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Abstract

We consider the problem of tracing algebraic curves by computer,
using a numerical technique augmented by symbolic computations. In
particular, all singularities are analyzed correctly. The methods pre-
sented find application in solid modeling and robotics.

1 Introduction

In this paper we discuss preliminary resuits for tracing algebraic curves.
Planar algebraic curves of the form f(z,y) = O are considered, as are space
curves that are the intersection of two algebraic surfaces, f(z,y,2z) = 0 and
9(z,y,z) = 0. The scenario is as follows: We are given a point p on the curve,
and a direction of traversal. We wish to trace succeeding curve points on
the same branch, and we would like to trace them through singularities.

A reliable solution to this problem has immediate applications to solid
modeling and geometric design. For example, the well-known Boolean oper-
ations on solids require tracing surface intersections, for the purpose of de-
termining the surface of the resulting solid [9). Here, algebraic space curves
arise when the intersecting solids are bounded by algebraic faces. If the
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surface is composed of parametric patches, e.g., rational B-spline surfaces,
then planar algebraic curves can be obtained [6].

Since an extensive amount of curve tracing is required for each modeling
operation, it is advisable to pay attention to efficiency as well as reliability.
For this reason, precise methods such as the cylindrical algebraic decompo-
sition due to Collins and its variants [4,11] have not been considered here.
This does not imply that these presently very compute intensive methods
must remain of theoretical interest caly, but significantly more work is re-
quired before we can accurately gauge whether in the specialized context of
solid modeling versions of these algorithms exist that can be used without
serious efficiency degradations.

As point of departure, we use a straightforward numerical method that
approximates the curve locally by its truncated Taylor series, and then per-
forms a Newton iteration to correct the accumulated error. This approxi-
mation has many interesting properties. For instance, the Taylor series is
a special case of the Puiseux series that can be used to approximate the
curve at singular points as well as at regular points. Thus, there is a basis
for developing a uniform framework for studying approximations to alge-
braic curves. Note, however, that there are alternative curve approximations
based on special classes of polynomials that offer different advantages, 7],
and more study is needed before the relative merits can be fully appreciated.

In many cases the numerical procedure suffices and copes acceptably well
with certain singularities, e.g., with normal crossings and with tacnodes that
are not very complicated. 't is not fully reliable, however, and will fail at
cuspidal singularities. For this reason it is augmented by a mapping tech-
nique that exploits the fact that by a suitable birational map any singularity
can be resolved. That is, such a map will transform the singular point into
one or more nonsingular ones, while not creating new singularities. Fortu-
nately, suitable maps can be found easily in the planar case. In the space
curve case the situation is not so simple, and more work is required to find
attractive algorithms.

Even in the planar case a number of details must be addressed before
curve desingularization can be automated. These include finding reliably the
locus of the singularity, controlling numerical inaccuracies that arise from the
various desingularization maps, and establishing the correct correspondence
of orientation between the curve and its transformations.

We structure this paper as follows: After explaining concepts and nota-




tion in Section 2, we devote Section 3 to a description of the simple numerical
procedure for following curves. In Section 4, we explain the correspondence
between the Taylor series and the notion of a place of a curve, which yields a
straightforward method for extending the numerical procedure 8o as to cope
with low order singularities consistently. The extension is of limited value,
however, as it involves solving systems of polynomial equations whose degree
depends on the order of the singularity analyzed. Section 5 concentrates on
desingularizing planar algebraic curves and discusses how problems such as
orientation correspondence can be solved. Examples of various types of sin-
gularities are also given. Section 6 then discusses the desingularization of
space curves. Sections 3, 4 and 5 summarize work reported in [2,8].

2 Concepts and Notation

We consider algebraic space curves given as the intersection of two algebraic
surfaces f(z,y,2) = 0 and g(z,y,z) = 0, where f and g are polynomials in
z, y, and z. This is not the most general definition of space curves; certain
curves require intersecting more than two surfaces in order to exclude extra-
neous components. The partial derivatives of f are written by subscripting,
e.g., fz =8f/0z, fzy = 8%f/(8zdy), and so on. Since f and g are analytic,
fzy =f yz etc.

