MORE COMPACT AT ROTTOM B.O.B. © 41'	111 111	Soll/ Soll/ Soll/ Topsol & Dis Shad OF 3 ARE BROWN TRACE MOIS THICH Some To L BLEAC AT BORN BAND SAND SAND SAND SAND SAND SAND SAND S	TOCK DESCRIPTION THED FINE TO COMESE S NITH VARRYING AMOUNTS DETING THRACEHOUT. CLORS GENERALLY BRIGHT CAMES IN TO YELLOUSH BROWN; TO GENERALLY LOOSE; IT TO 34 THEN SATURATED. CHATTER TO AMERS 15-18.5 (1"TO 3") FEW SILT SES THROUGHOUT; FIRM; THND LENSES HAVE TRACE ITTLE SILT HED F. TO M. JANDLAYERS OUT TO 25 AND AT 30' NO STAYED COMPLETELY IN COLUMBA FORMATION THARL LOOKING BLACK NG IN TAN TO BRIGHT E BROWN, F. F. M. GANDS 4.	Blows/6-in. or RQD % O 20 40 60 80 100 3 8 /0 /0 5					

^{*}U = Thin wall tube S = Split spoon R = Rock

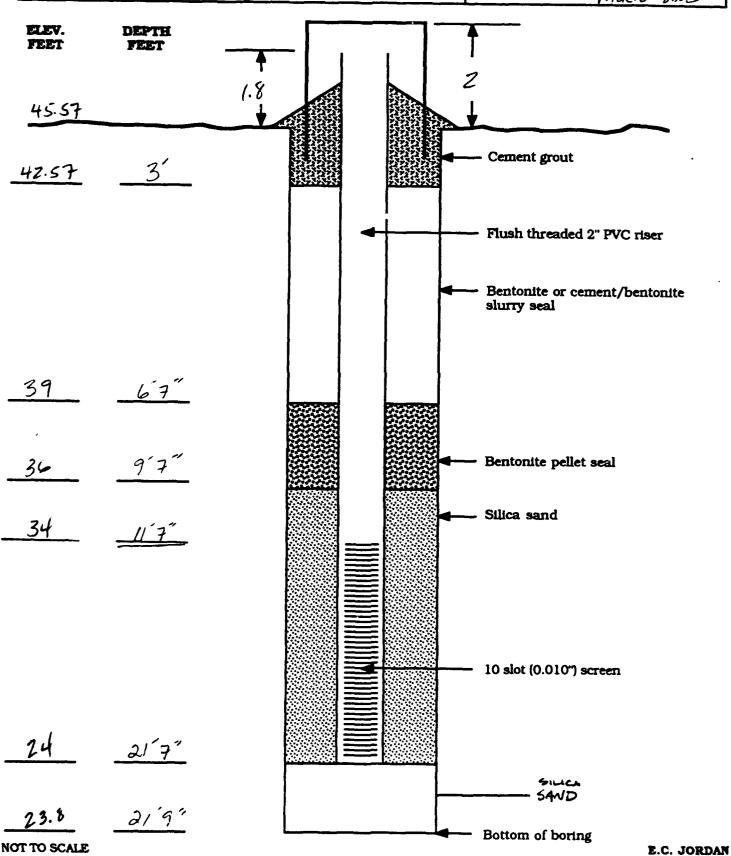
Big = Backseams

DELAWARE AIR NATIONAL GUARD, NEW CASTLE, DELAWARE Boxing no: 0 - 10										
Client HAZWRAP Project no: 5411-02										
Contractor JOHN MATE	Contractor JOHN MATHES & ASSOC., INC. Date started 10 13 68 Completed 10 13 68									
Method HSA	Casing size 4.25° ID	PHOTOVAC 10.2	Protect'n level							
Ground et. 64.34	Soil drilled 41'	Rock drilled NA	Total depth 4//							
Logged by T. Longley	CHE BY MPQICKENSON	Date VING	☑ Below grad							
Depth (ft) I I I I I I I I I	SAND ORGANIC ORMISE FINE TO MIYER TR. GR MOIST VORY IN	ES 1, TOPSOIL OVER BEN. TO DULL ARMY BEN O MED. SAND, TR. SI'IT W/ SAND OF IN THIS LEASE, AVEL PIRM TO STIFF, TO 34 THEN SATURATED, UTIL SORTED STIMPFED.	Blows/6-in. or RQD % O 20 40 60 80 100 M 6 6 9 14							
35 - BKg 5.8 X /	2 Langes	Tan V. Fing Sand	\$ 13 ID 13 ▼ 19 /6 IV							
45	B.O.S.	<u> </u>								

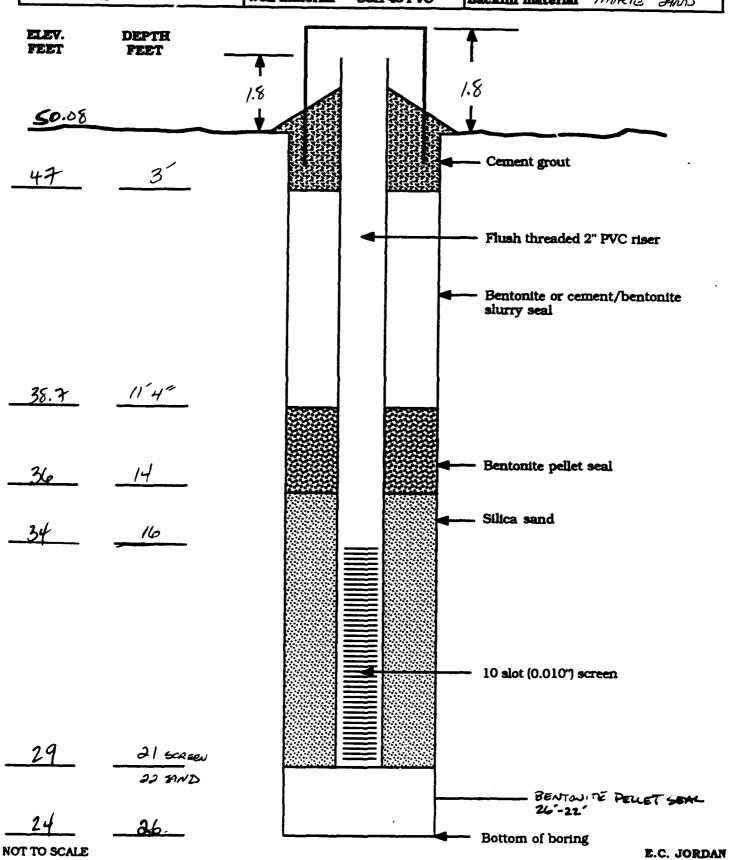
*U = Thin wall tube S = Split spoon R = Rock

BKg = Beekground

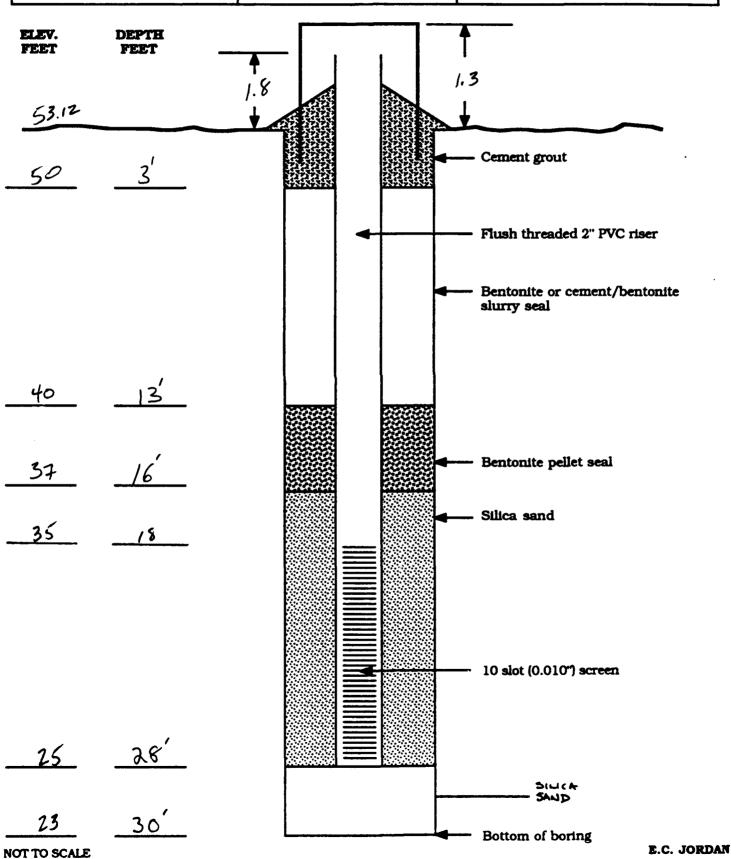
ENTERON BATTLES & ASSOC. INC. Description Thought the state of the s	ELAWARE AIR NAT		Boring no: P_112	
Thought a control of the state	ent HAZWRAP		Project no: 5411-02	
Thought a control of the state	ntractor JOHN MATHE	es & Assoc., Inc.	Date started 10/13/88	Completed /0//3/88
Below grad The pure of the by MP ickinson Date 1/17/49 Below grad The pure of the pure	thod HSA	Casing size 4.25" ID	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
Below grad The pure of the by MP ickinson Date 1/17/49 Below grad The pure of the pure	ound el 64.35 8	Soil drilled 31'	Rock drilled NA	Total depth 31'
1 1 1 1 1 1 1 1 1 1				
	Sample no. and Specific Little	Soil/TI Soil/TI SAND BRANCE FIRM B SATURATED SATURATED SATURATED SATURATED SATURATED SATURATED SATURATED	DELOW 24.5' De To Bluish Gany Silt, TR. 14 V.F. 94UD, SULANTLY PLASTIC.	SP 9 10 10 10 10 10 10 10 10 10 10 10 10 10
	<u>-</u>			

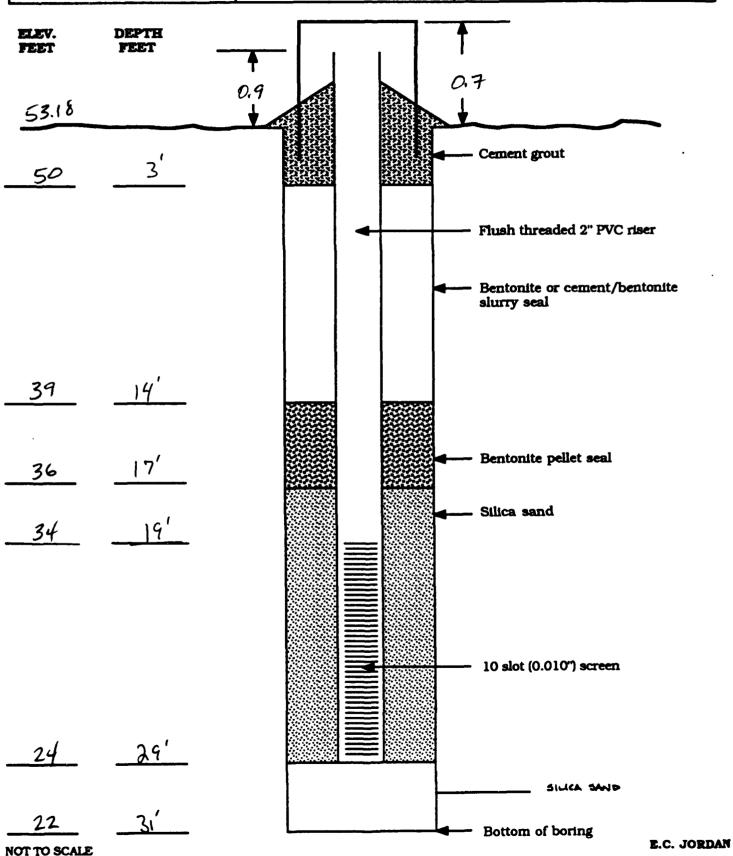

*U = Thin wall tube S = Split spoon R = Rock

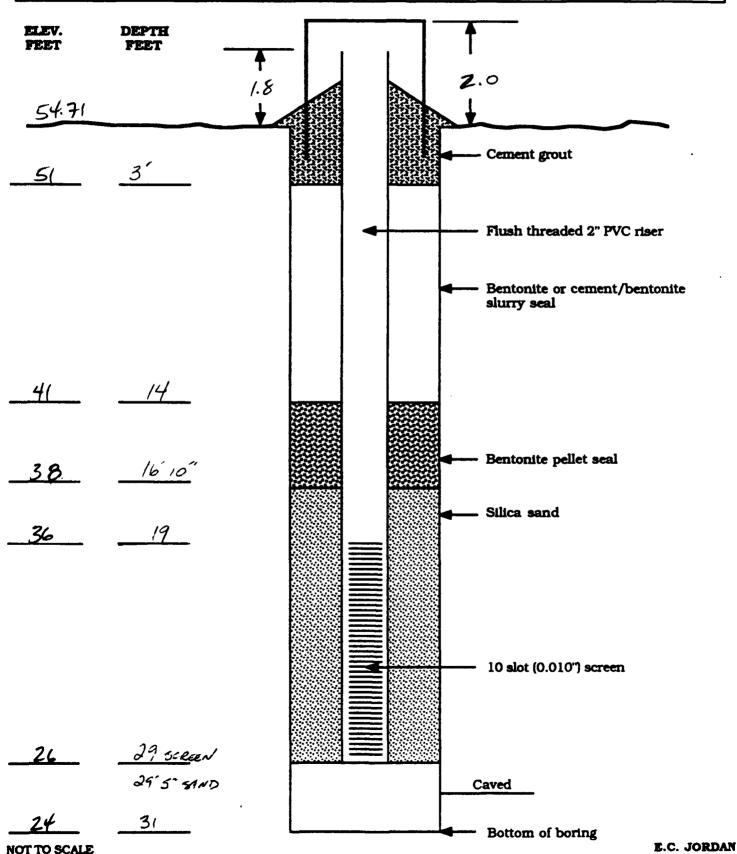
Bkg = Background

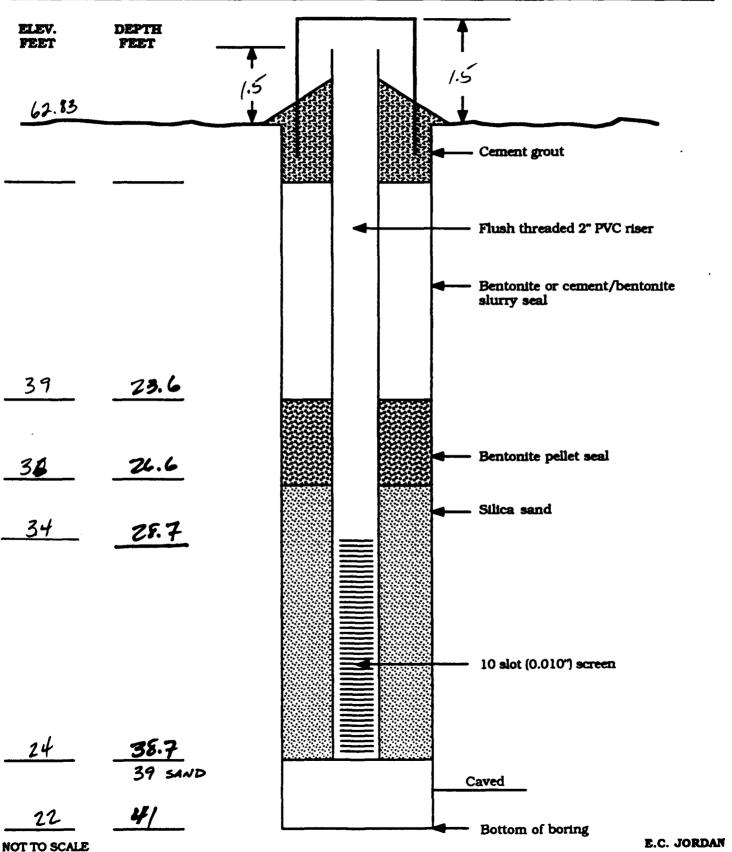

K .	re air na Stle, del	Tional Gu Aware	ARD,		Boring no: P-112 off set				
Client HAZWRAP 18. Project no: 5411-02									
Contractor	Contractor JOHN MATHES & ASSOC., INC. Detectated 10/24/88 Completed 10/24/88								
Method 1	isa Asa	Casing size	4.25° ID	PHOTOVAC 10.2	Protect'n level O				
Ground el.	64.51	Soil drilled	34' 7"	Rock drilled NV	Total depth 34'7"				
Logged by				Date 1/12/89	✓ Below grnd				
Depth (ft)	Sample no. and type Sample CLP GC	90 ed.			or ROD % 13 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 ×				
			BORING SAMPLIO SEE P- GRAVEL	WHS DRILLED W/AUT NG 112 BORING DESCRIPTION ZONG 10-12' AT 17'	$\langle \rangle$				

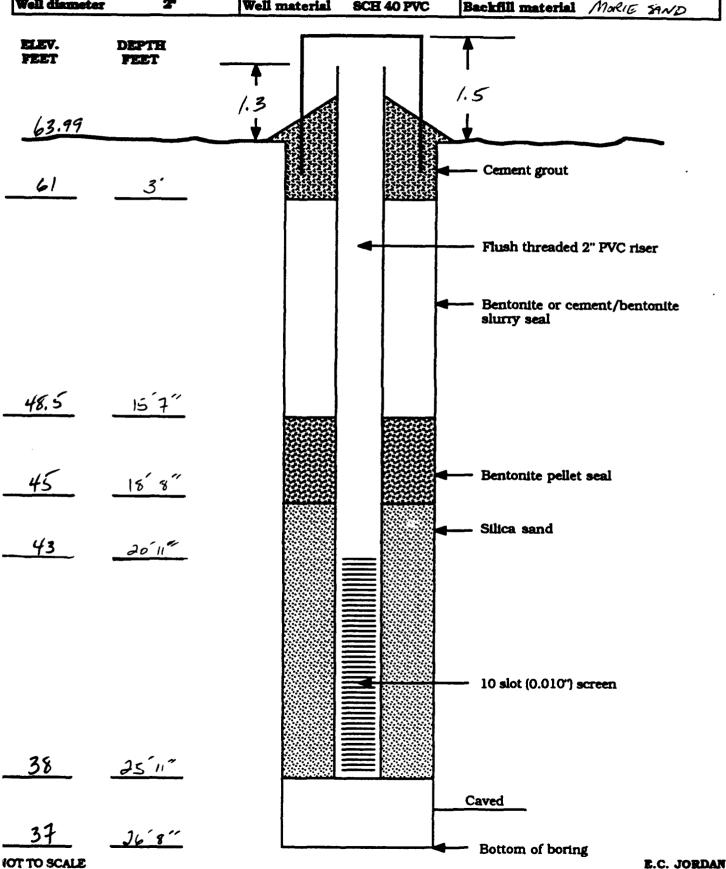
 $^{^{\}circ}U = Thin wall tube S = Split spoon R = Rock$

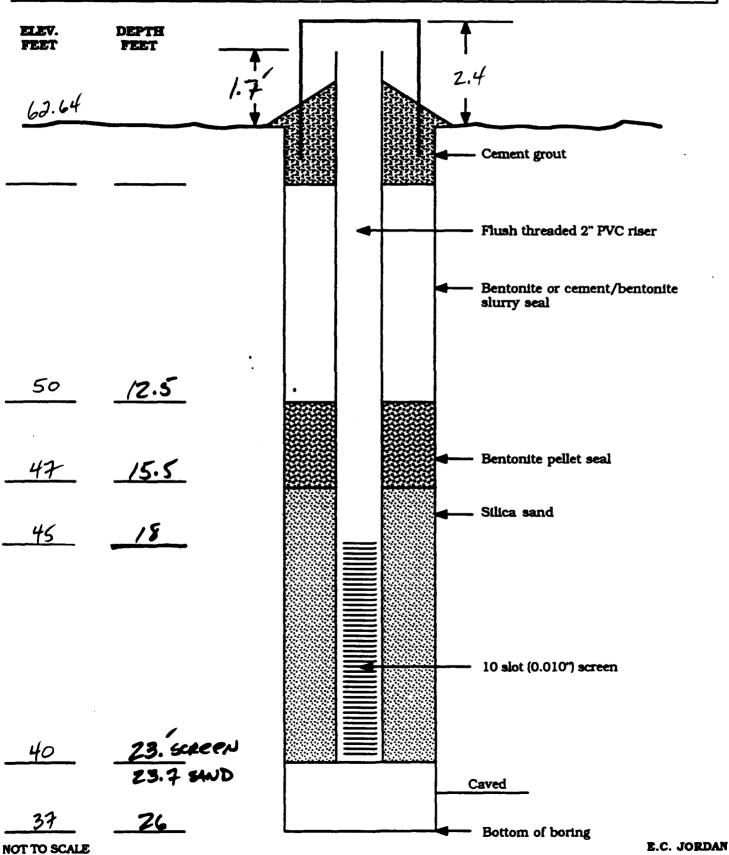

Project no.	5411-02	Project name	DANGB	Well no. mw-	101
Installed by	nathes /JORDAN	Date installed	10-5-88	Boring diameter	NOM. 8"
Well diameter		Well material	SCH 40 PVC	Backfill material	MORIE YOUD

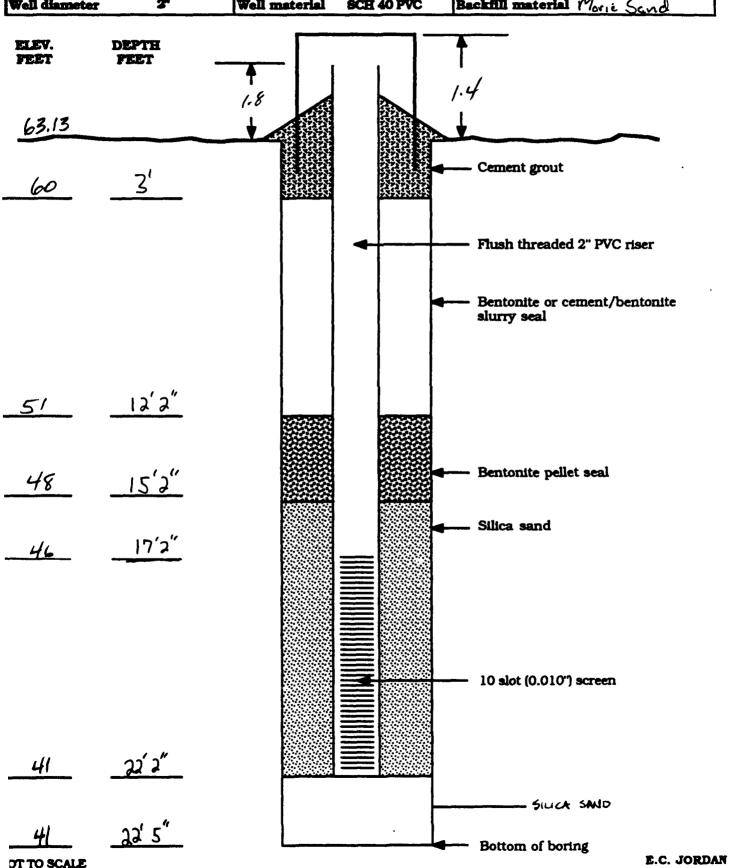

Project no.	5411-02	Project name	DANGB	Well no. MW-102-
Installed by /	NATHES/JORDAN	Date installed	10.6.88	Boring diameter NOM. 8"
Well diameter	/ 2n	Well material	SCH 40 PVC	Backfill material MORIE SAND

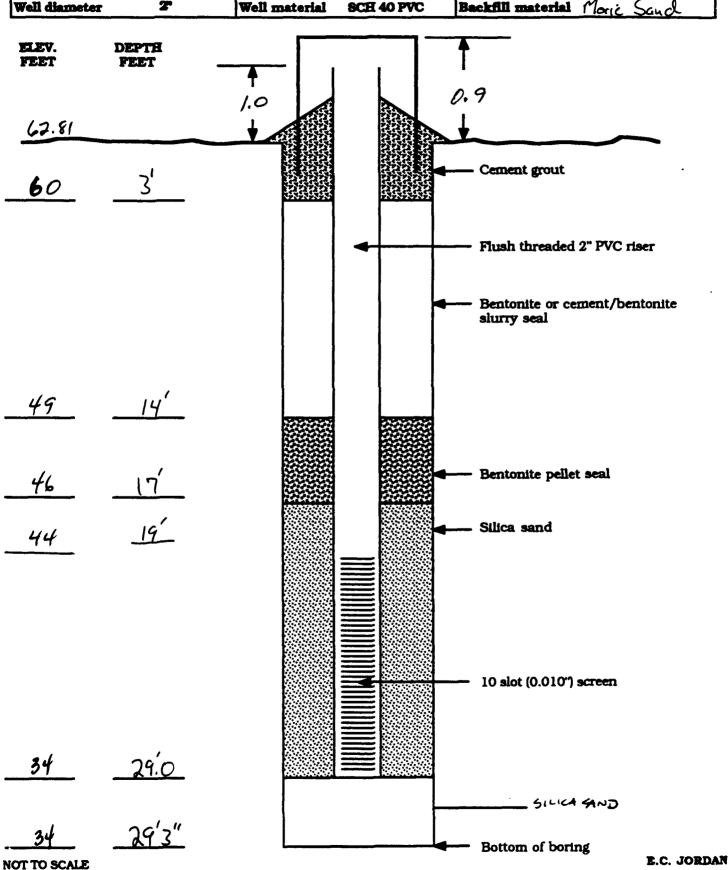

Project no. 5411-02		Project name	DANGB	Well no. MW-103	
Installed by		Date installed		Boring diameter NOM. 8"	
Well diameter	ell diameter 2º Well material SCH 40 PVC		SCH 40 PVC	Backfill material	

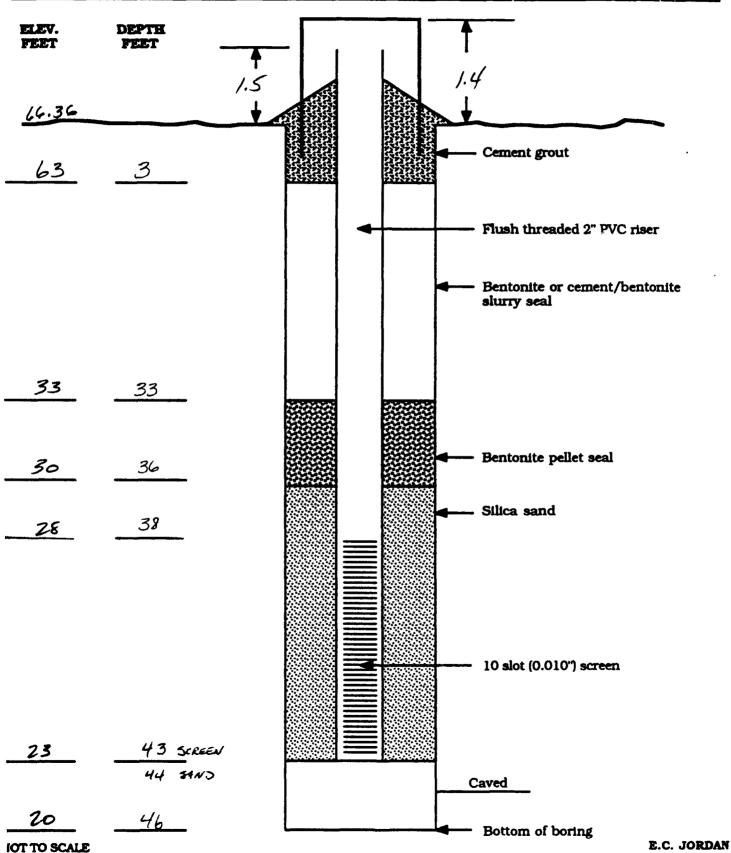

Project no.	5411-02	Project name	DANGB	Well no. MW-104
Installed by	lathes / Jordon	Date installed	10/17/88	Boring diameter NOM. 8"
Well diameter	2"	Well material	SCH 40 PVC	Backfill material Morie Sund

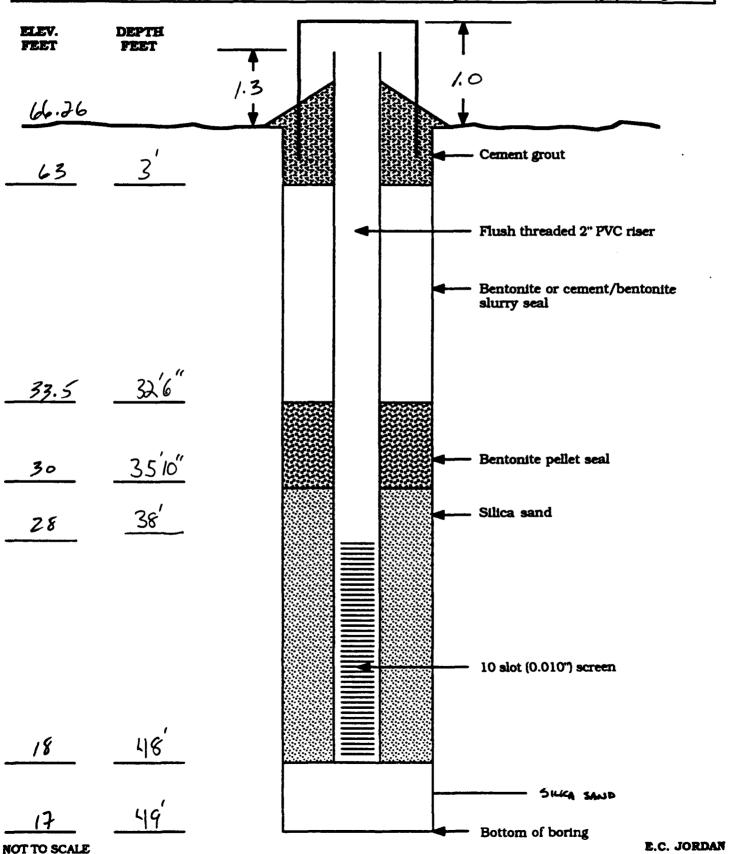

Project no.	5411-02	Project name	DANGB	Well no. Mu	1-105
Installed by	MATHES/JERDAN	Date installed	10.7.88	Boring diameter	NOML 8"
Well diameter	2	Well material	SCH 46 PVC	Backfill material	MORIE SAND

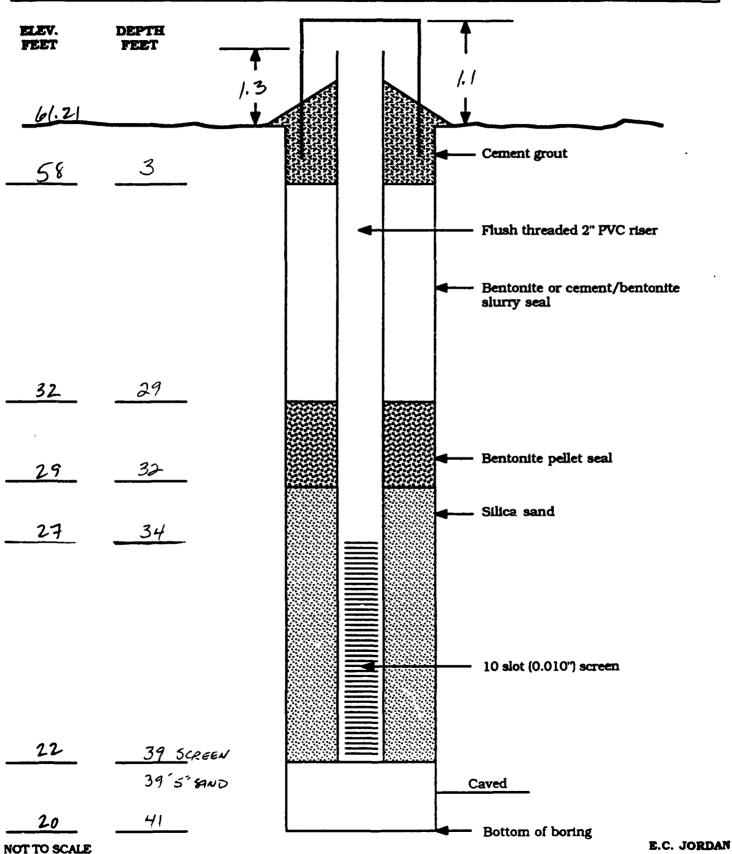

Project no.	5411-02	Project name	DANGB	Well no. MW-	106
Installed by	NAThe s	Date installed	10-4-88	Boring diameter	NOME 8"
Well diameter	T	Well material	SCH 40 PVC	Backfill material	Marie SAND

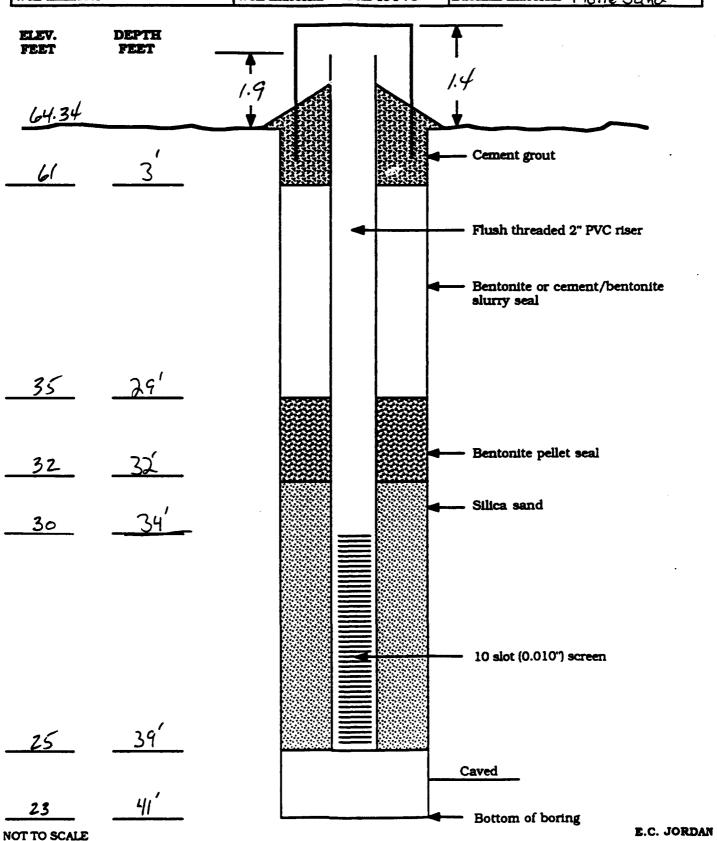

Project no.	5411-02	Project name	DANGB	Well no. MW-107
Installed by	MATHES/JORDAN	Date installed	10-5-88	Boring diameter NOM. 8"
Well diameter	· **	Well material	SCH 40 PVC	Backfill material MoRIE SAND