Vectors and vector functions are denoted by bold letters. The snner
product of two vectors a and b is the scalar a - b. The length of the vector
a is [a] = /a- a. The cross product of the vectors is the vector a x b.

The gradient of the surface f at the point p = (z,y,2) is the vector
Vf = (fz, fy, fe), where the partials are evaluated at p. If not zero, it is a
vector that is normal to the surface at p. A point p = (z,y, 2) is regular on
f if the gradient of f at p is not null; otherwise the point is singular. The
Hessian of f at point p is the tensor

fzz fzy fzz
He= | fyz foy fos
f:z fzy fu

where the partials are evaluated at p.

The intersection curve of f and g is denoted r(s) and is considered a
vector function of the argument s. In Section 3, we will determine an ap-
proximation of r in which s is the arc length measured from some initial point
on the curve. As usual, the derivatives of r(s) are denoted r', r"...x(™).




A point p of the intersection curve r(s) is regular if p is regular on both
f and g and if the gradients Vf and Vg are linearly independent. That is,
the surfaces are not singular at p and intersect transversally. A point p is
singular on r(s) for one of the following reasons:

1. The gradients Vf and Vg are nonzero and linearly dependent.
2. One of the gradients, say Vg is zero, but the other is not.
3. The gradients V f and Vg are both zero.

We note that Cases 1 and 2 do not differ in substance.

The ¢nitial form of f is the polynomial formed by all terms of lowest
order in f. For example, the initial form of z2 — 2z + y? + 2% is —2z. The
initial form approximates the surface in the neighborhood of the origin. In
the above example, the surface “looks like” the plane x = 0 near the origin.
This plane is the tangent plane to f at the origin. In particular, if p is the
origin, then p is regular on f if the initial form of f is linear. Otherwise p
is singular.

At each point p = r(s) of a space curve, an intrinsic coordinate system is
provided by the orthonormal trtad. The triad consists of three perpendicular
unit vectors, namely the tangent t, the principal normal h, and the binormal
b. The Frenet-Serret formulas relate the triad to arc length, curvature, and
torsion of the curve at p. With s the arc length, p the radius of curvature,
and 7 the radius of torsion we have

de _1 db _
ds p ds

_lh’ d_h. = lb - }.t
T ds 1 P

A planar algebraic curve is given by its implicit equation f(z,y) = O,
/ a polynomial in z and y. Equivalently, we can think of the curve as the
intersection of the surfaces f and z = 0. Note that f is then a cylinder with
the base line f(z,y) = 0. All concepts explained above can therefore be
transferred to the planar case.

3 Numerical Tracing

For space curves, the simplest situation arises when tracing the curve in
a neighborhood in which both surfaces are nonsingular and intersect each




other transversally. This means that the gradients of f and g do not van-
ish along the curve and are linearly independent vectors. In this case we
formulate a system of linear equations from which to obtain the local ap-
proximation to the intersection curve at the point p.

3.1 The Basic Method for Space Curves

Since the curve r(s) must satisfy both f and g identically, each coefficient
in the Taylor series of f(r(s)) and g(r(s)) will be zero. Let p = r(0) be a
point on the intersection. Then

(5(6) = 1(0)+ 891 - /(0) + (VT -£(0) +T(0) - Hy - ¥(0)] + -

and similarly,

2
o(x(s)) = 9(0) + sVg - ¥'(0) + (Vg £(0) + F'(0) - Hy - ¥'(0)] + -~
This leads to the following system of equations, for m =1,2,...:
Vi(p)-r™(0) = Bim
Vo(p) - t™(0) = Bym (1)

The quantities By ,, and By, are expressions in the partial derivatives of f
and g and the lower-order derivatives of r. For m = 1 we have

B:1=B;=0
and form =2
B2 = -r'-H;-r'
32,2 = —I‘"Hg'l"

For higher values of m the expressions B; ,, are more complex.

With the assumption of independent gradients at r(0), the solution to
the system has the form

amVf+ mVg+1mVf x Vg

4m can be chosen arbitrarily, and the other coefficients satisfy the nonsin-

gular system
(Shet o) (5)=(Bim) @




System (1) is underdetermined. When using it to approximate the in-
tersection curve, the choices of 4, relate to the ability to obtain equivalent
approximations, e.g., parameterized by cs instead of s, where ¢ # 0 is a con-
stant. By using the Frenet-Serret formulas, we can interpret these choices.
We set r' = dr/ds = t, to obtain

"

r=ln oLy 1, d/dey

pr Pl P

=

For m = 1 we have B;; = Bz = 0, hence a) = §; = 0. We let

r = VfxVg
~ VS x Vg

be the solution of the system, so that the parameter s corresponds to the
arc length of the intersection curve.

For m = 2 we choose 43 = 0. This implies that r” is orthogonal to r',
and that from the system solution r" = a;Vf + $2Vg = h/p both the
principal normal h and the radius of curvature p is determined.

For m = 3 we get 43 = —(r" - r"), since both b and h are orthogonal to
t. This determines both "’ and 7.

The curve approximation so determined can be used in a neighborhood
of r(0) whose size can be estimated by the magnitude of the second and
third order terms. If the ratio of §3r"'|/6 to |r + 6r' + 6" /2| is small, then
the higher order derivatives contribute little and we have not deviated too
much from the true intersection. By halving or doubling a standard distance
repeatedly, the stepping size can be adjusted according to curvature and
torsion. It is necessary to establish a minimum stepping size since near-
singular curves can have areas of arbitrarily high curvature where repeated
halving might lead to unacceptable running times.

At the end of the current approximation to r a point Pq is reached that
is near the curve of intersection but not on it. Beginning with this point,
we find a sequence of points P;, P;,... that converges to a point p on the
curve, using Newton’s method. With Py,1 = Pi + Aj, we want to solve the
system

Vi(P) A = —f(P)
Vo(Pe)-Ar = —g(P) (3)




to obtain A = sP';. Assuming linearly independent gradients,
Py =V + BVg +ut,

where t is orthogonal to both gradients evaluated at P;. Since a change
in the direction of t does not change the values of f and g appreciably,
we set 4, = 0, thereby obtaining a unique solution for A,. We then set
Piyi= P+ Ay

After the point p is found with acceptable accuracy, a new approximation
of r(s) centered at p is determined.

3.2 The Planar Case

The planar curve f(z,y) = O arises as intersection of the cylinder f(z,y) =0
and the plane z = 0. It can be traced this way as a space curve. In the
system (1) the second equation specializes to r£’") = 0. Here r(,m) denotes
the z component of the m*® derivative of r. Moreover, since all partial
derivatives by z of f are zero, the first equation takes the form

fzr(zm) + fyl‘ﬁ,"‘) =Cn

Thus, there is no difference between considering the intersection curve r or
the planar curve.

As before, choosing 4 = O for the Newton iteration means that we ap-
proach the curve along the local normal direction. An implementation could
be specialized, but there appears to be no significant penalty for tracing the
curve in space.

3.3 Implementation

The numerical tracing procedure has been implemented in Fortran by R.
Lynch on a VAX 8600. With minor modifications, it has then been ported
to a Symbolics Lisp machine. Figures 3.1 through 3.4 show some examples
of curve traces so obtained. The planar curves have been traced as the
intersection of f(z,y) = 0 with 2 =0.