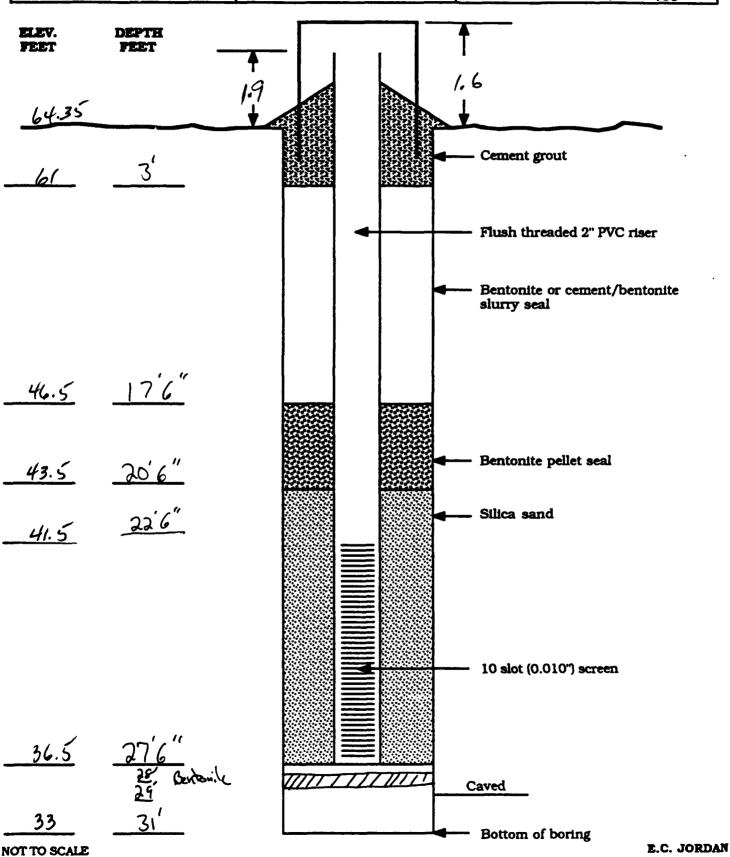

Project no.	5411-02	Project name	DANGB	Well no. MW	1-108
Installed by	MATLES	Date installed	10-4-88	Boring diameter	NOM 8"
Well diameter	2"	Well material	SCH 40 PVC	Backfill material	MORIE SAND

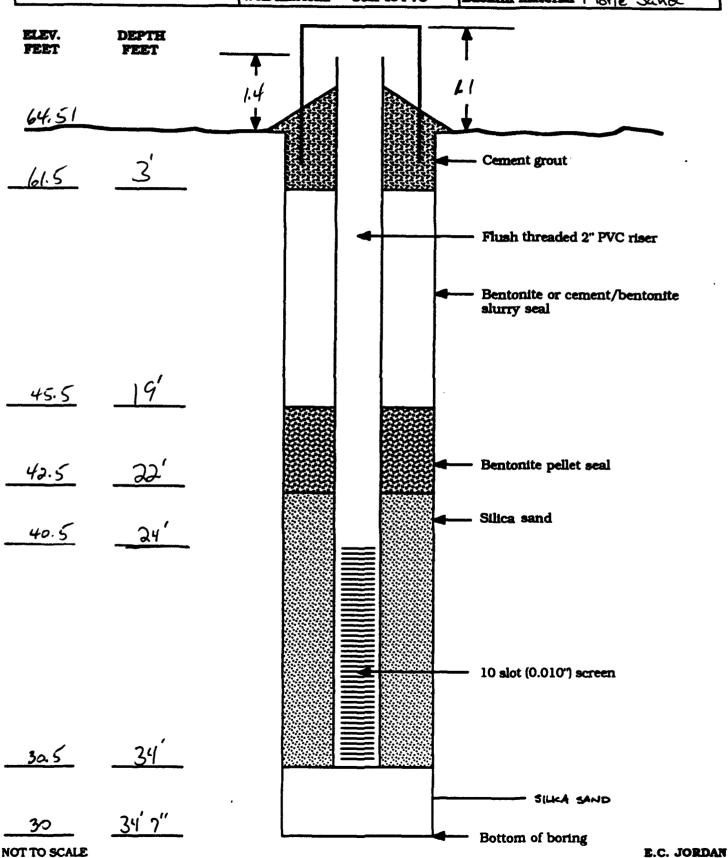

Project no.	5411-02	Project name	DANGB	Well no. MW - 109
Installed by	ues Tordan	Date installed	10/19/88	Boring diameter NOM. 8"
Well diameter	3	Well material	SCH 40 PVC	Backfill material Morie Sand

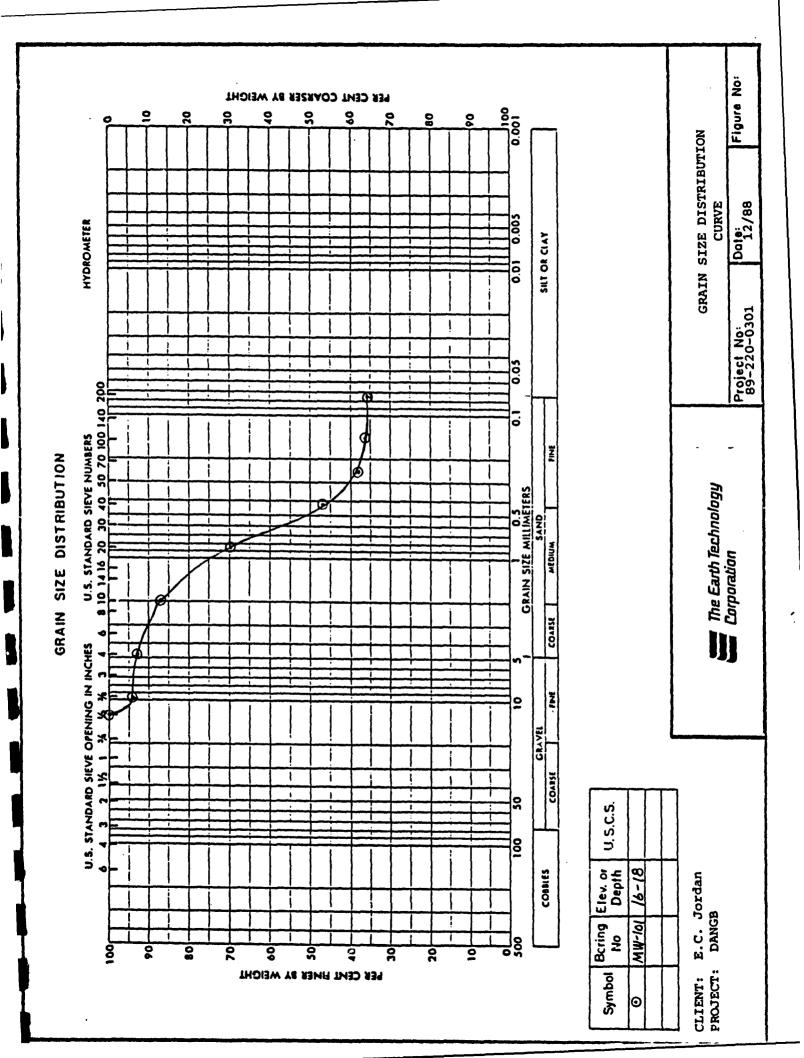

Project no.	5411-02	Project name	DANGB	Well no. MW - 110
Installed by	Mitles Tordan	Date installed	10/21/88	Boring diameter NOM. 8"
Well diameter	2°	Well material	SCH 40 PVC	Backfill material Moric Sand

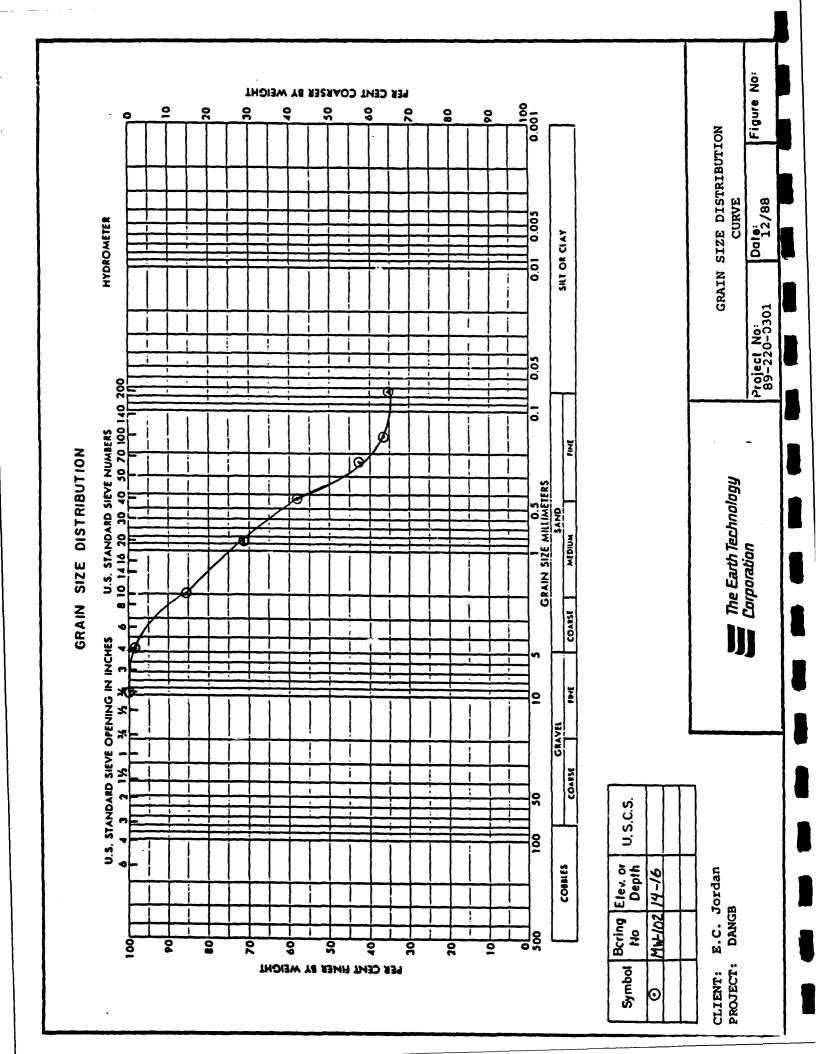

Project no.	5411-02	Project name	DANGB	Well no. MW-///	
Installed by	NATHED/JORDAN	Date installed	10.12.88	Boring diameter	NOML 8"
Well diameter	' ''	Well material	SCH 40 PVC	Backfill material	MORIG SAND

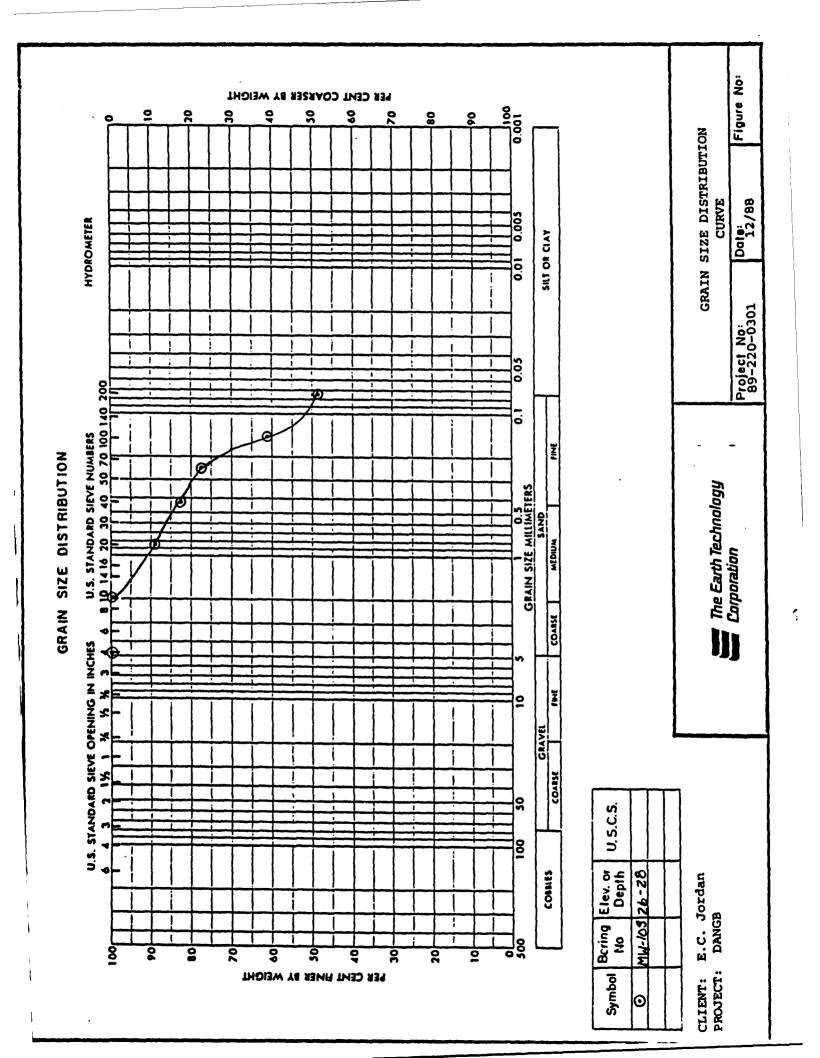

Project no. 5411-02 Installed by		Project name DANGB		Well no. MN-111 Offset	
		Date installed	10/24/88	Boring diameter NOM. 8*	
Well diameter	2"	Well material	SCH 40 PVC	Backfill material Mosse Soud	

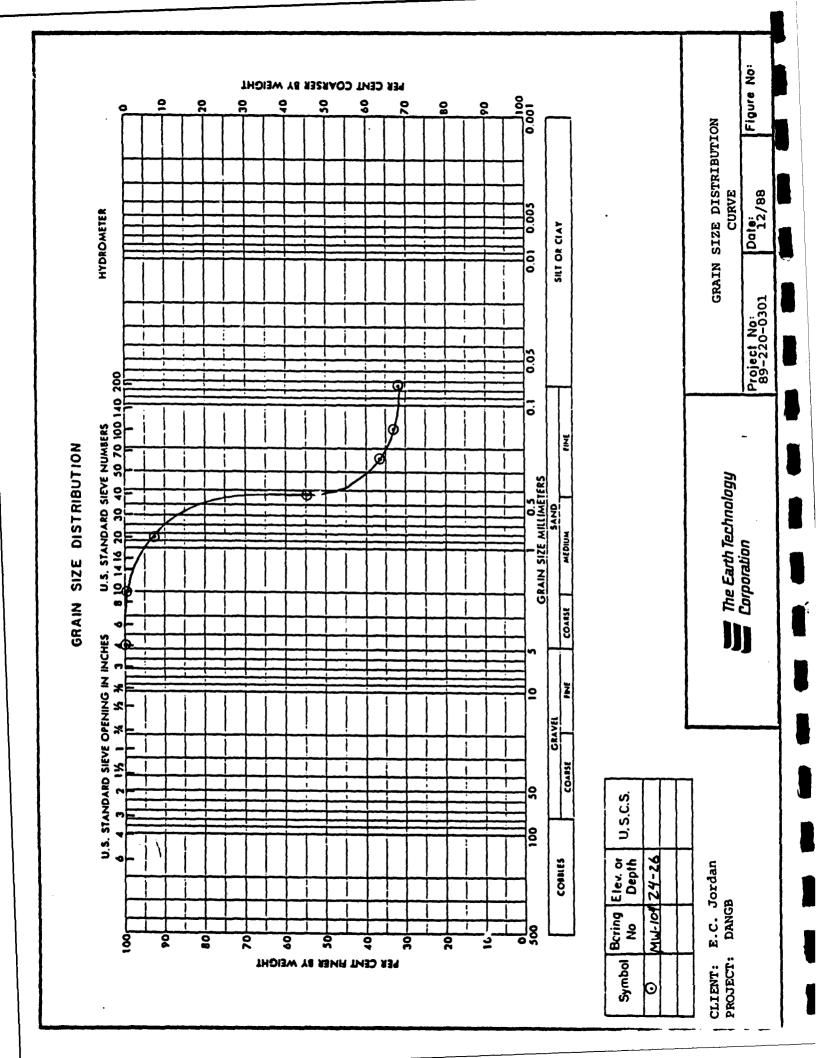

Project no.	5411-02	Project name	DANGB	Well no.	MW-112
Installed by A	NATHES/JERDAN	Date installed	12.12.88	Boring diameter	NOM 8"
Well diameter	/ 2º	Well material	SCH 40 PVC	Backfill material	MORIE SAND

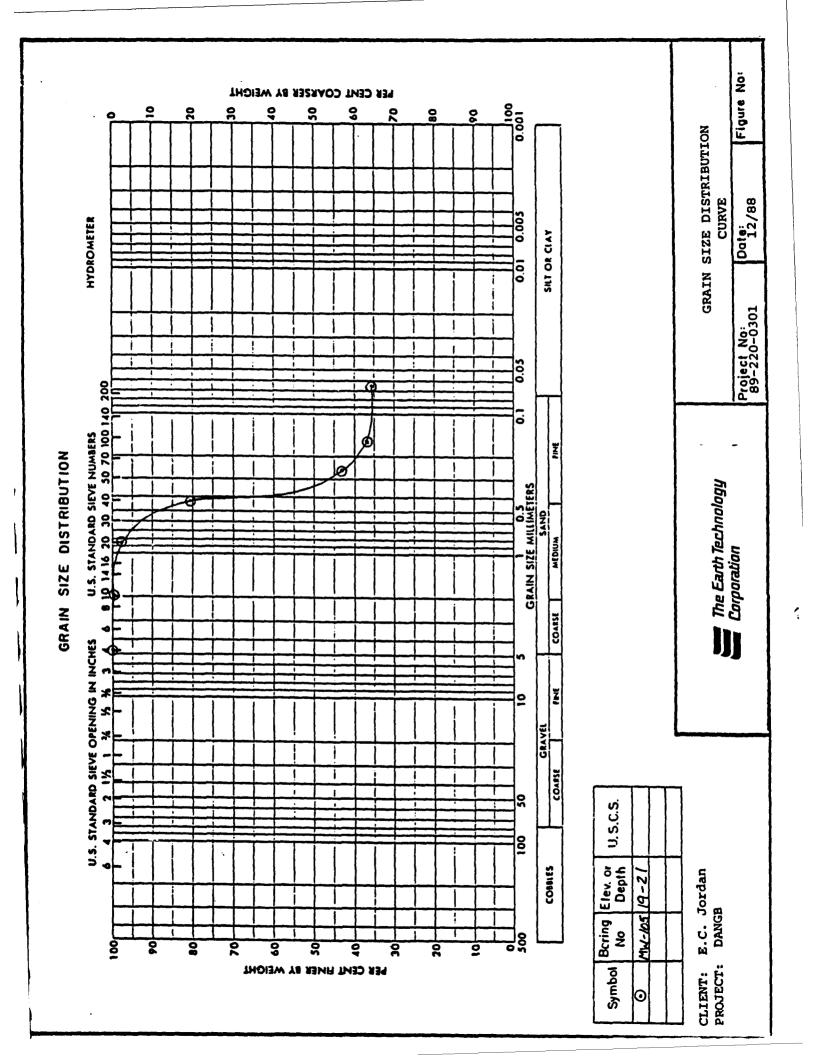

Project no.	5411-02	Project name	DANGB	Well no. P-110
Installed by	lather Torden	Date installed	10/13/68	Boring diameter NOM. 8"
Well diameter	T	Well material	SCH 40 PVC	Backfill material Morie Sand

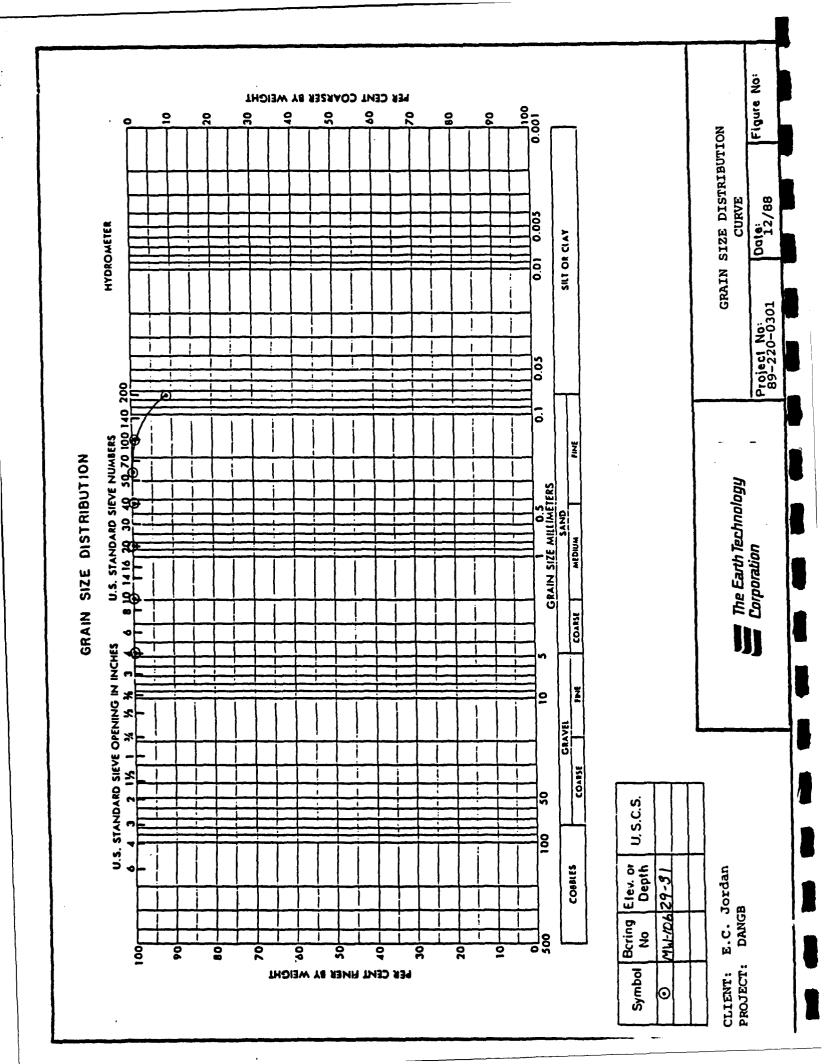

Project no.	5411-02	Project name	DANGB	Well no. P-112
Installed by /	Wites / Jordan	Date installed	10/13/88	Boring diameter NOM. 8"
Well diameter	2"	Well material	SCH 40 PVC	Backfill material Morie Sand

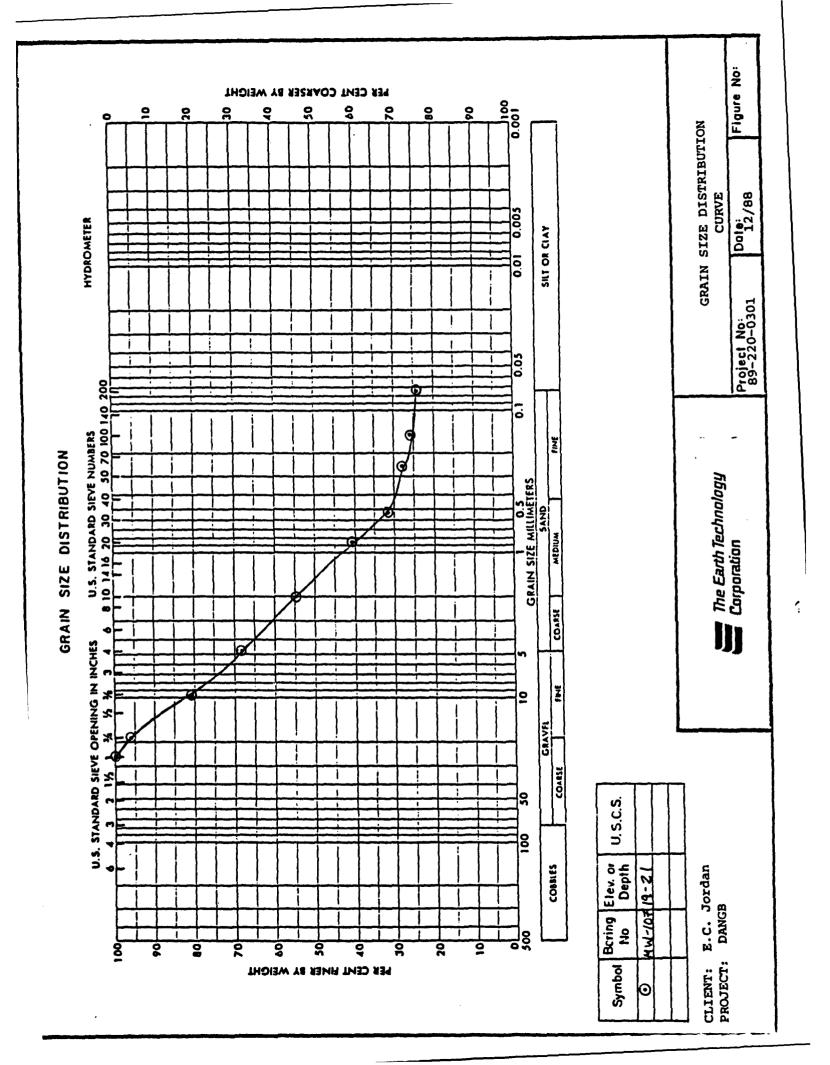


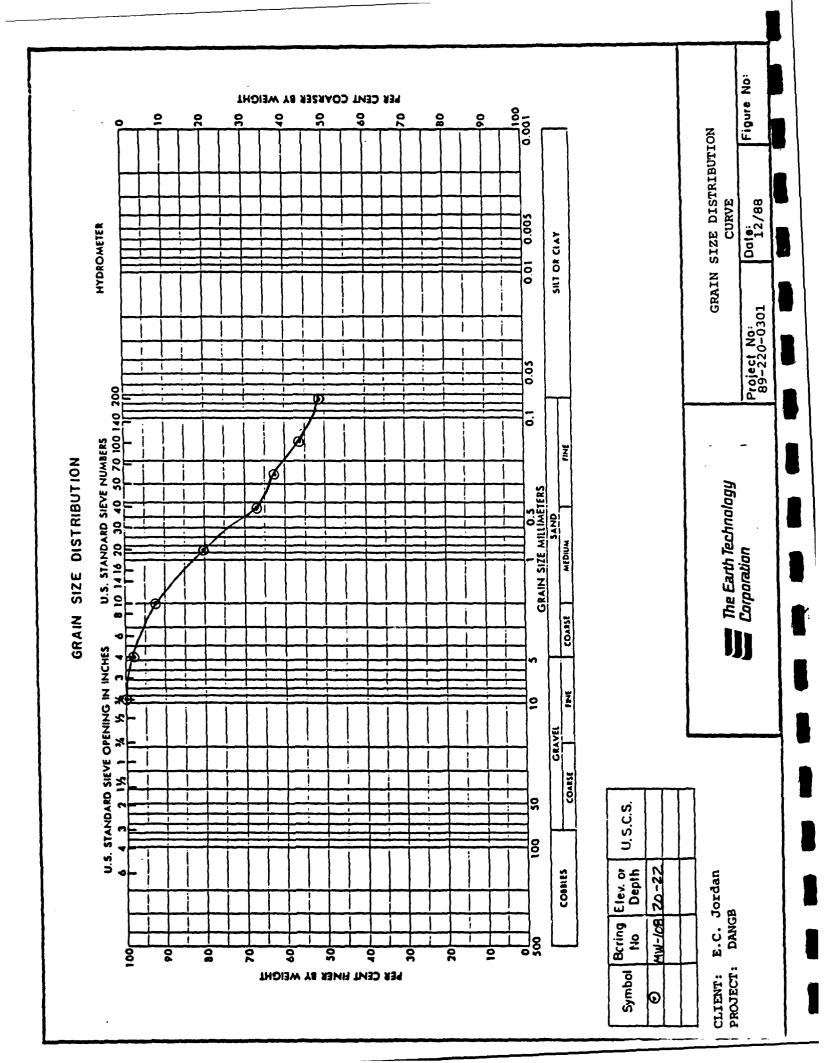

Project no.	5411-02	Project name	DANGB	Well no. P-112 offset
Installed by	has Jordan	Date installed	16/24/88	Boring diameter NOM. 8"
Well diameter	2	Well material	SCH 40 PVC	Backfill material Morje Sand

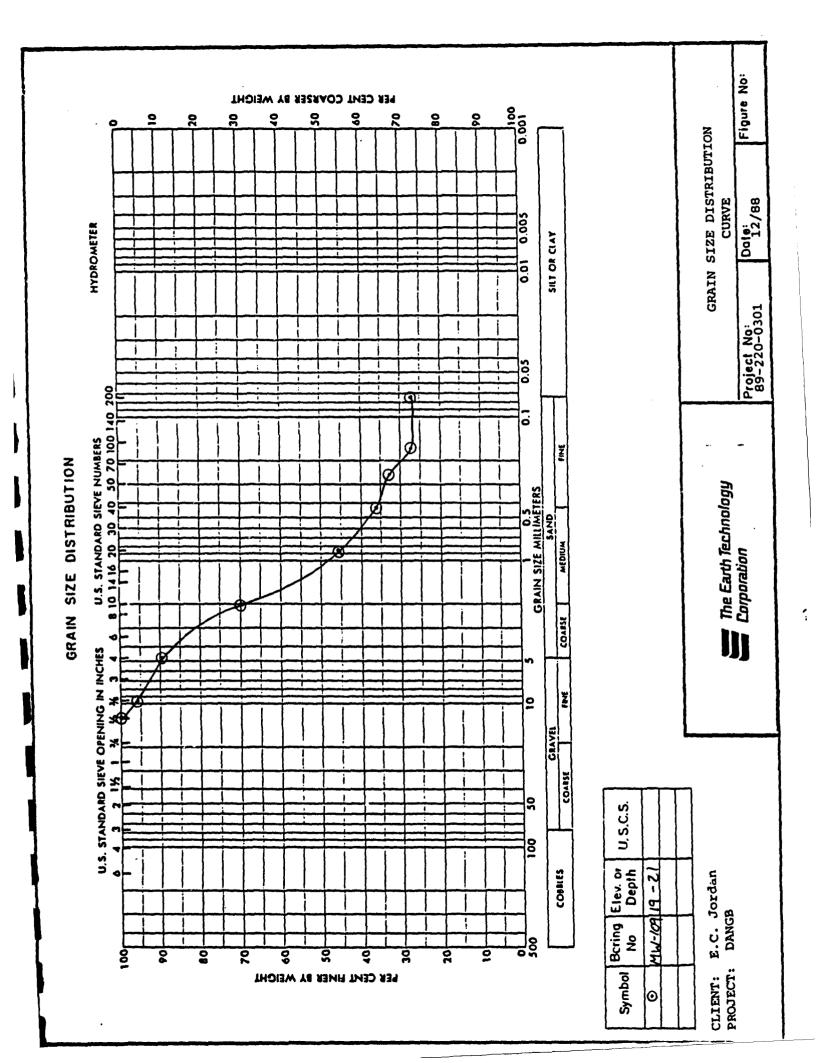


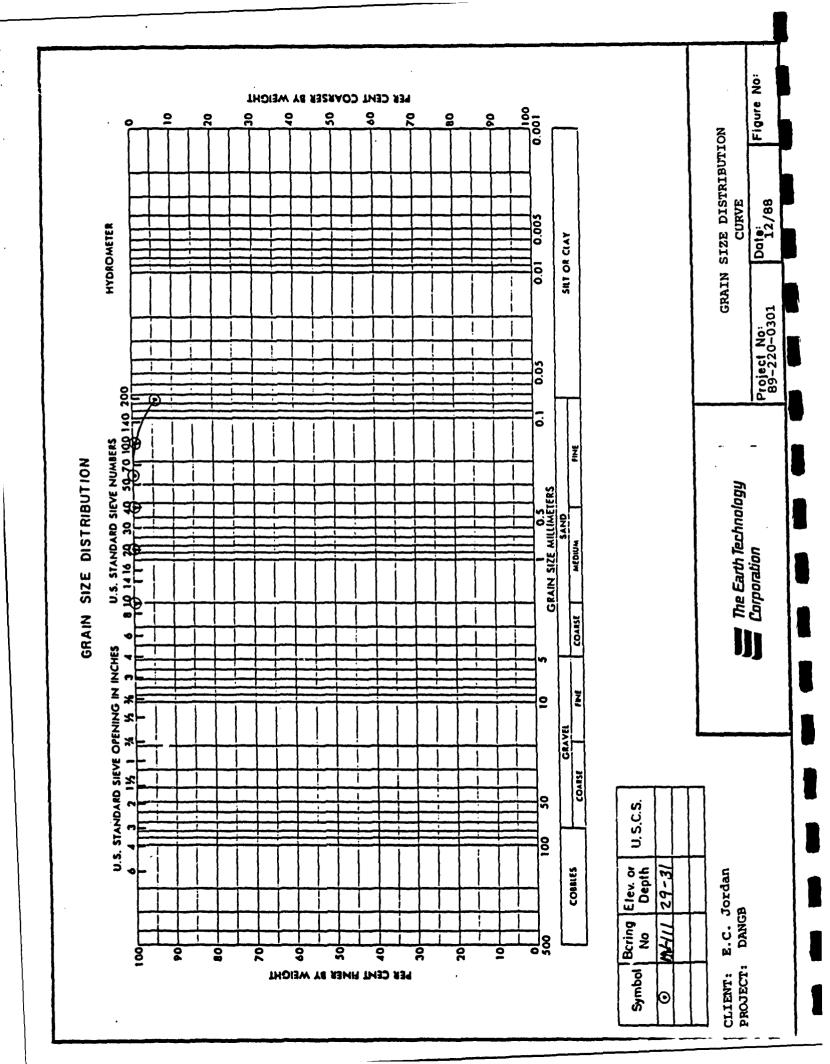

APPENDIX C LABORATORY SOIL TEST DATA

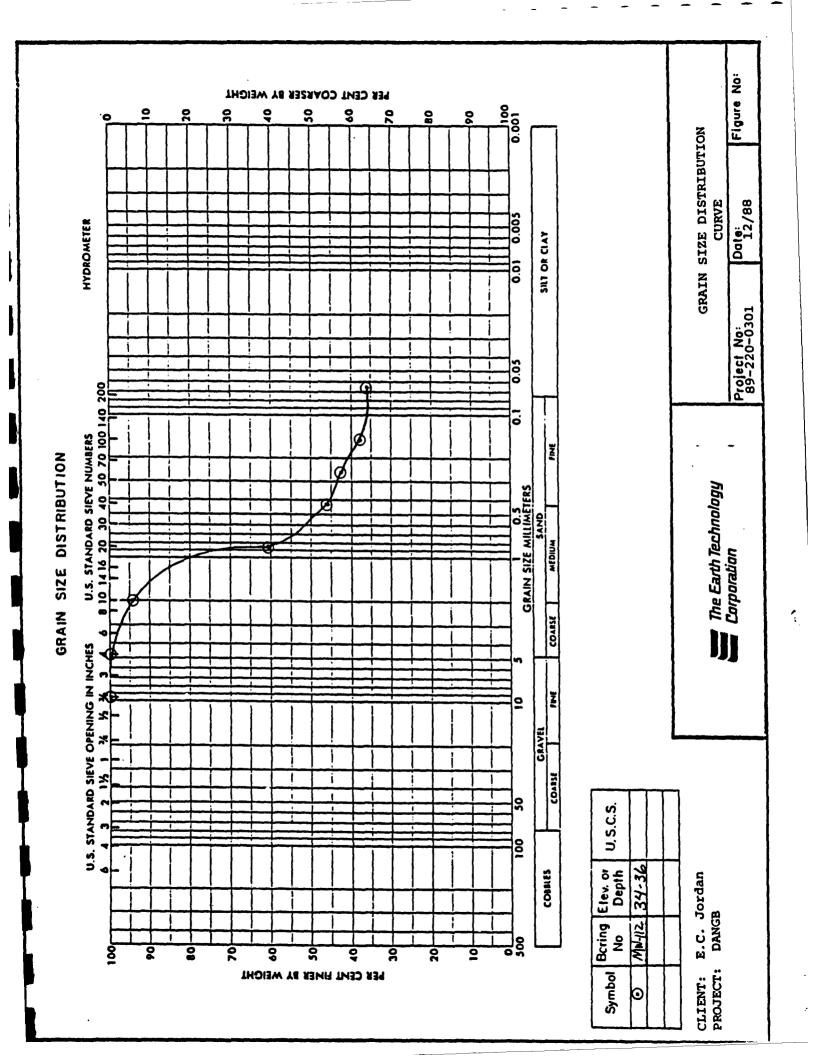












SIEVE ANALYSIS RESULTS

1)	MW-101 16'-18'	7% Gravel Trace 57% Sand (mostly fine) 36% Silt and/or Clay	$\frac{\underline{\text{Sand}}}{\underline{\text{and}}}$ Fine Sand and Silt, Trace $\underline{\text{and}}$ Gravel, Trace Clay
2)	MW-102 14'-16'	2% Gravel Trace 63% Sand Well Graded 35% Silt and/or Clay	Well Graded Sand and Silt, Trace Gravel, Trace Clay
3)	MW-103 26'-28'	52% Fine and Med. Sand 48% Silt and/or Clay	Fine to Med. Sand and Silt, Trace Clay
4)	MW-104 24'-26'	68% Fine and Med. Sand 32% Silt and/or Clay	Fine and Med. Sand, Some Silt, Trace Clay
5)	MW-105 19'-21'	64% Fine and Med. Sand 36% Silt and/or Clay	Fine to Med. Sand and Silt, Trace Clay
6)	MW-106 29'-31'	9% Fine Sand Trace 91% Silt and/or Clay	Silt/Clay with Trace Fine Sand
7)	MW-107 19'-21'	32% Fine Gravel 44% Well graded F-C Sand 24% Silt and/or Clay	Fine to Coarse Sand, Some Gravel, Some Silt, Trace Clay
8)	MW-108 20'-22'	2% Gravel 46% Fine to Coarse Sand 52% Silt and/or Clay	Silt and Sand, Trace Gravel, Trace Clay
9)	MW-109 19'-21'	10% Gravel 63% Well Graded Sand 27% Silt and/or Clay	Well Graded Sand, Some Silt, Trace Gravel, Trace Clay
10)	MW-111 29'-31'	6% Fine Sand 94% Silt and/or Clay	Silt and Clay, Trace Fine Sand
11)	MW-112 34'-36	64% Well Graded Sand 36% Silt and/or Clay	Well Graded Sand and Silt, Trace Clay

APPENDIX D

HYDRAULIC CONDUCTIVITY RESULTS AND SAMPLE CALCULATIONS

HYDRAULIC CONDUCTIVITY TEST RESULTS SI STUDY DELAWARE ANGB GREATER WILMINGTOM AIRPORT NEW CASTLE, DELAWARE

		HYDRAULIC CO	NDUCTIVITY
TEST LOCATION	TYPE OF TEST	cm/sec	ft/day
MW-101	RISING HEAD/IN SITU	2.06E-02	58.39
MW-102	RISING HEAD/IN SITU	4.36E-03	12.36
MW-103	RISING HEAD/IN SITU	1.24E-02	35.15
MW-104	RISING HEAD/IN SITU	5.19E-03	14.71
MW-105	RISING HEAD/IN SITU	1.21E-02	34.30
MW-106	RISING HEAD/IN SITU	9.81E-03	27.81
MW-107	RISING HEAD/IN SITU	2.67E-02	75.69
MW-108	RISING HEAD/IN SITU	8.60E-03	24.38
MW-110	RISING HEAD/IN SITU	8.94E-03	25.34
MW-111	RISING HEAD/IN SITU	1.50E-02	42.52
MW-112	RISING HEAD/IN SITU	2.60E-02	73.70
P-110	PISING HEAD/IN SITU	1.02E-02	28.91
P-112	RISING HEAD/IN SITU	7.03E-02	199.28

PROJECT DANGB

SAMPLE CALCULATION: HYDRAULIC CONDUCTIVITY

COMP. BY

5411-03 DATE 12/12/88

JOB NO.

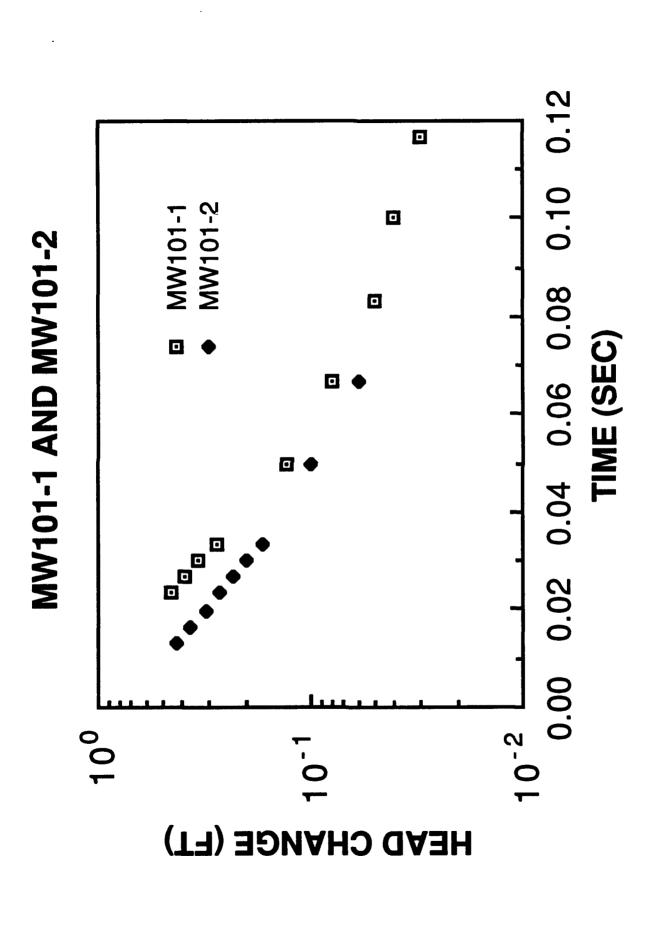
MW-102: from Hrorslev (1961)

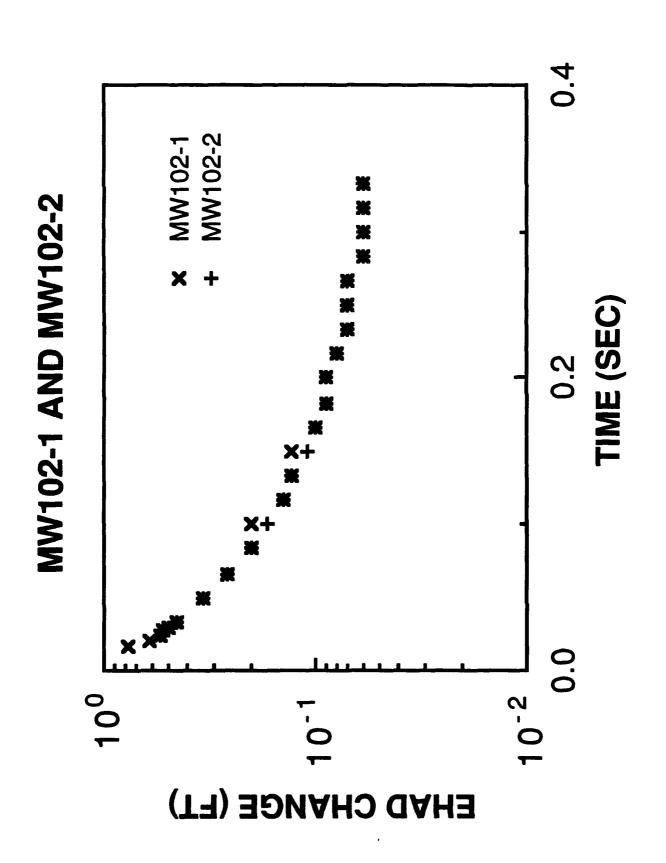
$$K = \frac{d^2 \cdot \ln \left[\frac{2mL}{D} \right]}{8 \cdot L \cdot (t_2 - t_1)} \cdot \ln \left(\frac{H_1}{H_2} \right)$$

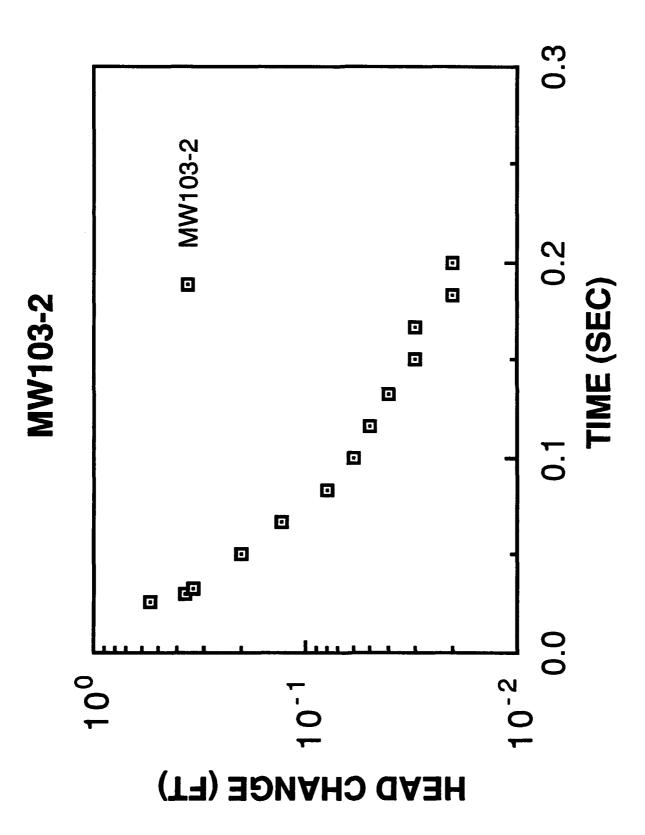
d = 0.17 feet (well diameter)

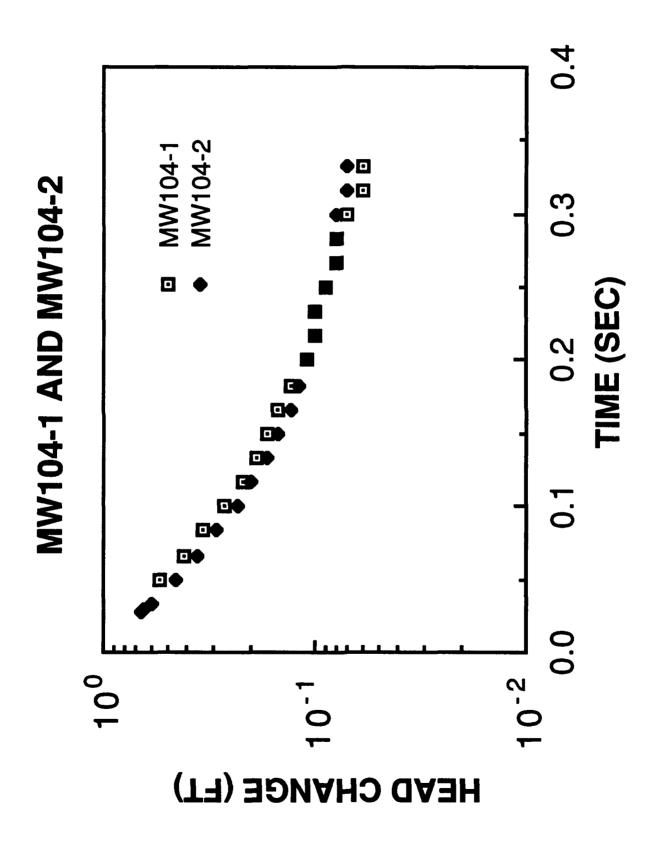
D = 0-67 feet (bore hole diameter)

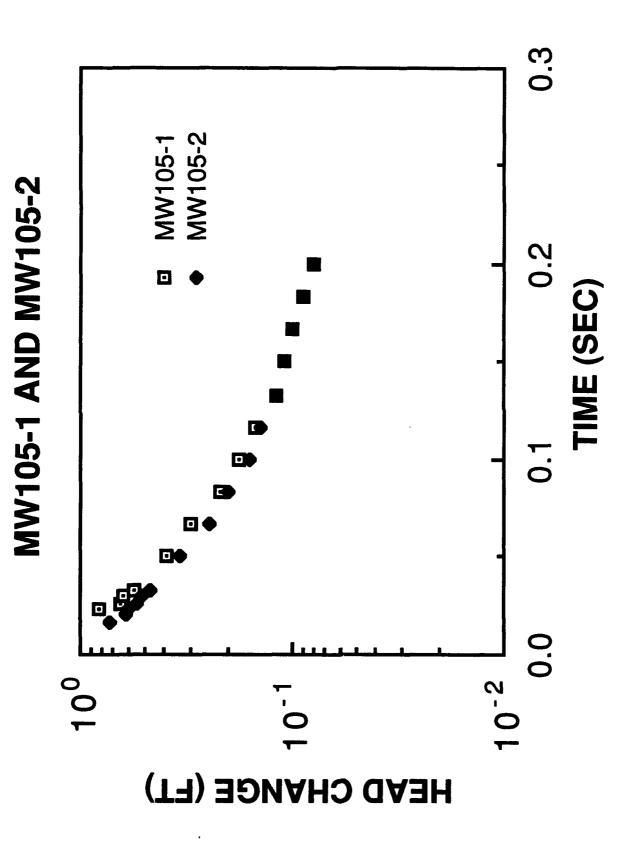
L: 10.06 (lenth of sandpuck)

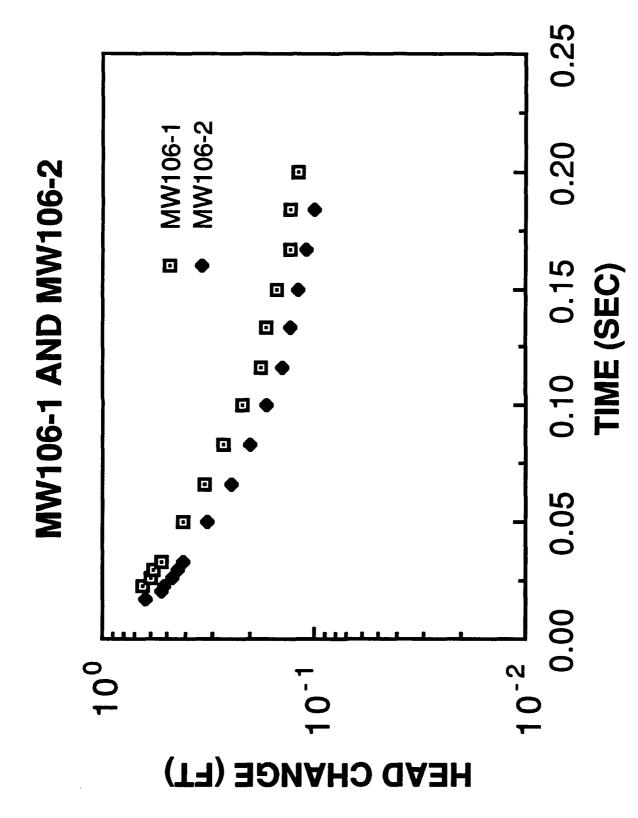

M = 1 (assumed anisotropy ratio)

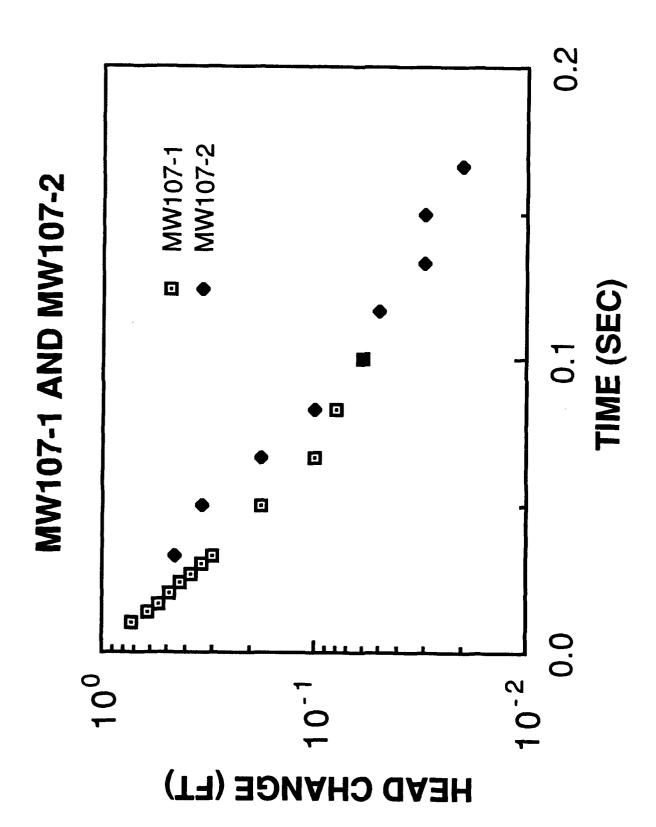

11, = 0.78 feet, t, = 0.0166 min

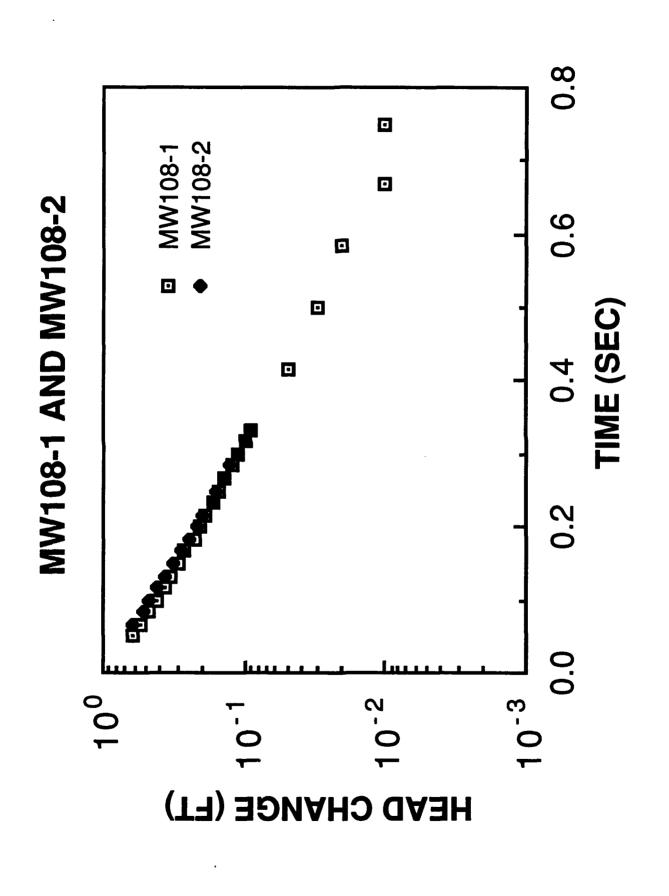

H2 = 0.02 feer, t2 = 1.0 min

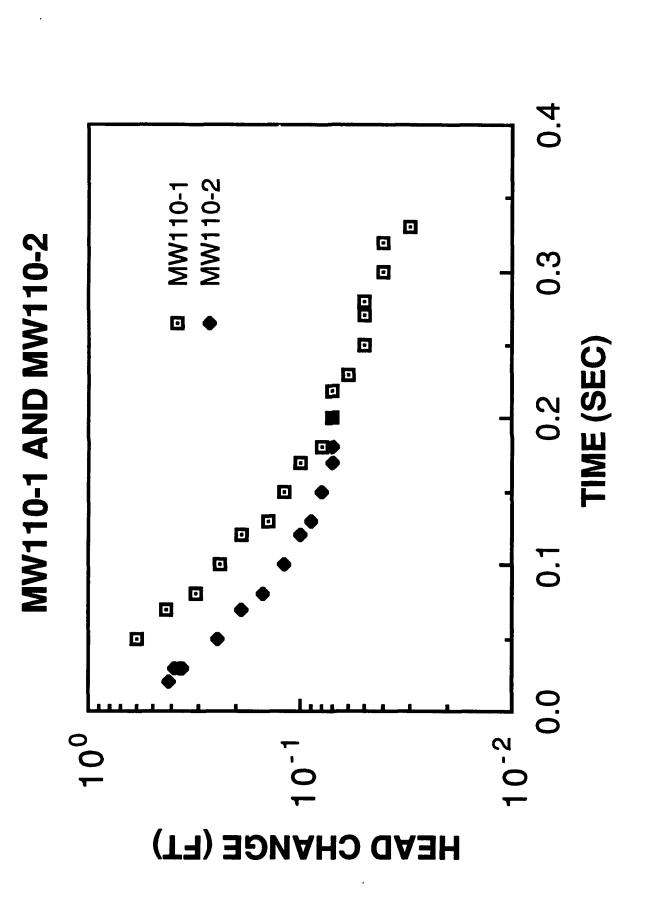

$$K = \frac{(0.17)^2 \cdot \ln \left[(2 \cdot 1 \cdot 10.06) / 0.67 \right]}{8 \cdot 10.06 \left(1.0 - 0.0164 \right)} \cdot \ln \left(\frac{0.78}{0.02} \right)$$

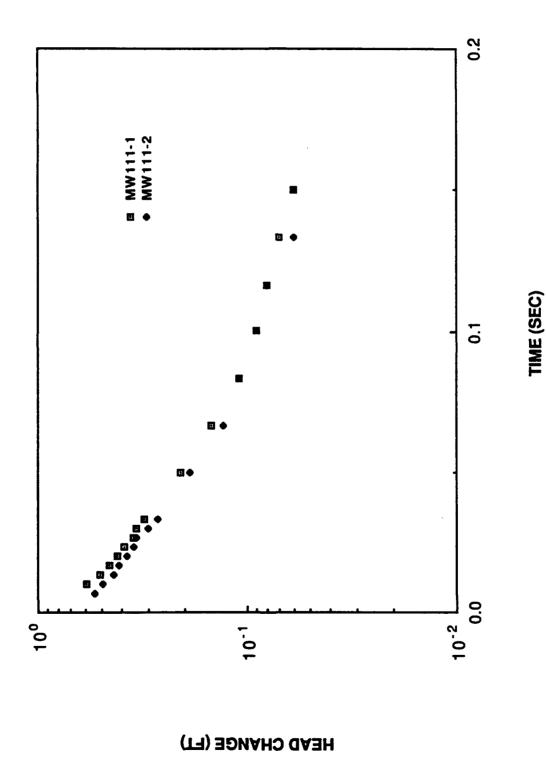

=
$$4.55 \times 10^{-3} \text{ ft/min} = 6.55 \text{ ft/day}$$

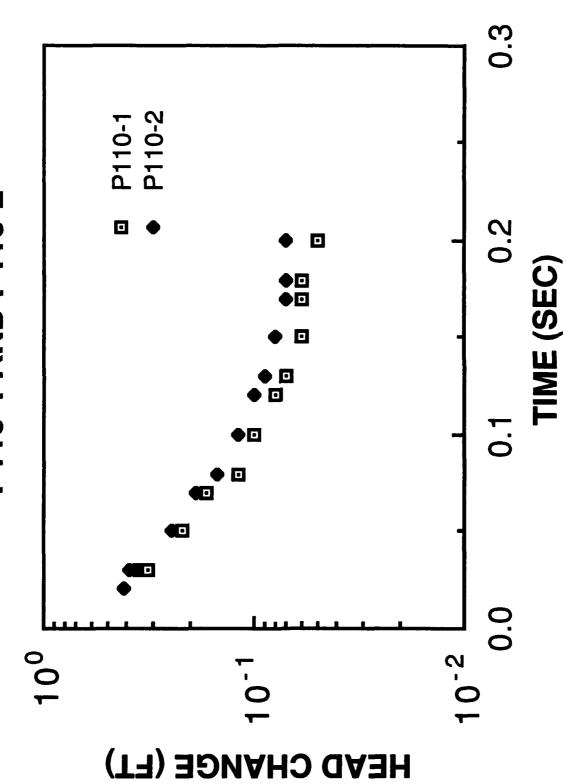











0.5 ■ MW112-1 • MW112-2 0.1 10-2 | 10-1 100

HEAD CHANGE (FT)

TIME (SEC)

MW112-1 AND MW112-2

P110-1 AND P110-2

0.30 P112-1 P112-2 P112-1 AND P112-2 0 0.20 0 TIME (SEC) 0 • ▣ 0.10 00 0.00 10-2 10⁰ (ТЧ) ЭБИАНО ПАЭН

APPENDIX E

SOIL ORGANIC VAPOR SURVEY DATA (INCLUDING REPORT BY TRACER RESEARCH CORPORATION)

SHALLOW SOIL GAS INVESTIGATION AT THE DELAWARE AIR NATIONAL GUARD BASE NEW CASTLE, DELAWARE

SEPTEMBER 1988

PREPARED FOR:

E.C. Jordan Co. 261 Commercial Steet Portland, Maine 04112

SUBMITTED BY:

Tracer Research Corporation

TABLE OF CONTENTS

INTRODUCTION	1
SHALLOW SOIL GAS INVESTIGATION-METHODOLOGY	2
EQUIPMENT AND SAMPLING PROCEDURES	3
ANALYTICAL PROCEDURES	4
QUALITY CONTROL/QUALITY ASSURANCE PROCEDURES	5
APPENDIX A	
CONDENSED DATA	7

INTRODUCTION

A shallow soil gas investigation was performed by Tracer Research Corporation at the Delaware Air National Guard Base (DANGB) in New Castle, Delaware. The investigation was conducted on September 27 through 30, 1988 under contract to E.C. Jordan Co. The purpose of the survey was to evaluate the presence or absence of volatile organic compounds (VOCs) in the subsurface.

For this survey, a total of 70 soil gas samples were collected and analyzed in the field. Samples were analyzed for the following compounds:

trichloroethane (TCA)
trichloroethylene (TCE)
tetrachloroethene (PCE)
benzene
toluene
ethylbenzene
xylenes
total hydrocarbons

Xylenes are reported as the total of the three xylene isomers and total hydrocarbons are approximately C4-C9 aliphatic, alicyclic and aromatic compounds. The compounds in this suite because of their suspected presence in the subsurface at particular sites on DANGB.

SHALLOW SOIL GAS INVESTIGATION - METHODOLOGY

gas contaminant investigation refers to a developed by TRC for investigating underground contamination from volatile organic chemicals (VOCs) such as industrial solvents, cleaning fluids and petroleum products by looking for their vapors in the shallow soil gas. The method involves pumping a small amount of soil gas out of the ground through a hollow probe driven into the ground and analyzing the gas for the presence of volatile contaminants. The presence of VOCs in shallow soil gas indicates the observed compounds may either be in the vadose zone near the probe or in groundwater below the probe. The soil gas technology is most effective in mapping low molecular weight halogenated solvent chemicals and petroleum hydrocarbons possessing high vapor pressures and low aqueous solubilities. These compounds readily partition out of the groundwater and into the soil gas as a result of their high gas/liquid partitioning coefficients. Once in the soil gas, VOCs diffuse vertically and horizontally through the soil to the ground surface where they dissipate into the atmosphere. The contamination acts as a source and the above ground atmosphere acts as a sink, and typically a concentration gradient develops between the two. concentration gradient in soil gas between the source and ground surface may be locally distorted by hydrologic and geologic anomalies (e.g. clays, perched water); however, soil gas mapping remains effective because distribution of the contamination is usually broader in areal extent than the local geologic barriers and is defined using a large data base. The presence of geologic obstructions on a small scale tends to create anomalies in the soil gas-groundwater correlation, but generally does not obscure the broader areal picture of the contaminant distribution.

EQUIPMENT

Tracer Research Corporation utilized a one & 1/2-ton flatbed Ford truck and analytical field trailer which was equipped with one gas chromatograph and two Spectra Physics SP4270 computing integrators. In addition, the trailer has one built-in gasoline powered generator which provides the electrical power (110 volts AC) to operate all of the gas chromatographic instruments and field equipment. A pneumatic hammer operated by a 230 cfm air compressor was used to drive probes into the ground. A specialized hydraulic mechanism consisting of two cylinders and a lever-arm was used to withdraw the sampling probes. A hand-operated hammer was used to assist in driving probes past cobbles and through unusually hard soil.

SAMPLING PROCEDURES

Sampling probes consist of 7-foot lengths of 3/4 inch diameter hollow steel pipe which are fitted with detachable drive points. Soil gas samples were collected after driving the steel depth between 2 and 6 feet into the ground. The probe to a above-ground end of the sampling probes were fitted with a steel reducer and a length of polyethylene tubing leading to a vacuum pump. To adequately purge the volume of air within the probe, 5 to 10 liters of gas were evacuated with a vacuum pump. During the soil gas evacuation, samples were collected in a glass syringe by inserting a syringe needle through a silicone rubber segment in the evacuation line and down into the steel probe. Ten milliliters of gas were collected for immediate analysis in the TRC analytical field van. Soil gas was subsampled (duplicate injections) in volumes ranging from 1 HL to 2 mL, depending on the VOC concentration at any particular location.

ANALYTICAL PROCEDURES

A Varian 3300 gas chromatograph equipped with a flame ionization detector (FID) and electron capture detector (ECD) was used for the soil gas analyses. The ECD was used for the analyses of TCA, TCE and PCE while the FID was used to analyze for benzene, toluene, ethylbenzene, xylenes and total hydrocarbons. Nitrogen was used as the carrier gas.

Detection limits for the compounds of interest function of the injection volume as well as the detector sensitivity for individual compounds. Thus, the detection limit varies with the sample size. Generally, the larger the injection size the greater the sensitivity. However, peaks for compounds interest must be kept within the linear range of If any compound has a high concentration, analytical equipment. it is necessary to use small injections, and in some cases to dilute the sample to keep it within linear range. This may cause increased detection limits for other compounds in the analyses. For example, during this investigation, a number of the soil gas samples had elevated concentrations of benzene. To bring the peak for this compound within linear range, it was necessary to This had the effect of decreasing the make small injections. detection limits for ethylbenzene and xylenes in these samples.

The detection limits range down to 0.0002 kg/L for compounds such as TCA and PCE depending on the conditions of the measurement, in particular, the sample size. If any component being analyzed is not detected, the detection limit for that compound in that analysis is given as a "less than" value (e.g. <0.0002 kg/L). Detection limits obtained from GC analyses are calculated from the current response factor, the sample size, and the estimated minimum peak size (area) that would have been sample according to the measurement.