In our experience, nodal singularities cause no problems as long as the
tangent directions of the intersecting branches are sufficiently separated.
Since the curve orientation may reverse at singularities (c.f. Subsection 5.4
below), the tracing program must be augmented so as to maintain consistent




tangent direction. However, the program cannot trace through cuspidal
singularities. Many tacnodes are handled reliably, but inflections at the
singularity are not recognized. Thus both the curve f; = y? — z4 — y¢ = 0,
shown in Figure 3.3, and the curve f; = y? — 2z — y® = 0, shown in Figure
3.4, are traced as if they have two real components tangentially meeting at
the origin. While this is correct for f,, it is not correct for f, which consists
of a single real component with the two branches at the origin each having
a point of inflection.

4 Algebraic Extensions of the Method

We derived the equations (1) based on the assumption that the two surfaces
intersect transversally and are not singular at the point r(0) of interest.
Clearly, the radius of convergence of the power series about such a point
cannot include any singular points of the curve. Nonetheless, the system of
equations remains valid even when we are at a singular curve point. The
reason for this is that Taylor’s theorem is a special case of more general
theorems.

Informally, a place of the planar curve f(z,y) = O is a pair of power

series
z(s) =) ars*,  y(s) =D bis*
E>0 k>0

such that f(z(s),y(s)) is identically zero. The center of a place is the point
(z(0),y(0)) on the curve. Newton’s Theorem states that centered 2t every
curve point there is at least one place of f. Likewise, we define a place of
the space curve r as the triple (z(s), y(s),2(s)). Since every space curve is
the birational image of a planar curve [13,14], there is at least one place
centered at every point of the space curve.

The connection between the notion of place and the equation system (1)
in the previous section is established as follows. Centered at the point p we

consider the place
r(s) = Z(ahbk,ck)sk
k>0
where p = r(0). The derivative of the place is defined by

r'(s) = Z(ak, bk, ck)ks"' 1
k21




Higher order derivatives are defined analogously.

Since p is assumed to be on the intersection curve of f and g, we know
that f(r(s)) and g(r(s)) are identically zero, from which a system of equa-
tions is obtained for m =1,2,3,...

Kl'm = 0
sz"" = 0 (4)

Here K g, is the coefficient of s™ in the power series f(r(s)) and K3, is
the coefficient of s™ in the power series g(r(s)). This leads to the following

Theorem For all m > 1 the equation Vfx(™(0) = B, ,, is equivalent
to the equation m!K; ,, = 0.

The analogous statement holds for g and K3 »,. The proof is by induction
on the terms of f; see 8] for details. How the series are obtained from system
(4) is illustrated by an example.

Consider the cylinders f = z? + y? + 2z = 0and g = z? + 22 + 4z = 0.
Their intersection is an irreducible space curve of degree 4 with a singular
point at the origin. At the singular point we have the following equations:

a)

a)

a? + 2ap + b?

cf + 4az + a?

2ajaz + 2a3 + 2b)b; =

2aja; + 4as + 2¢1¢2

a§ + 2a31a3 + 2a4 + b§ + 2b,b3
a% + 2a103 + 4a4 + c§ +2c1c3 =

I o
©O 0o oo oo oo

il

One of the solutions to this system is

z(s) = —st
1 s
= 2g — ——s3...
y(s) s 2\/2_3
z(s) = 28— %ss see




In principle, this approach can be used to extend the tracing method of
Section 3 so as to handle singular points, but it may become computationally
expensive. Efficient strategies for solving these equations may exist. For
example, one can always choose the coefficients of one series, say for z(s),
such that |ax| = 1 for one specific k, and all other coefficients are zero [14].

5 Planar Algebraic Curves

The problem of tracing a curve reliably through any singularity is partially
solved by the following theorem from algebraic geometry, e.g. [1]:

Theorem Any given algebraic plane curve can be transformed, by a
birational transformation, into a curve devoid of singularities.

The proof proceeds by an inductive argument that builds up the required
birational transformation through a sequence of elementary, quadratic trans-
formations. It is easy to understand that these transformations resolve or-
dinary singularities, but how progress is made on irregular singularities is
more subtle, and we will not discuss it here. Different proofs of the theorem
are found in, e.g., [1,10,13,14]. We restrict our attention to those transfor-
mation properties that are needed in order to understand how to derive an
algorithm from the theorem.

5.1 Desingularization

We map a planar curve f(z,y) = Oto a curve g(z1,y1) = 0 by the quadratic
transformation

(5)

=z Y=

H <

If f has a singular point of order m at the origin, then

f(z1,z191) = z7"9(21,41)

We call f(z;,z1y1) the total transform, and g(z1,y1) the proper transform
of f. The y;-axis is called the ezceptional line. Figures 5.1 and 5.2 show
two examples of a curve f and its proper transform.

Intuitively speaking, applying the quadratic transformation separates
intersecting curve branches that have different tangent directions. To ap-
preciate this, note that the line y — mz = 0 is transformed to the line

10




y1 — m = 0. Moreover, all points (z,y) of the z-y plane with z # 0 are in
1 — 1 correspondence with points (z,y/z) of the z;-y; plane. A point (0,y)
of the z-y plane with y # O is mapped to infinity in the z;-y; plane, and the
origin of the z-y is mapped to the exceptional line. The effect is that the
singular point is “blown up” to the line z; = 0, and that the branches of f
at the origin are separated or, in a precise sense, made less singular. The
proof of the theorem shows that after a finite number of quadratic transfor-
mations all singularities are removed. We wish to trace through a singular
point as follows: :

1. We trace the curve f using the basic method of Section 3.

2. When approaching a singularity, we notice at some point p that the
determinant of the system becomes too small. We then locate the sin-
gular point as described below, and move it to the origin by translating
the coordinate system.

3. Now the quadratic transformation is applied yielding the proper trans-
form g.

4. We traverse g beginning at the point p; corresponding to p, until we are
past the singularity of f and the system determinant is large enough
to continue traversing f accurately.

Note that we may have to traverse recursively iterated transforms of f,
since the applied quadratic transform may not have fully desingularized the
corresponding branch of g. Moreover, care must be exercised in correlating
the orientation of g and of f to maintain proper traversal direction.

5.2 Locating the Singularity

When approaching a singular point p, the partial derivatives f; and f, of
J vanish. If the singularity has higher order, then higher order partial
derivatives also vanish.

The singular point is defined as the intersection of the curves f = O,
f: =0, and f, = 0. When traversing the curve f, we have approached
the singularity to a point Pg for which the partial f; and f, drop in value
below a threshold u. We use a Newton iteration to construct a sequence of
point approximations P; that converges to the singularity. The iteration is

11




governed by the following system:

=P LR (s 1(P)
fez(P5) fzv(Pi) ( 5=t ) =~ IZ(PI')
fzy(Ps)  fyu(P) Y fu(P)

whose solution determines the next approximation to the intersection as
Piy1 = P; + (62,6,). Since this system is overconstrained, we solve it using
the least-squares method by solving the 2 x 2 system

ATAA = -ATh (6)

where A is the 2 x 3 matrix, A = (8,,6,), and b the righthand side vector.

If the singularity has higher order, the system (6) is singular. In this case
we determine which higher order partials also vanish. For each vanishing
higher order partial derivative h of f, the matrix A is augmented by the row
(hz(P;),hy(P;)) and the vector b by the entry h(F;). This process continues
until D = ATA has full rank. For exceptional values it is possible that D
has rank 1 or zero even though no additional partials of f vanish. This
means that we happen to approach the singular point crossing a specific
algebraic curve given by the symbolic determinant of D. In this case, a
random perturbation of the point should correct the problem. So far, we
have not encountered this problem in practice.