QUALITY ASSURANCE/QUALITY CONTROL PROCEDURES

Tracer Research Corporation's normal quality assurance procedures were followed in order to prevent any cross-contamination of soil gas samples.

- . Steel probes are used only once during the day and then washed with high pressure soap and hot water spray or steam-cleaned to eliminate the possibility of cross-contamination. Enough probes are carried on each truck to avoid the need to reuse any during the day.
- Probe adaptors (steel reducer and tubing) are used once during the course of the day and cleaned at the end of each working day by baking in the GC oven. The tubing is replaced periodically as needed during the job to insure cleanliness and good fit.
- Silicone tubing (connecting the adaptor to the vacuum pump) is replaced as needed to insure proper sealing around the syringe needle. This tubing does not directly contact soil gas samples.
- Glass syringes are usually used for only one sample per day and are washed and baked out at night. If they must be used twice, they are purged with carrier gas (nitrogen) and baked out between probe samplings.
- . Septa through which soil gas samples are injected into the chromatograph are replaced on a daily basis to prevent possible gas leaks from the chromatographic column.
- Analytical instruments are calibrated each day by the use of chemical standards prepared in water by serial dilution from commercially available pure chemicals. Calibration checks are also run after approximately every five soil gas sampling locations.
- 2 cc subsampling syringes are checked for contamination prior to sampling each day by injecting nitrogen carrier gas into the gas chromatograph.
- Prior to sampling each day, system blanks are run to check the sampling apparatus (probe, adaptor, 10 cc syringe) for contamination by drawing ambient air from above ground through the system and comparing the analysis to a concluderative sampled air analysis.

- All sampling and 2 cc subsampling syringes are decontaminated each day and no such equipment is reused before being decontaminated. Microliter size subsampling syringes are reused only after a nitrogen carrier gas blank is run to insure it is not contaminated by the previous sample.
- Soil gas pumping is monitored by a vacuum gauge to insure that an adequate gas flow from the vadose zone is maintained. A negative pressure (vacuum) of 2 in. Hg less than the maximum capacity of the pump (evacuation rate >0.02 cfm) usually indicates that a reliable gas sample cannot be obtained because the soil has a very low air permeability.

APPENDIX A: CONDENSED DATA

DEL AWARE
IL CURRO/HILMINGTON,
ENCITES.
άIH
THEODIN/DELAMIRE
-

												Trace	
	lotal Hydroc. (ug/l)	\$ \$ \$ 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8.6.1 1.1.1	<pre><0.1 <0.1 760</pre>	4,300 1,500	180 2 0.2	6.66 1.1.1.	6.6.6 1.1.1	<0.1 8,000 24,000	в 150 3,300	560 2,300 <0.2	<0.2 7,900 <0.2	
	Xylenes (ug/1)	60.2 60.2 60.2	0.25 0.25 0.25	00.2 √0.2 1	¢.2 ⇔	8.66.6 6.62.6	\$.6 5.55	66.2 6.22	©.2 <2.2 <4	0.0° 0.6 0.6	\$. 0.2	0.2 44 60.2	
i	Ethyl Benzene (ug/l)	0.00 0.00 0.00	0.00 0.22 0.22	<0.2 <0.2 <2	<0.2 <3 22	9.6.6 5.55	6.6.2 2.22	8.66 6.64	<0.2 <2 1,100	6.5 2.5 5.5	\$150 2.0	60.2 44 60.2	
TKE	Toluerie (ug/l)	9.6.6. 5.5.5.	6.6.2	60.1 60.1 50	<0.1 2,200 720	98 0.2 0.2	6.02.2 6.02.2	60.2 60.2 60.2	<0.2 940 4,100	.0.2 13 500	240 60.2	<0.2 1,200 <0.2	
UN, UEL HWERE	Benzene (ug/1)	8.8. 1.1.1.	66.6. 6.1.1	<0.1 <0.1 €	60.1 42	8.8.8. 1111	8.6.6. 1.1.1.	8.6.ê. 1111	<0.1 1,400 1,100	<0.1 4 150	58 150 <0.2	<0.2 500 <0.2	
IIR MHILUMAL GUAKU/WILMINGIUM,	PCE (ug/1)	0.00020.0040.02	0.01 0.0008 0.008	0.08 0.08 0.004	0.2 0.01 0.003	0.002 2 2	0.5 0.003 0.1	0.002 0.3 3	0.006 0.001	0.001 0.002 0.0007	0.0007 0.000 7 0.0004	0.0004 <0.0003 0.009	
UNHL GUTKI	TCE (ug/1)	0.07 0.02 0.04	0.03 0.002 0.02	0.08 0.08 0.3	0.00	0.00 0.00 0.00 0.00	0.2 0.005 0.08	0.005 0.1 0.08	0.3	0.01 0.03 0.01	0.0 0.05 0.01	0.008 0.01 0.01	
	10H (12g/1)	<0.03 0.004 0.02	0.002 0.0005 0.002	0.03 0.04 0.02	0.03 0.004 0.03	0.004 0.02 0.009	0.02 0.002 0.004	0.004 0.009 0.01	0.05 0.0008 0.008	0.005 0.005 0.002	0.002 0.01 0.002	0.001 0.0005 0.005	
	ı Date	09/27	09727 09727 09727	09/27 09/27 09/27	09/27 09/27 09/27	09/27 09/27 09/27	09/27 09/27 09/27	09/27 09/28 09/28	09/28 09/28 09/28	09/28 09/28 09/28	09758 09758 09728	09728 09728 09728	
	Wepth Date	÷ 2	ଜିନ୍ଦିର	ည်တိတ်	366	ගිනින්	ශී ශි	ည် ညီ	මගින්	in in in	ลิสดิสลิส	ਹੁਹ ਕ ੁ ਨੂੰ।	
=	Statement.	= = = = = = = = = = = = = = = = = = =	383 585 586	358 358 358	82 <u>1</u> 836	277 333	2 4 2 4 3 6 3 6	H1. 56-17 56-18	200 200 200 200 200 200 200 200 200 200	333 324	388 398 398	9333 333	

Mobilions: I interference with adjacent peaks NH not analyzed

Checked by S. Norris Analyzed by 5. Camp

Proofed by

cer Research Corporation

	lotal Hydroc. (ug/l)	60.2 60.2 490	<0.2 6,200 8,900	13,000 7,400 <0.2	6.6.6 1111	6.6. 1111	6.6.6 6.11	9.9.8 1111	\$\$\$ 1.1.1	999	<0.1 3,400 38,000	20, 000 <0.1	•
	Xylenes (ug/l)	<0.2 <0.2 <1	<0.2 <2 <10	<5 <10 <0.2	60.2 60.2 60.2	60.2 60.2 60.2	60.2 60.2 60.2	¢0.2 ¢0.2 ¢0.2	6.2.2 6.2.2	\$6.2 \$6.2 \$7.2	<0.2 30 240	140 <0.2	
- ī	Ethyl Benzene (ug/l)	6.2 4.2 4.2	.0.2 <2 <10	<5 <1 €0.2	66.2 6.22 6.23	6.6.2	6.6.2 6.22	6.0.2 2.2.2	6.66. 6.22	66.2	6.2 4.02	4.0 6.2	
Z-X-	Toluene (ug/l)	60.2 60.2 88	<0.2 620 720	1,200 800 <0.2	666 6.22	6.66 6.25	666 6.22	0.60 6.22	866 222	666 6.2.2	<0.2 1,200 9,000	3,800 <0.1	
HIK NATIONAL GOAKU/WILMINGION, DELHAMAKE	Benzene (ug/1)	60.2 26.2	<0.2 480 €90	880 480 <0.2	\$\$\$. 	999	8.8.8 1.1.1.	666.	\$.6.6 	\$.6.6. 	<0.1 240 2,800	1,300 <0.1	
	PCE (ug/1)	0.001 0.002 0.02	0.01 0.0004 0.0004	0.0004 0.0004 0.0007	0.02 0.03 0.004	0.002 0.04 0.03	0.03	0.04 0.006 0.07	0.009 0.05 0.04	0.03	0.0004 <0.0003 0.001	0.002	
	TCE (ug/1)	0.008 0.008 0.2	0.009 0.08 0.2	0.1 0.2 0.003	0.06 0.03 0.008	0.008 0.01 0.4	0.06 0.2 0.07	0.04	0.07 0.02	0.05	0.02 0.2 0.1	0.5	
HIE SH	TCH (ug/1)	<0.0005 <0.0005 0.0008	0.002 0.002 0.003	0.02 0.001 0.001	0.04 0.02 0.002	$\begin{array}{c} 0.002 \\ 0.005 \\ 0.2 \end{array}$	0.03 0.08 0.07	0.02 0.008 0.006	0.2 0.04 0.01	0.008 0.01 0.01	0.01 0.02 0.02	0.02	
TIKU MAZUEL MMAKE	Uepth Date	09/28 09/28 09/28	09/28 09/28 09/28	09/28 09/28 09/28	09/29 09/29 09/29	09/29 09/29 09/29	09/29 09/29 09/29	09/29 09/29 09/29	09/29 09/29 09/29	09/29 09/29 09/29	09/29 09/30 09/30	09/30 08/30	
	Urpt	चे चे चे	က်ကိုယ်	කිකි	က်ကိုယ်	တိတ်ကိ	သိတ်တိ	က်က်က	ယ်ယ်ယ်	တ်ထိထိ	ම්ම්	က်က်	
E 1	al chies?	### ### ###	366 366	% ≅ %% £	988 988 44	2000 2000 2000 2000	388 358	56.48 56.48 56.50	50.51 50.52 50.53 50.53	2000 2000 2000 2000 2000 2000 2000 200	61.1 56-57 56: 58	56-59 56-59	

E.C. TORDAN/DELAMPRE HIR NATIONAL GUARD/WILMINGTON, DELAMPRE

Modations: I interference with adjacent peaks With modalyzed

Analyzed by 5. Camp

Checked by 5. Norris Proofed by

Total Hydroc. (ug/1)	44,000 <0.1 58,000	30,000 26,000 <0.1	.0.1 1,800 0.9	<0.1 2,400 <0.1
Xylenes (ug/l)	\$0.2 \$4	\$ \$ \$. 2.0	60.2 4.0 6.2	\$\$\$ \$255
Ethyl Benzene (ug/l)	¢0.2 ¢4	4.4. 2.0.	6.0 6.2 6.2	0.22
Toluene (ug/l)	14,000 <0.1 26,000	5,400 <0.2 <0.2	.0.2 620 60.2	60.2 870 60.1
Benzene (ug/1)	2,600 <0.1 4,000	1,800 4,900 <0.1	60.1 60.1	<0.1 190 <0.1
PCE (ug/1)	0.06 <0.0003 0.05	0.004 0.004	0.0008 0.002 <0.0003	0.0008 0.0007 70.0003
TCE (ug/1)	0.03 0.03	0.0 0.0 0.0 0.0 0.0	0.004 0.006 0.006	0.004 0.004 0.001
TCB (ug/1)	0.002 0.001 0.004	0.003 0.008 0.02	<0.0004 0.001 <0.0004	ŭ.001 <ŭ.0004 <ŭ.0004
h Date	08/80 08/80	09/30 08/30 08/30	6, 09/30 <0.0 6, 09/30 0.0 6 09/30 0.0	08/80 08/80 08/30
	2 2	ည် ညီ ညီ	ည် သို့ သို့	4 2
Semple	S6 e1 81.1 56 e2	383 328	333 333	

E.C. JURDAN/DELAWARE AIR NATIONAL GUARD/WILMINGTON, DELAWARE

Notations: I interference with adjacent peaks Not not analyzed

Analyzed by S. Camp Checked by S. Norris

cofed by K. Harri

APPENDIX F

LABORATORY ANALYTICAL SOIL DATA QUALITY ASSURANCE, AND DATA QUALIFIERS

APPENDIX F-1 - APPENDIX DATA APPENDIX F-2 - VALIDATED DATA

QUALITY ASSURANCE

Data Quality Verification

All organic and inorganic analytical data for the groundwater, soil, and sediment samples were generated by the protocols specified by the USEPA for the Contract Laboratory Program (CLP). The stringent quality control procedures outlined in the CLP protocols provide a preliminary level of assurance of data quality. In addition, all laboratory deliverables (analytical results and raw data) were subjected to a Level IV review by both experienced data reviewers and a project chemist using procedures specified in the USEPA "Functional Guidelines for Evaluating Organic Analyses" (HQ-8410-01, May 28, 1985) and the "Functional Guidelines for Evaluating Inorganic Analyses" and included the January 1987 USEPA Region I revisions. The protocols specified in the validation guidelines were used to evaluate data utility. Data are considered acceptable if the quality control problems are minor and do not affect data utility as outlined in the validation guidelines. Exceptions are noted where QC problems result in unacceptable data. Level IV data quality represents confirmational data characterized by rigorous quality control and validation procedures and is adequate to support Risk Assessment, enforcement, and engineering alternative design. The validation guidelines used specify a systematic procedure for evaluating laboratory data, including holding times, blank analysis, surrogate recoveries, matrix spike results, GC/MS tuning, instrument calibration, compound identification, and method performance. The definitions of the data qualifiers (as well as laboratory qualifiers) used in reporting the analytical data are presented in Table I.

All laboratory deliverables, chain-of-custody forms, and validation worksheets are maintained on file by Jordan and are available for inspection.

A Level III review was performed for the results of the petroleum hydrocarbons analysis and for all drum sample analyses. Level III represents data generated using USEPA-approved methods but not specifically the CLP protocols and results in data to be used for source, extent, or characterization, and to support engineering treatability studies. This data evaluation included method blanks, holding times, and calibration where provided.

Volatile Organics

In general, the volatile organics data was acceptable and may be used without qualification. In many cases, the non-detected results for 2-butanone were qualified as unusable (R) because the minimum response criteria for calibration were not met. These rejected values indicate a problem with instrument sensitivity for 2-butanone and that the actual detection limit can not be evaluated. However, these non-detected values may be considered valid if, based on site history and previous studies, this compound is not expected to be present. Positive results for 2-butanone are qualitatively estimated (J qualifier) as may be used in the SI. Because of its solubility, this compound is extremely difficult to analyze by the purge & trap procedure used by this method. Therefore, this low response is typical for laboratories in the CLP.

Some samples exhibited high levels of benzene, ethylbenzene, and xylenes, but no toluene was detected. Review of the raw data did not uncover any problems that would account for this inconsistency. Further study would be required to investigate possible causes for this behavior.

Water field duplicate results were acceptable. Some differences were noted between soil results but seem to be attributable to a non-homogeneous matrix.

Semivolatile Organics

In general, the semivolatile organics data were acceptable and may be used without qualification. Two samples (05GW046XXX01XX and 05GW050XXX01XX) exhibited poor surrogate recoveries for all acid surrogates. The laboratory reanalyzed these samples and the poor recoveries were confirmed, indicating a probable matrix interference. All non-detected acid results in these samples were qualified as unusable (R). These rejected results should not be used to determine the absence of the acid extractable semivolatile organics, since the low recoveries indicate that these compounds are not easily recovered from this matrix. Additional samples would be needed to confirm their presence or absence.

Soil field duplicate results were acceptable. Differences were observed in water results and may result from analytical difficulties caused by the high levels of organics present.

Inorganics

In general, inorganics results were acceptable and may be used without qualification.

Soil field duplicate results were acceptable. Water results for lead in 03GW108XX showed poor agreement (88 versus 3.2 $\mu g/\ell$). Review of the raw data did not indicate any analytical problems. Both samples were analyzed undiluted, and only one required further dilution for off-scale results. Analytical spikes were acceptable in all cases. Based on this information, the problem may be result of a sampling problem. Additional data would be needed to accurately assess the presence of lead.

Blank Analyses

All samples were evaluated for blank contamination (laboratory and sampling) in accordance with the validation guidelines, and these validated results are reported in the data summary tables. The blank results are summarized below. A total of 27 method blanks were analyzed with this sample set. Of these, eight were analyzed as low water samples, 14 as low soil, and five as medium soil. The results presented in Table II are typical for method blank data. Methylene chloride and acetone were the most frequently observed contaminants and were all within the established CLP limits for blank contamination. The contaminants detected in the medium-level soil blanks were all less than the contract required detection limit (CRDL).

A total of 18 semivolatile method blanks were analyzed (7 low water and 11 low soil). The results presented in Table II are typical for method blank data. The only contaminant found was bis(2-ethylhexyl)phthalate at levels less than the CLP limit. All soil values were less than the CRDL.

No lead contamination was observed in the inorganics blanks.

The frequency of QC samples collected is summarized in Table F-3, and the results for these samples are presented in Appendices F and G.

TABLE F-1 DATA QUALIFIERS

Organic Data Qualifiers (Flags)

- J Indicates an estimated value when the value is below the contract required detection limit (CRDL) or all quality assurance criteria were not met during analysis.
- JJ Validation flag for values below CRDL only.
- U Indicates the parameter was analyzed for but not detected at the concentration value preceding the qualifier.
- UJ Nondetect result was estimated; QC not acceptable.
- B Indicates the analyte was detected in both the same and associated method blank.
- UJB Nondetect; detection limit was adjusted for blank contamination.
- E Indicates that the concentration reported exceeded the calibration range of the analysis method and that sample should have been diluted and reanalyzed.
- D Indicates that the sample required dilution prior to analysis to bring the detected value within the calibration range of the method of analysis.
- R Indicates that data is not useable because quality control criteria were not met.
- UR Nondetected result was rejected; QC not acceptable.
- Y Indicates that a combination of flags were required or that the sample required additional notes not covered by other flags.

Inorganic Data Qualifiers (Flags)

- E The reported value is estimated because of the presence of interference. An explanatory note must be included under Comments on the cover page (if the problem applies to all samples), or on the specific FORM I-IN (if it is an isolated problem).
- M Duplicate injection precision not met.
- N Spiked sample recovery not within control limits.
- S The reported value was determined by the Method of Standard Additions.

- Postdigestion spike for Furnace Atomic Absorption analysis is out of control limits (85-115%), while sample absorbance is less than 50% of spike absorbance.
- [] Value reported is less than the CRDL.
- * Duplicate analysis not within control limits.
- + Correlation coefficient for the Method of Standard Addition is less than 0.995.

Others

The following letters or notations may appear on the tables:

- NR Analysis not requested.
- NA Analyte requested but not analyzed.
- -- Analyte analyzed for but not detected.

TABLE F-2
VOLATILE METHOD BLANK SUMMARY
FREQUENCY/CONCENTRATION RANGE (ug/l or ug/kg)

Compound	Low Water (8 total)	Low Soil (14 total)	Medium Soil (5 total)
methylene chloride	2(1)	14(3-20)	5(150-390)
acetone	5(1-8)	14(9-30)	2(360-740)
chloroform		3(1-3)	
chlorobenzene			1(130)
toluene	1(2)		
styrene			1(150)
xylenes			2(410-480)
2-butanone		1(5)	

TABLE III SEMIVOLATILE METHOD BLANK SUMMARY FREQUENCY/CONCENTRATION RANGE (ug/1 or ug/kg)

	Low Water	Low Soil	
Compound	(7 total)	(11 total)	
bis(2-ethylhexyl)phthalate	4(6-29)	2(49-57)	

TABLE F-3 FREQUENCY OF QC SAMPLES

MATRIX	TRIP BLANKS	DUPLICATES	SAMPLE BLANKS	FILTRATION BLANKS
14 Water Samples	3/20%	2/10%	2/10%	2/10%
32 Soil Samples		4/10%	2/5%	

APPENDIX F-1

APPENDIX DATA

Laboratory Report of Analysis

	SAMPLE 1D: LAB NUMBER: DATE SAMPLED: MATRIX:	015B101X1401XX 220B11 10/05/88 Soil	015B101x2001xx 220B12 10/05/88 Soil	015B102X0801XX 221233 10/06/88 Soil	0158102X2101XX 221234 10/06/88 Soil	015B102X2601XX 221235 10/06/88 Soil	015S101X0101XX 222878 10/17/88 Soil	015S102X0101XX 222882 10/17/88 Soil	01\$\$102X0101XD 222880 10/17/88 Soil
VOLATILE ORGANIC COMPOUNDS UNITS: Ug/kg	COMPOUNDS								
Chloromethane Bromomethane Winyl chloride Chloroethane Methylene chloride Acetone Carbon disulfide 1,1-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 1,1-Infoloroethene 1,1-Infoloroethene 1,1-Infoloroethene 2-Butanone 1,1-Infoloroethene 2-Butanone 1,1-Infoloroethene Bromodichloromethane 1,1-Infoloroethene Bromodichloromethane 1,1-Infoloroethene Infoloroethene Infoloroe	ระการ สะ		######################################	######################################	######################################	28.00 27 27 27 27 27 27 27 27 27 27		######################################	######################################
נפססן פנטו ל שבנווטיי פנג	í	01000110000	פעסכיו ייסרוס	010212010	and store so	01050013000	מעטבב זיים וב	מעמבר אסים ול	7197077700

GH022983B12

Laboratory Method Blank

PROJECT: Detaware Air National Guard - Wilmington

Laboratory Report of Analysis

SAMPLE 10: 01SS103X0101XX LAB NUMBER: 222883 DATE SAMPLED: 10/17/88 MATRIX: Soil

COMPOUNDS	CROL
ORGANIC COM	9
VOLATILE	UNITS: 09/kg

######################################	0.0
อิจิจิจิพอิพพพพพพอิพพจิพพพพพพพพพพพ	
Chloromethane Bromomethane Vinyl chloride Chloroethane Hethylene chloride Acetone Carbon disulfide 1,1-Dichloroethane 1,2-Dichloroethane 2-Butanone 1,1-Trichloroethane 2-Butanone 1,1-Trichloroethane 2-Butanone 1,1-Trichloroethane 2-Butanone 1,1-Trichloroethane 2-Butanone 1,1-Trichloroethane 2-Butanone 1,2-Dichloropropene Trichloropropene Trichloroethene 1,2-Dichloropropene Trichloroethene 1,1-Z-Trichloroethane Benzene Trans-1,3-Dichloropropene Trichloroethene 1,1-Z-Trichloroethane Benzene Trans-1,3-Dichloropropene Trichloroethene 1,1-Z-Trichloroethane Tetrachloroethene 1,1,2,Z-Tetrachloroethane Toluene Chlorobenzene Ethylbenzene Syyrene Syrene	Dilution Factor Percent Solids

Laboratory Report of Analysis

015S101X0101XX 01SS102X0101XX 01SS102X0101XD 222882 222880 10/16/88 10/16/88 soil soil		350 U
01SB102X2601XX 01: 221235 10/05/88 Soil		2000 00 00 00 00 00 00 00 00 00 00 00 00
01SB102X2101XX 221234 10/05/88 Soil		88888888888888888888888888888888888888
015B102X0801XX 221233 10/05/88 Soil		350 U
01SB101X2001XX 220B12 10/04/88 Soil		370 U U U U U U U U U U U U U U U U U U U
01SB101X1401XX 220811 10/04/88 Soil		
SAMPLE ID: LAB NUMBER: DATE SAMPLED: MATRIX:	SEMI-VOLATILE ORGANIC COMPOUNDS UNITS: Ug/kg CRDL	Phenol 5.(2-Chloroethyl)ether 7.30 7.4-Dichlorobenzene 8672/1 alcohol 7.4-Dichlorobenzene 8730 7.4-Dichlorobenzene 8730 8.1-Dichlorobenzene 8730 8.1-Dichlorobenzene 8730 8.1-Dichlorobenzene 8730 8.1-Dichlorobenzene 8730 8.1-Choroethane 8730 8.1-Chlorobenzene 8730 8.1-Chlorobenzene 8730 8.1-Chlorobenzene 8730 874-Dichlorophenol 8750
	SEMI-VOLATIL	Phenol 2-Chlorophenol 1,3-Dichlorobenzen 1,4-Dichlorobenzen 1,2-Dichlorobenzen 2-Nethylphenol 1,2-Methylphenol 1,4-Nethylphenol 1,2-Methylphenol 1,2-Methylphenol 1,2-Methylphenol 1,2,4-Trichlorophenol 2-Chlorophenol

Laboratory Report of Analysis	Inalysis								
5	SAMPLE 1D: LAB NUMBER: DATE SAMPLED: MATRIX:	D: 015B101X1401XX R: 220811 D: 10/04/88 X: Soil	015B101x2001xx 220B12 10/04/88 Soil	0158102X0801XX 221233 10/05/88 Soil	01SB102X2101XX 221234 10/05/88 Soil	0158102x2601xx 221235 10/05/88 Soil	015S101X0101XX 222878 10/16/88 Soil	01\$\$102x0101xx 222882 10/16/88 \$oil	015S102X0101XD 222880 10/16/88 Soil
SEMI-VOLATILE ORGANIC COMPOUNDS UNITS: ug/kg	C COMPOUND:	DS CRDL							
3-Witroaniline Acenaphthene 2,4-Dinitrophenol 4-Witrophenol 5,4-Dinitrotoluene Diethyl phthalate 4-Chlorophenyl phenyl ether fluorene 4-Witroaniline 4,6-Dinitro-2-methylphenol W-Witrosodiphenylamine(1) 4-Bromophenyl phenyl ether Hexachlorobenzene		<u> </u>	82882828288888	0.077 0.077 0.077 0.078 0.077 0.077 0.077 0.077 0.078 0.077			0.000 0.000	07.467 08.888 09.8888	3500 U U U U U U U U U U U U U U U U U U
Phenanthrene Anthracene Di-n-butyl phthalate Fluoranthene Pyrene Butyl benzyl phthalate 3,3-1-bichlorobenzidine Benzo(a)anthracene Chrysene Dis(2-Ethylhexyl)phthalate bis(2-Ethylhexyl)phthalate Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene Benzo(a,h)anthracene	e e	0000 0000	3500 3700 3700 3700 3700 3700 3700 3700	22000000000000000000000000000000000000	388		200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	250 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	250 250 250 250 250 250 250 250 250 250
Dilution Factor Percent Solids		1.0	1.0 87	1.0	1.0	1.0 85	1.0 29	1.0	2.0
Laboratory Method Blank Petroleum Hydrocarbons (mg/kg) Percent Solids	ık : (mg/kg)	GH021040A02 50 60 U	GH021040A02 60 U 87	GH021332A02 50 U 96	GH021332A02 60 U 88	GH021332A02 60 U 84	62,122935c02 140 95	G2J22935C02 180 91	G2J22935807 390 92

SAMPLE 10: 0155103X0101XX LAB NUMBER: 222883 DATE SAMPLED: 10/16/88 MATRIX: Soil

SEMI-VOLATILE ORGANIC COMPOUNDS UNITS: ug/kg CRDL

370 370 370 370 370 370 370 370 370					1800 u 370 u 370 u 370 u 370 u 370 u
330000000000000000000000000000000000000		SERENE S	2000000	3300000 330000000000000000000000000000	058 058 058 058 058 058 058
Phenol bis(2-Chloroethyl)ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzyl alcohol 1,2-Dichlorobenzene	Methylph Hitroso-	trobenzen pphorone il trophen	2-Chloroe Sichlorop 5-Trichlo thelene loroeniti	Mexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylraphtalene Rexachlorocyclopentadiene 2,4,6-Trichlorophenol	2,4,5-Trichlorophenol 2-Chloromaphthalene 2-Nitroaniline Dimethyl phthalate Acenaphthylene 2,6-Dinitrotoluene

Laboratory Report of Analysis

SAMPLE 10: 0155103X0101XX LAB NUMBER: 222883 DATE SAMPLED: 10/16/88 MATRIX: Soil

SEMI-VOLATILE ORGANIC COMPOUNDS UNITS: Ug/kg CRDL

1600 1800 U 1600 1600 1800 U 1800	1.0	62122935002
3-Witroaniline Aceraphtere 2, 4-Dinitrophenol 4-Witrophenol Dibenzofuran 2, 4-Dinitrotoluene Diethyl phhalate 4-Chlorophenyl phemyl ether Fluorene 4-Witroaniline 4, 6-Dinitro-2-methylphenol M-Witroacodiphenylamine(1) 4-Bromophenyl phemyl ether Hexachlorophenol Phenanthrene Pertachlorophenol Phenanthrene Di-n-butyl phthalate Fluoranthene Butyl benzyl phthalate Chrysene Chrysene Dis (2-Ethylhexyl) phthalate Di-n-octyl phthalate Benzo(a) anthracene Chrysene Di-n-octyl phthalate Benzo(b) fluoranthene Benzo(b) fluoranthene Benzo(b) fluoranthene Benzo(a) phyrene Dibenzo(a, h) anthracene Dibenzo(a, h) anthracene Benzo(a, h) anthracene	Dilution Factor Percent Solids	Laboratory Method Blank

300

20

Petroleum Mydrocarbons (mg/kg) Percent Solids

Laboratory Report of Analysis

	SAMPLE 10: LAB NUMBER: DATE SAMPLED: MATRIX:	E 10: (0158101x1401xx 220815 10/05/88 Soil	SAMPLE 10: 0158101X14.01XX 0158101X2001XX LAB WLMBER: 220815 220316 ATE SAMPLED: 10/05/88 10/05/88 MATRIX: Soil Soil	0158102x0801xx 221238 10/06/88 Soil	0158102X2101XX 221239 10/06/88 Soil	01SB102X2601XX 221240 10/06/88 Soil	01SS101X0101XX 222893 10/17/88 Soil	015\$102x0101x0 222894 10/17/88 Soil	01\$\$102x0101xx 222895 10/17/88 Soil
METALS COMPOUNDS UNITS: mg/kg	ANALYTICAL METHOD CRDL	CRDL								
peel	P/F	-	5.9 *	1.9 *	\$	2.7 *	1.9 •	* 25	*	• \$3
Dilution Factor Percent Solids			8	87	z	87	8	ጽ	85	8
Laboratory Method Blank	Blank		154108	154108	154108	154108	154108	15409A	15409A	15409A

PROJECT: Delaware Air Mational Guard - Wilmington

Laboratory Report of Analysis

SAMPLE 1D: 01\$\$103x0101xx LAB MUMBER: 222896 DATE SAMPLED: 10/17/88 MATRIX: Soil

	13	8	15409A
CROL	-		
ANALYTICAL METHOD CRDL	P/F		Blank
METALS COMPOUNDS UNITS: Mg/kg	Ped	Dilution Factor Percent Solids	Laboratory Method Blank

Laboratory Report of Analysis

ā	SAMPLE ID: LAB NUMBER: DATE SAMPLED: MATRIX:	02SB103X0401XX 222571 10/14/88 Soil	0258103X1601XX 222574 10/14/88 Soil	025B103X2401XX 222577 10/14/88 Soil *	0258104X1601XX 222888 10/17/88 Soil	025B104X1601XD 222886 10/17/88 Soil	025B104x2101xx 222889 10/17/88 Soil	0258105X2601XX 221390 10/07/88 Soil	0258105X3101XX 221394 10/07/88 Soil
VOLATILE ORGANIC COMPOUNDS UNITS: UG/Kg	OMPOUNDS CRDL								
Chloromethere Bromomethere Vinyl chloride Chloroethere Hethylene chloride Acetone Carbon disulfide 1, 1-Dichloroethere 1, 1-Dichloroethere 1, 2-Dichloroethere 2-Butanone 2-Butanone 1, 1, 1-Trichloroethere Carbon tetrachloride Vinyl acetate Bromodichloromethere 1, 2-Dichloroethere 1, 2-Dichloroethere 1, 1, 1-Trichloroethere 1, 2-Dichloroethere 1, 2-Dichloroethere 1, 2-Dichloroethere 1, 1, 2-Trichloroethere 1, 1, 2-Trichloroethere 2-Nexanone 1, 1, 2-Trichloroethere 1, 1, 2, 2-Tetrachloroethere 1, 1, 2, 2-Tetrachloroethere 1, 1, 2, 2-Tetrachloroethere 1, 1, 2, 2-Tetrachloroethere		######################################	、 555546	\$\$\$\$\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	5555±3~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u>ຂະເຄສື່</u> ພິທທທທທະນທະນທະນທທທາຍ ລວງລະສວງລວງລວງລວງລວງລວງລວງລວງ	けいけん できる しゅうしょう しょうしょう しょう	<u> </u>	<u>ᲒᲒᲒᲒᲜᲒ</u> ᲒᲒᲒᲒᲑ Დ Დ Ხ ᲒᲓ Გ ᲒᲓ ᲒᲓ ᲒᲓ ᲒᲓ ᲒᲓ ᲒᲓ ᲒᲓ Წ ᲔᲔᲔᲔ⊞ Წ ॻॻॻॻ ചാവാവാവാവാവാവാവാ
Chlorobenzene Ethylbenzene Styrene Xylenes (Total)	าเกษเท		, www.w			, www.w	on,√n,0		
Dilution Factor Percent Solids		1.0 89	1.0	1.0 83	1.0 %	1.0	1.0	1.0	1.0 81
Laboratory Method Blank		GH022641812	GH022641812	CN022960813	GH022983812	GH022983812	GH022983812	GN021584810	GH021584B10

^{* =} Medium tevel analysis.