5.3 Passing to the Transformed Curve

By a translation of f, the coordinate system is centered at the singular
point ¢ just found. This may introduce spurious terms that are controlled
based on the information obtained during the iteration locating ¢q. Recall
that the vector b in the iteration contains all partial derivatives that vanish.
Consequently, if the partial h appearsin b, then the corresponding monomial
term must be absent in the translated curve. For example, let f be the
translation of f, and assume that b contains the vanishing partials f., f,
Jzzs fyys Jzys Szyy, 80d fyyy. Then f must not contain the terms z, y, z2,
y?, 7y, zy?, and y3. Shoula such terms appear in f with small coefficients,
due to numerical imprecision, they are now removed.

Having centered the singularity at the origin, we apply the quadratic
transformation (5). Since this transformation maps the line z = 0 to infinity,
the branch of f we traverse must not have the y-axis as tangent. If it does,

12




we rotate f by

before applying the quadratic transformation.

In practice, one applies instead the quadratic transformation

in which the z-axis becomes the exceptional line. Which quadratic trans-
formation is used is decided based on the current tangent direction of f in
the traversal.

5.4 Branch Orientation

We give a standard orientation to the curve f(z,y) = O by the tangent vector
(= fy, fz). This orientation is not intrinsic in the sense that —f(z,y) = 0
is the same curve but with opposite standard direction. Given a consistent
traversal direction of a branch, we observe that the standard direction of
the curve may reverse at certain singularities. For example, the orientation
of f = y* — 22 — % = 0 is as shown in Figure 5.3. Consequently, when
traversing the curve from p to ¢, we first move in the standard direction,
but after the singularity we move in the opposite direction. Figure 5.4 shows
that this reversal does not happen at all singularities.

Geometrically, the apparent orientation reversal is understood when con-
sidering f(z,y) = O as the intersection curve of f(z,y) — z = 0 and z = 0.
Along the intersection curve, the projection onto the z-y plane of the sur-
face gradient (fz, fy, ~1) is just the curve normal. Thus the normal reversal
that causes the changed standard orientation is merely a rotation of the
urface normal in 3-space. Whether a branch suffers this reversal depends
on the global topology of the singularity. Briefly, the orientation reverses
if the branch intersects an odd number of other branches, with the proper
definition of intersection. Nevertheless, a local correspondence between the
orientation of f and its proper transform g can be established outside the
singularity from which we can deduce whether the standard orientation has
reversed, without having to analyze the topology of the singularity.

Let p = (ap,bo) be a nonsingular point of f, where ¢y # 0. To p corre-
sponds the point p; = (ag, bo/ag) of the transformed curve g. Centered at

13




P, the curve f has the place

z(s) = ao+a1s+0282+"'
y(s) = bo+bis+bps?+ .-

and centered at p;, the curve g has the place

zi(s) = z(s) = ap+a;8+azs® +---
yl(s) = 60+cls+czsz+...

We assume that the traversal of f at p proceeds by increasing value of s. Note
that the traversal direction need not agree with the standard orientation
(= fy, fz)- Since z(s) = z1(s), the curve and its transform are oriented the
same way, and traversing g by increasing s is equivalent tc traversing f by
increasing s.

Since y;(s) = y(s)/z(s), we divide the two power series and compare the
resulting coefficients with the c,. We obtain

co = bo/ao
_ blao—albo
o = At ™

Since f is not singular at p, g is not singular at p;. Hence both curves have
a Taylor series at these points so that a; is proportional to — f, and to —g,,
while b; is proportional to fz, and ¢, is proportional to g.. We now obtain
from (7) that

o = afy
zf: + yfy

= Q———T
gz zz

So, if we relate the traversal direction of f to the standard orientation
(= fy, fz), then «a relates the corresponding traversal direction of g to the
standard orientation (—g,,9;) of ¢, and vice versa. Since the fully desingu-
larized branch cannot experience an orientation reversal, we have a method
to maintain consistent traversal direction through singularities.