Laboratory Report of Analysis

SAM LAB DATE S		02SS104x0101XX 222884 10/17/88	02SS105X0101XX 222891 10/17/88	02SS105X0101XXRE 222891 10/17/88	02SS105X0101XXRE 02SS105X0101X0 222891 222890 10/17/88 10/17/88	025\$105x0101x0R 222890 10/17/88	025S105X0101XDRE 025S106X0101XX 222890 222892 10/17/88 10/17/88
MATI VOLATILE ORGANIC COMPOUNDS UNITS: UG/kg	MATRIX: NDS CRDL	Soil	Soi	Soit	Soil	Soil	lios
Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chloride	55552	22226	2222#C		1111111		0000 0000 0000 0000 0000 0000 0000 0000 0000
Actions Carbon disulfide 1,1-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene(Total) Chloroform	ริพพพพพ	× 22222					
1,2-Dichloroethane 2-Butanone 1,1,1-Trichloroethane Carbon tetrachloride Vinyl acetate	ან ღან		งโลงโ วาวจว		v.E.v.t. D D D D D D	2846 8846 8846 8866 8866	ນວັນນວັ ລລລລວ
Bromodichloromethane 1,2-Dichloropropene Cis-1,3-Dichloropropene Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane Benzene Trans-1,3-Dichloropropene	លសសសសសស				NUNUNUNUN	200000000000000000000000000000000000000	
Bromoform 4-Methyl-2-pentanone 2-Mexanone Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene Chlorobenzene Ethylbenzene Styrene Xylenes (Total)	มหออิทยงยยยย	หออิกกกกกกก วาววาววาววา	200112000 20112000000000000000000000000		00000000000000000000000000000000000000	50 E E C C C C C C C C C C C C C C C C C	เพอิอิณณณณณณ อาวาววาว
Dilution Factor Percent Solids Laboratory Method Blank	S	1.0 99 GH022983812	1.0 94 GH022984A12	1.0 94 GH025695C03	1.0 93 GH022984A12	1.0 93 GHO24307C13	1.0 96 GH024306A12

* = Medium level analysis.

WL02-VA

Laboratory Report of Analysis

×			
02SB105X3101X	221394	10/07/88	Soft
02SB105X2601XX	221390	10/07/88	Soil
02SB104X2101XX	222889	10/17/88	Soil
02SB104X1601XD	222886	10/17/88	Soil
	222888		
	222577		
02SB103X1601XX	222574	10/14/88	Soil
SAMPLE 10:	LAB NUMBER: 222571	DATE SAMPLED:	MATRIX:

SENI-VOLATILE ORGANIC COMPOUNDS UNITS: ug/kg CRDL

u 410 u 410 u 410 u 410 u 410 u	n.017	2017	2014	u 410 u	U 014	0.047	2017	U 410 U	n 017	u 410 u	n 2000 n	u 410 U	U 410 U	U 410 U	U 410 U	U 410 U	U 410 U	U 410 U	u 410 U	U 410 U	u 410 U	n 2000 n	ນ 410 ບ	U 2000 U	U 410 U	U 410 U	11 017
1007	007	007	2007	1 007	007	964	007	007	1 007	1 007	7000	1 007	1007	1007	007	1007	1007	1007	007	907	007	7 2000	- - -	2002	1 007	1 007	1 007
360 U 360 U 360 U	n 098 3898 3898	n 09E	300	360 u	360 u	n 998	98	360 u	360 u	360 L	1700 L	300 E	360 u	360 u	140 J	360 u	360 u	360 u	550	360 u	360 L	1700 L	360 u	1700 U	360 u	360 u	1 092
350 U 350 U 350 U	320 C	350 0	350 U	350 U	350 U	350 0	350 U	350 U	350 U	350 U	1700 U	350 U	350 U	350 U	350 U	350 U	350 U	350 U	350 U	350 U	350 U	1700 U	350 U	1700 U	350 U	350 ∪	150 11
340 U 340 U 340 U		3,000		_				_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	11 U7E
2000 U 2000 U 2000 U	2000 U 2000 U	2000	000Z	2000 U	2000 U	D 0002		2000 n	2000 U	2000 U	O 0096	2000 U	2000 n	2000 U	9800	7000 7000	2000 U	000Z	20000	2000 U	2000 U	N 0096	2000 U	n 0096	7000 U	2000 U	11 0000
340 U 340 U 340 U	340 U	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	340 0	340 0	340 U	340 U	360 0	340 0	340 0	340 U	J 009L	340 U	340 C	340 C	390	340 n	340 n	340 n	1100	340 C	340 U	1600 U	340 n	1600 U	340 U	340 U	11 U7E
370 U 370 U 1777	370 0	370 0	370 0	370 U	370 U	370 U	200	370 U	370 U	370 U	1800 u	370 U	370 U	370 U	- 00 -	370 U	370 U	370 U	120 J	370 U	370 U	1800 U	370 U	1800 U	370 U	370 U	11 022
330	322	300	330	330	330	330	200	330	330	330	1600	330	330	330	330	330	330	330	330	330	330	1600	330	1600	330	330	440
Phenol bis(2-Chloroethyl)ether 2-fhloromenol	1,3-Dichlorobenzene	Benzyl alcohol	1, <-Dichlorocenzene 2-Methylphenol	bis(2-Chloroisopropyl)ether	4-Methylphenol	N-Mitroso-di-n-propylamine	Rexacht ordetname Mitrobensene	Isophorone	2-Witrophenol	2,4-Dimethylphenol	Benzoic acid	bis(2-Chloroethoxy)methane	2,4-Dichlorophenol	1,2,4-Trichlorobenzene	Naphthalene	4-Chloroaniline	Rexachlorobutadiene	4-Chloro-3-methylphenol	2-Methylnaphthalene	Mexach lorocyclopentadiene	2,4,6-Trichiorophenol	2,4,5-Trichlorophenol	2-Chloronaphthalene	2-Hitrogniline	Dimethyl phthalate	Acenaphthylene	2 A.Dinitrotolisms

Laboratory Report of Analysis

SAMPLE ID: LAB NUMBER: DATE SAMPLED: MATRIX: SEMI-VOLATILE ORGANIC COMPOUNDS UNITS: ug/kg CRDL		0258103x0401xx 222571 10/14/88 Soil	0258103X1601XX 222574 10/14/88 \$0il	0258103X2401XX 222577 10/14/88 Soil	0258104x1601xx 222888 10/17/88 Soil	0258104x1601x0 222886 10/17/88 Soil	0258104x2101xx 222889 10/17/88 Soil	0258105x2601xx 221390 10/07/88 Soil	0258105x3101xx 221394 10/07/88 Soil
3-Nitroaniline Acenaphthene 2,4-Dinitrophenol Dibenzofuran 2,4-Dinitrotoluene Diethyi phthalate Fluorene 4-Chlorophenyl phenyl ether Fluorene 4-Bromophenyl phenyl ether Fluorene Heasellorobenzene Pentachlorobenzene Pentachlorobenzene Heasellorophenol N-Nitroaniline Anthracene Di-n-butyl phthalate Fluoranthene Butyl-berzyl phthalate Fluoranthene Butyl-berzyl phthalate Fluoranthene Butzo(a)anthracene Chrysene Di-n-octyl phthalate Benzo(a)anthracene Chrysene Di-n-octyl phthalate Benzo(a)anthracene Chrysene Di-n-octyl phthalate Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(s,h)anthracene Benzo(a,h)anthracene	90 00 00 00 00 00 00 00 00 00 00 00 00 0	1800 U 18	2000 2000	C C C C C C C C C C C C C C C C C C C	1007 1007	0.057 0.057 0.057 0.055	0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.		
Dilution Factor Percent Solids		1.0 89	1.0	5.0 83	1.0	1.0	1.0	1.0 82	1.0
Leboratory Method Blank Petroleum Hydrocarbons(mg/kg) Percent Solids	ن 20 ک	63022693820 50 U 92	6,1022693820 140 97	6J022693B20 1100 83	62,22935c02 60 U 85	62J22935C02 50 U 94	05 200 200 200 200	GH021537A04 60 U 82	GH021537A04 60 U 81

x = Denotes the coelution of benzo (b) fluoranthene and benzo (k) fluoranthene.

WL02-SA

Laboratory Report of Analysis

PROJECT: Delaware Air National Guard - Vilmington

SAMPLE 1 LAB NUMBE DATE SAMPLE MATRI	AMPLE ID: AB NUMBER: SAMPLED: MATRIX:	025S104X0101XX 222884 10/17/88 Soil	02SS105X0101XX 222891 10/17/88 Soil	02SS105x0101xD 222890 10/17/88 Soil	025\$105X0101XXDL 2228900L 10/17/88 Soil	. 0255106x0101xx 222892 10/17/88 Soil	
SENI-VOLATILE ORGANIC COMPOUNDS UNITS: Ug/kg CRD	CRDL						
enol 8(3-thiorcathy) ather	330	330 U	700 U	710 U	1400 U	U 098	
Chlorophenol 3-Dichlorobenzene		320 02	002	2012	1400 U	n 069	
4-Dichloroberzene	330	330 U	2002	710 0	1400 U	n n 069	
2-Dichlorobenzene	Ser.	330	200	201	1400 U	n 069	
s(2-Chlorolsopropyl)ether	250	330 n	2002	710 0	1400 0	n 069	
Hethylphenol Hitrogo-di-n-promylamine	330	330 U	2002	730 U	1400 U	0 069 1 069	
xachloroethane	200	330 C	2002	202	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	069	
crocentene ophorone	330	330 0	 	700	1400 C	n 069	
Vitrophenol 6-Dimethylphenol	330	330 U 330 U	700 U	710 U	1400 U	069 0 069	
nzoic acid	3 55	1600 u	3400 U	3400 U		3300 0	
	200	330 0	0 002	20.2	1400 U	n 069	
2,4-Trichlorobenzene ohthalene	330	330 U	700 N	3900 p	1400 U 4200 D	n 069	
Chloroaniline	330	330 0	00Z	J 017	1400 U	n 069	
xachlorobutadiene Chloro-3-methylphenol	330	330 n	7 00Z	200	1400 U	0 069 1 069	
Hethyl naphthal ene	330	330 0	8900	14000 E	13000 D	n 069	
xachlorocyclopentadiene 6 A-Trichlorophenol	330	330 U	700 C	710 U	1400 U	069 1009	
6,5-Trichlorophenol	<u> </u>	1600 U	3400 0	3400 0	n 0069	3300 U	
Chloronaphthalene	330	330 U	200 C	710 U	1400 C	n 069	
Witroeniline methyl nhthelete	00°E	U 0001 U 075	3400 U	3400 U	6900 U	3300 U	
enaphthylene	330	330 0	002	10 E	1400 U	n 069	
6-Dinitrotoluene	250	350 0	n 00/	0 01/	1400 0	0 0A9	

WL02-SA

Laboratory Report of Analysis

X					
02SS106x0101xx 222892 10/17/88 Soil		36000000000000000000000000000000000000	2.0	62J22935B07	520 96
02\$\$10\$x0101xxbL 222890bL 10/17/88 \$oil		6890 6890 6900	4.0 93	G2J22935B07	· ••
02SS105X0101XD 222890 10/17/88 Soil		3500 U 3500 U	2.0	62J22935807	3400 95
02SS105X0101XX 222891 10/17/88 Soil		3,00 U 3,	2.0	62J22935807	3400
02\$\$104x0101xx 222884 10/17/88 \$oil			0.1	G2J22935C02	50 U 92
MPLE 10: NUMBER: SAMPLED: MATRIX:	25 S	1600 1600 1600 1600 1600 1600 1600 1600			20
SAMPLE ID LAB NUMBER DATE SAMPLED MATRIX MATRIX	ا ب	3-Witroaniline Acenaphthene 2,4-Dinitrophenol 4-Witrophenol Distry phthalate 4-Chlorophenyl phenyl ether Fluorene 4-Mitroaniline 4-G-Dinitro-2-methylphenol W-Witroaniline 4-G-Dinitro-2-methylphenol M-Witroaniline 4-Bromophenyl phenyl ether Haxachlorobenzene Pentachlorophenol Phenanthrene Anthracene Pirosodiphenyl phthalate Pin-butyl phthalate Pyrene Butyl benzyl phthalate Chrysene Chrysene Berzo(a)anthracene Chrysene Berzo(a)anthracene Chrysene Berzo(b)fluoranthene	Dilution Factor Percent Solids	Laboratory Method Blank	Petroleum Nydrocarbons(mg/kg) Percent Solids

x = Denotes the coelution of benzo (b) fluoranthene and benzo (k) fluoranthene.

WL02-SA

PROJECT: Delaware Air National Guard - Wilmington

Laboratory Report of Analysis	of Amalysia	ø								
	SAMPLE ID: LAB NUMBER: DATE SAMPLED: MATRIX:	SAMPLE ID: LAB NUMBER: NE SAMPLED: MATRIX:	SAMPLE 1D: 0258103X0401XX AB NUMBER: 222572 E SAMPLED: 10/14/88 MATRIX: Soil	02SB103X1601XX 222575 10/14/88 Soil	02SB103X24 22257 10/14/8 Soi)2SB104x1601xx 222900 10/17/88 Soil	28104x1601x0 222899 10/17/88 Soil	02SB104X2101XX 222901 10/17/88 Soil	0258105X2601XX 221396 10/07/88 Soil	02\$810\$X3101XX 221398 10/07/88 \$oil
METALS COMPOUNDS UNITS: mg/kg	ANALYTICAL METHOD CRDL	כאטר								
Lead	P/F	-	=	0.91	4.5	3.3	6 0	3.2	83. 83.	2.1 *
Percent Solids			89	26	83	%	%	85	28	5
Laboratory Method Blank	Blank		15409A	15409A	15409A	15409A	15409A	15409A	154108	154108

U
-
er.
3
_
2
2
č
•
Έ
7
Х
2
7
4
C
•
•
O
Δ
4
_

02SS106X0101XX	222904	10/17/88	Lios
02SS105X0101XX	222903	10/17/88	1,00
02SS105X0101XD	222902	10/17/88	Coil
SAMPLE 10: 02SS104X0101XX			
SAMPLE 10:	LAB NUMBER:	DATE SAMPLED:	MATRIX.

	LAB NUMBER: DATE SAMPLED: MATRIX:	JABER: APLED: NTRIX:	222898 10/17/88 Soil	222902 10/17/88 Soil	222903 10/17/88 Soil	222904 10/17/88 Soil
METALS COMPOUNDS UNITS: mg/kg	ANALYTICAL NETHOD	CROL				
Lead	P/F	-	35 S	æ	35	81
Percent Solids			8	8	%	%
Laboratory Method Blank	Bl ack		15409A	15409A	15409A	15409A

Laboratory Report of Analysis

0358108X2001XX 220661 10/03/88 Soit		=	= =	= =	= ;	- 2	 		2 =) =	2 =	2 2) :) (֝֞֞֝֝֟֝֝֝֝֟֝֝֝֝֝֝֝֟֝֝֝֟֝ ֡֡֡֡֡֡֡֡֡	2 .	2	2	2	2	2	2))	. S	2	2	2	110	-	2	>: >:) (>:)) = 	0	 0:	26	GH022110C10	
0358108X0801XX 220660 10/03/88 Soil *		1 007					0 000		- 000	200	288	700		200					∩ 089			⊃ 089				D 089					D : 089			0 000			1.0	8	CN021721C13	
033B10BX0401XX 22065B 10/03/8B Soil *		20026	0.000		2500 0		0 0001								3200 0	_	_		1800 U		1800 U			1800 U	1800 U		1800 U		3500 U	1800 U	_			9F 00/1	1000 0		1.0	Š	CN021721C13	
0358107x2601xx 220814 10/04/88 Soil		\$	2 5	25	5 t	0 20	2 2	2 4) :) () = 1 0 v	9 4	> =) :) 	0 ST		n 9	12 0	79	n 9	9	9	79	7 9	19	n 9	.09	12 U	12 0	⊃	⊃: •9•) ()) : () \	0 4	0 4	0	1.0	ž	GH021136C10	
0358107X1601XX 220813 10/04/88 Soil			= ;) :) : :	- 5			ם כ) :) :) I) : 	⊃; •	֝֝֟֝֝֝֟֝֝֝֝֟֝ ֓֡֞֞֓֞֞֓֞֞֞֡	2 C	25	-	2 ∪	2.0	2 0	2 0	200	2.5	2 0	2	2	J C	1	2 0		> :) 	⊃ =) 	0	1.0	3	GH021583A10	
0358106x2601xx 220662 10/04/88 Soil		•	- :	- ;	- :	- 6	9 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4) = 	0 7	9 4	- c	7 :) () -	⇒		□	n 9		19			9			n 9			_	⊃ :) = 0 v		0.0	S 8	GH020989A12	
SAMPLE 1D: 03SB106x1101xx AB NUMBER: 220666 E SAMPLED: 10/04/88 MATRIX: Soil		:	- :	-:	= ;		2 6		2 2) =) :) =) : 	⊃ ;		2	5		2 0		2	2		2	2	2	2 C	=					o :		> =		1.0	5	GH020990C12	
SAMPLE 10: LAB NUMBER: DATE SAMPLED: MATRIX:	POUNDS CRDL	•	2 \$	2 \$	2	2 4	J.	2 4	٠.	n u	۷,	_	n L	٠;	OĽ	·	•	5	5	·		'n	'n	'n	'n	•	₩.	5	10	•	.	^ 1	^ '	n u	nu	n				
L DATI	VOLATILE ORGANIC COMPOUNDS UNITS: ug/kg	140000	chi of ome thank	bromometinarie	Vinyl chloride	Machini and able of de	Acatomic culoride	Carbon dieni 614		1 1 Dichiproches	1, 1-0 ich of characters	chicator of the folding		1,2-Dichloroethane	Z-Butanone	1,1,1-Trichloroethane	Carbon tetrachloride	Vinyl acetate	Bromodichloromethane	1.2-Dichloropropane	Cis-1.3-Dichloropropene	Trichloroethene	Dibromochloromethane	1,1,2-Trichloroethane	Benzene	Trans-1.3-Dichtoropropene	Bromoform	4-Methyl-2-pentanone	2-Hexenone	Tetrachloroethene	1, 1, 2, 2-Tetrachloroethane	Totuene	Chlobenzene	Etnytbenzene	Styrene W. Jones (Total)	Ayleres (10tal)	Dilution factor	Percent Solids	Laboratory Method Blank	

PROJECT: Delemere Air National Guard - Wilmington

Laboratory Report of Analysis

6	SAMPLE ID: LAB NUMBER: DATE SAMPLED: MATRIX:	0358106x1101xx 220666 10/03/88 Soil	0358106x2601xx 220662 10/03/88 Soil	0358107X1601XX 220813 10/04/88 Soil	0358107X2601XX 220814 10/04/88 Soil	0358108X0401XX 220658 10/03/88 Soil	03SB10BX0B01XX 220660 10/03/8B Soil	03SB108X2001XX 220661 10/03/88 Soil	
SEMI-VOLATILE ORGANIC COMPOUNDS UNITS: Ug/kg CRI	C COMPOUNDS CRDL								
Phenol	330	350	380 U	340 U	380 U	740 U	360 U	360 U	
2-Chlorophenol			380 0	340 0	380 0	7 0 T	360 u	360 0	
1,3-Dichlorobenzene	330		380 U	340 U	380 U	740 U	360 U	360 u	
1,4-Dichlorobenzene Renzvl alcohol	350 350	350 0	380 0	0 0 0 5 E	380 0	240 0	360 1	2 200	
1,2-0ichlorobenzene	330		380 0	340 0	380 0	7.072	360 0	360 5	
2-Hethylphenol			380 U	340 U	380 U	740 U	360 U	360 U	
bis(2-Chloroisopropyl)ether	ether 330		380 n	340 0	380 U	740 U	360 U	360 u	
4-Methy(phenol N-witroso.di-n-oromy) -nime		350 U	380 U	340 U	380 U	740 U	360 U	360 U	
Mexachioroethere	330	350 U	380 0	340 0	380 0	740 U	360 0	360 0	
Witrobenzene	330	350 U	380 0	340 C	380 0	0 07Z	360 u	360 u	
Isophorone	330	350 U	380 U	340 U	380 0	0 07Z	360 u	360 U	
2-Witrophenol	330	350 U	380 U	340 N	380 U	740 U	360 U	360 U	
2,4-Dimethylphenol	330	320 0	380 0	340 U	380 0	0 0%	360 U	360 U	
Benzolc acid	1600 055	0.007	U 008r	0 00/1	U 008r	3600 U	000/1	0 00/1	
2.4-Dichlorophenol			200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2005	0 0 7 2	200	3,000	
1,2,4-Trichlorobenzene	330		380 0	340 C	380 0	7,007	360 0	360 U	
Naphthalene			380 ∪	340 N	380 0	3900	2400	067	
4-Chloroaniline	330		380 U	340 0	380 U	740 U	360 u	360 U	
Rexachlorobutadiene			380 n	340 N	380 C	O 072	360 u	360 U	
4-Chloro-5-methylphenol	350		380 0	340 0	380 U	740 U	360 0	- 00 (
2-Methylnaphthalene			280 0	340 0	380 U	8200	5500	200	
Mexach lorocyclopentadiene		350 U	380 n	340 0	380	0 0%Z	360 U	- 09 09 1	
Z, 4, 6-Irichlorophenol	330	350 U	380	340 0	D 085	0 0%.	360	3 00 E	
2,4,5-Trichlorophenol	996L	00/1	0 0081	0021	0081	2,000	D 00/L	2007	
2-chloronaphthalene	020	320 0	000	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 080	0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2000	2006	
Z-Witroshiine Dimethal shthelete	0001	0.00%	0 0081	0 00/1	0 002	2000	0 00/1	0 00/1	
Arenachthylene	055	2025	286	2075	288	2072	200	266	
2,6-Dinitrotoluene	330	320 0	380 U	340 U	380 0	0 07Z	360 U	360 U	

PROJECT: Delaware Air National Guard - Wilmington

03SB108X2001XX 220661 10/03/88 Soil GH020765A02 03SB107X2601XX 03SB108X0601XX 03SB10BX0801XX 220814 220658 220660 10/04/88 10/03/88 10/03/88 5oil GH020765A02 GN020765A02 88 GH02100A02 8 0358106X2601XX 0358107X1601XX 220662 220813 220 GH02100A02 220662 10/03/88 Soil GH020765A02 03SB106X1101XX 220666 10/03/88 Soil 1750 to 1750 t GH020765A02 SAMPLE 1D: LAB NUMBER: DATE SAMPLED: MATRIX: SEMI-VOLATILE ORGANIC COMPOUNDS UNITS: ug/kg CRDL Petroleum Hydrocarbons (mg/kg) Percent Solids Laboratory Report of Analysis ethyl phthalate Chlorophenyl phenyl ether ois(2-Ethylhexyl)phthalate Nitroaniline 6-Dinitro-2-methylphenol Nitrosodiphenylamine Bromophemyl phenyl ether Laboratory Method Blank Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene i-n-butyl phthalate luoranthene i-n-octyl phthalate enzo(b)fluoranthene enzo(k)fluoranthene 4-Dinitrotoluene 4-Dinitrophenol entach loropheno henanthrene Dilution Factor Percent Solids S-Witroaniline enzo(a)pyrene

ML03-SA

Page 1

PROJECT: Delaware Air Mational Guard - Wilmington

Laboratory Report of Analysis

	SAMPLE 1D: LAB NUMBER: DATE SAMPLED: MATRIX:	E 10: MBER: PLED: TRIX:	0358106x1101xx 220676 10/04/88 Soil	03SB106X26 22067 10/04/8	358107X16 22081 10/04/8	358107X2601XX 220818 10/04/88 Soil	5SB108X0401XX 220671 10/03/88 Soil	03SB108X0801XX 220672 10/03/88 Soil	0358108X2001XX 220673 10/03/88 Soil
METALS COMPOUNDS UNITS: Mg/kg	ANALYTICAL METHOD	CROL				·			
Lead	14.	-	2.3 *	1.5 *	2.2 *	1.9 *	##	* 8.4	4.2 *
Percent Solids			83	87	%	ž	86	92	85
Laboratory Method Blank	Bl ank		154108	154108	154108	154108	154108	154108	154108

1

CN022755B03

Laboratory Method Blank

PROJECT: Delaware Air National Guard - Wilmington

Laboratory Report of Analysis

SAMPLE 10: 058P111X4101XX LAB MUMBER: 222401 DATE SAMPLED: 10/12/88 MATRIX: Soil *

VOLATILE ORGANIC COMPOUNDS UNITS: Ug/kg CRDL

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 82
Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene Chloride Acetone Carbon Disulfide 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 2-Butanone 1,1-Trichloroethane 1,1-Trichloroethane 1,2-Dichloromethane 1,2-Dichloromethane 1,2-Dichloromethane 1,2-Dichloromethane 1,2-Dichloromethane 1,2-Dichloromethane 1,2-Dichloromethane 1,2-Dichloropropene Erachloroethane 1,1,2-Trichloroethane Bromoform 4-Methyl-2-Pentanone 2-Hexanone Itrachloroethene 1,1,2,2-Tetrachloroethane Itrachloroethene	Dilution Fector Percent Solids

* = Medium level analysis.

V

ML05-VA

Laboratory Report of Analysis

SAMPLE 10: 0SBP111X4101XX LAB MUMBER: 222401 DATE SAMPLED: 10/12/88 MATRIX: Soil

SEMI-VOLATILE ORGANIC COMPOUNDS UNITS: ug/kg CRDL

Ę	330	2000 n
2-Chlocophool	0.5	
3-Dich	330	
-Dichlorobenz	330	2000 C
Benzyl alcohol	330	
1,2-Dichlorobenzene	330	
2-Nethylphenol	330	_
bis(2-Chloroisopropyl)ether	330	
4-Nethylphenol	330	_
N-Witroso-di-n-propylamine	330	_
Mexachloroethane	330	_
Mftrobenzene	330	_
Isophorone	330	_
2-Nitrophenol	330	_
2,4-Dimethylphenol	330	_
Benzolc acid	1600	_
bis(2-Chloroethoxy)methane	330	_
2,4-01chlorophenol	330	
1,2,4-Trichlorobenzene	330	2000 C
Haphthalene	330	11000
6-Chlorouniline	330	2000 2000
Mexacholorobutadiene	330	_
4-Chloro-3-Nethylphenol	330	7000 C
2-Nethylnaphthalene	330	
Hexachlorocyclopentadiene	330	_
2,4,6-Trichiorophenol	330	
2,4,5-Trichlorophenol	1600 1	
2-Chloronaphthalene	330	
2-Hitroaniline	1600	_
Dimethylphthalate	330	2000 U
Acenaphthylene	330	
2,6-Dinitrotoluene	330	2000 n

Laboratory Report of Analysis

SAMPLE 1D: 0SBP111X4101XX LAB NUMBER: 222401 DATE SAMPLED: 10/12/88 MATRIX: Soil

SEMI-VOLATILE ORGANIC COMPOUNDS UNITS: Ug/kg CRDL

3-Witroaniline Acenaphthere 2,4-Dinitrophenol 4-Witrophenol 5-4-Dinitrophenol Dibenzofuran Dibenzofuran Districtoluene 4-Arbinitrotoluene 4-Chlorophenyl-phenylether Fluorene 4-Mitroaniline 4-Witroaniline A-Mitroaniline B-Mitroaniline A-Mitroaniline Fluorene Fluorene Fluorene Fluorenthere Pentachlorophenol Phenanthrene Phenanthrene Pyrene Butylbenzylphthalate Fluoranthere Pyrene Butylbenzylphthalate Fluoranthere Di-Dutylphthalate Bitylenylphthalate Di-Ctylphthalate Di-Ctylphthalate Benzo(a)Anthracene Chrysene Benzo(a)Anthracene Chrysene Benzo(a)Anthracene Benzo(b)Fluoranthere Benzo(b)Fluoranthere	00000000000000000000000000000000000000	9800 U U U U U U U U U U U U U U U U U U	
ndeno(1, ibenz(a, enzo(g,h	N N N		
Dilution Factor Percent Solid Laboratory Method Blank		5 82 6J022589816	
Petroleum Mydrocarbons (mg/kg) PMC Percent Solids	20	420 86	

WL05-SA

PROJECT: Delawere Air National Guard - Wilmington

Laboratory Report of Analysis

SAMPLE 1D: 0SBP111X4101XX LAB NUMBER: 222403 DATE SAMPLED: 10/12/88 MATRIX: Soil

ANALYTICAL NETHOD CRDL METALS COMPOUNDS UNITS: Mg/kg

Laboratory Method Blank

Percent Solids

Lead

15409A

8

APPENDIX F-2

VALIDATED DATA

==5825 SAMPLE 1D: 015B101X1401XX LAB MUMBER: 220811 DATE SAMPLED: 10/05/88 MATRIX: Soil CROL VOLATILE ORGANIC COMPOUNDS ,1-Dichloroethene ,1-Dichloroethane ,2-Dichloroethene(Total) 1,1.Trichloroethane Carbon tetrachloride Flagged Data Table (Full Validation) Chloroethane Methylene chloride 2-Dichloroethane Carbon disulfide UNITS: Ug/kg Bromomethane Vinyl chloride Chloromethane Chloroform Acetone

	•	> >			•	•	•) \ \
Trans-1,3-Dichloropropene	ب	9 19	U 5 U	N 9	⊃ 9	2 0	2 C	2 0
Bromoform	~	9 119			∩ 9	J S	⊃ S	20
4-Methyl-2-pentanone	10	2 U 11			12 U	3 E	1 C	11 c
2-Hexanone	₽	2 U 11			12 U	3 C	=	11 c
Tetrachloroethene	~	9 19			∩ 9	⊃ S	2 €	20
1,1,2,2-Tetrachloroethane	.	9 19			7 9	2 N	2 ∪	200
Toluene	~	9 19			⊃ 9	⊃ °	2 ℃	2
Chlorobenzene	~	9 19			n 9	2 0	⊃ °	⊃ S
Ethylbenzene	·	9 09			∩ 9	5 C	⊃ S	⊃ S
Styrene	.	9 19			⊃ 9	2 0	2 0	3 5
Xylenes (Total)	~	9 09			N 9	0 S	0 S	O S
Dilution Factor	;	0.1	1.0	1.0	1.0	1.0	1.0	1.0
Percent Solids	€0			87	82	95	92	85
Laboratory Method Blank	GH021136C10	О GH021136С10	GH021584810	GH021584B10	GH021584B10	GH022983812	GH022983812	GH022983812

, 2-Dichloropropane is-1, 3-Dichloropropene richloroethene

3romodichloromethane

Vinyl acetate

1,1,2-Trichloroethane

Flagged Data Table (Full Validation)

SAMPLE 1D: 015S103X0101XX LAB NUMBER: 222883 DATE SAMPLED: 10/17/88 NATRIX: Soil

VOLATILE ORGANIC COMPOUNDS UNITS: ug/kg CRDL

hiloro ethyl ethyl echyl	- 5555พธพพพพพพพธพพธพพพพพพพพ - 5555พธพพพพพพพพพพพพพพพพพพพพพพพพพพพพพพพพ	
1,1,2,2.letrachloroethane Toluene Chlorobenzene Ethylbenzene Styrene Xylenes (Total)	บทเกษา	
Dilution Factor Percent Solids		1.0

Laboratory Method Blank

GH022983B12

Flagged Data Table (Full Validation)

8	SAMPLE ID: LAB NUMBER: DATE SAMPLED: MATRIX:	0158101x1401xx 220811 10/04/88 Soil	015B101x2001xx 220812 10/04/88 Soil	01SB102X0801XX 221233 10/05/88 \$c.il	0158102X2101XX 221234 10/05/88 Soil	0158102x2601xx 221235 10/05/88 Soil	015S101X0101XX 222878 10/16/88 Soil	015\$102x0101xx 222882 10/16/88 Soil	0155102x0101x0 222880 10/16/88 Soil
SEMI-VOLATILE ORGANIC COMPOUNDS UNITS: ug/kg	C COMPOUNDS CRDL	,							
Bhans	UZZ	11 007	11 022	11 052	וי טאַצ	11 002	150 11	1,025	U 022
bis(2-Chloroethyl)ether		4	370 U	350 0	380 C	300 n	350 0	360 U	0 022
2-Chlorophenol	330	007	370 U	350 0	380 U	3000		D 280	n 022
1,3-Dichlorobenzene	330	400 C	370 0	350 0	380 U	390 0	350 U	2	200
Benzyl alcohol	330		370 0	350 0	380 0	380 0	-	360 U	720 U
1,2-Dichlorobenzene	330		370 U	350 U	380 ח	390 U		360 U	720 U
2-Nethylphenol		n 007	320 U	320 0	380 n	390 0			25.5
bis(2-Chloroisopropyl)ether	ether 330	007	370 0	350 U	380 U	390 U	350 U		- 622
K-Witroso-di-n-propylamine		9 00	370 0	350 0	380 0	350 0	320 0	380	250 C
Nexachloroethane		700 n	_	350 U					U 027
Witrobenzene	330			320 0					n 022
Isophorone	330		_	320 n					∩ 022 2002
2-Nitrophenol	330	007	370 U	350 U	380 0	390 U	350 U		0.027
Pennoir arid	050	0000		1,007					3200 113
bis(2-Chloroethoxy)methane	•	700		350 0					
2,4-Dichlorophenol	330	007	-	350 U					_
1,2,4-Trichlorobenzene		700	_	350 U		390 U		_	_
Naphthalene	330	9		350 U	380 0	380 0			
4-Chlorobit ine	550 088	0 004	200	350 0	280	0 005		200	2022
4-Chloro-3-methylphenol			_	350 0	380 0	350 0		_	_
2-Methylnaphthalene		700	_			390 U	LL 84	_	_
Hexach lorocyclopentadiene	ene 330		_		380 U	390 0	_	-	_
2,4,6-Trichiorophenol	330	400	370 U	350 U		360 0	350 U	_	_
2,4,5-Trichlorophenol	1600	1900			U 008r	U 006L			
Z-Chloronaphthalene	330	000			280	390 0			0 027
Dimethal shehalate	0001				2000	006			D 022
Acenery Primarace	330		1 025	350	380	2002		17	720 u
2,6-Dinitrotoluene	330	007 007	370 U	350 0	380 U	390 0		360 U	720 U

flagged Data Table (Full Validation)

SAMPLE 1D LAB NUMBER DATE SAMPLED MATRIX	SAMPLE 1D: LAB NUMBER: ITE SAMPLED: MATRIX:	0158101x1401xx 220811 10/04/88 Soil	0158101x2001xx 220812 10/04/88 Soil	0158102X0801XX 221233 10/05/88 Soil	015B102X2101XX 221234 10/05/88 Soil	01SB102X2601XX 221235 10/05/88 Soil	015S101X0101XX 222878 10/16/88 Soil	015S102X0101XX 222882 10/16/88 Soil	015S102X0101XD 222880 10/16/88 Soil
SEMI-VOLATILE ORGANIC COMPOUNDS UNITS: Ug/kg	CRDL								
3-Witroaniline Aceraphthene 2,4-Dinitrophenol 4-Witrophenol Dibenzofunana 2,4-Dinitropoliana	1600 1600 1600 330	1900 u 1900 u 1900 u 1900 u 1900 d		1700 U 1700 U 1700 U 1700 UJ	1800 U 380 U 1800 U 1800 U 1900 U	1900 u 390 u 1900 u 1900 u 390 u	1700 U 350 U 1700 U 1700 U 350 U	1700 U 54 J. 1700 U 1700 U 39 J.	3500 U 3500 U 3500 U 3500 U 3500 U
Diethyl phthalate 4-Chlorophenyl phenyl ether Fluorene 4-Mitrosniline 4-Binitro-2-methylphenol	330 330 1600 1600			350 U 350 U 350 U 1700 U	380 u 380 u 380 u 1800 u 1800 u	390 to 39	350 U 350 U 350 U 1700 U		350 u 252 200 u 252 3500 u 3500 u 350
N-Nitrosodiphenylamine(1) 4-Bromophenyl phenyl ether Hexachlorobenzene Pentachlorophenol Phenosom	330 1600 1330	400 U 400 U 1900 U 1900 U		350 U 350 U 350 U 1700 U 350 U		390 U 390 U 390 U 390 U 390 U	350 U 350 U 350 U 1700 U	360 u 360 u 1700 u 1200 u	
Diributy phthalate livoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	370 U U Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	320 C C C C C C C C C C C C C C C C C C C				366 U 2500 2100 360 U 720 U 1100 1300	
bis(2-Ethylhexyl)phthalate Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(x)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene			370 U 370 U 370 U 370 U 370 U 370 U	22000000000000000000000000000000000000	380 U 380 U 380 U 380 U 380 U 380 U 380 U	70 068 70 068 70 068 70 068 70 068	17 008 17 008 17 008 17 008 17 008 17 008 17 008		1200 0UB 720 U 720 U 750 U 750 U 380 U 110 U 360 U
Dilution factor Percent Solids		1.0 83	1.0 87	1.0	1.0	1.0 85	1.0 95	1.0	2.0
Laboratory Method Blank		GH021040A02	GH021040A02	GH021332A02		GH021332A02	62722935c02	G2J22935C02	62J22935807
Petroleum Hydrocarbons (mg/kg) Percent Solids	.e) 20	60 U 83	60 U 87	n 95	n 88	n 98	140 95	180 91	390 92

flagged Data Table (Full Validation)

SAMPLE 1D: 015S103x0101xx LAB NUMBER: 222883 DATE SAMPLED: 10/16/88 MATRIX: Soil

SEMI-VOLATILE ORGANIC COMPOUNDS UNITS: ug/kg CRDL

		;
Ę	350 1	
bis(2-Chloroethyl)ether	330	
2-Chlorophenol	330	
1.3-Dichiorobenzene	330	
1,4-Dichlorobenzene	330	_
Benzyl alcohol	330	_
1,2-Dichtorobenzene	330	370 U
2-Methylphenol	330	_
bis(2-Chloroisopropyl)ether	330	
4-Methylphenol	330	370 U
N-Nitroso-di-n-propylamine	330	370 U
Hexachloroethane	330	370 U
Mitrobenzene	330	370 U
Isophorone	330	370 U
2-Witrophenol	330	_
2.4-Dimethylphenol	330	370 U
Benzoic acid	1600	1800 U
bis(2-Chloroethoxy)methane	330	370 U
2,4-Dichlorophenol	330	370 U
1,2,4-Trichlorobenzene	330	370 U
Naphthelene	330	370 U
4-Chloroaniline	330	_
Nexachlorobutadiene	330	370 U
4-Chloro-3-methylphenol	330	_
	330	_
Nexachlorocyclopentadiene	330	
2,4,6-Trichlorophenol	330	
2,4,5-Trichlorophenol	1600	1800 U
2-Chloronaphthalene	330	
2-Witrogniline	1600	_
Dimethyl phthalate	330	370 U
Acenaphthylene	330	370 U
2,6-Dinitrotoluene	330	370 U

WL01-SV

Flagged Data Table (Full Validation)

PROJECT: Delaware Air National Guard - Wilmington

SAMPLE 1D: 015S103X0101XX LAB MUMBER: 222883 DATE SAMPLED: 10/16/88 MATRIX: Soil

SEMI-VOLATILE ORGANIC COMPOUNDS UNITS: Ug/kg CRDL

1800 U 18	1.0
60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
3-Witroaniline Acenephthene 2,4-Dinitrophenol 4-Witrophenol Dibenzofuran 2,4-Dinitrotoluene Diethyl phthalate 4-Chlorophenyl phenyl ether Fluorene 4-Mitroaniline 4,6-Dinitro2-methylphenol W-Witroacodiphenylamine(1) 4-Bromophenyl phenyl ether Hexachlorophenol M-Witroacodiphenylamine(1) 4-Bromophenyl phenyl ether Hexachlorophenol Pentachlorophenol Phenanthrene Anthracene Di-n-butyl phthalate Fluoranthene Byrene Benzo(a)anthracene Chrysene Chrysene Chrysene Benzo(a)anthracene Benzo(a)anthracene Benzo(a)anthracene Benzo(a)pyrene Din-octyl phthalate Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)hanthracene Benzo(g,h,i)perylene	Dilution Factor Percent Solids

300 92

Petroleum Hydrocarbons (mg/kg) Percent Solids

Laboratory Method Blank

62122935002

WL01-SV

Page 1

Wilmington
•
Guard
Netional
Air
Delaware
PROJECT:

	0188102x0101xx 222895 10/17/88 Soil
	015\$102x0101x0 222894 10/17/86 \$oil
	015S101X0101XX 222893 10/17/88 Soil
	x 015B102X2601XX 221240 10/06/88 Soil
	0158102X2101X 221239 10/06/88 Soil
	X 01SB102X0801XX 221238 10/06/88 Soil
	0158101X2001X 220816 10/05/88 Soil
	SAMPLE 1D: 0158101X1401XX LAB MUMBER: 220815 DATE SAMPLED: 10/05/88 MATRIX: Soil
	SAMPLE 1D: LAB MUMBER: DATE SAMPLED: MATRIX:
Flagged Data Table (Full Validation)	

	MATRIX:	TRIX:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
METALS COMPOUNDS ANALYTICAL Units: mg/kg method crdl	ANALYTICAL METHOD	GROL								
P89 1	7,4	-	5.9	1.9	8	2.7	1.9	52	8	8
Dilution Factor Percent Solids			8	87	%	87	88	ጽ	8	8
Laboratory Method Blank	at a s		154108	154108	154108	. 154108	154108	15409A	15409A	15409A

.

Flagged Data Table (Full Validation)

SAMPLE 1D: 015S103X0101XX LAB MANBER: 222896 DATE SAMPLED: 10/17/88 MATRIX: Soil

5 8 AWALYTICAL METHOD CRDL **5**/4 METALS COMPOUNDS UNITS: mg/kg Dilution Factor Percent Solids Ped

15409A

Laboratory Method Blank

flagged Data Table (Full Validation)

SAMPLE 10: LAG MLMBER: DATE SAMPLED: MATRIX:	PLE 10: 0258103X0401XX MLMBER: 222571 AMPLED: 10/14/88 MATRIX: Soil		025B103X1601XX 222574 10/14/88 Soil	02SB103X2401XX 222577 10/14/88 Soil *	02SB104X1601XX 222888 10/17/88 Soil	02SB104X1601XD 222886 10/17/88 Soil	02SB104X2101XX 222889 10/17/88 Soft	0258105x2601xx 221390 10/07/88 Soil	0258105X3101XX 221394 10/07/88 \$of1
VOLATILE ORGANIC COMPOUNDS UNITS: US/kg	CROL								
Chloromethere	=	=	ţ	1500 11	101	1	11 0	12 u	12 u
Bronomethane	2	2 2	2	1500 U	20	===	; ; ;	12.	12:
Vinyl chloride Chloroethere	5	> =	5 5 5 5	1500 U	5 5 5 5	;;	- E	12 C	12 U
Methylene chloride		220 UJB	210 UJB	·	50 UJB	55 UJB	55 UJB	220 018	8rn 022
Carbon disulfide		3 3 3 9	S IO	3000	2 5	3.0	3.0		•
1,1-Dichloroethene		> = 4	⊃ :	50 50 50 50 50 50 50 50 50 50 50 50 50 5	.v.v.	.v.v.	w.	> = C	~ ~
1,2-Dichloroethene(Total)	, ,) (C)	22) NO	יטיי	33:) (P)	999
Chloroform 1 2-Dichloroethere		8 2 2 4	80 or = 2	5 K	G =) 	o v	_ •	- v
2-Butanone) S	,5 ,2	1500 UR	, 5 2	.±	.t	. S. S.	15 W
1,1,1-Trichloroethane	FU F) 9) 	20 K	⊃ =	₩		9 4	9 4
Vinyl acetate			500	1500 U	, č		 	2.5	12 C
Bromodichloromethane) ()	720 C	٦. ت	Σ	⊃:	⊃: •9•	⊃: •9•
1,2-Dichloropropene Cis-1,3-Dichloropropene	V 1V	o •	~ w	750 0	2	v.v.	v iv ⊃ ⊃	 • •	o •
Trichloroethene	· Ko i) () () ()) ()))	9	· •
Dibromochloromethane 1.1.2-Trichloroethane	vo vo	- - -	2 2 2 2 2	2005		ν. Ο Ξ	v v	o •	⇒ • • •
Benzene	· W I	. T :)))))))		· • •	9
Irans:1,3-01cn(oropropers Bromoform	n en)) ()	0 in	300	o •o))	≎ •	
4-Hethyl-2-pentanone	5	⊃: =:	2 :	1500 U	6	⊃: #:	= ;	12 0	12 C
z-nexanona Tetrachloroethene		- 9	5 v				- v	5 S	
1,1,2,2-Tetrachloroethane Toluene	N W) ()	2 2 2 2 3	20°C			N 10	9 9	~ ~
Chlorobenzene) 						9 7
Etnyl Denzene Styrene		2 2 5))	750 U	22	o ro ⊃ ⊃	20.00	o v o	o •
Xylenes (Total)	5	2 11	2	11000	D 5	n 2	9	n 9	7 9
Dilution Factor Percent Solids	1.0 89	- 6	1.0	1.0	1.0	1.0	1.0 92	1.0 82	1.0 81
									000000
Laboratory Method Blank	GH022641812		GH022641B12	CN022960813	GNU22983B12	GHU22983B12	GHU22983B12	GNU21584810	GNU21384B1U

* = Medium level analysis.

WL02-VV

Flagged Data Table (Full Validation)

	SAMPLE 10: LAB NUMBER: DATE SAMPLED: MATRIX:	0255104x0101xx 222884 10/17/88 Soil	1 02\$\$10\$x0101xx 222891 10/17/88 \$0il	02\$\$10\$x0101x0 222890 10/17/88 Soil	02SS106x0101xx 222892 10/17/88 Soil
VOLATILE ORGANIC COMPOUNDS UNITS: Ug/kg	CROL				
Chloromethane Unoroethane Ninyl chloride Chloroethane Nethylene chloride Acetone (a-bon diaulide 1, 1-Dichloroethane 1, 2-Dichloroethane 1, 2-Dichloroethane 2-Butanone 1, 1, 1-Trichloroethane 2-Butanone 1, 2-Dichloroethane 2-Butanone 1, 1, 1-Trichloroethane 1, 2-Dichloroethane 1, 2-Dichloroethane 1, 2-Dichloroethane 1, 2-Dichloroethane 1, 2-Dichloroethane 1, 2-Dichloropene 1, 1, 2-Trichloroethane 1, 1, 2-Tetrachloroethane 1, 3-Dichloroethane 1, 3-Di	ງ		11.0 2.002.18 2.002.18 2.002.18 2.002.00 2.00 2.00 2.00 2.00 2.00 2.00	CH022984A12	000 200 200 200 200 200 200 200 200 200
	£	,			

WL02-W

^{* =} Medium level analysis.

Flagged Data Table (full Validation)

SAMP LAG N DATE SA H	SAMPLE 10: LAB NUMBER: TE SAMPLED: MATRIX:	02s8103x0401xx 222571 10/14/88 Soil	0258103x1601xx 222574 10/14/88 Soil	02SB103X2401XX 222577 10/14/88 Soil	02SB104X1601XX 222888 10/17/88 Soil	0258104x1601xD 222886 10/17/88 Soil	0258104x2101xx 222889 10/17/88 soil	02SB105x2601XX 221390 10/07/88 Soil	0258105X3101XX 221394 10/07/88 Soil
SEMI-VOLATILE ORGANIC COMPOUNDS UNITS: Ug/kg CRD	CRDL								
Phenol	330	370 U	_	2000 U	340 U	_		n 007	410 U
bis(2-Chloroethyl)ether 2-Chlorochenol	330 130 130	370 U	340 U	2000 C	340 C	350 U	360 U	7 00 C	7 4 4 4 5 C
1,3-Dichlorobenzene	320	370	340 U	2000 U	340 0	_		0 007	D 014
1,4-Dichlorobenzene Benzyl elcohol	330	370 U		2000	340 U	_ =		7 500 C	410 C
1,2-Dichlorobenzene	33	370 U		2000 C	340 0	_		7 007	0 017 710 U
2-Hethylphenol	330) 02 02 03 03 03 03 03 03 03 03 03 03 03 03 03	340 C	2000 C	340 0			n 007	410 C
6:8(z-thlorolsopropyl)ether 4-Methylphenol	330	- 22 22 22 22 22 23 24 24 24 24 24 24 24 24 24 24 24 24 24		0000	240	_ =		2004	014 014
N-Nitroso-di-n-propylamine	900	320 028		2000 C	340 0	_		7 007	4 10 C
Nexachloroethane	330	370 U	~	2000 C	340 0	_		n 007	
Mitropenzene Ieonhorone	250 250	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	~ ~	2000 C	340 0			004	
2-Witrophenol	320	370 0	340 0	2000 C	340 0	_		2007	
2,4-Dimethylphenol	330		340 U	2000 U	340 U			400 U	
Benzole acid	1600 255	1800 U	1600 L	73 00% C	1700 U			2000 2000	2000 c
Distanting of the control of the con	330		1 07E	2000	200			004	
1,2,4-Trichlorobenzene	330		340 0	2000 U	340 U	_	_	U 004	
Haphthal ene	330			9800	340 U	_		O 007	
4-Chloroent line	330		340 0	n : 0002	340 0	350 0		004	
aexacatoroutagiene 4-Chioro-3-methylphenol	200	200	262		2005	350 0	2002	984	
2-Hethylnaphthalene	330	120 33		20000	340 C	_		7 007	
Hexach lorocyclopentadiene	330		340 0	2000 U	340 n	_		U 004	
2,4,6-Trichiorophenol	330	370 U		2000 U	340 C	350 U		007	
Z, 4, 5- Trichlorophenol				0096	0021			000Z	
Z-Chioronaphthalene	255			2000	340 0	_ :		004	
Dimethy! Ohthelete	3 5	000	000	2000	00/2			0 007	
Acenephthylene	330		340 0	2000 U	340 0	350 U	360 U	007 007	
2,6-Dinitrotoluene	330	370 U	340 N	2000 U	340 U	_		700 P	410 U

WL02-SV

Page 2

flagged Data Table (Full Validation)

SAMPLE 1D LAB MUMBER DATE SAMPLED MATRIX SEMI-VOLATILE ORGANIC COMPCUMOS UNITS: UG/kg	SAMPLE 1D: LAB MUMBER: DATE SAMPLED: MATRIX: IC COMPOUNDS	0258103X0401XX 222571 10/14/86 Soil	0258103X1601XX 222574 10/14/88 Soil	028103X2401XX 222577 10/14/88 Soil	0258104x1601xx 222888 10/17/88 Soil	0258104x1601x0 222886 10/17/88 Soil	0258104X2101XX 222889 10/17/88 Soil	0258105x2601xx 221390 10/07/88 Soil	0258105x3101xx 221394 10/07/88 Soil
UMITS: ug/kg 3-Mitroaniline Acenaphtene 2,4-Dinitrophenol 6-Mitrophenol 6-Mitrophenol 6-Mitrophenol 6-Mitrophenol 7-Lucene 6-Chlorophenyl phenyl 8-Mitroaniline 4,6-Dinitro-2-methylphenol M-Mitroacoliphenylamine(1) 8-Mitroacoliphenylamine(1) 8-Mitroacoliphenylamin				2000 U 1 1 2000 U 1 2			0.071 0.001 0.002 0.003		
Dibenzole,h)anthracene Benzole,h,i)perylene Dilution Factor Percent Solids	iee iee	3370 370 0.1 0.0 0.0		2000 U 2000 U 2000 U 2000 U 83	3,500 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0	350 u 350 u 1.0 a 94	360 20 10 20 20 20 20 20 20 20 20 20 20 20 20 20	2006 2006 2006 2006 2006 2006 2006 2006	2,4 4,00 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0
Laboratory Method Blank Petroleum Mydrocarbons(mg/kg) Percent Solids	1/kg) 50	GJ022693820 50 U 92	GJ022693820 140 97	01022693820 1100 83	62J22935C02 60 U 85	G2J22935C02 50 U 94	62J22935C02 260 90	GH021537A04 60 U 82	GH021537A04 60 U 81

x = Denotes the coelution of benzo (b) fluoranthene and benzo (k) fluoranthene.

PROJECT: Delaware Air Hational Guard - Wilmington

Page 3

Flagged Data Table (Full Validation)

SAMPLI LAB NUS LAB SAM LAB LAB LAB LAB LAB LAB LAB LAB LAB LAB	MATRIX:	025\$104x0101xx 222684 10/17/88 Soil	025S105X0101XX 222891 10/17/88 Soil	02\$\$105x0101xD 222890 10/17/88 Soil	02SS106X0101XX 222892 10/17/88 Soil	
SENI-VOLATILE ORGANIC COMPOUNDS UNITS: Ug/kg CRD	CRDL					
Phenol bis(2-Chloroethyl)ether	330	330 U 330 U	700 U	710 U 710 U		
2-Chlorophenol 1,3-Dichlorobenzene 1,4-Bishlorophene		330 0	> > = = = = = = = = = = = = = = = = = =	3 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	n n 069	
Senzyl alcohol 1 2-Bichlocobenzene		330 0	200			
2-Nethylphenol		330 0	2002	2002		
4-Nethylphenol	ne e		288			
Nexachloroethane		330 0	225 286 286			
sophorone	SE	2000	200	20.0		
2,4-Dimethylphenol	200	330 C		30 20 20 20 20 20 20 20 20 20 20 20 20 20		
Benzoic acid bis(2-thioroethoxy)methane	6 88	1600 U 330 U		3400 UJ 710 U	3300 u 3300 u	
2,4-Dichlorophenol	330	330 U	2 00 V	710 U	0 069	
Naphthalene	930	330 U	_	3900 0	n 069	
Nexach lorobuted lene		330 0	200		069	
2-Hethylnaphthalane	330	330 0	0068		n 069	
Hexachlorocyclopentadiene	330	330 U	200 200 200 200 200 200 200 200 200 200	710 C	n 069	
2,4,5-Trichlorophenol	5	1600 U		3400 0	3300 0	
2-Chloronaphthalene 2-Nitroaniline	5 5 5 5 5	330 U 1600 U	3400 U		0 069 3300 U	
Dimethyl phthalate Acenaphthylene 2.6-Dinitrotoluene	330	330 U 330 U 330 U	700 C 700 C 700 C	710 U 710 U 710 U	n 069	
) 				;	

ML02-SV

Flagged Data Table (Full Validation)

SA LAB DATE	SAMPLE 1D: LAB MUMBER: TE SAMPLED: MATRIX:	0255104X0101XX 222884 10/17/88 Soil	02\$\$10\$x0101xx 222891 10/17/88 Soil	02\$\$10\$X0101XD 222890 10/17/88 \$oil	02\$\$106x0101xx 222892 10/17/88 \$oil
SEMI-VOLATILE ORGANIC COMPOUNDS UNITS: UG/kg CRD	HPOUNDS CROL				
3-Nitroaniline Acenaphthene 2,4-Dinitrophenol 4-Nitrophenol 2,4-Dinitrotolume	<u> </u>	066 066 066 066 066 066 066 066 066 066	3400 C C C C C C C C C C C C C C C C C C	3,500 cu 3,500 cu 3,5	3300 U 3300 U 3300 U 690 U 690 U
~ D.E	4	2000 2000 2000 2000 2000 2000 2000 200	3400 cc c	3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 4,000	
4-Bromophenyl phenyl ether Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene Di-n-butyl phthalate Fluoranthene		3333336 3336 336 336 336 336 336 336 33	3400 u 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 20 2 2 20 2 3 20 2 3 20 2 3 20 2 3 20 2 3 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 2	990 U 3300 U 220 U 220 U 690 U 570 U
Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene Chrysene Dia(2-Ethylhexyl)phthalate Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(x)fluoranthene Benzo(x)fluoranthene Benzo(x)fluoranthene Indeno(1,2,3-cd)pyrene Indeno(1,2,3-cd)pyrene Benzo(a,h)anthracene		3300 c c c c c c c c c c c c c c c c c c	85558585888888888888888888888888888888	770 1007 1007 1007 1007 1007 1007 1007	690 1600 U 1700 U 1700 U 1700 U 1700 U 180 U 190 U 190 U 190 U
Dilution Factor Percent Solids Laboratory Method Blank Petroleum Hydrocarbons(mg/kg)	kg) 50	1.0 99 62J22935C02 50 U	2.0 94 62J22935807 3400	2.0 93 62J22935807 3400 95	2.0 96 62J22935807 520 96

WL02-SV

PROJECT: Delaware Air Mational Guard - Wilmington

Flagged Data Table (Full Validation)	A									
	SAMPLE ID: LAB NUMBER: DATE SAMPLED: MATRIX:	E 10: MBER: PLED: TRIX:	0258103x0401xx 222572 10/14/88 Soil	SAMPLE ID: 0258103X0401XX 0258103X1601XX AB NUMBER: 222572 222575 IE SAMPLED: 10/14/88 10/14/88 MATRIX: Soil	02SB103X2401XX 222578 10/14/88 Soil	0258104x1601xx (222900 10/17/88 Soil	02SB104X1601XD 222899 10/17/88 Soil	02SB104X1601XD 02SB104X2101XX 222B99 222901 10/17/88 10/17/88 Soil Soil	0258105X2601X0 221396 10/07/88 Soil	(0258105X3101XX 221396 10/07/86 Soil
HETALS COMPOUNDS UNITS: Mg/kg	ANALYTICAL NETHOD CRDL	CRDL								
Dee 1	P/F	-	=	0.91	4.5	3.3	ల	3.2	8.8	2.1
Percent Solids			&	26	ន	%	*	95	8	5
Laboratory Method Blank	Bl enk		15409A	15409A	15409A	15409A	15409A	15409A	154108	154108

PROJECT: Delaware Air Mational Guard - Wilmington

•	2
ā	٤
_	ă
3	÷
9	3
ğ	=
8	5
Ē	Ī

1101XD 025S105X0101XX 025S106X0101X 002 222903 222904 168 10/17/88 10/17/88 511 Soil
0101XX 028\$105X0101XX 898 225902 786 10/17/88 oil Soil
SAMPLE 1D: 02SS104x0101X; LAB MLMBER: 222898 DATE SAMPLED: 10/17/88 MATRIX: Soil
5 = 2 =

	LAB NUMBER: DATE SAMPLED: MATRIX:	LAB NUMBER: ITE SAMPLED: MATRIX:	222898 222898 10/17/88 Soil	06351036010160 222902 10/17/88 Soil	MATRIX: Soil Soil Soil Soil Soil	222904 222904 10/17/88 Soil
NETALS COMPOUNDS UNITS: mg/kg	ANALYTICAL NETHOD CRDL	L CROL				
pee 1	P/F	-	35	\$2	ž	18
Percent Solids			8	83	*	%
Laboratory Method Blank	Black		15409A	15409A	15409A	15409A

flagged Deta Table (Full Validation)

	SAMPLE 10: LAB NUMBER: DATE SAMPLED: MATRIX:	0358106x1101xx 220666 10/04/88 Soil	0358106x2601xx 220662 10/04/88 Soil	0358107x1601xx 220813 10/04/88 Soil	03SB107X2601XX 220B14 10/04/88 Soil	035B108X0401XX 22065B 10/03/88 Soil *	03SB108X0801XX 220660 10/03/88 Soil *	03SB108X2001XX 220661 10/03/88 Soil
VOLATILE ORGANIC COMPOUNDS UNITS: Ug/kg	COMPOUNDS	. 1						
Chloromethane Bromomethane Chloroethane Methylene chloride Chloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,1-Tichloroethane 1,1,1-Tichloroethane 1,1,1-Tichloroethane Carbon tetrachloride Ninyl acetae Bromodichloromethane 1,2-Dichloropene Bromodichloromethane 1,1,2-Trichloroethane Dibromochloromethane Dibromochloromethane 1,1,2-Trichloroethane Bromodicm 4-Methyl-2-pentanone 1,1,2-Tetrachloroethane Chlorobenzene Ethylbenzene Ethylbenzene Ethylbenzene Styrene Xylenes (Total)	รัฐ ข้อ		-		-	мммм442222222	7.00 U BSS U C C C C C C C C C C C C C C C C C C	ะะะร่ชช อาบารฐวานการฐานการมหากการการบบบบบ เมื่อ
Percent Solids Laboratory Method Blank	ž	93 GH020990C12	87 GH020989A12	94 GH021583A10	84 GH021136C10	89 CN021721C13	92 CN021721C13	92

* = Medium level analysis.

WL03-VV

PROJECT: Delaware Air National Guard - Wilmington

Flagged Data Table (Full Validation)

	SAMPLE ID: LAB NUMBER: DATE SAMPLED: MATRIX:	035B106x1101xx 220666 10/03/88 Soil	035B106x2601xx 220662 10/03/88 Soil	03SB107X1601XX 220B13 10/04/88 Soil	03SB107X2601XX 220B14 10/04/88 Soil	035B108X0401XX 22065B 10/03/88 Soil	03sB108X0801XX 220660 10/03/88 Soil	0358108X2001XX 220661 10/03/88 Soil	
SEMI-VOLATILE ORGANIC COMPOUNDS UNITS: U9/kg	NIC COMPOUNDS CRDL	,							
henot	330	350 U	380 U	n 07£	380 U	740 U	360 U	360 נ	
is(2-Chloroethyl)ether		350 U	380 0	340 0	380 U	740 U	360 U	360 U	
-Chlorophenol	330	350 U	380 u	340 n	380 0	740 U	3 09£	2 09 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
, 3-Dichlorobenzene	330	320 0	⊃ 380 380	340 C	380	740 U	2 095 2 095	360 U	
, 4-Dichlorobenzene	330	320 0	380 E	340 0	380 -	740 C	360 0	3;	
3-51-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	020	200	0 280 280 280 280 280	250	280 0		0 000	2002	
. 2-Dientorocaiene -Methylphenol	330	350 0	380	0 0 0 %	2000	0 0 0 7 2	98	988	
is(2-Chloroisopropyl)ether		350 U	380 0	0.072	380 0	n 072	360 0	098	
-Hethylphenol		350 U	380 0	340 U	380 0	740 0	360 U	360 5	
-Nitroso-di-n-propylamine		350 U	380 0	340 U	380 ח	U 077	360 u	360 ∪	
exachloroethane	330	350 U	380 ∪	340 n	380 U	740 U	360 נ	360 U	
itrobenzene	330	350 U	380 ∪	340 n	380 U	740 U	360 U	360 U	
sophorone	330	320 n	380 C	340 C	380 n	740 U	360 U	360 U	
-Nitrophenol	330	320 0	380 C	340 0	380 0	240 0	2 S	2 995 995	
,4-Dimethy phenol	350	350 0	7 085 380 C	340 0	380	0 0%	D :	3 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 :	
enzoic acid	_	1/00 0	0081	0 00/1	0 0082	3600 0		3 2 2 2	
13(£-thloroethoxy)methane 4-bishlorosbenol				2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2000	2,00	000		
.2.4-Trichlorobenzene	330	350 U	380 0	340 0	380 0	0 07Z	388	2098	
aphthalene			380 0	340 U	380 0	3900	2400	8,	
-Chloroaniline	330		380 U	340 U	380 U	0 05Z	360 u	360 U	
exach lorobutadiene			380 U	340 U	380 U	740 U	360 U	360 U	
-Chloro-3-methylphenol			380 U	340 N	380 U	740 u	360 c	360 U	
-Methylnaphthalene			380 C	340 N	380 C	8200	2300	200	
exach lorocyc lopentadiene			380 n	340 N	380 C	0 0×2	360	360 U	
,4,6-Irichloropheno		320 U	380 U	340 n	380 C	n 0½	360 c	360 U	
,4,5-Trichlorophenol	_	1700 U	1800 U	1700 U	1800 U	3600 U	1700 U	1700 U	
-Chloronaphthalene	330		380 €	340 N	380 U	740 U	360 U	360 U	
-Hitrogniline	1600		1800 U	1700 U	1800 U	3600 U	1700 U	1700 U	
imethyl phthalate	330		380 0	340 U	380 U	0.0%	360 U	260 5	
cenaphthylene	055 055	350 0	280	340 0	280 U	2002	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2002	
יס-חוטונגסנסוחבוב	זיי		מ ממר	0 040	2 000	0 0 2 2	2 200	200	

WL03-SV

PROJECT: Delaware Air National Guard - Wilmington

Flagged Data Table (Full Validation)	i di	100 mage	>	>>+C7C>Y0F83E0	VX1074VE018320	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	***************************************	>>+0	XX 100 X 200 X 200 X X X X X X X X X X X X X
	SAMPLE 10: LAB NUMBER: DATE SAMPLED: MATRIX:	10/0	× 288-	0358100A2601AA 220662 10/03/88 Soit	035810/X1601XX 220813 10/04/88 Soil	05810/x2501xx 220814 10/04/88 Soil	0358108X0401XX 220658 10/03/88 Soil	0358108X0801XX 220660 10/03/88 Soil	05581065200 220661 10/03/88 Soil
SEMI-VOLATILE ORGANIC COMPOUNDS Units: Ug/kg	ANIC COMPOUND	DS CRDL							
3-Witrosniline	*	1	-	1800	12001	1 008	11 0072	1700 11	1700 1
Acenephthene			350 U	380 n	340 0	380		300	
2,4-Dinitrophenol	<i>=</i>		0 0	1800 U	1200	1800 U 081	3600 U	1700	
Dibenzofuran	- r'		0	380 0	20%		2000 240 U	3002	
2,4-Dinitrotoluene	# F	330	0	380 0	340 0	380 U	0 0% 240 U	360 c	
Vietnyl phinalate 4-Chlorophenyl phenyl ether			-0	380 0	340 0	380 0	0 0 0 2 2	360 5	2008
Fluorene			0	380 U	340 U	380 U	100	63 11	
4-Nitrosniline			0	1800 u	1700 U	1800	3600 U	1700 1700 1700	
M-Mitrosodiphenylamine	1015		_	000	00/2	0 000 1 08%	0 0000	95	
4-Bromophenyl phenyl ether	ther		_	380 n	340 0	380 n		360 c	
Nexach lorobenzene		330	_		340 U	380 u		360 U	
Phenanthrene				380	0 00/1	380		3607	
Anthracene		330			340 0		740 U	360 U	
Di-n-butyl phthalate				380 0	340 U	280 C	70 C	360 ±	
Pyrene					340 U	380 U		360 U	
Butyl benzyl phthalate		330		380 U	340 U	380 U		360 C	
Benzo(a)anthracene				380 C		380 0		360 U	
Chrysene		330	350 U	380 U	340 U	380 U	740 U	360 U	
Disc.c.myinexyi.phinalate Di-n-octyl phthalate			350 U	380 0		380 0	150 U	360 €	6 - 0% 0%
Benzo(b)fluoranthene			350 U		340 U				
Benzo(a)pyrene		330		380 03	340 0	380 03	0 0 % 2 0 0 %	380 6	3 a 3098 888 888 888 888 888 888 888 888 888
Indeno(1, 2, 3-cd) pyrene				380 0	340 U	380 0	740 U	360	300
Dibenzo(a,h)anthracene Benzo(g,h,i)perylene			350 U 350 U	380 C 380 C	340 U 340 U	380 U 380 U	740 U 740 U	360 U 360 U	300 X
Dilution Factor Percent Solids			- 22	187	- %	0.97 84	~ 68 84 ~ 7	- 2	92
Laboratory Method Blank	lank	GH020765A	5A02	GH020765A02	GH02100A02	GH02100A02	GH020765A02	GH020765A02	GH020765A02
Petroleum Hydrocarbons (mg/kg) Percent Solids	ons (mg/kg)	50	50 U	60 U 87	50 U	D 28	1200	76	910
			!			ı	i	•	1

PROJECT: Delaware Air National Guard - Wilmington

Flagged Data Table (Full Validation)

	SAMPLE 10: LAB NUMBER: DATE SAMPLED: NATRIX:	MBER: PLED: TRIX:	SAMPLE 1D: 03SB106X1101XX AB WLMBER: 220676 E SAMPLED: 10/04/88 MATRIX: Soil	03sB106x2601xx 220675 10/04/88 Soil	03SB107X1601XX 220817 10/04/88 Soil	03SB107X260 220B18 10/04/88 Soil	03SB108x040 220671 10/03/88 Soil	358108X0801XI 220672 10/03/88 Soil	K 03SB106K2001XX 220673 10/03/86 Soil	
METALS COMPOUNDS ANALYTICAL UNITS: MG/kg METHOD CRDL	ANALYTICAL METHOD	CROL								
Lead	ш.	-	2.3	1.5	2.2	1.9	£	6.	7.5	
Percent Solids			8	87	*	వ	&	8	8	
Laboratory Nethod Blank	Blank		154108	154108	154108	154108	154108	154108	154108	