14




5.5 Implementation

The planar curve traversal has been implemented in Lisp on a Symbolics
Lisp machine. A prototype was previously implemented by C. Bajaj on a
VAX 8600. Figure 5.4 shows an example of a traversal requiring iterated
desingularization, as well as the traversals along the proper transforms in
the vicinity of the singularity. For simplicity, the singularity was already
positioned at the origin.

6 Singularities on Space Curves

Every algebraic space curve is the birational image of an algebraic plane
curve. It follows that the singularities of space curves are not qualita-
tively different from those of plane curves. Two possibilities exist for tracing
through space curve singularities:

1. Construct a birational map from the given space curve to a planar
curve, trace the planar curve, and lift the resulting points.

2. Desingularize the space curve directly.

Since the intersection curve in general has degree equal to the product
of the surface degrees, the birationally equivalent plane curve must have
high degree and may be computationally less tractable. Working with the
space curve directly is therefore more attractive. However, desingularizing
the space curve directly must address the fact that the curve is given as the
intersection of two surfaces. If we are to work with this representation, then
we need to apply quadratic transformations that desingularize the curve
and the intersecting surfaces as well. Hence the approach to space curve
desingularization found in the standard literature, e.g. [5], will not work, and
more research is required to work out techniques suitable for computation.
We restrict our discussion therefore to the method of reducing the space
curve to a plane curve.

The simplest way to map the space curve to a planar curve is by projec-
tion. Orthographic projection along a principal axis is done by elimination
of a variable, using resultants. Other directions require a rotation of the
coordinate system prior to projection. For space curve singularities where
at least one of the surfaces has a nonzero gradient, orthographic projec-
tion onto the tangent plane is conceptually ideal. The major computational

15




problem would be the inefficiency of the resultant computation for surfaces
of high degree. Moreover, branches intersecting the surface normal above
or below the tangent plane are also projected and unnecessarily increase the
complexity of the singularity.

A different method to map a space curve to the plane is to find a rational
surface containing the curve, parameterizing this surface, and then substi-
tuting the parametric equations into one of the implicit surface equations,
say ¢g. This method has the advantage of treating all singularities, not only
those at a nonzero surface gradient. We describe the method below and give
several examples. It has not been implemented yet.

6.1 Monoid and Cone Representation

It is well known that every algebraic space curve fNg can be represented as
the intersection of a monoid and a cone, [13]. A monoid is a rational surface
of degree m that contains an m — 1 fold point. Simple examples include
all planes, quadrics, and the Steiner surface. When the m — 1 fold point is
brought to the origin, the monoid equation takes the form

wHpy-1(z,y,2) + Hn(z,y,2) =0

where H,,_; is homogeneous of degree m — 1 and H,, is homogeneous of
degree m.

We will be interested in determining the monoid containing a given space
curve f Ng and its parametric representation. We will not determine the
cone, since it is not needed. Moreover, the parameterization of the monoid
is incompatible with the cone equation. The procedure for determining the
monoid is based on the projective form of the surfaces f and g. Asin [12],
we proceed as follows.

First, homogenize f(z,y,2) and g(z,y,z) so as to obtain F(w,z,y,2)
and G(w,z,y,2). As long as w # 0, the curve F N G is identical to f Ng.
We select one of the base points of the projective coordinate system, say
(1,0,0,0), as the m — 1 fold monoid point. This implies using w as the
main variable in the computation below. The base point (0,1,0,0) would
correspond to selecting z as the main variable, and so on.

We write both F and G as polynomials in the main variable, w,

F = v+t w14 +uyyw+yp
' ,"_
G = vpuw" +yp_u” 1 4.+ 0w+ vy
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Without loss of generality we assume that n > n’ > 1. We compute the
polynomials

F, = uw™"G- v F
G1 = (UQG - voF)/w
Note that both F; and G; contain the intersection curve of F and G.

Both F; and G; have degree at most n — 1 in w. If one of them is
linear in w, then we stop; we have found the monoid equation. If neither is
linear, then we repeat the calculation using F; and G; in place of F and G.
Since at each step the maximum degree in w is lowered at least by one, the
computation derives the monoid equation after at most n steps in the form

WHm-l(z’y,z) + HM(-":!I,z) =0

The monoid is parameterized by intersecting it with lines through the m -1
fold point. Let a : b : ¢ be the direction ratios of these lines, then the monoid
is parameterized by

w(a,b,¢) = —Hpn-1(a,b,¢c)/Hm(a,b,c)
z(a,b,c) =

y(a,b,c) = b

z(a,b,c) = ¢

This parameterization is projective, that is, (a,b,c) are the coordinates of a
two-dimensional projective parameter space.

The parametric forms are now substituted into the equation of G and
give the desired plane curve, in homogeneous form.

6.2 Examples

We illustrate the method with two examples. First, consider the intersection
curve of the cylinder F = z? + 2% + 22w = 0 and the sphere G = 2% + y* +
22 4+ 4zw = 0. The intersection curve is an irreducible degree 4 space curve
with a nodal singularity at the origin shown in Figure 6.1.

The cylinder is a monoid with the m—1 fold point at the origin (1, 0,0, 0).
Since the point of interest on the space curve is the origin, we determine
a different monoid whose m — 1 fold point is not the origin. We choose
(0,0,0,1), making z the main variable. Accordiagly, we compute

Fi=G-F=¢*+ 2w
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The parameterization of F; is then

= -2a/c?

a
b

[+

< 8 8 n
|

Substitution into G yields the plane curve
b* + 4a®(c? - b%) =0

Dehomogenizing with a = 1 yields b* — 4(c? — %) = 0. This curve is shown
in Figure 6.2.

As a more complicated example, consider the intersection of the torus
(2% + y? + 2% — w?)? + 8w?(2? - 2% — y? — w?) + 16w* = 0 with the ellipsoid
36(z — w)? + 4(y — w)? + 9z% — 36w? = 0. The monoid computation, as
described, yields a surface of degree 12 in 4 steps. Its equation contains an
extraneous factor of degree 4. Substitution into the ellipsoid equation thus
yields a plane curve of degree 16 that factors into a degree 2 component a
degree 6 component, and a degree 8 component.

A better solution to the problem is to parameterize the ellipsoid since
it is a monoid. To do so, we first translate the coordinate system to the
point (1,0,1,2), which is on the ellipsoid, and parameterize with w as main
variable. This results in a plane curve of degree 12 that could not be factored
by Macsyma.

6.3 Remarks

Only in the plane curve case do we know of a simple algebraic procedure
achieving complete desingularization at minimal computational cost. The
projection of space curves to planar curves seems to require significant ma-
chinery, for determining the monoid equation, and for eliminating extrane-
ous components introduced in the process. In the case of monoid/cone in-
tersection these extraneous components are all lines, hence would be simple
to exclude. The cone is determined by a resultant computation, and yields
a homogeneous polynomial in three variables. Unfortunately, its equation
is unsuitable for substituting the monoid parameterization. In simple cases,
there exist certain reparameterizations that circumvent this problem.
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If one of the surfaces f or g is known to be rational it can be advanta-
geous to parameterize it directly. In the case of quadrics this amounts to a
coordinate translation that brings one of the base points of the coordinate
system onto the surface. In the case of cubics, [2] gives parameterization
algorithms. Many other surfaces, including the torus, are also rational with
known standard parameterizations. Direct parameterization side-steps a po-
tentially lengthy monoid derivation. It should be noted, however, that the
resulting plane curve is not necessarily of minimum degree.

It appears that there are simple quadratic transformations of space that
achieve surface/surface intersection desingularization much as in the planar
case. More research is needed to explore the exact effect of these transfor-
mations, and the issues involved in realizing them by computation.
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Figure 5.1
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Figure 5.2

Desingularization of Cuspidal Singularity

y? — 28
vi-=1




Figure 5.3
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Figure 5.5
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Figure 6.1
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