03-Jen-89

CN022755803

Laboratory Method Blank

. Wilmington
•
Guerd
_
8
•
2
_
-
⋖
-
Ζ
₩.
₹
=
•
0
Ü
₩
ス
Z
•

-	_
·	-
_	8
•	- 7
-2	
3	•
-	•
_	Ð
•	υ
•	-
	_
=	_
S	Ş
_	-
-	_
Y.	
•	_
8	_
~	-
×	
•	
flagged D	-
_	

SAMPLE ID: OSBP111X4101XX LAB NUMBER: 222401 DATE SAMPLED: 10/12/88 NATRIX: Soil *

VOLATILE ORGANIC COMPOUNDS UNITS: ug/kg CRDL

1500 U 1500 U 1500 U 2100 U 2000 U 2000 U 260 U	82
<u> </u>	
Chloromethane Bromomethane Minyl Chloride Chloroethane Methylene Chloride Acetone Carbon Disulfide 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 2-Butanone 1,1-Trichloroethane 2-Butanone 1,2-Dichloroethane 2-Butanone 1,2-Dichloroethane 2-Butanone 1,2-Dichloroethane Carbon Tetrachloride Vinyl Acetate Bromodichloromethane 1,2-Dichloroethane Dibromochloromethane 1,2-Dichloroethane 2-Hexanone 1,1,2-Trichloroethane Benzene Cis-1,3-Dichloropropene 1,1,2-Trichloroethane Bromoform 4-Methyl-2-Pentanone 2-Hexanone Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Chlorobnzene Styrene Styrene Styrene	Dilution Factor Percent Solids

SAMPLE 10: 0SBP111X4101XX LAB MUMBER: 222401 DATE SAMPLED: 10/12/88 MATRIX: Soil

SEMI-VOLATILE ORGANIC COMPOUNDS UNITS: ug/kg CRDL

		- W	
	730 ropyl amine 330 ropyl amine 330 330 330	. hane	lene 330 330 1600 1600 1300 330 330
Phenol bis(2-chloroethyl)ether 2-chlorophenol 1,3-bichlorobenzene 1,4-bichlorobenzene Benzyl alcohol 1,2-bichlorobenzene	Hethylphenol Hethylphenol Hethylphenol Hitroso-di-n-pi exachloroethane trobenzene sophorone Hitrophenol 4-Dimethylphen	bis(2-Chloroethoxy)met bis(2-Chloroethoxy)met 2,4-Dichloroethool 1,2,4-Trichlorobenzene Naphthalene 4-Chloroeniline Nexacholoroutadiene 4-Chloro-3-Methylphene 2-Methylpanthhalene	xachforcyclop 4,6-Trichlorop Chloropathtal Ritroaniine methylphthalat enghthylene 6-Dinitrotolue

WL05-SV

PROJECT: Delaware Air National Guard - Wilmington

Flagged Data Table (Full Validation)

SAMPLE 1D: 0SBP111X4101XX LAB NUMBER: 222401 DATE SAMPLED: 10/12/88 MATRIX: Soil

COMPOUNDS	CRO
ORGANIC	
SEMI-VOLATILE	UNITS: Ug/kg

1600 330 330 330 330 330 330 330	82	GJ022589816 'kg) 50 420 86
3-Witroaniline Acenaphthere 2,4-Dinitrophenol 4-Witrophenol 2,4-Dinitrotoluene Dischylphthalate 4-Chiorophenyl-phenylether Fluorene 4-Chiorophenyl-phenylether Fluorene 4-Chiorophenyl-phenylether Fluorene 4-Bromophenyl-phenylether Hexachlorophenol Pentachlorophenol Pentachlorophenol Pentachlorophenol Pentachlorophenol Pentachlorophenol Pentachlorophenol Physene Butylbarzylphthalate Fluoranthene Bythere Chrysene Butylbarzylphthalate Di-n-butylphthalate Fluoranthene Benzo(a)Anthracene Chrysene Benzo(a)Anthracene Benzo(b)Fluoranthene Benzo(k)Fluoranthene Benzo(k)Fluoranthene Benzo(a)Pyrene Dibenz(a,h)anthracene Benzo(g,h,i,)Perylene	Dilution Factor Percent Solid	Laboratory Method Blank Petroleum Hydrocarbons (mg/kg) PMC Percent Solids

PROJECT: Delaware Air Mational Guard - Wilmington

Flagged Data Table (Full Validation)

SAMPLE 1D: 0SBP111X4101XX LAB NUMBER: 222403 DATE SAMPLED: 10/12/88 MATRIX: Soil

ANALYTICAL METHOD CRDL METALS COMPOUNDS UNITS: Mg/kg 1 3 Percent Solids Lead

8

Laboratory Method Blank

15409A

M.05-1V

GH021136C10

Laboratory Method Blank

PROJECT: Delaware Air National Guard - Wilmington

Laboratory Report of Analysis

SAMPLE ID: SAMPLER BLANK LAB NUMBER: 220667 DATE SAMPLED: 10/03/88 MATRIX: Soil

VOLATILE ORGANIC COMPOUNDS UNITS: ug/kg CRDL

ົວວົວວິທີ2ທູນທູນພູນວັນທູລົທູນທູນທູນທູນຄູ່ ລາງລະສຸສຸລສາລາມລາງສຸລສາລສຸລສຸລສຸລສຸລສຸລສຸລສຸລສຸລສຸລສຸລສຸລສຸລສຸລ	1.0
- 5555 ທຽນທາທານວັນທຽນທາທາທາ ທານວັດທາທາ	^
I NEEDE DEEEDEDLAGUETIUL II-DA NE	Xylenes (Total) Dilution Factor

SAMPLE ID: SAMPLER BLANK LAB NUMBER: 220667 DATE SAMPLED: 10/03/88 MATRIX: Soil

SEMI-VOALTILE ORGANIC COMPOUNDS UNITS: ug/kg CRDL

	3330 C C C C C C C C C C C C C C C C C C	330 u 330 u 330 u 330 u 330 u 330 u 330 u 330 u
33333333	33333333333333333333333333333333333333	330 330 330 1600 1500 330 330
enol S(2-Ch Ghloro 3-Dich 4-Dich 2-Dich	/-Methylphenol bis(2-Chloroisopropyl)ether 4-Wethylphenol N-Witroso-di-n-propylamine Hexachloroethane Nitrobenzene 1-sophorone 2-4-Dimethylphenol Benzoic acid bis(2-Chloroethoxy)methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Maphthalene 4-Chloroaniline	Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloromaphthalene 2-Nitroaniline Dimethyl phthalate Acenaphthylene 2,6-Dinitrotoluene

Laboratory Report of Analysis

SAMPLE ID: SAMPLER BLANK LAB NUMBER: 220667 DATE SAMPLED: 10/03/88 MATRIX: Soil

SEMI-VOALTILE ORGANIC COMPOUNDS UNITS: ug/kg CRDL

1600 1600 U 330 U 1600	330 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	330 330 330 330 330 330 330 330	1 GJ021040B04 1 1 U
3-Nitroaniline Acemphthene 2,4-Dinitrophenol 4-Nitrophenol 0 ibenzofuran 2,4-Dinitrotoluene Diethyl phthalate 4-Chlorophenyl phenyl ether	TECONE E	Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene Chrysene Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(x)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene	Dilution Factor Laboratory Method Blank Petroleum Hydrocarbons (mg/l)

WL08-VA

PROJECT: Delaware Air National Guard - Wilmington

Laboratory Report of Analysis

SAMPLE ID: SAMPLER BLANK LAB NUMBER: 223428 DATE SAMPLED: 10/19/88 MATRIX: Soil

VOLATILE ORGANIC COMPOUNDS UNITS: ug/kg CRDL

ວິວີວີວີ ໄ ຊັດພຸດພຸດພຸດພຸດພຸດພຸດພຸດພຸດພຸດພຸດພຸດພຸດພຸດ	1.0
<u>ວ່ວ້ວ່ວນວັນນານນານວັນນວັນນານນານນານນາວວັນນານນານ</u>	
Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chloride Acetom disulfide 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 2-Butanone 1,1,1-Trichloroethane 2-Butanone 1,1,2-Dichloroethane 1,2-Dichloropropane Cis-1,3-Dichloropropene Trichloroethane 1,2-Dichloroethane 1,2-Dichloromethane 1,2-Dichloroethane 1,2-Dichloroethane 2-Strenone Trans-1,3-Dichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 2-Hexanone Trans-1,3-Dichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane Ethylbenzene Ethylbenzene Styrene Xylenes (Total)	Dilution Factor

PROJECT: Delaware Air National Guard - Wilmington

Laboratory Report of Analysis

SAMPLE ID: SAMPLER BLANK LAB NUMBER: 223435 DATE SAMPLED: 10/19/88 MATRIX: Soil

Laboratory Method Blank

15414C

APPENDIX G

LABORATORY ANALYTICAL WATER DATA

APPENDIX G-1 - APPENDIX DATA APPENDIX G-2 - VALIDATED DATA

APPENDIX G-1

APPENDIX DATA

CB881110B11

CB881111C13

Laboratory Method Blank

Page 1

Laboratory Report of Analysis

	11/08/88 Water
01GW101XXX01XX	11/08/88 Vater
SAMPLE 10:	DATE SAMPLED:

VOLATILE ORGANIC COMPOUNDS UNITS: Ug/l CRDL

Chloromethane Fromcomethane Vinyl chloride Chloroethane Methylene chloride Acetone Carbon disulfide 1,1-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethane 2-Butanone 1,1-Trichloroethane 2-butanone 1,1-J-Trichloroethane 2-butanone 1,1-J-Trichloroethane 2-bichloromethane 1,2-Dichloromethane 1,2-Dichloroethane Cis-1,3-Dichloropropene Trichloroethane Trichloroethane Trichloroethane Trichloroethane Trichloroethane Trichloroethane	อธิธิธิพธิพพพพพพธพพธิพพพพพพ	อธอธินอิพพลพพพพีพพอีพพพพ ออออนอออ อออ อออออออ	
	เพพพพธิธิพพพพพพพพ		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Laboratory Report of Analysis

01GW102XXX01XX	227646	11/08/88	Cater
SAMPLE ID: 01GW101XXX01XX	227649	11/08/88	14447
SAMPLE 10:	LAB NUMBER:	DATE SAMPLED:	MATRIX

SEMI-VOLATILE ORGANIC COMPOUNDS UNITS: ug/l CRDL

Phenol bis(2-chloroethyl)ether 2-chlorochenol	555		666
1,3-Dichlorobenzene	55	0 9 0 c	
Benzyl alcohol	29	5. J.	
1,Z-Dichlorobenzene 2-Methylphenol	22		20
bis(2-Chloroisopropyl)ether	2	_	_
4-Methylphenol	6 5	> :	0
N-Witroso-di-n-propytamine Nexachloroethane	22		55
Witrobenzene	5		_
Isophorone	25		
Z-Mitrophenol 2.4-Dimethylphenol	25	200	20
Benzoic acid	20	_	_
bis(2-Chloroethoxy)methane	5	. 10 c	-
2,4-Dichlorophenol	29		_
1,2,4-Trichlorobenzene	25	25	25
Reporting one 4-Chlorosovil ine	2 2		
Hexachlorobutadiene	2		_
4-Chloro-3-methylphenol	5		
Z-Methylnaphthalene Mexachlorocorlonentadiene	2 2	26	200
2,4,6-Trichlorophenol	2		
2,4,5-Trichlorophenol	20	n 05	
2-Chloronaphthalene	0 0		
methyl p	2 2	25	_
Acenaphthylene 2,6-Dinitrotoluene	55	56 33	5 5 5 5 5

Laboratory Report of Analysis

	227646		
OTENIOTXXX	227649	11/08/88	Vater
SAMPLE 10:	LAB NUMBER:	DATE SAMPLED:	MATRIX: Water

SEMI-VOLATILE ORGANIC COMPOUNDS UNITS: ug/l

3-Nitroaniline Acenaphthene 2,4-Oinitrophenol 4-Nitrophenol Dibenzofuran		2222	55.05 50.05 50.00
2,4-Dinitrotoluene Diethyl phthalate -Chlorophenyl phenyl ether		222	5555 5555
4-Nitroeniline 4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine(1) 4-Bromosheryl phenyl ether	500 C C C C C C C C C C C C C C C C C C		
no (
Director of the late Fluorenthere Pyrene	5000		5655 5222
Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene Chrysene		2222	
bis(2-Ethylhexyl)phthalate Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene			
Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene	5000	222	5555
Dilution Factor			-
Laboratory Method Blank Petroleum Mydrocarbons (mg/l)	GH028228A22	_ 	GH028228A22 1 U

Laboratory Report of Analysis

SAMPLE ID: 01GW101XXX01XX 01GW102XXX01XX LAB NUMBER: 227659 227656
DATE SAMPLED: 11/08/88 11/08/88
MATRIX: Water Water

ANALYTICAL METHOD CRDL METALS COMPOUNDS UNITS: ug/l 0.91 UN 1.4 UN Lead

154106 15410G Laboratory Method Blank WL09-1A

PROJECT: Delaware Air National Guard - Wilmington

Page 1

Laboratory Report of Analysis

02GW103xxx01xD 02GW104xxx01xx 228084 227648 11,709/88 17,708/88 17,708/88 17,708/88 17,08/88 17,08/88 17,08/88 17,08/88 18,30 U 10 U 420	227648 11/08/88 11/08/28 11/08/88 11/08/28 11/08/88 11/08/28 10 U U U U U U U U U U U U U U U U U U U
2504 227648 17/08/48 17/08/48 18/08/48 18/08/48 19/08/48	
	02G4104XXX01XXRE 227648 11/08/88 48fer 130 U 130 U 130 U 130 U 63 U 63 U 63 U 63 U 63 U 63 U 63 U 63

Laboratory Report of Analysis

-	SAMPLE 10: LAB NUMBER: DATE SAMPLED: MATRIX:	02GW103XXX01XX 228083 11/09/88 Water	02GW103XXX01XXDL 02GW103XXX01XD 228083 228084 11/09/88 11/09/88 Water Water	02GW103XXX01XD 228084 11/09/88 Water	02GW103XXX01XDDL 02GW104XXX01XX 228084 227648 11/09/88 11/08/88 Water Water	02GW104xxx01xx 227648 11/08/88 Water	02GW105XXX01XX 227647 11/08/88 Water	02GV105XXX01XXRE 227647 11/08/88 Water
SEMI-VOLATILE ORGANIC COMPOUNDS UNITS: Ug/l	IC COMPOUNDS CRDL							
Phenol		200	D 008	1700 U	3300 U	25	0. 2. c.	6
2-Chlorophenol		2 2 2 2 3 2 3	2 D	1700 0	3300 U			
1,3-Dichlorobenzene	2		D : 000		3300 U			
I,4-Uichioropenzene Benzyl alcohol	20	2 2 8 8	008	17007	3300 U			
1,2-Dichlorobenzene	5		008 000		3300 U			
Z-Methylphenol bis(2-Chloroiscorcovl)ether	_,_		000	0 0021	3300 U	9 0	900	200
4-Nethylphenol	_		800 U		3300 U			
W.Witroso-di-n-propylamine	mine 10	⊃ : 08) 008 008		3300 U			
Nexachioroethane Nitrobenzene	25			1200	3300 0			
Isophorone	2) OS	300 n		3300 0			
2-Nitrophenol	5;		D 000		3300 U			
Z,4-Ulmetnylphenol Benzoic acid	205	007		8300 U	17000 u			
bis(2-Chloroethoxy)methane		_	-		3300 0			
2,4-Dichlorophenol		⊃ = 00 €	a = 008	1700 U	3300 U			
Naphthalene		8900 E			62000 D			
4-Chloroaniline	0		008 n		3300 U			
Hexachlorobutadiene			008	1700 U	3300 U	2		
2-Methylpachthalene			18000 0		10000 0			
Hexachlorocyclopentadiene			900		3300 U			
2,4,6-Trichlorophenol			800 U		3300 U			
2,4,5-Trichlorophenol	50	7 00 7	n 000 7	8300 U	17000 U	50 C		
2-witconiline	2005		0007	8300 1	17000 u			
Dimethyl phthalate	2		900 n		3300 U			
Acenaphthylene 2 4-Dinitrateliane	55	⊃ = 00 &	D 008	1700 0	3300 U		0 5	
200000000000000000000000000000000000000	2	3				2	2	

Laboratory Report of Analysis

SAMPLE ID: LAB WLMBER: DATE SAMPLED: MATRIX:		02GW103XXX01XX 228083 11/09/88 Water	02GW103XXX01XXDL 228083 11/09/88 Water	02GW103XXX01XD 228084 11/09/88 Water	02GW103XXX01XDDL 02GW104XXX01XX 228084 227648 11/09/88 11/08/88 Water Water	02GW104XXX01XX 227648 11/08/88 Water	02GW105XXX01XX 227647 11/08/88 Water	02GW105XXX01XXRE 227647 11/08/88 Water	
SEMI-VOLATILE ORGANIC COMPOUNDS UNITS: Ug/l	CRDL								
3-Nitrosniline	20	n 007	11 0007	8300 U	17000 11	11 05	11 05	11 05	
Acenaphthene	121		910 D		9 0059	, w ;	201		
2,4-Uinitrophenoi 4-Witrophenoi	25	004	0 0007	8300 U	17000 0	200	20.5		
Dibenzofuran	2				0 0099		10 C		
2,4-Dinitrotoluene Diethyl nhthalate	25	⊃ = © €	n = 000	1700 U	3300 U	55	5 €		
4-Chlorophenyl phenyl ether	223			_				200	
ruorene 4-witroaniiine	2.5	900F	1300 0	8300	10000	ر ۲ ۱۳۰۶			
4,6-Dinitro-2-methylphenol	20								
N-Nitrosodiphenylamine(1)	29		n :	1700 U					
4-Bromophenyl pnenyl ether Hexachlorobenzene	25	2 2	000		3300 U		96		
Pentachlorophenol	S			8300 U					
Phenanthrene	29			30000					
Anthracene Dispublical abbblace	2 \$	1500	002	1200	11000 D				
Fluoranthene	20	2800 E	0 008 7	20000	26000 D	5 rv	200		
Pyrene	2			20000	_				
Butyl benzyl phthalate	25		008 008		3300 U				
S,S'-Ulchioropenziaine Renzo(alanthracene	35		0.001	5500 U	0000				
Chrysene	22	830	1000	2400	7200 0		55		
bis(2-Ethylhexyl)phthalate	2	190 B	900 n		3300 U				
Di-n-octyl phthalate	29			1700 U	_				
Benzo(b)fluoranthene Benzo(k)fluoranthene	25	0.00 0.00	57.5 OF 01.5	7 600 7 100	2600 JD		25		
Benzo(a)pyrene	20	660		2600	1900 L				
Indeno(1,2,3-cd)pyrene	2	120		S80 J	_				
Dibenzo(a, h)anthracene	29	41 5	300 c	1700 U	3300 U	10 t	0 €		
Benzo(g,n,1)perylene	2	01.	0 008	T 005	3300 0	0 01	0 0.	0 01	
Dilution Factor		80	80	170	330	-	-	-	
Laboratory Method Blank		GJ028531A21	GJ028531A08	GJ028531A21	GJ028531A21	GH028228A22	GH028228A22	GH030703A08	
Petroleum Mydrocarbons(mg/l)	-	* 8.9	N	1.2 *	æ	2.9	7.8	æ	

WL10-SA

 $^{^{\}star}$ = Result given is the amount of floating petroleum product in the sample, % V/V.

PROJECT: Delaware Air National Guard - Wilmington

Laboratory Report of Analysis

	SAMPLI LAB NUI DATE SAMI	E 10: MBER: PLED: TRIX:	SAMPLE 10: OZGW103XXX01XX LAB NUMBER: 228090 DATE SAMPLED: 11/09/88 MATRIX: Water	02GW103XXX01XD 228091 11/09/88 Water	02GW104XXX01XX 227658 11/08/88 Water	02GW105XXX01XX 227657 11/08/88 Water	
METALS COMPOUNDS UNITS: ug/l	ANALYTICAL METHOD CRDL	CRDL					
Lead	L	<u>۰</u>	116 M	127 N	137 N	12 N	
Laboratory Method Blank	Bl ank		154106	154106	154106	15410G	

PROJECT: Delaware Air National Guard - Wilmington

Page 1

Laboratory Report of Analysis

							220000000000000000000000000000000000000	
	SAMPLE 10: LAB NUMBER: DATE SAMPLED: MATRIX:	USGW106XXXU1XX 227654 11/08/88 Water	056410/XXX01XX 227367 11/07/88 Water	0564105XXX01XX 227650 11/08/88 Water	05GM1U8XXX01XD 227651 11/08/88 Water	056#109XXX01XX 227653 11/08/88 Water	05GM 10XXX01XX 227373 11/07/88 Water	
VOLATILE ORGANIC COMPOUNDS UNITS: ug/l	COMPOUNDS							
Chloramethere Bromomethere Bromomethere Ghloroethere Chloroethere I, 1-Dichloroethere I, 2-Dichloroethere I, 1-I-Trichloroethere I, 2-Dichloroethere I, 1-I-Trichloroethere I, 2-Dichloroethere I, 1-I-Trichloroethere I, 1-I-Trichloroethere Irans-I, 3-Dichloroproper Bromochloromethare I, 1, 2-Trichloroethere I 1, 2-I-Trichloroethere I 1, 1, 2-I-Trichloroethere I 1, 2-I-Trichloroethere I 1, 1, 2-I-Trichloroethere I 1, 1, 2-I-Trichloroethere I 1, 1, 2-I-Trichloroethere I 1, 1, 2-I-Trichloroethere Styrene Xylenes (Total)	รัฐ () อัธออัพอัพพพพพพธพพจัพพพพพพพพพพพพพพพพพพพพ	อธิธิธิพธิพพพพพพธพพธิพพพพพพพพพพพพพพพพ อบบบบบบบบบบบบบบบบบบบบบ	ວົວວົວິທ _ູ ຄຸນຄຸນຄຸນຄົນຄົນຄຸນຄຸນຄຸນຄຸນຄົວ ຄຸນຄຸນຄຸນຄ ລວງລວ _ສ ູ່ລວງວ່າລວງວ່າລວງວ່າລວງວ່າ	ວົວວົວພວິກພາກພາກພວິກຫວິກພາກພາກພາກພວິວົນພາກພະ ລອງລອງລອງລອງລອງລອງລອງລອງ ລອງລອງລອງ ລ	ວົວວົວທ _ະ ພາທາທານຄົນຫວັນທາທານຈານພົວວັນທຸນພະພິ ລວວລວ່ອງລວງລວງລວງລວງລວງລວງລວງລວງລວງລວງລວງລວງລວງ	5555พธิพพพพพพพพพพพพพพพพพพพพพพพพพพพพพ อาวารารารารารารารารารารารา	; ວົວວີວັນວັນພະທະນະນົນທ່ຽນທະນາທະນາທະນາທະນະ ວ່ວວ່ວວ່ວວ່ວວ່ວວ່ວວ່ວວ່ວວ່ວວ່ວວ່ວ ວ່ວງລວ	
Dilution Factor		-	-	-	-	-	-	
Laboratory Method Blank	¥	CG881113C13	CB881110B11	CB881111B13	CC881113C12	CB881111B13	CB881110B11	

Laboratory Report of Analysis

	SAMPLE ID: LAB NUMBER: DATE SAMPLED: MATRIX:	03GU106XXX01XX 227654 11/08/88 Water	03GW107XXX01XX 227367 11/07/88 Water	03GW108XXX01XX 227650 11/08/88 Water	03GW108XXX01XXRE 227650 11/08/88 Water	03GW108XXX01XD 227651 11/08/88 Water	03GW108XXX01XDRE 227651 11/08/88 Water	03GW109XXX01XX 227653 11/08/88 Water	03GW110XXX01XX 227373 11/07/88 Water
SEMI-VOLATILE ORGANIC COMPOUNDS UNITS: Ug/l	IC COMPOUNDS CRDL								
Phenol	55	5							
2-Chlorophenol		20							
1, 3-Dichlorobenzene	29								
1,4-Dichlorocenzene Benzyl alcohol	22	5 6	56	50	56	55	56	200	5 5
1,2-Dichlorobenzene	2								
Z-Metnylphenol bis(2-Chloroisopropyl)ether	Sether 10	200					-		
4-Hethylphenol									
N-Nitroso-di-n-propylamine		10 C	_						
Hexach loroethane	2	5 5 5	2						
I sopherone	2.2	200	200						
2-Nitrophenol	2		10 C						
2,4-Dimethylphenol	5		J 01						
Benzoic acid		⊃ : • • • • • • • • • • • • • • • • • • •	2000						
2.4-Dichlorophenol			50						
1,2,4-Trichlorobenzene			. O						
Kaphthalene			5 5 5						
4-Chlorodni ine	2	2 \$	2 \$						
4-Chloro-3-methylphenol			200						
2-Nethyinaphthalene			100						
Mexach lorocyclopentadiene		10 c	10 U						
2,4,6-Trichlorophenol	2		3 C						
2,4,5-Trichlorophenol	25	2005	20 C						
2-Witnessiline	25	25						25	
Dimethyl phthalate	2	200	3 5 0					5 5 5	
Acenaphthylene	29	5 5 5	D (0 0 0 0				⊃: 2:	
2,0-DINITrotoluene	2	2	0					0 22	

WL11-SA

Laboratory Report of Analysis

SAMPLE 1D: LAB NUMBER: DATE SAMPLED: MATRIX:		03GU106XXX01XX 227654 11/08/88 Water	03GW107XXX01XX 227367 11/07/88 Water	03GW108XXX01XX 227650 11/08/88		03GW10BXXX01XXRE 03GW10BXXX01XD 227650 227651 11/08/88 11/08/88 Water Water	03GW10BXXX01XDR(227651 11/08/88 Water	03GW10BXXX01XDRE 03GW109XXX01XX 227651 227653 11/08/88 11/08/88 Water Water	03G4110XXX01XX 227373 11/07/88 Water
SEMI-VOLATILE ORGANIC COMPOUNDS UNITS: Ug/l	INDS								
3-Nitroaniline Acenaphthene	80		50 U		50 U		50 U		
c,4-Dinitrophenol 4-Witrophenol Dibenzofuran	285	200 100 100 100 100 100 100 100 100 100	28°5						
2,4-Dinitrotoluene Diethyl phthalate 4-Thiorogram show asher	555	556 335	565 335	555 225	555	566 232	565 555	565 555	555 555
Fluorene 4-Mitroaniline	5 5								
4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine(1)	222		50°C				50 C		
4-Bromophenyl phenyl ether Hexachlorobenzene	22		5 5 5 5 5						
Pentachlorophenol Phenanthrene	85		30 U				30 C		
Anthracene Di-n-butyl phthalate	2 2		0 0 0 0 0						
Fluoranthene Pyrene	22		10 t 0 t 0 u						
Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzylatene	285	200 200 200	202		0 0 C	500 200 200			
Chrysene Chrysene bia(2-Ethylheryl)mbthalate	225		560				500		56 <u>6</u>
Di-n-octyl phthalate	225		, 5 5						
Benzo(k) fluoranthene Renzo(a) tweepe	555	555	505						200
Indeno(1,2,3-cd)pyrene	555		200						
Benzo(g,h, i)perylene	22	10 0	200		0.01	100	10 n	10 0	200
Dilution Factor		-	-	-	·	-	-	~	-
Laboratory Method Blank	OH9	GH028228A22	GJ027731C21	GH028228A22	GH032137C07	GH028228A22	GH030703A08	GH028228A22	GJ027731C21
Petroleum Mydrocarbons (mg/l)	-	J C		1.0		2.1	•	8.0	

W.11-SA

PROJECT: Delaware Air National Guard - Wilmington

Laboratory Report of Analysis

	SAMPLE ID: LAB NUMBER: DATE SAMPLED: MATRIX:	LE 10: MBER: (PLE0: VTRIX:	03GW106XXX01XX 227664 11/08/88 Water	03GW107XXX01XX 227382 11/07/88 Water	03GW108XXX01XX 03GW1 227660 11/08/88 11	03GW108XXX01XD 227661 11/08/88 Water	03GW109XXX01XX 227662 11/08/88 Water	03GW110XXX01XX 227391 11/07/88 Water	
METALS COMPOUNDS UNITS: Ug/l	ANALYTICAL METHOD CRDL	CROL							
Peal		8	160 SN	3.4 CIN	88	3.2 UN	NS 65	N 06	
Laboratory Method Blank	Blank		15410G	15410G	15410G	154106	154106	154100	

CC881120B09

CB881117A09

CC881115C09

Laboratory Method Blank

PROJECT: Detaware Air National Guard - Wilmington

Page 1

MW-111 CFFSET	05GW050XXX01XX 228086 11/09/88 Water
MALII	05GW046XXX01XX 228087 11/09/88 Water
MW-112	05GW044XXX01XX 228082 11/09/88 Water
Laboratory Report of Analysis	SAMPLE 10: (LAB NUMBER: DATE SAMPLED: MATRIX:

VOLATILE ORGANIC COMPOUNDS UNITS: ug/l

Chloromethane Bronomethane	55		1000 U	1300 U
Vinyt chtoride	5		1000 U	1300 U
Chloroethane	5,	5 ن ن	1000 u	1300 U
Action chiornoe	n ş	- ¢	5 07 L	630 U
Corbon diendaide	2 ")	7 :	810 78
1 1-Dichlocoethere	· v) = (0 000	000
1.1-Dichloroethane	, v) :: ::	2005	000
1,2-Dichloroethene(Total)	'n) -	200 C	630 U
Chloroform	~	-	200 U	630 U
1,2-Dichloroethane	~	5 C	200 U	630 U
2-Butanone	£,	10 U	1000 u	1300 U
1, 1, 1-Trichloroethane	.	5	200 r	630 U
Carbon tetrachloride	'	⊃: •	200 n	630 U
Vinyl acetate	٥,	٥ د	1000 L	1300 U
Bromodichtoromethane	ın i	⊃	200 n	630 U
1,2-Dichloropropane	.	⊃ •	200 0	630 U
Cis-1,3-Dichloropropene	•	ر ح	200 n	630 U
Trichloroethene	~	•	200 u	630 U
Dibromochloromethane	.	5 C		630 V
1,1,2-Trichloroethane	ı,	-	200 c	630 U
Benzene	.	~	2300	8600
Trans-1,3-Dichloropropene	ın ı	∵	200 n	630 U
Bromotorm	'	ر د	200 C	030 n
4-Methyl-Z-pentanone	₽:) 		1300 U
Z-Hexanone	2،	ر ا		
letrachioroethene	^ '	-		
1, 1, 2, 2-letrachioroethane	^ '	⊃ : ^ :	n 005 !	630 U
Totuene	^ '	⊃ : ∽ :	13000	13000
Chlorobenzene	· ^	ر ح	200 0	630 U
Ethylbenzene	· ^ ·	∵		850
Styrene	ν.	ا م ا	D 005	630 U
Xylenes (Total)	'n.	2 C	4300	3900
Dilution Factor	,	-	-	-

WL15-SA

Laboratory Report of Analysis	MW-112	II - ME	111	My-111	MW-111 OFFSET	
SAMPLE 1D: LAB NUMBER: DATE SAMPLED: MATRIX:	8	05GW046XXX01XX 228087 11/09/88 Water	05GW046XXX01XXRE 228087 11/09/88 Water	05GW050XXX01XX 228086 11/09/88 Water	05GW050XXX01XXRE 228086 11/09/88 Water	
SEMI-VOLATILE ORGANIC COMPOUNDS UNITS: Ug/l	NDS CRDL					
Phenol	10 U 01	10 U	10 U	10 U	10 U	
bis(2-Chloroethyl)ether	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	55	> :	5		
1,3-Dichlorobenzene	1000	200	200	200	200	
1,4-Dichlorobenzene	2		100	10 C		
Benzyl alcohol	2	O 0	J 0:	7 9 j		
1,2-Dichlorobenzene	000	2	- :	D \$		
S-netray (priemo) bis(2-Chlorolsopropy) Jether	2 5		2 5			
4-Methylphenol	2	200	200			
N-Witroso-di-n-propylamine	2		10 U		10 U	
Hexachloroethane	2		10 U			
Witrobenzene	1	J 0.	J 01			
Isophorone	9		-) - 	D :	
2 4-Dimethylphenol		25	2 5			
Benzoic acid	50 C 20 C	20.00	20.02		21.5	
bis(2-Chloroethoxy)methane	9		10 C	10 U		
	29					
1,2,4-irichlorobenzene Marbihalene			0 040	- 6 - 6	0 070	
4-chloroaniline	2	2				
Mexachlorobutadiene	5		10 U	J 0	10 U	
4-Chloro-3-methylphenol		- OF	J 05	⊃ Ç	J 0.	
	2 \$					
Rexachlorocyclopentadiene 2 & 6-1richlorochanol		2 5	2	25	2 5	
2.4.5-Trichlorophenol	2.5					
2-Chloronaphthalene	100					
2-Nitroaniline	20	20 02		20 0		
Dimethyl phthalate	1				10 U	
Acenaphthylene 2 A-Dinitrotolimae	10 0	5 5	9 5	5 5 5 5	9	
F10 F1111111111111111111111111111111111		2	2	2	2	

PROJECT: Delaware Air National Guard - Wilmington

Laboratory Report of Analysis

Wilmington
Guard
ional
Nat
A:
Delaware
PROJECT:

05-Jan-89

Laboratory Report of Analysis

SAMPLE ID: 05GW044XXX01XX 05GW046XXX01XX 05GW050XXX01XX 1AB NUMBER: 228089 228095 228095 228092 DATE SAMPLED: 11/09/88 11/09/88 11/09/88 Mater Water

METALS COMPOUNDS ANALYTICAL UNITS: Ug/l METHOD CRDL

112 N 154106 135 N 154106 7.9 SN 154106 Laboratory Method Blank Lead

APPENDIX G-2
VALIDATED DATA

CB881110811

CB881111C13

Laboratory Method Blank

PROJECT: Delaware Air National Guard - Wilmington

flagged Data Table (full Validation) SAMPLE ID: 01GW101XXX01XX 01GW102XXX01XX LAB NUMBER: 227649 227646 DATE SAMPLED: 11/08/88 11/08/88 MATRIX: Water Water

VOLATILE ORGANIC COMPOUNDS UNITS: ug/l

000000000000000000000000000000000000000	545 545		10 TO		, wwww	. 8	56v 555	ากเกษากัก	•
Chloromethane Bromomethane Vinyl chloride	Calor Celhane Methylene chloride Acetone Carbon disulfide	1,1-Dichloroethene 1,1-Dichloroethane 1,2-Dichloroethene(Total)	1,2-Dichloroethane 2-Butanone 2-Butanone 1,1-Trichloroethane	cetrachior acetate ichlorometh		Benzene Trans-1,3-Dichloropropene Bromoform	4-Methyl-2-pentanone 2-Mexanone Tetrachloroethene 1-1-2-Tetrachloroethane	Toluene Chlorobenzene Ethylbenzene Styrene Xylenes (Total)	

Flagged Data Table (Full Validation)

SAMPLE 1D: 01GW101XXX01XX 01GW102XXX01XX LAB NUMBER: 227649 227646 DATE SAMPLED: 11/08/88 11/08/88 Mater Water

SEMI-VOLATILE ORGANIC COMPOUNDS UNITS: Ug/l

		5555,5,6555555555 <u>6</u> 55555 	
Hexachlorobutadiene 4. Chlorobutadiene 2. Hethylnaphthalene 8. A. 6. Trichlorophenol 2. 4. 5. Trichlorophenol 2. 4. 5. Trichlorophenol 2. Mitroaniline Dimethyl phthalate Accemphthylene 2. 6. Dinitrotoluene	5555555555	55555858555	56666868666

WL09-SV

Flagged Data Table (Full Validation)

SAMPLE 1D: 01GW101XXX01XX 01GW102XXX01XX LAB NUMBER: 227649 227646 DATE SAMPLED: 11/08/88 11/08/88 MATRIX: Water Water

SENI-VOLATILE ORGANIC COMPOUNDS UNITS: ug/l CRD

- totaona .	1		
4-Witroaniline 4.6-Dinitro-2-methylphenol W. Witrosodiphenylamine(1) 4-Bromophenyl phenyl ether Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene Di-n-butyl phthalate		22222222222222222222222222222222222222	886668666
Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene Chrysene bis(2-Ethylhexyl)phthalate Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene			
Indemo(1,2,3-cd)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Dilution Factor Laboratory Method Blank Petroleum Mydrocarbons (mg/l)	10 10 10 10 10 10 10 10 10 10 10 10 10 1	0 U 10 0 U 10 0 U 10 1 U 10	10 U 10 U 10 U 1 U

WL09-SV

Flagged Data Table (Full Validation)

ANALYTICAL METHOD CRDL METALS COMPOUNDS UNITS: Ug/l 1.4 0.1 Lead

0.91 UJ

154106

154106 Laboratory Method Blank ML09-1V

flagged Data Table (Full Validation)

XX		
02GW105xxx01xx 227647 11/08/88 Water		CBSSIIICIS
2 8 8 7 XX	อีออีออีออีพพพพพพอพพอพพพพพพพพพพอพพพออัพพพ 	_
02GU104XXX01XX 227648 11/08/88 Water		CB881110811
o z	8330 C C C C C C C C C C C C C C C C C C	_
02GU103XXX01XD 228084 11/09/88 Water	8830 8830 8830 8830 8830 8830 8830 8830	CC881120809
×		
02GW103XXX01XX 228083 11/09/88 Water		CC881115C09
SAMPLE 10: LAB NUMBER: DATE SAMPLED: MATRIX: VOLATILE ORGANIC COMPOUNDS ITS: Ug/l	อีอิอิกอิกกกกกรรกกรีกกรกกกกกกร	
SA LAI DATE COMPC	Inforomethere incommethere incommethere inforcethere info	ş
GANIC	Chloromethane Vinyl chloride Chloroethane Methylene chloride Acetone Larbon disulfide 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 2-Butanone 1,2-Dichloroethane 1,2-Dichloroethane Carbon terrachloride Vinyl acetate Bromodichloromethane Cis-1,3-Dichloropropena Cis-1,3-Dichloropropena Cit-1,2-Trichloroethane Cis-1,3-Dichloropropena Cit-1,2-Trichloroethane Cis-1,3-Dichloropropena Cit-1,2-Trichloroethane Cis-1,3-Dichloropropena Cit-1,2-Trichloroethane Cit-1,2-Trichloroethane Cit-1,2-Trichloroethane Cit-1,2-Trichloroethane Cit-1,2-Trichloroethane Chlorobenzene Ethylbenzene Ethylbenzene Ethylbenzene Ethylbenzene Chlorobenzene Ethylbenzene Ethylbenzene Ethylbenzene Ethylbenzene Ethylbenzene Ethylbenzene Ethylbenzene Ethylbenzene Ethylbenzene	10
LE OR	chert chicago at a control of the chicago at a control of	Het
VOLATILE UNITS: ug/l	Thioromethane Thioromethane Thioroethane Thioroethane Thioroethane Thioroethane Thioroethane Thioroform Thioro	atory
> 35	Chloromethane Vinyl chloride Chloroethane Wethylene chlor Acetone Carbon disulfid 1,1-Dichloroeth 1,2-Dichloroeth 1,2-Dichloroeth 1,2-Dichloroeth 1,2-Dichloroeth 1,1-Trichloro Carbon tetrachl Vinyl acetate Bromodichlorome 1,1-2-Jichlorome Chlorobenzene Ethylbenzene Ethylbenzene Ethylbenzene Styrene Xylenes (Total)	Laboratory Method Blank

VL10-VV

flagged Data Table (Full Validation)

SAMPLE ID: LAB NUMBER: DATE SAMPLED: MATRIX:	02GW1	03XXX01XX 228083 /09/88 Water	02GW103XXX01XD 228084 11/09/88 Water	02GW104XXX01XX 227648 11/08/88 Water	02GW105XXX01XX 227647 11/08/88 Water	
SEMI-VOLATILE ORGANIC COMPOUNDS UNITS: ug/l	NDS CRDL					
Phenol	10	90	1700 U	23		
bis(2-Chloroethyl)ether	55	_	1700 UJ	100	10 t	
2-Chlorophenol	2	⊃ : 8 8	1700 0) 		
1, 3-Dichioropenzene	2;) ()	0 00/1	2		
1,4-Dichlorobenzene	25	= = = =	1700	2 =		
1 2-Dichlorobensene	2 5		_			
2-Methylphenol	2) = &	1700 1	55		
bis(2-Chloroisopropyl)ether	2					
4-Methylphenol	10	⊃ 8	1700 U			
N-Nitroso-di-n-propylamine	10	8 2	_			
Hexachloroethane	5		1700 U	10 U		
Nitrobenzene	2		1700 U			
Isophorone	9		1700 U			
2-Nitrophenol	2 :	⊃: &:	1700 U	5		
2,4-Dimethylphenol	10		1700 U			
Benzoic acid	5,		8300 0			
51s(Z-Chloroethoxy)methane	2	⊃ = 2	1/00 0	25) 	
1.2.4-Trichlorobenzene		 8 8	1700 U	25		
Nachthalene			40000			
4-Chloroaniline			1700 U	10 C		
Hexachlorobutadiene	5	80 n	1700 U	10 c		
4-Chloro-3-methylphenol			1700 U	10 c		
2-Methylnaphthalene			100000	8		
Hexach lorocyc lopentadiene	9		1700 U	-		
2,4,6-Trichlorophenol	9		1700 C	-		
2,4,5-Trichlorophenol	20	⊃ 207	8300 U	20.5		
2-Chloronaphthalene	2;	ے 80	1700 U			
2-Nitroaniline	50		8300 U	7 0S		
Dimethyl phthalate	2 ;	⊃ : @ 8	1700 U	2 2 3	n 01	
Acenaphthylene	2;) (2)	D 0021	200	2	
2,6-Dinitrotoluene	10	80 D	1700 u	O 01	U 0L	

 \star = Result given is the amount of floating petroluem product in the sample, % V/V.

WL10-SV

flagged Data Table (Full Validation)

SAMPLE 10: LAB NUMBER: DATE SAMPLED: MATRIX:	DER:	02GW103XXX01XX 228083 11/09/88 Water	02GW103XXX01XD 228084 11/09/88 Water	02GW104XXX01XX 227648 11/08/88 Water	02GW105XXX01XX 227647 11/08/88 Water
SEMI-VOLATILE ORGANIC COMPOUNDS UNITS: Ug/1	NDS				
	:			;	:
3-Nitroaniline	20	n 00†	8300 N	20 0	20 U
Acenaphthene	9	710	4200	FF 9	10 U
2,4-Dinitrophenol	20	O 007	8300 U	20 C	50 UR
4-Nitrophenol	20	D 007	8300 U	20 0	50 UR
Dibenzofuran	10	650		, 9 13	10 U
2.4-Dinitrotoluene	10	n 08	1700 11		10 1
Diethyl phthalate	2			100	10 t
4-Chlorophenyl phenyl ether	2	08			10 01
	10			T 2	10 U
4-Nitroaniline	20	O 007	8300 U	20 U	50 U
4,6-Dinitro-2-methylphenol	20	D 007		20 C	50 UR
N-Nitrosodiphenylamine(1)	9	⊃ 80		10 U	10 U
4-Bromophenyl phenyl ether	10	n 08	1700 u	J 01	10 U
Hexachlorobenzene	10	90 n	1700 U	10 U	10 U
Pentachlorophenol	20	U 004		20 U	50 UR
Phenanthrene	10	0 0069	30000	92	LC 4
Anthracene	5	1300	9200	LL 4	
Di-n-butyl phthalate	2	⊃ 88	1700 U	10 U	10 U
Fluoranthene	2		20000	3 2	10 U
Pyrene	9	3200 0		3 5	10 U
Butyl benzyl phthalate	9	ລ ຜູ		2 2	10 U
3,3'-Dichlorobenzidine	20	160 U	3300 U	∩ : 20 :	20 n
Benzo(a)anthracene	29	1000	6100) 	
Chrysene Lines Pake Henry Valeta	2 9		0040	25	
Dis(z-Etnyinexyi)phinalate	2 €	800 084 - 084	10200	<u>.</u>	150 038
Di-m-octyl partnalare	29	0 6	0000	⊃ : ⊇ :);
Benzo(b) fluorantnene	2 9	D\$ 6	7,000	25	25
	2 5	060	2000		25
senzo(a)pyrene	25	9	0007	2 \$	2 5
Diberrole hisothracens	2 5	17.	2 007	2 \$)
Benzo(g,h,i)perylene	22		2005	55	
Dilution Factor		80	170	-	-
Laboratory Method Blank		GJ028531A21	GJ028531A21	GH028228A22	GH028228A22
Petroleum Hydrocarbons(mg/l)	-	* 8.9	1.2 *	2.9	7.8

WL10-SV

 $^{^{*}}$ = Result given is the amount of floating petroluem product in the sample, % V/V.

PROJECT: Delaware Air National Guard - Wilmington

flagged Data Table (Full Validation)

	SAMPLE 1D: LAB NUMBER: DATE SAMPLED: MATRIX:	SAMPLE 1D: O2GW103XXX01XX LAB NUMBER: 228090 DATE SAMPLED: 11/09/88 MATRIX: Water	02GW103XXX01XD 228091 11/09/88 Water	02GW104XXX01XX 227658 11/08/88 Water	02GW105XXX01XX 227657 11/08/88 Water
METALS COMPOUNDS UNITS: ug/l	ANALYTICAL METHOD CRDL				
peal	7	- 116 J	127 J	137 J	12 J

154106

154106

154106

154106

Laboratory Method Blank

WL 10-1V

PROJECT: Delaware Air National Guard - Wilmington

•	_
ta Table	1
8	7
Flagged I	1 Val 1
2	()

	SAMPLE ID: LAB NUMBER: DATE SAMPLED: MATRIX:	03GW106XXX01XX 227654 11/08/88 Water	03GW107XXX01XX 227367 11/07/88 Water	03GW108XXX01XX 227650 11/08/88 Water	03GW108XXX01XD 227651 11/08/88 Water	03GW109XXX01XX 227653 11/08/88 Water	03GV110XXX01XX 227373 11/07/88 Water
VOLATILE ORGANIC COMPOUNDS UNITS: ug/l	COMPOUNDS						
Chloromethane Bromomethane Vinyl chloride	555	0 0 0 0 0 0	0 OL	0 0 0 0 0 0	0 0 0 0 0 0	555	565
Chloroethane Methylene chloride	5.05	5005	10 C C C C C C C C C C C C C C C C C C C	20 n	50v6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 00 00
Carbon disulfide	ວິ ຄບ ຄບ	ស ស ស ភូព១១	8 mm	5 N N	5 v v	5 v v 5 D D	20 20 20 20 20 20 20 20 20 20 20 20 20 2
1,1-Dichloroethane 1,2-Dichloroethene(Total)	tal) 5			22;		in in i	3 F
1,2-Dichloroethane	unē	v v č	v v č	v v č		nnå DD	ກ ລາ ຊື່
1,1,1-Trichloroethane Carbon tetrachloride	ริเกเก	šiv iv Ž = =	5 n n 2 n n	S N N S D D	5 m m	ōrvr. ⊋⊃=	5 v r
Viryl acetate Bromodichloromethane	, E.v.	ာ ၁၁၁	, 0 , 0 , 0 , 0		ນ ວິດ ວິລ	ນຄືນ ລວລ	າວົ ລວລ
1,2-Dichloropropane Cis-1,3-Dichloropropene	<u>8</u>	N N N			ນທ _ະ	N IN II	ນທ.ເ
Dibromochloromethane 1,1,2-Trichloroethane		9 D D) (1)	, UI (1)	รื่ออ	, www	ง รูบอ
Benzene Trans-1,3-Dichloropropene Bromoform		N N N	N N N	⊃ ⊃ ⊃ ⊃		N W W	
4-Nethyl-2-pentanone 2-Nexanone	55,	66, 50,	.00°	50, 22;	56r	,55,	
1,1,2,2-Tetrachloroethane		5 u 10 u.B		0 to to		, v.v.	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Chlorobenzene Ethylbenzene Styrene Xvienes (Total)	w m m m) 	7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7	აწეა <u>წ</u> ე ე	N 10 10 10	งงงก รูวอะ
Dilution Factor	•		· -	; -	ı -) -
Ann is budged was described	,						- 900
נפססו בנסוץ חבוחטם פופו	¥	CI261112612	C8881110811	CBS51111B13	21351118633	CB881111B13	CB881110811

flagged Data Table (Full Validation)

SAMPLE IG LAB NUMBER DATE SAMPLET MATRI)	2225	03GW106XXX01XX 227654 11/08/88 Water	03GW107XXX01XX 227367 11/07/88	03GW108XXX01XX 227650 11/08/88 Water	03GW108XXX01XD 227651 11/08/88 Water	03GV109XXX01XX 227653 11/08/88 Water	03GW110XXX01XX 227373 11/07/88 Water	
SEMI-VOLATILE ORGANIC COMPOUNDS UNITS: ug/l	CRDL							
Phenol bis(2-Chloroethyl)ether	55	10 U	10 U	10 UR	10 UR	10 U	10 U	
2-chlorophenol 1,3-Dichlorobenzene	229	5 2 2 3 3 3 3	56; 56;		5 5 5 5 5 5 5		22:	
1,4-Dichlorobenzene Benzyl alcohol	22	5 5 5 5	5 C C			100		
1,2-Dichtorobenzene 2-Methylphenol	55) 10 10				5 C		
bis(2-Chloroisopropyl)ether	22	5 5 5 5) ot			5 5 5 5		
N-Witroso-di-n-propy:amine	2	556				200		
nexacnioroetnane Nitrobenzene	22	55		20		3.5		
Isophorone	29	55						
2,4-Dimethylphenol	22	25				55		
Benzoic acid bis(2-Chioroethoxy)methans	85	50 C				50 C		
2,4-Dichlorophenol	5					200		
Network that ene	22	56				500		
6-Chloroanitine	5					5		
4-Chloro-3-methylphenol	22	56	200	5 5 5 5 5 7		200		
2-Methylnaphthalene	29		10 U			O 02		
Nexachlorocyclopentadiene	2		3:			3 :		
2.4.5-Trichlorophenol	200		20.00			2000		
2-chloronaphthalene	2		1 2 1			50		
Z-Nitroaniline Dimethyl phthalate	85	20 C 10 C	20 C			50 U	30 C	
Acenaphthylene 2,6-Dinitrotoluene	22		10C	10t 20t		10 C		

WL11-SV

PROJECT: Delaware Air National Guard - Wilmington

able	ion)
Flagged Data Table	Validat
F1 e99e	CFULL

SAMPLE 1D: LAB NUMBER: DATE SAMPLED:	E 10: MBER: PLED:	03GU106XXX01XX 227654 11/08/88	03GU107XXX01XX 227367 11/07/88	03GW108XXX01XX 227650 11/08/88	03GW108XXX01XD 227651 11/08/88	03GW109XXX01XX 227653 11/08/88	03GW110XXX01XX 227373 11/07/88	
MATRIX SEMI-VOLATILE CRGANIC COMPOUNDS UNITS: ug/l CRD	UNDS CRDL	Water	Water	Water	Water	Water	Aaker Nater	
3-Nitroaniline Acenaphthene 2,4-Dinitrophenol 4.Nitrophenol	8588	. 200 C C C C C C C C C C C C C C C C C C		0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	50 U 50 U 50 UR 50 UR	200 200 200 200 200 200		
Discription of the control of the co	55555	99999;		56666 55555	56666 50000	35555 35555 35555	565558 53333	
4.6-Dinitro-Emethylphenol 4.6-Dinitro-Emethylphenol M.Witrosodiphenylamine(1) 4.8romophenyl phenyl ether Hexachlorobenzene	3222 3222		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		88666 8256			
Pentachlorophenol Phenanthrene Anthracene Di-n-butyl phthalate	85555	5000 5000 5000		8 8 8 9 9 9 9 9			2000 w.c. 2000 w.c. 2000 w.c.	
Pyrene Butyl benzyl phthalate 3,3.0ichlorobenzidine Benzo(a)anthracene	22225		29999		22822	200000	22822	
bis (2-Ethylhexyl) phthalate Di-n-octyl phthalate Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(s) pyrene Indeno(1,2,3-cd) pyrene Dibenzo(a,h) anthracene	555555				-		2000000	
Benzo(g,h,i)perylene Dilution Factor	2	0 t	10 L	10 t	10 u	10 0	. 1 1	
Laboratory Method Blank		GH028228A22	GJ027731C21	GH028228A22	GH028228A22	GH028228A22	6J027731C21	
Petroleum Mydrocarbons (mg/l)	-		1 0	1	2.1	8.0	10	

PROJECT: Delaware Air National Guard	Air Nation	ol Guard	- Wilmington		Page	_			
Flagged Data Table (Full Validation)	•								
	SAMPLE 10: LAB NUMBER: DATE SAMPLED: MATRIX:	SAMPLE 10: (AB NUMBER: E SAMPLED: MATRIX:	03GW106XXX01XX 227664 11/08/88 Water	03GW107XXX01XX 227382 11/07/88 Water	03GW108XXX01XX 227660 11/08/88 Water	03GW10BXXX01XD 227661 11/08/88 Water)3GW109XXX01XX 227662 11/08/88 Water	03GW110XXX01XX 227391 11/07/88 Water	
METALS COMPOUNDS UNITS: Ug/l	ANALYTICAL METHOD CRDL	CRDL							
lead	1 L	•	160 J	3.4 [] J	f 88	3.2 [] 1	r 65	7 06	
Laboratory Method Blank	Blenk		154106	154106	154106	15410G	154106	15410G	

Wilmington
Guerd
lational
Air
Delaware
PROJECT:

Flagged Data Table (Full Validation)	MW-112	MW-111	MW-III OFFSET	
SAMPLE ID: LAB NUMBER: DATE SAMPLED: MATRIX:	_	05GW046XXX01XX 228087 11/09/88 Water	05GW05OXXX01XX 228086 11/09/88 Water	
VOLATILE ORGANIC COMPOUNDS UNITS: ug/l	.		•	
Chloromethane) O	1000 n	1300 U	
Bromomethane Vinyl chloride	55	000 000 000 000 000	1300 U 1300 U	
•	01		1300 U	
Metnylene chloride Acetone		FF 021	630 U 6250 U.B	
disulfide	, ro	200 0		
		200 0	630 U	
, I-Dichloroethane 2-Dichloroethane(Total)	0 t	000	630 U	
() 8 ()		288	630 c	
roethane	· S			
	5		1300 UR	
i,1,1-Trichloroethane Carbon tetrachloride	~ v	2005	630 U	
	, 5			
	10			
1,2-Dichloropropane	ı,			
	νι. ⊃	000	020 U	
thane				
1,2-Trichloroethane				
Benzene				
Trans-1,5-01ch (oropropene	~ u	2002	630 U	
6-Methyl-2-pentanone	J 5	1000	1300 ti	
fetrachloroethene	2	200 u		
2,2-Tetrachloroethane		500 U	630 u	
Toluene This content of the content	U 1.	2000	15000	
City of Ocenicense) =) (ם מסנ	2 000	
Styrene	, , , ,	002.	630 U	
		996*	0065	
Dilution Factor	-	100	125	
Joe I B body and was a se	CC881115000	00001117400	0.00011120000	
Laboratory Rethod Blank	CCSGIIISCUY	CBSSIIIAUY	LL861120807	

Flagged Data Table (Full Validation)	MW-112	MW-111	MW-111 OFFSET
SAMPLE 10: LAB NUMBER: DATE SAMPLED: MATRIX:		05GW046XXX01XX 228087 11/09/88 Water	05GW050XX01XX 228086 11/09/88 Water
SEMI-VOLATILE ORGANIC COMPOUNDS UNITS: Ug/l	. 1		
1	01		10 UR
ther	0 0 1 0 1	5 C	
inzene	2	0 0 0 0	J 00
_		20	
	25	200	. ot t
2-netnytpnemot bis(2-Chloroisopropyl)ether 10	300	5 6	
•	2	_	
N-Witroso-di-n-propylamine 10	25	5 t	5 C C
	2		
[sophorone 16		5 5 5	J 00 6
henol	20	5 5 5	20 C
Benzoic acid hie/2-fhloroethoxy)methane 1			19 J.
2,4-Dichlorophenol	2		
1,2,4-Irichioropenzene 10 Machthalene 10		150 0	190
	2	_	
Hexachlorobutadiene		₽) - C
	22		150
iene		5 5 5 5	J 05
7		. 50 S	50 UR
t i	205		20.00
Dimethyl phthalate 10 Acenaphthylene 10	10 C	10 U	
2,6-Dinitrotoluene	10 U	10 U	10 U

WL15-SV

PROJECT: Delaware Air National Guard - Wilmington

•	,
₹	5
Table	٠.
-	•
•	ŧ
d Data 1	-
ã	2
T	-
Flagged	Ξ
ğ	ī
2	:
•	

SAMPLE ID: LAB NUMBER: DATE SAMPLED: MATRIX:	_	05GWG44XXX01XX 228082 11/09/88 Water	05GW046XXX01XX 228087 11/09/88 Water	05GW050XXX01XX 228086 11/09/88 Water	
SEMI-VOLATILE ORGANIC COMPOUNDS UNITS: UG/1	NDS				
	5	3	:	:	
5-withospithese	3 6) (() (5 E	
2,4-Dinitrophenol	20.	200			
4-Nitrophenol Dibenzofuran	⋧ ६	2 2 2 3 3 4 4 4 7	2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	20 CE	
2.4-Dinitrotoluene	22		200		
ate .	£ :		10 U	J 0	
4-Chlorophenyl phenyl ether Fluorene	25	9 5	25	2 5	
4-Nitroaniline	2 <u>2</u>		200	2000	
4,6-Dinitro-2-methylphenol	20	_		_	
_	5;	_ _ _ _	5 5 5	10 0.0	
4-bromophenyl prenyl etner Mexachlorobenzene	2 5	25	25	2 5	
Pentach (propheno)	25		20 02		
Phenanthrene	2	10 C			
	2;			_	
Di-n-Dutyl phthalate Filographene	55) 	2 5 t	55	
Pyrene	22	_	56		
Butyl benzyl phthalate	5		_		
3,3'-Dichlorobenzidine	25	50 C			
Defizorates Chrysene	2 2) 	25	25	
-	<u></u> 2	_	9	3.23	
Di-n-octyl phthalate	5	_		_	
Benzo(b)fluoranthene Benzo(k)fluoranthene	25	25	25	- e	
Benzo(a)pyrene	2 0				
Indeno(1, 2, 3-cd) pyrene	2	10 U		_	
ibenzo(9			_	
Benzo(g,h,i)perylene	9	10 U	10 C	10 U	
Dilution Factor		-	-	-	
Laboratory Method Blank	GJ02	GJ028531A21	GJ028531A21	GJ028531A21	
Petroleum Hydrocarbons(mg/l)	<u>-</u>	1 0	9.9	5.1	

Page	
S	
mingt	
5	
bra	
ತ	
ation	
Air R	
Bre	
Dele	
ECT:	
PROJECT: Delemere Air National Guard - Wilmington	

05-Jan-89

MW-111 OFFSET	03440000000000000000000000000000000000
MW-111	11/09/88
111-MW	11/09/88 11/09/88
	LAB NUMBER: DATE SAMPLED: MATRIX:
Flagged Data Table (Full Validation)	

METALS COMPOUNDS ANALYTICAL UNITS: Ug/l METHOD CRDL	ANALYTICAL METHOD	CROL			
. peal	u.	^	7.9 J	135 J	112 J
Laboratory Method Blank	81 enk		154106	154106	154100

112 J

CB881110B11

CB881111B13

Laboratory Method Blank

PROJECT: Delaware Air National Guard - Wilmington

Laboratory Report of Analysis

Sampler Blank
SAMPLE ID: 058S001XXX01XX 058S002XXX01XX
LAB NUMBER: 227652 227645
DATE SAMPLED: 11/08/88 11/08/88
MATRIX: Water

VOLATILE ORGANIC COMPOUNDS UNITS: ug/l

5555 <i>տฐทพพพจพ</i> ธพพธพพพพพพพพพ อาวา _ช ตวววา วววววววววววววว	-
5555ທ5ທທທະທຽທທ5ທທທທທທທດ5 ວລວລະລອງລອງລອງລອງລອງລອງລອງລອງລອງ	-
ລີວີວີລັນວັນນຸນນຸນພັດພຸນລັນນຸນພຸນທຸນພຸນພຸນ ລັດພຸນພຸນພຸນ	
Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chloride Acetone Carbon disulfide 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 2-Butanone 1,1-Trichloroethane 2-Butanone 1,1-Trichloroethane 1,2-Dichloropropene 1,2-Dichloropropene 1,2-Dichloropropene 1,2-Dichloropropene 1,2-Dichloropropene 1,2-Dichloropropene 1,1,2-Trichloroethane Benzene Trans-1,3-Dichloropropene 1,1,2-Trichloroethane 1,1,2-Trichloroethane Benzene Trans-1,3-Dichloropropene 1,1,2-Trichloroethane Chiorobenzene Ethylbenzene Chiorobenzene Ethylbenzene Styrene	Dilution Factor

Laboratory Report of Analysis

Sampler Blank
SAMPLE ID: 058S001XXX01XX 058S002XXX01XX
LAB NUMBER: 227652
DATE SAMPLED: 11/08/88 11/08/88
MATRIX: Water Water

SEMI-VOLATILE ORGANIC COMPOUNDS UNITS: ug/l

555555555555555555555555555555555555555
55555555555555555555555555555555555555
Phenol bis(2-Chloroethyl)ether 2-Chlorophenol 1,4-Dichlorobenzene 1,4-Dichlorobenzene 2-Methylphenol bis(2-Chloroisopropyl)ether 4-Methylphenol bis(2-Chloroisopropyl)ether 1,2-Dichloroethane 1,2-Chloroethane 1,2-4-Dimethylphenol 8-nirophenol 1,2,4-Dimethylphenol 2,4-Dimethylphenol 2,4-Dichloroethane 1,2,4-Trichloroethane 4-Chloroaniline Hexachlorocyclopentadiene 4-Chloroaniline Hexachlorocyclopentadiene 2,4-5-Trichlorophenol 2,4,5-Trichlorophenol

WL13-SA

Laboratory Report of Analysis

	Sampler Blank	Blank
SAMPLE ID:	×	05BS002XXX01XX
LAB NUMBER:	227652	227645
DATE SAMPLED:	11/08/88	11/08/88
MATRIX:	Water	Water

SEMI-VOLATILE ORGANIC COMPOUNDS UNITS: ug/l

	1		
3-Nitroaniline	20	20 U	20 U
Acenaphthene		10 U	10 U
2,4-Dinitrophenol		50 U	20 U
4-Nitrophenol		50 U	20 U
Dibenzofuran	5	J0 U	10 U
2,4-Dinitrotoluene	5	10 U	10 U
Diethyl phthalate	£	10 U	10 U
4-Chlorophenyl phenyl ether	9	10 U	10 U
Fluorene			_
4-Nitrogniline			_
4,6-Dinitro-2-methylphenol			20 G
⊆	0		J 0
4-Bromophenyl phenyl ether	<u>ء</u>	ر ا	10 U
Hexach Lorobenzene			10 U
Pentachlorophenol			
Phenanthrene	2		J 0.
Anthracene	9		J 0t
Di-n-butyl phthalate	\$		10 U
Fluoranthene	9	10 U	10 U
Pyrene	£		10 U
Butyl benzyl phthalate			
3,3'-Dichlorobenzidine			_
Benzo(a)anthracene	ţ		_
Chrysene	9		10 U
	6		10 U
Di-n-octyl phthalate	0	_	
Benzo(b)fluoranthene	<u>ء</u>		J 0.
Benzo(k)fluoranthene	2		
Benzo(a)pyrene	2.5	25)
٠. «	2 5		
	.	20	10 U
Dilution Factor		_	-
Laboratory Method Blank	GH028228A22		GH028228A22
Petroleum Hydrocarbons (mg/l)	-	1 0	1 0

WL13-SA

PROJECT: Delaware Air National Guard - Wilmington

Laboratory Report of Analysis

SAMPLE ID: SAMPLER BLANK LAB NUMBER: 220674 DATE SAMPLED: 10/03/88 MATRIX: Water

METALS COMPOUNDS ANALYTICAL UNITS: ug/l METHOD CRDL

Lead

3 []

Laboratory Method Blank

Laboratory Report of Analysis

	05BT003XXX01XX	228088	11/08/88	Water
Trip Blank	058T002XXX01XX	227655	11/08/88	Water
	58T001XXX01XX	227376	11/07/88	Vater
•	SAMPLE 10:	LAB NUMBER:	DATE SAMPLED:	MATRIX:

VOLATILE ORGANIC COMPOUNDS UNITS: ug/l

Chloromethane		10 U	10 U
Bromomethane	10 C	10 U	
Vinyl chloride		10 n	
Chloroethane	10 U) OF	= ==
Methylene chloride		2 5	
Acetone			, <u>e</u>
Carbon disulfide			
1,1-Dichloroethene	0.5	. ic) =
1,1-Dichloroethane	3 5 5) =
1,2-Dichloroethene(Total)	20.00	20.00) iv
Chloroform	5 50	. IS) <u>=</u>
1,2-Dichloroethane	5 5 0	2 5	> =
2-Butanone	10 U	. ot	. C
1,1,1-Trichloroethane		200) <u>-</u>
Carbon tetrachloride	200	2 20	> ≈
Vinyl acetate	10 t	10 01	201
Bromodichloromethane) S	25	; ro
1,2-Dichloropropane	S S U	. S) <u></u>
Cis-1,3-Dichloropropene	2 5 0	2 50	, r.
Trichloroethene	D S S	2 50) =
Dibromochloromethane	D .C	3.50)
1,1,2-Trichloroethane	S 5 U	2.50) = -
Benzene	5 5 0) S) =
Trans-1,3-Dichloropropene	5 5 0	2 2) I
Bromoform	'n	2) =
4-Methyl-2-pentanone			
2-Hexanone	10		10 10
Tetrachloroethene			
1,1,2,2-Tetrachloroethane	2		
Toluene	5 5 0) S	2.50
Chlorobenzene	5 5 0	0.5) =
Ethylbenzene	5 5 0	2 0) = =
Styrene	S 5 U) S	, rc
Xylenes (Total)	D S S C	2 2))
)
Dilution Factor	***	•	-
Laboratory Method Blank	CB881110B11	CB881110B11	cc881115c09

PROJECT: Delaware Air National Guard - Wilmington

Laboratory Report of Analysis

Filtration Blank
SAMPLE ID: 058F001XXX01XX
LAB NUMBER: 227667
DATE SAMPLED: 11/08/88 11/08/88
MATRIX: Water

ANALYTICAL METHOD CRDL METALS COMPOUNDS UNITS: ug/l

54 SN Lead

Laboratory Method Blank

124 N

154106

154106